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Explicit analytical solution for scaling quantum graphs
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(Received 3 January 2003; revised manuscript received 21 April 2003; published 20 November 2003

We show that scaling quantum graphs with arbitrary topology are explicitly analytically solvable. This is
surprising since quantum graphs are excellent models of quantum chaos and quantum chaotic systems are not
usually explicitly analytically solvable.
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Explicitly solvable systems are rare. Many have becoméVhile in the case of the quantum graphs studied in Refs.
textbook classics, such as the harmonic oscillator and thgl8,19 one might shrug off the existence of explicit solu-
hydrogen atom. It is therefore always a noteworthy eventions by pointing to their special, nongeneric nature, this is
when another explicitly solvable system is discovered. Thenow no longer possible. Thus the results reported in this
purpose of this paper is to add an important class of explicpaper are a substantial, qualitative step forward with pro-
itly solvable quantum systems to this set: quantum graphs. found implications for quantum graph theory and quantum
quantum graph consists of a quantum particle that moves oghaos. Focusing on scaling quantum graphs, excluding
a quasi-one-dimensional network. An example of such a nefgraphs with tunneling and bound states for conveni¢noe
work is shown in Fig. 1. It consists of seven vertices con-neling and bound states are discussed in R&f]), we will
nected by seven bonds. In physical applications the bbnds show below that these quantum graphs, no matter how com-
of the network are equipped with a local coordinateXj ~ plex their topology, are explicitly solvable analytically. We
=<1 and potential®&/(x,) = Vov(Xp), While the vertices, pos- emphasize thascaling quantum graph$18,19 represent a
sibly equipped withs-function potentialdV,5(x;,), serve to  huge class of graphs, far larger than anduding the stan-
redistribute the quantum flux on the network according todard quantum graphs witl(x,)=0 [13-17. The class of
preset rules. Thus the spectrum of a quantum graph is okyuantum graphs for which we prove the existence of explicit
tained by solving the one-dimensional Safiirger equation  solutions comprise quantum graphs with arbitrary topology,
of the quantum particle moving on the bonds of the quantumrbitrary scaling potentials on their bonds, and arbitrary scal-
graph subjected to the boundary conditions of continuity andng § functions on their vertices.
flux conservation at the vertices. A host of related wave sys- The computation of energy eigenvalues of a given quan-
tems, such as networks of acoustic pipes or thin dielectrictum graph is straightforward. In analogy with other simple
filled microwave waveguides can be modeled in analogyuantum problems, all we have to do is to solve the $chro
with quantum graphs. Therefore one might think of thesedinger equation on the graph subjected to a suitable set of
quasi-one-dimensional networks collectively as wave graphsoundary conditions at the vertices of the graph, for instance,

Quantum graphs have a long history in theoretical chempirichlet boundary conditions on the dead-end vertit®s
istry [1], chemical physic42,3] mathematicd4,5], math-  amples are the verticés, andV- in Fig. 1), and the condi-
ematical physicg6] superconductivity 7], and mesoscopic tion of quantum flux conservation on all internal vertices.
[8-10 and general physic§11,12. A recent review on |mplementing these boundary conditions yields a system of
quantum graph§13] lists close to 200 papers related to the coupled linear equations. In the usual way this system is

subject. Due to their usefulness in areas ranging from monontrivially solvable only if its secular determinant vanishes.
lecular chemistry to nanotechnology, quantum graphs are an

emerging field with many promising applicatiofis3].
Quantum graphs have recently been studied as models of \73
guantum chaofl3-17. It may therefore come as a surprise \7]
that a large and important subset of quantum graphs, scaling
quantum graphs, is explicitly solvable in the forf,
=f(n), wherenis an integerkE,, are the energy levels of the
graph, and is a function explicitly constructed below. Scal-
ing quantum graphs satistjo=uv,E andWy=wy\E, where
v andwg are constants. Because of the quantum chaos con-
nection it already caused quite a stir when about a year ago
explicit solutions of a special class of scaling quantum
graphs were discovergd8,19. This is so, because for any k. 1. sample graph with seven bonds and seven vertices. It is
givenn the associated energy levié}, is individually com-  tymed into a quantum graph by introducing a local coordinate sys-
putable, without knowledge of the other quantum levels.em on the graph bonds, defining physical potentials on the vertices
and bonds, defining a Schtimger operator on the bonds, and de-
fining boundary conditions at the vertices. Thus, quantum graph
*Email address: ydabaghian@wesleyan.edu =mathematical graphphysical dressing.
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The secular determinant vanishes only at the energy eigen !5
valuesE,,, defining the spectrum of the quantum graph.

Therefore this determinant is called thgectral determinant (; C

For scaling quantum graphs it has the forb8,19

9‘9(k) =cog Sok+ o) — P(K), .Y

0.5

0
where ® (k) =31 ,a; cos§k+g), So. §>0, @0, @}, @

are constants, arid= \E is the wave number of the quantum 5[

particle. The form(1) is expected on physical grounds: The -

action the quantum particle accumulates when it travels -1

along the bonds is given hy= [k dx. Its optical analog is

the optical path length. Assigning an optical path length, or,7!3,
better, anoptical bond lengthr, to every bond, the spec-

T

21 3rn 4T 5T 6T

tral determinant of a quantum graph is determined by all FIG. 2. lllustration of the consequences of conditi@ (see
possible sums and differences of optical bond lengths. Theext. A slowly varying function ®(x) with bounded amplitude
largest quantity we can form this way is the sum of all opti-|®(x)|<a<1 intersects the function cog(in precisely one point
cal bond lengths. This is the quantiB in the spectral de- in each interva[(n—1)m,n7], n=1.2,...

terminant(1). It is also known as thaection length[13-2Q

of the quantum graph. Because of its importance it has beegequence, in particular, the rootsgf)(k). The idea is that
S|ng|ed out In the SpeCtral qete.rmln&ﬂ]); The Other pOSSIble the roots Ofg(m)(k) form an inter'acing Sequence W|th re-
optical bond length combinations are denotedSyin Eq. spect to the roots 0§™ 1 (k), i.e., the roots ofg™(k)

(1). We denoted their number by. Since they involve at
least one difference of a pair of optical bond lengths, wi
haveS;<S, for all j. With the help of the spectral determi-
nant(1) we can now form the spectral equation

separate the roots @™ Y)(k) from each other. Therefore
Sve refer to the roots o™ (k) as root separatorsof the
roots ofg(™M~1)(k).

The mth element of the auxiliary sequence is constructed

g(O)(kgo))zo_ ) by taking themth derivative of Eq(1) and dividing byS;'.

We obtain

As discussed above, its rodt§”)= \E, are the wave num-
bers of the eigenenergids, of the quantum graph. It was
shown in Refs[18,19 that Eq.(2) is explicitly solvable in

g™ (k)= cog Sok+ @¢+ m/2)

the formk{®=. .. if the condition N
| — >, b{™ cogSk+g;+mml2),  (4)
=
> lajl=a<1 (3)
=
is satisfied, wherex is a constant. Wherebj(m)=aj(8j /Sp)™. SinceS;<Sy, there always exists

The meaning of Eq(3) is easily explained. Because of anM such that=Y,[b{"|=p<1, i.e., form=M Eq. (4)
Eq. (1) the roots of Eq.(2) are the intersections of a cos satisfies the conditiof3) and the rootk(™ of g™)(k)=0
function with “frequency”S, and the functionb (k). Due to  are explicitly computablg18,19. Therefore the chain of
the condition(3) it is guaranteed that the amplitude of the auxiliary functions terminates at the leve.
slowly (S;<Sp) varying function®(k) never exceeds the ~ Having bootstrapped the roots of E@) at the levelM,
amplitude of the cos function and thus intersects the cowe now have to go backwards to the leve\s—1,M
function precisely once between any two extrema of the cos-2, . . ., until we reach level 0 and posse?) explicitly.
function. This situation is illustrated in Fig. 2. Retracing our steps is indeed possible by making use of the
The vast majority of quantum graphs does not satisfy coninterlacing property of roots discussed above. Suppose we
dition (3). Up to now this was believed to be the hedge thatwant to compute root numberof g™ (k)=0. Level num-

makes general quantum graphs resilient against explicit sqyerm-+ 1 supplies us with root separatd¢”; andk{™ such
lution. However, there is a way to solve all scaling quantumnat root numben of g™ (k) =0, and only this root, will be

graphs, even if they do not fulfill Eq3). We do this by
constructing a sequence of auxiliary functiagi€’ (k) such
that knowing the roots off™ (k) allows us to compute the
roots of g™ 1)(k). This sequence terminates at a function
gM)(k) for which the condition(3) is satisfied, and thus
allows explicit computation of its roots. Thus, the process of
root finding is bootstrapped. Going backwards through this
sequence, starting with the rootsg$t"(k), we now are able

found in the interva[k{™, ,k{™]. Therefore,

(m)
k(™ = f ;;1 ka(k—k{™)dk. (5)
n—-1

to obtain the roots of all of the members of the auxiliary This is a formal identity foik(™ , which can be turned into
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an explicit formula fork(™ if we use the identity tions. In this connection we mention that even the two-
frequency case, resulting from a simple linear three-vertex
(M) _ d - - graph, is interesting, because it provides the explicit solution
o(k—ky™)= a(g (k)| 8(g"™(k)), (6) of a transcendental function whose roots, so far, could only
be determined graphically or numerically.

We stress that the main objective of our paper is to show
that scaling quantum graphs are explicitly solvable. This is a
conceptual point whose importance cannot be underesti-
mated. However, our method is useful for numerical calcu-
lations as well. In the following we address two topics: the

1 (= i computation of targeted eigenvalues and the computation of

8(g™ (k)= EJ expi£g™ (k)] dé. (7 complete spectra.
- (i) In numerical spectral analysis the problem arises to
compute long stretches of eigenvalues starting at a very high

We are now ready to apply the above root-finding schemeguantum number. For instance, for a statistical study of the
to the levelM —1 using the known roots on the level as  zeros of Riemann’s function Odlyzko[22] computed the
the root separator@""_l) on the levelM — 1. We obtain 10%%h zero of the Riemang function and 70 million of its

neighbors. Asked to compute the?d zero of a scaling
) quantum graph, we cannot procged by computing .a"fP 10
K(M=1)_ fkn klg™ (k)| 8(g™~B(k))dk. (8) —1 zeros preceding the 4%h zero in order to ascertain the
" KMD correct assignment of the 3%h zero. Even if we assume that
we could compute f0zeros per second, corresponding to
the processing speed of a powerful contemporary computer,
the computation of the £&h zero would still take 18 sec,
corresponding to about 3000 years. This is where our method
of root separators comes in. Labeling roots aronmel0?°
on the levelM is trivial and requires essentially only the
application of modulo operations to accomplish this task.

Having determined the root separat&fg) in the vicinity of

which holds fork{™, <k<k{™ . In Eq.(6) we can use any of
the standard representations of #hdunction, for instance,
the Fourier representation

It is important to realize that due to Eq$) and(7), Eq. (8)

is not just a formal solution, but yields™ ) explicitly,
analytically, even numerically, if we wish, to any desired
accuracy. This is so since bagff¥ (k) and the root sepa-

ratorsk( 1) are known explicitly. It is furthermore impor-
tant to realize that the “trick’(5) does not generally work for

ot?er quantum sy§tgms, even if their spectral Aequatlorllqz 10?° on the levelM, we go backwards in our scheme of
9‘©(k) is known. This is so because the root separgkfts, » . . “0)

. - auxiliary functions to arrive at the root separat&d’, ,
known and according to the above scheme explicitly con= 0) 0 ~. _
structable in the case of quantum graphs, are not in generkh , wheren=10". Given the root separators, the root it-
known for other quantum systems. Therefore, for more genSelf is most efficiently computed using simple numerical

deed a hedge, nay a bulwark, which, so far, protects thertation of the root separato%m), m=M,M—1,...,0isalso
against explicit solution. most effectively done numerically.
Our retracing process from level$to M — 1 can now be (i) When computing numerical spectra, the question of

continued until we reach level 0. This completes our demoneompleteness of the computed spectra arises. Any numerical
stration that all scaling quantum graphs can be solved ananethod, without analytical input, searches for roots of the
lytically. spectral equation using a search grid of finite size. Thus,

There is an interesting analogy between our sequence oliere may always be roots that are closer together than the
auxiliary functions(4) and Sturmian sequences for polyno- chosen grid size, independent of what the current grid size is,
mials[21]. With the help of Sturmian sequences the numberresulting in missed states. Using our method of auxiliary
of roots of a polynomiaP,(x) in an interval[a,b] can be functions, completeness of spectra for scaling quantum
determined. While there are many similarities between Sturgraphs can now be certified since the hierarchioameri-
mian sequences and our sequence of auxiliary functionsial) computation of root separators allows us to isolate and
there are also important differences. label any energy eigenvalue of the scaling quantum graph

(i) Our auxiliary functions are simple derivatives of the individually.
spectral determinarntl), while the Sturmian sequence hasto We note that our methods can be extended to quantum
be constructed using the Euclidean algorithm for polynomi-graphs with an infinite number of bonds and vertices as long
als[21]. as §;<Sy<» and =;_,|aj|=a<«. The latter condition

(i) The Sturmian sequence isolates targeted roots ofuarantees that the functish(k) exists.
Pn(x) by counting sign changes of the polynomials in the  Our explicit energy eigenvalues may now be used to de-
sequence. We isolate roots of the spectral function by arermine the spectral statisti€@3—25 of the eigenvalues of
interlacing process which is based hierarchically on the rootgraph systems. In the context of quantum graphs our results
of higherm functions. are more fundamental than random matrix the@RMT)

(iii) Finally, Sturmian sequences apply to polynomials[23—-26, which is not a physical theory but a mathematical
with a finite number of roots, whereas our method addressasiodel of physical systems based on a zero-knowledge as-
the infinitely many roots of a class of transcendental funcsumption without system-specific input. In fact, our energy
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eigenvalues may be used to test RMT predictions. We notsolvable. A spin-off is the possibility of the targeted compu-
that in the context of quantum graphs RMT predictions weregation of any selected energy eigenvalue of any given scaling
already tested both numericalfl4—-17 and analytically quantum graph.

[27,28.

In summary, our paper makes the important conceptual The authors acknowledge financial support by the Na-
point that scaling quantum graphs are explicitly analyticallytional Science Foundation under Grant No. 9984075.
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