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Studies in the role of microRNAs in class switch recombination, and the role of TLR9 

complex antigens in shaping the germinal center response 

Eric Wigton 

Abstract 

The studies in this work are centered around two projects.  The first two chapters are 

composed of background and primary research on the role of microRNAs (miRNAs) in B cell 

class switch recombination.  MiRNAs regulate cell fate decisions by post-transcriptionally tuning 

networks of mRNA targets. We utilized miRNA-directed pathway discovery to reveal a regulatory 

circuit that influences B cell activation and immunoglobulin class switch recombination (CSR). 

We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue 

screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-

221/222 regulated B cell proliferation and CSR to IgE and IgG1 in vitro, and miR-221/222-

deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B 

cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression 

analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation 

of these putative direct targets uncovered functionally relevant downstream genes. Genetic 

depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key 

modulators of CSR to IgE and IgG1. The third chapter is in the study of TLR9 co-signaling in the 

germinal center (GC) B cell response.  It was previously unknown how co-signaling events through 

innate immune system receptors in B cells positively influenced the generation of GC B cells.  In 

this chapter we addressed this question through transcriptomics to find that signaling and activation 

from TLR9-containing antigen increased Myc and mTORC signatures that bolstered the GC B cell 

response. 
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Chapter One:  Non-coding RNAs in B cell biology 
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The purpose of this chapter is to outline recent work in the field of non-coding RNAs 

(ncRNAs) as it pertains to B cell biology.  A majority of the chapter is focused on how microRNAs 

(miRNAs) and long ncRNAs (lncRNAs), play pivotal roles in B cell activation and terminal 

effector functions.  While extensive reviews exist for individual aspects of miRNA’s role in B cell 

development and lymphomagenesis (Coffre and Koralov, 2017; Zheng et al., 2018), B cell 

responses (Cyster and Allen, 2019), and the molecular regulation of class switch recombination 

(CSR) (Yewdell and Chaudhuri, 2017; Yu and Lieber, 2019). This chapter highlights some of the 

key recent findings from primary studies and refers the reader to current in-depth reviews on these 

individual topics.  The focus of this review is on B cell activation and CSR regulation by ncRNAs. 

The role of ncRNAs on B cell biology is extensive and the thousands of work hours that has gone 

into elucidating these processes is both breathtaking and inspiring.  

Introduction to B cells 

B cells form the humoral branch of the adaptive immune system and are key drivers in 

defending the host through immunological memory and antibody production.  The complex life 

span of B cells requires distinct developmental checkpoints beginning with early development and 

lineage commitment in the bone marrow followed by migration to and maturity in secondary 

lymphoid organs like the spleen and peripheral lymph nodes (Ramirez et al., 2010).  The entire 

process requires strict transcriptional and migratory cues.  These mature cells are poised to respond 

directly to pathogens through engagement of their antigen B cell receptor (BCR) as well as pattern 

recognition receptors (PRRs) such as the Toll like receptors (TLRs) to a broad range of pathogenic 

stimuli.  Antigen receptor stimulated responses can be in a T-independent (TI) fashion, where B 

cells expand rapidly and generate low affinity pathogen specific IgM (Cyster and Allen, 2019).  

The responses can also be T-dependent (TD), whereby activated cells enter the microanatomical 
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space of the germinal center (GC), and iteratively cycle between antigen receptor mutating and 

proliferating centroblasts in the dark zone (DZ), that then migrate to the light zone (LZ) as 

centrocytes where they are selected through pro-survival cues from T follicular helper (Tfh) cell 

stimulus  (Cyster and Allen, 2019; Mesin et al., 2016).  Through this process long-term 

immunological memory is established, and high affinity antibodies are produced against a specific 

pathogen or antigen.  

Introduction to miRNAs  

Initially discovered in C. elegans, miRNAs are small 18-22nt RNAs that destabilize protein 

coding mRNAs (Lee et al., 1993).  Canonical miRNAs are transcribed as long pri-miRNA hairpins 

that require processing by Drosha/Dgcr8 in the nucleus to short hairpin pre-miRNAs that are 

exported from the nucleus, and further processed by Dicer to miRNA duplexes which are loaded 

into Argonaute proteins (O'Brien et al., 2018). MiRNAs guide the Argonaute (Ago) protein-

containing miRNA-induced silencing complex (RISC) to the 3’UTR of target mRNAs via 

complementary base pairing (Bartel, 2004). Families of miRNAs with shared target repertoires are 

defined by their ‘seed sequence’ (nucleotides 2-8 from the 5’ end of the mature miRNA), which is 

the major determinant of target recognition, while 3’ ends of the miRNAs may contribute partially 

to target recognition (Bartel, 2004; Broughton et al., 2016). The miRISC mediates translational 

inhibition and destabilization of bound mRNAs (Jonas and Izaurralde, 2015). Individual miRNAs 

and their family members can target hundreds of unique transcripts and thereby regulate large gene 

networks in a manner specific to cellular context and gene expression program. 
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MiRNAs in early B cell development. 

MiRNAs are indispensable for early B cell programming from the pro-B to pre-B stage, as 

ablation of miRNA processing machinery leads to complete block at this developmental stage 

(Brandl et al., 2016; Coffre and Koralov, 2017; Koralov et al., 2008).  During this stage of 

development, B cells undergo VDJ recombination, a form of combinatorial DNA mutation to 

produce a unique antigen receptor in each developing B cell.  Dysregulation of miRNA biogenesis 

at this stage leads to increased apoptosis, and an inability to form functional BCRs.  Furthermore 

studies have implicated individual miRNAs that are necessary for key developmental checkpoints 

in the B cell lineage commitment and their dysregulation can lead to transformation and 

leukemia/lymphomagenesis phenotypes (Coffre and Koralov, 2017; de Yebenes et al., 2013; 

Zheng et al., 2018).   

Endogenous miRNA biogenesis is also important for B cell maturation. CD19-cre 

mediated Dicer ablation leads to dysfunctional B cell selection and the generation of autoimmunity 

with lupus like disease and a skewing of the Ig repertoire towards a multitude of self-antigens 

(Belver et al., 2010).  The developmental fate decision for mature B cells to commit to the  

marginal zone compartment over the follicular compartment is also mediated by control of 

miR146a (King et al., 2016). 

MiRNAs in B cell activation, GC and PC development 

In the context of acute activation, naive B cells undergo profound metabolic restructuring 

(Akkaya et al., 2018; Waters et al., 2018), poising these cells to rapidly proliferate, and undergo 

transcriptional changes.  The miRNA landscape of activated B cells  drastically changes from their 

naïve counterparts, as miRNAs are dynamically regulated to modulate the gene expression changes 
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necessary for such rapid cellular responses (Fowler et al., 2015; Kuchen et al., 2010).  Deletion of 

Dicer at the GC/PC commitment stage (utilizing Aicda-Cre) leads to a profound defect in humoral 

immunity through decreased GC cells and PCs and isotype switched antibodies in response to 

immunization (Xu et al., 2012). 

Multiple miRNAs regulate the activation of B cells, with miR-155 as a keystone regulator 

of B cell activation and terminal cell differentiation and transformation (Figure 1.1). Originally 

discovered as B cell integration cluster or (bic), the primary transcript from which miR-155 is 

processed is one of the most highly upregulated transcripts upon B cell activation (Clurman and 

Hayward, 1989). This miRNA has been shown to directly regulate GC and PC differentiation 

(Rodriguez et al., 2007; Thai et al., 2007; Vigorito et al., 2007), including promoting cell cycle 

(Arbore et al., 2019), regulating apoptosis (Nakagawa et al., 2016), and directly targeting AID and 

DNA mutation associated with CSR (Dorsett et al., 2008; Teng et al., 2008).  Additionally, these 

studies are some of the only to mutate seed binding sites in 3’UTRs of target genes to test if single 

miRNA:target downregulation confers intermediate phenotypes to miRNA ablation, and in the 

case of miR-155 both AID seed match site (Dorsett et al., 2008; Teng et al., 2008) and PU.1 (Lu 

et al., 2014) seed match site mutation conferred an intermediate effect of miR-155 KO mice. The 

multitude of processes and mRNA targets regulated by miR-155 provide direct evidence for gene 

network mechanism of action and demonstrate the promiscuity with which a single miRNA can 

target multiple genes simultaneously in a cell fate dependent fashion. 

 In terms of B cell activation, recent studies have demonstrated a novel interplay of miRNA 

mediated regulation of metabolism (Jiang et al., 2018), and the converse of metabolite regulation 

of miRNA expression (Sanchez et al., 2020).  The Let-7adf miRNA cluster represses T-

independent B cell responses through metabolic regulation (Jiang et al., 2018).  This miRNA 
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cluster directly targeted hexokinase-2 and glutamine transporter Slc1a5 to limit glycolysis and 

glutamine uptake, ultimately repressing c-Myc protein expression in response to both antigen and 

lipopolysaccharide stimulation of B cells.  Mice with a B cell specific deficiency in this miRNA 

cluster showed increased antibody responses to T-independent immunizations, linking this 

metabolic control to the T-independent PC fate decision.  Further evidence has directly linked 

metabolites as regulators of miRNA expression in B cells (Sanchez et al., 2020).  Epigenetic 

changes elicited by short chain fatty acid metabolites butyrate and propionate in B cells 

upregulated miRNAs which in turn modulate Aicda and Prdm1 and affect PC fate decisions and 

auto-antibody production.  B cell activation has been shown to induce rapid metabolic changes 

(Waters et al., 2018) and recently GC B cells have been shown to utilize fatty acid oxidation over 

glycolysis (Weisel et al., 2020). Dynamic inter-regulation of miRNAs and metabolism in B cells 

in the context of fate decisions require further study.   

 The miRNA cluster miR-17~92 plays a key role in regulating PC development, migration 

to the bone marrow and isotype specific antibody production (Xu et al., 2015).  Mice with germline 

deficiency in this miRNA have a profound pro-B to pre-B development block (Koralov et al., 

2008; Ventura et al., 2008) .  However, utilizing CD19-cre to ablate this cluster later in 

development leads to dysregulated B cell selection, central tolerance and autoimmunity (Lai et al., 

2016).  Deletion at this stage also leads to defects in IgG2c antibody titers and enhanced PC 

migration to the bone marrow, related to targeting of Ikaros and S1pr1, respectively (Xu et al., 

2015).  Further studies have implicated this miRNA as being necessary for immune responses 

driving graft vs host disease in both a T and B cell intrinsic fashions (Wu et al., 2018), and its 

overexpression can lead to lymphoproliferative disease (Dal Bo et al., 2015).      
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 Direct intercellular transfer of miRNAs has been recently implicated as positively 

regulating the GC B cell response (Fernandez-Messina et al., 2020).  Rab27-dependent 

extracellular micro-vesicle miRNA transfer of miR20a-5p, miR‐25‐3p, and miR‐155‐3p from Tfh 

cells to GC B cells was necessary for optimal GC B cell responses in vivo. Extracellular micro-

vesicle transfer was relayed through the immune synapse formed between activated GC:Tfh cells 

during positive selection in the LZ and altered the LZ/DZ phenotype of the GC.  Given that there 

are diverse cargos of other ncRNAs beyond miRNAs in the extracellular vesicles generated from 

activated T cells (Chiou et al., 2018), other non-miRNA species’ transfer could influence these 

GC:Tfh cellular interactions and dynamics and require further study. 

The role of ncRNAs in class switch recombination 

miRNAs 

The process of CSR, whereby B cells mutate constant regions of the heavy chain locus Igh, 

confers specific isotype-specific biological activity to the BCR and corresponding antibodies.  This 

process requires active transcription in the Igh locus and the deaminase AID (Yewdell and 

Chaudhuri, 2017; Yu and Lieber, 2019).  Several miRNAs directly regulate AID including miR-

181b in mouse (de Yebenes et al., 2008), miR-29b in human (Recaldin et al., 2018), and miR-155-

3p (Dorsett et al., 2008; Teng et al., 2008; Vigorito et al., 2007) in both (Figure 1.1).  Our recent 

study further implicated miR-221/222 as regulators of CSR to IgG1 and IgE by a gene network 

regulation including Arid1a and Foxp1. 

Germline Igh transcripts 

  Beyond miRNAs that directly regulate cellular functions necessary for CSR, ncRNA from 

active germline transcription (GLT) at switch (S) regions in the Igh locus have been shown to form 
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stable RNA:DNA hybrids known as R loops and further DNA and RNA G quadraplexes (G4) 

(Pavri, 2017; Roy et al., 2008; Yewdell and Chaudhuri, 2017; Yu and Lieber, 2019).  The role of 

these R loops has been implicated as a mode of structural conformation stability allowing the 

targeting of the AID enzyme to single stranded DNA exposed during transcription (Yu and Lieber, 

2019) (Figure 1.2).  It had been postulated that R loops were necessary for AID recruitment as 

inversion of Sγ1 region in mice that profoundly reduced R loop formation concordantly reduced 

B cell CSR to IgG1 (Shinkura et al., 2003).  However a recent study demonstrated that R loops are 

not required for AID mediated mutagenesis, as a transgenic mouse in which the Igv region was 

replaced with a core S region in either physiological or reverse orientation showed equivalent AID 

mutation rates in both cases (Yeap et al., 2015).  These two studies together implicate that the 

frequency of R loops in the Igh region are correlated to CSR but not necessarily to AID 

recruitment, hinting that R loops could be a transient structural phenomenon.  These studies were 

complemented by the finding that RNAse H overexpression in B cells, which rapidly digests R 

loops, led to an increase in AID mutations in the Igh locus and minimally decreased the frequency 

of CSR (Maul et al., 2017).  Taken together, these studies showed that the physiological orientation 

of transcription in the Igh locus is necessary for R loop initiation, while prolonged R loop 

formation in this region is not necessary. 

 Recent protein crystallization studies have shown that AID binds directly to DNA G4 

structures as a substrate (Qiao et al., 2017) , a motif that results in guanine rich regions of the non-

template ssDNA during transcription in the Igh S regions.  Thus it appears that DNA G4 structures 

are the main substrate for AID recruitment, and R loops are only necessary in that they facilitate 

DNA G4 structures on non-template DNA strands.  However, RNA G4 structures arising from 

GLT processing and intronic lariat debranching can serve as an AID substrate as well (Zheng et 
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al., 2015). Whereby, limiting the production of these RNA G4 substrates by ablating the lariat 

debranching enzyme, Dbr1 to heterozygous levels in mice reduced CSR.  Furthermore, it has 

recently been supported that these RNA G4 AID substrates must be processed by RNA helicase 

DDX1 to facilitate AID localization (Ribeiro de Almeida et al., 2018).  While genetic ablation of 

mediators of these processing events diminished CSR frequency, they did not completely abolish 

it, indicating redundancy with other mechanism of AID recruitment like interactions with RNA 

polymerase II and other parts of the core transcriptional machinery (Nambu et al., 2003; Pavri et 

al., 2010).  DNA G4 structures arising from R loop formation also serve as replication origin 

binding sites, plausibly facilitating CSR beyond an AID directing mechanism and through 

promotion of DNA replication events (Wiedemann et al., 2016).   Without physiologically oriented 

GLT, CSR is fundamentally impaired, however the full extent to which these GLTs are processed 

and the mechanistic action they have on recruiting AID and other proteins to S regions to facilitate 

DNA breaks requires further study.     

Long noncoding RNAs 

 Additional lncRNAs have also been implicated in controlling isotype specific CSR  

(Pefanis et al., 2014; Pefanis et al., 2015; Rothschild et al., 2020).  It is well established that 

lncRNAs can modulate chromatin and act as enhancers for other genes (Nair et al., 2020). In a 

recent study, a newfound lncRNA-CSRIgA and 2 other RNA expressing elements were elucidated 

megabases downstream of the Igh coding region (Rothschild et al., 2020). B cells isolated from a 

mouse model lacking transcription of lncRNA-CSRIgA fail to undergo normal levels of CSR to 

IgA and IgG2b in vitro and to IgA in Peyer’s patches. lncRNA-CSRIgA was necessary for 

coordination of regulatory proteins to nearby CTCF sites that orchestrated long range chromatin 

changes and interactions with the 3’ region of the Igh  locus. Chromatin loop extrusion by a CTCF 
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and cohesin-dependent mechanism is necessary for the physical orientation and organization of S 

sites and efficient CSR (Zhang et al., 2019). It could be that regulation of CTCF/cohesin binding 

in the lncRNA locus also modulates chromatin loop extrusion in the neighboring Igh locus as well.  

The epigenetic regulation of multiple topologically associated domains of chromatin interacting 

through active transcription of a lncRNA is an interesting mechanism of gene regulation, and the 

influence of this process on other sites of the genome will require further study. 

Concluding remarks  

 The role of ncRNAs can be broken into three main groups of action - miRNA mediated 

gene network control and regulation of cell state specific gene targets in B cell maturation and 

activation, R-loop mediated regulation of CSR, and lncRNA mediate topological associated 

domain regulation in chromatin epigenetics.  While miRNAs have been extensively studied, there 

is more to glean from studying cell type and state-specific miRNA:target networks as a means of 

discovering novel genes and pathways that control their unique biology.  Furthermore the 

improvement of RNA-Cross-linking-Immunoprecipitation techniques will further provide global 

maps of miRNA binding.  The multivariate roles of lncRNAs as miRNA sponges (Karreth et al., 

2015), protein interacting substrates (such as RNA G4 substrates for AID), and epigenetic 

regulators (as in the case of lncRNAIgA) are a new horizon by which these ncRNAs dictate cellular 

function. 
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Figure 1.1:  Schematic of B cell activation, fate decisions, and miRNAs that influence these 

processes. 
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Figure 1.2: Schematic of R-loop mediated mechanisms of Switch region chromatin 

remodeling and AID recruitment. 

A. Model by which active transcription complex guides AID directly to G4 DNA duplexes created 

from R-loop stabilization of the Switch region.  B.  Model by which the germline transcript (GLT) 

of the Switch region is processed to form RNA G4 complexes, which bind AID and provide 

sequence homology to Switch region sites whereby AID can bind G4 DNA duplexes. C. Model 

where in addition to GLT processing from B, DDX1 helicase activity is necessary for converting 

RNA G4 substrates into R-loops that releases AID to bind to DNA G4 substrates.  
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mediated Foxp1, Arid1a regulatory circuit in class switch recombination.  

 

 

 

 

 

 

 

 

 

Adapted from a manuscript in progress: 

Eric J. Wigton, Yohei Mikami, Ryan McGonigle, Robin Kageyama, Adam Litterman, Carlos 

Castellanos, Suparna Roy, Emily Dykhuizen, Christopher D.C. Allen, Hui Hu, John J. O’Shea, K. 

Mark Ansel 

 

  



 

22 
 

Introduction 

MicroRNAs have been leveraged as discovery tools to elucidate genes and pathways that 

regulate lymphocyte fate and function in immunity. Rescue screens in miRNA-deficient T cells 

uncovered specific miRNAs that influence cytokine production (Pua et al., 2016; Steiner et al., 

2011). Algorithms that use seed sequence matching and other 3’ UTR sequence features are used 

to predict target gene networks (Agarwal et al., 2015), and these networks can be further filtered 

for miRNA effects on gene expression in the appropriate cellular context (Pua et al., 2016). Ago-

2 high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (Ago2-HITS-

CLIP) provides context-specific biochemical evidence for miRISC occupancy of potential target 

sites, and comparing Ago2-HITS-CLIP in miRNA-deficient and -sufficient cells facilitates 

mapping of specific miRNA:target interactions (Chi et al., 2009; Gagnon et al., 2019; Loeb et al., 

2012). Functional interrogation of these targets can unearth regulatory genes and pathways 

previously unknown to be important to biological processes of interest and direct researchers to 

novel therapeutic targets. 

Hyper-production of antibodies of the IgE isotype is a hallmark of allergy (Hu et al., 2018).  

IgE is directly involved in the pathogenesis of asthma and other allergic diseases, as it arms mast 

cells and basophils for rapid allergen-specific inflammatory responses (Galli and Tsai, 2012). 

Omalizumab, an approved therapeutic antibody that targets IgE, reduces asthma exacerbations in 

a subset of patients (Busse et al., 2001). It has been suggested that therapies that target or reduce 

the generation of IgE-producing B cells may provide better protection against symptoms of allergic 

diseases (Hu et al., 2018). The generation of IgE producing B cells from naïve B cells requires the 

induction of Immunoglobulin class switch recombination (CSR), a process of somatic DNA 
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mutation and recombination that preserves the B cell’s antibody specificity while switching the 

isotype of its heavy chain (Yewdell and Chaudhuri, 2017; Yu and Lieber, 2019).   

CSR requires multiple coordinated processes starting with active transcription driven by 

cytokine signaling (Stavnezer and Schrader, 2014), expression and regulation of the activation 

induced deaminase enzyme AID, DNA repair, (Yu and Lieber, 2019), and distinct regulation of 

cell cycle and proliferation (Hodgkin et al., 1996).  AID is directly regulated by miRNAs, 

specifically miR-155 (Dorsett et al., 2008; Teng et al., 2008; Vigorito et al., 2007).  CSR to IgG1 

and IgE isotypes require IL-4 signaling (Finkelman et al., 1990; Kopf et al., 1993; Kuhn et al., 

1991).  Signaling from T follicular helper cells through CD40, and other cytokines also influence 

this process. 

 In this study, we developed a mouse model system to ablate miRNA processing in mature 

B cells, and then performed a rescue screen for miRNAs that regulate CSR. This screen identified 

miR-221/222, a miRNA family previously unstudied in mature, nonmalignant B cells, as a positive 

regulator of this process (Knoll et al., 2013; Lupini et al., 2013; Petkau et al., 2018). We 

characterized miR221/222-deficient B cells from gene-targeted mice in vitro and in vivo, and 

empirically defined direct targets of these miRNAs in B cells through a combination of 

bioinformatic, biochemical and gene expression analyses. MiR-221/222 promoted CSR and B cell 

proliferation in vitro, IgE production in an allergic airway hypersensitivity model, and IgE+ 

plasmablast generation in a model of global B cell activation.  Among the plausible direct targets 

of miR-221/222, we uncovered Foxp1, Arid1a, and Cd164 as novel regulators of CSR. Together, 

these findings establish miR-221/222 as a regulator of B cell production of antibodies associated 

with allergy and asthma and provide insight into new regulators of CSR. 
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Materials and Methods  

Mice 

Mice used in this work included Cγ1-cre, B6.129P2(Cg)-Ighg1tm1(cre)Cgn/J  (Casola et al., 2006); 

CD21-cre, (Kraus et al., 2004); Dgcr8fl/fl, B6.Cg-Dgcr8tm1.1Blel/J (Rao et al., 2009); R26-LSL-YFP, 

B6.Gt(ROSA)26Sortm1(EYFP)Cos/J (Srinivas et al., 2001), CreERT2, B6.Cg-Ndor1Tg(UBC-cre/ERT2)1Ejb/1J 

(Ruzankina et al., 2007); Foxp1fl/fl, Foxp1tm1.1Pwt/J (Feng et al., 2010); Arid1afl/fl, 129.Arid1atm1.1Zhwa/J (Gao 

et al., 2008); and flox: mirc50fl/y or Δ: micr50-/y generated in this study.  Only male mice were used for miR-

221/222 deletion experiments, except some female mice were used for creating the Ago2-HITS-CLIP 

libraries.  For Foxp1 deletion, CreERT2Foxp1fl/fl R26-LSL-YFP mice have been previously described (Feng 

et al., 2011). For CD21-cre mediated Arid1afl/fl genetic deletion experiments, B6.129 N1 Arid1a-Het and 

Arid1a-WT mice were used, and B6.129 N2 Het and Cre+WT mice were used.  All mice were used between 

6-16 weeks for all strains, and all were age/sex matched for all other strains.  All mice were cared for and 

experimented on under the guidance/compliance of UCSF and UAB Laboratory Animal Research Centers 

and IACUC guidelines. 

B cell isolation, transfection and stimulation 

Splenic naive B cells were isolated using Dynabead untouched B cell (CD43 negative 

selection kit, Thermo Fisher) and stimulated in RPMI 1640 supplemented with 10% FCS, HEPES, 

2-mercaptoethanol, and L-glutamine.  Pre-transfection stimulation consisted of 250 ng/mL anti-

CD180 (RP105) (Biolegend) and 1 ng/ml IL-4 (recombinant mouse, Peprotech) at 106 cells/mL in 

12 well plates (Costar) for transfection conditions.  After 48hrs cells were washed 2x PBS and 

resuspended at 105 cells/10 µl in Neon transfection buffer R (Invitrogen) and mixed with siRNA 

(Dharmacon/GE), miRNA mimic (Dharmacon/GE), and/or luciferase plasmid before being 

immediately electroporated 3 x 10 ms at 1550 V on a Neon transfection instrument.  The 10 µl 
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transfection was then transferred directly into 200 µl of CSR media in a round bottom 96 well plate 

(Costar).  For CSR conditions cells were stimulated with 3µg/ml LPS (from Salmonella, Sigma) 

and 25 ng/ml IL-4 for miRNA and siRNA screens, or in 500 ng/ml-1µg/ml anti-CD40 (FGK45.1.1, 

Miltenyi), 25ng/ml IL-4 and 10-12.5 ng/ml IL-21 (eBioscience) at 105 cells/200 µl/ well in a 96 

well round bottom plate for Ago-2-HITS-CLIP library generation or flow cytometry.  For the 

ARID1A-BAF complex chemical inhibitor assay, cells were stimulated with BRD-K80443127 

dissolved in DMSO at reported concentration or vehicle alone.  

Foxp1 deletion and CD40LB feeder cell stimulation 

For Foxp1 deletion, CreERT2Foxp1fl/fl R26-LSL-YFP (Foxp1-KO), CreERT2Foxp1wt/wt R26-LSL-

YFP  (Foxp1-WT) mice were immunized 4 days consecutively (Day 0-3) with 3 mg/day tamoxifen (Sigma) 

i.p. dissolved in corn oil (20 mg/mL), rested for one day (Day 4). CD40L-Baff 3T3 feeder cells (Nojima et 

al., 2011) that were plated 2x105 in 24 well culture treated plates on Day 4.  Spleens were harvested on Day 

5 and follicular B cells that underwent cre-mediated recombination were FACS sorted (CD3-, CD19+, 

CD21/35 low, CD23+, YFP+) and  co-cultured at 2 x105 B cells/well with pre-coated CD40L-Baff 3T3 

feeder cells with and without IL-4 for 4 days (Day 9). 

RNA isolation, qPCR, and RNA-sequencing 

Stimulated B cells were pelleted, and RNA was extracted using TRIZOL reagent (Thermo 

Fisher).  RNA was extracted using a RNeasy micro kit (Qiagen).  cDNA was generated with one 

step miRX (Takara) for miRNA quantification or with super script III reverse transcription (SSIII) 

poly-dT first strand synthesis (Thermo Fisher) for Dgcr8 quantification.  miRNA primers for the 

miRX qPCR consisted of the full, mature miRNA sequence.  Primers for Dgcr8 were previously 

reported (Bronevetsky et al., 2013). qPCR cycle was a two-step cycle at 95C for 10 secs 60C for 

15 secs for 40 cycles and amplification was read out by SYBRgreen advantage (Takara). 
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RNAseq Library preparation and sequencing was performed through the UCSF Functional 

Genomics Core and aligned to Ensembl Mouse GRCh38.78 (mm10) genome using STAR software 

and analyzed using DESeq2 as previously reported.  Transcripts with at least a mean normalized 

count of 12.3 were used in the analysis, resulting in 12,074 annotated ENSEMBL transcripts.  

Ago2-HITSCLIP library preparation 

Libraries were prepared as previously described(Chi et al., 2009; Gagnon et al., 2019; Loeb 

et al., 2012).  Briefly, 108 activated B cells/ml (5 mice per library) were UV crosslinked 1x 400mJ 

and 2x 200mJ and pelleted.  Ago2 immunoprecipitation with 2D4 (Dako) was performed and 

protein/RNA complexes were digested with RNAse1, 3’ and 5’ adapters were ligated, and cDNA 

created from SSIII. Library was amplified with Phusion taq polymerase (NEB) to the peak 

exponential by qPCR with SYBRgold (Thermo Fisher)  before being purified of adapter dimer on 

a 10% TBE (Bio-Rad) gel and analyzed by a Bioanalyzer micro DNA kit (Agilent).  Libraries were 

combined and sequenced on an Illumina HISEQ-2500.  Reads were binned based on individual 

barcode and aligned to the genome using Bowtie (John Hopkins University).  Annotations were 

made using an in-house aligning algorithm for each library.  Libraries were combined by genotype 

and combined libraries were used to run dCLIP (Wang et al., 2014) with default settings.  All 

regions more bound in flox libraries or Δ libraries were intersected with miR-221/222-3p seed 

sequence reference BED file (generated in house), and those regions were further binned based on 

dCLIP internal score >1 or >10 to increase confidence of true binding regions.   

In vivo house dust mite challenge and Goat anti-IgD serum immunization 

 Mice were primed with 25ug in 50 µl PBS HDM (Stallergenes Greer) by oropharyngeal 

aspiration, and 7 days later the mice were challenged similarly for 5 consecutive days before being 



 

27 
 

bled at D14 for serum analysis.  Mice were immunized i.p. with 300 µl goat anti-IgD serum and 

spleen and inguinal lymph nodes analyzed 7 days later by flow cytometry. Flow cytometry plots 

and analysis are of lymph node samples.    

ELISA 

 Serum was collected by submandibular bleed and micro-centrifugation at >18,000g for 30 

mins.  Half area high-binding 96 well plates (Costar) plates were used for all assays.  For total Ig 

at steady state µplates were coated with Goat anti-Ig (2 µg/ml, Southern Biotech) overnight in 

coating buffer bicarbonate/carbonate coating buffer (100 mM, pH 9.6).  Diluted serum was added 

over night at 4 C or at room temperature for 2 hours, and detected with biotinylated goat anti-IgG1, 

IgG3, IgG2b, or IgM (2 µg/ml, Southern Biotech) followed by HRP-avidin (1:5000, Southern 

Biotech) and developed with Super AquaBlue ELISA Substrate (Thermo Fisher) all with standard 

curves and read out a 405 nm absorbance. For total IgE the process was the same except for plates 

were coated with anti-IgE (2 µg/ml, R35-72) and detected with biotinylated anti-IgE (2µg/ml, R35-

118).  HDM specific IgE ELISA the coating process was the same as total IgE, however instead 

of detection with biotinylated anti-IgE, biotinylated HDM was used at 2 µg/ml followed by avidin-

HRP and TMB substrate stopped with 0.16M sulfuric acid and read at 405 nm.  For HDM specific 

IgG1 plates were coated with HDM (10 µg/ml) overnight and serum overnight at 4C or 2hr room 

temperature and then detected with biotinylated anti-IgG1 followed by avidin-HRP and TMB 

substrate (Thermo Fisher) stopped with 0.16M sulfuric acid M sulfuric acid. 

Flow cytometry  

For in vivo experiments single cell suspensions were prepared from spleen or lymphnode 

by gently passing them through 70 µm nylon mesh filters in complete RPMI.  For Bone marrow, 
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long bones were cut at base and a 26 G needle was used to expel bone marrow, into complete 

RPMI.  Single cell suspension was created by resuspending the BM with an 18 G needle and 

suspension was filtered through a 70 um filter.  Fc receptors were blocked with anti-CD16/CD32 

(2.4G2) and 2% normal rat serum in FACS buffer (PBS + 2% Fetal Bovine Serum + 2 µm EDTA 

+ .01% NaN3) before staining with antibodies for surface markers. Conjugated antibodies used 

included BV605 anti-CD4 (RM4-5), BV605 and PE-Cy7 anti-CD19 (6D5), PerCP-Cy5.5 anti-

CD43 (1B11), AF647 anti-B220 (RA3-6B2), AF488 anti-IgM (RMM-1),  ef450 and PE anti-IgD 

(11-26c), PE and APC anti-IgG1 (A85), biotin anti-IgE (R35-118), unconjugated and PE anti-IgE 

(RME-1), APC anti-CD138 (281-2), PE-Cy7 anti-CD45.2 (104),  PerCP-Cy5.5 anti-CD45.1 

(A20), PacBlue anti-CD21/35 (7E9), PE-Cy7 anti-CD23 (B3B4), PE anti-CD93 (AA4.1), BV711 

anti-CD24 (M1/69).  Biotin conjugates were detected using BV711 Streptavidin (BioLegend). 

Intracellular IgE staining was performed as previously described (Yang et al., 2018; Yang et al., 

2012), where live cells were stained with surface antibody stain + 1:50 purified anti-IgE (RME-1) 

before fixing with BD cytofix/cytoperm and staining intracellularly with PE anti-IgE (RME-1). 

Dead cells were detected using efluor780 fixable viability dyes (Thermo Fisher). Flow cytometry 

analysis was performed on an LSRii cytometer or a FACSAria for sorting (BD). 

Dual luciferase assay 

Dual luciferase constructs were generated, and assay performed as previously reported 

(Gagnon et al., 2019; Pua et al., 2016).  Cells were stimulated and transfect as outlined and 

luciferase activity was measured 24 h after transfection with the Dual Luciferase Reporter Assay 

System (Promega) and a FLUOstar Optima plate-reader (BMG Labtech). At least 1 kb of the 

3’UTR of Cd164, Foxp1 and Arid1a including the putative miR-221/222-3p seed match 

sequence(s) were cloned into the psiCHECK-2 luciferase reporter construct (Promega). Primers 
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used are as follows: Foxp1 for: TAAGCAGCTCGAGAGCATGGTGACAGGGCTAAG; Foxp1 

rev: TGCTTAGGCGGCCGC CTCCCCCGCAAAAGACAAAG; Cd164 for: 

TAAGCAGCTCGAGAGATGCCACACAG GGCAATC; Cd164 rev: 

TGCTTAGGCGGCCGCTGCTTGTGCAGCAAGTATGG; Arid1a for: TAAGCAGCTCGAG 

CCTCAGGACCCCACCCTAT Arid1a rev: TGCTTAGGCGGCCGC 

CACGTGGAACATATAGTATAAAG. 

Software and Statistics 

Data visualization and statistical calculations were performed using Prism GraphPad. 

Statistical tests and p values for each experiment are specified in figure legends for a single 

comparison between two groups, a student’s t-test was used (paired or unpaired where mentioned); 

for multiple comparisons between pre-selected control and all other groups, a one way ANOVA 

with Dunnet’s square test; and for multiple comparisons where all groups were compared, a one 

way ANOVA test with a Tukey correction for multiple comparisons was used. Flow cytometry 

data were analyzed with Flowjo version 10.2. Gene ontology was run using the Metascape analysis 

software (Zhou et al., 2019).  CDF plots were generated using ggplot2, and MA plot was generated 

from DESeq2 results on miRNA captured reads in R version 3.3.4.  Figures made in Adobe 

Illustrator. 
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Results 

Development of a system to systematically interrogate miRNA regulation of class switch 

recombination 

 In prior work, we devised an arrayed screening approach to identify miRNAs that regulate 

helper T cell differentiation and effector function (Pua et al., 2016; Steiner et al., 2011). This 

approach allowed us to isolate the function of individual miRNAs by transfecting each one into T 

cells that lack endogenous miRNAs due to induced genetic deficiency for the miRNA biogenesis 

factor Dgcr8. For this study, we extended this approach to interrogate miRNA function in B cells. 

Dgcr8 can be deleted with high penetrance during late stages of T cell development, but B cells 

exhibit a developmental defect at the pro to pre-B cell transition in the absence of miRNA 

biogenesis machinery (Koralov et al., 2008). To study the role of miRNAs in regulating class 

switch recombination (CSR), we bred C1-cre Dgcr8fl/fl Rosa26-LSL-YFP mice to allow inducible 

Dgcr8 inactivation in B cells upon activation of the Ighg1 germline transcript promoter. Splenic B 

cells from these mice were stimulated with mitogenic anti-CD180 crosslinking antibody and low 

dose IL-4 (1 ng/ml) for 48 hours (Day -2 to 0) to force expression of cre recombinase and inactivate 

Dgcr8 without inducing CSR, then transferred to classical CSR conditions of LPS and high dose 

IL-4 (25 ng/ml) for an additional 48-96 hours (Day 0 to 4) (Fig. 2.1A). Thereafter, we analyzed 

viability, YFP as a reporter cre activity, and surface IgD and IgG1 expression by flow cytometry. 

In these cultures, 95% of viable cells expressed YFP at Day 2, indicating nearly uniform induction 

of cre recombinase activity (Fig. 2.1B, left panel). Importantly, these cells remained capable of 

undergoing CSR (Fig. 2.1B, right panel).  

To validate Dgcr8 ablation, we isolated RNA from C1-cre Rosa26-LSL-YFP B cells that 

were also Dgcr8 fl/fl (D8-KO), Dgcr8fl/+ (D8-HET) or Dgcr8+/+ (D8-WT) to measure Dgcr8 

transcript and mature miRNAs throughout the stimulation timeline. Dgcr8 mRNA abundance was 
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decreased by 8-fold in the D8-KO cells compared to D8-HET and D8-WT cells after the initial 48 

hour stimulation and continued to decrease through day 4 (Fig. 2.1C). Furthermore, the activation-

induced miRNAs mmu-miR-155-5p and mmu-miR-21-5p had 2 to 16-fold decreased expression 

in D8-KO compared to D8-HET and D8-WT cells, consistent with loss of Dgcr8-dependent 

miRNA processing activity (Fig. 2.1C).  In contrast, mmu-miR-484-5p was unaffected throughout 

the stimulation and increased at Day 4 (Fig. S2.1A), consistent with previous reports that Dgcr8-

independent miRNAs increase in abundance in the absence of Dgcr8-dependent miRNA 

biogenesis (Babiarz et al., 2008).  

 Utilizing these stimulation conditions, we tested the role of 85 miRNAs that are  expressed 

in naïve, activated, and/or germinal center B cells (Fowler et al., 2015; Kuchen et al., 2010; Zhang 

et al., 2009). We transfected B cells using the Neon next generation transfection system (Pua et 

al., 2016; Steiner et al., 2011) to introduce individual miRNA mimics into D8-KO activated B 

cells at D0 and measured CSR to IgG1 at D2. These optimized conditions achieved close to 100% 

transfection efficiency with small RNAs, as indicated by uniform down-regulation of CD45 in 

cells transfected with an siRNA against its transcript, Ptprc (Fig. S2.1B). Surface IgG1 expression 

implicated miR-155-5p as a negative regulator of CSR to IgG1 (Fig. 2.1D), consistent with 

previous studies demonstrating that mutation of the miR-155 binding site in the Aicda 3’UTR led 

to an increase in transcript, protein and double stranded break induction in activated B cells 

(Dorsett et al., 2008; Teng et al., 2008). Similarly, congruent with a previous study, miR-18a 

positively regulated CSR (Xu et al., 2015). Interestingly, miR-222-3p was the most potent positive 

regulator of IgG1 surface expression (Fig. 2.1D). This miRNA and its family member miR-221-

3p have been implicated in early B cell development and homing to the bone marrow (Knoll et al., 

2013; Petkau et al., 2018), but not in CSR or B cell activation. In a re-screen of the top 10 and 
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bottom 10 regulating miRNAs and their family members, both miR222-3p and miR-221-3p 

increased CSR compared to control mimic (Fig. S2.1C). Given this consistent and robust effect, 

we decided to further investigate the role of the miR-221/222 family in CSR. 

Germline deletion of the miR-221/222 cluster on the X chromosome does not alter B cell 

development. 

In both mice and humans, miR-221 and miR-222 are processed from a single primary 

miRNA transcribed from the Mirc50 locus on chromosome X. We generated mmu-miR221/222 

deficient mice.  We inserted loxP sites flanking miR-221 and miR-222 by gene targeting to create 

a conditional mutant allele (flox) that can be irreversibly converted to a deleted allele (Δ) upon 

introduction of cre recombinase. B cells from wildtype and flox mice expressed equivalent 

amounts of miR-221-3p and miR-222-3p, and these miRNAs were undetectable in B cells from Δ 

mice generated by cre expression in the germline (data not shown, see also Fig. 2.5C). In all further 

experiments, we compared mice with these two targeted alleles to determine the effect of miR-221 

and miR-222 in B cells. Mice bearing either flox or Δ allele(s) exhibited normal B cell development 

in the bone marrow, with similar numbers and frequencies of pro-B, pre-B, immature and mature 

B cells (Fig. 2.2A-B). There was a subtle decrease in the frequency of transitional B cell subsets 

T2 and T3 in the spleen of Δ mice, but no difference in the numbers of transitional and mature B 

cells in the spleen (Fig. 2.2C-D). The abundance of serum IgM, IgG1, IgG2b and IgG3 were 

unchanged in flox and Δ mice (Fig. 2.2E), while IgE was undetectable in these unimmunized 

animals (data not shown). We conclude that the absence of miR-221 and miR-222 does not grossly 

perturb B cell development in the bone marrow or maturation in the periphery. 
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miR-221/222 regulate CSR to IgG1 and IgE in vitro  

To test whether endogenous miR-221/222 regulate CSR, we compared flox and Δ B cells 

cultured under the same conditions used to screen for functional miRNAs in Dgcr8-deficient B 

cells.  Compared to flox B cells, Δ B cells transfected with a control miRNA mimic (CM) showed 

a two-fold reduction in CSR to IgG1 (Fig. 2.3A, compare grey and black bars labeled CM). 

Transfecting Δ B cells with either miR-221-3p or miR-222-3p mimic restored IgG1 CSR to the 

frequency seen in CM-transfected flox B cells (Fig. 2.3A, compare grey bars). These data indicate 

that the CSR defect in Δ B cells is due to the absence of mature miR-221/222 and demonstrate that 

this defect can be reversed by restoring miRNA expression in mature B cells. Furthermore, miR-

221-3p or miR-222-3p mimic transfection further increased IgG1 CSR in flox B cells (Fig. 2.3A, 

compare black bars), indicating that endogenous miR-221/222 is a dose-limited factor that 

enhances CSR to IgG1. 

To determine the expression profile of these miRNAs, we performed qPCR for miR-221-

3p and miR-222-3p on RNA from B cells stimulated under various conditions known to induce 

CSR to IgG1 and IgE. Compared to naïve B cells, stimulation with LPS + IL-4 for 4 days increased 

expression of miR221-3p and miR-222-3p by 3.7 and 2.5 fold, respectively (Fig. 2.3B). 

Stimulation with anti-CD40 + IL-4 increased miR-221-3p and miR-222-3p expression 8.1 and 3.1 

fold, respectively, and the further addition of IL-21 in these conditions increased miR-221-3p 

induction to 12.5-fold and miR-222-3p to 4.7 fold that of naïve cells (Fig. 2.3B).  Stimulating flox 

and Δ B cells with anti-CD40 + IL-4 + IL-21 revealed a requirement for miR-221/222 for optimal 

CSR to IgG1 and IgE (Fig. 2.3C-D).  The frequency of IgE+ cells was significantly reduced in Δ 

B cells compared to flox B cells in three independent experiments. The frequency of IgG1+ cells 

was consistently reduced in two of these experiments, with the third showing the highest frequency 
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of IgE+ cells. This could be due to depletion of IgG1+ cells by consecutive CSR to IgE (Cameron 

et al., 2003; Mandler et al., 1993; Yoshida et al., 1990), or a higher rate of direct CSR to IgE in 

this experiment. In any case, comparing the combined frequency of IgE+ and IgG1+ cells revealed 

a clear and statistically significant CSR defect in Δ B cells compared to flox B cells (Fig. 2.3D). 

Given that CSR correlates with proliferation capacity (Hodgkin et al., 1996), CTV staining was 

performed on congenically labeled co-cultured Δ and flox cells in anti-CD40 + IL-4 + IL-21 

conditions to determine if there was a proliferation defect in the absence of these miRNAs.  

Interestingly we found that Δ B cells showed a defect in the frequency of cells dividing 6 or more 

times compared to flox (Fig. 2.3E), indicating a subtle proliferation defect.   

miR221-222 regulates IgE production in vivo  

Having confirmed an in vitro CSR defect in the Δ B cells, we went on to test whether the 

defect in CSR would translate to a physiological in vivo model of allergy and asthma, specifically 

house dust mite challenge.  Examining total and HDM specific IgE titers in mice challenged with 

HDM by ELISA, showed that the Δ mice had a statistically significant defect in total IgE 

production, and a trending defect in high affinity HDM specific IgE production (Fig. 2.3F).  No 

difference was seen in in vivo IgG1 production in this model, limiting the in vivo effect of this 

miRNA cluster to IgE production, specifically. 

To determine if the in vivo effect was due to IgE cell number and the plasma cell fate 

decision, we utilized a goat anti-IgD polyclonal B cell activation model (Finkelman et al., 1987).  

Seven days post immunization with goat anti-IgD serum showed a massive B cell response, where 

around half of the total lymph node cells were composed of CD138+, CD19int B cell plasma-blast 

cells (Fig. 2.4A).  While the frequency of total plasma cells was not different between flox and Δ 

animals (Fig. 2.4B), the frequency of IgE+ plasma cells was decreased in Δ animals compared to 
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flox (Fig. 2.4C), as were the numbers of total plasma cells and IgE+ plasma cells (Fig. 2.4D-4E).  

This decrease in frequency and number of IgE producers in the Δ animals is congruent with the 

findings of increased IgE serum levels in HDM challenged flox animals compared to Δ animals 

and provides two independent in vivo systems where IgE production is diminished in the absence 

of miR-221/222-3p. 

Combination of Ago-2-HITS-CLIP and mRNA-seq reveal 70 plausible miR221/222 targets 

Having determined a clear in vitro and in vivo phenotype, of miR-221/222-3p in CSR to 

IgG1 and IgE, we wanted to determine the direct targets of this miRNA family in activated B cells.  

To determine direct targets of miR-221-3p and miR-222-3p we performed Ago-2-HITS-CLIP on 

Δ and flox B cells stimulated for 4 days with anti-CD40 + IL-4 + IL-21.  Libraries were generated 

and sequenced as previously described (Gagnon et al., 2019).  Four independent libraries were 

generated for Δ and flox genotypes.  Analysis of the target transcript space identified the 3’UTR 

as the most abundant RNA species target as would be expected, although binding was seen in 

exon, intron, and 5’UTR space as well (Fig. 2.5A).  Furthermore a 2:1 miRNA: non-miRNA ratio 

of reads was captured from the library, indicating either preferential cross linking of miRNA in 

Ago2-miRNA-targetRNA complexes, or an abundance of AGO2-miRNA complexes not yet 

bound to target RNA sequences in our activated B cells (Fig. 2.5B).   Furthermore analysis of the 

differentially bound miRNAs by DESeq2 analysis showed that both miR-221-3p and miR-222-3p 

(as well as their star sequence 5p counterparts) were differentially captured in flox libraries and 

absent in Δ libraries,  indicating a complete deletion of the miRNAs as well as confirming that 

global miRNA expression and loading into Ago2 is not altered in the absence of this cluster (Fig. 

2.5C).   
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The 4 Ago2-HITSCLIP libraries for each  genotype were combined for a single comparison 

of differential peak binding, utilizing dCLIP (Wang et al., 2014).  Utilizing sequence homology 

identity of all miR-221/222-3p target sites within the mouse genome identified 10,638 possible 

binding sites in the annotated 3’UTRs of the mouse genome. To validate the efficacy in which 

dCLIP positively identified miR-221/222-3p peaks, differential peaks containing at least a 6-mer 

target site were binned, and those more bound in the flox than Δ and vice versa were analyzed at 

increasing differentials determined by the program.  Using the internal dCLIP-differential ranking 

metric of at least 1 yielded a total of 652 peaks in 534 gene transcript 3’UTRs that were more 

bound in the flox than Δ library.  However, using the same parameters of a differential of at least 

1 yielded a total of 636 peaks in 547 gene transcript 3’UTRs that were more bound in the Δ than 

flox library, of which 80 of those transcripts overlapped with those in the flox (Fig. S2.2A).  To 

improve confidence of the truly differential targets and limit the amount of seed sites that were 

more occupied in Δ and flox due to spurious read differences from adjacent miRNA binding, a 

differential of 10 was used, and in this case at least 6-mer containing peaks more bound in the flox 

lead to a total of 412 peaks in 343 gene transcript 3’UTRs.  When the analysis was performed with 

the differential of 10 on sites more bound in Δ libraries compared to flox only 61 peaks were found 

in 57 gene transcript 3’UTRs, and of these only 8 gene transcripts overlapped with those of flox 

(Fig. S2.2B).  

RNA sequencing was performed on flox and Δ B cells stimulated similarly to the Ago-2-

HITSCLIP libraries to determine differentially expressed genes between Δ and flox activated B 

cells.  A total of 12,074 ENSEMBL transcripts were found to be expressed under these conditions, 

of which 429 were differentially expressed by an FDR <0.1.  Of these differentially expressed 

transcripts, 286 were upregulated in the KO compared to the flox libraries.  The 12,074 transcripts 
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were binned into subsets containing no miR-221/222-3p seed match, only 6mer match, at least 

7mer match (+ 6mer ), or at least 8mer match (+ 7mer + 6mer) binding sites in annotated 3’UTRs.  

Cumulative distribution function (CDF) plots were generated and each seed-containing bin was 

compared to the no seed bin generating a Differential D= 0.132 for 6-mer, D= 0.126 for 7mer, and 

D= 0.171 for 8-mer, indicating increased differential expression of 8-mer seed match containing 

transcripts in the Δ compared to flox B cells (Fig. 2.6A).  The absence of miR221/222 leads to a 

subtle increase in expression of all genes containing a putative seed sequence by sequence match 

alone.  Using these 343 dCLIP putative target genes to create a CDF plot compared to all other 

expressed genes led to a differential of D= 0.19 (Fig. 2.6B).  Indicating an increased confidence 

of these genes being direct targets and providing more confidence of direct targeted regulation by 

miR-221/222-3p than that of putative seed sequence match alone. 

To compare our dCLIP analysis with predicted targets from the sequence homology, we 

analyzed the predicted target genes from the Bartel lab’s Targetscan 7.1 program (Agarwal et al., 

2015).  Targetscan 7.1 predicts 404 gene targets for the miR-221/222-3p family, of which 290 

were expressed in our B cell cultures by RNA-seq.  Generating CDF plots of the 290 Targetscan 

predicted genes compared to all others produced a differential D=0.193 (Fig. 2.6C), further 

increasing the confidence of these genes being directly targeted by miR-221/222-3p.  Of these 290 

Targetscan predicted gene targets, 70 of them overlapped with those 343 gene targets predicted 

from our differential HITS-CLIP analysis (Fig. S2.2C).  Creating a further CDF plot comparing 

these 70 putative targets to all other genes further increased the differential D=0.293, providing 

strong confidence for these genes being directly regulated by this miRNA family (Fig. 2.6D).  The 

union of both cell specific dCLIP and the predictive capabilities of Targetscan7.1 provided a subset 

of genes we could directly test through small inhibitory RNA screening.  Running Metascape 
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(Zhou et al., 2019)  on the 70 genes, provided a gene ontology profile enriched in a cell cycle 

profile, among others (Fig. 2.6E), congruent with our finding of this miRNA regulating 

proliferation in mature B cells, and findings in other cell types (Galardi et al., 2007; Mayoral et 

al., 2009). 

siRNA screen of the 70 direct gene targets implicates Foxp1, cd164 and Arid1a as regulators of 

CSR to IgG1/IgE. 

 To validate the putative targets as regulators of CSR, we performed and siRNA screen 

similar to that of the miRNA screen performed in Fig. 2.1.  In this case B6 mice were used with 

the same timing schematic as the miRNA screen, where cells were first activated in anti-CD180 + 

IL4 low dose conditions and then transferred to canonical CSR conditions of LPS + IL4 high dose 

conditions.  Four siRNAs were used per gene target, and surface IgG1+ and viability were analyzed 

by flow cytometry.  Of the 85 targets, siRNA KD of the pro-apoptotic factor Bcl2l11 (Bim protein) 

increased viability of transfected cells to 65%, a 15% increase from control siRNA (Fig. 2.7A).  

Furthermore, siRNA KD of Rnps1, an enzyme necessary for pre-mRNA splice junction formation 

(Mayeda et al., 1999), negatively regulated both CSR to IgG1 as well as viability.  SiRNA KD of 

three candidate miR-221/222 targets: Foxp1, Cd164, and Arid1a - resulted in the highest increase 

of surface IgG1 frequency compared to control mimics (Fig. 2.7A).  This KD correlated increase 

of surface IgG1 was confirmed in an siRNA rescreen where these were the three most positive 

regulators of CSR to IgG1 (Fig. 2.7B).  Analysis of our RNA sequencing found that expression of 

Foxp1and Arid1a were statistically higher in Δ mice compared to flox mice (1.45 and 1.40 fold 

increased, respectively), whereas Cd164 expression was only moderately different between the 

two genotypes at 1.06 fold higher in Δ vs flox mice (Fig. 2.7C).  Furthermore, dual luciferase 

constructs were made to confirm that these transcripts’ 3’UTRs were targeted directly by 
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miR221/222.  We found that both Cd164 and Foxp1 3’UTR fragments containing the Targetscan 

7.1 predicted sites (as well as an additional 6-mer sequence in the 3’UTR of Foxp1) showed 

destabilization and direct targeting of that 3’UTR.  This in conjunction with the differential binding 

implicated from our dCLIP expression supports that Cd164 and Foxp1 are direct gene targets, 

whereas Arid1a may be an indirect target of this miRNA cluster. 

Genetic Ablation of Foxp1 increases B cell propensity to Switch to IgG1 and IgE 

To confirm that Foxp1 is itself a regulator of CSR to IgG1 and IgE, we utilized a tamoxifen 

inducible cre deletion model of Foxp1 and then cultured the cells under IgG1/IgE class switching 

conditions (Fig. 2.8A).  CreERT2 mediated Foxp1fl/fl deletion (Foxp1-KO) B cells cultured on 

BAFF/CD40L expressing cells in the presence of IL4 showed a threefold increase in the frequency 

of IgG1 and IgE surface expression compared to Foxp1fl/fl or CreERT2  (Foxp1-WT) cells (Fig. 

2.8B).  Induction of CSR to IgG1 ranged from 10% to 60% from experiment to experiment, while 

that of IgE ranged from 3% to 20%, however the 2.5-3 fold further induction of either isotype in 

Foxp1-cKO compared to WT cells was robust.  Interestingly the CSR to both IgE and IgG1 

required IL-4 indicating that the activated B cells were not switching during deletion of pre-

immunized mice in the in vivo setting.  This confirmation of the siRNA KD, implicates miR-

221/222 mediated Foxp1 regulation as a modulator that controls CSR to IgG1 and IgE in B cells.  

Genetic Ablation and Chemical inhibition of Arid1a affects IgG1 and IgE CSR. 

 We utilized another genetic approach to target Arid1a deletion in mature mice by utilizing 

CD21cre (Cre+WT) and Arid1afl/wt (Arid1a-WT) mice to make heterozygous animals CD21cre 

Arid1afl/wt (Arid1a-HET).  Deletion of Arid1a in the hematopoietic system causes profound defects 

in development (Han et al., 2019). Using the same in vitro stimulation conditions of anti-CD40, 
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IL-4, IL-21 we found that Arid1a-HET mice showed a defect in the frequency of IgE CSR 

compared to Cre+WT and Arid1a-WT control mice (Fig. 2.9A right panel), and this was 

concordant with an increase in the frequency of IgG1+ B cells (Fig. 2.9A, left panel).  Indicating 

that partial loss of this BAF complex member alters CSR fate in these conditions.   

 We also used a specific Arid1a-BAF complex chemical inhibitor, BRD-K80443127 a 

macrolactam (Marian et al., 2018), to test the effect of BAF complex dysregulation on CSR to 

IgG1/IgE.  Interestingly, cells cultured in anti-CD40, IL-4, IL-21 conditions showed no decrease 

in viability in the presence of BRK-K8-4431327 (Fig. 2.9B top left panel), and even a slight 

increase at the 20-40 uM range, indicating that dysregulation of these complexes is not vital for 

mature B cell homeostasis under this stimulus.  Similarly, plasma cell differentiation showed a 

defect only at the highest concentration of 40 uM (Fig. 2.9B top right panel), while both IgG1 and 

IgE showed a dose dependent decrease (Fig. 2.9B bottom left and bottom right, respectively).  

Interestingly, the frequency of IgE switching was more sensitive to Arid1a-BAF inhibition 

beginning at 5 uM compared to IgG1 at 10uM.  Furthermore IgG1 frequency remained 80% of 

vehicle control up to 40uM inhibitor concentration, thereafter falling off sharply to 10%.  Targeting 

Arid1a through both genetic and chemical means shows that this miR-221/222-3p regulated gene 

has a direct effect in modulating CSR to IgG1 and IgE.   
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Discussion 

MicroRNA rescue screens have been used to study embryonic stem cell pluripotency and 

self-renewal (Froidure et al., 2016; Wang et al., 2008), and in miRNA-depleted lymphocytes to 

study T cell proliferation, differentiation and cytokine production (Pua et al., 2016; Steiner et al., 

2011). In this study, we developed and executed a rescue screen in primary mouse B cells to reveal 

that miR-221/222 can positively regulate CSR to IgG1, and leveraged this finding to elucidate a 

previously unknown miRNA regulated gene network that modulates CSR to IgG1 and IgE. These 

rescue screens measure the effects of individual miRNAs introduced at potentially 

supraphysiological quantities in the absence of other miRNAs. However, analysis of miR-221/222-

deficient B cells demonstrated that endogenous miR-221/222 regulate CSR in vitro and in vivo. 

Extending this screen for miRNA influence with biochemical elucidation of direct targets of miR-

221/222, we uncovered evidence for a network of downstream regulators of CSR including Foxp1 

Arid1a, and Cd164.  

Foxp1 is essential for B cell development (Hu et al., 2006) and its down regulation in 

activated mature B cells is necessary for germinal center entry and plasma cell differentiation 

(Sagardoy et al., 2013; van Keimpema et al., 2015).  Through the investigation of miR-221/222 

targets, we uncovered an additional role for this transcription factor as a negative regulator of CSR 

to IgG1 and IgE.  Foxp1 deletion in mature B cells also hinders T-independent B cell response, 

production of IgG3, and B1 cell development (Patzelt et al., 2018).  A previous study of T-

dependent antibody responses showed no clear difference in IgG1 serum titers in B cell lineage-

specific Foxp1-deficient mice, but this finding is complicated by developmental defects that result 

in fewer mature B cells in these mice (Dekker et al., 2019; Patzelt et al., 2018).  As previously 

reported (Dekker et al., 2019), B cells lacking FOXP1 exhibited increased proliferation in response 
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to CD40 and IL4 stimulation. This accelerated cycling likely contributes to their dramatically 

increased CSR to IgG1 and IgE in vitro. However, whether FOXP1 acts as a transcriptional 

repressor to dampen activation signals, cell cycle regulators or other factors remains to be 

determined. Further studies are needed to fully elucidate the transcriptional targets and 

downstream mechanisms through which FOXP1 controls CSR in conjunction with its effects on 

B cell fate decisions.   

The role of chromatin architecture and remodeling in the context of CSR has recently come 

into full appreciation as DNA orientation and chromatin regulation were shown to be critical for 

switch site orientation and stabilization for AID-mediated mutation (Yu and Lieber, 2019; Zhang 

et al., 2019). Interestingly, our analysis of regulated miR-221/222 interactors identified 3 predicted 

targets that play a role in chromatin remodeling: Ctcf, Smarca5, and Arid1a. CTCF is a central 

regulator of chromatin domain architecture and CSR (Perez-Garcia et al., 2017; Thomas-

Claudepierre et al., 2013; Zhang et al., 2019). Human Ctcf is an established target of miR-221/222 

(Lupini et al., 2013). Arid1a encodes a key component of the BAF nucleosome remodeling 

complexes, which are critical for chromatin remodeling during hematopoiesis (Han et al., 2019). 

We found that the action of these complexes is necessary for B cell activation as cells cultured 

with an ARID1A-containing BAF complex inhibitor (Marian et al., 2018) remained in a quiescent 

state, neither undergoing cell death nor proliferation.  However, genetically or pharmacologically 

limiting (rather than eliminating) ARID1A-containing BAF complexes revealed a selective effect 

on CSR. Surprisingly, B cells with reduced ARID1A were more prone to IgG1 CSR but exhibited 

a strong defect in IgE CSR. Whether ARID1A-BAF complex nucleosome remodeling mediates 

access to critical regions of the Igh locus deserves further study. In any case, the selective 
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sensitivity of IgE CSR to BAF inhibition indicates the existence of isotype specific effects of 

regulating (or dysregulating) this machinery. 

Previous studies of miR-221/222 in other immune cell types and cancer demonstrated 

direct regulation of Cdkn1b, which encodes p27-kip protein, a positive regulator of cell cycle 

progression from G1 to S (Fornari et al., 2008; Galardi et al., 2007; Mayoral et al., 2009). Our 

biochemical data also implicated Cdkn1b as a direct target. However, siRNAs against this gene 

decreased B cell proliferation without a discernible effect on CSR. While our data do not 

definitively prove that miR-221/222  directly target Cdkn1b in B cells, the fact that miR-221/222-

deficient B cells exhibited a subtle proliferative defect implicates these miRNAs in regulation of 

B cell cycle progression, possibly through multiple targets including Cdkn1b.   

miR-221/222 appears to regulate allergic responses through coordinate control of multiple 

cell types. Mast cells, basophils, and other granulocytes very strongly express miR-221/222 

(Kuchen et al., 2010; Monticelli et al., 2005), and these miRNAs regulate mast cell proliferation 

and degranulation in response to IgE receptor crosslinking (Mayoral et al., 2011; Mayoral et al., 

2009). In this study, we found that miR-221/222-deficiency also impaired B cell production of IgE 

in allergic airway sensitization and pan-B cell activation models.  Further studies will be necessary 

to determine whether miR-221/222 absence in granulocyte populations further affects allergic 

responses in vivo. The control of complex immunological processes through regulation of distinct 

cell types by a common factor is an interesting regulatory phenomenon exemplified by the 

orchestration of humoral responses by the transcription factor BCL6 (Crotty, 2019; Okada et al., 

2012) and the miRNA cluster miR-17~92 (Baumjohann et al., 2013; Jin et al., 2013; Kang et al., 

2013) acting in both GC B cells and T follicular helper cells.  
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Other highly expressed miRNAs also regulate humoral immune responses, including miR-

155 and miR181b, both of which directly target the critical CSR factor Aicda in B cells (Dorsett 

et al., 2008; Rodriguez et al., 2007; Teng et al., 2008; Thai et al., 2007; Vigorito et al., 2007) (de 

Yebenes et al., 2008). miRNA expression is dramatically modulated in activated B cells (Fowler 

et al., 2015; Kuchen et al., 2010). In our experiments, miR-221/222 were upregulated upon B cell 

activation, yet their abundance was still less than 1% that of the most highly expressed miRNAs.  

Nevertheless, comparing Ago2 binding, gene expression in the presence and absence of miR-

221/222 singled out direct targets even for these modestly expressed miRNAs. We provide these 

data as a resource for mining the Ago2-bound transcript space in mouse B cells activated to mimic 

T cell-dependent stimulation, complementing previous experiments performed under different 

conditions (Hsin et al., 2018; Jin et al., 2013).   

Unbiased investigation of miR-221/222 target genes identified by Ago2-HITS-CLIP and 

gene expression analysis revealed a functionally relevant downstream gene network actively 

regulated in B cells undergoing CSR. Our overall experimental approach, which we term miRNA-

directed target pathway discovery, coopts the coevolution of miRNAs and their targets to reveal 

novel players in biological processes without requiring genome-wide functional screens. miRNA-

directed pathway discovery can be adapted to interrogate cell-type specific miRNA and target 

networks operative in nearly any biological process.  
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Figure 2.1: Development of miRNA rescue screen in mature B cells stimulated to CSR to IgG1 

implicates miR-222 as a regulator.  

A. Timing and stimulation conditions to induce Cγ1-cre deletion of Dgcr8 and transfect miRNA and test 

CSR.  B. Representative flow plot of gating strategy for YFP reporter and IgG1 surface expression. C. RT-

qPCR of D8-WT, D8-HET, D8-KO B Dgcr8 and miRNA expression throughout culturing (Dgcr8 

normalized to Gapdh, miRNAs normalized to snoRNA U6). D. Screen results from the individual miRNA 

rescue transfections at timepoint D2.  Control bar is average of 6 transfections ranging from +1 to -1 z score 

averaged. 
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Figure 2.2: Loss of miR-221/222 does not alter B cell development in the bone marrow nor spleen and 

steady state serum antibody levels are unaffected.  

A.  Representative flow cytometry gating strategy for bone marrow analysis.  Upper left gate is a subgate 

of live, singlet, CD19+, B220+ cells.  Further sub-setting by B220int, CD43+,CD24+, IgM- pro-B cells; 

B220-int, CD43-int,CD24+, IgM- pre-B cells; B220-int, CD24+, IgM-hi, IgD- immature B cells; and B220-

hi, IgM-int, IgD+, CD24-lo mature cells. B. Enumeration of percentage and number of each developmental 

bone marrow subset determined in A.  C.  Representative flow cytometry gating strategy for splenic 

analysis.  Leftmost plot is pre gated on live, singlet, B220+, CD4- cells that are subdivided into transitional 

CD93+ subsets: CD23-, IgM-hi T1; CD23+, IgM-hi T2; and CD23+, IgM-lo T3.  Or subset into mature 

CD93-: CD23+, CD21-int Follicular and CD23 lo, CD21-hi Marginal zone B cells.  D.  Enumeration of 

percentage and number of each developmental splenic subset determined in C.  E  Steady state serum 

concentrations for the labeled isotypes in flox and Δ mice.  All p values from two-tailed student’s t-test 

p>.05 for all unlabeled comparisons *= p<0.05.   
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Figure 2.3: Loss of miR-221/222 leads to defects in B cell CSR to IgG1/IgE in vitro and IgE production 

in vivo.  

A.  Δ or flox B cells stimulated in screen conditions and transfected with miR-221-3p (miR221) or miR-

222-3p (miR222), or control mimic (CM) at D0 and surface IgG1 read out at D2.  3 mice per genotype 

paired student’s t test comparisons within genotype.    Experiment is representative of 3 independent 

experiments. B. Expression of each miRNA in given IgG1/IgE CSR stimulation media for 96 hrs, relative 

to U6 snoRNA.  C. Representative flow cytometry plots CSR phenotype of Δ or flox B cells stimulated in 

anti-CD40, IL4, IL21 media for 96 hours gated on live singlets to determine IgDlo, IgG1+ cells.  IgE+ cells 

are IgM- and gated from IgDlo, IgG1- population D. Quantification of % surface IgE+, IgG1+, or either + 

from figure C.  Combined 3 independent experiments with at least 3 mice per genotype. E.  Quantification 

of Division number from co-cultured Δ and flox B cells stimulated in anti-CD40, IL-4, IL-21 media for 96 

hours.  Paired t test for each co-cultured well.  Combined from 3 independent experiments with at least 2 

independent co-cultures per experiment. F. ELISA data for total IgE and HDM specific IgE in mouse 

challenged with HDM for a 2 week protocol (see materials and methods from 4 independent experiments 

with 4 mice per group.  *= p<0.05; **=p<0.01; ***= p<0.001. 
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Figure 2.4: Loss of miR-221/222 decreases the number of PCs and IgE+ PCs in a pan-B cell activation 

model of Goat anti-IgD immunization.  

A. Representative flow plot of the lymph node cell environment showing PC CD19 int, CD138+ cells gated 

on intra-cellular IgE+ fraction.  B. Frequency and D. Numbers of PC of total lymph node cells.  C.  

Frequency and D. numbers of IgE+ PCs. Each data point represents a mouse from 2 independent 

experiments.  All statistics are from two-sided student’s t-test. * p< 0.05.  
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Figure 2.5: Characterization of Ago-2 binding in Δ or flox B cells stimulated with anti-CD40, IL-4, 

IL-21.  

A. Annotations and relative coverage of reads from each of the Δ and flox B cell libraries aligning to 

annotated mRNA sequences (left) and non-coding RNA sequences (right).  B. Distribution of miRNA and 

non-miRNA reads in each library.  C. Mean Analysis plot for miRNA reads only. Mean miRNA read count 

vs log10 miRNA read count per million of flox vs Δ reads.  Red dots are Differentially captured miRNAs 

by DESeq2 with FDR< 0.05. 
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Figure 2.6: Intersection of dCLIP, RNA-seq, and Targetscan indicate 70 possible gene targets of miR-

221/222 in B cells.  

A-D. CDF plots comparing RNA-seq gene expression on x axis vs cumulative distribution on y axis A. 

genes with at least one 6-mer (green), at least one 7-mer (orange), or at least one 8-mer (red) to those lacking 

a miR-221/222-3p seed site (black). B. dCLIP predicted genes (red) to all others (black). C. Targetscan 

predicted genes (red) to all others (black).  D.  dCLIP and Targetscan predicted genes (red) to all others 

black. E.  Ranked GO terms and kegg pathways enriched in the dCLIP and Targetscan gene subset. 
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Figure 2.7: SiRNA knockdown screen on dCLIP and Targetscan predicted miR-221/222-3p gene 

targets identifies Foxp1, Arid1a, and CD164 as regulators of CSR. 

A. Frequency of Viable vs frequency of surface IgG1+ for the 70 gene targets predicted by dCLIP and 

Targetscan. B.  Z-score plot for surface IgG1 for a rescreen of the top ten and bottom 10 genes from A. C. 

Gene expression data for Foxp1, Arid1a, and Cd164 from RNA-seq data. D. Dual-luciferase reporter assay 

results for B cells transfected with either CM or miR221/222-3p mimic and labeled psicheck-2 constructs 

containing >1kb of each annotated 3’UTR containing miR-221/222 target sequence. *= p<0.05; **=p<0.01; 

****= p<0.0001 
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Figure 2.8:  Genetic ablation of Foxp1 increases the propensity for activated B cells to switch to IgG1 

and IgE. 

A. Schematic for tamoxifen induced deletion and culturing of Foxp1-wt and Foxp1-KO B cells. B. 

Representative flow cytometry plots of B cells from Foxp1-wt and Foxp1-KO mice post stimulation with 

and without supplemental IL-4.  C.  Normalized frequency of IgG1 and IgE surface expression.  Each data 

point represents an individual biological replicate normalized to mean WT Ig frequency (og 1) within each 

experiment.  Statistics generated by two-tailed student’s t-test.*** p<0.001 
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Figure 2.9: Genetic ablation of Arid1a and chemical inhibition of Arid1a-BAF complexes alters B cell 

IgG1 and IgE CSR frequency. 

A.  Quantification of Arid1a-WT, Arid1a-HET, and Cre+WT B cells stimulated with anti-CD40, IL-4, IL-

21 frequency to switch to IgG1 and IgE each point is a single mouse, representative of 2 independent 

experiments.  B.  Quantification of viability, frequency plasma cell (CD138+, CD19int) and frequency of 

IgG1 or IgE surface expression throughout dilution series of chemical lactam. Statistics generated by 

ordinary one-way ANOVA with for A. Dunnet’s multiple comparison test for B all comparisons to vehicle 

alone leftmost column. ** p<0.01, *** p<0.001 ****p<0.0001 
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Supplemental Figure 2.1: Extended Validation of model, transfection method, and miRNA 

candidates 

A.  qPCR timecourse for miR-484-5p a DGCR8 independent miRNA. B. Flow cytometry 

histograms and quantification of CD45 expression on B cells stimulated in conditions outlined in 

Fig. 2.1A, and transfected with CD45 siRNA or Control siRNA C. Follow-up re-screen of top 10 and 

bottom 10 z-score miRNAs from original screen, transfected in duplicate over two replicates plotted on 

individual axes.  
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Supplemental Figure 2.2: Validation scheme for dCLIP analysis cutoff and selection of 

targets based on intersection of dCLIP and Targetscan.  

A/B. Total number of genes containing a miR221/222 seed sequence (6-mer or better) in a region 

with more binding for flox library (aqua) or Δ library (red) or genes having a region for both 

genotypes (white) when filtering on a dCLIP internal parameter of A. 1.  B. 10. C  Of the 343 

genes from B (aqua + white), those that intersect with the 290 genes predicted to be miR221/222-

3p targets by Targetscan (yellow) were selected as siRNA screen candidates (white). 
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Abstract 

The Germinal Center (GC) is the anatomical site where humoral immunity evolves. B cells 

undergo cycles of proliferation and selection to produce high affinity antibodies against antigen. 

Direct linkage of a TLR9 agonist (CpG) to a T-dependent antigen increases the number of GC B 

cells. We used a T-dependent antigen complexed with CpG and a genetic model for ablating the 

TLR9 signaling adaptor molecule MyD88 specifically in B cells (B-MyD88- mice) together with 

transcriptomics to determine how this innate pathway positively regulates the GC. GC B cells from 

complex antigen immunized B-MyD88- mice were defective in inducing gene expression 

signatures downstream of c-Myc and mTORC1. In agreement with the latter gene signature, 

ribosomal protein S6 phosphorylation was increased in GC B cells from wild type mice compared 

to B-MyD88- mice. However, GC B cell expression of a c-Myc protein reporter was enhanced by 

CpG attached to antigen in both WT and B-MyD88- mice, indicating a B cell-extrinsic effect on 

c-Myc protein expression combined with a B cell-intrinsic enhancement of gene expression 

downstream of c-Myc. Both mTORC1 activity and c-Myc are directly induced by T cell help, 

indicating that TLR9 signaling in GC B cells either enhances their access to T cell help or directly 

influences these pathways to further enhance the effect of T cell help. Taken together, these 

findings indicate that TLR9 signaling in the GC could provide a surrogate pro-survival stimulus, 

“TLR help”, thus lowering the threshold for selection and increasing the magnitude of the GC 

response.   
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Introduction 

Toll like receptors (TLRs) recognize pathogen associated molecular patterns (PAMPs) and 

serve as key mediators of the innate immune response against pathogens. However, TLRs are 

expressed on both adaptive and innate immune cells. Deficiency in these receptors or their key 

signaling molecules, such as MyD88, impair both innate and adaptive responses to pathogens 

(Akira and Takeda, 2004; Blasius and Beutler, 2010; Iwasaki and Medzhitov, 2004). The dual 

function of TLRs in initiating the early inflammatory response while at the same time directly 

shaping the slower antigen-specific adaptive response shows that these receptors act through 

multiple elements within the immune system. It has been appreciated for a number of years that 

several TLRs are expressed by B cells and these receptors regulate B cell activation and fate 

decisions (Gavin et al., 2006; Pasare and Medzhitov, 2005). Studies using mice in which the 

critical TLR-signaling component MyD88 is selectively ablated in B cells or mixed bone marrow 

chimeras in which B cells were selectively deficient in a particular TLR revealed that such mice 

also have substantial defects in germinal center (GC) and plasma cell (PC) generation, and in 

isotype switched antibody titers in response to multiple TLR agonists mixed with T-dependent and 

T-independent antigens (Eckl-Dorna and Batista, 2009; Hou et al., 2011; Jegerlehner et al., 2007).  

This biological role for TLR signaling in B cells is important for making high quality 

antibodies to a number of viral infections of mice, in which case endosomal TLR7 and TLR9, 

which recognize nucleic acids, are critical. (Clingan and Matloubian, 2013; Eckl-Dorna and 

Batista, 2009). BCR-mediated endocytosis of the antigen and associated BCR signaling delivers 

TLR ligands to the endosomal location of these receptors (Chaturvedi et al., 2008; O'Neill et al., 

2009). In addition, TLR7 and TLR9 function in B cells is required for production of anti-DNA and 

anti-ribonucleoprotein autoantibodies in several mouse models of systemic lupus erythematosus 

(Rawlings et al., 2017).  
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One experimental strategy for studying how BCR signaling and TLR9 signaling enhance 

the germinal center response is to immunize with a T-dependent antigen physically coupled to a 

synthetic TLR9 agonist - CpG deoxyoligonucleotides (CpG) (Rookhuizen and DeFranco, 2014). 

In order to activate the potential of TLR9 to enhance a GC response, the antigen must be 

oligovalent (as is the case for a haptenated protein) (Rookhuizen and DeFranco, 2014). The TLR9 

ligand can be present in virus-like particles (VLPs) (Hou et al., 2011; Tian et al., 2018), or 

combined with DOTAP adjuvants (Akkaya et al., 2017) to form liposome-like oligovalent 

antigens. MyD88-deficiency in B cells compromises GC B cell number and antibody titers to such 

antigens (Hou et al., 2011; Rookhuizen and DeFranco, 2014), but how TLR signaling enhances 

the response that remains dependent upon T follicular helper (Tfh) cells is unclear. In a murine 

model of autoimmune lupus in which TLR7 and TLR9 are necessary for sustained autoreactive B 

cell responses, cognate autoreactive T-cells could partially rescue GC B cell activation defects in 

the absence of TLR7/9 (Giles et al., 2017). This suggests the overlap of pro-survival signals 

derived from T cell help and TLR7/9 signaling in supporting GC B cell survival and humoral 

immunity, but the molecular nature of the signals provided by TLRs were not defined. 

Here, we explored the mechanistic basis by which a TLR9 ligand attached to an antigen 

signals within the antigen-specific B cell to promote the GC response. The wildtype GC B cells 

immunized with NP-haptenated T-dependent antigen complexed with a CpG oligonucleotide had 

increased oxidative phosphorylation, mTORC1, and c-Myc gene expression signatures compared 

to MyD88-deficient GC B cells. Remarkably, both c-Myc and mTORC1 are induced by Tfh cell 

mediated interactions with GC B cells through CD40L:CD40 signaling (Calado et al., 2012; 

Dominguez-Sola et al., 2012; Ersching et al., 2017). As such, MyD88-dependent TLR9 signaling 

induced gene expression signatures that were previously associated with Tfh cell help, suggesting 
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that TLR signaling in GC B cells enhanced the GC response by mimicking the effects of Tfh on 

the B cells, without replacing the requirement for Tfh. Together, these findings indicate that TLR9 

signaling in GC B cells can provide a supplemental stimulus that allows more B cells to occupy 

the GC in an environment where Tfh cell help is limiting for survival.  
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Materials and Methods 

Generation of Complex antigens and BCR stimulants 

NP-CGG Complex antigen was generated similarly to as previously published with the 

following modifications: NP(14-30)CGG (Biosearch) was biotinylated using biotin(xx)-NHSS in 

DMF, as previously reported (Rookhuizen and DeFranco, 2014). The biotinylated NP(14-30)CGG 

was mixed (5mg/ml) with streptavidin (Thermofisher) (10mg/ml), and 5’biotinylated CpG oligo 

1826 (CCATGACGTTCCTGACGTT) (IDT) or a 5’biotinylated Non-CpG oligo 

(TCCAGGACTTCTCTCAGGTT) (IDT) (5mg/ml), at a molar ratio of 1:4:48 in PBS, respectively 

for 24 hrs before being washed in 5mls PBS in an Amicon Ultra-15 Centrifugal Filter Unit 10kD 

(Millipore) 3 times, and resuspended at 100µgtotal mass per 50 µl. Similarly biotinylated αIgM 

(goat polyclonal, Jackson Immunoresearch) was mixed with Streptavidin and 5’biotinylated CpG 

oligo 1826 (IDT) or a 5’biotinylated Non-CpG oligo (5mg/ml), at a molar ratio of 2:1:2 in PBS 

for 24hours before being transferred to an Amicon Ultra-15 Centrifugal Filter Unit 10kD filter 

(Millipore) and washed 3 times with PBS and re-suspended at 1.5µg αIgM per µl.  

Mice and Immunizations 

 Mice used in these experiments consisted of Mb1-cre (C(Cg)- Cd79atm1(cre)Reth/EhobJ), 

MyD88 flox (B6.129P2(SJL)-MyD88tm1Defr/J), c-Myc-GFP reporter (B6;129-Myctm1Slek/J) 

(backcrossed 10 times to B6/J) and Eµ-Bcl2 transgenic (C.Cg-Tg(BCL2)22Wehi/J) (a gift from 

the Cyster laboratory) all of which were maintained in house according to all IACUC guidelines. 

Mice were immunized subcutaneously in the scruff and flanks with a total of 100µg NP-CGG in 

complex antigen for cell sorting and in vivo phosphor-flow experiments, and with 25µg NP-CGG 

complex antigen in the footpad for c-Myc-GFP and general flow cytometry experiments. Draining 
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lymph nodes were analyzed. Eµ-BCL2 transgenic c-Myc-GFP mice were immunized with 100µg 

NP(14-30)-CGG (Biosearch) in alum Imject (ThermoFisher) intraperitoneally, and GC B cells 

were isolated from spleen 12-14 days later. 

RNA isolation and mRNA-sequencing 

10,000 NP+ GC B cells were collected by FACS sorting directly into the lysis buffer of the 

Dynabead direct mRNA extraction kit (Thermo Fisher). mRNA was isolated by use of poly-dT 

beads according to the manufacturer’s instructions (Thermo Fisher). Library preparation and RNA 

sequencing was performed through the UCSF Functional Genomics Core and aligned to Ensembl 

Mouse GRCh38.78 (mm10) genome using STAR software and analyzed using DESeq2 as 

previously reported(Pua et al., 2016).  

Flow cytometry,  

Single cell suspensions were prepared from either popliteal or inguinal, axillary, and 

brachial LNs by gently passing them through 70µm nylon mesh filters. Cells were collected by 

centrifugation and incubated with anit-CD16/CD32 (2.4G2) in FACS buffer (PBS + 2% Fetal 

Bovine Serum + 2 µm EDTA + .01% NaN3) to block antibody binding to Fc receptors before 

staining with antibodies for surface markers. For phospho-flow analysis of in vivo cells, mice were 

perfused with 10% Paraformaldehyde (PFA) directly after sacrifice (Sigma), and single cell 

suspensions from Lymph nodes were prepared directly in 2% PFA and incubated for 15 minutes 

on ice before permeabilizing the cell plasma membranes with ice cold methanol. Fixed cells were 

rehydrated with PBS, washed by centrifugation in FACS buffer and blocked and stained with 

antibodies as described above. Conjugated antibodies used included PE-Cy7 anti-CD95 (Jo2); 

FITC and PerCP-Cy5.5 anti-GL7, BV605 anti-CD19 (6D5), FITC anti-B220 (RA3-6B2), biotin 
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anti-CD11c, biotin anti-CD3ε (145-2C11), biotin anti-Ter119, biotin anti-Gr1, ef450 anti-IgD (11-

26c), biotin anti-CXCR4 (2B11), APC anti-CD86 (GL-1), APC anti-CD83 (Michel-19), AF647 

anti-pS6 ser240/244 (D68F8), AF647 anti-pS6-ser235/236 (D57.2.2E), AF647 anti-pAkt ser473 

(D9E). Biotin conjugates were detected using BV711 or BV786 Streptavidin (BioLegend). NP(8-

30)-PE (Biosearch) was used to detect NP-binding B cells. Dead cells were detected using 

efluor780 or UV Blue fixable viability dyes (Thermofisher). Flow cytometry analysis and sorting 

was performed on an LSR II and a FACS Aria II cytometers (BD), respectively.  

In-vitro and Ex vivo naïve and GC B cell isolation and stimulation 

WT, B-MyD88-, WT-c-Myc-GFP and B-MYD88-c-Myc-GFP naive B cells were isolated 

using Dynabead negative CD43 selection kit (ThermoFisher) and stimulated in RPMI 1640 

supplemented with 10% FCS, HEPES, 2-mercaptoethanol, and L-glutamine with αIgM-CpG and 

αIgM-Non for 24 hours then stained for viability before being analyzed by flow cytometry or fixed 

before staining for phospho-flow. Eµ-BCL2 MycGFP B cells were isolated by anti-CD11c, anti-

CD43 and anti-IgD (GC) or anti-GL7 (naïve) biotin antibodies followed by an anti-biotin magnetic 

bead isolation (Miltenyi) according to a previously published protocol (Cato et al., 2011). Purity 

was confirmed at least 95% B220+ for naïve B cells and 90% Fas+, CD38- for GC B cells. Cells 

were stimulated with 10-20 µg αCD40 (FGK4.51, Miltenyi), 10-20 µg αIgM (Goat polyclonal µ 

chain, Jackson immunoresearch), 75 nM CpG 1826 oligo (IDT), or combinations of these reagents 

for 4 hours in complete RPMI1640 medium and processed for flow cytometry.  

Software and Statistics 

Data visualization and statistical calculations were performed using Prism GraphPad. 

Statistical tests and p values for each experiment are specified in figure legends for a single 
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comparison between two groups, a student’s t-test was used; for multiple comparisons between 

preselected groups, a one way anova test with Holm-Sidek correction for multiple comparisons 

was used; and for multiple comparisons where all groups were compared, a one way anova test 

with a Tukey correction for multiple comparisons was used. Flow cytometry data were analyzed 

with Flowjo.  

GSEA was run on the graphical user interface according to the manufacturers 

recommendations (https://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html) to 

compare the WT and MyD88- RNA-seq data sets using all genes (Subramanian et al., 2005). 

RNA-seq data are publicly available on Gene Expression Omnibus at GSE126849 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126849.  
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Results 

TLR9 agonist complexed to T-dependent antigen increases the frequency and number of germinal 

center B cells in response to immunization. 

Previous studies have demonstrated that attachment of a TLR7 or TLR9 ligand to an 

antigen can boost the germinal center antibody response (Hou et al., 2011; Rookhuizen and 

DeFranco, 2014). We created two complex antigens composed of biotinylated 4-nitro-3-

phenylacetyl (NP) chicken gamma globulin (CGG) complexed with streptavidin and either 

biotinylated CpG deoxyoligonucleotide (CpG) or biotinylated control deoxyoligonucleotide (Non) 

yielding NP-CGG-CpG or NP-CGG-Non respectively (Rookhuizen and DeFranco, 2014). 

C57BL/6 mice were immunized subcutaneously with either NP-CGG-CpG or NP-CGG-Non and 

the GC response was analyzed at day 14 (D14) (Fig. S3.3.1A). As the high affinity anti-NP 

antibody response to NP-CGG is known to have a substantial contribution of  light chain-

containing antibodies, we also analyzed the frequency of NP-binding, + GC B cells. Mice 

immunized with the NP-CGG-CpG showed a 3.5 -fold increase in the number of total GC B cells 

(CD19+, IgDlo, Fas+) as well as a 4-fold increase in the number of NP-binding λ+ GC B cells (Fig. 

S3.3.1B/1C). These results agree with a previous study using a similar complex antigen 

(Rookhuizen and DeFranco, 2014). 

To specifically test the role of TLR9 agonism in the B cell compartment, we immunized B 

cell lineage-specific MyD88-deficient Mb1-cre+MyD88fl/fl (B-MyD88-) and control Mb1-cre+ 

MyD88fl/+ or Mb1-cre+ MyD88+/+ (WT) mice with NP-CGG-CpG antigen and analyzed the GC 

response at D14 (Fig. S3.3.1D/E). WT mice exhibited a 2.4-fold higher frequency and number of 

GL7hi GC B cells as compared to the B-MYD88- mice (Fig. 3.1A). Thus in agreement with 
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previous work, these results show that B cell TLR9 signaling enhances the GC response to a 

haptenated antigen attached to a TLR9 ligand. There was also likely to be some contribution of 

TLR signaling in another cell type, such as classical dendritic cells. 

NP-CGG-CpG antigen induces MyD88-dependent c-Myc and mTORC1 signature gene expression 

 To determine the effect of TLR9 signaling on the GC response at a transcriptional level, 

we performed mRNA-sequencing on NP-binding WT and B-MYD88- GC B cells at D14 post 

immunization with NP-CGG-CpG using the gating strategy illustrated in Fig. S3.1E. This analysis 

uncovered 479 differentially expressed genes (FDR<0.05 by Fisher exact test, Table S3.1), of 

which 260 were increased in WT and 219 were increased in B-MYD88- cells. Among the genes 

with higher expression in WT GC B cells many corresponded to ribosomal proteins, NADH 

dehydrogenase, ATP synthase, and cytochrome oxidase machinery pointing towards increased 

oxidative phosphorylation activity (Fig. 3.3A). This metabolic phenotype is consistent with the 

recent finding that TLR9 signaling can rescue naïve B cells from apoptosis resulting from 

mitochondrial dysfunction elicited by BCR engagement in the absence of CD40 or TLR signals 

(Akkaya et al., 2018b). There was also increased Ighg2c gene expression in WT samples compared 

to B-MYD88- samples, as well as increased expression of Aicda, the gene encoding the activation-

induced cytidine deaminase that is directly involved in somatic hypermutation and in class switch 

recombination (Table 3.1). These results are consistent with the strong effect of the TLR9 ligand 

in promoting class switch to IgG2a/IgG2c (Jegerlehner et al., 2007; Rookhuizen and DeFranco, 

2014). Surprisingly, expression of the transcriptional regulator Bcl6, which directs the germinal 

center fate in B cells, was increased in B-MYD88- GC B cells (Table 3.1). Conversely, mRNA 

encoding the survival factor Bcl2 was higher in WT cells (Table 3.1) suggesting that increased 
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survival may contribute to the increased GC B cell frequency and number in the context of intact 

TLR9/MyD88 signaling.  

To gain greater insight from the mRNA expression data sets, we applied Gene Set 

Enrichment Analysis (GSEA) to the Hallmark gene sets (Subramanian et al., 2005). Gene sets 

enriched in WT compared to B-MYD88- GC B cells included the Myc signature with a normalized 

enrichment score (NES)=2.38 FDR<10-5; the E2F signature with a NES=1.60, FDR= 0.02; and the 

mTORC1 signature with a NES= 1.46, FDR= 0.057 (Table 3.2, Fig. 3.3B). We performed a 

leading-edge analysis on the Hallmark subsets from Table 3.2 and found that the genes driving the 

difference in the context of mTORC1 and c-Myc had very little overlap and thus these two gene 

signatures represented independent enrichments (Fig. S3.3.2). Similarly, independently curated 

mTORC1 (Bilanges et al., 2007) and c-Myc (Zeller et al., 2003) gene sets were also enriched in 

WT compared to B-MYD88- GC B cells (Fig. 3.1D, 1F, Table 3.2). Furthermore, the KEGG 

ribosomal pathway showed a large enrichment in WT GC B cells (Table 3.2). From our RNA-seq, 

Aicda was 2 fold increased in WT compared to B-MYD88- (FDR=0.088) concordant with this 

being positively regulated by mTORC1 signaling (Chiu et al., 2019; Raybuck et al., 2018). In 

contrast, no Hallmark gene sets were enriched in the antigen-specific B-MYD88- GC B cells 

compared to the antigen-specific WT GC B cells (FDR q values greater than 0.25 - data not 

shown). Interestingly both c-Myc and mTORC1 have been implicated as downstream effectors of 

Tfh cell help and their dysregulation negatively impacts the GC response(Calado et al., 2012; 

Dominguez-Sola et al., 2012; Ersching et al., 2017). These results suggest that TLR9-MyD88 

signaling in the antigen-specific GC B cell increases the transcriptional outputs of the MYC and 

mTORC1 pathways, either via direct transcriptional effects or indirectly by enhancing the ability 



 
 

82 
 

of the GC B cells to interact with Tfh and receive CD40L and cytokine signals, which are known 

to promote these two programs 

 TLR9 signaling in naïve B cells increases c-Myc expression 

To better understand how TLR9 signaling enhances the c-Myc pathway transcriptional 

response, we examined the effect of BCR signaling and TLR9 signaling on c-Myc protein 

expression. First naïve polyclonal B cells were stimulated through the BCR and TLR9 in a linked 

fashion by addition of αIgM bound to streptavidin and biotin-conjugated CpG or Non oligos to 

make the complex artificial antigens αIgM-CpG and αIgM-Non, respectively (Sindhava et al., 

2017). To measure the c-Myc protein expression on a single cell level we crossed a knock-in c-

Myc-GFP protein fusion reporter (Huang et al., 2008) to WT and B-MYD88- mouse strains. We 

stimulated purified naïve Mb1-cre+ MyD88fl/flMyc-GFP+/+ (B-MYD88- Myc-GFP) or WT Mb1-

cre+, MyD88+/+ c-Myc-GFP+/+ (WT -Myc-GFP) splenic B cells with either αIgM-CpG or αIgM-

Non for 24 hours and then analyzed the cells for c-Myc-GFP expression by flow cytometry (Fig. 

3.2A). The presence of a TLR9 ligand attached to the αIgM antibodies greatly enhanced c-Myc 

expression in naïve B cells after 24 hours at which time 90% of WT-Myc-GFP cells stimulated 

with αIgM-CpG were c-Myc-GFP+ (Fig. 3.2B). In contrast, WT-Myc-GFP cells stimulated with 

αIgM-Non, and B-MyD88-Myc-GFP cells stimulated with either αIgM-CpG or αIgM-Non 

exhibited much lower c-Myc induction at this time, with 5-10% c-Myc-GFP+ cells (Fig. 3.2B). 

Less than 2% of unstimulated naïve B cells of either genotype were c-Myc-GFP+. Per cell c-Myc-

GFP abundance was also increased by TLR9/MyD88 signaling, with αIgM-CpG stimulated WT-

Myc-GFP B cells displaying a 4-fold increase in GFP mean fluorescence intensity (MFI) compared 

to αIgM-Non stimulated WT-Myc-GFP and B-MyD88-Myc-GFP cells under either stimulation 
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conditions (Fig. 3.2B). Thus, in naïve B cells, combined antigen receptor and TLR9 signals 

induced c-Myc levels much more strongly than antigen receptor signals alone. 

Attachment of a TLR9 ligand to the antigen increased the frequency of GC B cells expressing c-

Myc protein in a non-cell-intrinsic manner  

We next used the c-Myc-GFP reporter to address the mechanism by which attachment of 

a TLR ligand to CGG increased the c-Myc transcriptional signature in GC B cells. Previous work 

established that CD40L delivered by Tfh cells strongly induces c-Myc expression in Light Zone 

(LZ) GC B cells, which consequently return to the Dark Zone (DZ) and undergo further clonal 

expansion (Calado et al., 2012; Dominguez-Sola et al., 2012). Therefore, we examined c-Myc-

GFP expression in day 14 LZ and DZ phenotype GC B cells, identified by elevated CD86/CD83 

or CXCR4 expression, respectively, from c-Myc-GFP+/+ mice immunized with NP-CGG-CpG or 

NP-CGG-Non antigen (Fig. 3.2C, S3A) (Victora et al., 2012; Victora et al., 2010). Both 

immunization groups had similar distributions of DZ and LZ phenotype cells among GC B cells 

(NP-CGG-CpG: DZ= 51% ± 6% LZ = 41% ± 5%; NP-CGG-Non: DZ 52% ± 10%; = LZ= 44% ± 

9%;) (Fig. S3.3A). In agreement with our sequencing data, the NP-CGG-CpG antigen group had 

a higher percentage (2.7% vs. 1.1%), and a greater mean number (3,000 vs. 1,700) of c-Myc-GFP+ 

GC B cells than did NP-CGG-Non immunized animals (Fig. 3.2D). A majority of c-Myc-GFP+ 

cells exhibited a LZ phenotype for both immunization conditions (NP-CGG-CpG: 66% ± 9%; NP-

CGG-Non: 69.8% ± 13%)(Fig. S3.3B), consistent with previous studies showing enrichment of 

the LZ phenotype (Victora et al., 2010) and localization of c-Myc+ GC B cells to the LZ (Calado 

et al., 2012; Dominguez-Sola et al., 2012).  

To test whether TLR9/MyD88 signaling in the GC B cells contributed to the increased 

frequency of c-Myc-expressing GC B cells seen upon immunization with NP-CGG-CpG we 
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immunized WT-Myc-GFP and B-MyD88-Myc-GFP mice with either one allele or two alleles of 

the c-Myc-GFP fusion reporter and analyzed c-Myc-GFP expression at D14. Interestingly, neither 

the number nor percentage of c-Myc-GFP+ GC B cells were increased in the GC B cells from WT-

Myc-GFP mice compared to the GC B cells from the B-MyD88-Myc-GFP mice (Fig. 3.2E). The 

distribution of LZ and DZ phenotypes of bulk and c-Myc-GFP+ GC B cells were also unaltered by 

the inability of the B cells to signal via MyD88 (Fig. S3.3C). The per-cell c-Myc-GFP MFI was 

also similar in WT-Myc-GFP and B-MyD88-Myc-GFP groups (Fig. S3.3D). Thus, there was a 

non-B cell-intrinsic effect of attaching a TLR9 ligand to NP-CGG on expression of c-Myc-GFP. 

Moreover, these results suggest that the increased c-Myc transcription signature resulting from 

TLR9/MyD88 signaling in GC B cells (Fig. 3.1) may have resulted from a regulatory change in c-

Myc transcriptional activity, rather than an increase in c-Myc protein expression 

 Dual TLR9 and BCR signaling increases phosphorylation of ribosomal protein S6 in naïve B cells 

and in GC B cells.  

Next, we examined whether TLR9/MyD88 signaling in purified naïve splenic B cells leads 

to enhanced Akt/mTOR signaling. Initially, purified naïve splenic B cells were stimulated in vitro 

with αIgM complex antigens as before, and phosphorylation of mTORC1 targets was assessed by 

intracellular staining of permeabilized cells with phospho-specific antibodies and flow cytometry. 

Remarkably, phosphorylation of ribosomal protein S6, at ser240/244 (pS6(ser240/244)) and at 

ser235/236 (pS6(ser235/236), known mTORC1 pathway targets, were almost entirely dependent 

on CpG stimulation in naïve B cells (Fig. 3.3A and S4A). αIgM-CpG stimulated WT cells were 

90% positive for pS6(ser240/244) at 24 hours compared to the 5-15% range seen for WT B cells 

stimulated with αIgM-Non or for B-MyD88- B cells treated with either stimulus (Fig. 3.3B). The 

αIgM-CpG stimulated WT B cells showed the highest pS6(ser240/44) MFI, which was 14 times 
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greater than any other group (Fig. 3.3B). Cell size is in part dependent upon protein content of the 

cell and WT B cells stimulated with αIgM-CpG also showed the largest increase in cell size (FSC-

A) compared to the three other groups (Fig. 3.3B), which is consistent with a role of mTORC1 in 

enhancing global protein synthesis.  

Next, we examined the effect of including a TLR9 ligand attached to NP-CGG on the size 

of GC B cells and on their pS6 phosphorylation status. GC B cells were substantially larger than 

naïve B cells as would be expected, but no differences in cell size were evident when comparing 

B-MyD88- and WT GC at D14 post immunization with NP-CGG-CpG antigen (Fig. 3.3C). 

Additionally, no difference in cell size was evident when only NP-binding GC B cells of these two 

genotypes were compared (Fig. 3.3C). Utilizing phospho-flow cytometry we analyzed 

pS6(ser240/244) and pS6(ser235/236) in GC B cells. There was an increase in pS6(ser240/244) 

MFI of WT compared to B-MyD88- GC B cells that was significant (p=0.021) (Fig. 3.3D). 

However, we found that WT and B-MyD88- GC B cells exhibited similar MFI staining for 

pS6(ser235/236) (Fig. S3.4B). When mice were immunized with NP-CGG-CpG vs NP-CGG-Non, 

we found a 2 fold increase in both pS6(ser240/244) (Fig.3E) and pS6(ser235/236) in GC B cells 

(Fig. S3.4C). Interestingly we saw an increase in the pS6 level of non-GC B cells in the NP-CGG-

CpG immunized mice compared to NP-CGG-Non, indicating that another CpG responsive cell 

type alters the metabolic and inflammatory environment of the lymph node increasing mTORC1 

activity in non-GC B cells in a non-cell intrinsic manner. Thus, combined CpG-induced TLR 

signaling and BCR signaling positively regulated mTORC1 signaling robustly in naïve B cells, 

and while all GC B cells had evidence of active mTORC1 signaling, consistent with previous 

studies (Ersching et al., 2017; Jones et al., 2016; Zhang et al., 2013) TLR9/MyD88 signaling 
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appeared to further increase phosphorylation of the mTORC1 target pS6 by both B cell intrinsic 

and extrinsic mechanisms.  

Ex vivo stimulation of GC B cells with CpG oligonucleotide increases mTORC1 phosphorylation 

targets and c-Myc induction similarly to CD40 stimulation 

To test whether TLR signaling ex vivo in GC B cells would enhance mTORC1 signaling 

and c-Myc expression in the absence of continued Tfh cell interaction, GC B cells were isolated 

from immunized Eµ-BCL2 transgenic mice (to promote their survival during in vitro culture) and 

stimulated with αCD40, αIgM, αIgM + CpG oligo, or αCD40 + αIgM for 4 hours, and fixed before 

staining for pS6(ser240/244). It was previously reported that both αIgM and αCD40 signaling are 

necessary to increase mTORC1 activity and induce c-Myc expression in GC B cells, whereas naïve 

B cells respond to either stimulus individually (Luo et al., 2018). Similarly, we found that 

stimulation of naïve B cells with αIgM and/or αCD40 for 4 hours led to at least 90% of cells being 

pS6(ser240/244) positive (Fig. 3.4A-4B). Furthermore, CpG stimulation led to 75% of naïve cells 

being pS6(ser240/244) positive, and the addition of αIgM increased the response to >95% 

pS6(ser240/244) positive (Fig. 3.4A-4B). In contrast, ex-vivo stimulation of Eµ-BCL2 transgenic 

GC B cells with αIgM alone failed to induce increased phosphorylation of this residue compared 

to unstimulated GC B cells (Fig. 3.4A-B). Either αCD40 or CpG oligo stimulation conditions 

increased the percentage of pS6(ser240/244) positive Eµ-BCL2 GC B cells to comparable levels 

(50-60%) (Fig. 3.4A-4B). These results demonstrate that TLR9 stimulation and CD40 engagement 

can have similar effects on mTORC1 signaling in GC B cells. Furthermore, stimulation of the 

BCR via αIgM did not increase the response to αCD40 or CpG oligonucleotide in the Eµ-BCL2 

GC B cells.  
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Next, we crossed the c-Myc-GFP+/+ mice to the Eµ-BCL2 transgenic mice to facilitate 

examination of c-Myc expression in naïve and GC B cell stimulated ex vivo. Naïve c-Myc-

GFP+/WT B cells and c-Myc-GFP+/WT Eµ-BCL2 GC B cells were stimulated with αIgM, αCD40 or 

CpG oligonucleotides or combinations thereof. All stimulation conditions increased the expression 

of c-Myc-GFP substantially in the naïve B cells (MFI increased by αIgM 2.4-fold, αCD40 2.0-

fold, CpG 1.7-fold, αIgM + αCD40 3.7-fold, αIgM + CpG 3.8-fold, compared to no stimulation), 

which is congruent with previous studies demonstrating that CpG induces c-Myc expression in 

immature and naïve B cells (Arunkumar et al., 2013; Azulay-Debby et al., 2007). Thus, c-Myc 

induction in naïve cells was responsive to each stimulus individually and exhibited an additive 

response to multiple stimuli. For the Eµ-BCL2 GC B cells, ex vivo αIgM stimulation did not 

induce c-Myc expression above the unstimulated control (1.1 fold increase in MFI) (Fig. 3.4C, 

4D), similarly to what was seen with phosphorylation sites on ribosomal protein S6. In contrast, 

stimulation with CpG oligonucleotide or αCD40 induced small but significant increases in c-Myc-

GFP expression (MFI increased by 1.3-fold, p=.0007; and 1.2-fold p=0.0013, respectively, 

compared to no stimulation. Addition of αIgM may have further increased c-Myc-GFP expression, 

but it was not statistically significant compared to the individual stimulations. Thus we did not see 

a clear synergy between αIgM and αCD40 stimulation for the induction of c-Myc expression or 

mTORC1 signaling, in contrast to a previous report (Luo et al., 2018). As both c-Myc expression 

and phosphorylation of a key mTORC1 target were increased to similar levels upon stimulation of 

GC B cells with αCD40 or CpG oligonucleotide, it is possible that TLR9 signaling in GC B cells 

could be a partial surrogate for CD40 mediated Tfh cell help. According to this interpretation, 

more GC B cells would get pro-survival mTORC1 signaling and c-Myc induction in the context 

of TLR9 signaling in the GC, lowering the need for CD40 stimulation and Tfh cell help. This 
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would increase the number of cells that survive and the pool of GC B cells as a percentage of the 

B cell population.  
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Discussion 

Previous work established that a TLR ligand attached to a haptenated-protein antigen or 

contained within a virus particle can promote the magnitude and quality of the GC reaction and 

moreover that TLR signaling within the antigen-specific B cell is an important contributor to that 

enhancement (Hou et al., 2011; Rookhuizen and DeFranco, 2014). Here, we used mRNA 

sequencing and GSEA to identify the intracellular transcriptional programs that were enhanced by 

coupled antigen and TLR9/MyD88 signaling in GC B cells. Especially enhanced were the 

transcriptional signatures associated with c-Myc transcriptional activity and mTORC1 signaling. 

Both of these pathways are central to the control of cell growth and proliferation in many cell types 

and are critical in B cells for the GC response (Calado et al., 2012; Jones et al., 2016; Zhang et al., 

2013). Interestingly, Tfh cells recognizing antigen presented by GC B cells also stimulate these 

pathways in the antigen-presenting GC B cell, leading to positive selection of the GC B cells 

(Dominguez-Sola et al., 2012; Ersching et al., 2017; Mayer et al., 2017). Thus, one potential 

mechanism by which TLR9/MyD88 signaling may have enhanced c-Myc transcription and 

mTORC1 signaling is by enhancing interactions of GC B cells with Tfh cells. Alternatively, 

TLR9/MyD88 signaling in the antigen-specific B cells may have directly increased the 

transcriptional activities of one or both of these pathways. Consistent with the latter, direct 

mechanism, we found that ex vivo stimulation of Bcl2-transgenic GC B cells with a TLR9 ligand 

increased expression of a c-Myc-GFP protein reporter and increased phosphorylation of the 

mTORC1 target protein ribosomal protein S6, in both cases similarly to the response induced by 

anti-CD40, which mimics a key aspect of helper T cell action. 

It is likely that several mechanisms contributed to the enhanced c-Myc transcriptional 

activity seen in antigen-specific GC B cells responding to NP-CGG-CpG immunization. Both 



 
 

90 
 

naïve B cells and Bcl2-transgenic GC B cells cultured ex vivo and stimulated with a TLR9 ligand 

oligonucleotide exhibited increased c-Myc-GFP protein reporter induction, indicating direct 

TLR9/MyD88 signaling can induce elevated levels of c-Myc protein. Moreover, MyD88 signaling 

has been shown to stabilize c-Myc protein in intestinal epithelial cells (Lee et al., 2010). However, 

the increase in c-Myc-GFP expression in vivo after immunization with the NP-CGG-CpG 

conjugate was seen not only in wild type mice but also in mice in which MyD88 was deleted 

selectively in B cells, indicating that the observed increase in c-Myc-GFP can also occur by an 

indirect mechanism, mostly likely by induction following cognate interactions with antigen-

specific Tfh cells. This indirect mechanism of promoting c-Myc protein expression in GC B cells 

could result from TLR9 signaling in other cell types, such as conventional dendritic cells - or 

stromal cells such as follicular dendritic cells (FDCs). Indeed, previous studies showed that TLR9 

signaling in dendritic cells enhanced the number of Tfh cells following immunization with NP-

CGG-CpG (Rookhuizen and DeFranco, 2014), possibly indicating increased availability of Tfh 

cell help for GC B cells. Interestingly, c-Myc protein levels were similar in WT and MyD88- GC 

B cells immunized with NP-CGG-CpG, whereas the c-Myc transcriptional program was stronger 

in the former mice. The lack of concordance between gene expression data in sorted GC B cells 

and c-Myc-GFP fluorescent reporter expression indicates that c-Myc-dependent transcription is 

not necessarily directly proportional to c-Myc protein levels in GC B cells. Therefore, differences 

in the c-Myc-driven transcriptional signature could be orchestrated through c-Myc 

phosphorylation, binding partners, or chromatin accessibility (Conacci-Sorrell et al., 2014; Wang 

et al., 2011) programmed in activated B cells by dual BCR/TLR9 signaling that persists into the 

GC fate. This GC B cell-intrinsic enhancement of c-Myc transcriptional activity would perhaps 
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enhance the effect of Tfh induction of c-Myc protein by making that c-Myc more active and driving 

higher levels of gene expression, accounting for the transcriptional profiling results. 

The increased mTORC1 transcriptional signature identified by GSEA in GC B cells of 

mice immunized with NP-CGG-CpG was mirrored by increased phosphorylation of ribosomal 

protein S6, a downstream target of mTORC1. While the MyD88- GC B cells showed a subtle 

defect in ribosomal protein S6 phosphorylation in vivo, the remaining observed response in these 

cells could have been due to CD40 stimulation resulting from cognate interactions with Tfh cells. 

In addition, we observed that ex vivo stimulation of GC B cells with a TLR9 ligand also induced 

an increase in phospho-S6 in the GC B cells, indicating that the NP-CGG-CpG likely also directly 

stimulated this pathway in wild type GC B cells. Previous studies have demonstrated MyD88-

mediated mTORC1 activation and binding in innate immune cells, and a similar process could 

occur in GC B cells (Schmitz et al., 2008).  

While TLR agonists can promote both T-independent and T-dependent antibody responses, 

the nature of the antigen and the presence of additional adjuvants can have a major impact on the 

contribution of TLR signaling to the response. Previous work has shown that the valency of the 

antigen and its propensity to cross-link the BCR dictates the impact of B cell intrinsic MyD88-

mediated signaling in shaping the GC response. Immunization with monovalent T-dependent 

antigens (such as ovalbumin) fused to CpG oligo show no difference in GC B cell numbers or 

antibody titers between B-MyD88- and WT mice (DeFranco et al., 2012; Hou et al., 2011), whereas 

B-MyD88- mice immunized with multi-valent VLPs have a profound deficit in the GC response 

and antibody titers compared to WT mice (Hou et al., 2011; Tian et al., 2018). Furthermore, 

addition of the lipid adjuvant DOTAP in conjunction with CpG oligonucleotide and NP-CGG, 

forming a multivalent particulate antigen, increased GC B cell and Tfh numbers as well as both 
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high affinity and low affinity NP-specific antibody titers when compared to immunization with 

CpG oligonucleotide and NP-CGG in soluble form (Akkaya et al., 2017). However, when the same 

group performed experiments with CpG oligonucleotide and NP-CGG complexed with alum, they 

saw a decrease in high affinity antibody titers against NP in WT mice compared to B-MyD88- 

mice (Akkaya et al., 2018a). Moreover, the inclusion of alum to complex a large murine self CpG 

DNA molecule with an amyloid conformed protein (chemically modified human serum albumin) 

also diminished total GC number and total anti-HSA titers (Sindhava et al., 2017). These 

differences demonstrate that the exact conformation of the protein CpG oligo complex and other 

adjuvants, specifically alum, can profoundly affect the quality and quantity of the humoral 

response. The inclusion of alum and its inflammasome-mediated adjuvant activity in monocytes 

(MacLeod et al., 2011; McKee and Marrack, 2017) could be a complicating factor in these two 

experimental settings in which a decrease in the GC response was observed.  

While it is clear that TLR9 signaling in B cells can substantially promote the GC response 

(Akkaya et al., 2017; Rookhuizen and DeFranco, 2014; Tian et al., 2018), the exact timing of when 

TLR9-mediated MyD88 signaling influences the GC fate has not been well defined. This signaling 

event during early B cell activation could provide a selective advantage for initiating the GC or 

alternatively, TLR9/MyD88 signaling event in GC cells could directly enhance their ongoing 

participation in the GC reaction. The enhanced c-Myc and mTORC1 transcriptional programs seen 

in GC B cells on d14 are certainly consistent with the latter possibility, but these possibilities are 

not mutually exclusive. In our in vivo and ex vivo stimulation experiments, both naïve and GC B 

cells responded directly to TLR9 stimulation by upregulating mTORC1 signaling and c-Myc 

protein expression. However, recent studies have demonstrated that MyD88 signaling during the 

initial activation of naive B cells in the response to nucleic acid-containing VLPs also plays a key 
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role in activated B cell survival, proliferation, and antigen presentation to cognate T cells (Akkaya 

et al., 2018b; Hong et al., 2018). Furthermore, deletion of Myd88 in activated B cells utilizing 

Aicda-cre had a lesser effect than deletion of Myd88 with Mb1-cre prior to immunization, 

indicating that TLR/MyD88 signaling during the early phase of the response is important in the 

response to CpG-containing VLPs (Tian et al., 2018). This observation bolsters the idea that dual 

BCR and TLR9 signaling in naïve B cells provides a selective advantage that is maintained days 

later in the GC response. Thus, the difference in numbers and percentage of GC B cells could be 

a result of differences in early activation, though our gene expression data indicates that there are 

persistent MyD88-signaling events that are maintained during the GC, at least through day 14.  

Both BCR and co-signaling through TLRs and CD40 have been implicated in the 

metabolic reprogramming of activated B cells. Studies of early activation of B cells in vitro by 

BCR stimulation, TLR4 stimulation with LPS, or CD40 + IL-4 stimulation to mimic helper T 

cell action have implicated increased glycolytic flux and increased oxidative/phosphorylation as 

critical metabolic shifts during the initial activation of naïve cells and for antibody production in 

vitro (Caro-Maldonado et al., 2014; Waters et al., 2018). Interestingly, B cells that receive a BCR-

mediated signal alone undergo toxic mitochondrial reprogramming, leading to apoptosis unless a 

secondary signal such as TLR stimulation or CD40-mediated signaling rescues this metabolic 

dysfunction (Akkaya et al., 2018b). Thus, activation signals in naïve B cells directly reprogram 

the mitochondria and necessitate co-signaling events for survival, however the metabolic 

reprograming that occurs in GC B cells remains largely unknown. As discussed above, it is clear 

that Tfh cell help induces mTORC1 signaling and c-Myc expression (Calado et al., 2012; 

Dominguez-Sola et al., 2012; Ersching et al., 2017), two mediators of metabolism and cell cycle 

regulation. Previous studies have implicated a synergy between BCR stimulation and αCD40 
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mediated Tfh help to induce mTORC1(Luo et al., 2018), and our ex vivo stimulation data supports 

the idea that cosignaling of BCR and TLR9/MyD88 induce mTORC1. In addition, we found that 

TLR9/MyD88 signaling in GC B cells enhanced expression of genes involved in oxidative 

phosphorylation and mitochondrial function (Fig. 3.1B, S3.2, Table 3.2). 

This work adds to our basic understanding of the molecular pathways within the GC B cell 

by which TLR recognition promotes their response and has shown that this involves activation of 

mTORC1 and increased c-Myc transcriptional activity, two critical events also resulting from 

antigen-presentation to Tfh cells. Such understanding may facilitate efforts to improve current 

vaccines or create new effective vaccines by rational approaches. The tight association of a CpG 

oligonucleotide to a protein antigen is in most circumstances sufficient to promote an increased 

humoral immunity and could serve as a strategy for vaccination as can the use of virus-like 

particles containing nucleic acid ligands for TLR9 or TLR7. Such immunogens likely mimic to 

some degree the nature of virus particles and engage an evolutionarily-derived mechanism to 

defend against viral infections. Utilizing endosomal TLR adjuvants to shape the humoral response 

and provide an increased number of GC B cells could be beneficial in anti-viral vaccine 

development. 
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Figure 3.1: mRNA-seq analysis of WT and B-MYD88- NP+ GC B cells shows increased c-

Myc and mTORC1 gene expression signatures 

A Enumeration of GC B cell percentages and total cell numbers from draining lymph nodes of WT 

and B-MYD88- animals at D14 post immunization. Shown is a representative of 4 independent 

experiments with at least 3 mice per group. B Volcano plots comparing gene expression fold 

changes to p value for all genes expressed in at least one sample after DESeq2 analysis. Red dots 

in each panel indicated genes associated with the given metabolic/synthetic complex listed. C 

GSEA plots for Hallmark gene sets for mTORC and c-Myc gene signatures enriched in WT 

transcriptional data. D GSEA plot from curated gene sets showing enrichment of rapamycin and 

serum sensitive genes in WT samples. E GSEA plot from curated gene sets showing enrichment 

of c-Myc target genes in WT samples. 
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Figure 3.2: Dual BCR/TLR9 Signaling positively regulates c-Myc expression in naïve and 

GC B cells. 

A Overlay of representative histograms showing c-Myc-GFP expression in response to αIgM-CpG 

stimulation for 24hs of WT c-Myc-GFP and B-MYD88- c-Myc-GFP naïve B cells. B Enumeration 

of %GFP positive and MFI of cells in A (shown is a single experiment representative of 3 

independent experiments). C Overlay of representative histograms showing GFP fluorescence 

gating on live, singlet, CD19+, Fas+, IgDlo, GL7+ GC cells of c-Myc-GFP+/+ mice immunized with 

NP-CGG-CpG or NP-CGG-Non D14 post immunization. D Enumeration of percent and number 

of GFP+ GC B cells from NP-CGG-CpG and NP-CGG-Non immunized c-Myc-GFP+/+ mice (three 

combined experiments with at least 3 mice per group). E Enumeration of percent and number GFP 

positive cells from NP-CGG-CpG immunized B-MYD88- and WT mice D14 (representative 

experiment of 3 independent experiments). **= p<0.005, ****= p<0.0001, NS = p>0.05 by one-

way ANOVA and Holm-Sidak’s multiple comparison test 
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Figure 3.3: Dual BCR/TLR9 Signaling positively regulates mTORC1 activity measured by 

ribosomal protein S6 phosphorylation in naïve and GC B cells. 

A Overlay of representative histograms showing pS6 ser240/244 levels in response to αIgM-CpG 

for 24 hr.in WT and B-MYD88- naïve B cells. B Enumeration of cell size by forward light scatter 

(FSC-A), % pS6 ser240/244 +, and MFI of those cells gated positively for pS6 ser240/244 cells 

for WT and B-MYD88- naïve B cells stimulated with αIgM-CpG. C Enumeration of cell size from 

D14 NP-CGG-CpG immunized B-MYD88- and WT non-GC and GC B cells (representative of 4 

independent experiments). D phospho-flow MFI of mTORC1 downstream target pS6 ser240/244 

D14 NP-CGG-CpG immunized B-MYD88- and WT B cells normalized to mean of B-MYD88- 

GC MFI (data are combined from 3 experiments with at least 3 mice per group) E phospho-flow 

MFI of mTORC1 downstream target pS6 ser240/244 D14 NP-CGG-CpG and NP-CGG-Non 

immunized mice normalized to mean MFI of NP-CGG-Non MFI (combined from 2 independent 

experiments with at least 4 mice per condition). ****= p<0.0001, NS = p>0.05 by one-way 

ANOVA and Holm-Sidak’s multiple comparison test. 
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Figure 3.4: CpG Stimulation of GC B cells ex vivo increases mTORC1 signaling to similar 

levels as αCD40 stimulation. 

A Representative histograms comparing phosphoflow pS6 ser240/244 staining of 4 hour ex vivo 

stimulated naïve and GC B cells isolated from i.p. NP-CGG alum immunized mouse spleens at 

D12-D14 (3 mice per experiment performed in 3 separate experiments). B Enumeration of 

experiments from A showing level of pS6 ser240/244 expression in Naive and GC B cells from A. 

C Overlays of c-Myc-GFP expression comparing no stimulation to the respective stimulation in 

Naïve and GC B cells after 4 hours. D Enumeration of the relative c-Myc-GFP MFI increase 

normalized to no stimulation of the samples in C (representative of 3 independent experiments 

with at least 3 mice per experiment). *= p<0.05, ****= p<0.0001, and NS = p>0.05 by one-way 

ANOVA and Tukey’s multiple comparison test. 
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Supplemental Figure 3.1: Chemical and Genetic approach to studying TLR9 agonist in the 

GC. A Experimental design for immunizing C57BL/6J mice with complex NP-CGG-CpG and 

NP-CGG-Non antigen. B Example flow cytometry plot showing gating strategy from live, singlet, 

dump , CD19+ cells using Fas+, IgDlo followed by NP(8-14)-PE and λ light chain positive. C 

Enumeration of the number of GC and NP+, λ+ GC cells in  immunized mice at D14. *= p<0.05 

by Student’s t test. D Experimental design for immunizing WT or B-MyD88- mice with complex 

NP-CGG-CpG antigen. E Gating strategy comparing WT and B-MYD88- live, singlet, dump-, 

CD19+ GC (Fas+, IgDlo, GL7+) cells and the resulting NP+ and negative populations. Large 

variability in NP-binding led to no significant difference in the NP+, λ+ population GC B cells 

(data not shown). 
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Supplemental Figure. 2: Leading edge analysis of 7 Hallmark gene sets found to be 

upregulated in WT compared to B-MYD88- GC B cells. A Each gene listed is in at least one of 

the 7 data sets. Color from white to red shows relative level of mRNA expression. B Color from 

white showing no overlap to dark green demonstrating complete overlap for the 7 gene sets. 
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Supplementary Figure 3.3: Gating strategy for DZ and LZ populations in the GC and 

numeration of these populations using both experimental strategies. A DZ and LZ gating 

strategy for GFP+ and bulk GC B cells. B Enumeration of DZ and LZ breakdown of GFP positive 

and bulk GC populations in NP-CGG-CpG and NP-CGG-Non immunized mice at D14 (3 

combined experiments with at least 3 mice in each group). C Enumeration of DZ and LZ 

distribution of GFP positive and bulk GC populations in B-MYD88- and WT mice immunized 

with NP-CGG-CpG at D14 (3 combined experiments with at least 3 mice in each group). D MFI 

of GFP positive GC cells from C. NS = p>0.05 by student’s t test. 
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Supplementary Figure 3.4: Complimentary analysis for pS6 ser235/236 for in vitro complex 

antigen stimulation and in vivo immunizations. 

A Enumeration of % pS6 ser235/236 +, for WT and B-MYD88 - naïve B cells stimulated in vitro 

with αIgM -CpG and αIgM-Non for 24 h ours. ****= p<0 .001 by Student’s t test. 

B phospho-flow MFI of mTORC1 downstream target pS6 ser235/236 of D14 NP-CGG -CpG 

immunized B-MYD88 - and WT B cells normalized to mean of B-MYD88 - GC MFI (3 combined 

experiments with at least 3 mice per group). C phospho-flow MFI of mTORC1 downstream target 

pS6 ser235/236 of D14 NP-CGG-CpG and NP-CGG-Non immunized m ice normalized to mean 

NP-CGG-Non MFI . **= p<0.0 05, ** * = p<0.0005, ****= p<0.00 01, NS = p>0.05 by one-way 

ANOVA and Holm-Sidak’s multiple comparison test. 
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Table 3.1: B Cell Activation, CSR, and Cell Fate Gene Expression 

Gene Log2(KO/WT) Raw p value FDR value 

Ighg2c -0.931278014 2.63E-06 0.000742214 

Fas 0.141497226 0.364147352 0.93944051 

Cxcr4 0.364550474 0.115060865 0.6353624 

Cd86 -0.155604203 0.313582804 0.90908692 

Cd80 -0.247780304 0.381587211 0.93944051 

Aicda -0.516289592 0.002956723 0.08882857 

Prdm1 -1.091192869 0.003046472 0.08996182 

Tlr9 0.115035034 0.502823401 0.97633773 

Myd88 -1.7156157 2.80E-05 0.00412237 

Bcl6 0.39066445 0.000556044 0.03277441 

Bcl2 -1.081316005 0.000697559 0.03849734 
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Table 3.2: GSEA shows enrichment for mTORC1 and Myc signatures 

NAME SIZE ES NES NOM p-val 

FDR q-

val 

HALLMARK_OXIDATIVE_ 

PHOSPHORYLATION 186 0.593 2.91 >1E-04 >1E-04 

HALLMARK_MYC_TARGETS_V1 191 0.487 2.38 >1E-04 >1E-04 

HALLMARK_REACTIVE_OXYGEN_ 

SPECIES_PATHWAY 45 0.517 1.96 >1E-04 

4.17E-

04 

HALLMARK_PANCREAS_BETA_ 

CELLS 24 0.537 1.76 8.65E-03 

8.19E-

03 

HALLMARK_DNA_REPAIR 134 0.360 1.71 >1E-04 

1.01E-

02 

HALLMARK_E2F_TARGETS 191 0.327 1.60 >1E-04 

2.10E-

02 

HALLMARK_UNFOLDED_PROTEINRE

SPONSE 104 0.332 1.49 1.59E-02 

4.61E-

02 

HALLMARK_MTORC1_SIGNALING 189 0.299 1.46 4.77E-03 

5.65E-

02 

DANG_MYC_TARGETS_UP 129 0.493 2.29 >1E-04 >1E-04 

KEGG_RIBOSOME 72 0.819 3.45 >1E-04 >1E-04 

BILANGES_SERUM_AND_ 

RAPAMYCIN_SENSITIVE_GENES 59 0.727 2.95 >1E-04 >1E-04 
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Supplemental Table 3.1:  Differential Genes from RNA-seq of 
B-MyD88-(KO) vs WT NP+, GC B cells 

Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

1110038F14Rik -1.0765 1.653E-04 0.014651942 

1700017B05Rik 0.8342 1.900E-06 0.000583898 

1700039E15Rik 3.6174 6.640E-06 0.001400288 

1810058I24Rik -1.2067 1.330E-06 0.000451313 

2010107E04Rik -1.1014 1.430E-05 0.002481323 

2210406O10Rik 6.9776 2.710E-05 0.004033915 

2310022B05Rik 1.1578 6.068E-04 0.034464025 

2610507I01Rik -1.8086 4.383E-04 0.028623241 

2700094K13Rik -0.8576 9.553E-04 0.047603974 

4930404N11Rik -2.5629 1.200E-05 0.002171875 

4930565N06Rik 1.6401 5.040E-06 0.001138243 

4931414P19Rik 1.9676 6.790E-04 0.037829611 

8430429K09Rik -0.9238 4.729E-04 0.029544915 

A4galt 3.1500 8.751E-04 0.045405681 

Abca3 0.4743 5.136E-04 0.031213796 

Abcc1 0.6749 2.129E-04 0.017295532 

Abhd14b 1.7158 1.018E-03 0.049739221 

Abracl -0.9999 7.220E-04 0.039290757 

Acp5 -0.9287 1.060E-05 0.001968641 

Actl6b -8.8456 5.764E-04 0.033549234 

Adat1 0.8209 5.120E-05 0.006467641 

Ago2 0.3623 9.774E-04 0.048445584 

Aldh2 -0.7381 8.080E-07 0.000320533 

Alg3 0.8949 4.787E-04 0.029790242 

Amotl1 2.4874 2.590E-07 0.000144311 

Anapc13 -1.4889 9.820E-07 0.000370441 

Ankmy1 4.1605 2.051E-04 0.016838252 

Arel1 0.4228 2.367E-04 0.018773841 

Arid1a 0.4329 2.745E-04 0.021058997 

Armc2 -8.6723 2.500E-06 0.000722975 

Arpc3 -0.5500 3.158E-04 0.02294815 

Arpp21 6.8774 4.578E-04 0.029094005 

Asf1a -0.5709 1.601E-04 0.014316035 

Asnsd1 -1.3092 5.170E-06 0.001151389 

Atcay 2.1018 2.610E-05 0.003916278 

Atg16l1 0.5043 3.529E-04 0.024872335 

Atg5 -0.6688 7.923E-04 0.042231252 

Atp5c1 -0.6045 1.070E-05 0.001968641 

Atp5d -0.7971 7.644E-04 0.041214432 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Atp5e -1.2132 2.780E-10 6.74E-07 

Atp5g3 -0.7529 3.240E-06 0.000824676 

Atp5j -0.6899 6.870E-07 0.000281867 

Atp5j2 -0.8049 2.670E-06 0.000744799 

Atp5k -1.7238 4.920E-10 1.05E-06 

Atp5sl 0.7965 8.300E-06 0.001673692 

Atp6ap1 0.6728 4.560E-06 0.001055953 

Atp7b -3.2165 2.981E-04 0.022097454 

Atxn2 0.6083 8.820E-06 0.001720336 

Bace1 0.5842 1.494E-04 0.013929904 

Bank1 -0.5621 2.459E-04 0.019376971 

Bcl2 -1.0813 6.976E-04 0.03849734 

Bcl6 0.3907 5.560E-04 0.032774406 

Bhlhe41 -0.8016 8.482E-04 0.04455924 

Blvrb -0.5208 4.401E-04 0.028623241 

Bora 0.4773 4.587E-04 0.029094005 

Brk1 -0.8303 9.600E-07 0.000368208 

Btg1 -0.6675 7.835E-04 0.041953654 

C530005A16Rik 1.6945 1.250E-05 0.00223014 

C78197 8.7523 6.390E-08 4.82E-05 

Camkmt -2.0795 1.920E-05 0.003000426 

Cand2 0.7249 1.584E-04 0.014316035 

Ccdc12 -1.1649 7.070E-05 0.008073327 

Ccdc150 6.2158 9.947E-04 0.048798368 

Ccdc181 -0.6987 1.476E-04 0.013818668 

Cd36 -1.0168 7.600E-05 0.008472882 

Cd52 -0.9132 3.240E-06 0.000824676 

Cd72 -0.9570 1.572E-04 0.014316035 

Cd8a 2.6972 2.012E-04 0.016578196 

Cend1 6.9094 3.825E-04 0.026111812 

Cenph -0.5172 3.765E-04 0.025834217 

Chchd1 -1.3564 1.210E-05 0.002178688 

Chchd10 -0.8921 2.860E-12 1.87E-08 

Chchd2 -0.9520 7.206E-04 0.039290757 

Chchd4 -0.8634 3.754E-04 0.025834217 

Cib1 -0.8042 5.306E-04 0.031836845 

Cks1b -0.6931 4.780E-05 0.006289102 

Clcn6 0.6734 8.323E-04 0.043961925 

Cnppd1 0.9037 5.135E-04 0.031213796 

Col27a1 2.1316 1.541E-04 0.014308277 

Col2a1 -6.0805 1.826E-04 0.015822329 

Cox4i1 -0.7508 5.956E-04 0.034157962 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Cox5b -0.7359 6.912E-04 0.038329416 

Cox6a1 -0.6589 5.444E-04 0.032249318 

Cox6b1 -0.9579 5.230E-09 6.44E-06 

Cox6c -1.1395 2.830E-07 0.000151328 

Cox7a2 -1.0844 6.990E-05 0.008058411 

Cox7a2l -0.9066 5.390E-08 4.35E-05 

Cox7b -0.9642 1.710E-06 0.00054866 

Crip1 -1.2932 2.430E-11 9.49E-08 

Cript -0.5869 2.701E-04 0.020794843 

Crocc 1.0387 1.082E-04 0.011198418 

Csf3r 6.5603 3.316E-04 0.023874915 

Csrp1 0.5208 4.832E-04 0.029992006 

Cuta -0.6388 3.837E-04 0.026111812 

Cxcr3 -1.1198 2.880E-10 6.74E-07 

Cxxc5 0.6463 3.722E-04 0.025834217 

Cyb5a -1.0595 5.290E-06 0.001168061 

Cyba -0.9666 5.980E-06 0.001283323 

D430018E03Rik 2.8182 8.493E-04 0.04455924 

D7Ertd715e 0.8068 5.908E-04 0.034006058 

D830044I16Rik 4.6222 6.616E-04 0.036969625 

Dbi -0.8166 1.020E-06 0.00037766 

Ddias 0.8861 3.556E-04 0.024911011 

Ddit4 -1.4781 3.110E-06 0.000808821 

Decr2 1.2238 8.420E-05 0.009255164 

Dhx35 0.6081 8.628E-04 0.044964952 

Dnaic2 3.8653 2.359E-04 0.018773841 

Dnajc8 -0.4318 1.603E-04 0.014316035 

Dock3 6.8496 1.219E-04 0.01219086 

Dock9 0.6013 3.670E-06 0.000914093 

Dtnbp1 -0.7108 3.670E-05 0.005241212 

Edf1 -0.7876 3.740E-05 0.005271163 

Eef1b2 -0.6445 3.438E-04 0.024381385 

Efhc2 7.0358 1.923E-04 0.016183437 

Eif1b -1.0850 3.524E-04 0.024872335 

Eif3k -0.5966 4.650E-04 0.029405901 

Elof1 -1.0343 9.410E-05 0.01019215 

Eno1 -0.4554 8.891E-04 0.045884852 

Entpd1 -1.8762 6.910E-06 0.001421219 

Epha2 7.0624 3.012E-04 0.022195652 

Evc 2.0085 5.060E-06 0.001138243 

Eya1 1.0107 2.850E-07 0.000151328 

Faim3 -0.5191 4.916E-04 0.030350114 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Fam101a 1.6361 2.903E-04 0.021916498 

Fam162a -0.8300 4.419E-04 0.028623241 

Fam65a 0.5877 7.239E-04 0.039300855 

Fam96b -1.5495 3.380E-07 0.000175758 

Farsa 0.9069 1.180E-04 0.012004012 

Fastk 0.7726 2.640E-08 2.47E-05 

Fat1 3.9772 8.980E-06 0.001736816 

Fgl2 -0.8424 9.800E-05 0.010379162 

Fnta -0.7390 1.439E-04 0.013698763 

Foxk1 0.5517 6.390E-05 0.007550317 

Foxred2 0.9637 1.900E-05 0.002979471 

Fth1 -0.9710 1.260E-08 1.34E-05 

Fundc2 -0.6213 5.989E-04 0.034182077 

Gab1 -8.7409 8.166E-04 0.043329649 

Gab2 4.9689 2.460E-06 0.000720777 

Gas5 -0.4274 5.778E-04 0.033549234 

Gimap7 -0.9184 5.980E-09 6.99E-06 

Gm10524 0.8719 8.855E-04 0.045840909 

Gm11510 2.1744 2.957E-04 0.022034196 

Gm11831 4.0517 7.803E-04 0.041878732 

Gm12158 0.8238 6.868E-04 0.038172829 

Gm12917 4.6249 8.319E-04 0.043961925 

Gm13351 1.5329 2.002E-04 0.016552299 

Gm13873 -8.1103 2.415E-04 0.01909405 

Gm15367 6.6092 9.048E-04 0.046226851 

Gm15551 2.5991 9.086E-04 0.046321776 

Gm15780 7.6744 3.880E-05 0.00543332 

Gm15832 3.8695 2.546E-04 0.019925951 

Gm15842 2.2579 1.404E-04 0.013629926 

Gm15932 6.5219 9.917E-04 0.048798368 

Gm16853 3.6628 4.690E-05 0.006205008 

Gm17275 0.6879 6.300E-07 0.000263141 

Gm21982 6.6941 1.945E-04 0.016193537 

Gm23639 -4.3364 9.570E-05 0.010267533 

Gm24636 5.1848 5.915E-04 0.034006058 

Gm26049 1.4432 3.300E-05 0.0047633 

Gm26518 1.5181 6.541E-04 0.036703527 

Gm26847 3.5100 6.939E-04 0.038383653 

Gm26917 0.8068 9.557E-04 0.047603974 

Gm6225 2.9477 7.886E-04 0.042131632 

Gm7741 -2.4921 5.597E-04 0.032909031 

Gm8428 3.1306 4.999E-04 0.030621805 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Gmnn -0.5509 7.107E-04 0.038945758 

Gng5 -0.8278 4.418E-04 0.028623241 

Gon4l 0.5649 8.902E-04 0.045884852 

Gorab 1.2249 1.640E-05 0.002637094 

Gpx1 -0.6137 7.364E-04 0.039842021 

Grhl1 1.2723 2.916E-04 0.021942221 

Gtf2h4 -0.8898 1.300E-04 0.012940479 

H2afv -0.7579 1.958E-04 0.016246527 

H2afy3 2.7394 1.922E-04 0.016183437 

H6pd 2.2192 5.590E-05 0.006808762 

Hbb-bt -1.5492 1.950E-06 0.000591425 

Hdac6 0.7128 4.019E-04 0.026960996 

Hddc2 -0.8466 1.349E-04 0.013188907 

Helz2 0.4356 3.691E-04 0.025708041 

Hint1 -1.0847 1.360E-05 0.002387967 

Hip1 1.3434 8.590E-06 0.001689613 

Hlx -7.9635 3.750E-04 0.025834217 

Hmga1 0.5971 5.500E-05 0.006732969 

Hscb -0.8079 4.284E-04 0.028315653 

Ier3ip1 -1.0133 4.178E-04 0.027775111 

Ifitm2 7.4695 8.790E-05 0.009612004 

Ift20 -0.6938 1.590E-05 0.002608299 

Ighg2c -0.9313 2.630E-06 0.000742214 

Ighj3 -1.2035 9.300E-06 0.001784636 

Ighv1-36 -8.7122 3.820E-11 1.28E-07 

Ighv1-81 -2.6671 1.749E-04 0.01538845 

Igkv1-117 -2.5787 3.649E-04 0.025490643 

Igkv2-137 -5.0789 7.700E-10 1.50E-06 

Igkv3-5 -4.0583 2.898E-04 0.021916498 

Igkv4-56 -5.0126 9.199E-04 0.046692079 

Igkv4-92 -9.1221 2.060E-04 0.016850441 

Igkv5-45 -6.0949 2.180E-08 2.13E-05 

Igkv8-19 -3.6130 9.942E-04 0.048798368 

Igkv9-124 -2.9947 1.660E-05 0.002638288 

Igkv9-129 -5.8406 3.937E-04 0.026622873 

Iglc2 -0.9531 6.126E-04 0.034709 

Iglv1 -0.9056 3.500E-08 3.15E-05 

Il10ra -1.0473 4.021E-04 0.026960996 

Il18r1 3.1269 2.890E-06 0.000783828 

Il1r2 6.5531 4.403E-04 0.028623241 

Il2rb 0.9049 4.760E-07 0.000218413 

Inf2 0.7756 4.137E-04 0.027583108 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Ing2 -0.6442 9.537E-04 0.047603974 

Ipo4 0.6788 2.910E-06 0.000783828 

Iqcg 3.8828 1.430E-07 9.28E-05 

Itga4 -0.5058 2.606E-04 0.020232397 

Itpkb 0.6644 4.940E-05 0.006387711 

Jtb -0.8271 7.200E-05 0.008142611 

Kat7 0.5510 3.049E-04 0.022294947 

Kif18b 0.7108 4.950E-07 0.000222938 

Klf11 1.4374 1.650E-05 0.002637094 

Lifr -2.4426 8.578E-04 0.044803716 

Lmln 1.9443 1.942E-04 0.016193537 

Lmo2 -0.6469 1.353E-04 0.013188907 

Lmo7 0.4499 1.453E-04 0.013698763 

Lrrc61 0.7846 2.954E-04 0.022034196 

Lrrn3 2.3693 4.517E-04 0.029037179 

Lsm3 -0.7128 1.181E-04 0.012004012 

Lsm4 -0.8247 5.360E-05 0.006638948 

Ltbp3 4.3012 6.620E-04 0.036969625 

Ly6a -1.1402 5.910E-13 6.91E-09 

Ly6k -6.9868 3.470E-07 0.000176538 

Ly86 -0.6502 1.122E-04 0.011553694 

Lyrm4 -1.2520 2.040E-06 0.000611303 

Lyz1 7.4062 5.230E-05 0.006515547 

Malsu1 -1.0333 2.270E-06 0.000672253 

Mapk7 0.6069 2.272E-04 0.018197719 

Mfsd6 0.7817 4.546E-04 0.029094005 

Mif -0.7683 4.735E-04 0.029544915 

Minos1 -1.1133 8.830E-08 5.98E-05 

Mir378b 1.8067 7.743E-04 0.04165293 

Mov10 0.6664 1.194E-04 0.012039275 

Mrgpre -0.7557 2.279E-04 0.018197719 

Mrpl11 -0.9142 1.557E-04 0.014316035 

Mrpl18 -0.5489 4.180E-06 0.001007875 

Mrpl37 0.5029 9.582E-04 0.047603974 

Mrpl41 -1.2250 5.800E-05 0.007030782 

Mrpl52 -0.9241 4.670E-04 0.029456446 

Mrpl57 -0.7498 1.593E-04 0.014316035 

Mrps14 -1.2231 9.280E-11 2.71E-07 

Mrps28 -0.9644 5.423E-04 0.032208661 

Ms4a4c -0.8284 1.414E-04 0.013646282 

Msh4 5.6446 6.980E-05 0.008058411 

Mtfp1 -2.2271 9.314E-04 0.047094098 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Myd88 -1.7156 2.800E-05 0.004122366 

Myeov2 -1.5296 2.260E-11 9.49E-08 

Myom1 -2.4360 3.050E-05 0.00445408 

Mzb1 -0.6029 4.450E-05 0.005982602 

N6amt1 0.8526 1.480E-07 9.33E-05 

Naa40 0.5983 1.924E-04 0.016183437 

Nab2 0.7146 1.440E-04 0.013698763 

Naprt -1.3595 9.318E-04 0.047094098 

Ndufa1 -1.0844 1.850E-06 0.00058173 

Ndufa11 -1.1860 8.440E-08 5.98E-05 

Ndufa13 -0.8980 4.230E-06 0.001010246 

Ndufa2 -0.9127 1.578E-04 0.014316035 

Ndufa3 -0.9147 7.280E-05 0.008187189 

Ndufa6 -1.0083 4.720E-04 0.029544915 

Ndufb5 -0.7293 1.782E-04 0.015619555 

Ndufb9 -0.8765 5.416E-04 0.032208661 

Ndufc1 -1.2590 4.409E-04 0.028623241 

Ndufs4 -0.7539 2.101E-04 0.017126599 

Ndufs6 -1.1416 1.590E-05 0.002608299 

Nedd8 -0.9852 1.860E-06 0.00058173 

Nnat 4.0976 8.940E-08 5.98E-05 

Noc2l 0.7132 1.586E-04 0.014316035 

Nop10 -1.1869 1.380E-05 0.002415011 

Nploc4 0.4202 5.285E-04 0.031791045 

Nr1d1 6.5400 9.551E-04 0.047603974 

Nsfl1c -0.5622 5.772E-04 0.033549234 

Nsmce1 -0.8671 1.590E-05 0.002608299 

Nsmce2 -0.5926 5.559E-04 0.032774406 

Nsun6 -0.8160 4.576E-04 0.029094005 

Nudt7 1.3019 1.004E-04 0.01058553 

Oas3 1.6097 2.960E-06 0.000786414 

Ost4 -0.7516 7.372E-04 0.039842021 

Pak6 4.0709 4.530E-05 0.006044397 

Papln 1.3124 8.420E-06 0.0016832 

Pard6a -2.2654 9.047E-04 0.046226851 

Parp12 4.8174 5.910E-04 0.034006058 

Pcdhgb7 7.3292 9.470E-05 0.010211046 

Pcdhgb8 7.6552 5.020E-06 0.001138243 

Pdcd4 -0.9480 2.280E-05 0.003537589 

Pdrg1 -0.8280 7.140E-05 0.008110238 

Per1 0.5855 1.080E-06 0.000388467 

Pfdn5 -0.9342 4.860E-05 0.006355132 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Pglyrp1 -1.3727 2.211E-04 0.017777615 

Phc2 0.7720 1.860E-05 0.002944154 

Phf1 0.8978 3.839E-04 0.026111812 

Pigo 0.6128 5.170E-05 0.006475261 

Pigt 0.5337 6.920E-06 0.001421219 

Pim1 1.0014 6.010E-07 0.000258235 

Pip4k2b 0.7778 2.440E-05 0.003706705 

Pithd1 -0.8423 3.480E-05 0.004990462 

Plac8 -1.2200 3.016E-04 0.022195652 

Plcd1 6.7731 4.588E-04 0.029094005 

Plec 0.6529 5.767E-04 0.033549234 

Pmf1 -0.6670 2.510E-05 0.003785935 

Polr1d -0.8250 4.230E-09 5.50E-06 

Polr2g -0.8581 1.210E-06 0.000421191 

Pon2 -0.5908 6.170E-05 0.00740491 

Ppa2 -1.1284 1.651E-04 0.014651942 

Ppdpf -0.8993 1.203E-04 0.012077273 

Ppp1r13l 1.9110 2.198E-04 0.017732791 

Prdx5 -1.1248 6.670E-05 0.007805941 

Prkch 5.7893 1.040E-06 0.000380619 

Prmt2 7.6606 2.300E-05 0.003537589 

Prpf4 0.5918 9.690E-05 0.010303263 

Psma1 -0.5857 2.758E-04 0.021094337 

Psma2 -0.4918 9.670E-05 0.010303263 

Psmb1 -0.6629 1.490E-05 0.002537713 

Psmb10 -0.8905 1.830E-07 0.000109906 

Psmb8 -0.5571 6.020E-08 4.69E-05 

Psme2 -0.7814 6.590E-08 4.82E-05 

Ptger1 1.0496 1.350E-05 0.002387967 

Ptges3l 3.4863 8.590E-06 0.001689613 

Ptpn3 3.9362 3.412E-04 0.024265385 

Ptprcap -0.8669 1.600E-06 0.000519161 

Puf60 -0.5827 8.156E-04 0.043329649 

Qtrtd1 0.7433 1.801E-04 0.015727098 

Rabac1 -1.3877 4.948E-04 0.030386385 

Rad51c 0.5694 1.579E-04 0.014316035 

Rag1 -8.3703 6.460E-05 0.007598937 

Rasal3 0.4516 4.550E-05 0.006044397 

Rbm38 0.4478 1.458E-04 0.013698763 

Rbm44 -2.2297 2.720E-14 6.36E-10 

Rbms2 0.6455 1.326E-04 0.013063631 

Rbx1 -0.7696 2.768E-04 0.021101396 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Rcc1 0.4691 1.423E-04 0.013646282 

Retsat 2.5250 1.120E-06 0.000395938 

Rfc3 -0.4219 8.364E-04 0.044081825 

Rgs7 4.3554 6.790E-06 0.001418467 

Rilpl2 -1.3288 1.451E-04 0.013698763 

Rnf213 0.4807 9.571E-04 0.047603974 

Rnf219 -0.6905 4.300E-07 0.000211301 

RP23-102B12.2 1.7814 4.428E-04 0.028623241 

RP23-264E23.1 6.9990 5.891E-04 0.034006058 

RP23-323E20.2 2.2708 5.016E-04 0.030646583 

RP23-328J8.3 0.6053 7.073E-04 0.038850306 

RP23-395G18.1 6.5192 3.250E-04 0.023472429 

RP23-456B9.18 2.5842 4.130E-06 0.001006441 

RP23-98F21.12 6.7000 1.813E-04 0.015772248 

RP24-271M20.4 0.8163 1.500E-05 0.002537713 

RP24-337A16.2 3.1043 4.720E-07 0.000218413 

RP24-338G10.1 0.9055 5.260E-07 0.000232157 

RP24-490B17.7 3.7508 3.660E-06 0.000914093 

RP24-546N2.2 0.8876 5.080E-05 0.00646751 

RP24-74O18.2 1.1618 5.050E-08 4.22E-05 

RP24-87I22.4 6.4477 4.195E-04 0.027808794 

RP24-88B13.5 1.9255 1.061E-04 0.011029589 

RP24-92E18.2 6.5864 5.239E-04 0.031680477 

RP24-93F24.2 4.1442 4.340E-06 0.001024702 

Rpa3 -0.9530 3.133E-04 0.022837157 

Rpl13a -0.9367 7.160E-07 0.000288717 

Rpl14 -1.0443 2.880E-06 0.000783828 

Rpl18 -0.7698 1.925E-04 0.016183437 

Rpl18a -1.0521 1.550E-06 0.00050972 

Rpl22 -0.7930 8.380E-07 0.000326826 

Rpl23 -0.9741 1.310E-06 0.00044925 

Rpl26 -0.8778 4.322E-04 0.02848664 

Rpl29 -0.9042 3.230E-05 0.004696993 

Rpl29-ps1 4.6712 3.540E-04 0.024872335 

Rpl32 -0.7027 4.686E-04 0.029479146 

Rpl34 -0.9658 2.310E-05 0.003537589 

Rpl35a -0.8442 1.400E-06 0.000466495 

Rpl37 -1.3331 6.030E-06 0.001283323 

Rpl37a -0.9193 2.575E-04 0.020081536 

Rpl39 -1.3013 3.900E-05 0.005434638 

Rpl41 -0.8306 7.550E-05 0.008448902 

Rpl8 -0.7389 6.070E-07 0.000258235 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Rplp0 -0.5916 5.702E-04 0.033437458 

Rplp1 -1.1920 1.610E-05 0.002608299 

Rplp2 -0.7706 5.972E-04 0.034167518 

Rps10 -1.1858 2.730E-09 3.80E-06 

Rps11 -0.7032 8.664E-04 0.045054292 

Rps15 -0.6246 5.233E-04 0.031680477 

Rps15a -0.7338 3.930E-05 0.005445758 

Rps18 -0.5429 9.310E-05 0.01013161 

Rps19 -0.7958 2.370E-09 3.69E-06 

Rps20 -0.8948 4.890E-05 0.006361927 

Rps25 -0.8144 1.010E-05 0.001924218 

Rps26 -1.2162 2.630E-06 0.000742214 

Rps28 -1.0982 5.140E-05 0.006467641 

Rps3 -0.6728 4.420E-07 0.000211301 

Rps3a1 -0.8900 6.920E-05 0.008051088 

Rps4x -0.7095 1.714E-04 0.015134516 

Rps5 -0.5833 3.185E-04 0.023075185 

Rps6ka1 0.4278 9.793E-04 0.048445584 

Rps6kb2 0.6940 3.920E-06 0.000965421 

Rps8 -0.8121 9.432E-04 0.047565342 

Rtp4 2.7631 3.330E-04 0.023899449 

Sdc4 -1.3695 1.550E-07 9.53E-05 

Sec11c -0.3822 8.995E-04 0.046156686 

Sec14l1 0.6263 8.240E-05 0.009094634 

Sec61b -1.1638 1.600E-05 0.002608299 

Sema7a 0.3681 5.335E-04 0.031897477 

Serpinc1 5.2825 2.984E-04 0.022097454 

Shfm1 -1.0192 4.160E-05 0.005728064 

Sipa1l3 0.6365 9.833E-04 0.048540178 

Skap2 -0.6163 4.410E-05 0.005982602 

Slc12a3 1.3302 5.070E-05 0.00646751 

Slc22a23 2.4067 4.442E-04 0.028633884 

Slc25a3 -0.3671 6.280E-05 0.007460177 

Slc30a4 0.8651 4.857E-04 0.030067093 

Slc39a13 0.7242 1.858E-04 0.015983646 

Slc6a6 0.7102 4.390E-07 0.000211301 

Slc9a8 0.4852 6.250E-05 0.007460177 

Smdt1 -0.7615 2.543E-04 0.019925951 

Snrpb2 -0.7427 3.100E-06 0.000808821 

Snrpg -1.1458 1.420E-04 0.013646282 

Snx3 -0.6313 8.010E-05 0.008882859 

Sod1 -1.0827 3.190E-12 1.87E-08 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Sptb 6.8808 3.362E-04 0.023983793 

Srp19 -0.4994 1.869E-04 0.016023916 

Srsf9 -0.7185 7.450E-06 0.001515866 

Stk16 -0.7760 1.070E-05 0.001968641 

Stk35 0.5204 8.939E-04 0.045973334 

Stpg1 6.5747 6.148E-04 0.034749528 

Stra13 -1.0078 5.760E-06 0.001259633 

Strn4 0.7164 6.010E-06 0.001283323 

Sub1 -1.5856 1.190E-09 1.99E-06 

Sv2b -4.1621 2.530E-07 0.000144311 

Sync 6.7751 9.179E-04 0.046692079 

Syngr2 0.6606 2.760E-05 0.004082412 

Tbc1d4 1.3563 4.934E-04 0.030385557 

Tbca -1.0437 5.900E-05 0.007119252 

Tbrg4 0.5565 1.930E-04 0.016183437 

Tceb1 -0.6888 2.148E-04 0.017389765 

Tcf7 1.5659 1.460E-05 0.002514129 

Tcp11 6.7363 6.375E-04 0.03594709 

Tet3 0.3712 1.185E-04 0.012004012 

Tmed9 -0.4972 3.911E-04 0.026523908 

Tmem120b 1.9406 1.306E-04 0.012951588 

Tmem136 4.3659 2.882E-04 0.02189904 

Tmem14c -0.8568 2.010E-07 0.000117315 

Tmem259 0.5680 2.939E-04 0.022034196 

Tmsb4x -0.8788 3.752E-04 0.025834217 

Tnk2os 7.4300 1.190E-05 0.002169958 

Tomm7 -1.1319 2.611E-04 0.020232397 

Traf4 0.8896 3.730E-05 0.005271163 

Trappc1 -0.7412 5.090E-05 0.00646751 

Trbc2 1.8712 2.702E-04 0.020794843 

Trbv13-2 6.6686 9.983E-04 0.048871902 

Trp53i13 1.8640 4.045E-04 0.027046227 

Trpm4 2.2614 1.921E-04 0.016183437 

Tstd3 -0.7534 5.344E-04 0.031897477 

Ttbk1 7.5687 5.440E-05 0.006695136 

Ttc26 6.5280 5.254E-04 0.031686164 

Txn1 -0.7871 4.490E-06 0.001049821 

Ubr4 0.4378 1.510E-05 0.002547635 

Uqcr10 -0.7589 1.036E-04 0.010823153 

Uqcrh -1.0670 7.380E-09 8.22E-06 

Uqcrq -1.1135 1.329E-04 0.013063631 

Use1 -0.9520 2.760E-09 3.80E-06 
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Gene 
KOvsWT 
.log2FC KOvsWT.RawP KOvsWT.FDR 

Usp19 0.4495 9.471E-04 0.047603974 

Usp30 0.8678 6.038E-04 0.034376873 

Utrn 1.0442 1.018E-04 0.010679699 

Vasp -0.6681 4.450E-05 0.005982602 

Vpreb3 -1.1381 1.100E-09 1.98E-06 

Vsig10l 2.6839 4.014E-04 0.026960996 

Wdr31 3.9940 7.050E-05 0.008073327 

Wrnip1 -0.7507 6.435E-04 0.036199004 

Xdh 4.5193 1.578E-04 0.014316035 

Xlr3b -2.6180 3.045E-04 0.022294947 

Xpo6 0.3132 7.159E-04 0.039140118 

Ywhaq -0.7769 3.343E-04 0.023925901 

Zc3h12c -1.9522 8.523E-04 0.044617056 

Zeb2 -1.0680 1.126E-04 0.011553694 

Zfp180 0.5798 4.260E-05 0.005832368 

Zfp365 2.7412 2.190E-08 2.13E-05 

Zfp366 7.6177 1.832E-04 0.015822329 

Zfp704 7.5681 1.040E-05 0.001968641 

Zfp951 1.9242 7.069E-04 0.038850306 
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