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Abstract: Limited information on the potential toxicity of ionic liquids (ILs) becomes the bottleneck
that creates a barrier in their large-scale application. In this work, two quantitative structure-activity
relationships (QSAR) models were used to evaluate the toxicity of ILs toward the acetylcholinesterase
enzyme using multiple linear regression (MLR) and extreme learning machine (ELM) algorithms.
The structures of 57 cations and 21 anions were optimized using quantum chemistry calculations.
The electrostatic potential surface area (SEP) and the screening charge density distribution area
(Sσ) descriptors were calculated and used for prediction of IL toxicity. Performance and predictive
aptitude between MLR and ELM models were analyzed. Highest squared correlation coefficient (R2),
and also lowest average absolute relative deviation (AARD%) and root-mean-square error (RMSE)
were observed for training set, test set, and total set for the ELM model. These findings validated the
superior performance of ELM over the MLR toxicity prediction model.

Keywords: toxicity; ionic liquids; acetylcholinesterase enzyme; extreme learning machine; multiple
linear regression

1. Introduction

With ever-increasing demand for clean energy and stricter environmental regulations, scientists
have always strived for sustainable and green chemical products [1]. The apparent benefits of ionic
liquids (ILs) has spurred intensive research in order to replace the conventional hazardous solvents
for broad scale industrial applications, such as organic reaction [2–8], catalytic processes [9–12],
gas separation [13–16], storage materials [17–20], etc. Among the unique properties of ILs, negligible
vapor pressure has primarily attracted the attention of many researchers, and the field has sought
improvements in positively affecting overall efficiency of many chemical processes under the principles
of green chemistry [21,22].

State-of-the-art research shows that the previously accepted advantage of low toxicity for ILs
has proved to be overestimated, meaning that to some extent ILs in reality pose hazard potentials to
humans and environment [23]. Rogers [22] et al. challenged the notion of green ILs because of their
hazardous properties, e.g., unknown toxicity and stability. Meanwhile, Jastorff [24] et al. discussed the
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toxicity and ecotoxicity of ILs using quantitative structure-activity relationships (QSAR), which could
be used to aid the rational design of optimal solvents from a technical and environmental perspective.
Docherty [25] et al. found that ILs with hexyl- and octyl-imidazolium and pyridinium bromides
had significant antimicrobial activity to pure cultures of Saccharomyces cerevisiae, Escherichia coli,
Bacillus subtilis, and others. Later, Pang [26] et al. reviewed the environmentally relevant issues of ILs,
such as environmental application and toxicity. Karunanithi [27] et al. studied the life cycle of aquatic
ecotoxicity impacts for five common ILs by integrating physical properties, toxicity data, and transport
parameters in the model. For the first time, they reported the freshwater ecotoxicity characterization
factors for ILs. They found that an average of 83% of ecotoxicity impact was due to chemicals released
during the upstream synthesis steps, while the remaining 17% ecotoxicity was related to the life-cycle
energy consumption. All these findings underscore the need to develop sustainable and nontoxic ILs
in future research. Unlike other basic physicochemical properties, such as density, viscosity, thermal
stability, etc., to the best of our knowledge, research studies on the toxicity of ILs are still insufficient,
and therefore need to be addressed further. In this regard, key developments in toxicity of ILs will
highlight the designable feasibility of ILs to be environmentally benign with huge potential benefits
for sustainable and green chemistry [28]. On the other hand, it is worthy to emphasize that around 108

ILs are accessible due to the combination of enormously different cations and anions. Consequently,
challenges have been encountered when investigating the toxicity of ILs [28,29]. To deal with these
issues, it is highly necessary to develop efficient models to predict the toxicity of ILs with high accuracy.

Recently, QSAR studies have been reported in correlation with, and prediction of, properties of
ILs [30–36]. QSAR is a powerful tool for accurately predicting the physical and chemical properties
when applied to a set of molecular descriptors. In this regard, QSAR is supposed to be useful
for estimating and screening chemical compounds for specific applications, having the desired
characteristics for elucidating the underlying relation between micro-structures and macro-properties.
Since the pioneering studies by Jastorff and co-authors [37], research attempts have been devoted
to improving understanding and estimating the toxicity of ILs [30,38–42]. In subsequent years,
Pereira et al. presented their toxicological assessment of a group of environmentally-friendly ILs with
benign cholinium cations and linear alkanoate anions, using filamentous fungi as model eukaryotic
organisms [39]. They found that the toxicity of ILs was increased with elongation in the linear chains
of the anion, while branching resulted in reduced toxicity due to depressed lipophilicity [39]. Similar
conclusions were drawn by Lima and Coutinho [43]. In order to further these studies, Ranke and
co-workers studied up to 74 ionic liquids with different cations and anions to show the influence of
cation lipophilicity on the cytotoxicity in IPC-81 leukemia cells of rats. They found that substituents
in the cation increased the toxicity of ILs [41]. Torrecilla et al. developed QSAR models based on
MLR and neural network for prediction of toxicological effects of 96 ILs on IPC-81 [42]. Romero
and co-workers studied EC50 values of each compound in an aqueous solution using the microtox
standard procedure. They found that the short length of the R2 side chain on imidazolium cation
was favorable to diminish the toxic effect, while anions had a minor effect on the toxicity of ILs [44].
Yan et al. investigated the toxicity of ILs in acetyl cholinesterase enzyme (AChE) by the QSAR method
using topological indices based on the atom characters. Their results demonstrated that the MLR
model was capable of predicting the logEC50 (AChE) of ILs by using a 177 unit training set and a 44
unit testing set of topological indices generated from cations and anions [45]. Recently, Singh et al.
investigated the chemical attributes of a wide variety of ILs towards their inhibitory potential of AChE
using a supported vector machine (SVM) and a cascade correlation network (CCN) [46]. Their results
showed that the proposed QSAR models had more statistical confidence, especially with respect to
external validation, which has not been focused upon in other studies. This work addresses the success
in predicting different toxicity classes and precise toxicity end-points of ILs using proposed QSAR. Like
other researchers, we have previously focused on establishing the toxicity database of ILs, including
over 4000 pieces of data and using QSAR models based on quantum chemistry descriptors and an
artificial intelligence algorithm to study the toxicity toward the IPC-81 [40]. The results revealed that
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the nonlinear model developed by the SVM algorithm was more reliable in the prediction of toxicity
of ILs. Until now, very limited information has been available on the toxicity of ILs towards AChE.
Our main objective in this work was to enhance the understanding of IL’s toxicity towards AChE by
using novel extreme learning machine (ELM) algorithms with better accuracy in a bid to shed light on
designing novel environmentally benign ILs for future applications.

2. Results and Discussion

2.1. Quantitative Prediction of Multiple Linear Regression (MLR) Model

To obtain the predictive model with an optimal number of descriptors, the stepwise regression
approach was utilized to choose the effective input descriptors. As shown in Figure 1, the number of
descriptors gradually grows as the squared correlation coefficient (R2) and adjusted squared correlation
coefficient (R2

adjusted) of the model grow, with simultaneous decrease in standard error (Std. Error).
When the number of input parameters overtakes 11, the R2, R2

adjusted, and standard error do not
change evidently. Thus, the MLR model based on the optimal set of descriptors was determined.
The final model is shown as Equation (1), where P0 stands for the intercept of the prediction model,
while Ci and Cj mean the ith and jth coefficients respectively; SEP-h is the electrostatic potential surface
area for cations or anions at the electrostatic potential h while Sσ-k means the screening charge density
distribution area for cations or anions at the screening charge density k.

logEC50(AChE) = P0 +
8∑

i=1

CiSEP−h +
11∑

j=9

C jSσ−k (1)

Details of the coefficients and the parameters, including the t values of the descriptors, can be
found in Table 1. In total, eight SEP parameters and three Sσ parameters were chosen for the model,
where C is the cation and the numbers are the corresponding electrostatic potential and surface
screening charge density, respectively. Since t values indicate the significance of the parameters, it can
be seen that Sσ-C0.013 is the most vital parameter for the prediction of the toxicity of ILs. The σ-profile
range can be qualitatively divided into three main parts: the hydrogen-bond (HB) donor region (σ <

−0.0082 e/Å2) and the HB acceptor region (σ > 0.0082 e/ Å2), as well as the non-polar region (−0.0082
e/Å2

≤ σ ≤ 0.0082 e/Å2). Therefore, it can be concluded that the larger the Sσ-C0.013 value of the ILs, the
lower the toxicity of the ILs. The SEP-C36.25 and SEP-C82.75 are the second and third crucial parameters,
while their coefficients are 0.361 and −0.213, respectively. It should be mentioned that all the selected
parameters are from cations, which illustrates that the cations of ILs have a vital influence on the
toxicity of ILs, while the anions have little effect. This finding is consistent with the result that the
cation makes the dominant contribution to toxicity for most commercial ILs [45].
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Figure 1. The squared correlation coefficient (R2) versus parameter number for the training data set.

Table 1. Coefficients (Ci), parameters (SEP-h and Sσ-k) and the t values for Equation (1).

i Coefficients-Ci
1 SEP-h

3 t

1 −0.185 SEP-C88.75 −6.582
2 −0.266 SEP-C35.25 −6.731
3 0.361 SEP-C36.25 10.565
4 −0.213 SEP-C82.75 −10.501
5 −0.289 SEP-C31.25 −7.917
6 0.133 SEP-C89.75 4.936
7 0.204 SEP-C64.25 7.241
8 −0.142 SEP-C53.25 −5.498

j Coefficients-Cj
2 Sσ-k t

9 0.537 Sσ-C0.013 18.957
10 −0.102 Sσ-C-0.012 −9.583
11 0.234 Sσ-C-0.016 8.303
P0 2.712

1 The electrostatic potential surface area (SEP) at the electrostatic potential h; 2 The screening charge density
distribution area (Sσ) at the screening charge density k; 3 t value stands for the importance of the parameter.

Experimental and predicted the logEC50 values of ILs towards acetyl cholinesterase enzyme
(AChE) (logEC50 (AChE)) values of ILs (as shown in Supporting Information Table S1) via the MLR
model for both the training set as well as the test set are plotted in Figure 2, where it can be seen that
the predicted values are close to the experimental results. Figure 3 compares the absolute relative
deviation (ARD%) within the range of logEC50 (AChE) values from the MLR model. It is evident that
the largest proportion of the predicted values falls in the range of 1–5%, which accounts for 48.13%.
Similarly, the percentages of predicted data fall in the range of 5–10% and over 10%, accounting for
28.75% and 14.38%, respectively. Only 8.75% of the predicted ARD% values are in the range of 0–1%.
These conclusions showed the good performance of the MLR model to predict the toxicity of ILs.
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Figure 2. Comparisons of predicted the logEC50 values of ILs towards acetyl cholinesterase enzyme
(AChE) (logEC50 (AChE)) by multiple linear regression (MLR) in external validation with the
experimental logEC50 (AChE).
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2.2. Quantitative Prediction of Extreme Learning Machine (ELM) Model

Based upon the foundation of 11 descriptors selected via stepwise regression method and the
data sets from the former model, a more effective nonlinear ELM model was established. In the ELM
model, there are three layers, as shown in Figure 4. The sine function in the ELM model acted as an
activation function between the input and intermediate layers, while the linear function was from
the intermediate neurons to the output variables. The bias and ωij produced randomly were the
parameters between the first and intermediate layers. Theωjk was the coefficient needed to calculate
between the intermediate and final layer. After the determination of the functions, the next step was to
acquire the ideal number of neurons between the input variables and intermediate neurons. As shown
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in Figure 5, in terms of the training set, the R2 value slightly increases with the growth in the number
of neurons, whereas the average absolute relative deviation (AARD%) considerably drops when the
number of neurons is less than 45, beyond which it dramatically rises. The variation tendency of R2

and AARD% for the test set are almost opposite to the growing number of neurons. Therefore, the best
number of neurons (45) is acquired for the prediction the toxicity of ILs by the ELM model.
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Figure 4. Scheme of linear and non-linear models programming methodology. The screening charge
density distribution area (Sσ) and the electrostatic potential surface area (SEP) of cations and anions were
calculated employed to develop models optimal number of descriptors. The effective input descriptors
were chosen by the stepwise regression approach and then the multiple linear regression (MLR) model
was built with the obtained coefficients (Ci) and selected descriptor (Si) to predict the the toxicity
values (logEC50) of ionic liquids (ILs) towards acetyl cholinesterase enzyme (AChE). The extreme
learning machine (ELM) comprising three parts—the input layer, hidden layer, and output layer—was
established based on the same input descriptors. The parameters wij and bias from the input layer to
hidden layer were generated randomly and the parameters wjk were coefficients from the hidden layer
to output layer.
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The comparisons of the predicted logEC50 (AChE) values by ELM (as shown in Supporting
Information Table S1) in both the training and test sets with the experimental logEC50 (AChE) values
are shown in the Figure 6, which reveals that the predicted values match well with the experimental
data. Figure 7 illustrates the proportion of logEC50 (AChE) values in the different ARD% ranges of the
ELM model. It is clear that the largest percentage of ARD% from the logEC50 (AChE) values is 54.38%
within the range of 1–5%, followed by the 22.5% in the range of 0–1%. The percentage of ARD% of the
logEC50 (AChE) values in the range of 5–10% and over 10% account for 18.75% and 4.38%, respectively.
These results showcase the validity and reliability of the ELM model to predict the toxicity of ILs.
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2.3. Comparison between Two Quantitative Structure-activity Relationships (QSAR) Models

As discussed above, satisfactory results are obtained for the two models having high R2 values.
Detailed comparison of the statistical parameters of the training set, test set, and total data of different
QSAR models are given in Table 2.

Table 2. Comparison of the statistical parameters by different quantitative structure-activity
relationships (QSAR) models.

Model Dataset No. 1 R2 2 AARD% 3 RMSE

MLR
Training 128 0.920 5.18 0.136

Test 32 0.914 11.05 0.180
Total 160 0.917 6.35 0.145

ELM
Training 128 0.969 2.86 0.084

Test 32 0.950 5.02 0.134
Total 160 0.964 3.29 0.096

1 Squared correlation coefficient (R2); 2 Average absolute relative deviation (AARD%); 3 Root-mean-square
error (RMSE).

It is evident from Table 2 that the R2 values of the training set, test set, and total data using the
ELM model are 0.969, 0.950, and 0.964, respectively, which are comparatively higher than of the R2

values of the MLR model, i.e., 0.920 for the training set, 0.914 for the test set, and 0.917 for the total
set. This trend is valid for both AARD% and RMSE, meaning that the non-linear ELM shows better
predictive performance than MLR. For example, AARD% values for the training set by the MLR and
ELM models are 5.18 and 2.86, while the RMSE values are 1.534 and 0.950, respectively. A similar
situation can easily be observed for the test set and all data sets using two models. Undoubtedly,
the ELM algorithm is a powerful prediction tool with better accuracy.

In addition, according to the effective criteria used in the literature [47–50], a QSAR model with
acceptable predictive ability should satisfy the conditions in Equations (2)–(5). As can be seen from
Table 3, all the coefficients for both the MLR and ELM models satisfy the above-mentioned criteria,
illustrating the good predictive power of the models in this study. To further verify the reliability of
the models established in this study, we also predicted the toxicity values of five new ILs. The specific
prediction results can be found in the Supporting Information (Table S2). It can be seen that the
predicted values agree well with the experimental values, indicating that the models we built are
reliable, and the ELM model has better prediction performance than the MLR model.

R2 > 0.7 (2)

R2
−R2

0

R2 < 0.1 and 0.85 < k < 1.15 (3)

R2
−R′20
R2 < 0.1 and 0.85 < k′ < 1.15 (4)∣∣∣R2

0 −R′20
∣∣∣ < 0.3 (5)
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Table 3. The results of external validation of the test set in the multiple linear regression (MLR) and
extreme learning machine (ELM) models.

Model R2 1 k 2 k′ 3 R0
2 4 R′2

0 (R2-R0
2)/R2

MLR 0.914 0.9876 1.0058 0.9975 0.9996 −0.094
ELM 0.950 0.9944 1.0018 0.9996 1.0000 −0.051

1 k is slope of the calculated versus experimental values; 2 k′ is slope of the experimental versus calculated values;
3 the coefficients of calculated values versus experimental values (R2

0); 4 the coefficients of experimental values
versus calculated values (R′20 ).

We compared our estimated results with the reported values, as summarized in Table 4. Our two
QSAR models, MLR (R2 = 0.917) and ELM (R2 = 0.964), have higher R2 values compared with those
of other models, except the Multiple linear regression (MLP) model (R2 = 0.973). Although MLP
exhibits the highest value of R2, our models used less input parameters. Our models show AARD%
values of 6.35 for MLR and 3.29 for ELM, which fall in the range of the reported values, i.e., 2.8 to 9.35
(Table 4). In addition, as can be seen from Table 4, the RMSE values of our models are also relatively
low compared to the literature [45]. Taking these factors into consideration, our models are reliable
and meaningful for accurate prediction of the toxicity of ILs towards AChE.

Table 4. Comparisons of our work with the reported works.

Method No. Parameter R2 AARD% RMSE Ref.
1 MLR 12 0.814 7.7 / [42]
2 MLP 12 0.973 2.8 / [42]

3 RB 12 0.842 7.1 / [42]
MLR 17 0.877 9.35 0.212 [45]
MLR 11 0.917 6.35 0.145 This work

4 ELM 11 0.964 3.29 0.096 This work
1 Multiple linear regression (MLR); 2 Multilayer perceptron (MLP); 3 Radial-basis function (RB); 4 Extreme learning
machine (ELM); / indicates that the RMSE value cannot be obtained from literature.

3. Framework

As we know, quantitative structure-activity relationships (QSAR) can be implemented in the
form of linear and non-linear algorithms. The former are relatively easy and intuitively present the
impact of each parameter upon the properties, while the latter are considered to be suitable for accurate
prediction in real-world scenarios. In this work, the toxicity of ionic liquids (ILs) was predicted
according to the scheme shown in Figure 4.

4. Dataset and Structural Descriptors

4.1. Dataset

Herein, toxicity data in acetyl cholinesterase enzyme (AChE) of 160 ILs was collected from the
widely acknowledged ionic liquid (IL) database [40,51,52]. Concentration for 50% of maximal effect
(EC50) values (µM) for AChE, written as log EC50, were converted into the form of a logarithm of half
maximal effective concentration. The whole data set was divided into two parts: a training set of
80% ILs to build the model and a set of 20% ionic liquids (ILs) to evaluate the model’s predictability.
Detailed information on the ILs studied in this paper, including the names, SMILES strings, log10(EC50)
values, etc., can be found in Supporting Information.

4.2. Calculation of Descriptors

As established, the related compounds are represented by theoretical molecular descriptors,
which are of key significance for the predictive performance of the models [40]. The screening charge
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density distribution area (Sσ), obtained from the histogram function of the σ-profiles given by the
conductor-like screening model for real solvent (COSMO-RS) computation, is an a priori quantum
chemistry descriptor that could quantitatively represent the molecule’s polar surface screen charge on
the polarity scale [36]. The electrostatic potential surface area (SEP) of molecules refers to the surface
areas of the molecules within the interval of the different electrostatic potential, and it can be used
for the prediction of the material’s properties due to its rich information at the electron level. In this
work, two descriptors SEP and Sσ-profiles were employed to develop models and were calculated by
different programs based on the optimal structures of cations and anions. First of all, the SEP files of
the corresponding cations were calculated using Multiwfn software with an electrostatic potential
range of 0~150 kcal/mol, and was kept the same for the anions in the range of −150~0 kcal/mol, with
a step size of 0.5 kcal/mol [53]. For example, the SEP-C88.75 means the molecular surface areas in the
electrostatic potential scale of 88.5–89 kcal/mol. Then, the conductor-like screening model (COSMO)
files of cations and anions were obtained using Gaussian 03 software [54]. Finally, Sσ-profiles files of
corresponding cations and anions were calculated with a σ-profile ranging from −0.03 to 0.03 e/Å2 and
with a step size of 0.001 e/Å2, respectively. We chose cation (1-(cyanomethyl)-3-methylimidazolium)
and anion (1-octylsulfate) to present the representative SEP and Sσ-profiles, and the results were
depicted in Figure 8; Figure 9, respectively. As shown in Figure 8, the darker shade of red for
1-(cyanomethyl)-3-methylimidazolium or blue for 1-octylsulfate indicates stronger polarity. Figure 9
presents a similar situation of electrostatic potential surfaces.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 16 

 

used for the prediction of the material’s properties due to its rich information at the electron level. In 

this work, two descriptors SEP and Sσ-profiles were employed to develop models and were calculated by 

different programs based on the optimal structures of cations and anions. First of all, the SEP files of 

the corresponding cations were calculated using Multiwfn software with an electrostatic potential 

range of 0~150 kcal/mol, and was kept the same for the anions in the range of −150~0 kcal/mol, with a 

step size of 0.5 kcal/mol [53]. For example, the SEP-C88.75 means the molecular surface areas in the 

electrostatic potential scale of 88.5–89 kcal/mol. Then, the conductor-like screening model (COSMO) 

files of cations and anions were obtained using Gaussian 03 software [54]. Finally, Sσ-profiles files of 

corresponding cations and anions were calculated with a σ-profile ranging from −0.03 to 0.03 e/Å2 

and with a step size of 0.001 e/Å 2, respectively. We chose cation 

(1-(cyanomethyl)-3-methylimidazolium) and anion (1-octylsulfate) to present the representative SEP 

and Sσ-profiles, and the results were depicted in  Figure 8;  Figure 9, respectively. As shown in Figure 

8, the darker shade of red for 1-(cyanomethyl)-3-methylimidazolium or blue for 1-octylsulfate 

indicates stronger polarity. Figure 9 presents a similar situation of electrostatic potential surfaces. 

-150 -100 -50 0 50 100 150

0

2

4

6

8

 

 

S
u
rf

ac
e 

ar
ea

(Å
2
)

Electrostatic potential (kcal/mol)

 1-(cyanomethyl)-3-methylimidazolium

 1-octylsulfate

 

Figure 8. The electrostatic potential surface area (SEP) of representative cations and anions of ionic 

liquids (ILs). 

Figure 8. The electrostatic potential surface area (SEP) of representative cations and anions of ionic
liquids (ILs).



Int. J. Mol. Sci. 2019, 20, 2186 11 of 15

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 11 of 16 

 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0

10

20

30

 

 

p
x
(s

)

[e/Å2
]

1-(cyanomethyl)-3-methylimidazolium

1-octylsulfate 

 

Figure 9. The screening charge density distribution area (Sσ) of representative cations and anions of 

ILs. 

4.3. Multiple Linear Regression (MLR) 

Multiple Linear Regression (MLR) is widely harnessed in quantitative structure-activity 

relationships (QSAR) to determinate the relationship between a dependent variable and various 

independent variables. The linear combination relationship of the independent variables is 

described by a set of coefficients in this model. The structural characteristics to the toxicity can be 

linked as follows: 

50 0 1 1 2 2logEC n nb b x b x b x= + + ++  (6) 

where b0 is the intercept and b1, b2, and bn are regression coefficients of the corresponding descriptors; 

n is the number of descriptors used in the equation in order to figure out the optimal regression 

model; x denotes the descriptor used to describe the chemical structure of the compound. MLR 

consists of stepwise selection of descriptors, which combines the forward and backward procedures. 

4.4. Extreme Learning Machine (ELM) 

Extreme learning machine (ELM) architecture was proposed for the first time by Huang et al., 

as a single hidden layer feed-forward neural network that has a very strong learning ability for 

application in basic classification and regression [55]. The most key characteristic of ELM is that it 

has faster learning speed compared with the traditional learning algorithms. In addition, ELM can 

be easily used and is a fast-learning and effective algorithm for the feed-forward neural network 

with single hidden layer interpolation capability and universal approximation capability, which are 

the two important characteristics of the feed-forward neural network. To some extent, ELM is 

similar to an artificial neural network (ANN), and its weights and biases in the first layer are 

randomly initialized and kept constant, while the weights of the second layer are selected by 

diminishing the least squared error. In practical applications, the training data set is mainly 

concerned with the specific issues [56]. The data sets include actual results and the related factors. 

Through iterations to finish the learning process, the impact factors and corresponding results were 

Figure 9. The screening charge density distribution area (Sσ) of representative cations and anions
of ILs.

4.3. Multiple Linear Regression (MLR)

Multiple Linear Regression (MLR) is widely harnessed in quantitative structure-activity
relationships (QSAR) to determinate the relationship between a dependent variable and various
independent variables. The linear combination relationship of the independent variables is described
by a set of coefficients in this model. The structural characteristics to the toxicity can be linked
as follows:

logEC50 = b0 + b1x1 + b2x2 + · · ·+ bnxn (6)

where b0 is the intercept and b1, b2, and bn are regression coefficients of the corresponding descriptors;
n is the number of descriptors used in the equation in order to figure out the optimal regression model;
x denotes the descriptor used to describe the chemical structure of the compound. MLR consists of
stepwise selection of descriptors, which combines the forward and backward procedures.

4.4. Extreme Learning Machine (ELM)

Extreme learning machine (ELM) architecture was proposed for the first time by Huang et al., as a
single hidden layer feed-forward neural network that has a very strong learning ability for application
in basic classification and regression [55]. The most key characteristic of ELM is that it has faster
learning speed compared with the traditional learning algorithms. In addition, ELM can be easily used
and is a fast-learning and effective algorithm for the feed-forward neural network with single hidden
layer interpolation capability and universal approximation capability, which are the two important
characteristics of the feed-forward neural network. To some extent, ELM is similar to an artificial
neural network (ANN), and its weights and biases in the first layer are randomly initialized and
kept constant, while the weights of the second layer are selected by diminishing the least squared
error. In practical applications, the training data set is mainly concerned with the specific issues [56].
The data sets include actual results and the related factors. Through iterations to finish the learning
process, the impact factors and corresponding results were put into the ELM for training during the
training process. Afterward, using the trained ELM, we only needed to input the training data set,
similar to the influencing factors. It has been reported that ELM is feasible in many fields, such as
protein sequence classification, regression problems, etc., to easily achieve good performance with
fast speed [57]. Evidently, increasingly more research in this regard shows that excellent predictive
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performance can be achieved using the non-linear model developed by the ELM algorithm. More
information on the theory and application of ELM can be found elsewhere [55–57].

4.5. Evaluation of Quantitative Structure-activity Relationships (QSAR)

In this work, several parameters were defined to evaluate the model performance, as measured by
different metrics: adjusted squared correlation coefficient (R2

adjusted), squared correlation coefficient
(R2), average absolute relative deviation (AARD%), root-mean-square error (RMSE), absolute relative
deviation (ARD%), the coefficients of calculated values versus experimental values (R2

0), experimental
values versus calculated values (R′20 ), slope k of the calculated versus experimental values, and slope
k’ of the experimental versus calculated values. The corresponding definition could be expressed in
Equations (7)–(15).

R2 =

Np∑
i=1

(yexp
i − ym)

2
−

Np∑
i=1

(ycal
i − yexp

i )2

NP∑
i=1

(yexp
i − ym)

2

(7)

R2
adjusted = 1−

(1−R2)(NP − 1)
NP − p− 1

(8)

AARD(%) = 100×
NP∑
i=1

(

∣∣∣∣∣∣∣ ycal
i − yexp

i

yexp
i

∣∣∣∣∣∣∣)/Np (9)

RMSE =

√√√√ NP∑
i=1

(
ycal

i − yexp

i

)2

/NP (10)

ARD(%) =
∣∣∣100× (ycal

i /yexp

i − 1.0)
∣∣∣ (11)

R2
0 = 1−

Np∑
i=1

(ycal
i − kycal

i )2

NP∑
i=1

(ycal
i − ycal)2

(12)

R′20 = 1−

Np∑
i=1

(yexp
i − kyexp

i )2

NP∑
i=1

(yexp
i − k′yexp)2

(13)

k =

Np∑
i=1

yexp
i ycal

i

NP∑
i=1

(ycal
i )2

(14)

k′ =

Np∑
i=1

yexp
i ycal

i

NP∑
i=1

(yexp
i )2

(15)

where y means logEC50 (AChE) value of ILs while the “cal” and “exp” superscripts stand for calculated
and experimental values, respectively. Np denotes the number of data points for the corresponding
dataset; ȳm represents the average log EC50 (AChE) value of ILs for all of the selected data.
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5. Conclusions

Safe operation and benign utilization are crucial for ILs, therefore the scope of accurately
predicting the toxicity of ILs is of vital interest for scientific and technological advancement. In this
work, detailed data analyses of the toxicity of ILs were made based on the established database and
novel QSAR models were developed for toxicity prediction of 160 ILs in AChE. Good correlation
between the estimated and original data was observed for the training set, test set, and the total set.
It was found that the newly used ELM model gave the highest R2 values and the lowest values for
AARD% and RMSE. The results validated the superior performance of ELM for estimation of toxicity
of ILs. This study will be helpful in design and screening of environmentally friendly commercial ILs.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/9/2186/s1.
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