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. ABSTRACT
The technique used by Faddeev to obtain connectedfeqpatidns
f for the nonrelativistic three-body T{ matrix is~genérglized for
four particles.v It is shown that the four-body equations are compleﬁe-
ly determined by the solutions of all the possible twoibody subsysteuns, V%
as 1s the case in the three-body problem. This approach can be extended %

to more'complicated multiparticle systems.

by

-



" more than two particles has recently received considereble-attention.

UCRL-16158

I;. INTRODUCTION

" The study of nonreletivistic scattering processes that involve
| 1-k

When the particles interact only by pairs, and there are no multiparticle

“.forces, the problem.cannot be approached by means of the Lippmann-

Schwinger eqnation.5 The mein reason for this is that ‘the Lippmann-

iSchwinger kernel E: V (E - H ) is the sum of t'v»disconnected '

1<
parts in each of which (N-2) particles are not interacting. In

© momentum space, this yilelds (N-2) delta functions in addition“to f

the overall delta function representing conservation of momentum.

Consequently, the kernel is unbounded and the equation is strongly

g Singular; This difficulty cannot be removed by'iterating the equations;
-any iterated kernel will still contain disconnected parts. The only

- possibility of obtalning equations that may be solveble by one of the

standard methods is to. apply one of the usual tricks for handlirg singu- -

lar integral equations., It consists_ofvsolving in some way the singular

- part of the kernel in a closed forn, in such a way that the remaining

equation is nonsingular. In the case we are consldering, 1t amounts

to recasting the,Liprmann-Schwinger.eqpation into g connected form, by

'previously solving some pileces of the kernel in an explicit way.

This problem was solved for the general N-body problem by

;Weinberg.3 We refer to his paper for & very lucid discussion of

the difficulties associated with the multiparticle scattering problem.

6
Huntziker has glven a general proof. of the compactness of the




" Weinberg kernel;'providing‘Ceftain esSumptions-are made about'the3duy

' ‘potentials.. In the four-body problem, for example, the Weinberg i' "5f -

“-Qv’complication is that the Faddeev equainns do not depend upon‘the ff

general technique. In Section II we review briefly the derivation -

. of the tnfée-body Fadeev equations. - In Section IIT the four-body * % ¢ =

*

equations require a knowledge of the solutions of all the poseible:

two- and three-body problems involved, as well as of the potentielsi. o

v, .

i3 . : ‘ : -
In the three-body problem, another ﬁoséible-solution was

“-proposed previously by’Fe.ddeev.2 In place of having only one

L»'vfequation for the three-body T matrix, he proposed a set of three

coupled integral equations. But the.counterpart of thﬁs slight

original potentials. The inhomogeneous term and the kernel of the
Faddeev equations are completely determined by the off-the-energy-shell

two-body amplitudes. This property.of the Faddeev equatlons has been

- used by Lovelace2 to propose & practical theory for three-particle

procesees, in which experimental information'about.the two-particle
subsystems is used to determine partially the off-shell two-body ,»-
amplitudes.

The purpose of this paper‘is to generaliie thedFaddeev

~approach to the four-body problem; that is, to get connected eQuations‘.

in which the two-body potentials do not appear explicitly. It is

possible to go on and get similar equations for more than four

v particles, but we will not do so explicitly in this‘paper because

the four-body problem is sufficiently complicated to 1llustrate the

i
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problem is formulatéd and Some preliminary results are derived. 1In
Section III, the‘four-body.equatiohs are derlved; and finally their

propertieé and possible impoftance are discussed in Segtion V..

-~

@ :



. When the resolvent operators of ‘Héﬁ and H,

e

II. THE THREE-BODY PROBLEM .

' Consider the Hamiltonian

" where o g _ . o . J

GO(Z).'? (z - ﬁo)'l-;- 6z)

are introduced, the three-body T matrix is defined by . . =

6(a) = Gy(e) + 0 (a) Bx) e 2)

Using the resolvent ldentity

6(z) = o () + 6 (2) V6(2)

 one obtains the Lippmann-Schwinger_eqpaﬁion,6

B(z) = V+VGl)V = V ; v Go.(lz) a('z)

Faddeevl defines the following opefators .

x

Tij(z) = Vig + yij G(z) v.

or

Ba) = B() + B,0) + By (2)

A
(z - H)-} ’

RCE

()

Clearly, the three-body T metrix is givepvbyvthe sum

s
B | @1

.'f (2.6):
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The Faddeev equations are coupled integral equations for the Tij(z)

In order to obtain them, let us consider the resolvent of the Bamiltonian

H.=H +V

c5 I T ¥ I
S P

The two-body T matrix for'particles 1 and J 1n the three- .

body Hilbert space--i e., with particle k as a spectator particle--

Vis defined by

() = Ty Vg ey@) vy, b (2.10)

and satisfies'the'Lippmahn-Schwinger-eqpatidn;

6y(2) = Tyt V6 b, . (211)

It 1s trivially releted to the solutions of the two~body problem,.

. [ —’ 2 ’
-> = > > y=>y=>y e L N e A l ->,—>, )
.

SHRR l tij(Z) | p;PsPy) = 8(p, = By )Py | ty,(2 - 2% P;Py
| ..(2.12)
The identity : . : L

G(z) = Gij(z),* Gij(Z) [Vik f'YJi%.]-G(zj!.-;,,' 1434 k.‘ . (2.15')

can easily be shown,and by insertiﬁg'(2:13)-iﬂie”(§:7j we get

W

ey



| T »(g)’: Viﬁ ij ij(z)V +V 13 ij( )[V + V3k}G(z)V

. "Assuming that the ‘potential satisfies

. the fifth iternated kernel 1s'compaétvror aﬁy.value of z .

b

;

]
<.

5 Vi3 iJ(z) Vi3 13(2)[ VJ 1 J ij(z)[vifvjk]c;(z)v.

4

'vBy using (2. ll), and also the Lippmann-Schwinger equation for tij(z) in

._the for@ qij(z) T Go(z)t (z) , one dbtains

| .@ij(z)_f ty(2) + ty,(2) go(z){vik G(z)V + vJ Jk G(z)v]

Finally, using the definitions .(2.7), this equation begomes

'-_Eij<z>—t (z)+tij(z)_Go(z)(T (z)wjk(z)} | .'_":'-';g.lz_;)_

for | 1:3: = 1)2)3._
and i + 3 + k .

‘These are the Faddeev equations...Because 6f the fact that

TiJ(Z)_‘is ndt coupled to itself, the first iterated kernel is cbnnected. ;_

S Al - - iy
lvia(q-q)l [l+(q-q)J °3 e >0, (2.15) -
Faddeev proved that»the first iteraﬁed kernel isvcompact, egcept whéh

. _ . . v -

z is oh.the real positive a.xis.l It islalso poséible toﬂprove that L  ﬂ R



T
ITI. THE FOUR-BODY PROBLEM -

In this section, we consider a Hamiltonian of the form

H = Ho + V , where

Z Ty for 1, 5.5.0,3,3, b

Here again we define
' -1 ‘ -1
6 (z) = (z-B)™ , c(z) = (z-H)
| — y
The four-body amplitude ) (z) 1s defined by the relations
a(z) = Go(z) + Go(z)jj(z) Go(z)

or

) = Vo) V..

We introduce next six operators, in analogy with (2.7),
'fjﬁi'j(z) = 'vij'+ Vs G(z) V, for 1 <375 4,3 = 1,2,3, k4.
The four-bbdy fY(z)',opérator'is then given by the sum:

T.(z = Z S‘ij(z

(3.1)

(3.2)

(3.3)

- (3.4)

(3.5)

(3.6)

(3.7)-



'the‘frij(z); such that they are connected, and do not coﬂfain the s

8-

e

Our aim is to get a sét of coupled‘integral'eqpations for'j

potentials. This will be done in.the next section. Here, for : | L w

- the sake of clarity, we want to make a few comments about the -

notation we will use in fhe rest of the paper. If we use the

indices 1,J,k, 4 it will be understood thﬁt;their range of values o

is from 1 to 4% . When we use the subindices 1Jj, 1jk, or ijk¢

in an operator, it will alsc be understood that 1, ii<k, and

<<kt respectively. The two-body amplitudes of particles 1

‘ ‘ N
and J in the four-body Hilbert space will be denoted by tij(z);
the three-body amplitude of particles ijk 1n the four-body Hilbert -

space will be denotéd by T(L)(z), where the upper 1ndex indicates

‘the spectator particle. We will use T (z) for the four-body

‘amplitudes. : _ ‘ e

The matrix elements- of tij(i) and T(L)(i) can be

written in terms of the matrix elements of the operators defined in-

thé previous sectlon, in the following way%;

@ 233,16, @ BIBE) = 838G, 315,515 z0 032D, (.8)

-

BEAZIT BRI - 80,88 A 0 B3R, G.9)
where w, = 5%;, . )
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Let us define the QpératOrS 3ygrmtm:ul

E = H +7V

1 o) 1j
":Hi,jk = 'HO + Vi,j
Hig,xe = Ho T Vyy

‘and their resolvents;

"

Gij(z)
Gijk(z)

Gij,kz<z)

+ Vik + V

2

=O=.

>

7
* ey

S
(Z'H_:L;)) -

(z-H

(z-H

L,

13k

ij,kb)

)

(3.10a)
(3.11a)

(3.12a)

(5.10b_)
(3.11p)

(3.12v)

We will need ﬁp use several properties of thetw- -and three-

body amplitudes.

tij(z? = v, 1

13 ij(Z)

and ﬁhe:LippmanneSchwinger equations read:

Yy ij(Z)

The two-body amplitudes are given'by

J

tij(z) G ().

(3.13)

(3.14)



«10.«

The three-body amplitudes T(L)(z) _are defined by e

>

T(z)(z) = (v ij+ Vot de) + (v A A de) Gijk(z) ( + V + V ); (3.15)

and the Faddeev operators (2.7) in the four-body Hilbert space read

’

= ViJ +_V'iJ Gijk(Z) (V13 +'Vik+ Vﬁk) . o (3.16)

(¢)
Thelr matrix elements are trivially related ﬁd the matrix
elements of the operatofs @ (z) studied in fhé preceding section;
the relation is given by Eq.(5 9) by writing Tij( )(z) and
T (zlb )} in place of T (z) and T(z-w ), respectively.

The Faddeev equations for - ij( )(z) are:
Tij(&)(z) - tij(z) + tij(z) G (z) [Tik(z)(z) + Tjk(z)(z)] - (317)

‘Before going on to derive the four-body eqpations,.it is

convenient to consider in some detail the Green's function,

Gij'kb(z) » To calculate it is to solve a four-body problem in
b4 .
which the only .nonvanishing potentials are Vij and sz . We " .

" shall show that this problem can be solved in & closed form; in

terms of the two-body amplitudes t (z) and tk&(z) only.

Let us call CL 43, kt(z) the four-body amplitude assocliated .

with the Hamiltonlan Hij ke Obviously, we have:
s .

F

N
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(Xij,kﬁ(Z) = (Vg st Vieg) + (Vygt Vigg) Gy g (2) (Ve V)0 (5.18)

>

Again following Faddeev's idea, we introduce the operators PR CL TR

Q:ij(z = Ty, o+ Gij,kz(z_) (Vij + V), » (3.19)
Oy (2) = W+ v, 0y kN) Wyt V) (3.20)
Oy, kdz - Oy <z>+0kz<z s (5.21)

Using the identity:
Giij%(z) = ( ) + Gy (z) j,k&( z) . (3.22)

One.can. very.simply: obtain for Q. ;j(2)i and [O4;(z) the equations

i Lt

it

(0, = () + 1,,(2) 6,(2)04, (=)
¢ , : : (3.23)
(L- tkb(z) + tkL(z)‘Go(z)CLij(z) R

e (2)

Although these equations will help us in simplifying the
algebra in;the next section- it is not necessary to solve them to
caleulate: ij(z)’ for example. Remember that the Hamiltonian

Vm

Hyjw 15



v e ), L ) s
=H+ 7V, +V, = ho : Vij+ h + Vk& -'hij+ by, ; (3.24)

Hij,k& i3
where - ®
32 32 ' 22
(L) _ 1 .73 _ . - b
h, T Zm T Ew T @ +@y Tor ©=a5 :
(3.25)
(k) '
ho = qk + ak R

Therefore, Gij k&(z) is the resolvent of the sum of the
. 2’ . : L.
~ two=body Hamiltonians hij and hkL . These two operstors commute,

because they act upon different spaces. Therefore, we know that

= gij(z)‘ =H'(z-hij)fl’ aﬁ& gkg(z) = (Z;hkt)-l , the resolvent
' 8 | i |
of hy,+h, 1s glven by’
"‘q—-:l—-—-f ". V" 1 .
Gij;k%(z> T ond gij(z ) gkz(z-z ) daz® (5.26)
c _ . .

where the contour of integration encircles the spectrum of
gij(z') in s counterclockwise ey (or-the spectrﬁm of gk(é-z')
in a clockwise way). The reader should bear in mind that gij(z) '
and gkb(z) are the two-body Green s‘functions in differenf
two-body Hilbert: spaces. ‘Tﬁerefore, the matrix element of the
right-hand side is trivial,

e e

(2yB;2, 3, 10,3 1o (2) I3} B} 2L B} ) =

- £ J (ByFyleyy(a)py 8] ) (B2, ley, (e-2)mp)) a2’ . (i27)

¢
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Using Ea. (3. 26) for C—i 3 kz(z) ohe’.can -obtaln Forithe:

bperétbr»CLij(z)A “the’ formula

>

(Lij(z) = .tij(Z) +'§%§-J'€ii(zf)go(k&)(z-z') gk&(z-z’).go(k;)(z-z’) dz'

c

é%r-{f:\aij(z')go(ij)(z') (k“(z z')tkz(z-z'_) az'.  (3.28)

c

A proof of this formula is given in the Appendix. The matrix

elements of (z) are given by o j
| !
> > > 3 - R e o
By, 5.5, 18, (z) E pi 03 'Pk'f’z ) S (3.29)

(5,3, | By (ampmn,) | 3,3, 8Gy-8y) 8G,-3;)

1 > 3 A 3,9 1
o dz' ¢ lt (z') | p'B. ") .
Bed ) SR T VR -l e,
.’--) ~ g s ,“ ' 1
( PPy [ tkl,<z°z) ] -I’)ka ) T2y - (U“}’J w@i)
l t [} l l
2n'i dz ( pip , tij(z ) I PiP ) '-(wj,_+ wj) (Z-Z')-(wk’!' wf,)

c

>9 | 2 A
(pkp&.l tka(z“z_)]PkPL Y s
and in the case in which sample pole approximations are used for
the two-body amplitudes, the integrals can easily be evaluated

A similar formula can be written for Clkz(z .
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IV. THE FOUR-BODY EQUATIONS

In the previous section we have introduced the'operators

-

ifij(z); « i our intentlion here is to derive the system of coupled

integral equations satlsfied by them. Let us conslder, for example,-

- the operator J. (z), defined by~

S p(2) = VT, c,<z)v.'"- . o (wa)”

‘ | - .
* When we derived the Faddeev equations for T,:; we used in

1
the definition (2.7) . of this operator an identity between G(z

and Gij(z) . We could use in (L. l) a similar resolvent identity

 connecting G(z) with Gle(z) , but the resulting equations would
. not be connected, If we are to obtain connected eqpations, we

“must. use in (h 1) an identity connecting c(z) with G, (z) and

all the other Green's functlons. containing the subindices 12,

namely: G125(z), GlQh(Z) and G12,5h(z)°
The following ildentities can be easily fshcwn:

Gy (2) + Gyp(2) '[VB * Viy * Vo Vg VBN] a(z),  (k.2) |

6(z) =
c¢(z) = Gmi(z) + Gl23(.z') _Vlu + Vg, th] G¢(z) , (1;.5)
G(z) = G oy (2) + Gmh(z)‘ Viz + Vs ¥ v5u] G(z)’, (s

G12,34(2) *+ Cp 5,(2) [VB Vg Vst V3u] 6(z) . (85)
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Next we rewrite (4.2) as

‘n a(z) = G12(2) »+‘ Gle(z)[V15+ v23} q(z) + Glz(z).['v'lﬂ Vzh]G(Z)f*‘ Gle(z)VEhG(z) ,

(4.6)

and insert the identities (4.3), (4.4), and (4.5) in place of the
G(z) which are multipled (in the operator sense) by [Vl5 + VZB] ’

-[Vlh + V24] ) an@ V31+ s respectively. In this way, we obtain_‘ _

- 6(z) = 6,,(z) + 6,5 (2) [le + v23] leEB(Z)

+ G12(z) bVl)_'_‘-i-, Vo, Gmn(zl)+G'lg(z-)“.y_)’h-:Gi:zﬁu(zf)}

+ Gla(z) Lle + Ves. GlzB(z') [Vlu + Ty, + VBIJ c¢(z) _
' (%.7)

+Gyp(2) [Ty + V5] Gon (@) (Vo5 + Vs + Vg ] 602

+0p(a) Vg Gy 5 (a) [Vog + Ty + Vg vzu]_c;(z) .

This is the resolvent identity which we next insert in
(k1) , to get an equation forTlE(z). Using (3.14), (3.16),

(3.17), (3.18), and (3.6), we find

N\
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‘;‘le(z) = tp(e) + r,(2) -tlé(z)] .

b . -

+ [Tlg(5)(z) -ty (2)] Ell?_(z)' - tlé(z)] -

4+ tm(z) Go(z) [VD + v25J GlaB(z) [311;(-2), +ﬁ2h(z.)+j—5h‘('z)~-+>; '(u.s)

-

Glzh(z>[313(z> +32-5.('z) +‘3'3u('z); +

-

t,(z) ¢ (z) [vlh +,V2Lh

+ tle(z) Go(z)_V3A Glé,}h(z) [ (z) +3 h(z) +ff (z) +f§ h(z)].

The potentials can be completely eliminsted from the equations
by using the following relations; which may be obtalned with the help

of (3. 16-19)
i K o :[Vik + VJI;} Gijk(z) = {Tik(%)(z) +-’7"'J}3'1;§&)(Z)} Go(z); (’-&9)

Vie G431 (2)

- &, () . )

Therefore, using again the Faddeev equations (3 17), as -

well as (3. 23) one has -

| ‘tm'(z>'qo(g> [v13+ v 5] Gy () = [le(h)(.z'.)-v-tle'(z)]c}‘o_(‘z)‘e “‘>°(z>c @)

(L. 11)
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t,(2) Go(z-)[vlu+‘vveh}Gl2h(z) ={Tl2(3)(z)-- tlé(z)] 6,(2) = 1,00 () _(2)

) | o (4.12)
£, Go(a) Vg Gpp 1 (2) = [&mm - tle(z)}Go(z') =4, %) o (2). (h13)

The final four-body equations are obtained by inserting

- (4.11-13) into (L.8). In general, they read:

T, () - £,,(2) +‘Tij(k)c(z) + T,

(L)c(z).f(LiJc(zf .+
+ om0 o () [Tik(z) + Ty (2) +31k<2>] s

| ‘ : | (kb))
+ Tij(&)(c)(z) GO(Z)[%yié(z).+iSJz(z) + jzk(z)]4+ .

* a«iic(Z) G, (2) [‘_Tik(Z) +ijk(Z) +3’i¢(2)-,+°§3&(Z)]. .

' 'Theiéﬁéfatorﬂ.T (k?c(z) ris defined-tq.bé,.[Tij(k)(z)a-ﬁtih(z)] .

| 1 :
The-opéfgtor CLijc(@hsdbyéééined to be[ogj(z)‘- tij(z)] . Given
thé two-body scattering amplitudes:'tij(z); bne;cangcalculate;thbse
operaforsl by-solvinélthe three-body Faddeev equations: and
cOmpﬁting the integrals involved in our formulas (3;29).

Récdlling that the four-body T (z) operator is the sum

of all the'frij(z) operators; one can check very easily that the
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sum of the inhomogeneous terms of the six equations ylelds correctly:
all the disconnected parts:.of the four-body amplitude. The first
iterated kernel is cornected because in (k,1k) ?Yij(z) is not

coupled to itself.

4

9
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V. CONCLUSIONS

This approach can in principle be generalized to the

N-body problem. The basic idea is to introduce A g"l ” amplitudes

"?Eij(z) , in analogy with Eq.(3.6). In order to get an equation -

for fyij(z) one has to insert in its definition the resolvent
1dentity between the full N-body Green's function G(z) and all
the possible disconnected N-body Gr;en's functions that . contaip
the potential Vij. These.are known.from the solutlons for systems
with & smaller number of particles; and from generaligations of

Eq. (3.26). By following this approach, we are guaranteed that the
potentials Vij will not appear in the final eqpations...

‘We come then to the conclusion that, in the absence of

multiparticle forces; the multiparticle T(z)l.dperators are
- completely determined by the tvo-fody 4tij(i) -operators; with no
reference to the-original poteptials whatsoe?ef;. However, one
must bear in mind that in order to solve the ﬁaddee% equations- for
the three-body pfpbla@ or the equations we proposed for the fourf
body probiem, it is necessary to know the matrix elements of

'tij(z) of f the energy-shell, The experimental dats determine . them

. only on the energy-shell, so that all we can measure is

ain - 2
(pltij(Z)lﬁ') = tij(ﬁ,i';Z) vhen ¥ = 3'°= 2. The only vay of

.obtaining the off-shell extension 1s through the Lippmann-Schwinger
equation, which requires a knowledge of the potenﬁial; Nevertheless,
the Faddee¥ approach still has its advantages in some cases. For

45 : _ '
example, if one is dealing with singular potentials, the mathematical



the bound-state wave function by (p2 - Ep) v(p), Ep being the

binding energy. In the case of a resonance; they are not so well -

fpotentials.9 They also contain the left-hand cuts of the partial-:‘

20

difficulties associated with them need €b be solved'only at;the - »pf:f:_ .

two-body level, since’ they are not. directly relevant to

multiparticle calculations. If the two-body scattering amplitudes'

appear to be dominated by poles near the physical region--i e.,bound ’

 state or ‘resonance poles--the problem of their off-shell extension

can be overcome by using phenomenological form factors. If one

”considers an off-shell partial-wave amplitude t (p,p ,z) the poles ¢

will be poles in 1z, It is possible to prove that in the neighborhood-'

of a pole Azg the off-shell amplitude is factorizable in 1ts

dependence upon the variables p and p' .2 Therefore, one can

write:
t(2's 2) ~ () fs:,;(z)g,,(p{) ~'.'('<5'.i)"‘

A simple form for t (z) is Just a pole term,/,z s

An the case of a bound state. However, more complicated expressions

for resonance poles can be used 1f one wants to satisfy two-body-

unitarity. The functions gL(p) are the so-called.form factors;

An"the == case of bound-state poles they are-given in terms of

defined, but in any case we know their'behavior at the origin

(‘)‘?12

Coéz) and ‘at infinity - ) for superpositions of Yukawa

wave amplitudes,9 and merely express the fact that the bound state ﬁi’i _ Q['

N
!
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.'and regonance'poles by‘whiéhvone 1s approkima@ing the two-body

emplitudes are not elementary systems but composite ones with
internal structure. All these requirements can be used to construct
phenomonological expressions for the}form¢factors; The Faddeev'

approach. is very useful 1in performing semiphenomonological,caléula-

. tlons to Investigate the effect of tWo-body'resonénces and bound-

states in multiparticle'systems;‘

After this paper was writtén, we recelved a paper by R

L. Rosenberg,lo which includes most of the conclusions presented here.
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APPENDIX

In order to prove Eq. (3.29), we have to use Eq. (3.26)

13,k

for G (z) 4n the definition (3.19) of the -operator CLij(z).
' In so dolng, we obtain: '

_(L (z) =V, 5t _ élL-J( (z9 gkt(z z)dz'\{l_'j 13 gii.]éij(z)gkL(z-zﬁdz'Vk&

c
(A.1)
‘Using the Lippmann-Schwinger equations ‘; v : I

RANNCORE 215(23) gO(i5)(zf) ’

: By (2-2") Ny = gb(#L)(z'Z') %#L(Z;Z,) ’

and

we obtain:

GLiJ(Z) = Vgt §%I.j’[ (z') - v j] gkﬁ(zliV) dz"”“
‘ ' : ' '(Af2)
* Zii thia(z') g (ia)( )&y, (k )(z 2") t (z-z') dz! 3

I .
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Using next the definitions of %kz(z)f;
PR ¢ 7 P 635 VRN LR ¢ P
By (z2') = 8, ezt 4 g F () Ty (zat) 8 B (e,

Equation' -(A.2) - " r.» becomes:

c . C

L thij(z') g, <k)Z')(z-z') e (z-z') g, (% L)(z z') dz'

Eﬂi : '
c | | : - (a3)
= [0 €8 6 B A P

By teking the contour ¢ of integration as enclosing the
singwlarities of gk&(z-zf) and go(#L)(z-z')v'in_a clockwise
way, the first two ferms of thevfight-hand side can be simplified.

'vRecalling that

go(m)(uie) - go(k&)(i;ie) = "'2"1‘8[.2"}‘6(“.)} .
one gets - ' S
%f?ﬁ(z';) go(kz?(z-_zf)_aé,_ ) tvi,j(z)..’.'f' e



Therefore

-2k -

The bracket multiplying the potential vy, in Eq. (A.3)

13

can be shown to vanish because of the completeness relation for

(k2)

o + Vk& . We know

the elgenstates of. the Hamiltonian hkz'=

that the Green's function gkL(z) can be represented as:

Iww! r o lE) (el DR
8kz(z = 17; - *E [d_E —— , (A.5)
o} R
where lwh) are the discrete elgenstates of hk& with binding

' -energy (-En) , and |¥(E)) are these belonging to the continuum.

b

2ni

o where the contour ¢! encloses the spectrum'of 'gk£@D)v in a clockwise:
way. Therefore, the completeness of the eigenstates of hkL(Z

7iguarantees that

1 - gk%(z-z') dz' = 0 . R (A;6)'

Using (A 4) and (A. 6), one éan ‘reduce: Eq (A 3) $o- the‘Eq. (3. 28) of

. the text. . ~ .

=5 f Bep (221 8" = - gp Jg () @ = 5 1) (y | f aslv(=)) (@) ,

B
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