Lawrence Berkeley National Laboratory

LBL Publications

Title

Enhanced Magnetization in CuCr2O4 Thin Film Barriers for Spin Filtering in Fe3O4-Based Magnetic Junctions

Permalink

https://escholarship.org/uc/item/9bz2j8sn

Authors

Iwata, J. M. Wong, F. J. Nelson-Cheeseman, B. B. et al.

Publication Date

2009-03-16

Enhanced Magnetization in CuCr₂O₄ Thin Film Barriers for Spin Filtering in Fe₃O₄-Based Magnetic Junctions.

<u>J. M. Iwata</u>¹; F. J. Wong¹; B. B. Nelson-Cheeseman¹; R. V. Chopdekar¹; M. Liberati²; E. Arenholz²; Y. Suzuki¹

- 1. Materials Science & Engineering, University of California, Berkeley, Berkeley, CA, USA.
- 2. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

We have demonstrated that a ferrimagnetic CuCr₂O₄ (CCO) layer can be an effective barrier layer between two highly spin polarized electrodes of La_{0.7}Sr_{0.3}MnO₃ (LSMO) and Fe₃O₄. These junctions exhibit distinct switching between parallel and anti-parallel states of the electrode magnetization in magnetotransport measurements with junction magnetoresistance (JMR) values of up to -4%. In most conventional magnetic junctions, the magnetoresistance decreases monotonically with applied voltage bias. Instead, in LSMO/CCO/Fe₃O₄ structures at low temperatures, we observe a bimodal behavior with a suppression of the JMR near zero bias. We may account for this suppression by the opening of a gap in the Fe₃O₄ density of states at its Verwey transition (T_{Verwey, bulk}~120K). Furthermore, element-specific X-ray circular magnetic dichroism (XMCD) was used to probe the interface magnetism by decoupling the magnetic response of the transition metal cations at the LSMO-CCO and the isostructural CCO-Fe₃O₄ interfaces.

In order to understand the role of the ferrimagnetic CCO barrier layer in the junction transport, we have studied the magnetism of this electrically insulating material in detail. CCO is an electrically insulating, magnetic oxide with a normal spinel cation distribution at room temperature. It has a bulk magnetic moment of $0.5\mu_B/f.u.$ due to a frustrated triangular cation configuration. However, CCO thin films grown epitaxially on (110) MgAl₂O₄ substrates exhibit more than a 200% increase in magnetic moment when compared to its bulk moment. This enhanced magnetization is attributed to lattice distortions arising from the epitaxial strain induced by the lattice mismatch between the film and substrate. Together our complimentary studies of magnetotransport in junction structures, interfacial magnetism at oxide heterointerfaces, and manipulation of magnetic configuration in frustrated spin lattices can suggest new pathways in designing novel magnetic junctions and spin filtering devices.

The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.