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Abstract

Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-

wide association studies (GWAS) have identified hundreds of common (minor allele frequency

[MAF]>0.05) and less common (0.01<MAF<0.05) genetic variants associated with cancer. The

marginal effects of most of these variants have been small (odds ratios: 1.1–1.4). There remain

unanswered questions on how best to incorporate the joint effects of genes and environment,

including gene-environment interactions, into epidemiologic studies of cancer. To help address

these questions, and to better inform research priorities and allocation of resources, the National

Cancer Institute sponsored a “Gene-Environment Think Tank” on January 10th–011th, 2012. The

objective of the Think Tank was to facilitate discussions on: 1) the state of the science; 2) the

goals of gene-environment interaction studies in cancer epidemiology; and 3) opportunities for

developing novel study designs and analysis tools. This report summarizes the Think Tank

discussion, with a focus on contemporary approaches to the analysis of gene-environment

interactions. Selecting the appropriate methods requires first identifying the relevant scientific

question and rationale, with an important distinction made between analyses aiming to

characterize the joint effects of putative or established genetic and environmental factors and
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analyses aiming to discover novel risk factors or novel interaction effects. Other discussion items

include measurement error, statistical power, significance and replication. Additional designs,

exposure assessments, and analytical approaches need to be considered as we move from the

current small number of success stories to a fuller understanding of the interplay of genetic and

environmental factors.

Keywords

Gene-environment interactions; complex phenotypes; genetic epidemiology

Introduction

The study of gene-environment (GxE) interactions in complex diseases has a long history

[Haldane 1938; Khoury, et al. 1988; Thomas 2000]. In contrast to simple Mendelian

disorders, susceptibility to common complex traits, including cancer, is multi-factorial,

involving multiple genetic and environmental risk factors. Over the past decade, the field

has progressed from candidate gene and candidate gene-gene (GxG) and GxE interaction

studies to genome-wide association studies (GWAS) and gene-environment-wide interaction

studies (GEWIS [Khoury and Wacholder 2009] or “GE-Whiz” [Thomas, et al. 2012]). Using

the Human Genome Epidemiology (HuGE) Navigator tool [Yu, et al. 2008] to track

publications, Dr. Khoury and colleagues identified exponential increases in published

genetic epidemiology literature from 2001 to 2010, including GWAS, substantive

epidemiologic studies, method analyses, meta-analyses, and reviews [Khoury, et al. 2011].

They noted challenges in developing and applying appropriate methods for analysis and

synthesis of GxE interactions. These challenges stem from the complex, evolving, and

expanding nature of genetic and environmental data collected. The field continues to face

new challenges as we move into the “Post-GWAS” era [Aschard, et al. 2012; Dempfle, et al.

2008; Khoury, et al. 2011; Liu, et al. 2012; Thomas 2010].

To address these challenges, the National Cancer Institute (NCI) sponsored a Gene-

Environment Think Tank, held on January 10th–11th, 2012. The goal of the meeting was to

facilitate discussion on GxE interaction studies in cancer epidemiology, with a focus on

current progress, and recommendations for future research [http://epi.grants.cancer.gov/

workshops/thinktank/]. Presentations covered a broad spectrum of topics, including:

rationale for GxE studies; state of the science; optimal study designs; emerging approaches

for analytic methods; challenges and opportunities in measurement of the environment; and

clinical and public health implications.

A key theme that emerged at the Think Tank was that, as with any scientific endeavor, the

analytical challenges of GxE studies can only be met by first elucidating the underlying

scientific question and rationale. Broadly, examples of scientific rationale for GxE

interaction studies in epidemiology can include: discovering novel genetic or environmental

risk factors; providing etiologic insight; and providing guidance on public health and clinical

strategies for cancer prevention, intervention and treatment [Hunter 2005; Thomas 2010].

Throughout the Think Tank discussion a distinction was drawn between the goal of
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characterizing joint effects of known or putative genetic and environmental risk factors, and

the goal of discovering novel genetic loci by leveraging GxE interactions. In a translational

epidemiology framework, where the translational pathway is defined on a five point scale

from T0 (scientific discovery research) to T4 (translational research from practice to

population health impact) [Khoury, et al. 2010], discovery can be framed within the T0

(scientific discovery research) phase, and characterization within the T1 (translational

research from discovery to candidate application) phase.

Despite many years of candidate gene studies testing for GxE in cancer, there are only a few

notable replicated and widely-agreed-upon examples of successes (e.g. NAT2, smoking and

bladder cancer; ALDH2, alcohol and esophageal cancer) [Brooks, et al. 2009; Garcia-

Closas, et al. 2013; Wu, et al. 2012]. Hundreds of studies reporting analyses of GxE

interaction in cancer were published before the advent of GWAS, but most suffered from

problems that plagued candidate gene studies of marginal association, including small

sample sizes, insufficiently stringent thresholds for statistical significance (needed to

account for multiple testing and low priors), incomplete genetic coverage, and publication

bias [Hirschhorn and Altshuler 2002; Ioannidis 2005; Wacholder, et al. 2004]. For example,

of 407 studies examining GxE interactions in breast cancer published before May 2011, 307

(75%) reported a statistically significant GxE interaction—a strikingly high proportion,

suggesting most are false positives.

The Think Tank participants discussed several large studies that have tested for GxE

interactions for GWAS identified loci. Most of these studies have not observed statistically

significant interactions [Campa, et al. 2011; Hutter, et al. 2010; Milne, et al. 2010; Nickels,

et al. 2013; Travis, et al. 2010], although one study did find evidence for a statistical

interaction between genetic variants at 8q22.3 and vegetable consumption for risk of

colorectal cancer [Hutter, et al. 2012], and another showed evidence for statistical

interactions between LSP1 and parity, and CASP8 and alcohol consumption for risk of

breast cancer [Nickels, et al. 2013]. Generally these studies have focused on the statistical

significance of GxE interaction terms, rather than full characterization of joint effects.

Concern was raised as to whether these studies adequately model the genetic and

environmental factors [Prentice 2011]. Participants discussed several initial GEWIS studies

of cancer phenotypes with null findings that have yet to be published. While there have been

a small number of initial success stories where consideration of environmental factors or

GxE interactions contributed to discovery of novel genetic loci for cancer and other complex

diseases [Cornelis, et al. 2012; Hamza, et al. 2011; Hancock, et al. 2012; Manning, et al.

2012; Wu, et al. 2012] publication bias is of substantive concern. The upcoming years may

be more successful, as increasingly large studies with rare and common genome-wide

genotype data incorporate existing environmental data, improved measures of environmental

factors, and novel statistical methods.

This report aims to summarize the Think Tank discussions, focusing on contemporary

analysis of GxE interactions for cancer and other complex diseases. Specifically, we provide

an overview of motivation for performing GxE analysis, present methods that can be applied

to existing genetic and exposure data within observational studies to characterize and

discover GxE interactions, discuss key considerations for analysis in case-control or nested
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case-control studies, and comment on interpretation of GxE interactions. We highlight some

key unanswered questions (Box 1).

Motivation for Assessing GxE Interaction

The analysis of GxE is motivated by interest in either “characterization” of the joint effects

of genetic and environmental risk factors or “discovery” of novel risk factors or interaction

effects. In either context, it is important to define several categories of interactions,

including: qualitative interaction, where the effect of one exposure is reversed by the other;

pure interaction, where the effect of one exposure is present only in the presence of the

other; and quantitative interaction, where the effect of one exposure, on some specified

scale, is of a different magnitude in the presence of the other [De Gonzalez and Cox 2007].

Whereas qualitative interactions are not removable by any transformation [Satagopan and

Elston 2013], the presence of quantitative interaction depends on whether the effects are

being measured in an underlying additive scale, for example using risk-differences;

multiplicative scale, using risk-ratios; or some other scale [Walter and Holford 1978].

Characterization

One goal for GxE studies is to characterize risks associated with joint effects of putative or

known genetic and environmental factors. In this setting the goal is often estimation rather

than statistical testing. In many GxE interaction studies the common practice to simply

model interaction terms, scan p-values and report “significant” interaction terms. This is

often done without considering the context of the direction and interpretation of the full joint

effects. However, such practice is not ideal from a biological or public health point of view

[Knol, et al. 2009; Knol and VanderWeele 2012]. Instead, understanding joint risks may be

important both for obtaining etiologic insights, and for translation to public health

applications such as risk-based screening and intervention. In these studies, the joint effects

would ideally be estimated empirically using data within each particular GxE strata.

Obtaining adequate sample sizes for each unique combination of risk factors is often not

feasible, so we often rely on models for parsimonious description of joint effects.

A primary challenge of characterizing joint effects and GxE to provide biological insights

into mechanisms is the lack of explicit links between statistical and biological interactions.

This issue has been vigorously debated in the epidemiologic literature for decades [Cordell

2002; Siemiatycki and Thomas 1981; Thompson 1991; VanderWeele 2011; Weinberg

2012b]. While it is generally recognized that the simple existence of multiplicative

interactions between two risk factors does not readily identify a unique model for biologic

mechanisms for interactions, there is considerable debate whether tests for interaction in

alternative scales could be more insightful for this purpose. We present some of these

alternatives in the statistical methods section of this paper.

In addition, there are certain categories of joint effects that might more readily provide

mechanistic interpretations. The presence of qualitative or pure interaction can highlight

components of a complex exposure that might be active in specific conditions. This is

illustrated by polymorphisms in genes that metabolize the exposure agent, such as

acetylation activity of the NAT2 gene, different kinds of aromatic amines and the etiology of
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bladder cancer. Studies in the general population consistently show slow acetylation activity

increases risk of bladder cancer among smokers, but has no effect among non-smokers

[García-Closas, et al. 2005]. In contrast, a study conducted among subjects highly exposed

to benzidine, which is rare in the general population, showed slow acetylation activity to be

associated with reduced risk of bladder cancer for benzidine-exposed workers [Carreon, et

al. 2006]. These studies provided biological insights into mechanisms of actions for different

types PAHs on carcinogenesis.

Another motivation for characterization of joint effects and GxE is for potential translational

applications of epidemiologic research. Studies of GxE may help public health researchers

develop strategies for targeted intervention for risk-factor modification based on individuals’

genetic profile [Hunter 2005]. Some cancers have strong environmental risk factors, and in

considering the practicality of intervention, the environment is often more easily modified

than genetic factors. If an intervention can be applied only to a subset of the population due

to ethical issues, risk of side effects, cost, or other practical considerations, then targeting the

intervention to high-risk subjects could be more beneficial in terms of number of diseases

prevented. In this context, when a GxE interaction is found, the joint effects can be modeled

to identify subgroups for whom interventions may best be targeted. Further, although tests

for statistical significance could be performed based on multiplicative models of relative

risks, the magnitude of benefit from targeted intervention cannot be assessed without

reference to absolute risks [Garcia-Closas, et al. 2013].

Discovery

A second common goal for studies of GxE interactions is the identification of novel factors

that may contribute to the etiology of disease. This paper will focus on discovery of novel

genetic loci, but it is important to consider that GxE can also be used to discover novel

environmental factors. Genetic variation that impacts disease through interaction with

environmental factors may not be readily detected in traditional GWAS analysis,

particularly if marginal effects of the genetic factors are small [Gauderman, et al. 2013;

Manolio, et al. 2009; Thomas 2010]. Therefore, there is growing motivation to use GEWIS,

or other methods that incorporate environmental information, to identify novel risk loci.

Notably, the focus is on discovery of new genetic loci that impact disease risk, more than on

identifying novel GxE interactions per se. The expectation is that future studies will

characterize any underlying GxE interaction.

There have only been a small number of GEWIS publications to date. These include

examples for cancer risk, including a large study that replicated interactions between alcohol

and single nucleotide polymorphisms (SNPs) in relation to esophageal squamous cell

carcinoma [Wu, et al. 2012], and a relatively small, unreplicated, finding for obesity and

colorectal cancer [Siegert, et al. 2013]. As well as findings in other complex diseases and

outcomes [Cornelis, et al. 2012; Hamza, et al. 2011; Hancock, et al. 2012; Manning, et al.

2012]. Notably, in some of these cases inclusion of an environmental factor assisted in

identifying novel genetic loci, even though there was not strong evidence for a GxE

interaction. The findings to date suggest that the number of novel genetic loci identified by a

GEWIS discovery approach may be small, and the interaction effects modest. Therefore, it
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is important to have large studies incorporating accurate assessment of environmental

exposures in well characterized populations and/or combined analysis of new or existing

studies with harmonized environmental data across studies. It will be important to develop

and use powerful analytical methods, as described below.

Statistical Methods for Testing and Estimating GxE Interactions

This paper focuses on methods for SNP × E case-control and nested case-control studies.

The most common approach to investigate multiplicative GxE interactions is to incorporate

a product interaction term within a logistic regression model. Some Think Tank participants

noted that even when testing for departures from a multiplicative odds ratio model is the

primary goal, other approaches may be more powerful than logistic regression [Hein, et al.

2008]. Other participants noted that these methods have their own drawbacks, and that

logistic regression has the advantage of widespread familiarity. In this section we outline

alternative approaches which merit further consideration, and touch on which may be most

appropriate for use in the context of characterization, discovery, or both. The different

approaches are summarized in table 1, and statistical software resources are summarized in

table 2.

Methods for biological interpretation and for testing specific categories of interaction

In the characterization setting, a “sufficient component” causal inference framework has

been used extensively by VanderWeele and colleagues to propose new tests for “biologic

interactions” and to develop scenarios where existing tests for statistical interaction may be

given biologic interpretation [VanderWeele 2009; VanderWeele and Robins 2007].

Although these methods provide a consistent philosophical framework for defining and

testing for interaction, their practical utility remains to be demonstrated. The biological

insight obtained from using this framework may be limited since the underlying mechanism

through which the exposures interact could be very broad and not pinpoint particular

biological causes [Clayton 2012]. It is not clear how and whether the presence of such

interaction can aid in design of biological experiments to provide more specific mechanistic

insights.

A classic test proposed in the context of clinical trials [Gail and Simon 1985], can be easily

adapted to test for qualitative GxE interaction in observational studies. The statistical

methodology for identification of pure interaction, as defined above, is not well developed

and further development of methodologies is merited. One option may be to formulate the

problem in terms of a model selection problem, comparing the pure interaction model to a

more general model allowing for other types of interactions, using model fit measures such

as AIC or BIC or a Bayesian model selection approach.

Methods for risk modeling and public health applications

In moving towards a personalized, or stratified, medicine paradigm, it will be important to

develop well-calibrated models for the joint effects of all known SNPs and environmental

factors. To this end, one might select models based on overall goodness-of-fit tests [Hosmer,

et al. 1997], rather than on the significance of individual interaction terms. Think Tank
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participants discussed how it might be appropriate to build models that assess the interaction

between environmental exposures and genetic susceptibility through categories of polygenic

risk-scores [Garcia-Closas, et al. 2013]. Participants recognized that such models have

limited biological interpretation due to mixing of SNPs with different biological functions.

However, they may adequately capture variation in joint risk.

Once a suitable model for joint effects is determined, various alternative criteria can be used

for evaluating utility for public health applications [Gail and Pfeiffer 2005]. The area under

the receiver operating characteristics curves (AUC) is a popularly used measure for

discriminatory ability. However, the measure is not necessarily a good guide in all

applications. In particular, AUC is a measure that depends on the distribution of the risk-

profile conditional on case-control status, and cannot take into account information about

baseline risk of a disease, which could be an important determinant of degree of

stratification for absolute risk. For example, a model with modest discriminatory

performance, when applied to a relatively common condition such as breast cancer, was

shown to provide sufficient stratification for absolute risk to be useful for weighing risks and

benefits for a drug such as Tamoxifen [Gail, et al. 1999]. Studies that aim to develop risk

models need to take into consideration specific public health applications and then

accordingly use an appropriate criterion for evaluating utility of the models.

Methods for efficient analysis of GxE interactions

The case-only method tests the association between the environmental factor and the genetic

factor within cases, and has improved power over the traditional logistic regression

method[Piegorsch, et al. 1994]; however, the case-only method has a large type I error if the

GxE independence assumption is violated [Albert, et al. 2001]. This method loses power

when the interaction odds ratio and the association between the gene and environmental

exposure are in opposite directions [Mukherjee and Chatterjee 2008], and is less powerful

when the disease is common.

There was active discussion at the Think Tank as to whether violations of the assumption of

GxE independence are commonly observed in real data. Several argued that lack of GxE

independence may be rare in practice and, therefore, power gains from case-only approaches

may outweigh the potential risks of increase in type I error. Support for this has been shown

empirically in a GEWIS with body mass index as exposure and diabetes as the outcome

[Cornelis, et al. 2012]. However, there are several plausible scenarios where one would

expect G/E association in a population [Weinberg, et al. 2011]. Participants noted

consideration of the violation of GxE independence assumption should be informed by

previous data, experience and study characteristics. A recent empirical example in

esophageal cancer demonstrates advantages and disadvantages of the case-only test

compared to other methods [Wu, et al. 2013]. Determination of whether case-only analyses

are appropriate will depend on the study population, exposure and disease.

Hedge methods have also been proposed to have improved power, and are less susceptible to

violations of the GxE independence assumption. These include: (1) Two-step procedures

that filter on marginal effects, gene environment correlations in the full sample population,

or other tests [Dai, et al. 2012a; Gauderman, et al. 2013; Kooperberg and Leblanc 2008;
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Murcray, et al. 2011; Murcray, et al. 2009]; and (2) Data adaptive methods, such as

empirical Bayes, Bayes-model averaging, or frequentist model averaging [Li and Conti

2009; Mukherjee, et al. 2012; Mukherjee and Chatterjee 2008]. Several papers have

compared these two types of hedge methods for the genome-wide discovery setting

[Cornelis, et al. 2012; Gauderman, et al. 2013; Mukherjee, et al. 2012; Murcray, et al. 2011;

Thomas, et al. 2012]. These methods all performed relatively equivalently and were shown

to generally have more power compared to standard unconditional logistic regression and

better control of type I error when compared to case-only approaches [Mukherjee, et al.

2012]. Standard unconditional logistic regression methods maintained proper type 1 error

control.

The field is rapidly evolving, and additional approaches continue to be developed. For

example, the cocktail method uses a module-based approach that implements multiple

analytical methods simultaneously, including weighting for multiple comparison testing

adjustment, implementing two-step procedures and testing with case-only, case-control and

empirical Bayes [Hsu, et al. 2012], and the EDGxE method has a screening step that uses

both marginal-effect and gene-environment correlation information to efficiently filter SNPs

for GxE testing [Gauderman, et al. 2013]. An additional approach augments case-only data

with exposure data collected from siblings [Weinberg, et al. 2011]. Further approaches are

being developed through NIH funded applications in response to a program announcement

on “Methods and Approaches for Detection of Gene-Environment Interactions in Human

Disease” [http://grants.nih.gov/grants/guide/pa-files/PAR-11-032.html].

As discussed above, characterization studies focus on the joint effects, looking at relative

and absolute risks rather than narrowly focusing on specific forms of interactions.

Nevertheless, several methods described in this section can be extended in ways that make

them quite useful for characterization as well as discovery. The assumption of independence

of G and E, exploited in the case-only method for testing multiplicative interaction

[Piegorsch, et al. 1994], can also be exploited in a case-control study to make efficient

inference regarding all parameters of a general logistic regression model. Having all of the

parameters, allows for characterization of the full joint effects using a maximum likelihood

estimation (MLE) method [Chatterjee and Carroll 2005]. Similarly, the robust empirical-

Bayes method can be applied to make inference about all of the parameters of a logistic

regression models [Mukherjee and Chatterjee 2008]. Methods have been developed for

testing for additive interactions in case-control data [Knol, et al. 2011; Rothman 1986], and

the assumption of GxE independence can be exploited to improve power to test for additive

interaction based on case-control study data [Han, et al. 2012].

Methods for the joint analysis of G and GxE

In the discovery setting, focus is often on identifying novel genetic loci associated with

disease. For GEWIS approaches, there is typically not a priori information as to whether

multiplicative or additive models are most appropriate. When environmental factors and

genetic loci only have modest effects on disease risk, there will not be large differences

between additive and multiplicative tests [Weinberg 2012b]. However, similarity between

the models breaks down when one of the main effects is large, or the environmental
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exposure is continuous. In general, Think Tank participants were supportive of considering

approaches that were less dependent on the choice of additive or multiplicative

parameterizations in the discovery setting. Joint tests consider the hypothesis that a genetic

factor is associated with risk of disease in any exposure subgroup, and test the main effect of

the genetic factor and the GxE interaction simultaneously in a 2-degree of freedom test

[Kraft, et al. 2007]. Alternative versions of this test have been proposed [Dai, et al. 2012b]

and the GxE independence assumption can be incorporated into joint tests to improve power

using MLE [Chatterjee and Carroll 2005] or empirical-Bayes methods [Mukherjee and

Chatterjee 2008]. These tests are scale independent under the restricted situation of

dichotomous G and dichotomous E, although they are sensitive to choice of scale for

continuous or categorical G or E. Additionally, joint tests can have increased power over

traditional marginal and interaction tests, particularly if the genetic effects are modest

[Lindstrom, et al. 2009] After a variant is identified with the joint test method, standard

practice is to characterize the full joint effects, including a separate examination of the

marginal and GxE interaction effects. This produces stratum-specific relative risks that are

jointly cross classified with their 95% confidence intervals. Some recent examples have

identified novel genetic loci using the joint test that do not show strong evidence for

multiplicative interaction when a standard GxE interaction test is performed [Hancock, et al.

2012; Manning, et al. 2012]. In one case the joint test allowed for identification of novel

genetic loci not because of underlying GxE interactions, but because of precision gained by

including a known risk-factor in a linear regression model [Manning, et al. 2012]; however,

such a gain in power may not be realized with logistic regression [Mefford and Witte 2012].

Additional Methods

Some methods propose testing GxE interactions at the gene level, rather than the SNP or

genetic variant level [Chatterjee, et al. 2006; Lin, et al. 2013]. In these methods, all variants

in a gene region are considered as a unit. Although such approaches may focus and reduce

the total number of interaction tests being performed, the methods require multiple degree of

freedom tests or strong parametric assumptions, which may result in greater loss of power.

There is uncertainty in how to define a gene or gene region, leading to uncertainty in what

variants to include in these tests [Djebali, et al. 2012]. Furthermore, gene based approaches

do not account for variation in intergenic regions.

There are also several machine learning approaches, including multifactor dimensionality

reduction (MDR) [Ritchie, et al. 2001], random forest regression [Breiman 2001], and

Bayesian network analysis [Baurley, et al. 2010; Chen and Thomas 2010; Wilson, et al.

2010] that can be considered for exploration of GxE interactions (for review see [Cordell

2009; Moore, et al. 2010]). Bayesian generalized linear models can be used to

simultaneously test main effects for environmental exposures, multiple genetic variants

along with GxG and GxE interactions [Yi, et al. 2011]. Additional methods incorporate

different frameworks, such as the natural and orthogonal interaction framework [Ma, et al.

2012]. Many of these approaches consider more complex models of interaction as

alternatives to additive or multiplicative scales. Furthermore, Bayesian approaches can

potentially incorporate prior biological information or pathway data into interaction models

[Hung, et al. 2004]. However, pathway definitions and functional annotation are not fully
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established [Kraft and Raychaudhuri 2009; Mechanic, et al. 2012; Wang, et al. 2010].

Specific considerations for these multilevel methods include incorporation of computational

and bioinformatic advances, new approaches to interpretation of results and specific

challenges for framing and performing replication.

Key Considerations for Characterization and Discovery

Measurement Error and Improved Exposure Assessment

Participants at the Think Tank noted every GxE study must address challenges in measuring,

assessing and modeling both genetic and environmental factors. For GWAS, directly

genotyped common SNPs are often analyzed as if measured without error. However, a

closer examination of cluster plots may demonstrate uncertainty in genotype measurement.

The assumption of no error is less safe for imputed genotypes [Jiao, et al. 2011; Sinnott and

Kraft 2012], For rare variants, and sequencing studies, variant calls are often made with less

accuracy and confidence, particularly for low-coverage designs [Li, et al. 2011].

Additionally, error may be introduced in the choice of genetic model (i.e. assuming a log-

additive model when the true effect is dominant or recessive [Prentice 2011]). The

environment is dynamic, changes over time and individual’s lifespans, and is fraught with

measurement error [Spiegelman 2010]. Participants stressed the importance of valid,

efficient, computationally feasible methodology for measuring “E” in GxE studies, since

misclassification can be a major source of bias and loss of power [Aschard, et al. 2012;

Lindstrom, et al. 2009].

Think Tank participants discussed methods that correct for bias and loss of power due to

exposure measurement error in ways best suited for GxE and GEWIS studies [Cheng 2006;

Cheng 2007; Wong, et al. 2004; Zhang, et al. 2008] The common trade-off between

increased sample size and decreased quality of exposure data (or harmonizable exposure

data) can be considered, and in some instances, the fully validated design may be optimal

[Greenland 1988]. In most cases, main study/validation study designs [Greenland 1988;

Holcroft and Spiegelman 1999; Spiegelman 2002] and main study/reliability study designs

may be appropriate [Spiegelman D 1998]. The joint test, discussed above for use in

discovery settings, has been shown to be less sensitive to bias from measurement error

[Lindstrom, et al. 2009]. However, more research is needed to develop and evaluate methods

that account for measurement error.

Recent reports discuss the clear need for developing improved measures of environmental

exposures, and lay out details of next steps in this area [National Research Council [2012;

Balshaw and Kwok 2012]. Although these advances will reduce environmental

measurement error and improve tests of GxE, some participants noted that it typically will

not be feasible to remove all error. More accurate environmental exposure methods may not

be applicable in some current large population-based studies because the data and specimens

were already collected, because of expense of these measures, or because of other factors.

There is additional uncertainty in environmental data stemming from our lack of knowledge

of the timing of effects. For instance, even if we could measure a person’s pack years of

smoking without error for a study of breast cancer risk, we might still need to know whether
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smoking was initiated prior to her first birth, and how long ago she quit smoking. These

considerations are compounded for studies of the impact of in utero and early childhood

exposures on a disease with late onset, and highlight the need for methods and designs, such

as longitudinal studies, that consider interactions over time and time-varying exposures.

Power and Sample Size

Think Tank participants discussed the related issues of power and sample size. Because of

small effect sizes, multiple testing corrections, and the need to model more parameters,

studies of GxE interactions need to have large sample sizes. Table 2 provides a list of

software that can be used for power calculations in GxE studies. Lack of power is an

important limitation in many GxE studies, particularly GEWIS [Dempfle, et al. 2008;

Mukherjee, et al. 2012]. The GWAS community was able to address sample size by

performing meta-analysis, efficiently combining results across multiple studies [de Bakker,

et al. 2008]. However, there are more challenges when considering meta-analysis of GxE

(see Cornelius and Hu for discussion [Cornelis and Hu 2012]). Some of these issues overlap

with issues in replication as discussed below.

Studies with sufficiently large samples for analyzing interactions with common exposures

may still have sample size issues for a relatively rare exposure or genotype of interest, or

when a large sample size is created through a meta-analysis of many small studies. In these

situations there may be small cell counts where asymptotics break down, leading to unstable

results.

Assessing Statistical Significance and Evidence for Interaction

Another key issue that was raised throughout the Think Tank was the question of statistical

significance thresholds for GxE interactions. Even for candidate gene GxE interactions, a

traditional nominal p<0.05 cut off will not suffice because multiple comparisons are

typically performed. The lack of multiple testing corrections, coupled with publication bias,

leads to an increase in the rate of publication of false positive findings; thus obscuring true

positives. Notably, a recent review of NCI’s external funding portfolio and the literature

suggests publication biases resulting from not publishing null findings [Ghazarian, et al.

2013].

For characterization studies the goal is often estimation rather than significance testing.

When testing in the characterization setting, there are typically relatively small numbers of

candidate SNPs and environmental factors, and standard methods are often used to correct

for multiple testing. One option is to perform permutation methods that can account for

correlation between different genetic factors and/or different environmental factors

[Buzkova, et al. 2011].

For GEWIS studies of SNP × E for discovery, the Think Tank participants discussed setting

a threshold for genome-wide GxE significance. Thresholds in the 5×10−7 to 1×10−8 range

have been an important component of the standards and success of GWAS [Chanock, et al.

2007]. Although specifics about appropriate significance thresholds for the GWAS setting

are still actively debated [Panagiotou, et al. 2012; Wakefield 2012], thresholds are viewed as
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a pragmatic way to determining what is “established” and curtailing false positives.

However, a concern was raised at the Think Tank as to whether it is too early to establish

fixed thresholds for GxE, since there have not been a sufficient number of large studies with

replication to empirically evaluate a threshold standard. There was additional concern that it

is not clear what decision we are trying to make with a threshold. Specifically, are we using

a threshold to determine when an interaction is real, or using a threshold more broadly to

determine whether interactions are noteworthy and merit further follow-up? Additionally,

there was concern that a statistical threshold may represent too stringent a standard,

particularly if thresholds are the only standard. For example, in a multi-stage GWAS and

replication joint analysis of 10,519 bladder cancer cases and 13,218 controls, the p-value for

interaction between ever/never smoking and the NAT2 tag SNP rs1495741 was only

2.8×10−4, clearly not fulfilling any “genome-wide significant” threshold [Rothman, et al.

2010]. However, this interaction is widely accepted because of underlying biology and

consistency in replication. This example is not being used to advocate low thresholds;

however, it demonstrates that very large sample sizes are needed to detect interactions using

only highly stringent significance thresholds.

Despite these concerns, some Think Tank participants suggested adjusting GWAS

thresholds to account for the number of exposures as an approach for considering an

interaction “established” based on statistical evidence in GEWIS. One number proposed was

10−10. This number assumes 100 exposures, and some participants questioned if that was a

realistic assumption, or if it was an overestimate leading to too stringent of a threshold.

Participants felt strongly that if a threshold is adopted, it should not create a barrier to

publication for GxE. We should not conflate what is publishable with truth. As has been

noted previously [Ghazarian, et al. 2013; Mechanic, et al. 2012], it is important to have

publication or reports of data from well-designed studies that have been properly analyzed

but did not achieve statistical significance, and the group supported a web-based

clearinghouse or repository for results of putative interactions while more evidence is being

collected. There is current concern that many initial examinations of GEWIS are “sitting in

desk drawers”. Additionally, if a threshold is chosen, it should not be viewed as replacing or

superseding replication in an independent population. However, as discussed below, there

are special challenges in replication for GxE interactions.

As an alternative to a set threshold, participants discussed a recently published set of

guidelines for a standardized and transparent assessment of the evidence of GxE interactions

[Boffetta, et al. 2012]. A true GxE interaction is more likely to have strong evidence,

replication, protection from bias, and high prior plausibility [Boffetta, et al. 2012]. However,

some participants noted these guidelines do not fully address complex issues such as when

the multiplicative joint effects are are null for a multiplicative null model but truly

interactive compared to an additive null. and exposure-related population stratification.

Further, because so much about human physiology is unknown, it is difficult to calibrate the

level of a priori knowledge, particularly for agnostic genome-wide approaches.
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Replication

Replication has proven to be an essential component to any genetic association study

[Chanock, et al. 2007]. A contributing factor to the success of GWAS was the standardized

requirement for independent replication [Chanock, et al. 2007; Kraft, et al. 2009]. The

division of GWAS studies into discovery and replication was also motivated by GWAS

being expensive, and follow-up genotyping more cost efficient. As we combine and create

studies large enough to reach adequate power in the discovery phase, it may not be possible

to have large studies for replication [Hernan and Savitz 2013]. Current practice often

focuses on whether stringent genome-wide significance standards are achieved for combined

analysis of all available data [Eeles, et al. 2013; Michailidou, et al. 2013; Skol, et al. 2006]

Think Tank participants discussed several challenges unique to performing replication in

studies of GxE. One challenge is determining what aspects of the GxE interplay are factored

into replication. As discussed above, often the goal of GxE studies is to model the joint

effects [Weinberg 2012b]; therefore, such joint effects should be the focus of replication.

However, the best approach to test if the joint effects are similar across studies is not as

straight forward as when considering a single interaction term. Moreover, without similar

patterns of joint effects, replication of the interaction coefficient is not interpretable

[Mechanic, et al. 2012].

Another challenge is obtaining an appropriate replication population. Differences in the

underlying distribution of environmental exposures, LD structures, and genetic modifiers

can reduce the power to detect an interaction in independent studies. In cases where an

investigator is examining a rare disease, genetic, or environmental exposure; where

exposures are unique to particular populations; or where the initial finding was obtained

within a large consortium comprising all known studies of a specific outcome, an

appropriate replication population may not exist [Mechanic, et al. 2012]. Potential

differences in the method or timing of assessment of an environmental exposures or

measurement of genetic variants (e.g. genotyping platform coverage) may also reduce the

suitability of potential replication populations for a specific GxE interaction.

The Think Tank discussion covered possible considerations for addressing challenges in

replication. One suggestion was to incorporate supporting biological knowledge, noting that

functional studies may serve as independent support of a true association when an

appropriate independent replication population is not present. However, the best approach

for such incorporation is not clear, and participants stressed the importance of strong

communication between the investigators performing the initial GEWIS, and those

performing biological assays for follow-up. The need for independent replication in a second

population versus performing biological assays must be balanced against cost of follow-up.

Another possibility is to focus on environmental exposures with known replication datasets

available. These replication-ready data sets could include cohorts with pre-diagnostic data

and stored biospecimens; and existing data could be leveraged through enhanced data

sharing. Sharing of null results through a clearinghouse, as discussed above, would foster

replication of both positive and negative findings. A final consideration relates to the

population size for the initial observation. When performing well-designed studies of

suitably large samples sizes (50–100K individuals) from multiple studies, observing an
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interaction provides stronger credibility and therefore, the requirement for independent

replication may be lessened. However, heterogeneity across the component studies may

provide insights about effect modifiers or may provide evidence that the SNP found to be

interacting with the environmental exposure is a marker and not the directly causative SNP.

DISCUSSION

GWAS have identified several hundred variants for cancer risk, with new variants being

reported from large-scale meta-analysis [Hindorff, et al. 2013; Sakoda, et al. 2013]. The

“post-GWAS” era is seeing advances in exome and whole-genome sequencing and rare-

variant analysis, as well as functional follow-up and epidemiologic examinations through

projects like the NCI-sponsored Genetic Associations and Mechanisms of Oncology

(“GAME-ON”) Initiative. [http://epi.grants.cancer.gov/gameon/]. GAME-ON has been

actively involved in developing large collection of samples for which environmental

exposures have been well harmonized, thus allowing large-scale genome-wide interaction

analyses to be effectively conducted. Adopting standards for assessment of environmental

exposure assessment, such as standards that have been presented by the PhenX initiative will

assist researchers to aggregate sufficiently harmonized studies to be jointly analyzed

[Hamilton, et al. 2011]. There have been advances in measuring exposures and developing

tools and technologies to assess environmental factors [National Research Council 2012].

This paper has focused on contemporary analysis issues for case-control studies, with the

goal of guiding the conversation about what investigators should do today with the data that

they have in hand. However, the Think Tank participants recognized that there will be many

opportunities to advance our understanding of GxE interactions. These opportunities include

development of more comprehensive methods for identifying and assessing environmental

factors, discussion of novel study designs, and discussion of the need for dissemination and

sharing of resources.

In addition to identifying new genetic factors, GxE studies could be used to identify novel

environmental risk factors and to improve our understanding of the etiologic role of those

factors for disease. The Think Tank participants recognized inequality in GxE research, with

G proceeding at higher speed because of technological developments that allowed for more

precise high-throughput assessment of relevant genetic variants garnering more attention.

They drew on the analogy of the claws of the male fiddler crab, with G being the oversized

chela, and E being the smaller claw [Wild 2005]. As with GxE interactions, both claws are

important, as the larger is used in clashes as part of courtship while the smaller is used for

eating; moreover, if the large claw is lost, the smaller one will grow larger. Participants

raised the challenge of investing in technology for exposure characterization to bring it up to

par with genetic data. While recognizing that environmental exposures are not as static as

genetic variants, part of this challenge may be addressed by developing low-cost approaches

to do large scale assessment and characterization over time, including methods development

and applications in longitudinal studies. There was discussion as to whether we should

consider discovery studies for novel risk factors using exhaustive, systematic and agnostic

analysis across multiple environmental factors [Patel, et al. 2013; Rappaport 2011], and

discussion about the potential for including epigenetic components, such as non-coding
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RNA in GxE. An additional challenge was determining what methods were high priority in

an environment of scarce resources.

The Think Tank participants discussed advantages and opportunities for conducting new

studies using innovative designs. The focus of this paper has been on case-control or nested

case-control study designs. Family-based designs may provide some advantages over case-

control studies due to robustness to population stratification, ability to make genetic

inferences by comparisons to family members, increased power for assessing GxE

interactions [Witte, et al. 1999], and resistance to self-selection of controls [Shi, et al. 2011;

Weinberg 2012a]. Extensions to these methods have been developed that complement some

of the case-control methods described in this paper [Chatterjee, et al. 2005; Kistner, et al.

2009]. However, population stratification remains an issue in family studies of GxE

interactions. Several alternatives such as the tetrad design or sibling augmented case-only

(SACO) are being explored to address those robustness issues [Shi, et al. 2011; Weinberg, et

al. 2011], and work in this area is merited to facilitate the use of data collected under these

family study designs.

Finally, the Think Tank participants discussed the importance of developing collaborative

resources. As discussed above, there was support for a clearinghouse to share results from

GxE studies, and that this should not be limited to “significant” or publishable findings.

There was also an emphasis on providing a resource or clearinghouse for sharing software.

Methods and software not only need to be developed and validated, but to be implemented

they need to be fast, uncomplicated, well-documented and available to the broader research

community. Sharing of this software could follow a model similar to the recently developed

Genetic Simulation Resources [Peng, et al. 2013].

Overall the Think Tank stressed the importance of careful consideration of design and

analysis in studies of GxE for characterization and for discovery. The design and analysis

should be motivated by the underlying scientific question and rationale, and key items—

including replication, power, measurement error and credibility— should be considered. As

the field moves forward we will need to consider additional designs and analytical

approaches in order to move from the current small number of success stories to a better

understanding of the interplay of genetic and environmental factors.
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Some Considerations and Questions for GxE Interaction Studies

Considerations for Characterization of GxE

• What do we mean by GxE in a characterization setting?

• When is it appropriate to select a SNP or environmental factor for

characterization?

• What are the methods for testing pure interactions?

• What are the optimal methods for evaluating risk models?

• How do we interpret an interaction?

Considerations for Discovery of GxE

• What do we mean by GxE in a discovery setting?

• What is the optimal method for discovery of GxE in GEWIS studies?

• How prevalent is GxE correlation in real data sets?

• How do we interpret an interaction?

Measurement Error

• What methods should we use to account for misclassification and measurement

error in GxE studies?

• What are the best methods for improving environmental exposure

measurement?

• What methods or designs are most appropriate for time-varying exposures and

timevarying interactions?

Significance Testing

• Is 10−10, or some other p-value threshold, appropriate for GEWIS?

• How do we best incorporate outside information (i.e. biological information),

together with statistical data, to establish “credible” or “real” interactions?

Sample Size and Power

• How do we address small cell sizes in finite samples? Can we find appropriate

alternatives tests that do not rely on asymptotic assumptions?

• What are the best methods for meta-analysis of GxE interactions?

Replication

• What should be the criteria for selecting GxE for follow up studies?

• What should be the criteria to define sufficient replication?

• How to handle replication with rare exposures or unique populations?

Hutter et al. Page 25

Genet Epidemiol. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



• How can we best use GxE information to pick SNPs for replication in GEWIS

settings?

Other

• Given that many initial attempts at GxE in characterization and discovery

(GEWIS) have had null findings, how do we prioritize publication? How do we

ensure dissemination of information? And how do we best capitalize on the use

of this information?
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Table 1

Overview of Analytical Methods for Characterization and Discovery of GxE Interactions

Method Highlights Reference

Sufficient Component Models • Framework where the presence of interaction in the
additive scale can be used as evidence of overlap of
biologic actions through a common underlying pathway.

• Useful in characterization motivated by understanding
biological mechanisms.

[VanderWeele 2009;
VanderWeele and
Robins 2007].

Test for Qualitative Interaction • Tests for qualitative interactions.

• Useful in characterization motivated by understanding
nature of interaction.

[Gail and Simon
1985]

Goodness of Fit tests • Simultaneously test multiple terms including GxG and
GxE.

• Useful when building parsimonious models for risk
assessment in public health contexts.

[Hosmer, et al. 1997]

Unconditional Logistic Regression • Standard method for analysis.

• Robust to assumptions about G-E correlation.

[Breslow and Day
1980]

Case-only • Efficient method for analysis of multiplicative interaction
odds ratio.

• Exploits, and is highly sensitive to, assumption of G-E
independence.

• Useful for improved power for discovery of GxE
interaction.

[Piegorsch, et al.
1994]

Maximum Likelihood Estimation method • Exploits GxE independence assumption in the analysis of
case-control data.

• Allows efficient estimation of all parameters from logistic
regression model. Useful for both discovery and
characterization. For discovery, the method could be used
for joint test for genetic effects and GxE interaction.

[Chatterjee and
Carroll 2005]

Two-step procedures that screen based on
G-E correlation in cases and controls.

• Filters markers based on GxE correlation and tests using
standard case-control logistic regression.

• Sensitive to case:control ratio relative to the population
disease prevalence.

• Efficient method for testing interaction, unless G-E
association is opposite direction from the interaction.
Useful in GEWIS discovery.

[Murcray, et al. 2011;
Murcray, et al. 2009]

Two-step procedures that screen on
marginal gene-disease association

• Filters markers based on gene-disease association and tests
using standard case-control logistic regression.

• Efficient method for testing for pure and quantitative
interactions. Useful in GEWIS discovery.

[Kooperberg and
Leblanc 2008]

Empirical Bayes • Weighs the case-only and conventional case-control tests
depending on the degree of G-E association present in
data.

• Useful for both discovery and characterization. Allows
efficient estimation of all of a general logistic regression
model. Can have inflated Type I error in presence of
strong population level G-E correlations.

[Mukherjee and
Chatterjee 2008]
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Method Highlights Reference

Bayes-Model Averaging • Combines case-only model and case-control model.

• Bayes Model Averaging estimator is expected value of
posterior distribution.

• Dependent on choice of prior weights for case-only vs.
case-control.

[Li and Conti 2009]

Frequentist model averaging (AIC) • Combines case-only model and case-control model.

• Weights are data-driven and depend on Akaike
information criteria (AIC).

[Mukherjee, et al.
2012]

Joint two-degree of freedom test • Two-degree of freedom test that simultaneously tests the
main effect and the GxE interaction.

• Tests hypothesis that the genetic factor is associated with
risk of disease in any exposure sub-group.

• Powerful method for discovery of novel loci.

• G-E independence assumption can be incorporated to
improve the power of the test using the MLE or empirical-
Bayes method.

[Kraft, et al. 2007]

Joint Meta-Analysis Approach • Allows for meta-analysis of the joint two-degree of
freedom test.

• Useful for discovery of novel loci in consortia and other
collaborative analysis.

[Aschard, et al. 2010;
Manning, et al. 2011]

Cocktail Method • Modular approach that incorporates aspects of two-step
methods, case-only and empirical-Bayes.

• Allows for weighted hypothesis testing to account for
multiple comparisons.

• Hedges different hedge methods for GEWIS discovery.

[Hsu, et al. 2012]

EDGxE Method • Two-step procedure.

• Uses both G-E correlation and marginal gene-disease
association to filter markers for testing.

[Gauderman, et al.
2013b]

Multifactor Dimensionality Reduction • Data mining technique.

• Allows for identification of higher-order interactions.

[Ritchie, et al. 2001]

Random Forest Regression • Non-parametric method.

• Useful for selecting subsets of genetic and/or
environmental factors for further modeling.

• May uncover interactions that do not show strong marginal
effects.

[Breiman 2001]

Bayesian Networks • Allows for multi-level inference and considers multi-
variety adjusted associations.

• Can incorporate prior distributions for SNP inclusion.

[Chen and Thomas
2010; Wilson, et al.
2010]

Entropy-Based Information Gain
Approaches

• Utilizes information theory based on entropy.

• Can detect non-linear relationship between G and E.

[Fan, et al. 2011]
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Table 2

Programs and software for power calculations and analysis

Program/Macro Specific Uses Website Reference

SAS macro GEmis2 • Power calculations

• Addresses
misclassification in
E

http://www.hsph.harvard.edu/faculty/peter-kraft/software/ [Lindstrom, et
al. 2009]

Quanto • Power calculations

• GxE and joint test,
case-control, case-
only, family-based
designs, continuous
outcome

http://biostats.usc.edu/software [Gauderman
2002a;
Gauderman
2002b]

Power • Power calculations

• Additive Interactions

http://dceg.cancer.gov/tools/design/POWER [García-Closas
and Lubin
1999]

Stata program • Power calculations

• GxE test from
logistic regression

http://ideas.repec.org/p/boc/asug03/07.html [Katie, et al.
2003]

PLINK • Analysis for
discovery GEWIS

• data handling, GE
test, joint test

http://pngu.mgh.harvard.edu/~purcell/plink/ [Purcell, et al.
2007]

ProbABEL • Analysis for
discovery GEWIS

• computes robust
variance-covariance
matrix

http://www.genabel.org/packages/ProbABEL [Aulchenko, et
al. 2010]

GxEscan • Analysis for
discovery GEWIS

• Implements a suite
of testing methods
for GEWIS data,
including efficient 2-
step methods

http://biostats.usc.edu/software [Gauderman,
et al. 2013a]

Multassoc • Analysis for
discovery and
characterization

• Test a group of
SNPs taking
interaction with
other G, E into
account

http://dceg.cancer.gov/tools/analysis/multassoc [Chatterjee, et
al. 2006]

METAL • Meta-analysis

• Common package
for combining
existing GWAS
results

http://genome.sph.umich.edu/wiki/Meta_Analysis_of_SNPxEnvironment_Interaction [Willer, et al.
2010]
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Program/Macro Specific Uses Website Reference

CGEN • Analysis for
discovery and
characterization

• R package
implementing a suite
of testing and
estimation methods
for GxE studies

http://bioconductor.org/packages/release/bioc/html/CGEN.html [Bhattacharjee,
et al. 2012]
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