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Explicit analytical solution for scaling quantum graphs

Yu. Dabaghian* and R. Blümel
Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA

~Received 3 January 2003; revised manuscript received 21 April 2003; published 20 November 2003!

We show that scaling quantum graphs with arbitrary topology are explicitly analytically solvable. This is
surprising since quantum graphs are excellent models of quantum chaos and quantum chaotic systems are not
usually explicitly analytically solvable.
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Explicitly solvable systems are rare. Many have beco
textbook classics, such as the harmonic oscillator and
hydrogen atom. It is therefore always a noteworthy ev
when another explicitly solvable system is discovered. T
purpose of this paper is to add an important class of exp
itly solvable quantum systems to this set: quantum graph
quantum graph consists of a quantum particle that move
a quasi-one-dimensional network. An example of such a
work is shown in Fig. 1. It consists of seven vertices co
nected by seven bonds. In physical applications the bonb
of the network are equipped with a local coordinate 0<xb
<1 and potentialsV(xb)5V0v(xb), while the vertices, pos
sibly equipped withd-function potentialsW0d(xb), serve to
redistribute the quantum flux on the network according
preset rules. Thus the spectrum of a quantum graph is
tained by solving the one-dimensional Schro¨dinger equation
of the quantum particle moving on the bonds of the quant
graph subjected to the boundary conditions of continuity a
flux conservation at the vertices. A host of related wave s
tems, such as networks of acoustic pipes or thin dielect
filled microwave waveguides can be modeled in analo
with quantum graphs. Therefore one might think of the
quasi-one-dimensional networks collectively as wave grap

Quantum graphs have a long history in theoretical che
istry @1#, chemical physics@2,3# mathematics@4,5#, math-
ematical physics@6# superconductivity@7#, and mesoscopic
@8–10# and general physics@11,12#. A recent review on
quantum graphs@13# lists close to 200 papers related to t
subject. Due to their usefulness in areas ranging from m
lecular chemistry to nanotechnology, quantum graphs ar
emerging field with many promising applications@13#.

Quantum graphs have recently been studied as mode
quantum chaos@13–17#. It may therefore come as a surpris
that a large and important subset of quantum graphs, sca
quantum graphs, is explicitly solvable in the formEn
5 f (n), wheren is an integer,En are the energy levels of th
graph, andf is a function explicitly constructed below. Sca
ing quantum graphs satisfyV05v0E andW05w0AE, where
v0 andw0 are constants. Because of the quantum chaos
nection it already caused quite a stir when about a year
explicit solutions of a special class of scaling quantu
graphs were discovered@18,19#. This is so, because for an
given n the associated energy levelEn is individually com-
putable, without knowledge of the other quantum leve
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While in the case of the quantum graphs studied in Re
@18,19# one might shrug off the existence of explicit sol
tions by pointing to their special, nongeneric nature, this
now no longer possible. Thus the results reported in t
paper are a substantial, qualitative step forward with p
found implications for quantum graph theory and quant
chaos. Focusing on scaling quantum graphs, exclud
graphs with tunneling and bound states for convenience~tun-
neling and bound states are discussed in Ref.@20#!, we will
show below that these quantum graphs, no matter how c
plex their topology, are explicitly solvable analytically. W
emphasize thatscaling quantum graphs@18,19# represent a
huge class of graphs, far larger than andincluding the stan-
dard quantum graphs withV(xb)[0 @13–17#. The class of
quantum graphs for which we prove the existence of expl
solutions comprise quantum graphs with arbitrary topolo
arbitrary scaling potentials on their bonds, and arbitrary sc
ing d functions on their vertices.

The computation of energy eigenvalues of a given qu
tum graph is straightforward. In analogy with other simp
quantum problems, all we have to do is to solve the Sch¨-
dinger equation on the graph subjected to a suitable se
boundary conditions at the vertices of the graph, for instan
Dirichlet boundary conditions on the dead-end vertices~ex-
amples are the verticesV1 andV7 in Fig. 1!, and the condi-
tion of quantum flux conservation on all internal vertice
Implementing these boundary conditions yields a system
coupled linear equations. In the usual way this system
nontrivially solvable only if its secular determinant vanishe

FIG. 1. Sample graph with seven bonds and seven vertices.
turned into a quantum graph by introducing a local coordinate s
tem on the graph bonds, defining physical potentials on the vert
and bonds, defining a Schro¨dinger operator on the bonds, and d
fining boundary conditions at the vertices. Thus, quantum gr
5mathematical graph1physical dressing.
©2003 The American Physical Society01-1
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The secular determinant vanishes only at the energy ei
values En , defining the spectrum of the quantum grap
Therefore this determinant is called thespectral determinant.
For scaling quantum graphs it has the form@18,19#

g(0)~k!5cos~S0k1w0!2F~k!, ~1!

where F(k)5( j 51
N aj cos(Sjk1wj), S0 , Sj.0, w0 , w j , aj

are constants, andk5AE is the wave number of the quantu
particle. The form~1! is expected on physical grounds: Th
action the quantum particle accumulates when it trav
along the bonds is given bys5*k dx. Its optical analog is
the optical path length. Assigning an optical path length,
better, anoptical bond lengthsb to every bondb, the spec-
tral determinant of a quantum graph is determined by
possible sums and differences of optical bond lengths.
largest quantity we can form this way is the sum of all op
cal bond lengths. This is the quantityS0 in the spectral de-
terminant~1!. It is also known as theaction length@13–20#
of the quantum graph. Because of its importance it has b
singled out in the spectral determinant~1!. The other possible
optical bond length combinations are denoted bySj in Eq.
~1!. We denoted their number byN. Since they involve at
least one difference of a pair of optical bond lengths,
haveSj,S0 for all j. With the help of the spectral determ
nant ~1! we can now form the spectral equation

g(0)~kn
(0)!50. ~2!

As discussed above, its rootskn
(0)5AEn are the wave num-

bers of the eigenenergiesEn of the quantum graph. It wa
shown in Refs.@18,19# that Eq.~2! is explicitly solvable in
the formkn

(0)5••• if the condition

(
j 51

N

uaj u5a,1 ~3!

is satisfied, wherea is a constant.
The meaning of Eq.~3! is easily explained. Because o

Eq. ~1! the roots of Eq.~2! are the intersections of a co
function with ‘‘frequency’’S0 and the functionF(k). Due to
the condition~3! it is guaranteed that the amplitude of th
slowly (Sj,S0) varying functionF(k) never exceeds the
amplitude of the cos function and thus intersects the
function precisely once between any two extrema of the
function. This situation is illustrated in Fig. 2.

The vast majority of quantum graphs does not satisfy c
dition ~3!. Up to now this was believed to be the hedge th
makes general quantum graphs resilient against explicit
lution. However, there is a way to solve all scaling quant
graphs, even if they do not fulfill Eq.~3!. We do this by
constructing a sequence of auxiliary functionsg(m)(k) such
that knowing the roots ofg(m)(k) allows us to compute the
roots of g(m21)(k). This sequence terminates at a functi
g(M )(k) for which the condition~3! is satisfied, and thus
allows explicit computation of its roots. Thus, the process
root finding is bootstrapped. Going backwards through t
sequence, starting with the roots ofg(M )(k), we now are able
to obtain the roots of all of the members of the auxilia
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sequence, in particular, the roots ofg(0)(k). The idea is that
the roots ofg(m)(k) form an interlacing sequence with re
spect to the roots ofg(m21)(k), i.e., the roots ofg(m)(k)
separate the roots ofg(m21)(k) from each other. Therefore
we refer to the roots ofg(m)(k) as root separatorsof the
roots ofg(m21)(k).

The mth element of the auxiliary sequence is construc
by taking themth derivative of Eq.~1! and dividing byS0

m .
We obtain

g(m)~k!5cos~S0k1w01mp/2!

2(
j 51

N

bj
(m) cos~Sjk1w j1mp/2!, ~4!

wherebj
(m)5aj (Sj /S0)m. SinceSj,S0, there always exists

an M such that( j 51
N ubj

(M )u5b,1, i.e., for m5M Eq. ~4!
satisfies the condition~3! and the rootskn

(M ) of g(M )(k)50
are explicitly computable@18,19#. Therefore the chain of
auxiliary functions terminates at the levelM.

Having bootstrapped the roots of Eq.~1! at the levelM,
we now have to go backwards to the levelsM21,M
22, . . . , until we reach level 0 and possesskn

(0) explicitly.
Retracing our steps is indeed possible by making use of
interlacing property of roots discussed above. Suppose
want to compute root numbern of g(m)(k)50. Level num-
berm11 supplies us with root separatorsk̂n21

(m) andk̂n
(m) such

that root numbern of g(m)(k)50, and only this root, will be
found in the interval@ k̂n21

(m) ,k̂n
(m)#. Therefore,

kn
(m)5E

k̂n21
(m)

k̂n
(m)

kd~k2kn
(m)!dk. ~5!

This is a formal identity forkn
(m) , which can be turned into

FIG. 2. Illustration of the consequences of condition~3! ~see
text!. A slowly varying function F(x) with bounded amplitude
uF(x)u<a,1 intersects the function cos(x) in precisely one point
in each interval@(n21)p,np#, n51,2, . . . .
1-2
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an explicit formula forkn
(m) if we use the identity

d~k2kn
(m)!5U d

dk
g(m)~k!Ud„g(m)~k!…, ~6!

which holds fork̂n21
(m) ,k, k̂n

(m) . In Eq.~6! we can use any o
the standard representations of thed function, for instance,
the Fourier representation

d„g(m)~k!…5
1

2pE2`

`

exp@ i jg(m)~k!# dj. ~7!

We are now ready to apply the above root-finding sche
to the levelM21 using the known roots on the levelM as
the root separatorsk̂n

(M21) on the levelM21. We obtain

kn
(M21)5E

k̂n21
(M21)

k̂n
(M21)

kug(M )~k!ud„g(M21)~k!…dk. ~8!

It is important to realize that due to Eqs.~6! and~7!, Eq. ~8!
is not just a formal solution, but yieldskn

(M21) explicitly,
analytically, even numerically, if we wish, to any desire
accuracy. This is so since bothg(M21)(k) and the root sepa
rators k̂n

(M21) are known explicitly. It is furthermore impor
tant to realize that the ‘‘trick’’~5! does not generally work fo
other quantum systems, even if their spectral equa
g(0)(k) is known. This is so because the root separatorsk̂n

(m) ,
known and according to the above scheme explicitly c
structable in the case of quantum graphs, are not in gen
known for other quantum systems. Therefore, for more g
eral quantum~chaotic! systems, the missing separators is
deed a hedge, nay a bulwark, which, so far, protects th
against explicit solution.

Our retracing process from levelsM to M21 can now be
continued until we reach level 0. This completes our dem
stration that all scaling quantum graphs can be solved a
lytically.

There is an interesting analogy between our sequenc
auxiliary functions~4! and Sturmian sequences for polyn
mials @21#. With the help of Sturmian sequences the num
of roots of a polynomialPn(x) in an interval@a,b# can be
determined. While there are many similarities between S
mian sequences and our sequence of auxiliary functio
there are also important differences.

~i! Our auxiliary functions are simple derivatives of th
spectral determinant~1!, while the Sturmian sequence has
be constructed using the Euclidean algorithm for polyno
als @21#.

~ii ! The Sturmian sequence isolates targeted roots
Pn(x) by counting sign changes of the polynomials in t
sequence. We isolate roots of the spectral function by
interlacing process which is based hierarchically on the ro
of higher-m functions.

~iii ! Finally, Sturmian sequences apply to polynomia
with a finite number of roots, whereas our method addres
the infinitely many roots of a class of transcendental fu
05520
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tions. In this connection we mention that even the tw
frequency case, resulting from a simple linear three-ver
graph, is interesting, because it provides the explicit solut
of a transcendental function whose roots, so far, could o
be determined graphically or numerically.

We stress that the main objective of our paper is to sh
that scaling quantum graphs are explicitly solvable. This i
conceptual point whose importance cannot be undere
mated. However, our method is useful for numerical cal
lations as well. In the following we address two topics: t
computation of targeted eigenvalues and the computatio
complete spectra.

~i! In numerical spectral analysis the problem arises
compute long stretches of eigenvalues starting at a very h
quantum number. For instance, for a statistical study of
zeros of Riemann’sz function Odlyzko@22# computed the
1020th zero of the Riemannz function and 70 million of its
neighbors. Asked to compute the 1020th zero of a scaling
quantum graph, we cannot proceed by computing all 120

21 zeros preceding the 1020th zero in order to ascertain th
correct assignment of the 1020th zero. Even if we assume tha
we could compute 109 zeros per second, corresponding
the processing speed of a powerful contemporary compu
the computation of the 1020th zero would still take 1011 sec,
corresponding to about 3000 years. This is where our met
of root separators comes in. Labeling roots aroundn51020

on the levelM is trivial and requires essentially only th
application of modulo operations to accomplish this ta
Having determined the root separatorsk̂n

(M ) in the vicinity of
n51020 on the levelM, we go backwards in our scheme o
auxiliary functions to arrive at the root separatorsk̂n21

(0) ,

k̂n
(0) , wheren51020. Given the root separators, the root

self is most efficiently computed using simple numeric
root-finding methods. Indeed, in this connection, the com
tation of the root separatorsk̂n

(m) , m5M ,M21, . . . ,0 isalso
most effectively done numerically.

~ii ! When computing numerical spectra, the question
completeness of the computed spectra arises. Any nume
method, without analytical input, searches for roots of
spectral equation using a search grid of finite size. Th
there may always be roots that are closer together than
chosen grid size, independent of what the current grid size
resulting in missed states. Using our method of auxilia
functions, completeness of spectra for scaling quant
graphs can now be certified since the hierarchical~numeri-
cal! computation of root separators allows us to isolate a
label any energy eigenvalue of the scaling quantum gr
individually.

We note that our methods can be extended to quan
graphs with an infinite number of bonds and vertices as lo
as Sj,S0,` and ( j 51

` uaj u5a,`. The latter condition
guarantees that the functionF(k) exists.

Our explicit energy eigenvalues may now be used to
termine the spectral statistics@23–25# of the eigenvalues of
graph systems. In the context of quantum graphs our res
are more fundamental than random matrix theory~RMT!
@23–26#, which is not a physical theory but a mathematic
model of physical systems based on a zero-knowledge
sumption without system-specific input. In fact, our ener
1-3
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eigenvalues may be used to test RMT predictions. We n
that in the context of quantum graphs RMT predictions w
already tested both numerically@14–17# and analytically
@27,28#.

In summary, our paper makes the important concep
point that scaling quantum graphs are explicitly analytica
.S

.

05520
te
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solvable. A spin-off is the possibility of the targeted comp
tation of any selected energy eigenvalue of any given sca
quantum graph.
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@25# H.-J. Stöckmann, Quantum Chaos~Cambridge University

Press, Cambridge, 1999!.
@26# M.L. Mehta, Random Matrices~Academic Press, Boston

1991!.
@27# G. Berkolaiko and J.P. Keating, J. Phys. A32, 7827~1999!.
@28# G. Berkolaiko, E.B. Bogomolny, and J.P. Keating, J. Phys

34, 335 ~2001!.
1-4




