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Nuclear neutrino energy spectra in high temperature astrophysical environments
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Astrophysical environments that reach temperatures greater than ∼100 keV can have significant neutrino
energy loss via both plasma processes and nuclear weak interactions. We find that nuclear processes likely produce
the highest-energy neutrinos. The important weak nuclear interactions include both charged current channels
(electron capture and emission and positron capture and emission) and neutral current channels (deexcitation of
nuclei via neutrino pair emission). We show that, in order to make a realistic prediction of the nuclear neutrino
spectrum, one must take nuclear structure into account; in some cases, the most important transitions may involve
excited states, possibly in both parent and daughter nuclei. We find that the standard technique of producing a
neutrino energy spectrum by using a single transition with a Q value and matrix element chosen to fit published
neutrino production rates and energy losses will not accurately capture important spectral features.

DOI: 10.1103/PhysRevC.94.055808

I. INTRODUCTION

In this paper, we calculate energy spectra for neutrinos
produced in nuclear weak interaction processes that occur in
precollapse massive stars. A key motivation for this work is
the possibility of detecting a neutrino signal from a massive
star, perhaps even months before collapse [1–4]. Patton &
Lunardini (hereafter P&L) [5] have studied the neutrino
emissivity physics in this problem and the associated prospects
for detection. In this paper, we build on the work of P&L,
but we concentrate on the nuclear physics which determines
important aspects of the neutrino energy spectra, especially at
high neutrino energy. Higher neutrino energies are, of course,
key to detection. Our nuclear structure considerations and our
shell-model calculations allow us to illuminate features of
specific sd-shell nuclei which are likely to be key contributors
to the high-energy end of the expected neutrino spectrum.

Beginning with core carbon burning, neutrino production
dominates the energy loss of massive stars. Depending on
the mass of the star and its stage of burning, these neutrinos
can be produced through electron-positron pair annihilation,
the photoprocess (wherein a photon interacts with an electron
and produces a neutrino pair), neutrino pair bremsstrahlung,
electron capture, and other processes. In low-mass stars and
in massive stars prior to core collapse, the neutrinos stream
unimpeded through stellar material, removing entropy from
the core and greatly accelerating the evolution of the star [6].

In the final stages before collapse of a massive star, the core
is hot and dense, but the entropy is low [7]. The temperature is
∼0.5 MeV, but the electron Fermi energy can be ∼5 MeV,
implying very-electron-degenerate conditions [8–20]. The
electron degeneracy relatively suppresses neutrino production
processes with electrons in the final state, processes with in-
termediate electron loops, and electron-positron annihilation.
At the same time, the high Fermi energy relatively enhances
electron capture (Fig. 1), while the high temperature gives
a population of excited nuclei that can deexcite by emission

of a neutrino pair (Fig. 2) [21–23]. In many cases, excited
nuclei can also more readily decay by electron or positron
emission [24], which is always accompanied by an antineutrino
or neutrino, respectively (Fig. 3).

High temperatures allow the nuclei to access excited
parent states which may have large Q values and large weak
interaction matrix elements for charged current transitions.
Large Q values imply larger phase-space factors for weak
interactions but, against this, Boltzmann population factors
for these highly excited initial states can be small. However,
ameliorating the effect of small Boltzmann factors is the near-
exponential increase in nuclear level densities with increasing
excitation energies. In the end, the balance between all these
factors must be evaluated on a case-by-case basis for individual
nuclei and particular thermodynamic conditions in the star.

This situation has a profound effect on the neutrino
spectrum, as energetic electrons can capture onto excited
parent nuclei, which might have a less excited final state in
the daughter nucleus; this results in an unusually-high-energy
neutrino.

Furthermore, these excited nuclei may directly produce
neutrino pairs. When excited nuclei deexcite, the usual channel
is γ -ray emission; however, they may also emit a virtual Z0

boson that decays into a neutrino antineutrino pair, shown
schematically in Fig. 2. In fact, this can be the dominant source
of neutrino pairs in a collapsing stellar core [22,23,25–27]. If
the nucleus deexcites from a highly excited state, it can produce
an energetic neutrino pair of any flavor, and these neutrinos
can make a substantial contribution at the high-energy end of
the neutrino spectrum.

One final process that we will not discuss but which
falls under the general purview of nuclear neutrinos is
neutral current inelastic neutrino scattering on nuclei (Fig. 4)
[22,28,29]. Scattering does not produce neutrinos, but it can
alter the neutrino spectrum. During the event, the nucleus can
either gain internal energy from the neutrino in a subelastic
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FIG. 1. Electron capture on a nucleus of mass number A, proton
number Z, and excitation energy E, producing a nucleus of mass
number A, proton number Z − 1, and excitation energy E′. The
electron and neutrino may be exchanged in this diagram for their
antiparticles, yielding a final nucleus with proton number Z + 1.

scatter, or the nucleus can give up energy to the neutrino
in a superelastic scatter. The former will shift the neutrino
spectrum down in energy, while the latter will shift it up.
Under most circumstances, there will be greater strength for a
nuclear “up-transition” [22], meaning a subelastic scatter that
lowers neutrino energy. However, in supernova environments,
there may be a sufficient population of excited nuclei to shift
part of the neutrino spectrum up, lengthening the high-energy
tail of the spectrum, with possible implications for detection.

Section II details the calculation of the charged current
process neutrino spectra and shows some results of high
temperature shell-model calculations. In Sec. III we discuss
neutral current nuclear deexcitation neutrino production and
spectra, and in Sec. IV, we go over the results and their
implications.

FIG. 2. Neutral current neutrino pair emission from a nucleus
of mass number A with initial excitation energy E and final
excitation E′.

FIG. 3. Electron decay from a nucleus of mass number A, proton
number Z, and excitation energy E to a nucleus of mass number A,
proton number Z + 1, and excitation energy E′. The electron and
antineutrino may be exchanged in this diagram for their antiparticles,
yielding a final nucleus with proton number Z − 1.

II. CHARGED CURRENT PROCESS NEUTRINOS

Both sd- and pf -shell nuclei will play a role in determining
the precollapse neutrino and antineutrino energy spectra and
corresponding fluxes. Although we concentrate here on sd-
shell nuclei, many of our conclusions on the role of nuclear
excited states are also true for pf -shell nuclei. We will
speculate on nuclear structure issues for pf -shell nuclei in
the Sec. IV discussion.

We carried out nuclear structure computations in the
following manner: We used the shell-model code OXBASH [30]
to compute energy levels and transition matrix elements of
sd-shell nuclei. Our model consisted of a closed 16O core,
with the remaining nucleons unrestricted within the sd shell;
the 1d5/2, 2s1/2, and 1d3/2 single-particle states comprise the
sd shell. We employed the USDB Hamiltonian [31]. Where
feasible, we used experimentally determined nuclear state

FIG. 4. Neutral current neutrino scattering from a nucleus of mass
number A with initial excitation energy E and final excitation E′.
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energies (for most of the nuclei we examined, these were the
lowest 10 to 20 positive-parity states) and transition strengths
[taken from published log f t values], and we otherwise relied
on matrix elements calculated with the code. We quenched
the computed (nonexperimental) squared transition matrix
elements by a factor of 0.6. We give rates and spectra in
s−1 baryon−1, and these are calculated as though the entire
stellar core were comprised of that material; that is, we show
the emissivity of, e.g., 21Ne as though the entire stellar core
were 21Ne.

We first consider four charged current interactions: electron
capture, positron emission, positron capture, and electron
emission. The former two produce electron flavored neutrinos
via Gamow–Teller and Fermi nuclear transitions—GT− and
F−, respectively—while the latter produce electron flavored
antineutrinos via GT+ and F+ transitions.

A. Charged current process calculation

To compute the rates, we follow the prescription of FFNI
[32]. The transition rate is given by

λif = ln2
fif (T ,ρYe)

f tif
, (1)

where f tif is the relative half-life of the transition (this
factor contains physical constants and the transition matrix
elements), and fif (T ,ρYe) is the phase-space factor. We take

1

f tif
= 1

f tGT
if

+ 1

f tFif
= BGT ±

if

103.596
+ BF

if

103.791
, (2)

which has units of s−1, where

BGT ±
if =

∣∣MGT ±
if

∣∣2

2Ji + 1
=

∣∣〈f | ∑k(−→σ τ±)k|i〉
∣∣2

2Ji + 1
, (3)

BF±
if =

∣∣MF±
if

∣∣2

2Ji + 1
=

∣∣〈f | ∑k(τ±)k|i〉
∣∣2

2Ji + 1
. (4)

Here, −→σ is the one-body spin operator, τ± is the one-body
isospin raising (upper sign) and lowering (lower sign) operator,
|i〉 and |f 〉 are the initial and final nuclear states, respectively,
and the sums are over nucleons.

The phase-space factor for the decay processes is

fif =
∫ −q

1
w2(−q − w)2G(Z,w)[1 − fe± (w)]dw (5)

and for the capture processes is

fif =
∫ ∞

max(1,q)
w2(−q + w)2G(Z,w)fe± (w)dw, (6)

where w is the electron energy, q is the energy of the transition
(daughter energy minus parent energy, including rest mass), G
is the Coulomb correction factor (described in detail in FFNI),
and fe± (w) is the electron (positron) distribution function;
all energies are in units of electron mass me. Finally, these
individual transition rates are summed over final states and
thermally populated initial states.

Here, however, we are interested in neutrino spectra, rather
than total rates; we obtain these by changing the phase-space

factor variable of integration from the electron energy to
the neutrino energy, then keep only the kernel and do not
integrate. After changing variables, we interpret the kernel
as the contribution to the transition rate per unit energy of the
outgoing neutrino. Since the spectrum is an explicit function of
neutrino energy, we want a more convenient unit, so we factor
1/me out of all energies (yielding a total of four powers of
1/me); this gives the freedom to choose any unit of energy. To
more readily compare nuclei, we divide by the mass number A.
Now, the units of the spectral density are neutrinos per second
per baryon per electron mass; we divide the spectral density
by one more power of me to allow our choice of energy unit
in the denominator. As a consequence, we have

Sif (Eν) = ln2

Am5
e

(
BGT ∓

if

103.596
+ BF∓

if

103.791

)
E2

ν (−Q − Eν)2

×G(Z, − Q − Eν)[1 − fe± (−Q − Eν)]

neutrinos/(s baryon) (7)

for electron (lower signs) or positron (upper signs) decay and

Sif (Eν) = ln2

Am5
e

(
BGT ±

if

103.596
+ BF±

if

103.791

)

×E2
ν (Eν + Q)2G(Z,Eν + Q)fe± (Eν + Q)

neutrinos/(s baryon) (8)

for electron or positron capture, where Eν is the neutrino
energy and Q is the nuclear transition energy. We define Q as
the rest mass energy plus final excitation energy of the daughter
nucleus minus the rest mass energy plus initial excitation
energy of the parent nucleus: Q = (Md + Ef ) − (Mp + Ei).
We use MeV for all energies, so the units of the spectrum will
be neutrinos per second per baryon per MeV.

We populate the initial states by using the modification
of the Brink hypothesis detailed in Ref. [33], considering all
states individually up to 12 MeV excitation, and assigning the
remaining thermal statistical weight to the average of the next
50 or more higher states. Finally, we sum over initial and final
states.

B. Charged current process spectra

In this section, we choose nuclei, temperatures, and den-
sities to facilitate comparison with P&L. That work made
the excellent point that charged current processes could
be the greatest source of high-energy neutrinos. The authors
used the technique of Langanke et al. [34] to generate charged
current neutrino spectra, whereby a single Q value and
transition strength for each nucleus are taken as parameters
that are fit to published neutrino-loss and energy-loss rates
(such as those of Fuller, Fowler, and Newman [24,32,35,36],
Oda et al. [37], and Langanke and Martinez–Pinedo [38]). That
is, for each nucleus at a particular temperature and electron
density (generally expressed as ρYe), an effective Q value and
transition strength are chosen to reproduce the rates published
for that nucleus in those conditions. While Langanke et al.
found that this technique can reasonably produce neutrino
(antineutrino) spectra when the typical energy of a captured
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FIG. 5. 27Si charged current process neutrino spectrum. The black
lines are totals for the nucleus, and the colored lines correspond to
the indicated initial parent states.

electron (positron) is high enough that nuclear transitions are
dominated by the bulk of the transition strength, it may fail
when only a few individual transitions produce most of the
neutrinos. In contrast, we compute neutrino spectra by the
method detailed in the previous section.

Figure 5 shows the neutrino energy spectrum from GT−

and F− transitions from 27Si to 27Al at a temperature of
∼0.22 MeV and ρYe ∼ 9.5 × 105 g/cm3. Solid lines are from
electron capture, and dotted lines are from positron decay.
Black lines are totals for each process, while colored lines are
the contributions from selected parent nucleus initial states.
Transitions from the ground state dominate the spectrum
almost everywhere, although naturally the positron decay
spectrum at high neutrino energy comes from excited states.
Furthermore, 27Si has a proton excess of exactly 1, while 27Al
has a neutron excess of exactly 1, so these two nuclei comprise
a mirror system. That is, from a structural perspective, these
nuclei are identical up to a relabeling of protons and neutrons.
Therefore, each state in 27Si will have a superallowed (Fermi)
transition to the corresponding state in 27Al, and in particular,
the ground states are therefore connected. Consequently, this
transition has a tremendous amount of strength relative to
other transitions, and it defines the shape of the spectrum:
there is a single large peak from positron decay, and a
single large peak from electron capture. The smaller peaks
in the electron capture channel arise from transitions to
excited states in the daughter nucleus, but outside the narrow
valley at ∼4 MeV, they are buried under the positron decay
peak.

Figure 6 (same line designations as in Fig. 5) shows the
neutrino spectrum from GT− and F− transitions from 31S to 31P
at a temperature of ∼0.17 MeV and ρYe ∼ 2.2 × 106 g/cm3.
As with 27Si and 27Al, these are mirror nuclei, and as in
Fig. 5, the ground-state-to-ground-state transitions dominate
the spectrum.

Figure 7 (same line designations as in Fig. 5) shows
the neutrino spectrum from GT− and F− transitions from
30P to 30Si at a temperature of ∼0.17 MeV and ρYe ∼

FIG. 6. 31S charged current process neutrino spectrum. The black
lines are totals for the nucleus, and the colored lines correspond to
the indicated initial parent states.

2.2 × 106 g/cm3. This is not a mirror system, so the ground
states are not connected by a Fermi transition. Nevertheless,
transitions from the ground state of 30P define the neutrino
energy spectrum for energies <3 MeV and between 4 and 5
MeV. However, the first-excited state of 30P (Ei = 0.677 MeV)
is isospin T = 1 and spin J = 0, so it does have a superallowed
transition to the ground state of 30Si. The strength of this
superallowed transition causes it to dominate the neutrino
spectrum from 3 to 3.9 MeV and above 5 MeV neutrino
energy. In the narrow band between the high-energy cutoff
at 3.9 MeV for positron emission from the first-excited state
and the low-energy cutoff at 4.2 MeV for electron capture on
the ground state, the third excited state (Ei = 1.145 MeV)
produces most of the neutrinos. Of course, the population
of these excited states depends sensitively on temperature
through the Boltzmann factors, so the conclusions may be

FIG. 7. 30P charged current process neutrino spectrum. The black
lines are totals for the nucleus, and the colored lines correspond to
the indicated initial parent states.
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FIG. 8. 32P charged current process antineutrino spectrum. The
black lines are totals for the nucleus, and the colored lines correspond
to the indicated initial parent states.

different at lower temperature or higher temperature than we
consider here.

Figure 8 (same line designations as in Fig. 5) shows the
antineutrino spectrum from GT+ and F+ transitions from
32P to 32S at a temperature of ∼0.17 MeV and ρYe ∼
2.2 × 106 g/cm3. Here, while the ground state does dominate
the total positron capture rate, it nowhere dominates the
spectrum. Instead, transitions from the third excited state
(Ei = 1.15 MeV) produce most of the spectrum, with the band
between 2.7 and 3.9 MeV coming from transitions from the
eighth excited state (Ei = 2.23 MeV).

The high-energy peak in the positron capture channel
on the ground state of 32P arises from transitions to the
ground state of 32S. However, this transition has a rather low
strength of BGT = 0.50 × 10−4, while the transition to the
first-excited state of 32S has a very large strength of BGT =
0.12; consequently most of the positron capture neutrinos
have low energy. The third excited state (Ei = 1.15 MeV),
on the other hand, has a high strength transition to the ground
state of 32S, with BGT = 0.074. The high strength and large
phase-space factor overcome the Boltzmann factor relative to
ground, resulting in this state being the principle source of
electron decay neutrinos and high energy positron capture
neutrinos. The 32P Ei = 2.23 state also has a fairly high
strength transition to 32S ground (BGT = 0.015), so electron
decay from this state fills the gap between the Ei = 1.15 MeV
electron decay and positron capture peaks.

Figure 9 (same line designations as in Fig. 5) shows the neu-
trino spectrum from GT− and F− transitions from 28Al to 28Mg
at a temperature of ∼0.43 MeV and ρYe ∼ 1.0 × 108 g/cm3.
28Al is lighter than the typical nucleus in these conditions, but
it has close to the correct electron fraction and is therefore
an interesting case. The lowest four states of this nucleus
have no allowed transitions to the ground state of 28Mg, and
as a consequence, they are not significant contributors to the
neutrino spectrum at any energy. The fourth, fifth, and eighth
excited states (Ei = 1.37, 1.62, and 2.20 MeV, respectively)
all have allowed transitions to ground and produce most of

FIG. 9. 28Al charged current process neutrino spectrum. The
black lines are totals for the nucleus, and the colored lines correspond
to the indicated initial parent states.

the neutrinos by electron capture. The 15th excited state
(Ei = 3.11 MeV) has an allowed transition to 28Mg ground,
but is hindered by a small thermal population factor and
a fairly low transition strength (BGT = 1.243 × 10−4). The
first isobaric analog state in 28Al occurs at E = 5.94 MeV
and is the principle source of positron decay neutrinos and
very-high-energy electron capture neutrinos.

III. NEUTRAL CURRENT DEEXCITATION NEUTRINOS

A. Calculation of neutrino pair rates

The deexcitation rate via neutrino pair production from an
initial state |i〉 with energy Ei to a final state |f 〉 with energy
Ef is [21]

λif ≈ G2
F g2

A

60π3
(Ei − Ef )5BGT 3

if

≈ 1.71 × 10−4s−1

(
Ei − Ef

MeV

)5

BGT 3
if . (9)

GF is the Fermi constant and gA is the axial vector coupling
constant, and

BGT 3
if =

∣∣∣∣∣〈f |
∑

k

(−→σ tz)k|i〉
∣∣∣∣∣
2/

(2Ji + 1)

is the reduced squared matrix element for the transition; the
sum is over nucleons, −→σ is the one-body spin operator, and tz
is the z component of the one-body isospin operator.

The energy-loss rate is, of course, the deexcitation rate
times the difference between initial- and final-state energies.
Including the thermal population probability of excited states
and expressing the transition energy 	E = |Ef − Ei | as a
ratio to the ambient temperature, the energy-loss rate per
nucleus by deexcitation into neutrino pairs from state |i〉 to
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FIG. 10. Normalized energy emission rate in neutrino pairs via
deexcitation to a final state with energy Ef for a general nucleus as a
function of the ratio of transition energy 	E to temperature T . This
provides a qualitative guide to compare the emission rates of various
nuclei at a given temperature.

state |f 〉 is


if = 1.71 × 10−4 MeV

s

(
T

MeV

)6(
	E

T

)6

×BGT 3
if

(2Ji + 1)e−(	E+Ef )/T

G(T )
, (10)

where Ji is the spin of the initial state and G(T ) is the nuclear
partition function at temperature T .

To guide the search for nuclei that might be important
sources of neutrino pairs, we factor out of Eq. (10) the di-
mensionful factor 1.71 × 10−4 MeV/s, the factor (T/MeV)6,
and those parts that depend explicitly on the characteristics of
a particular nucleus; to whit, BGT

if (2Ji + 1)/G(T ), then apply
an overall factor of 1/(66e−6) so that the peak “normalized”
emission rate is 1:


norm
if = 1

66e−6

(
	E

T

)6

e−	E/T e−Ef /T . (11)

From this expression, we see that which nuclei are effective
at emitting energy in neutrino pairs depends on the ambient
temperature: we seek nuclei with transitions and final states
that are low enough in energy that the Boltzmann factor
does not overly suppress the population, but balanced against
that are the six powers of 	E that favor higher excitations.
Figure 10 shows the normalized emission rate (with the
final-state energy dependence factored out) as a function of
	E/T .

Equation (11) shows that the peak in Fig. 10 lies at
	E/T = 6. This means that we should look for nuclei that
have transitions from excited states to low-lying (preferably
ground) states with transition energies near 6T . The typical
range of variation in BGT

if for transitions between low-lying
states in sd-shell nuclei is about a factor of 10, so we can
constrain our search to transition energies between about 3
and 10 times the temperature of the environment of interest.

FIG. 11. Neutrino pair emissivities for a variety of sd-shell
nuclei. The odd nuclei stay tightly grouped over the entire range
of temperature. At low temperature, 28Si has low emissivity due to a
lack of low-lying states.

Of course, Eq. (11) applies to individual discrete transitions
and does not take the density of states into account. At low
energy, states are sparse, so individual transitions tend to dom-
inate the rate at low temperature. As temperature increases,
more and more states will fall on the high-energy slope of
the peak in Fig. 10, reducing the importance of individual
transitions and increasing the most effective energy. As a
consequence, at high temperature, the rates can be dominated
by the density of states and the overall weak strength energy
distribution, and we need not be concerned about the detailed
energy-level structure in seeking important nuclei [33].

B. Energy-loss rates

Figure 11 shows the energy-loss rate via neutral current
deexcitation of a variety of sd-shell nuclei. The rates are com-
puted by summing Eq. (10) over initial and final states. Fol-
lowing Ref. [33], we considered each state individually up to a
cutoff energy, and the remaining statistical weight is carried by
a single average high-energy state computed from a sample of
states (50 or more) above the cutoff. For each nucleus, we chose
a cutoff of 10, 12, or 15 MeV according to how many states in
that nucleus we had computed transition matrix elements for.
Included in the figure are a selection of odd-even nuclei (nuclei
with an even number of protons and an odd number of neutrons
or vice versa), the odd-odd nucleus 28Al, the four stable even-
even sd-shell nuclei with relatively low-lying (E < 6 MeV)
Jπ = 1+ states (which have allowed transitions to ground),
and the tightly bound, difficult-to-excite nucleus 28Si.

Over the entire range of temperature, the odd nuclei remain
tightly clustered in one group, and the even-even nuclei with
low-lying 1+ states comprise a second group. 28Si falls well
below both groups at modest temperatures because it has very
few allowed transitions between low-lying states. At high
temperature, all of the nuclei converge into a single group,
indicating that the behavior at high temperature is independent
of the specific nucleus.
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FIG. 12. There are two allowed deexcitations from low-lying
excited states in 21Ne. Figure 11 shows that each of these transitions
becomes important at different temperatures.

The neutrino and antineutrino emissivity of 21Ne has
two prominent ledges as temperature increases. The first
occurs at very low temperature (<0.1 MeV), causing 21Ne
to dominate the other odd nuclei. We can understand this
behavior by examining the low-lying energy-level structure of
21Ne. Figure 12 shows the three lowest-energy states. The first
rise is due to the exceptionally low-energy first-excited state,
which is substantially lower than the first-excited state of each
other nucleus in the figure (except for 28Al, which has a nearly
degenerate ground state). Referring to Fig. 10, the transition
from the first-excited state to ground reaches peak relative
effectiveness at T ∼ 0.06 MeV, but the next allowed transition
does not become effective until T ∼ 0.2 MeV. This illustrates
the importance of individual transitions at low temperatures.

We also compare the energy-loss rates from neutral current
deexcitation against the other dominant sources of neutrino
emission. Over the temperature and density range relevant to
core O-Ne-Mg burning and Si burning, the other two dominant
sources of neutrino pairs are electron-positron pair annihilation
and the photoprocess [39]. Figure 13 shows the emissivities
of 27Al (chosen to represent the odd-nuclei bundle), pair
annihilation, and the photoprocess. The rates for the latter
two processes are sensitive to density (both decrease with
increasing density), so we include the rates for ρ = 107 (black,
upper), 3 × 107 (red, middle), and 108 (green, lower) g/cm3.
The bottom panel is a zoom-in on the top panel, emphasizing
the temperature range relevant for O-Ne-Mg burning. From
these plots, we see that neutral current deexcitation is likely
never the dominant source of energy loss via neutrino pairs,
but it may nevertheless be a significant contributor.

Electron capture is the final major source of energy loss
in highly evolved stellar cores. In Fig. 14, we compare the
emissivity of 27Al with the energy-loss rate from electron

FIG. 13. Energy-loss rates from neutral current deexcitation of
27Al and other major neutrino processes. For electron-positron pair
annihilation and the photoprocess, the black (upper) lines are for
ρ = 107 g/cm3, the red (middle) lines are for 3 × 107 g/cm3, and the
green (lower) lines are for 108 g/cm3. The lower panel emphasizes
the temperature range appropriate for core O-Ne-Mg burning.

capture on 28Si. We computed the electron-capture rate by
using the prescription of Ref. [33] with a cutoff of 15 MeV. We
include ρYe = 5 × 106 (black, lower), 5 × 107 (red, middle),
and 5 × 108 (green, upper) g/cm3. The odd-nucleus neutral
current rate dominates electron capture on 28Si until very late in
silicon burning when the core is near collapse. This comparison
is somewhat unfair, however, as 28Si is an even-even nucleus,
and odd nuclei tend to have a higher density of states and more
allowed transitions. We should be careful, therefore, to not
draw broad conclusions from this one comparison and use it
only as a guide for further exploration; to accurately compare
the two processes, we must know the abundances and relative
production rates of many nuclei.

C. Neutral current spectra

Although neutral current deexcitation of nuclei is probably
not a major source of energy loss in O-Ne-Mg burning and
Si burning, the energies of the pairs can be much greater
than the typically thermal energies of pairs produced by other
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FIG. 14. Energy-loss rates from neutral current deexcitation of
27Al and electron capture on 28Si. The product of density and electron
fraction ρYe is in g/cm3.

processes. The spectral density of neutrinos from deexcitation
from the initial nuclear state |i〉 to the final state |f 〉 is
computed similarly to the spectrum from charged current
processes. In this case, the kernel of the phase-space integral
that yielded Eq. (9) is simply E2

ν (−Q − Eν)2, giving a spectral
density of

Sif (Eν) = 5.134 × 10−3
BGT 3

if

A−1

(
Eν

MeV

)2(−Q − Eν

MeV

)2

neutrinos/(s baryon MeV). (12)

We sum Eq. (12) over final states and thermally populated
initial states as before, producing a complete spectrum for the
nucleus.

Figure 15 shows the neutrino spectra for 27Al (top panel)
and 28Si (bottom panel) at a selection of temperatures relevant
to late stellar evolution; by symmetry, the antineutrino spectra
are identical. We calculated these spectra by using a further
modification of the cutoff method detailed above, with the
difference being that selections of states above the cutoff are
grouped into energy bins which we average over; this avoids
overpopulating the very-high-energy tails of the spectra.

Remarkably, above 10 MeV, the spectra of both nuclei are
nearly identical. That such different nuclei produce similar
high-energy neutrino spectra, coupled with the convergence
of emissivities at high temperature in Fig. 11, suggests that
all sd-shell nuclei will produce similar results. We included
in Fig. 15 very high temperatures relevant at the onset of and
during core collapse. An interesting feature of deexcitation
pairs is that their rates and spectra are entirely independent of
the electron density, so that in a highly evolved precollapse
and early collapse core, this might be a dominant source of
high-energy neutrinos.

IV. DISCUSSION

Detecting neutrinos from highly evolved precollapse stars
could give key insights into stellar evolution. This is an exciting
prospect.

FIG. 15. 27Al (top) and 28Si (bottom) neutral current neutrino
spectra. Antineutrino spectra are identical. Notably, the spectra above
10 MeV are similar.

P&L astutely point out the importance of nuclear neutrinos
in understanding late stellar neutrino spectra, and we build on
that by examining the effects of nuclear structure. To that end,
we draw specific attention to 32P, shown in Fig. 8 of this work
and Fig. 3 of P&L [5]. In P&L Fig. 3, there is a small bump in
the antineutrino spectrum at ∼4 MeV that the authors say is due
positron capture on 32P. At that point in P&L’s simulation, the
mass fraction of 32P is ∼10−4 (personal communication). By
using the mass fraction and the density of the core, we convert
the P&L y axis and find that the height of the P&L 32P 4 MeV
antineutrino peak is ∼8.5 × 10−10 neutrinos/(s baryon MeV).
This corresponds roughly with the height of the ∼1 MeV
positron capture neutrino peak in our Fig. 8. By design, the
single-Q-value technique will give the correct total neutrino
output with the correct average energy but, in this case, the
energetics of the positron capture neutrinos are incorrect.
In this particular case, the published rates are dominated
by electron emission from the first-excited parent state, but
most captures occur between the parent ground state and the
first-excited state of the daughter, pushing the positron capture
neutrino energy down; this results in erroneous conclusions
from the single Q-value method. Similarly, the single Q-value
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method fails to capture the significant contribution of 3–4 MeV
antineutrinos from the Ei = 2.23 MeV state.

Finally, comparing Fig. 15 in this work with the final plot in
Fig. 4 of P&L indicates that, in late silicon burning, neutral cur-
rent deexcitation may be a leading source of antineutrinos with
energies greater than 10 MeV. This is contradicted by the 28Al
spectrum in this work’s Fig. 9, however, so we must be circum-
spect in drawing conclusions. Nevertheless, it is clear that the
production rates of >10 MeV neutrinos increase dramatically
with temperature (due to the exponential dependence of the
Boltzmann factor for excited states), and these rates are entirely
unaffected by density and the associated baggage (such as elec-
tron blocking). This implies that in this neutrino energy range,
the effectiveness of this process relative to charged current
processes is highly sensitive to the ambient temperature, and no
solid conclusions can be drawn until realistic nuclear neutrino
spectra are included in a simulation. At higher temperatures—
approaching the onset of collapse—neutral current deexcita-
tion may be the dominant source of >10 MeV neutrinos.

During core collapse, the electron chemical potential μe

climbs as density increases, with the consequence that the
average energy of a captured electron is very high. When
μe reaches the energy of the Gamow–Teller resonance of a
typical nucleus, the capture rate takes off, producing neutrinos
prodigiously. Following precisely the method of FFN, we
computed electron capture and positron decay neutrino spectra
for 56Fe. Using the FFN prescription, 56Fe has a GT resonance
at ∼8 MeV. Figure 16 (same line designations as in Fig. 5)
shows the spectra for two points leading up to and during
collapse. The upper panel has μe = 2.22 MeV (less than the
resonance), and the lower panel has μe = 9.66 MeV (greater
than the resonance). The increase in temperature is not large,
but bringing μe above the resonance energy increases the peak
in the spectrum by more than four orders of magnitude.

Figure 17 shows the 56Fe electron neutrino energy spectra
computed by using the FFN prescription at several points
during collapse. The solid lines are for electron capture, the
dotted lines are for positron decay, and the colors correspond
to different temperature and density conditions. The results
of Figs. 16 and 17 are qualitative (strength is unquenched,
δ-function resonance, etc.) but indicate that, at high μe, the
distribution of the bulk of the strength dominates the effects of
precise structure.

Our technique of modifying the Brink hypothesis (by
averaging high-energy states) does not, strictly speaking,
obey the thermal detailed balance described in Fischer et al.
Eq. (10) [27].

SGT 3(T ,	E) = e	E/T SGT 3(T , − 	E). (13)

Here, SGT 3 is the neutral current thermal strength function
[defined analogously to the charged current thermal strength
function in Eq. (15)], 	E is the nuclear transition energy, and
T is the temperature. With modification, this equation also
applies to charged current interactions.

Gj (T )S±
jk(T ,Q) = e(Q−	m)/T Gk(T )S∓

kj (T , − Q). (14)

The plus (minus) signs in the superscripts refer to isospin
raising (lowering) transitions, Q is the change in total nuclear

FIG. 16. 56Fe charged current process neutrino spectra computed
from the FFN prescription. The Ei = 11.44 MeV line corresponds to
the isobaric analog of the 56Mn ground state. In the upper panel, the
electron chemical potential is less than the Gamow–Teller resonance
energy, while in the lower panel, it is greater than the GT resonance
energy. Because of this, the peak in the lower panel is more than four
orders of magnitude greater, despite the comparatively small increase
in temperature.

energy, 	m is the rest mass energy of nucleus k minus the
mass of nucleus j , Gj (k) is the partition function of nucleus
j (k), and S±

jk is the thermal strength function for transitions
from nucleus j to nucleus k, defined as

S±
jk(T ,Q) = 1

Gj (T )

∫ ∞

0
dE(2Jj + 1)ρj (E,Jj )

× e−E/T B±
jk(E,Q), (15)

where Jj is the spin of the state in nucleus j with excitation
energy E, ρj (E,Jj ) is the density of states in nucleus j , and
B±

jk(E,Q) is the strength (GT or Fermi) for the state with
energy E to make a transition to nucleus k with transition
energy Q.

In our approach, the strengths from states with initial
nuclear excitation energy above the chosen cutoff are treated
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FIG. 17. 56Fe charged current process neutrino spectra computed
from the FFN prescription at various points during collapse. The
enormous jump in neutrino production between the lowest two
temperatures is due to the chemical potential in the higher temperature
point being greater than the Gamow–Teller resonance energy.

in an average sense, whereas strengths from lower initial
energy to states with final nuclear energy above the cutoff
are treated individually. This difference in treatment means
that transitions involving initial or final states above the cutoff
do not obey Eqs. (13) and (14); this is in contrast to other
approaches, such as the thermal quasiparticle random-phase
approximation [40]. However, we expect this violation to be
unimportant for a few reasons; the right-hand side is, of course,
summed over spins.

First, at the temperatures and densities considered here,
nuclear states above 12 MeV do not contribute much to the
charged current neutrinos; the typical electron and positron
energies are low enough that captures to final nuclear states
above 12 MeV are very rare, and initial states above 12 MeV
are not heavily populated. Second, because neutrinos stream
freely out, the core material is not in weak equilibrium, so
the forward and reverse reactions will not proceed at the same
rate. In other words, although the nuclear matrix elements for
the forward and reverse reactions must be identical by the
principle of detailed balance, the phase-space factors are very
different because the neutrinos are not in thermal and chemical
equilibrium. This is especially true in the case of the neutral
current channel, where the inverse of neutrino pair emission is
pair annihilation on a nucleus; there are not enough neutrinos
present for this reaction to occur at a meaningful rate.

A deeper analysis provides further evidence that our tech-
nique does not violate detailed balance in an important way.
We define the imbalance I between two positive quantities A
and B as

I (A,B) = A − B

A + B
. (16)

When A and B are equal, the imbalance is zero, and when
one or the other is much larger, the imbalance is near −1 or 1.

FIG. 18. 27Al thermal strength at temperature T = 0.43 MeV.
The upper panel shows the thermal strengths in the left (forward) and
right (reverse) sides of Eq. (17); these are only the thermal strengths
and do not include the exponential factors. The lower panel shows the
imbalance between the right- and left-hand sides of Eq. (17) (detailed
imbalance, solid line) and the imbalance of the thermal strengths
(dashed line).

Rewriting Eq. (13) as

e−	E/2T SGT 3(T ,	E) = e	E/2T SGT 3(T , − 	E) (17)

puts the forward (left-hand side) and reverse (right-hand side)
reactions on equal footing. The imbalance in Eq. (17) is then
computed by assigning the right-hand side to the quantity A
and the left-hand side to B in Eq. (16). This gives us a measure
of thermal detailed balance: where the quantities are balanced,
the imbalance is zero.

Figure 18 gives a picture of how our approach violates
thermal detailed balance in the neutral current channel. We
choose 27Al as a representative case because of its high density
of states and many allowed neutral current transitions, but other
nuclei behave similarly. The upper panels show the thermal
strength distribution for the forward and reverse reactions,
where “forward” refers to the thermal strength on the left-hand
side of Eq. (17) and “reverse” refers to the strength on the
right-hand side (including the negative transition energy in
the argument). In the case of neutral current transitions, these
strengths are simply mirror images of one another, but we show
both for the sake of later discussion. The lower panel shows
the imbalance of the forward and reverse thermal strength
distributions (dashed line) and the imbalance of left- and right-
hand sides of Eq. (17), which we term “detailed imbalance.”

Our technique produces regions of transition energy where
detailed balance is not satisfied. However, wherever the
detailed imbalance is large, so is the imbalance in the thermal
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strength, indicating that either the forward or reverse reaction
had comparatively little strength in that region anyway. Even
more telling is that the imbalance is only large far out on the tail
of one or the other of the thermal strengths, where that strength
would naturally be exceedingly small, and therefore contribute
little to the rates and spectra. Everywhere else, detailed balance
holds. Consequently, we are confident that our technique for
calculating rates and spectra produces reliable results for the
nuclei in the precollapse conditions considered here.

Given the obvious importance of nuclear contributions to
neutrinos with detectable energies, we will move forward in
generating tabulated nuclear neutrino energy spectra in the
same vein as the neutrino production and energy-loss rates of
earlier works.
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