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Influence of Correlated Visual Cues on
Audiﬁpry Signal Detectionl
R. &, Kinchla
New York University
J. Townsend
Stanford University
Jo. I. Yellott, Jr.
University of Minnesota
and R. C, Atkinson

Stanford University

Abstract

Two experiments investigated the effects on auditory slgnal detection
of Introducing visual cueg that were partially correlated with the signal
eventg. The resulis were analyzed in terms of a detection model that
aggumes thalt such cue-signal correlations will net affect sensitivibty, but
will instead cause the subject to develop separate response blages for each
cue. The model gpecifies z functiconal relationghlp between the asymptotic
values of these cue-contingent biases. The overall results of the experi-
ments supported the detection assumptions of the model and the general bias
learning assumption, but indicated a more complex learning process than

that specified by the model,



several current models for signal detection represent performance as
Jjointly determined by psychophysical variables (ecg., signal parameters)
and such "background" varizbles as relative freguency of various signal
events on previous trials (Atkinson, Carterette, & Kinchla, 1962; Luce,
1963; Swets, Tanner & Birdsall, 1961). Typically these background variables
determine the regponse blas parsmeters of a hypothetical decisicn process
relating signsl-produced sensory states to overt responges. To the extent
that the subject's choice is controlled by these blases, rather than by
discriminative information provided by the signal presentation, there is
a formal similarity between detection experiments and probebility learning
experiments (Atkinson, Bower, & Crothers, 1965, Ch. 5). The present study
deals with a detection situation analogous to probabllistic discrimination
learning. In a probabilistic discrimination learning experiment each trial
ig initiated by one of a gset of cueg, each of which correspends to a par-
ticular probability distribution over the set of possible trial outcomes.

The comparable detection situation is called a cued detection task. Here

each detection trial is initiated by one of a set of cues, and each cue
corresponds te a distincet prchability distribution over the possible signal
events. (That is, whenever a trigl is initiated by cue Ci the probability
of gignal event Sj ls -given by yij,) If these distributions are differ-
ent the cues may be sgald to be COrrelated with the gignal events. The
results of probabilistic discriminafion learning experiments (Popper &
Atkinson, 1958; Atkinson, Bogartz, & Turner, 1959) suggest that correlated
cues should come to control behavior in a cued detection task; i.e., &
subject will come tec held several responée blases simultanecusly, with the
effective bias on a given trial being determined by the cue on that trial.
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The possibility of multiple-response blases was lnvestigated in the
context of an auditory two-interval forced-choice detection task involving
three visual cueg. The resulfs were analyzed in terms of an extension of
a debection model developed by Atkinson & Kinchla (1965) and Luce {1963).
For present purposes this model can be cutlined as follows. Each trial of
the experiment is Initiated by one of three cues: Clg 02, or 03, The
experimenter then presents the signal in interval 1 or interval 2, It is
asgumed that with probability o the occurrence of a gignal in interval i
gives rise to an "unambigucus" sensory state s;» whereas with probability
L -0 an ambiguous sensory state cccurs. The ambiguous sensory state is

denoted by b, when the cue 18 C If the étimulus presentation elicits

h h*
85 the subject makes response Ai indicating that he thought the signal

was in interval 1. If the ambiguous sensory state bh accurs the subject

makes regponsge Al with prcobabi lity Py o where 1n ig the trial index,
k]

The can be thought of as momentary response blas paramelers assoclated

ph,n
with the senscry states bh’ vhereas o 1is a measure of the subject's
sensitivity to the signal.

The following notation is used to refer to the various events that
ocgur on trial n:

C, ,: the occurrence of cue C_ (h =1, 2, 3);

S. ,: presentation of the signal in interval 1 (i = 1, 2);'

i,h
Aj ,i the occurrence of response Aj (7 =1, 2);
2
Ek n presentation of information feedback indicating that the
2

correct response was A (k = 1, 2).

In our experiments correct informetion feedback was given to the subject



on every btrial, i. e., E., always occurred cn an Sl trial, and E

1 on

2
an 82 trial. The relationghip between the cues and the signal events is
gummarized by the conditional probabillities:

Yy = Pr(s

1,0 Can) o (b =1, 2, 3).
it 71 = 72 = 73 the cues are uncorrelated with the signal events, other-
wise the schedule is saild to be cue dependent or correlated. The proba-
pility of cue C, on any trial is denoted by A, (h =1, 2, 3).

From the assumptions of the model it follows that

Pr(Al’n‘l.SlanChgn) =g+ (1- O)E(phsn)

Pr(A

lsn.llsgjnch’n) (l'— O)E(Ph,n) 3

where E(Ph,n) denctes the expectation of Py e These eguations in turn
2

dmply
Pr(Al,nl‘slsnchan) = Pr(Algnlrszynchsn) g [1]
E(p ) - Pr(lAl.il’l1 SEJnChsn) . {2]
h,n 1L-~-o0 ‘

FPor the two-interval forced-choice gituation the receiver-cperating-character-
‘istic {ROC) curve is a plot of the observed proportion of "hits"” ﬁ}(Al1Sl)
against the observed proportion of "false alarms" éf(Allsg), The present
model implies that for each value of the bias parameter the poinf [Pr(AllSE),
Pr(Allsl)] will fall on a line that has slope one and Pr(Al}Sl) intercept
g, 4if a block of C trials is used to determine a point on the ROC curve

h
the model implies that

E{_Pr(AllSlCh)] =0 + E{Pr(All 8,C,)]
where ﬁ%(AIISiCh) ig the observed proportion of Al regspongesg over those

h



Ch trials on which the signal event was Si‘ Thus 1f the ROC curve is

fbmwdbyphmmmgtM3QHMm[Pr@ﬂSé%b ITMﬂﬁth for each ¢,

the model predicts that the "expected"” ROC curve will be a straight line
with slope one and infercept o, Moreover it can be shown that under very

general assumptions on the process the difference Pr(Al|SlCh)

Ph,n

- Pr(Al|S converges in probability to ¢ as the block size increasges.

%)

Consequently to estimate ¢ we use the consistent estimator
8 - Pr(AllSlCh) - Pr(Allsgch) . [3]

Note that this estimator can be used to obtaln separate estimates of o

for each cue. To estimate the response bias on C_  trials, we use the

h
estimator suggested by Eg. 2:
i Pr(Allsech)

B, = — : [4]

For purposes of analysig & linear learning model for the response

biases will be considered; namely

(l'_e)ph,n o 1= Chsn’ bh,n3 Sl,n
Py, n+1 (1- e)ph,n ? 1x Ch,n’ bhgn’ S25n [5]
b, 3 otherwise
where bh " denotes tThe occurrence of the ambigucus sensory event bh on
a
trial n. This model predicts that
"

P, = Llim E( [6]

n—ow Phjn) - 7h + (l -7h)cp

where ¢ = 8'/6, If ¢ = 1, the limiting.response bias on Ch trials

matches the conditional probability of an B signal event given cue C

L h*



Experiment I investigated the effects of introducing a cue-signal
cecrrelation affer subjects had had considerable practice on an uncorrelated
schedule,

Experiment I
Method

The task employed was the two-interval, forced-choice detection of a
100 msec, 1000 cps signal in a background of band-limited Gaussian noise.
The nolse was produced by a Grayson-Stadler Model L55-B noise generator,

~and was presented binaurally to the subject over Permaflux FDR-10 earphones.
Each subject sat facing a display on which there were two arrays of lights:
a vertical array of three cue lights, and a horizontal array of three
interval lights. One of the cue lights came on at the beginning of each
trial. One second later the three—interval lights blinked on, one after

the other, starting from the left., Each interval light was on for 100 msec.
and there was a 500 msec. off period between the offset of one light and

the onset of the next light. The first interval light was an alert signal,
while the next two indicated the test intervals,2 On every trial the gignal
tbne was added to the background nolse during one of the test intervals.

The subject's task was To declde which interval contained the signal. He
wag glven 1.7 sec, Tollowing thé second ftest interval to indicate his choice
by pressing a pushbutton located directly under the appropriate interval
light. Af the conclusion of the regponse period information feedback was
provided by a l-sec, illumination of the pushbutton corrssponding to the
correct resgponse. The total time for each trial was b sec,;. the inter-

trizl delay was 2 gec,



The corresgpondence between these experimental events and the notation
introduced earlier is as follows: the occurrence of a cue light corresponds
to 015 02, or 03 respectively, beginning with the uppermost cue light.

The occurrence of the signal in the first or second test interval corresponds

to 8. and 82 regpectively. Bimilarly, A. denotes a regponse indicat-

L 1

ing that the subject believed the signal occurred in the first test interval

and A, denctes a response indicating that the signal occurred in the

2

second test interval. The illumination of the A_ response butten corre-

2

gponds to the informaticn feedback event El? and illumination of the A2
button corresponds to E2°

The programming of events during each experimental session, as well
as the recording of tﬁe data, was fully aubtomated., Program information was
automatically read from computer-produced punched paper cards. The frial
number, cue light, the interval in which the signal appeared, the subject's
response, and ﬂis response latency were automatically recorded on. similer
cards for eventusl computer analysis.

A partlcular noise level was selected for each subject during fhree
days of preliminary testing. During these sesgions the tﬁree cue lights
occurred egually often and were uncorrelsted with the signal events. The
subjects ran through 360 trials each day with a fixed signal amplitude.

The nolse amplitude was varied until the experimenter was satisTled that a
level had been reached at which the subject would obtaln approximately 75

per cent correct responses., The noise was then kept at this level for that
particular subject throughout the remainder of the experiment. The signal-

to-noise ratios (E/Ng) seclected in this manner were approximately 9.1,



The experimental subjects were Stanford University students who had
been gcreened for normal hearing. They were pald at the rate of $2.50 an
hbur, In addition they were told that a certaln minimum level of perfor-
mance would be regquired in order for them to contirnue in the experiment.
Bach daily run of 360 trials took approximately #5 minutes including a
10-mimuse rest pericd half way through the run,

In the main experiment, which began after the three-day calibration
periocd, only two of the cue lights were used; these two appeared equally
often, sc that Kl =k, = /2, AB = 0. Twelve subjects.were each run

through-360 trials a deay for 24 days. During the first 9 days there was

no cue-signal correlation, i.e., ¥ = 1/2, At the start of day 10,

1 -7

uneannounced to the subjects, a partial cue-signal correlation (71 = 3/4,

Ve = 1/4) was introduced and maintained for the next ten days, Finally at

the start of day 21 the subjects were returned unannounced tc the original
uncorrelated schedule, A1l randomizations in this experiment (and in
Experiment IT} were effected by randomly permuiing a fixed number of events
for each daily session; e.g., for each day in the first phase of Experiment

I exactly 180 trials were C and 90 of these were 8 Thus the signal

1 1°

events 8, and 8, occurred equally often within each of the 2L daily

sesgions. However, during days 10 through 20 the Sl signal occurred

7% per cent of the time when C, was presented and only 25 per cent of the

1

time when 02 was presented.

Results
The overall results of Experiment I are summarized in Table 1, which
shows dally estimates of the relevant probabilities., These egtimates are

averages of the corresponding statistics for individual subjectg. The
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Daily estimates of response probabilities from Experiment I

Table 1

Day Pr(AlISlCl) Pr(Allsgcl) Pr(Alislcg) Pr(Al]sgcg) _Pr(gllcl)

ﬁf(Allcg) Pr(Correct)

O =1 v W O

11
12
13
14
15
16
17
18

19

20
2L
22
23
2k

0.837
0.T46
0,764
0.679
0.713
C.676
0.737
0.743
0.78L

0.720
0.756
C.793
0.805
0.753

0.795
0.806

0.815
0.825
0.79L

0.769
0,780
0.735
0.742
0.771

COoOOOoOOoO0OO0Co OC OO0 OO0O0

OO0 OO0

.287
.331
i
.328
293
285
.328
316
231

252
278
.335
290
27h
2hg
Lokl
.300
.263
.348

.282
248
258
.238
218

0.849
0.758
0.765
0.720
0.735
0.683
0.758
0.692
0.782

0.72L
C.733
0.736
0. 70
0.673
O.647
0.736
0.756
0.732
0.690

0.725
0.716
0.742
0,764
0.757

OO O C O
e & % & & &
no
jos]

Mo

0,321

L1929
.195
.168
211

oNoNONONONGNGNGRGNG]
Pt
AW
oY)
=

0.221
0.220
0.217
0.24h
0.290

.560
L5
587
.503
.503
479
.532
L5208
.506

eNoNoNoNoNONONGRS

LB0k
.636
E76
676
631
L661
666
V68T

OO OO0 0O000o

666

L5450
.51k
Lol
0.491
0.498

OO O

680

0.587
0.567
0.587
0.550
0.525
0.483
0.542
0.507
0,548

0.367
0.393
0.368
0.366
0.345
0.336
0.332
0.336
0.310
0.346

0.460
0.470
0,480

0.503
0476

0.770
0.698
0.676
0.673
0.710
0.698
0.710
0,699
0.754

0.736
0.7326
0.756
0.758
0.743
0.760
0.789
0.789
0.804
0.758

0.753
0.757
0.751

0.756
0.780

OO C OO OO o0
b
=

OO OO OO OO oo
e s 8 s & & a2 a4 e e
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\O
O
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Pigure 1. Daily sensitivity estimates, 31 and 32, based on the data
in Table 1.
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. Figure 2. Daily response bias estimates, ﬁl and 52, based on the
dats in Table 1. '
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mogt pertinent feature of these data is the separation of the conditionsl
probabilities of a correct responée Pr(Ai|SiCh) effected by the intro-
duction.of a cue-signal correlaticn on day‘lO, Beginning with day 1l the
estimates of Pr(AIISlCl) are consistently larger than those of Pr(Al!SlCQ)
for each day of the‘cue dependent phase, while ﬁf(A2|SECl) is consistently
smaller than é}(selsgcg), These biag effects appear to persist for at
least two days after the return to an uncorrelated schedule., Taken as a
whole these results indicate a significant conditional response blas effect
controlled by the trial initiating cues., This interpretation is supported
by an analysis of individual subject's performance over the last three days
of the initial uncorrelated schedule, the ccrrelated schedule, and the
terminal uncorreiated schedule, The only statistically significant cue
effects occurred in the correlated phase; here performances to elther
signal as a function of the cue event were significantly different (p < .05
using a Mann Whitney U Test),

Figure 1 presents dally estimates of the sensitivity parameter computed
separately for C, and C2 trialg using the data in Table 1 and Eg. 33

1

these estimates are denoted 31 and 82 respectively. There does not

appear Lo be any congistent difference in sengitivity on €., and 02

1
triasls. Figure 1 doeg suggest an initial decrease in sensitivity over

days 1 through 4, followed by a gradual, roughly monotonic, increase be-
ginning on day 5. These changes do not appear %o be related to the cue-signal
correlation.

Figure 2 ghows dally estimates of the average values of the response

bilas parameters Py and Dyo These estimates were computed from the data

11



in Table 1 using Eg. 4. Inspection of the figure indicates that a noncon-
tingent Bias in favor of respdnse Al existed at the beginning of the ex-
periment. This asymmetry was eliminated by the initial uncofrelated
schedule, and with the Introduction of a cue-signal correlation on day 10
the cue-contingent biases separate as predicied by the model. By day 19
@l = .62, while §2_= 40. Since the estimates of p, and -p, in this
phase are roughly symmetrical sround .5, @ (in Bg. 6) should be around 1.0.
Ie this case the asymptotes predicted for pl and p, are S5 and .25,
regpectively. It is not clear from the graph whether the biages would have
continued to increase toward these asymptotes il the correlated schedule
had been continued beyond day 19. This question led to the degign of Ex-
veriment II. In this second experiment subjects were given ample time to
achieve an asymptotic response bias on each cue. (Latency data from Experi-
ment I are reported in conjunction with the results of Experiment IIL,)
| Experiment IT
Method

Thé apparatus and the method of presenting thé stimuli and recording

“responsés were identical to those of Experiment I. Hewever in Experiment II

all three cues were employed with hl = KE = A, = 1/39 and the game cue

3
signal correlations cbtained throughout the experiment: 71 = 3/1L3 Ty = 1/2,

75 = 1/k. Thus cues C, and 03 were correlated with the signal events,

whereas cue 02 was uncorrelated. As in Experiment I three preliminary

sessiong were spent in establishing a noise level for each subject such
that he averaged close tc 75 per cent correct responding. {(During these
preliminary sessions C2 was the only cue employed.) Following the pre-

lLiminary sessions ten subjects were each run for 360 trials a day for

20 consecutive days.



Results

The analysis of Experiment IT focused on individual subject data,
Table 2 presents estimates of the relevant conditional probabilities for
each of fthe ten subjects. DBach estimate is the corresponding mesn pro-
portion for a single subject over the lasgt ten days of the experiment,
Thus, for example, each estimate of Pr(Al) is based on 3600 trials. For
each subject these data indicate the predicted response blas effects as a
function of the cues: in every casge ﬁf(AliS

S > ﬁr(All_Slce) > ﬁr(AllleS)

Table 2 also indicates that

and P}(All 8,C1) < ls\r(All.Sg(}g) < P}(Ali 8203).,
there was no apparent overall tendencyuto favor one response or the other
independent of the cue and signal ccondition: the group mean of Pr(Al) is
A99 and individual subject values are all gquite close to .5.

Figure 3 shows ROC plots for each of the subjects together with the
best fitting (by least sguares) linear ROC curve having slope one, Inspec-
tion of the figure indicates that by and large the predicted RCC curves
provide guife a good fit. These results support the assumption that
sensitivity is independent of presentabtion schedules and cue conditions;
deviations from such independence would produce either nonlinearity or
linearity with a slope not equal to one.

Pigure 3 reveals considerable individusl differences in the spacing
of points along the ROC curve. According to the model thege differences
must reflect differences in the conditional response biases of individual
gsubjects. Table 3 shows groupr and individual subject estimates of the response
blases P15 Pos and p3. The estimates were computed using Eg. 3 and the

data in Table 2. As would be expected from Fig. 3 the . predicted ordering

ﬁl > @2 > ﬁg is found in every case, and the group averages of §19 ﬁg,

13
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" Estimates of individual and average response probabilities

Table 2

based on the last ten days of Experiment IT

Subject ﬁf(Allslcl) ﬁf(Allslcz) é}(Allslc3) ﬁ}(Allsecl) ﬁf(Allsgcg) ﬁf(Allsgcs} Pr(Correct) ﬁ?(Al)
1 0.768 0,708 0.677 0.327 0.263 0.237 0.736 0.497
2 0.808 0.717 0.490 0.423 0.362 0.225 0.710 0.51h
32 0.891 0.624 0.450 0.520 0.163 0.092 0.771 0.458
L 0.740 0.537 0.ko7 0.587 0411 0.262 0.626 0.491
5 0.890 0.615 0.371 0.712 0.346 0.130 0.707 0.506
6 0.855 0.479 0.333 0.613 ¢.253 0.13h 0.695 0.448
7 0,881 0.587 0.307 0.730 0.h32 0.1h1 0.676 0.512
8 0.815 0.667 0.472 0.581 0.355 0.231 0.689  0.519
9 0.860 0.429 0.389 0.773 ‘b.3ll 0.253 0.639 04098
10 0.865 0.575 0,493 0.663 0.349 0.309 0.663 0.5kk
Average 0.837 0,59 0.439 C.593 C.324 0.202 C.691 0.499
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Figure 3. Receiver operating r_:haracteristics for individual subjects in Experiment IT.



and ﬁg are quite cloge to the predicted probsbility-matching values

of .75, .50, and .25. However the estimates for individual subjects reveal
considerable variability; the Py estimates, for example, range from

866 to .584. Although the predicted asymptotes in Eq. 6 depend on the
parameter o, and thus allow for individual deviations from probability
matching, it is not possible for the modei of Eq. 5 to predict the patterns

of deviation revealed by Table 3. The estimates for subject 7, for

Py
example, indicate blases which deviate from matching in the direction of
optimal performance (i.e., in the direction of p =1 given y > 1/25
and p = 0 given 7y < 1/2) for both 7 = .75 and 7 = .25, whereas Eq. 6
regulres that if Py is greater thgn IEE p3 must also be greater than
73 (ef. subject 10). Al?ogether four subjects (2, 5, 6, and 7) show
uniform deviations in the optimal direction, and three (1, 2, and 4) show
uniform deviations in direction of non-discriminative performance (i.e.,
in the direction of p = .5 for all cues). It is noteworthy, however,
that in spite of the very large number of trials involved here no subject
.adopted a maximizing strategy.

Table 3 alsc shows group and individual subject estimates of o com-
puted separately for each cue condition. These estimates were computed
from the dabta in Table 2 using Eg. 4. Although the average sensitivity
to be slightly greater than Sl and 33,

there was no consistent ordinal relationship.between sensitivity and cue

estimates in Table 3 show 82

condition for the individuval. subjects. A nonparametric test for such a

relationship (Kruskal and Wallis, 1952) was not significant.

16




Table 3

Three cue study: Estimates of ¢ and Py

Sunset .8h = é&(Al\SlCh) - Pr(a]s.c,) By = é}(Allsgch)/l - 8y
¢, C, Cy c, C, c,

L O.lh1 0,445 0.0 0. 504 O M7k 0.423
2 0.384% 0.355 0.265 0,687 0.561 0.306
3 0.371  O.h62  0.358 0.827 0,302  0.1lhk

oy 0.153  0.127  0.1kh 0.693  0.470  0.306
5 0.177  0.270  0.241 0.866  0.473  0.17L
6 0.242 0.226 0.200 0.809 0.327 0.167
7 0.151L 0,155  0.166 0.860  0.511  0.169
8 0.233 0.312 0.241 C.758 0.516 0.30h
9 0,087 0.118 0.135 0.847 0,353 0.293

10 0.204  0.226  ©0.184 0.83%% 0451 0.379

Average 0.2 0.270  0.237 0.776  0.hkh  0.266

17



Latency Results

The large number of trials employed in Experiments I and_II provided
a unigue opportunity to obtain good estimates of the latency distributions
of individual subjects. In addition it was expected that the eflects of the
cue-signal correlaticns might be reflected in conditional response time dis-
tributions. This expectation was not confirmed. Analysis of the latency
data from both experiments in terms of cue conditions failgd to reveal any
significant.effects, The data did reveal a consistent 50 méec, différence
in mean respbnse times on correct and incorrect trials. Figure 4 shows
this result for Experiment 1. Analysis of individual subject latencies in
- Bxperiment II revealed a similar difference for each subject. These results
are consigtent with the detection model considered here if we assume that

response times following an unambiguous sensory state (s,

L or sg) are

realizations of a random variable Ius while response times following any

amblguous senscry state (bl’ b,, or b3) are reali;ations of another

2
random variable Ta° It is easily shown that these assumptions imply a
cbnstant difference between mean response times on correct and incorrect
trials independent of cue condition (iaeoa independent of response bias).
Examination of The individual subject latency distributions revealed
rather consistent individual differences in the forms of these distributions.
Figure 5 presents the individual subject distributions computed over suc-
cessive four-day blocks. The right-hand column represents a pooling of
responses over all subjects for each four-day block. Each of thé histo-
grams in the other columns represents 1440 responses by a single subject--

gll of his responses over the four sessions. The idlosyncratic nature of

these distributions 1s quite striking: each subject's distribution

18
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Figure 4. Average response latenciles for correct and incorrect responses
during Experiment I.
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Figure 5. Response latency histograms for individual subjects over
successive blocks of four days during Experiment IT. The
horizontal axis is broken into 11 intervals. The 1lth
(right-hand) interval represents all times greater than
1 sec.; the others represent latencies less than 1 sec. in
21 sec, increments.
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maintains = consistent and unique form over at least the last-four blocks
of trials. Not surprisingly. in view of the considerable individual
differences in the distributions, the group latency curve provides a very
deceptive representation of the "typical" subject:  compare the distribu-
tions for subject 6, for example, to the average dlstribution.
Discussion

The results of Experiments I and II iﬁdicate that subjects in a signal
detection task ars able to discriminate geveral concurrent probavllity
digtributions over the sigﬁal events and to employ different response
biases on a trial-by-trial basis as = function cof the cues ceorresponding
to these distributlonsg. One implication cf this finding is ﬁhat a cued
detection task can be used to simultanecusly generate a number of points
inthe BOC gpace. An ROC curve generated in this fashion has the advantage
of not being affected by session-to-session changes in sensitivity (cf.
Fig. 1), since each sensitivity level is equally represented at each point
of the curve. |

| The detection model considered here apﬁears to give an adequate account

of those aspects of the data %hat do not depend on the details of the re-
sponse bias learning process. In additiong when a large number cof trials
were run on the correlated schedule the simple linear learning model accu-
rately,éredicted average subject statistics, such azs the mean response
bias for each cue, and correctly ordered individual subject performances
on each cue. However the model did not provide an adequate account of the
details of individual performances. Thig is not surprising in view of the
complex and quite idiosyncratic neture of the individual subject's perfor -
mance in this task. In addition to the variance in overall response
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bizges cobserved in this experiment, a further analysis revealed a large
amount of variability in the session-to-session performance of individual
subjects. In view of these findings the success of the mcdel in predicting
average gubject results should probably be attributed to ite reflecting

the gross features of a rather complex learning process. It is clear that
in order %o explain the bias learning process in detall a more complex
learning model {which takes explicit account of the discriminaticn aspects

of the situation) will be regquired.
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Foctnotes
lSupport for this resesarch was provided by the National Aeronautics
~and Space Aaministration, Grant No., NGR-05-020-036.
2The purpose of the alert signal was to eliminate a time-order error

(favoring the second interval) that had been cobserved in earlier experiments.








