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Abstract

In the present paper, a principal hidden
unit analysis with entropy minimization is
proposed to obtain a simple or fundamental
structure from original complex structures.
The principal hidden unit analysis is com-
posed of four steps. First, entropy, defined
with respect to the hidden unit activity, is
minimized. Second, several principal hidden
units are selected, according to R-index, rep-
resenting the strength of the response of hid-
den units to input patterns. Third, the per-
formance of the obtained principal network is
examined with respect to the error or gen-
eralization. Finally, the internal representa-
tion of the obtained principal network must
appropriately be interpreted. Applied to a
rule-plus-exception, a symmetry problem and
an autoencoder, it was confirmed in all cases
that by using entropy method, a small num-
ber of principal hidden units were selected.
With these principal hidden units, principal
networks were constructed, producing targets
almost perfectly. The internal representation
could easily be interpreted especially for sim-
ple problems.

Introduction

There have been many attempts to obtain
networks with a suitable or optimal network
size(e.g. Chauvin, 1989; Chung & Lee, 1992;
Mozer & Smolensky, 1989). These attempts
aim at the improvement of the generalization
performance and the explicit interpretation of
the internal representation (Jacobs & Jordan,
1992). With too many parameters, the gen-
eralization performance can not be improved

and too complex structures prevent us to in-
terpret the internal representation (Rumel-
hart et al., 1986) or coding strategies (Gor-
man & Sejnowski, 1988). If original oversized
networks can automatically be reduced to a
network with an appropriate or optimal size,
it is much easier to interpret or examine the
internal representation which networks can
create.

To extract a simple structure, we have
used a method of entropy minimization
(Kamimura, in press). Entropy H is defined
with respect to the hidden unit activity,

M
H=-a) plogp, (1)

where p; is a normalized activity of ith hidden
unit and o is a parameter and the summation
is only over all the hidden units (M hidden
units). If this entropy is minimized, only one
hidden unit is turned on, while all the other
hidden units are turned off by multiple strong
inhibitory connections (Kamimura, in press).
On the other hand, if entropy is maximized,
all the hidden units are equally activated. If
entropy is sufficiently decreased, only a small
number of hidden units are turned on, while
all the other units are off and not used for
producing outputs. Thus, this entropy func-
tion can be used to detect unnecessary hidden
units to be eliminated, and to construct sim-
ple networks.

A principal hidden unit analysis proposed in
this paper, takes advantage of the localization
of activation by entropy minimization. The
analysis can be used to extract simple struc-
tures almost automatically from original com-
plex structures. This analysis consists of four
steps. First, entropy (H) must be minimized.

599


mailto:RYO@cc.u-tokai.ac.jp

By minimizing entropy, only a small number
of hidden units are activated and used to pro-
duce targets. Other units are completely in-
hibited through the effect of entropy mini-
mization. This means that multiple strong
negative connections are cooperated to turn
off unnecessary units. Second, several princi-
pal hidden units must be determined. A prin-
cipal hidden unit is defined as a unit which
contributes significantly to the performance
of networks, for example, the production of
targets. A measure, called R-index, is intro-
duced to evaluate the effectiveness of hidden
units. R-index for ith hidden unit is defined
by

1 K
= E:k
R.'_.’I—, vy, (2)
k
k

where v} is an activity of ith hidden unit for
kth input pattern. This index represents how
strongly a hidden unit responds to input pat-
terns. If this R-index is greater than a thresh-
old ¢, then a hidden unit with that R-index
must be selected as a principal hidden unit.
Third, the performance of the principal net-
work must be examined, for example with re-
spect to the error rate or generalization. Fi-
nally, we must interpret the internal repre-
sentation of a principal network, constructed
by selected principal hidden units. Since the
obtained principal network is much simpler
than an original network, it is easy to inter-
pret the internal representation of networks
or coding mechanism, that is, what kind of
coding strategies are adopted by networks to
solve problems.

Theory and Computational Methods

Entropy Minimization Method

We have applied en-
tropy minimization method to recurrent back-
propagation (Kamimura, in press). In this
section, we formulate the entropy method for
standard back-propagation.

Suppose that a network is composed of
three layers: input, competitive hidden and
output layers. Hidden units are denoted by
v; and input terminals by §;. Then, connec-
tions from inputs to hidden units are denoted
by w;; and connections from hidden units to
output units are denoted by W;;.

A hidden unit produces an output

Y = f(ui)y

where
N
Uy = Z‘w,‘jfj.
J

where ¢; is a ith element of an input pattern
and N is the number of elements in the pat-
tern. An entropy function at competitive hid-
den layer is defined by

M
H=-a) pilogpi, (3)

where
¢A

and M is the number of competitive hidden
units. Differentiating entropy function with
respect to connections from input to hidden
layer, we have

_oH _0H oy,
dwij Bv; dwy;
= ¢i€jt (4)
where
b = Qogpi + )= =Y piiu)). ()

(X, »)?

By using phi rule, update rules can be
summarized as follows. First, for connec-
tions from competitive hidden units to output
units, only delta rule must be used. Thus,
weights are updated by an equation:

oF
e
OWs;
= Péivj. (6)
For connections from input units to compet-

itive hidden units, in addition to delta rule,
phi rule must be incorporated as

Aw;j =

Awei = oH 0FE
w"’ - _aa’w.‘j 8w.~,~
= adiéj + B6¢;. (7

This update rule means that in addition to
the error minimization, entropy must be min-
imized in the course of the learning.

R-index

To evaluate the effectiveness of hidden units,
R-index is introduced. R-index for ith hidden



unit is defined by

1 oo 5
R‘=Rzk:u"

where K is the number of input patterns. This
index is bounded between zero and one:

8)

0<R; <1.

When the index is close to one, the hidden
unit responds strongly to all the input pat-
terns. On the other hand, if the index is close
to zero, the hidden unit responds to no input
patterns, and thus the hidden unit is unnec-
essary for a given problem.

Results and Discussion

Rule-Plus-Exception Problem

Principal hidden unit analysis was first ap-
plied to a rule-plus-exception problem (Mozer
& Smolensky, 1989). In this problem, one out-
put unit and four inputs (for example, A, B,
C, D unit) are used. The output unit is turned
on, if two input units are on, for example, A
and B are on. In an exceptional case, if all
the four input units are off, the output is also
on. The task to be learned is described by
a function: AB+ A BC D. Fifteen patterns
of total 16 input patterns can be explained
by the so-called rule: AB. On the other hand,
only one case is explained by an ezception, that
is, ABC D. Networks are expected to learn
the rule, ignoring the exceptional case. We
employed extremely redundant eight hidden
units to evaluate the performance of the prin-
cipal hidden unit analysis.

First, we examined to what extent entropy
can be minimized. Figure 1 shows entropy
as a function of the parameter o. Entropy
is decreased as the parameter o is gradually
increased. A minimum value of entropy was
0.061. Entropy was averaged over all the in-
put patterns and was divided by the maxi-
mum entropy. Since values of entropy ranged
between zero and one, this value was close to
the minimum value.

To determine principal hidden units, we
have introduced R-index which shows how
strongly hidden units respond to input pat-
terns. Figure 2 shows the R-index for all the
hidden units, computed with standard back-
propagation (white) and with entropy method

Entropy
!

Alpha

Figure 1: Entropies computed with five different ini-
tial values, ranging from -0.5 to 0.5 as a function of
the parameter o for the rule-plus-exception problem.
Entropy was normalized, ranging between zero and
one, and the parameter was divided by the maximum
entropy: log M.

(black bar). Immediately, one principal hid-
den unit is extracted, because R-index of the
first hidden unit is much higher than that
of all the other hidden units, when entropy
method is used. Thus, a principal network
can be constructed only with this principal
hidden unit. This principal network with one
hidden unit can produce 15 target patterns of
total 16 patterns. The strategy of this princi-
pal network was clear. That is, only when two
input units were on, the activity of the hidden
units could exceed the bias of the hidden unit.
Otherwise, the activity could not exceed the
bias, and the hidden unit was turned off.

Symmetry Problem

We applied our method to the so-called sym-
metry problem(8 bits) (Rumelhart et al., 1986).
Because we have already known its suitable
network size, that is, a network with two hid-
den units (Rumelhart et al., 1986). In addi-
tion, it has been well known that typical sym-
metric connections are generated as input-
hidden connections.

First, we decreased entropy as much as pos-
sible. Entropy reached a lowest point of 0.068,
when the parameter was 0.0005. Entropy val-
ues were normalized between zero and one.
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Figure 2: R-index (R = TIZ'Ei{ v¥), computed with
standard back-propagation(white bar) and with en-

tropy method (black bar), when the parameter o was
1.0, divided by the maximum entropy: log M.

Thus, this state is significantly close to a final
state of minimum entropy.

After having minimized entropy, principal
hidden units must be determined, which con-
tribute mainly to the mechanism of networks.
Figure 3 shows R-indices for all the hidden
units. Let us see black bars, representing R-
index by entropy method (o = 0.0005). We
can immediately detect two major hidden
units. R-index for the first and sixth hid-
den units are much larger. Thus, the first
principal unit is the sixth hidden units and
the second principal unit is the first hidden
units. In this case, a principal network can
clearly be constructed by the first and the
sixth hidden units. On the other hand, by us-
ing standard back-propagation, R-indices are
more evenly distributed over many hidden
units(white bars). These results show that
by using entropy method, a small number of
principal hidden units can be selected.

We have seen that by entropy method, two
principal units can be detected, and a princi-
pal network is constructed with them. Let us
examine the performance of the principal net-
work. When only two hidden units, that is,
two principal hidden units, were used, the er-
ror rate was completely zero, meaning that an
obtained principal network can produce out-
puts as correctly as the original network. On
the other hand, the error rate with standard
back-propagation did not easily decrease. For
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Figure 3: R-index for the symmetry problem, com-
puted with standard back-propagation (white) and
entropy method(black).

the error rate to be zero, the network must
use as many as six hidden units of total eight
hidden units.

Concerning the internal representation ob-
tained by the principal hidden unit analysis,
it was observed that connections symmetric
about the middle were equal in magnitude
and opposite in sign, as described by Rumel-
hart et al. (Rumelhart et al., 1986). The so-
lution was slightly different from the solution
obtained by standard back-propagation with
two hidden units. However, the main point
was completely the same.

Autoencoder

We applied the method to a larger network in
which 35 input, hidden and output units were
employed. The network must exactly repro-
duce five alphabet letters: B, C, D, E, F, G at
output units. Since the difference between
these letters are small, compared with the
difference between other letters, these letters
are expected to be compressed into a smaller
number of hidden units.

A minimum entropy was searched by chang-
ing the parameter o. Entropy decreased grad-
ually as the parameter increased. For exam-
ple, when the parameter o was 0.28, the net-
work could reach a final minimum entropy:
0.069 for a set of initial values.

Figure 4 shows R-indices for 35 hidden
units. As can be seen in the figure, only
three major hidden units can immediately be



pointed out for entropy method. For exam-
ple, 6th, 17th, 28th hidden unit, can per-
fectly be considered to be principal hidden
units, because their R-indices are consider-
ably higher than those of other hidden units.
On the other hand, by using standard back-
propagation, many hidden units are activated,
and thus the information upon input patterns
are distributed over many hidden units.

Let us examine the performance of net-
work with principal hidden units. For entropy
method, when the number of principal hid-
den units was increased to three units, the
error became completely zero, meaning that
networks can produce the original alphabet
letters as perfectly as the original network
only with three hidden units. However, by us-
ing the standard method, the error decreased
very slowly, and could reach zero error with
16 hidden units.

Let us interpret the function of hidden
units. To see clearly the meaning of hidden
units, networks were constructed only with
principal hidden units, and the outputs gen-
erated by the networks were carefully exam-
ined. The first principal hidden unit tended to
produce B. Letters: D,F are also produced as
B. were also produced as B. The second princi-
pal hidden unit was concerned with a letter C
and G. The distance between these two letters
is small enough to be unified into one hidden
unit. A letter D was also produced as G. The
third principal hidden unit could produce let-
ters F and F, because the distance between
these two letters is very small. Finally, a let-
ter D was observed to be produced with the
first and the second principal hidden unit.

R-index, Relevance and Variance

R-index, measuring the strength of the re-
sponse of hidden units to input patterns, have
been used to determine the effectiveness of
hidden units. Relevance, proposed by Mozer
and Smolensky (Mozer & Smolensky, 1989),
has also been useful to evaluate the effective-
ness of hidden units. The relevance p is de-

fined by

Pi = Buithost i = Ewith i
where Fyiihout i means the error between tar-
get and outputs without ith hidden unit. Let
us compare the relevance with our R-index.
Figure 5 shows the relevance (dotted line) and

R Relevance
1,000

Principal Hidden Unit Number

K Releyance

Figure 5: R-index and relevance for hidden units for
the symmetry problem.

R-index (solid line) for the symmetry prob-
lem, discussed in the previous section. The
relevance and R-index is clearly correlated,
as shown in the figure. The correlation co-
efficient was 0.99 for the symmetry problem.
Thus, both R-index and the relevance can be
used to evaluate the utility of hidden units.
However, to compute the R-index is much
simpler than to compute the relevance.

The variance of input-hidden connections is
also used to show the strength of the response
of hidden units to input patterns. The vari-
ance (s?) of ith hidden unit is defined by

1

where M is the number of hidden units and w;
is an average over all the connections into ith
hidden units. Figure 6 show the variance and
the R-index for the symmetry problem. As
shown in the figure, the variance and R-index
is clearly correlated. The correlation coeffi-
cient was about 0.99. This means that prin-
cipal hidden units are considered to be units
with larger variance of input-hidden connec-
tions.

Conclusion

In this paper, we have proposed a method
of principal hidden unit analysis by entropy
minimization. By minimizing entropy, only
a small number of hidden units are turned
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Figure 4: R-index for 35 hidden units for standard
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Figure 6: R-index and variance of input-hidden con-
nections for the symmetry problem.

on, while all the other hidden units are off by
strong inhibitory connections. Principal hid-
den units are considered to be units which re-
sponds quite strongly to input patterns. With
these principal hidden units, principal net-
works can be constructed. These principal
networks can produce outputs as correctly as
original oversized networks. Thus, the inter-
nal representation networks can create is easy
to interpret. In addition, without using arbi-
trary criteria to eliminate hidden units, it is
possible to obtain an optimal size for a given
problem by using principal hidden unit anal-
ysis, that is, the automatic determination of
optimal size without retraining is possible. Fi-
nally, we think that our method can easily be

extended to unsupervised learning to extract
some features hidden in input patterns,
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