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Abstract

Two experiments investigated the effects on aUditory signal detection

of introducing visual cues that were partially correlated with the signal

events. The results were analyzed in terms of a detection model that

assumes that such cue-signal correlations will not affect sensitivity, but

will instead cause the subject to develop separate response biases for each

cue. The model specifies a functional relationship between the asymptotic

values of these cue-contingent biases. The overall results of the experi­

ments supported the detection assumptions of the model and the general bias

learning assumption, but indicated a more complex learning process than

that spe·cified by the model.
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Several current models for signal detection represent performance as

jointly determined by psychophysical variables (e.g., signal parameters)

and such "background" variables as relative frequency of various signal

events on previous trials (Atkinson, Carterette, & Kinchla, 1962; Luce,

1963; Swets, Tanner & Birdsall, 1961). TYpically these background variables

determine the response bias parameters of a hypothetical decision process

relating signal-produced sensory states to overt responses. To the extent

that the subject's choice is controlled by these biases, rather than by

discriminative information provided by the signal presentation, there is

a formal similarity between detection experiments and probability learning

experiments (Atkinson, Bower, & Crothers, 1965, Ch. 5). The present study

deals with a detection situation analogous to probabilistic discrimination

learning. In a probabilistic discrimination learning experiment each trial

is initiated by one of a set of cues, each of which corresponds to a par-

ticular probability distribution over the set of possible trial outcomes.

The comparable detection situation is called a cued detection task. Here

each detection trial is initiated by one of a set of cues, and each cue

corresponds to a distinct probability distribution over the possible signal

events. (That is, whenever a trial is initiated by cue C.
l

the probability

of signal event S.
J

If these distributions are differ-

ent the cues may be said to be correlated with the signal events. The

results of probabilistic discrimination learning experiments (Popper &

Atkinson, 1958; Atkinson, Bogart~, & Turner, 1959) suggest that correlated

cues should come to control behavior in a cued detection task; i.e., a

subject will come to hold several response biases simultaneously, with the

effective bias on a given trial being determined by the cue on that trial.
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The possibility of multiple-response biases was investigated in the

context of an auditory two-interval forced-choice detection task involving

three visual cues. The results were analyzed in terms of an extension of

a detection model developed by Atkinson & Kinchla (1965) and Luce (1963).

For present purposes this model can be outlined as follows. E~ch trial of

the experiment is initiated by one of three cues: C
l

, C2 , or

experimenter then presents the signal in interval 1 or interval

The

It is

assumed that with probability a the occurrence of a signal in interval i

gives rise to an "unambiguous" sensory state si' whereas with probability

1 - a an ambiguous sensory state occurs. The ambiguous sensory state is

denoted by bh when the cue is Ch • If the stimulus presentation elicits

si the subject makes response Ai indicating that he thought the signal

was in interval i. If the ambiguous sensory state bh occurs the subject

makes response Al with probabi lity Ph ,where,n n is the trial index.

The can be thought of as momentary response bias parameters associated

with the sensory states bh , whereas a is a measure of the subject's

sensitivity to the signal.

The following notation is used to refer to the various events that

ocyur on trial n:

Ch,n the occurrence of cue Ch (h ~ 1, 2, 3);

S. h: presentation of the signal in interval i (i
~,

1, 2);

A.
J,n

the occurrence of response A. (j ~ 1, 2);
J

Ek : presentation of information feedback indicating that the,n

correct response was ~ (k ~ 1, 2).

In our experiments correct information feedback was given to the subject
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on every trial, i. e., El always occurred on an Sl trial, and E
2

on

an S2 trial. The relationship between the cues and the signal events is

summarized by the conditional probabilities:

Ih = Pr(Sl ICh ) ,,n ,D
(h = 1, 2, 3).

If the cues are uncorrelated with the signal events, other-

wise the schedule is said to be cue dependent or correlated. The proba-

bility of cue Ch on any trial is denoted by ~ (h = 1, 2, 3).

From the assumptions of the model it follows that

Pr(Al lSI Ch ),no ,n ,n

Pr(Al IS2 Ch )
,ll ,n ,D

cr + (1- cr)E(Ph ),n

(1- cr)E(Ph ) ,,n

imply

denotes the expectation of Ph •,n These e~uations in turn

Pr(Al lSI Ch )
,D. ,D ,n pr(Al,nIS2,nCh,n) + cr

Pr(Al ,nIS2,nCh,n)
1 - cr

For the two-interval forced-choice situation the receiver-operating-character-

istic (ROC) curve is a plot of the observed proportion of "hits" Pr(All Sl)

against the observed proportion of "false alarms" Pr(Alls2). The present

model implies that for each value of the bias parameter the point [pr(Alls2),

Pr(Allsl)] will fallon a line that has slope one and Pr(AlISl) intercept

cr. If a block of Ch trials is used to determine a point on the ROC curve

the model implies that

where Pr(AllsiCh) is the observed proportion of Al responses over those
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Ch
trials on which the signal event was 8 i · Thus if the ROC curve is

formed by plotting the points [Pr(All 8 2Ch) , p-;'(All 81Ch)] for each Ch ,

the model predicts that the "expected" ROC curve will be a straight line

with slope one and intercept o. Moreover it can be shown that under very

process the differencegeneral assumptions on the Ph n,
probability to a as the block size increases.

Consequently to estimate a we use the consis:iEnt estimator

A

a [3]

Note that this estimator can be used to obtain separate estimates of a

for each cue. To estimate the response bias on Ch trials, we use the

estimator suggested by Eq. 2:

1 - 8
[4 ]

For purposes of analysis a linear learning model for the response

biases will be considered; namely

(1 - e)Ph + e if Ch ' bh ' 8
,n ,n ,n l,n

Ph,n+l
~ (1- e')Ph n , if Ch ' bh ' 8 [ 5], ,n ,n 2,n

h,n , otherwise

denotes the occurrence of the ambiguous sensory eventwhere

trial

b
h,n

n. This model predicts that

[ 6]

on

where cp ~ e' /e. If cp ~ 1, the limiting response bias on Ch trials

matches the conditional probability of an 81 signal event given cue Ch •
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Experiment I investigated the effects of introducing a cue-signal

correlation after subjects had had considerable practice on an uncorrelated

schedule.

Experiment I

Method

The task employed was the two-interval, forced-choice detection of a

100 msec. 1000 cps signal in a background of band-limited Gaussian noise.

The noise was produced by a Grayson-Stadler Model 455-B noise generator,

and was presented binaurally to the subject over Permaflux PDR-IO earphones.

Each subject sat facing a display on which there were two arrays of lights:

a vertical array of three cue lights, and a horizontal array of three

interval lights. One of the cue lights came on at the beginning of each

trial. One second later the three-interval lights blinked on, one after

the other, starting from the left. Each interval light was on for 100 msec.

and there was a 500 msec. off period between the offset of one light and

the onset of the next light. The first interval light was an alert signal,

while the next two indicated the test intervals. 2 On every trial the signal

tone was added to the background noise during one of the test intervals.

The subject's task was to decide which interval contained the signal. He

was given 1.7 sec. following the second test interval to indicate his choice

by pressing a pushbutton located directly under the appropriate interval

light. At the conclusion of the response period information feedback was

provided by a l~sec. illumination of the pushbutton corresponding to the

correct response. The total time for each trial was 4 sec.; the inter­

trial delay was 2 sec.
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The correspondence between these experimental events and the notation

introduced earlier is as follows: the occurrence of a cue light corresponds

c
3

respectively, beginning with the uppermost cue light.

The occurrence of the signal in the first or second test interval corresponds

to Sl and S2 respectively. Similarly, Al denotes a response indicat­

ing that the subject believed the signal occurred in the first test interval

and A2 denotes a response indicating that the signal occurred in the

second test interval. The illumination of the A2 response button corre­

sponds to the information feedback event El , and illumination of the A
2

button corresponds to E2 •

The programming of events during each experimental session, as well

as the recording of the data, was fully automated. Program information was

automatically read from computer-produced punched paper cards. The trial

number, cue light, the interval in which the signal appeared, the subject's

response, and his response latency were automatically recorded on similar

cards for eventual computer analysis.

A particular noise level was selected for each subject during three

days of preliminary testing. During these sessions the three cue lights

occurred equally often and were uncorrelated with the signal events. The

subjects ran through 360 trials each day with a fixed signal amplitude.

The noise amplitude was varied until the experimenter was satisfied that a

level had been reached at which the subject would obtain approximately 75

per cent correct responses. The noise was then kept at this level' for that

particUlar subject throughout the remainder of the experiment. The signal­

to-noise ratios (E/NO) selected in this manner were approximately 9.1.
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The experimental subjects were Stanford University students who had

been screened for normal hearing. They were paid at the rate of $2.50 an

hour. In addition they were told that a certain minimum level of perfor-

mance would be required in order for them to continue in the experiment.

Each daily run of 360 trials took approximately 45 minutes including a

10-minute rest period half way through the run.

In the main experiment, which began after the three-day calibration

period, only two of the cue lights were used; these two appeared equally

often, so that A.l A.2 ~ 1/2, A.
3

~ O. Twelve subjects were each run

through 360 trials a day for 24 days. During the first 9 days there was

no cue-signal correlation, i.e., Yl ~ Y2 ~ 1/2. At the start of day 10,

unannounced to the sUbjects, a partial cue-signal correlation (Y l ~ 3/4,

Y2 ~ 1/4) was introduced and maintained for the next ten days. Finally at

the start of day 21 the subjects were returned unannounced to the original

uncorrelated schedule. All randomizations in this experiment (and in

Experiment II) were effected by randomly permuting a fixed number of events

for each daily session; e.g., for each day in the first phase of Experiment

I exactly 180 trials were °1
and 90 of these were Thus the signal

events Sl and S2 occurred equally often within each of the 24 daily

sessions. However, during days 10 through 20 the Sl signal occurred

75 per cent of the time when 01 was presented and only 25 per cent of the

time when 02 was presented.

Results

The overall results of Experiment I are summarized in Table 1, which

shows daily estimates of the relevant probabilities. These estimates are

averages of the corresponding statistics for individual subjects. The
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Table 1

Daily estimates of response probabilities from Experiment I

Day Pr(All SlC
l

) Pr(All S2Cl) Pr(All SlC
2

) p~(A~rs~c;)K(A~rC;)""f;'(AJc;)-§r(c;;;~'~t)"-'P;(AJ

1 0.837 0.287 0.849 0.321 0.560 0.587 0.770 0.574
2 0.746 0.331 0.758 0.579 0.541 0.567 0.698 0.555
3 0.764 0.412 0.765 0.411 0.587 0.587 0.676 0.587
4 0.679 0.328 0.720 0.379 0.503 0.550 0.673 0.527
5 0·713 0.293 0·735 0.315 0.503 0.525 0·710 0.514
6 0.676 0.285 0.683 0.282 0.479 0.483 0.698 0.481
7 0.737 0.328 0.758 0.325 0.532 0.542 0.710 0.537
8 0.743 0.316 0.692 0.321 0.528 0.507 0.699 0.518
9 0.781 0.231 0.782 0.315 0.506 0.548 0.754 0.527

\D 10 0.720 0.252 0.721 0.249 0.604 0.367 0.736 0.485
11 0.756 0.278 0.733 0.279 0.636 0.393 0.736 0.515
12 0.793 0.335 0.736 0.247 0.676 0.368 0.756 0.523
13 0.805 0.290 0.704 0.255 0.676 0.366 0.758 0.523
14 0.753 0.274 0.673 0.234 0.631 0.345 0.743 0.486
15 0.795 0.249 0.647 0.236 0.661 0.336 0.760 0.499
16 0.806 0.244 0.736 0.199 0.666 0.332 0.789 0.499
17 0.815 0.300 0.756 0.195 0.687 0.336 0.789 0.511
18 0.825 0.263 0.732 0.168 0.680 0.310 0.804 0.495
19 0.791 0.348 0.690 0.211 0.666 0.346 0.758 0.507

20 0.769 0.282 0.725 0.221 0.540 0.460 0.753 0.500
21 0.780 0.248 0.716 0.220 0.514 0.470 0·757 0.492
22 0.735 0.258 0.742 0.217 0.494 0.480 0·751 0.487
23 0.7 42 0.238 0.764 0.244 0.491 0.503 0.756 0.497
24 0.771 0.218 0.757 0.290 0.498 0.476 0.780 0.487



Figure 10 Daily sensitivity estimates, 01 and G2, based on the data

in Table 10
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Figure 20 Daily response bias estimates, PI and P2 , based on the

data in Table 10
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most pertinent feature of these data is the separation of the conditional

probabilities of a correct response Pr(AiISiCh) effected by the intro­

duction of a cue-signal correlation on day 10. Beginning with day 11 the

estimates of Pr(A1IS1Cl) are consistently larger than those of pr(Allslc2)

for each day of the cue dependent phase, while Pr(A2Is2Cl) is consistently

smaller than Pr(S2Is2C2)' These bias effects appear to persist for at

least two days after the return to an uncorrelated schedule. Taken as a

whole these results indicate a significant conditional response bias effect

controlled by the trial initiating cues. This interpretation is supported

by an analysis of individual subject's performance over the last three days

of the initial uncorrelated schedule, the correlated schedule, and the

terminal uncorrelated schedule. The only statistically significant cue

effects occurred in the correlated phase; here performances to either

signal as a function of the cue event were significantly different (p < .05

using a Mann Whitney U Test).

Figure 1 presents daily estimates of the sensitivity parameter computed

separately for Cl and C2 trials using the data in Table 1 and Eq. 3;

these estimates are denoted &1 and &2 respectively. There does not

appear to be any consistent difference in sensitivity on Cl and C
2

trials. Figure 1 does suggest an initial decrease in sensitivity over

days 1 through 4, followed by a gradual, roughly monotonic, increase be-

ginning on day 5. These changes do not appear to be related to the cue-signal

correlation.

Figure 2 shows daily estimates of the average values of the response

bias parameters and These estimates were computed from the data
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in Table 1 using Eqo 40 Inspection of the figure indicates that a noncon­

tingent bias in favor of response Al existed at the beginning of the ex­

perimento This asymmetry was eliminated by the initial uncorrelated

schedule, and with the introduction of a cue-signal correlation on day 10

the cue-contingent biases separate as predicted by the model. By day 19

1\ = 062, while P2= .400 Since the estimates of PI and 'P2 in this

phase are roughly symmetrical around 05, ~ (in Eqo 6) should be around 1.00

In this case the asymptotes predicted for and are .75 and .25,

respectivelyo It is not clear from the graph whether the biases would have

continued to increase toward these asymptotes if the correlated schedule

had been continued beyond day 19. This question led to the design of Ex-

periment 11 0 In this second experiment subjects were given ample time to

achieve an asymptotic response bias on each cue. (Latency data from Experi­

ment I are reported in conjunction with the results of Experiment II.)

Experiment II

Method

The apparatus and the method of presenting the stimuli and recording

responses were identical to those of Experiment I. However in Experiment II

all three cues were employed with "I = "2 = "3 = 1/3, and the same cue

signal correlations obtained throughout the experiment: /1 = 3/4 , /2 = 1/2,

Thus cues and were correlated with the signal events,

whereas cue C
2

was uncorrelated. As in Experiment I three preliminary

sessions were spent in establishing a noise level for each subject such

that he averaged close to 75 per cent correct respondingo (During these

preliminary sessions C2 was the only cue employed.) Following the pre­

liminary sessions ten subjects were each run for 360 trials a day for

20 consecutive dayso
12



Results

The analysis of Experiment II focused on individual subject data.

Table 2 presents estimates of the relevant conditional probabilities for

each of the ten subjects. Each estimate is the corresponding mean pro-

portion for a single subject over the last ten days of the experiment.

Thus, for example, each estimate of Pr(A
l

) is based on 3600 trials. For

each subject these data indicate the predicted response bias effects as a

function of the cues: in every case Pr(All SlC l ) > Pr(All SlC2 ) > Pr(All SlC
3

)

and P~(AlIS2Cl) < Pr(A
l ls2c2 ) < P~(AlIS2C3)' Table 2 also indicates that

there was no apparent overall tendency to favor one response or the other

independent of the cue and signal condition: the group mean of Pr(A
l

) is

.499 and individual subject values are all quite close to .5.

Figure 3 shows ROC plots for each of the subjects together with the

best fitting (by least squares) linear ROC curve having slope one. Inspec-

tion of the figure indicates that by and large the predicted ROC curves

provide quite a good fit. These results support the assumption that

sensitivity is independent of presentation schedules and cue conditions;

deviations from such independence would produce either nonlinearity or

linearity with a slope not equal to one.

Figure 3 reveals considerable individual differences in the spacing

of points along the ROC curve. According to the model these differences

must reflect differences infue conditional reSponse biases of individual

subjects. Table 3 shows group and individual subject estimates of the response

biases The estimates were computed using Eq. 3 and the

data in Table 2. As would be expected from Fig. 3 the predicted ordering

is found in every case, and the group averages of

13



Table 2

Estimates of individual and average response probabilities

based on the last ten days of Experiment II
,~

---~-
_:r--<.=,"",,=~<>=,-=-"""'" ~

Subject Pr(AllslC l ) Pr(Al ls l c2) pr(Al ls l C
3

) Pr(Al ls2cl ) Pr(Al ls2c2) Pr(Alls2C3) Pr(Correct) Pr (AI)

1 0.768 0.708 0.677 0.327 0.263 0.237 0.736 0.497

2 0.808 0.717 0.490 0.423 0.362 0.225 0.710 0.514

3 0.891 0.624 0.450 0.520 0.163 0.092 0·771 0.458

:~ 4 0.7 40 0.537 0.407 0.587 0.4n 0.262 0.626 0.491

5 0.890 0.615 0.371 0.712 0.346 0.130 0.707 0.506

6 0.855 0.479 0.333 0.613 0.253 0.134 0.695 0.448

7 0.881 0.587 0.307 0.730 0.432 0.141 0.676 0.512

8 0.815 0.667 0.472 0.581 0.355 0.231 0.689 0.519

9 0.860 0.429 0.389 0.773 O.3;Ll 0.253 0.639 0.498

10 0.865 0.575 0.493 0.663 0.349 0.309 0.663 0.544

Average 0.837 0.594 0.439 0.593 0.324 0.202 0.691 0.499
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Figure 30 Receiver operating characteristics for individual subjects in Experiment II.



and are quite close to the predicted probability-matching values

of .75, .50, and .25. Howe~er the estimates for individual subjects reveal

considerable variability; the Pl estimates, for example, range from

.866 to .584. Although the predicted asymptotes in Eq. 6 depend on the

parameter ~,and thus allow for individual deviations from probability

matching, it is not possible for the model of Eq. 5 to predict the patterns

of deviation revealed by Table 3. The estimates for subject 7, for

example, indicate biases which deviate from matching in the direction of

optimal performance (i.e., in the direction of p ~ 1 given y > 1/2,

and p ~ ° given y < 1/2) for both y ~ .75 and y ~ .25, whereas Eq. 6

is greater than Yl' P3 must also be greater than

Altogether four subjects (2, 5, 6, and 7) show

requires that if

Y
3

(cf. subject

uniform deviations in t he optimal direction, and three (1, 2, and 4) show

uniform deviations in direction of non-discriminative performance (i.e.,

in the direction of p ~ .5 for all cues). It is noteworthy, however,

that in spite of the very large number of trials involved here no subject

adopted a maximizing strategy.

Table 3 also shows group and individual subject estimates of a com-

puted separately for each cue condition. These estimates were computed

from the data in Table 2 using Eq. 4. Although the average sensitivity

estimates in Table 3 show &2 to be slightly greater than &1 and &3'

there was no consistent ordinal relationship. between sensitivity and cue

condition for the individual subjects. A nonparametric test for such a

relationship (Kruskal and Wallis, 1952) was not significant.
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Table 3

Three cue study: Estimates of 0 and Ph

Subject
0h ~ Pr(AllslChl - Pr(A11 S2Ch l Ph ~ Pr(AlIS2Chl!1 - 0h

C1 C2 C
3

C1 C2 C
3

1 0.441 0.445 0.440 0.584 0.474 0.423

2 0.384 0.355 0.265 0.687 0.561 0.306

3 0.371 0.462 0.358 0.827 0.302 0.144

4 0.153 0.127 0.144 0.693 0.470 0.306

5 0.177 0.270 0.241 0.866 0.473 0.171

6 0.242 0.226 0.200 0.809 0.327 0.167,

7 0.151 0.155 0.166 0.860 0.511 0.169

8 0.233 0.312 0.241 0.758 0.516 0.304

9 0.087 0.118 0.135 0.847 0.353 0.293

10 0.204 0.226 0.184 0.834 0.451 0.379

Average 0.244 0.270 0.237 0.776 0.444 0.266
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Latency Results

The large number of trials employed in Experiments I and II provided

a unique opportunity to obtain good estimates of the latency distributions

of individual subjects. In addition it was expected that the effects of the

cue-signal correlations might be reflected in conditional response time dis-

tributions. This expectation was not confi~med. Analysis of the latency

data from both experiments in terms of cue conditions failed to reveal any

significant effects. The data did reveal a consistent 50 msec. difference

in mean response times on correct and incorrect trials. Figure 4 shows

this result for Experiment I. Analysis of individual subject latencies in

Experiment II revealed a similar difference for each subject. These results

are consistent with the detection model considered here if we assume that

response times following an unambiguous sensory state (sl or s2) are

realizations of a random variable T , while response times following any
u

ambiguous sensory state (bl , b2 , or b
3

) are realizations of another

random variable T. It is easily shown that these ass-wnptions imply a
a

constant difference between mean response times on correct and incorrect

trials independent of cue condition ~.e., independent of response bias).

Examination of the individual subject latency distributions revealed

rather consistent individual differences in the forms of these distributions.

Figure 5 presents the individual subject distributions computed over suc-

cessive four-day blocks. The right-hand column represents a pooling of

responses over all sUbjects for each four-day block. Each of the his to-

grams in the other columns represents 1440 responses by a single subject--

all of his responses over the four sessions. The idiosyncratic nature of

these distributions is quite striking; each subject's distribution

18
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Figure 4, Average response latencies for correct and incorrect responses
during Experiment I,

SUBJECT

DAYS~ 1 2 3 4 5 6 7 8 9 10 AVERAGE

I - 41.1LLL.~LLL1Ltl.Ll~LLlA

5 - 8 LlLLLt.~l.ILlll~l.-LLlA

9 - 12 Li LL La. LLJ~ U LL lLL•..JA- l&.
13-16 LlLLl&.lLLJL1LL~~lLl.rJL

17-20 LllL LA-~ Lw Ll LL~ lL lL La..
Figure 5, Response latency histograms for individual subjects over

successive blocks of four days during Experiment II, The
horizontal axis is broken into 11 intervals, The 11th
(right-hand) interval represents all times greater than
1 sec,; the others represent latencies less than 1 sec, in
,1 sec, increments,
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maintains a consistent and uniClue form over at least the last four blocks

of trials. Not surprisingly, in view of the considerable individual

differences in the distributions, the group latency curve provides a very

deceptive representation of the "typical" subject: compare the distribu­

tions for subject 6, for example, to the average distribution.

Discussion

The results of Experiments I and II indicate that subjects in a signal

detection task are able to discriminate several concurrent probability

distributions over the signal events and to employ different response

biases on a trial-by-trial basis as a function of the cues corresponding

to these distributions. One implication of this finding is that a cued

detection task can be used to simultaneously generate a number of points

:b the IDC space. An ROC curve generated in this fashion has the advantage

of not being affected by session-to-session changes in sensitivity (cf.

Fig. 1), since each sensitivity level is eClually represented at each point

of the curve.

The detection model considered here appears to give an adeCluate account

of those aspects of the data that do not depend on the details of the re­

sponse bias learning process. In addition, when a large number of trials

were run on the correlated schedule the simple linear learning model accu­

ratelypredicted average subject statistics, such as the mean response

bias for each cue, and correctly ordered individual subject performances

on each cue. However the model did not provide an adeCluate account of the

details of individQal performances. This is not surprising in view of the

complex and Cluite idiosyncratic nature of the individual subject's perfor ­

mance in this task. In addition to the variance in overall response

20



biases observed in this experiment, a further analysis revealed a large

amount of variability in the session-to-session performance of individual

subjects. In view of these findings the success of the model in predicting

average subject results should probably be attributed to its reflecting

the gross features of a rather complex learning process. It is clear that

in order to explain the bias learning process in detail a more complex

learning model (which takes explicit account of the discrimination aspects

of the situation) will be required.
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