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Belief Propagation and Locally Bayesian Learning
Adam N. Sanborn (asanborn@gatsby.ucl.ac.uk)
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London, UK

Ricardo Silva (ricardo@stats.ucl.ac.uk)
Department of Statistical Science, University College London

London, UK

Abstract

Highlighting, a conditioning effect, consists of both primacy-
like and recency-like effects in human subjects. This
combination of effects are notoriously difficult for Bayesian
models to produce. An approximation to probabilistic
inference, Locally Bayesian learning (LBL), can predict
highlighting by partitioning the model into regions during
learning and passing messages between these regions. While
the approximation matches behavior in this task, it is unclear
how LBL compares to other approximations used in Bayesian
models, and what behaviors this approximations will predict
in other paradigms. Our contribution is to show LBL is closely
related to the statistical algorithms of Assumed Density
Filtering (ADF), which simplifies calculations by assuming
independence, and Belief Propagation, which identifies how
to make these calculations through message passing. We
propose that people use ADF to learn and show how this
model can produce highlighting behavior. In addition, we
demonstrate how the degrees of approximation used in LBL
and ADF cause the models to make very different predictions
in a proposed experimental design.

Keywords: machine learning; conditioning; Bayesian models;
belief propagation; assumed density filtering

Bayesian approaches have often been successful in pre-
dicting human data as the result of optimal behavior (e.g.,
Körding & Wolpert, 2004), but people can also produce be-
havior that is very difficult to explain with Bayesian ap-
proaches (Daw, Courville, & Dayan, 2008; Kruschke, 2006a,
2006b). Additionally, Bayesian approaches can be hampered
by computational complexity in practical applications (An-
derson, 1991).

Modeling human cognition as an approximation to optimal
behavior is an approach that has been used to both explain
deviations from optimality as well as managing the computa-
tional complexity of the solution (Gigerenzer & Todd, 1999;
Kahneman, Slovic, & Tversky, 1982; Kruschke, 2006b).
Many of these algorithms were invented to match human
behavior, but recent work has proposed that candidate al-
gorithms for human cognition could be drawn from work
in computer science and statistics (Sanborn, Griffiths, &
Navarro, 2006). These algorithms have been developed to
efficiently produce results faithful to the full model, and can
come with guarantees on the quality of the approximation.

Conditioning has been a testbed for approximations to
Bayesian models. Conditioning effects such as blocking and
highlighting depend on the order of the stimuli. An approx-
imation that has successfully fit these types of effects is Lo-
cally Bayesian Learning (LBL; Kruschke, 2006b). This ap-

proximation embodies the compelling idea that local calcula-
tions are optimal, but the global prediction is only approxi-
mately optimal because information is lost in the communi-
cation between regions.

The approximation introduced in LBL was successful in
fitting conditioning data, but the approximation itself has not
been thoroughly studied. The goal of this paper is to connect
the approximation used in LBL with algorithms in computer
science and statistics. First we introduce LBL and compare it
to the probabilistically correct updating algorithm, Globally
Bayesian Learning. Next we introduce Belief Propagation
and Assumed Density Filtering (ADF) and show how LBL
relates to both these algorithms. Next we describe the effect
of highlighting and show that ADF can produce a highlight-
ing effect. Finally we show that LBL predicts a highlighting
effect for alternating trials, while ADF does not.

Locally Bayesian Learning
The probabilistic model underlying LBL was a generaliza-
tion of a feedforward neural network with one hidden layer.
This structure and the variable names used are shown in Fig-
ure 1a. The neural network was generalized from having sin-
gle estimates of hidden weights, hidden nodes, and output
weights by putting a distribution over the values of these hid-
den variables. The generalization required different calcula-
tions than a neural network to update the weights, and the
correct probabilistic update was termed Globally Bayesian
Learning (GBL),

p(Whid ,Wout ,y | x, t) ∝ p(t |Wout ,y)p(y |Whid ,x)p(Wout ,Whid) (1)

where the variables in the model are described in Figure 1 and
p(t|Wout ,y) and p(y|Whid ,x) were the standard linear combi-
nation of weights plus a sigmoid nonlinearity.

The network graph was then split into regions to imple-
ment LBL, as in Figure 1b. Psychologically, LBL was meant
to represent two stages: an early attentional phase that took
stimulus cues from the input nodes and converted it into at-
tended cues on the hidden nodes, and weights from the at-
tended cues to the output. Correct probabilistic calculations
were used within regions, but LBL uses messages between
regions that result in an approximation to GBL. Informa-
tion was passed between the two regions of LBL in two par-
ticular ways. The expected value of the attentional nodes
E(y|x) in the first region given the stimulus cues was passed
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Figure 1: Network diagrams of Locally and Globally
Bayesian Learning. The underlying models are feedforward
neural networks with input vector x, hidden weight matrix
Wh, hidden node vector y, output weight matrix Wo, and out-
put vector t. In GBL, all of the hidden parameters are inferred
together. In LBL, the network graph has been sectioned into
regions with copies of the hidden nodes y in each region.
Messages are passed back and forth between the copies of the
hidden nodes y, the expected value E(y|x) is passed upward
and the single y∗ that best maximizes the output is passed
backwards.

to the second region, and computations depending on y in
the second region were calculated based on E(y|x). Once the
feedback response t was received by the system, the output
weights Wout were updated to be p(Wout |E(y|x), t), instead of
the p(Wout |x, t) as they would be under GBL.

The second approximation was in the information passed
back from the second region to the first region. In this ap-
proximation the value of y that maximizes the probability of
the feedback response t was computed,

ŷ = argmax
y∗

∑
Wout

p(t|Wout ,y∗)p(Wout |E(y|x), t) (2)

and finally the hidden weight prior p(Whid) was updated with
p(Whid |x, ŷ).

The local computation and message passing were moti-
vated from several perspectives, including the desire to sim-
plify calculations (Kruschke, 2006b). The use of local com-
putation and message passing to simplify computation has
been echoed in computer science and statistics, and next we
describe a version of this approach and connect it to LBL.

Belief Propagation
Dividing a model into components that perform local up-
dating, based only on the information available from con-
tiguous components, is an idea explored in machine learning
and statistics under the name Belief Propagation (BP; Minka,
2001; Yedidia, Freeman, & Weiss, 2005). BP is a message
passing scheme for inference. The joint distribution is di-
vided into regions, messages are passed between regions, and
updating is performed based on these messages. Reducing
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Figure 2: Factor graphs of the variables in the Globally and
Locally Bayesian Learning. In A, the factor graph of GBL is
a loop, while in B, the factor graph of LBL is a chain.

computation for Bayesian models is one of its main applica-
tions.

Typically, inference by message passing assumes that the
distribution of interest is represented as a product of factor
functions fa(·)

p(s) =
1
Z ∏

a
fa(sa) (3)

where s denotes a set of random variables and sa the subset of
variables that are arguments to the function fa(·). Constant Z
is the normalizing constant of the distribution.

BP schemes are most commonly used as approximations
to marginals of distributions. In these schemes, one defines a
set of belief functions br(sr) that will encode marginals of a
subset of variables sr ⊆ s: that is, belief functions are prob-
ability functions, being non-negative and integrating to one.
The goal is to project the marginals of the (exact) distribution
p(hidden | observed) into the corresponding belief functions
in a iterative and computationally cheap way – a brute-force
procedure that computes these marginals directly is in general
not feasible.

In most cases, the belief functions will only be approxi-
mations to the true marginals, and the set of belief functions
do not need to be globally coherent (in the sense there exists
a single joint distribution with marginals given by the belief
functions). Message passing can be applied to many types of
probabilistic models, but we focus on the special case that is
relevant to the interpretation and generalization of LBL.

Message Passing for a Factored Prior
In the probabilistic model, the complete set of random
variables used when observing the cue-target pair {x, t} is
given by {x,y, t,Whid ,Wout}. When a cue-target pair {x, t}
is revealed, Bayesian updating will consist of computing
p(Whid ,Wout ,y | x, t). Within LBL and GBL, the posterior
can be factored similarly to Equation 1. Using the framework
of Equation 3, the posterior is the result of multiplying (and
renormalizing) these factors,1

1There are multiple ways to construct the factor graph for
these variables. We could have instead treated the product
f1(Wout) f2(Wout ,y) as a single factor, but this version better matches
LBL.
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f1(Wout) ≡ p(Wout)
f2(Wout ,y) ≡ p(t |Wout ,y)
f3(Whid ,y) ≡ p(y |Whid ,x)p(Whid)

(4)

Notice that we are considering stimulus {x, t} as fixed, as
such, they are not arguments to the factor functions. We
also assume that the prior for the parameters factorizes as
p(Wout)p(Whid) at any stage of our experiment, an assump-
tion we will justify in the next section.

Consider a chained propagation scheme for defining be-
liefs. The LBL graph of Figure 2b depicts our target distribu-
tion using blocks to denote factors and circles to denote vari-
ables, a representation also known as a factor graph (Yedidia
et al., 2005). In constrast, GBL might also have as a prior a
function p(Wout ,Whid) for all data points. This implies that a
factor between Wout and Whid is in general also needed, which
results in the loop in Figure 2a.

In LBL, we define messages that will pass from variable
nodes (the bottom, circled ones, in Figure 2b) to factor nodes
(top, squared nodes), and vice-versa. As we will see, such
messages will stand for different partial summations over
the distribution function of interest, allowing us to compute
marginals in a more efficient way than by brute-force summa-
tion. Consider the expression for the marginal of Wout given
the evidence after we sum out the other hidden variables,

p(Wout | x, t) ∝ ∑
y

∑
Whid

f1(Wout) f2(Wout ,y) f3(Whid ,y)

= f1(Wout)∑
y

f2(Wout ,y) ∑
Whid

f3(Whid ,y)

(5)
The inner summation over Whid can be cached as a func-

tion of the corresponding values of y. Expressing that as a
message passing algorithm, we denote the value of this inner
summation as a message. Since the message goes from factor
f3 to variable y and depends on the particular value of y, we
denote it as m f3→y(y) 2.

Node y repeats the message from f3 to f2, since it has
no other neighbors but these two. We denote this copy as
my→ f2(y). Given this message, a message from f2 to Wout can
be defined in terms of the summation over y using the cached
message,

m f2→Wout (Wout) ∝ ∑
y

f2(Wout ,y)my→ f2(y) (6)

For simplicity of interpretation, we assume we normalize
all messages − in general, this is not necessary. Notice that
because we cached the previous summation, we are summing
over a reduced space now. Message passing can be seen as a
dynamic programming approach to probabilistic inference.

Finally, since factor node f1 has no neighbors but Wout , it
passes its factor function to Wout with no summation required:

2In general message passing situations, we expect f3 to first get
a message from Whid , but since node Whid in Figure 2b has no other
neighbors, this message is empty.

m f1→Wout = f1(Wout). The marginal for Wout given {x, t} can
be rewritten in message passing notation as the belief function
bWout (Wout),

bWout (Wout) ∝ m f1→Wout (Wout)m f2→Wout (Wout) (7)

In general, the belief function resulting from a message
passing scheme will produce only an approximation to the
desired marginal. The belief function would be approximate
for GBL, because the GBL factor graph in Figure 2a contains
a loop. This is not the case for the simple chain model of
LBL in Figure 2b, which is guaranteed to calculate the cor-
rect marginal. As we just verified, bWout (Wout) = p(Wout | x, t).

Calculating the marginal belief bWhid (Whid) can be done by
an analogous process starting from the other end of the chain
(i.e., starting from message m f1→Wout ). Computing the mes-
sages toward Whid , our first summation comes as we pass in-
formation to node y,

m f2→y(y) ∝ ∑
Wout

f1(Wout) f2(Wout ,y) (8)

As before, the message from y to f3 will again be just
a copy of the incoming message from f2. The message
passing scheme will be finalized by the message from f3
to Whid , m f3→Whid . This message will be the factor function
f3 weighted by the incoming message from y, marginalizing
over y so that we obtain the marginal information for Whid ,

m f3→Whid (Whid) ∝ ∑
y

m f2→y(y) f3(Whid ,y) (9)

Because there are no other messages into Whid , its be-
lief function bWhid (Whid) and the posterior p(Whid |x, t) will be
identical to the above message.

Approximations to Belief Propagation in Locally
Bayesian Learning
We can now understand LBL algorithm as a belief propaga-
tion algorithm with three approximations. Perform the first
stage as we described, passing messages from Whid towards
Wout . The first difference is that LBL replaces the message
m f3→y with the “collapsed” message,

m′f3→y(y) = δ(y = Ey∼m f3→y(y)) (10)

where Ey∼m f3→y(y) is the expectation of y with respect to
m f3→y(y). Function δ(·) is one if its argument is true, zero
otherwise. The rest of the message passing scheme towards
Wout stays the same, with the modified b′Wout

(Wout) being an
approximation to p(Wout | x, t).

The second and third approximations change the informa-
tion used to update Whid . Instead of using the prior distri-
bution of Wout in the update of Whid , LBL uses the posterior
of Wout in the update. This approximation corresponds to an
overcounting of the evidence in the updating of Whid . The
overcounting is reflected in the new message,
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m′f2→y(y) ∝ ∑
Wout

p(Wout | E(y|x), t)p(t |Wout ,y) (11)

= ∑
Wout

b′wout (Wout) f2(Wout ,y) (12)

Instead of using the full message, LBL further approxi-
mates this distribution by collapsing it to its maximum value:

m′′f2→y = δ(y = ŷ) (13)

where ŷ = argmaxy∗∑Wout b′wout (Wout) f2(Wout ,y∗). The mes-
sage passing is finalized by (9) using m′′f2→y instead of m f2→y.
LBL approximation algorithm is recovered, since the new
message from f3 to Whid is now

m′f3→Whid
(Whid) ∝ p(ŷ |Whid ,x)p(Whid) (14)

which given the normalization will be exactly p(Whid | ŷ,x).
In contrast, even if the prior in GBL is factored, its fac-

tor graph changes after processing the first data point. The
dependency between Wout and Whid will transform the graph
from Figure 2b into the graph in Figure 2a, starting from the
second data point. The side-effect of the collapsing done in
Equation 13 is that Wout and Whid will be marginally indepen-
dent. This approximate posterior distribution is then used as
the new prior for the next data point and the process repeated.

An Alternative Approximation
Once we understand LBL as a special case of a message pass-
ing algorithm in a chain-ordered factor graph, we can exper-
iment with other approximations to the full Bayesian model.
The consequence of the LBL approximations that we focus
on is the independence that results from the collapsed mes-
sages. This independence can also be produced using the full
messages, which is a type of Assumed Density Filtering ap-
proximation (ADF; Boyen & Koller, 1998). In ADF, message
passing is used to approximate a posterior over parameters for
a single data point, and this approximate posterior is used as
the prior when processing the next point.

Instead of using the expected value E(y|x) or the maximum
y∗ to remove dependencies between Wout and Whid , we will
adopt the standard procedure of ADF: considering all factor-
ized distributions q(Wout ,Whid) ≡ qo(Wout)qh(Whid), find the
one that is closest to the true posterior p(Wout ,Whid | x, t) ≡
px,t(Wout ,Whid) according to the KL-divergence criterion,

KL(p || q)=
Z

px,t(Wout ,Whid) ln
qo(Wout)qh(Whid)
px,t(Wout ,Whid)

dWoutWhid

(15)
Minimizing Equation 15 with respect to qo(·) and qh(·) re-

sults in qo(Wout) = p(Wout | x, t) and qh(Whid) = p(Whid | x, t).
In this way we obtain the exact marginals under indepen-
dence, and use this approximation to the posterior as the prior
when processing the next data point. The approximation used

in LBL produces a non-standard projection of the true poste-
rior into the space of factorized distributions, so the ADF us-
ing the exact marginals will always be as good or better than
LBL in the KL divergence sense.

Updating the parameters using ADF is accomplished by
using the complete messages from Equations 4-9 in place of
the approximated versions used in LBL. As in the LBL, learn-
ing is the result of local computations and message passing
between regions.

Highlighting
We have connected LBL to ADF and BP and have proposed
an alternative model based on this formulation. Now we can
explore how well these models predict human behavior in a
conditioning experiment. Space constraints prevent us from
exploring the range of conditioning effects LBL has been ap-
plied to, so we focus instead on the most troublesome effect
for Bayesian models, highlighting.

Highlighting (Kruschke, 1996, 2006b; Medin & Edelson,
1988) is a conditioning effect that results from exposing sub-
jects to two types of trials. The first, which is notated at
I.PE → E, presents the subject with two cues: cue I and cue
PE. Following the cues is the outcome E. The second type
of trial is I.PL→ L, in which subjects are trained on cues I
and PL and which leads to outcome L. In this task, cue I is an
imperfect predictor of the outcomes, while cues PE and cue
PL are perfect predictors of E and L respectively.

The highlighting effect occurs in designs in which subjects
initially learn I.PE → E trials, and later learn I.PL→ L tri-
als. When presented at test with cue I, subjects tend to choose
outcome E. But when presented at test with cues PE and PL,
subjects tend to choose outcome L. This effect is usually ex-
plained in terms of attention: subjects first learn to associate
outcome E equally with cues I and cues PE, because they are
both equally predictive of this outcome in the I.PE → E tri-
als. However, when later learning the I.PL→ L trials trials,
subjects realize the cue I is not informative, so ignore it and
heavily weight the association between cue PL and outcome
L. During test, I has a stronger association with outcome E
and when cues PE and PL compete against each other, out-
come L is chosen because PL has a stronger association to L
than PE has to E.

Kruschke (2006a, 2006b) demonstrated that highlighting
was an extremely challenging effect for Bayesian models of
conditioning. The key challenge to these models is the canon-
ical design: an equal number of I.PE→E and I.PL→ L trials
over the entire experiment. The design that accomplishes the
balance between global trial equality and local trial imbalance
is shown in Table 1. Using this design, the prediction from a
stationary Bayesian model is indifference to the outcomes for
both cue I and cues PE.PL. However both human data (Kr-
uschke, in press) and LBL (Kruschke, 2006b) predict a robust
highlighting effect.

We show the predictions of GBL and LBL for highlighting
in Figure 3 as well as the results for human subjects estimated
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Table 1: Kruschke’s Canonical Highlighting Design
Phase Number of Trials Items
First 2∗N1 I.PE→ E

Second 3∗N2 I.PE→ E
1∗N2 I.PL→ L

Third 1∗ (N2 +N1) I.PE→ E
3∗ (N2 +N1) I.PL→ L

in Kruschke (in press). In the first three panels, the model
was trained on the same stimuli used in Kruschke (2006b): 7
trials of I.PE → E followed by 7 trials of I.PL→ L. GBL
shows no highlighting effect because of its insensitivity to
order. LBL shows a highlighting effect that is almost exactly
the size of human effect. ADF shows a highlighting effect
that is between GBL and LBL, but is not as large as in the
human data.

However, the human data were collected using many more
trials, N1 = 10 and N2 = 5 in the canonical design resulting
in 50 trials of each type3 . When we train LBL and ADF on
the number of trials used in Kruschke (in press), then both
models produce highlighting effects as large or larger than
human highlighting effects (Figure 3).

Predictions for Alternating Trials
The highlighting effect is assumed to be caused by early
blocks with a high proportion of I.PE → E trials and late
blocks with a high proportion of I.PL → L trials. An ex-
treme example of the highlighting design is alternating trials,
in which single I.PL→ L trial is followed by a I.PE → E
trial. The early block and late block are both one trial long
and there can be many repetitions of the blocks. As far as
we are aware, the highlighting effect has not been tested for
in this design, and it would be surprising if it were found.
A highlighting effect for alternating stimuli would mean that
subjects are extremely sensitive to small changes in order, in
fact, sensitive to the position of a single trial in the entire run
of the experiment. Shifting the first trial to the end of the
experiment in this design produces the opposite alternating
order.

Figure 4 shows the predictions for the models on the al-
ternating trials. As in the highlighting design, GBL predicts
equal preference for the two alternatives when test with cue I
or with cues PE.PL. For both 14 and 100 trials, LBL predicts
a highlighting effect that is as strong as the effect predicted
for the highlighting stimuli. ADF closely mimics GBL and
predicts nearly indifferent performance for both 14 and 100
alternating trials.

Discussion
Our paper provides a connection between LBL and approxi-
mations in computer science and statistics and uses this con-

3As in Kruschke (in press), a canonical highlighting design was
used, but to simplify the results the simulations used only a single
copy of the canonical design.

nection to propose an alternative to LBL. Casting LBL in the
framework of BP identified several deviations from this mes-
sage passing algorithm. The deviations cause the posterior
distribution for the weights to be factorized. We use ADF to
retain this factorization of the posterior weights, while pro-
ducing the best possible approximation (as measured by KL
divergence) to the full posterior distribution. Like LBL, ADF
uses local message passing and it provides an interpolation
between the more computationally complex full Bayesian
model and the more approximate LBL.

Highlighting has proven to be a difficult experimental ef-
fect to predict using Bayesian models (Daw et al., 2008; Kr-
uschke, 2006a, 2006b) and LBL predicts these data, as does
our alternative, ADF. The differences in the approximation
are revealed, however, when they are trained on alternating
highlighting trials. ADF predictions are very close to the full
Bayesian model, while the stronger approximations in LBL
continue to predict a strong highlighting effect. This result
may only hold if learning is applied to the parameter spaces
used in (Kruschke, 2006b), as a preliminary investigation us-
ing larger hypothesis spaces shows that LBL does not pro-
duce highlighting for alternating trials (Kruschke & Denton,
2009). Further investigations are needed to test the predic-
tions of these approximations against human highlighting ef-
fects.

In addition to highlighting, LBL produces human-like be-
havior in a variety of conditioning paradigms. We have fo-
cused on the highlighting effect in this paper due to space
constraints. Our initial simulations do show that ADF is able
to produce forward blocking, backward blocking, and a larger
effect for forward blocking than backward blocking.

Conclusions
Kruschke (2006b) introduced the idea that conditioning ef-
fects, such as highlighting, could be produced by using local
message passing to approximate full Bayesian models. Our
work builds on this approach by connecting it to message
passing algorithms used in computer science and statistics,
and develops an alternative that can also predict highlight-
ing behavior. Connections between existing models and ma-
chine learning algorithms give cognitive scientists access to a
rich resource for developing alternative models that produce
a range of behavior. Through matching these models to be-
havior it is hoped that the approximations used in the mind
can be determined.
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