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Abstract
Climate change intensifies longstanding tensions over groundwater sustainability and equity of
access among users. Though private land ownership is a primary mechanism for accessing
groundwater in many regions, few studies have systematically examined the extent to which
farmland markets transform groundwater access patterns over time. This study begins to fill this
gap by examining farmland transactions overlying groundwater from 2003–17 in California. We
construct a novel dataset that downscales well construction behavior to the parcel level, and we use
it to characterize changes in groundwater access patterns by buyer type on newly transacted parcels
in the San Joaquin Valley groundwater basin during the 2011–17 drought. Our results demonstrate
large-scale transitions in farmland ownership, with 21.1% of overlying agricultural acreage
statewide sold at least once during the study period and with the highest rates of turnover
occurring in critically overdrafted basins. By 2017, annual individual farmland acquisitions had
halved, while acquisitions by limited liability companies increased to one-third of all overlying
acres purchased. Together, these trends signal increasing corporate farmland acquisitions; new
corporate farmland owners are associated with the construction, on comparable parcels, of
agricultural wells 77–81 feet deeper than those drilled by new individual landowners. We discuss
the implications of our findings for near-term governance of groundwater, and their relevance for
understanding structural inequities in exposure to future groundwater level declines.

1. Introduction

Groundwater is a vital resource, providing an estim-
ated 43% of global irrigation water [1] and drinking
water for half of the world’s population [2]. Climate
change is likely to affect both the timing and mag-
nitude of groundwater withdrawal and recharge, rais-
ing concerns about groundwater quality and supply
[3, 4] and inequities in access [5]. In California,
historic and persistent drought conditions over the
last two decades have sharply increased pressure on
groundwater resources [6, 7]. The prospect of more
frequent and severe droughts [3, 8] makes it essential
to understand who can access groundwater and how.

Where institutions bundle land and groundwa-
ter rights, questions of access extend to the land

surface overlying groundwater basins. By access, we
refer to the ability to benefit from groundwater [9].
In states that manage groundwater through abso-
lute ownership or correlative rights regimes, land and
groundwater rights are legally intertwined: ownership
of land directly confers access to groundwater [10].
California’s historic 2014 Sustainable Groundwater
Management Act (SGMA) enables overlying ground-
water rights-holders to trade water rights and par-
ticipate in subbasin scale groundwater governance,
but it does not legally alter the water rights regime
(Cal. Water Code § 10720.5): most private users
must acquire overlying land to obtain groundwater
rights [11]. Accordingly, the private land market has
a substantial but underexplored role in determin-
ing groundwater access. Despite concerns about the
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impacts of large-scale land acquisitions on equitable
and sustainable groundwater access [12–14], we are
not aware of any systematic examination of landmar-
ket effects on groundwater access.

In general, references to overlying land acquisi-
tions are rare in groundwater scholarship ([15] is a
notable exception), and farmlandmarket studies usu-
ally do not distinguish between land transactions on
overlying and non-overlying land, e.g. [16–19].While
political ecology studies underscore the bi-directional
relationship between land and groundwater, e.g. [20–
22], the combination of limited downscaled ground-
water data and limited land transactions data makes
empirical analyses of these relationships a challenge
[15]. In this paper we ask: if groundwater influences
landmarkets, howmight landmarkets affect ground-
water access?

Attention to farmland turnover can reveal cor-
responding changes in groundwater access patterns
and user characteristics. Though farmland is con-
sidered an illiquid asset, increases in farmland trans-
fers are anticipated across the US as farmers retire
[16, 23]. Farmland sales are a keymechanism through
which, over relatively short timescales, the character-
istics of new buyers may change at scale, with implic-
ations for both land andwatermanagement strategies
[24–26]. The connection between landowner char-
acteristics and surface water management practices
is well-established [27–29], and a limited number of
studies suggest similar connections with groundwa-
ter access and management strategies [15, 30–32].
Despite longstanding concerns about the unevenness
of regional well deepening trends [33–35], ground-
water research has little to say on those who acquire,
manage, and use it [36, 37]. Within California, the
extent and rapidity of overlying farmland turnover—
and corresponding effects on groundwater rights and
access—remain understudied.

With national decreases in individual farmland
ownership and the rising prevalence of entities
such as limited liability companies (LLCs), farmland
turnover may not only alter farmer preferences, but
more fundamentally reconfigure the legal landscape
of farmland ownership [16, 38, 39]. As [40] point
out, the question is not only who, but ‘what’ acquires
land. Several scholars have raised concerns about
the environmental and social impacts of new finan-
cial and corporate vehicles for farmland acquisitions
[38, 39, 41]. Yet their current and future impacts
on groundwater access and use are understudied.
In California, recent case studies indicate that the
emergence of new types of buyers may have neg-
ative groundwater consequences, such as neighbor-
ing domestic well failures [42], the pursuit of less
stringent regulatory targets for groundwater depth
levels [14], and the growing influence of privately-
controlled water banks on groundwater access [43].
To the extent that these cases reflect larger-scale trans-
itions in buyer types and behaviors, they signal shifts

with potentially transformative implications for land
and water management.

This analysis elucidates the role of California’s
farmland market in determining groundwater access.
We construct a novel dataset that downscales well
construction behavior to the parcel level, linking
land transactions and well construction records from
2003–2017 to: (1) characterize arm’s-length farm-
land turnover trends (i.e. independent market trans-
actions, rather than inheritance or intra-family trans-
fers) that could have adverse implications for ground-
water sustainability and equity of access; and (2) test
the implications of landowner type on the depth of
agricultural wells built on recently purchased par-
cels in the San Joaquin Valley during the 2011–17
drought. As California’s groundwater faces increasing
socio-environmental stressors, this study can inform
near-term groundwater decision-making, with relev-
ance to other drought-prone regions where land and
water rights are bundled.

2. Methods

We developed a four-step workflow to integrate
information on well depth, transacted farmland par-
cels, and buyer types (figure 1 and supplementary
material, SM).

2.1. Identifying relevant transacted parcels
We characterized farmland and groundwater access
trends using the ZTRAX® dataset, which contains
transaction and ownership information based on
existing cadastral data [45]. Our analysis included
all arm’s-length transactions (i.e. non-distressed sales
with a deed type and price that did not reflect non-
market transfers such as inheritance or intra-family
transfers) of parcels⩾ 5 acres and designated as agri-
cultural or rural residential land between 1 January
2003 and 30 September 2017 (S1: IdentifyingRelevant
Transacted Parcels). To link ZTRAX assessment and
transactions data, we used unique identifiers gen-
erated by Zillow [45], as well as a Jaro-Winkler
algorithm to match addresses with a string distance
threshold of 0.9 [46]. Finally, we joined ZTRAX data
to a 2018 SmartParcels® parcel shapefile dataset [47]
and removed all parcels with non-agricultural land
use codes. The final merged dataset contains 89 597
transactions of 79 699 unique parcels of interest.

2.2. Buyer type construction
We used string distance algorithms to link parcels
and transactions associated with the same buyers
[46, 48]. We separated buyer records into individual
(n = 155 421) and non-individual (n = 62 129)
categories, as determined by ZTRAX, and matched
records within each category by buyer name and
address, using a minimum string distance threshold
of 0.9.
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Figure 1. The workflow for our four-step method to integrate information on well depth, transacted farmland parcels, and buyer
types. Numeric entries indicate the four major processing steps, and alphabetic entries indicate key sub-steps.
Note. Image from California’s Central Valley by [44]. CC BY SA 3.0. ‘Hand pump’ symbol by Vectors Market from
thenounproject.com.

Based on our literature review, we constructed
four mutually exclusive farmland buyer categories:
LLCs, non-LLC companies, individuals, and family
investors (S2: Buyer Type Construction).We focus on
LLCs as a relatively new corporate farmland acquis-
ition type [19, 49], and we include family investors
given the long-standing practice of shared farmland
ownership among family members and, increasingly,
their affiliated companies [16, 41, 50, 51]. To identify
family linkages with trusts, IRAs, and businesses, we
built on the literal-legal method [52], which links
land ownership records based on the legal names
on the title. Ultimately, we identified 75 353 buyer
groups, of which 54 734 are individuals, 6598 are fam-
ily investors, 5374 are LLCs and 8647 are non-LLC
companies.

2.3. Groundwater and well construction data
We defined any parcel that at least partially over-
lies one of the 515 alluvial subbasins monitored
by the California Department of Water Resources
(CADWR) as an overlying parcel [53], and we clas-
sified basins as adjudicated, high priority, and critic-
ally overdrafted following state designations [54] (S3:
Groundwater and Well Construction Data). Given
the absence of groundwater withdrawal data in most
groundwater basins and the salience of well depth
to groundwater access [55–57], the depth of newly
constructed agricultural wells is used as a proxy
for changes in groundwater access on transacted
parcels [15].

To identify newly constructed wells, we used
California’s Online System for Well Completion
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Reports, which includes data on well locations, con-
structed depths, and use types [58]. Drawing on
[59], we retained agricultural wells built between 1
January 2003 and 30 September 2017 to match the
timeframe of parcel transaction data. We used five
methods to match wells to both transacted and non-
transacted parcels located within a half-mile buffer
of Public Land Survey System sections, leveraging
the assessor’s parcel number, a Jaro-Winkler dis-
tance algorithm on well and parcel addresses, and the
Google Geocoding API. Of the 15 348 wells retained
for matching, we matched 3315 (21.6%) to trans-
acted and 7376 (48.1%) to non-transacted parcels.We
removed from analysis wells matched to parcels that
were not overlying alluvial subbasins and wells built
prior to parcel purchase. A total of 2462 wells built
on recently transacted parcels were retained.

To examine relationships between landowner
type and well depth, we used a subsample of the
2003–2017 well dataset. To address large-scale vari-
ation in surface water deliveries between drought
and non-drought years, we selected wells construc-
ted during the 2011–2017 drought on parcels sold
since 1 January 2003. Based in part on the regional
availability of groundwater depth contours, we fur-
ther reduced the dataset to include wells built in
the San Joaquin Valley (SJV) groundwater basin,
retaining 1603 wells for analysis. Groundwater sus-
tainability and equity concerns are particularly pro-
nounced in the arid SJV basin (figure S4.3) [60–63],
which is comprised almost entirely of critically over-
drafted groundwater subbasins. The SJV basin is
a clastic sedimentary alluvial aquifer-aquitard com-
plex that primarily operates in a semi-confined
manner with downward-oriented vertical hydraulic
gradients [64, 65].

We interpolated depth to groundwater from the
annual spring groundwater depth contours pro-
duced by CADWR, using the Triangulated Irregular
Network method [53, 66, 67], and we assigned each
well themean groundwater elevation across the entire
parcel during the preceding spring (e.g. spring 2015
for a well built in October 2015). Well records with
incomplete data on drill depth, construction date, or
groundwater depths were removed, with 1179 wells
retained for analysis (table S3.3).

2.4. Data analysis
We calculated descriptive statistics for well depth,
buyer type, and parcel characteristics. We then ana-
lyzed the association between well depth and the
buyer type of landowners who drill wells on recently
purchased agricultural parcels, controlling for cov-
ariates, including parcel size, year of well construc-
tion, depth to groundwater, surface water availability,
crop type, and well coordinates. We constructed sur-
face water availability as a binary indicator: any par-
cel located within the boundaries of a water district
receiving agricultural irrigation water was marked as

having potential access to surface water [68–70]. Crop
types were categorized as orchard, vineyard, or row
crops/pasture using USDA Cropland Data, following
[71]. Using Macaulay and Butsic’s [72] scheme, par-
cels were assigned to the crop type covering the most
parcel area in the well construction year.

We estimated associations between well depth,
buyer type, and parcel characteristics using gener-
alized additive models (GAMs). The equation is as
follows:

Y=β0+β1 (x1)+β2 (x2)+ . . .+fm (xm)+ ε

where Y is the dependent variable (i.e. well depth),
xi are predictor variables (e.g. groundwater depth,
crop type), and fm is a smooth function [73]. In
this instance, to account for spatial autocorrelation
between neighboring wells, we fit a spline smooth-
ing function on the well coordinates. This smooth-
ing technique has been applied to adjust for spatial
autocorrelation in similar studies [74].Moran’s Index
(Moran’s I)was used to test the spatial autocorrelation
of residuals [75]. Model fit was assessed using auto-
correlation function (ACF) and partial ACF (PACF)
plots; quantile–quantile (Q–Q) plots; a plot of the
residuals versus the fitted values; the Akaike inform-
ation criterion (AIC); and Log Likelihood.

We ran two multivariate models. First, we tested
whether each buyer type was associated with different
well depths, with individual buyers as the comparison
group. Second,we focused on company buyer types to
assess whether LLCs and family investors, which are
both relatively recent farmland owner types, are asso-
ciated with different well depths compared to non-
LLC companies.

3. Results

We present our results in three parts. First, we assess
the scale of farmland transactions, characterizing the
extent of turnover on overlying land and within
different types of groundwater basins. Second, we
characterize temporal changes in buyer type and by
groundwater basin type. Finally, we present our res-
ults on the association between buyer types and the
depths of newly constructed wells.

3.1. Farmland turnover rates
Between 1 January 2003 and 30 September 2017,
18.1% of all agricultural acreage in California was
transacted at least once, with a 2.0% average annual
turnover rate statewide (table 1; also figure S4.1 for
sales over time). Critically overdrafted basins experi-
enced the highest rates of land turnover, with 23.5%
of agricultural acreage sold at least once over the study
period.

The extent of farmland turnover varied widely by
subbasin across the state (figure 2). In the SJV basin,
23.5% of agricultural acreage changed hands.
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Table 1. Farmland turnover characteristics by region, January 2003–September 2017.

Region
Agricultural
acres bought

Percentage of agricultural
acreage bought at least once

Average annual
turnover rate (acreage)a

Statewide 5058 127 18.1% 2.0%
Land Overlying Alluvial Basins 3149 321 21.1% 2.4%

High Priority Basinsb 1979 429 22.4% 2.5%
Critically Overdrafted Basinsc 1503 446 23.5% 2.6%
Adjudicated Basinsd 148 808 19.7% 2.4%

Land Not Overlying Alluvial Basins 1908 806 14.7% 1.7%
a Calculated as the total number of unique acres belonging to a region transacted in a calendar year, divided by the total number of acres

in that region. Any parcel transacted more than once in a calendar year was only counted once. These annual turnover rates are then

averaged over the timeframe of analysis.
b High prioritization indicates a high degree of importance of groundwater to overlying populations, agriculture and ecosystems

(Statewide Groundwater Elevation Monitoring Program, Cal. Water Code § 109339(b)).
c Critically overdrafted basins are basins in which current water management practices, if continued, would likely have adverse

environmental, social, or economic impacts [76].
d In adjudicated basins, all groundwater users’ rights have been defined and determined as a result of past legal rulings [77].

Figure 2. Percent of unique overlying acreage transacted at least once between 2003–17 by subbasin with>5 farmland parcels
transacted, with county boundaries in black for reference.

3.2. Changes in farmland buyer type
The composition of buyers acquiring overlying farm-
land changed substantially from 2003–17 (figure 3).
The percentage of overlying acres bought annually
by individual farmland buyers declined sharply, from
52.0% to 25.7%, and was not offset by the number
of acres acquired by family investors. By the end of
the study period, more than one third of all agricul-
tural acres bought in any given year were purchased
by LLCs.

Table 2 shows that from 2003–17, LLCs on aver-
age bought 5.7 times as many acres of overlying farm-
land statewide (192 acres) as individual buyers (34
acres). Within critically overdrafted basins statewide,
the average LLC bought 6.9 times as many acres as the
average individual buyer.

3.3. Well construction patterns on transacted
parcels
Overlying farmland purchases resulted in active use
of groundwater rights through agricultural well con-
struction. Of the estimated 16 519 overlying agri-
cultural wells built between 2003–17, we conservat-
ively estimate 14.9% (n = 2462) were built follow-
ing a farmland parcel transaction during that time.
Between 2011–17 in the SJV, 25.0% of new agri-
cultural wells were built on parcels after a 2003-17
sale (n = 1603 of 6419). Distinctive local trends are
observed (table S4.1).

From 2011–17 in the SJV, individual owners built
most wells on transacted parcels (n = 511), and on
average drilled shallower wells (mean 465 feet, SD
242) than all other buyer types (table 3). On average,
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Figure 3. Percentage of transacted acres overlying alluvial basins bought annually by buyer type, from January 2003–September
2017. Linear trendlines added for visual interpretation.

Table 2.Mean agricultural acreage acquisitions for each farmland buyer statewide, by buyer type, January 2003–September 2017, based
on the final parcel owner (Standard Deviation—SD).

Buyer
Individuals
(n= 39 500)

Family investors
(n= 5357) LLCs (n= 4118)

Non-LLC companies
(n= 5527)

All Acreage Bought 59
(SD= 235)

182
(SD= 616)

304
(SD= 1223)

215
(SD= 896)

Overlying Acreage Bought 34
(SD= 137)

121
(SD= 384)

192
(SD= 715)

155
(SD= 711)

High Priority Acreage Bought 20
(SD= 108)

83
(SD= 336)

116
(SD= 463)

109
(SD= 655)

Critically Overdrafted Acreage Bought 14
(SD= 91)

63
(SD= 281)

97
(SD= 449)

82
(SD= 620)

Table 3. Parcel and well characteristics for wells drilled on transacted parcels in the San Joaquin Valley groundwater basin, by buyer type
(2011–17).

Buyer Individuals Family investors LLCs Non-LLC companies

Wells Built (n) 511 262 193 213
Average Lot Size [Acres-mean
(SD)]

66
(SD= 87)

78
(SD= 101)

148
(SD= 175)

114
(SD= 158)

Surface Water Access (% of
Parcels)

84.7% 77.9% 80.8% 74.2%

Average Groundwater Depth at
Time of Drilling [Feet-mean
(SD)]

101
(SD= 64)

119
(SD= 78)

154
(SD= 114)

115
(SD= 93)

Average Well Depth
[Feet-mean (SD)]

465
(SD= 242)

535
(SD= 257)

736
(SD= 447)

645
(SD= 397)

LLCs drilled the deepest wells (mean 736 feet, SD 447)
and drilled wells in locations with the greatest depth
to groundwater (mean 154 feet, SD 114). Across buyer
types, the proportion of acreage devoted to each crop
type did not vary substantially (figure S4.2).

Table 4 shows GAM results for predictors of well
depth. The first model includes all buyer types, with
individual owners as the reference group (n = 1179
wells, average well depth 557 feet, SD 334). The
second model excludes individual buyers to compare
the depth of new wells constructed by companies and

family investors, with non-LLC companies as the ref-
erence group (n = 668 wells, average well depth 628
feet, SD 375).

Model 1 results indicate that compared to indi-
vidual farmland owners, LLCs are associated with
the construction of wells that are 81.3 feet deeper,
and non-LLC companies are associated with the con-
struction of wells that are 77.1 feet deeper, on aver-
age. Family investors’ new wells are on average 23.3
feet deeper than those drilled by individual owners.
Model 2, which focused on companies and family
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Table 4. Generalized additive model (GAM) results estimating the association between well depth (in feet), buyer type, parcel
characteristics, and year of well construction. Models were adjusted for latitude and longitude.

Model 1: All buyer types
β (std error)

Model 2: Companies and family
investors only β (std error)

Intercept −17 360∗ −20 680
(7492) (10 660)

Buyer Type:a Family Investorsb 23.29 −49.97∗∗

(12.55) (16.81)
LLCsc 81.29∗∗∗ 10.97

(15.03) (18.30)
Non-LLC Companiesd 77.14∗∗∗ (Reference group)

(13.97)
Irrigation District (Yes/No) −38.28∗ −60.16∗∗

(16.29) (23.00)
Lot Size (Acres) 0.28∗∗∗ 0.24∗∗∗

(0.05) (0.06)
Year of Well Construction 8.81∗ 10.53∗

(3.72) (5.29)
Groundwater Depth (Feet) 1.26∗∗∗ 0.97∗∗∗

(0.16) (0.23)
Crop Type:e Orchard −8.92 −13.32

(11.45) (15.94)
Vineyard −24.72 −6.91

(18.21) (25.22)

Adjusted R-squared 0.78 0.82
Number of Observations 1179 668
AIC 15 352 8759
Log Likelihood −7597 (df= 79) −4298 (df= 81)
Moran’s I (p-value)f p= 0.33 p= 0.61

Note: Standard errors are reported in parentheses. ∗, ∗∗, ∗∗∗ indicates statistical significance at the 0.1, 0.05, and 0.01 level, respectively.
a The reference buyer type for Model 1 is individuals. The reference buyer type for Model 2 is non-LLC companies.
b All individuals and any associated trusts, IRAs, businesses, and other family investment vehicles containing the buyer’s last name and

occurring on overlapping transactions were categorized as family investors (e.g. John Doe, Jane Doe, and the John and Jane Doe Family

Trust).
c The LLC category includes all remaining entries with ‘limited liability company’, ‘LLC’, or common misspellings occurring in the

company name [19].
d This category includes all non-individual entities which are not included in the LLC or family investor categories (e.g. corporations,

partnerships).
e The reference group for crop type for both models is row crops/pasture, in line with [71].
f Moran’s I p-values> 0.05 suggest that the data do not show statistically significant spatial autocorrelation [75, 78].

investors, shows that compared to non-LLC compan-
ies, family investors are associated with the construc-
tion of wells that are 50 feet shallower, and LLCs
are associated with the construction of wells that are
slightly deeper (11 feet), on average. These results
indicate that land acquisitions with one individual or
family owner are associated with shallower wells.

4. Discussion

To our knowledge, this is the first statewide study
analyzing the implications of farmland turnover for
groundwater access. Our results show high farm-
land turnover rates across California, especially for
acreage overlying groundwater; this dynamic is pro-
nounced in critically overdrafted basins, where 23.5%
of agricultural acreage turned over from 2003–17.
The landmarket has substantially altered the compos-
ition of new groundwater rights holders over short
timescales: by 2017, the overlying farmland acreage

purchased annually by individuals decreased by half,
and LLCs purchased one-third of all overlying acres
sold annually. Together, these trends signal increasing
corporate farmland acquisition, which is associated
with the construction of wells 77–81 feet deeper, on
average, than those drilled by individuals in the SJV
basin. These findings raise concerns about groundwa-
ter sustainability and equity of access.

4.1. Overlying farmland turnover rates higher than
expected
Studies suggest that the US farmland market is thin,
but our findings in California challenge this assump-
tion. National estimates suggest 0.5%–0.8% of farm-
land may turn over annually [79, 80], yet we estim-
ate an annual turnover rate of 2.0% statewide for all
farmland parcels over five acres, and higher still at
2.4% for overlying acreage (table 1). Previous work
has raised concerns about high-profile transactions
overlying groundwater in California [14, 42, 43]. Our
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results suggest that overlying land transactions are
more common than previously assumed and identify
numerous subbasins where rapid farmland turnover
could have negative equity or sustainability impacts.

Land and groundwater rights are bundled in
California. Therefore, overlying farmland turnover
may alter multiple characteristics linked to ground-
water extraction, such as farm size [15, 30] and
the relative predominance of new owners, including
those whose main income source is not from farming
[24, 26, 28, 81]. Turnover may also affect the com-
position of groundwater management boards and the
demographics of eligible voters in new groundwater
management agencies [82–84].

Several drivers may explain high farmland
turnover rates, such as changing commodity prices
[85], sales by retiring farmers [23], the entry of new
financial actors into the farmland market [14, 86],
and changing production economics driven by cur-
rent and forecasted water shortages [87], including
under SGMA. Locally, shifting land–water manage-
ment regimes may alter the importance of particular
locations within basins: for instance, the establish-
ment of groundwater markets under SGMA could
increase the valuation of parcels with a high potential
for artificial recharge [43]. Future research should
examine turnover dynamics within subbasins (such
as those areas suitable for managed recharge and
located near water conveyance infrastructure), and
potential factors driving land sales.

4.2. Increasing LLC acquisitions of overlying
farmland
Recent case studies have noted the use of LLCs
in groundwater-dependent agriculture in California
[14, 43]. Our research demonstrates that, within the
last decade, LLCs have become the primary entity
acquiring overlying farmland in the state. These find-
ings are consistent with studies documenting LLCs’
increasing agricultural land acquisitions elsewhere in
the US [18, 19, 38]. Furthermore, we find that on
average, LLCs bought 5.7 times more overlying land
compared to individual buyers, suggesting increas-
ingly concentrated holdings for this new corporate
entity. These trends are most pronounced in critically
overdrafted basins, where on average LLCs purchased
almost 7 times more land than individual buyers.

The rapid increase in LLC land acquisitions is
concerning because limited liability—the ability to
protect members’ personal assets from corporate
creditors—has been used as a mechanism to extern-
alize risk at public expense (e.g. via water pollution)
[88–90]. For example, pig farming operations have
used multiple, interconnected LLCs to spread risk
and shield assets in the event of a lawsuit against
any one LLC [38]. In California’s Cuyama Valley,
an LLC has attempted to produce land investment
returns by proposing alterations to existing subbasin

boundaries [14]. This emerging evidence underscores
the importance of analyses of farmland ownership
and large-scale transitions in the types of entities
acquiring overlying rights.

4.3. Uneven well deepening: implications for
groundwater sustainability and equity
Our results in the SJV suggest that, on comparable
newly acquired parcels at comparable groundwater
depths, companies and LLCs are associated with the
construction of deeper wells than individuals and
family investors. As groundwater wells deepen across
much of the Western US [91], our analysis indicates
that farmland acquisition and buyer type trends are
important characteristics to track to assess potential
sustainability and equity impacts.

Farmers may choose to operate an LLC for
many reasons, including lower costs compared to
incorporation [92] and more extensive shielding of
assets [89, 90]. Considering the growing popular-
ity of LLCs in agriculture [16], large-scale trans-
itions in the legal liability structure of agricultural
operations could potentially create adverse environ-
mental impacts [38, 40]. Our models show no stat-
istically significant difference between non-LLC and
LLC corporate well depth for newly constructedwells.
However, given substantial increases in the propor-
tion of property purchased through LLCs, the differ-
ence in depth between LLCs and individuals or family
investors drilling new wells merits more attention.

As groundwater becomes more important under
a changing climate [93, 94], the trend towards deeper
wells raises sustainability concerns [91, 95]. Since the
lifespan of a constructed well is at least 25–35 years
[96], deepening wells lead to infrastructural lock-
in. Nationally, deeper wells on average draw from
deeper water levels and therefore have greater pump-
ing lift than shallower wells [57, 91]; pumping from
increased depths increases the energy intensity of
water supplies [91, 97]. New well construction may
also harden water demand where it supports a switch
towards permanent crops [15, 98]. Although well
depth is not a proxy for pumping rates, groundwa-
ter over-extraction from deep wells may contribute
to aquifer compaction and land subsidence [99, 100],
and water extracted from deep semiconfined aquifers
is more costly to recharge than that extracted from
shallower aquifers [101]. Further, amid myriad SJV
groundwater contamination sources, well construc-
tion and deepening may exacerbate and enable con-
taminantmigration into deeper water sources via ver-
tical cross-contamination [102], as well as encroach-
ment on the defined bases of fresh water [103].

If implemented successfully, SGMA should
ameliorate these undesirable impacts regardless of
well depth, although its implementation success
remains to be determined [55, 104, 105]. Indeed,
groundwater levels are expected to continue declining
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under SGMA [55], which heightens equity concerns
over well depth differences.

As companies are associated with the construc-
tion of deeper wells than individuals, they may be less
likely to experience groundwater access disruptions
related to future water level declines, thus exacerbat-
ing structural inequalities in groundwater access [5,
6, 55, 95, 96]. Our results show that new wells drilled
by companies are, on average, around one-sixth
deeper than those drilled by individual landown-
ers, indicating an important difference in vulner-
ability to groundwater declines even in an aquifer-
aquitard complex that is several thousand feet deep
[70]. Small to moderate differences in well depth may
confer important differences in vulnerability to water
declines because SGMA establishes depth to ground-
water as a regulatory standard [55], thereby codify-
ing the centrality of well depth to groundwater access.
Individual well owners’ vulnerability may be com-
pounded for small and socially disadvantaged farm-
ers who lack access to the capital needed to deepen or
build new wells [57, 96, 106]. Further, while deeper
wells reduce individual vulnerability to groundwater
level declines, they may negatively impact neighbor-
ing users of shallower wells within the same aquifer
unit, if their operation causes a localized drawdown
of water elevations [57]. Although deep wells would
not contribute directly to the dewatering of neighbor-
ing shallow wells if separated by an occluding layer
[107], their operation can contribute to the over-
all downward-oriented vertical hydraulic gradients in
the SJV basin [64, 108].

Our results provide a preliminary characteriz-
ation of structural inequities in agricultural users’
vulnerability to future groundwater level declines.
Although responsive to policymakers’ calls to invest-
igate groundwater and farmland market interactions
[109, 110], our analysis did not assess alternative
strategies for ensuring water access, such as pur-
chasing parcels with deep or recently-built wells, or
procuring surface water rights, which may also vary
across buyer type. Future research could extend the
buyer typology developed in our analysis to: assess
how additional owner characteristics (e.g. dispar-
ate financial and technological capacities, investment
horizons, crop type choices over time, groundwa-
ter uses) influence groundwater access; discern policy
and hydroclimatic effects on well owners’ drilling
behaviors; and model spatially downscaled relation-
ships between agricultural and domestic wells.

4.4. Limitations and future research
Due to data limitations, we are unable to identify
farmland sellers (S2.3) or distinguish additional
landowner characteristics that may affect farmland
management strategies, such as whether landown-
ers are first-time landowners [26, 28, 81], absentee
landowners, or owner-operators [111, 112].

Of the 9.7 million transactions in ZTRAX that
met transaction criteria (e.g. timeframe, arm’s-
length), 1.7% did not conclusively join to any record
in the assessment dataset. Given the large pro-
portion of non-agricultural land transactions in
California, many of these records may not refer
to the sale of relevant parcels; thus, our num-
bers likely reflect a slight underestimate of the
volume of transactions statewide from 2003–17
(S1.3). Additionally, we were unable to match 19.9%
(n = 1152) of 2011–17 wells retained for matching
at the parcel scale in the SJV basin; of these, 55.1%
(n = 635) were missing an address, APN, or drill
depth (S3.6).

This project focuses on assessing changes in
overlying rights through the purchase of land and
the construction of new groundwater wells. Existing
groundwater rights and rights that do not require
ownership of overlying property, such as prescript-
ive rights held by municipalities, are not addressed.
Though our results are specific to California, they
underscore the importance of analyzing overlying
land transitions in regions where groundwater access
is delineated by a landed private property rights
regime, such as in Texas and Arizona [10, 113].
More broadly, our results highlight the import-
ance of tracking changes in coupled land–water
systems.

5. Conclusions

Our results suggest that overlying farmland is con-
siderably more liquid in California than previously
thought, affecting ongoing and future groundwater
access patterns. The private land market has a sub-
stantial role in shaping groundwater access that needs
to be further understood, particularly at a moment of
large-scale transition in California groundwater gov-
ernance. Who—or what—can access groundwater
matters, as ownership of overlying land will become
increasingly important in determining not only
groundwater access, but also governance, recharge
efforts, and the possibility of dominating nascent
groundwater markets. Sustainability and equity con-
cerns call for land ownership to be more explicitly
considered in groundwater governance at local and
regional scales.

Data availability statement

The San Joaquin Valley groundwater well dataset pro-
duced for this research is available at osf.io/uxhze/.
Land transaction data cannot be made publicly avail-
able upon publication because they contain sensit-
ive personal information. Transaction data suitably
anonymized with identifiers and addresses removed
are available upon reasonable request pursuant to
the terms of our data use agreement; however, the
study cannot be fully reproduced without the names,
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addresses, and identifiers, although data reproduc-
tion would be possible by manually compiling a
similar dataset from publicly available county-level
offices. Parcel data used for this research cannot be
made publicly available upon publication because
they are owned by a third party and the terms of use
prevent public distribution. Information about data
access is available at www.zillow.com/ztrax and www.
digmap.com/platform/smartparcels/. All other data-
sets used in this study are publicly available from the
references indicated.
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