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ABSTRACT OF THE DISSERTATION 

Proprioception and motor learning after stroke – insights from neuroimaging studies 

By 

Morgan L Ingemanson 

Doctor of Philosophy in Biomedical Sciences 

University of California, Irvine, 2017 

Professor Steven C. Cramer, Co-Chair 

Professor David J. Reinkensmeyer, Co-Chair 

 

Stroke is a leading cause of adult disability and patient response to treatment is highly 

variable. To understand this heterogeneity, the anatomical integrity and functional activity of the 

post-stroke motor system has been well investigated. In contrast, remarkably limited attention 

has been paid to somatosensory system counterparts in terms of predicting motor outcomes. 

Proprioception is known to be an integral aspect of motor control, and many rehabilitation 

strategies are built upon a somatosensory-induced Hebbian plasticity framework. Unfortunately, 

clinical assessments of proprioception often fail to yield meaningful behavioral data and neural 

correlates to post-stroke proprioception function are poorly understood. Behavioral and 

neuroimaging assessments of the somatosensory system, specifically proprioception, may yield 

valuable insight to the heterogeneity in therapy-induced motor gains. Therefore, the current 

dissertation aimed to 1) develop an objective and sensitive proprioception assessment; 2) 

characterize the neural correlates of post-stroke proprioception dysfunction; and 3) identify 

predictors of motor gains from a 3-week course of robotic finger therapy, taking into equal 

consideration somatosensory- and motor-derived variables. A proprioception assessment 
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designed with the Finger Individuating Grasp Exercise Robot (FINGER) was capable of 

detecting age-related and stroke-induced decline in finger proprioception and proved to be more 

sensitive than standard scales. Among a population of 30 subjects with chronic stroke, finger 

proprioception deficits were present contralesionally in 67% and bilaterally in 56%. Post-stroke 

proprioception status was best explained by anatomical injury to somatosensory networks and 

changes in cortical connectivity between ipsilesional primary motor cortex (iM1) and secondary 

somatosensory cortex (iS2). After a course of robotic therapy, subjects showed variable 

improvements in arm motor function. Behaviorally, baseline proprioception status best predicted 

treatment gains, outperforming baseline measure of motor behavior. Neurologically, a combined 

model of somatosensory network injury and iM1-iS2 cortical connectivity explained 56% of 

variance in treatment gains. The comprehensive approach described here demonstrates that 

proprioception is an integral aspect of post-stroke motor recovery. Importantly, these results are 

the first to directly support the concept of somatosensory-induced Hebbian-like learning within 

the context of robot-assisted motor rehabilitation for chronic stroke. The findings illustrate the 

importance of incorporating proprioception into rehabilitation strategies and clinical decision 

making. 
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INTRODUCTION 

The human brain goes nearly unnoticed as it works wonders to fulfill the requirements of 

every-day life in an impeccably precise manner. These unique capacities are only fully esteemed 

when functions fail, such as after stroke. Nearly 800,000 new strokes occur each year in the U.S., 

leaving victims with an array of cognitive and physical impairments – from vision problems to 

aphasia, sensory impairments, and motor deficits – leading to a primary cause of adult disability 

in the United States [1]. The most common deficit after stroke, and the focus of the research 

composing this dissertation, is hemiparesis, especially of the upper limb. A motor deficit is 

present in approximately 80% of patients with stroke early on and in 50% at chronic time points, 

amounting to approximately two million stroke survivors in the United States with chromic arm 

impairment [2]. Due to the need for inpatient services, rehabilitation, and follow-up care, the 

projected total cost of stroke is estimated at $119 billion by year 2020 [1]. Hence, there is a great 

need for novel ways to reduce disability and more effectively allocate resources. 

Although spontaneous recovery of motor function occurs after stroke, long-term recovery 

is often largely incomplete [3]. Historically, neurologists dedicated little time to facilitating 

recovery of motor deficits. Of post-stroke hemiplegia, Wilson noted: “Unless the first two or 

three weeks witness material change for the better, prognosis should be expressed in guarded 

terms …” [4]. More recently, a richer understanding of motor recovery has been gained. 

Spontaneous recovery is now known to display a nonlinear, logarithmic pattern, reaching a 

plateau in 95% of patients 3 months after stroke [5–7]. Sadly, for most patients, these plastic 

processes yield inadequate recovery [3]. Thus, many stroke therapies currently under study aim 
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not to salvage acutely threatened tissue, but instead to promote repair and restoration of function 

[8].  

While many restorative therapies are under study, including robot-assisted training, one 

insight is clear: stroke is a very heterogeneous disease with substantial variability between 

patients and their response to therapy even under controlled settings [9]. The goal of a 

breakthrough stroke rehabilitation incites the need to first understand and characterize this vast 

heterogeneity. The ability to predict patient response to treatment would enable physicians to 

better match the right patients with the right therapy, improve customization of interventions for 

individual stroke survivors regarding their capacity for recovery, and facilitate development of 

new neurorehabilitation approaches. To this end, a number of neuroimaging methods have been 

examined to better understand, predict, and guide post-stroke restorative therapies. 

In response to this growing interest in establishing stroke recovery biomarkers, the 

anatomical integrity and functional activity of the post-stroke motor system has been well 

investigated [10, 11] yet relatively limited attention has been paid to somatosensory system 

counterparts in terms of influencing motor outcomes. Proprioception is known to be an integral 

aspect to effective motor control within a neurologically intact system [12, 13]. Many 

rehabilitation strategies are built upon a Hebbian plasticity framework, which provides useful 

strategies for enhancing motor recovery after stroke [14]. More specifically, evidence from 

robot-assisted rehabilitation suggests that afferent input caused by moving a limb provokes 

plasticity in sensorimotor brain areas [15]. Assessments of the somatosensory system, 

specifically proprioception, may yield valuable insight to the heterogeneous response to therapy.  
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The studies composing this dissertation sought to characterize post-stroke proprioception 

and to evaluate the role that somatosensory function plays in motor recovery after robot-assisted 

movement training. Prior research has investigated these aims with regard to the motor system 

[10, 11, 16–18], but has yet to fully illuminate somatosensory counterparts. This is largely 

because clinical assessments of proprioception lack the objectivity, reliability, and sensitivity 

needed to yield meaningful behavioral data [19–22]. Without behavior metrics that accurately 

represent proprioception function, it is difficult to identify neurological correlates of dysfunction 

or to assess proprioception’s role in motor recovery. Furthermore, neural correlates of 

proprioceptive deficits after central nervous system (CNS) injury remain poorly understood 

likely because somatosensory functions such as proprioception arise from a highly distributed 

network [23, 24]. In order to evaluate post-stroke proprioception, it was first necessary to 

develop a tool to accurately assess proprioception behavior. Moreover, in order to develop a 

predictive model of therapy-induced motor gains that addresses motor system and somatosensory 

system variables, functional magnetic resonance imaging (MRI) measures of both systems were 

used to characterize an individual’s remaining neural resource before beginning a three-week 

course of robotic finger therapy. Rehabilitation of the fingers was selectively chosen due to the 

considerable neural resources these distal extremities have dedicated to proprioception in order 

to optimize motor control.  

The first aim of this dissertation was to establish use of an exoskeletal robot to 

objectively and sensitively assess finger proprioception (Chapter 3). The second aim examined 

neural correlates of proprioception deficits after stroke, as measured by the robotic technique 

established in aim 1, and taking into account neural injury and function (Chapter 4). The third 

and final aim explored a Hebbian concept of motor learning and examined which combinations 
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of variables derived from the motor system and somatosensory system most strongly explained 

variance in the functional motor gains resultant from robotic therapy (Chapter 5). Together, this 

comprehensive approach provides strong evidence that measures of the somatosensory system 

are predictive of therapy-derived motor gains. It also demonstrates that a multivariate model 

incorporating measures of both neural injury and cortical function, rather than either alone, best 

explains post-stroke proprioception status and predicts patient outcome –findings previously 

established for the motor system only [11, 16, 17]. Importantly, these results are the first to 

directly support the concept of Hebbian-like learning derived from robot-assisted therapy. The 

data resulting from this doctoral work strongly suggest that neuroimaging-based somatosensory 

measurements should be incorporated into future research as well as clinical decision making in 

order to optimally pair patients with rehabilitation therapies. 

 



 

5 

CHAPTER 1 

MOTOR LEARNING AFTER STROKE 

“Stroke is not a killer but a chronic and progressive disabling disease,” S. Thomas 

Carmichael writes [25]. Over the past two years, stroke has fallen from the third leading cause of 

death to the fifth [1]. Although this decline is welcome and indicates improved care in the acute 

setting, it has outpaced the decline in stroke incidence. Thus, more survivors than ever are faced 

with battling the chronically disabling disease. To make matters worse, stroke is an exceptionally 

heterogeneous disease. Despite research efforts, the ability to accurately predict recovery after 

stroke is ever evasive. Throughout the process of repair, patients demonstrate wide variability 

across multiple domains including infarct size and location, acute impairment, response to 

treatment, and long-term outcome [26]. Characterizing these and other factors is a critical 

element to understanding stroke heterogeneity. 

The first part of this chapter briefly addresses the neuroplasticity processes implicated in 

stroke recovery while the second part addresses restorative therapies including robot-assisted 

rehabilitation. The third and final part of the chapter reviews known variables related to recovery 

of motor function during chronic stroke and associated neuroimaging methodology. 

1.1 Mechanisms of Neural Plasticity Supporting Recovery of Function 

Neural plasticity is the brain’s ability to develop new or alter existing neuronal 

connections, acquire new functions, develop new anatomical structures, and acquire new 

behavioral states, all useful for post-stroke recovery of impairments [27–29]. The same 

principles of neuroplasticity that modulate changes within a neurologically intact system are also 

at work after neural injury [30, 31]. Subsequent to a cerebral infarct, two major phases of repair 
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can be distinguished wherein the brain undergoes endogenous and learning-dependent 

neuroplasticity in order to mitigate damage and support recovery [32]. The first phase, 

spontaneous recovery, starts within the first few days post-stroke and involves intrinsic repair 

mechanisms that enhance functional recovery even in the absence of therapy. After several 

weeks, spontaneous recovery plateaus and the brain reaches a stable but still modifiable chronic 

phase, during which restorative therapy-induced recovery of function can occur.  

In human patients, some degree of spontaneous behavioral recovery is usually seen in the 

weeks to months following stroke [26]. The elemental properties of neural repair include axonal 

sprouting [33], neurogenesis [34, 35], and alterations in neuronal excitability [36–38].  For 

example, on a cellular level, recovery after stroke mirrors the mechanisms of learning and 

memory and is associated with long-term potentiation-like phenomena and dendritic spine 

morphogenesis [25]. On a molecular level, growth-promoting factors such as BDNF and NGF 

are expressed by neurons in the peri-infarct area, creating a favorable environment to support 

dendritic growth and synaptogenesis [14, 39]. Subsequently, outgrowth is modulated by 

inhibitory factors to prevent overconnectivity [27]. In addition to the peri-infarct area, these 

events can also be measured in homologous sites in the contralesional hemisphere and in remote 

regions functionally connected to the site of injury [26].  

This natural occurrence of motor recovery is remarkably heterogeneous: the first 

voluntary movements after hemiplegic stroke can been seen anywhere from 6 to 33 days after 

stroke onset [40]. The most dramatic improvements occur in the first 30 days, as revealed by 

studies on arm disability wherein maximum function was achieved by 80% of patients within 3 
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weeks and by 95% of patients within 9 weeks [7]. Yet, for most patients, spontaneous recovery 

plateaus before levels of pre-stroke function are reached. 

Fortunately, many of the same plasticity processes involved in spontaneous recovery can 

be initiated in the chronic phase [41]. The experience-dependent plasticity that supports motor 

learning in the damaged brain is believed to derive from the same basis for learning in the intact 

brain. For example, motor skill acquisition is associated with changes in gene expression, 

dendritic growth, synaptogenesis, and neuronal activity in the motor cortex and cerebellum [30, 

31, 42, 43]. As revealed by fMRI, these changes can manifest as a shift in interhemispheric 

lateralization, altered activity of association cortices that are linked to injured areas, and 

reorganization of critical representation maps [26, 30]. On a system level, greater recovery has 

been linked to the return of activation in the primary sensorimotor cortex [44]. Ultimately, motor 

recovery after stroke involves developing new neural connections and acquiring new functions 

[45]. 

In summary, the best behavioral outcomes after acute and chronic stroke are associated 

with the greatest return of brain function towards the normal state of organization. Although 

there is a general consensus regarding the mechanisms of neuroplasticity that support recovery, 

researchers have yet to agree upon the best course of treatment for stroke. The events that 

support neural plasticity give insight to potential restorative therapies that might best facilitate 

optimal recovery. 

1.2 Restorative Therapies for Promoting Recovery After Stroke 

Although spontaneous motor recovery reaches a plateau before patients return to pre-

stroke levels of function, initiating neuroplasticity in the chronic phase with the administration of 
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restorative therapies can yield additional gains. Unlike thrombolytic therapy, which indirectly 

improves motor function by salvaging acutely threatened tissue, restorative therapies aim to 

promote repair and restoration of function in surviving tissue.  

A variety of restorative therapies have been found to improve motor function in animal 

models of stroke, including small molecules [46, 47], growth factors [48], cell-based therapies 

[49], and cortical stimulation [50]. Although promising within animal models, these therapies 

have had limited success thus far when explored in human trials [51–54]. Challenges with 

translating preclinical therapies to successful clinical trials include a more homogeneous injury 

in animal models [55], an incomplete model of the hand-reliant human experience in 

quadrupedal animals [26], and a difference in white matter brain composition between rodents 

(14%) and humans (50%) [56]. 

The difficulty in translating preclinical restorative therapies to humans has left physical 

rehabilitation interventions as the standard approach for improving motor function after stroke 

[6]. Individuals typically receive intensive hands-on therapy for several months after stroke to 

treat hemiparesis and improve independence. A number of therapy forms, durations, and 

intensities have been studied, with no clear result as to differences in efficacy across schools of 

approach [8]. Some methods have entailed bilateral training [57], exercises in a gravity-reduced 

environment [58], or constraint-induced movement therapy [59, 60]. Although such therapies 

have demonstrated some degree of clinical utility, the optimal training techniques for facilitating 

reorganization have remained unclear. Challenges with quantifying dose and comparing content 

of therapies have impeded improvements in understanding the mechanistic underpinnings of 

rehabilitation science. 
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Robotics have increasingly been used to implement activity-based therapy in the context 

of stroke. Robotic devices allow physicians and researchers to precisely quantify dose, type, and 

consistency of rehabilitation therapy [9]. They also have the potential to allow more therapy with 

less supervision, improving rehabilitation cost-benefit profiles [61]. The primary therapy 

paradigm tested is active assistance [62–66], a clinical term that refers to exercises in which the 

patient attempts a movement (active) and in which a robotic device helps complete the 

movements if the patient is unable (assistance). Such active assistance may improve motor 

recovery by enhancing proprioceptive input and inducing a Hebbian-like learning paradigm [9], 

but this has yet to be directly explored in the context of stroke rehabilitation. 

1.3 Predicting Upper Limb Treatment-Induced Gains After Stroke: A Motor 

System Story 

Even within well-controlled robot-assisted rehabilitation studies, significant variability in 

individual response to treatment is observed [11, 15, 67] and the heterogeneity of stroke remains 

a major focus of ongoing research. Clinical factors such as age [68, 69], depression [70–72], and 

comorbidities such as diabetes [73], hyperglycemia , and hypertension [74] are known to 

negatively impact recovery. While important to consider in developing a post-stroke prognosis, 

these factors explain only a small amount of inter-subject variation and are unable to reliably 

predict outcomes [75, 76]. Thus, researchers have turned to other elements such as baseline 

impairment and neuroimaging-derived metrics of neural injury and neural function to 

characterize inter-individual differences. Notably, the vast majority of studies have investigated 

these features solely for the motor system [10, 11, 16–18]; somatosensory system counterparts 
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have remained largely uninvestigated. The utility of motor-derived variables in predicting motor 

outcomes post-stroke is the focus of this chapter section. 

Baseline Impairment: Traditionally, the most commonly used prognostic indicator of 

spontaneous recovery, response to treatment, and long-term outcome have been measures of 

impairment. Baseline impairment of the motor system in particular has been commonly cited as a 

predictor of recovery and is currently used to guide post-stroke rehabilitative care. Overall, less 

severe baseline motor impairment in the acute setting has been correlated with greater treatment-

related gains [77], shorter length of inpatient stay [78], and less severe impairment as discharge 

[79, 80]. Clinical behavior metrics of motor status in the acute phase have also demonstrated 

moderate utility in predicting chronic phase motor status [68]. Moreover, in the chronic phase, 

some studies have observed a linear relationship between baseline impairment and treatment-

induced motor gains [81, 82] while others suggest a second order function wherein patients at the 

mild and severe ends of the impairment spectrum improve the least [83]. Yet, regardless of the 

mathematical function used to describe this relationship, baseline motor impairment fails to 

comprehensively elucidate the heterogeneous response to stroke [84]. 

Magnetic Resonance Imaging: Measures that characterize the structure of the biological 

target have shown promise in providing insight into the capacity for recovery beyond baseline 

clinical behavior metrics [77]. Brain mapping with MRI is a non-invasive approach for assessing 

structural integrity of the motor system after stroke. Lesion volume has had moderate success in 

predicting post-stroke outcome, such that larger infarcts and thus a greater degree of neural 

injury are associated with both greater baseline impairment and poorer long-term outcome [85, 

86]. However, the relationship between infarction load and chronic post-stroke hemiparesis has 
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not been consistently observed across studies [87, 88], suggesting that plastic brain 

reorganization after stroke attenuates the effect of infarct volume on purposive limb movement.  

In comparison to lesion size, a system-specific approach that takes into account lesion 

location has demonstrated enhanced utility in explaining degree of motor impairment and 

predicting rehabilitation gains. Structural measures such as gray matter density, gray matter 

volume, and gray matter injury in primary and secondary motor regions have been used to 

predict response to treatment [11, 17, 89]. Additionally, the degree of damage to the descending 

corticospinal tract (CST) from the primary motor cortex (M1) appears to be a particularly 

important factor for limiting upper limb recovery [90]. Assessing CST integrity can be achieved 

via Diffusion Tensor Imaging (DTI), an MRI-based neuroimaging technique. DTI estimates the 

anisotropy of water diffusion, expressed as fractional anisotropy (FA), to map the location and 

orientation of axon bundles [91]. Quantifying FA within the CST has helped explain the degree 

of motor impairment and muscle weakness in subjects with chronic stroke [92, 93]. Yet, 

performing white matter tractography in stroke patients often proves challenging, particularly in 

a heterogeneous sample, due the complete interruption of white matter tracts within the 

boundaries of large infracts. One workaround for this problem is calculating lesion load to a 

normal (canonical) CST generated from DTI tractography in neurologically intact subjects. This 

method has been shown to perform comparably to calculating lesion overlap using tracts 

generated from patients’ own brains [11, 94, 95]. Quantified injury of the CST positively 

correlates with motor impairment after chronic stroke [92, 96] and has demonstrated improved 

prediction value of treatment-induced motor gains compared to baseline impairment and infarct 

volume [11, 16, 93, 95, 97]. 
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Functional Magnetic Resonance Imaging: One of the limitations of structural 

neuroimaging is that it provides no information regarding how surviving tissues are working – or 

if they are working at all. Thus, a growing number of studies have explored the functional 

activation and connectivity of neural regions in an attempt to characterize the post-stroke brain. 

Functional MRI (fMRI) enables researchers to visualize brain regions activated in response to a 

task and to quantify how that activity changes in response to neural injury or therapeutic 

intervention. This is accomplished with the blood oxygenation level-dependent (BOLD) contrast, 

which is a relative ratio of deoxygenated to oxygenated hemoglobin reflecting neuronal activity. 

When a specific neural region becomes active, a local increase in deoxygenation occurs as 

oxygen is extracted. This is closely followed by an increase in cerebral blood flow, resulting in 

more oxygenated blood supplied to the region than is used by the active neurons. The net effect 

is a local decrease in deoxygenated hemoglobin and an increase in fMRI BOLD signal. These 

data can be used to measure regional activation as well as cortical connectivity, an indication of 

how functionally connected spatially remote regions are [98]. Functional MRI is therefore a non-

invasive method for assessing brain function with high spatial resolution, enabling researchers to 

visualize how patterns of brain activity change in response to neural injury. 

Studies utilizing fMRI to measure cortical activation and connectivity of motor circuits 

have provided insight into post-stroke motor behavior. After stroke, moving the paretic limb 

activates primary and secondary motor regions in both the ipsilesional (i.e., the lesioned 

hemisphere, located contralateral to the paretic limb) and contralesional (i.e., the neurologically 

intact hemisphere, located ipsilateral to the paretic limb) hemispheres. This pattern of activation 

is either not observed or observed to a much more unilateral extent in healthy individuals [99], 

and greater bilateral activation post-stroke is associated with greater motor impairment [44, 100, 
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101]. Conversely, normalization of brain activation patterns, marked by a shift in 

interhemispheric balance towards the ipsilesional motor cortex, is correlated with therapy-

induced gains [15, 102–104]. Furthermore, functional connectivity has been valuable in 

predicting motor recovery after stroke. Increases in functional connectivity of the supplementary 

motor area and the contralesional and ipsilesional motor cortex have been shown to correlate 

with therapy-induced upper-extremity motor function [11, 105]. Collectively, these studies 

emphasize that changes in the functional activity and connectivity of the motor cortex can be 

induced in the chronic stroke phase to support motor recovery. 

Electroencephalography: Electromagnetic measures of brain function after stroke via 

electroencephalogray (EEG) also demonstrate utility as predictors of long-term outcome. EEG is 

a low-cost, safe, and highly accessible methodology for rapid, non-invasive, bedside examination 

of brain function. Convergent evidence supports the value of a network-based approach for 

understanding the relationship between dysfunctional neural activity and behavioral deficit after 

stroke [106]. This is true for connectivity metrics derived from MRI, as previously discussed, 

and also for EEG-based measures of connectivity. EEG coherence between electrodes overlying 

brain regions of interest is a quantification of similarity of EEG signals in terms of wavelength 

phase and amplitude difference. It has been widely adopted as a surrogate marker of 

communication between cortical neural sources [107]. Many studies of post-stroke motor 

function have assessed coherence in the high beta frequencies (20-30 Hz) as this is the frequency 

bandwidth most strongly associated with function of the motor system [108, 109]. In a recent 

study from the Cramer lab, resting-state coherence between M1 and the rest of the cortex in the 

high beta band was shown to be a robust marker of baseline motor status, a biomarker of change 

in motor status across rehabilitation therapy, and a predictor of gains from therapy for subjects 
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with chronic stroke [110]. Thus, EEG measures of cortical connectivity may have value as 

biomarkers of cortical function and plasticity after stroke. 

Multimodal Approach: Recent studies suggest a multimodal approach, particularly those 

that include measure of neural injury and function across multiple assessment modalities, best 

characterize stroke heterogeneity [11, 16, 18, 110, 111]. In the pivotal study by Stinear and 

colleagues, a predictive model of chronic stroke recovery that combined both a functional and 

structural measure of CST integrity outperformed models that included either measure alone 

[16]. The same group has extended these findings to predict upper limb recovery in an acute 

stroke setting via the PREP algorithm [18]. Aligned with these results, a recent study out of the 

Cramer lab reports that restorative therapy after chronic stroke was best predicted by a model 

including neural injury and function, represented by CST injury and interhemispheric M1 

functional connectivity, respectively [11]. These studies clearly illustrate that the strongest 

predictive models include both structural and functional measures of brain state. Yet, 

multivariate studies to date have almost exclusively focused on characterizing variables of brain 

injury and function as they pertain to the motor system. The working hypothesis behind the 

studies described here is that a model that incorporates somatosensory system counterparts might 

lead to better insight to post-stroke recovery potential.
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CHAPTER 2 

PROPRIOCEPTION AND THE SENSORIMOTOR SYSTEM 

The planning, execution, and optimal control of motor behaviors are complex neural 

processes that are in part dependent on correct sampling of multiple sensory modalities. 

Somatosensation, an umbrella term for the process of converting external stimuli into internal 

sensory impulses, plays a large role in movement production. The somatosensory system 

mediates a range of sensations – touch, pressure, vibration, limb position, heat, cold, and pain – 

that are transduced by receptors within skin, tendon, or muscle and conveyed to the brain. 

Particularly critical to the effective motor control needed to support activities of daily living is 

proprioception: the sense of position, motion, or force generated by the body [112]. Without 

correct processing and translation of proprioceptive input, motor outputs are abnormal or 

inaccurate. Thus, there is a tight link between sensory processing and movement production.  

The first part of this chapter reviews the neuroanatomy of proprioception. The second 

part highlights the importance of proprioception function in motor control and discusses the 

theoretical role of proprioception in a Hebbian model of post-stroke motor rehabilitation. The 

third part reviews current state of knowledge regarding post-stroke proprioception 

characterization. The fourth and final part addresses shortcomings in clinical assessments of 

proprioception function and how a robotic approach might overcome them. 

2.1 Neuroanatomy of Proprioception 

The complex neurobiological machinery that supports somatosensation can be divided 

into functionally distinct subsystems that utilize their own sets of peripheral receptors and central 

pathways. One subsystem originates in specialized receptors that are associated with muscles, 
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tendons, and joints and is responsible for proprioception. Comprehensively, proprioception 

enables the ability to sense the position of one’s limbs and other body parts in space. Yet in its 

classical definition, proprioception has several sub-components. Position sense refers to the 

ability to sense the static position of a joint or limb in space without the use of vision. 

Kinesthesia refers to the sense of movement of a limb of body part.  

For most of the 20th century, sources of proprioceptive input were believed to be located 

in the joints themselves [113]. Today, it is understood that the peripheral receptors for 

proprioception, called mechanoreceptors, are primarily found in muscle, tendon, ligament, and 

joint capsule [114]. These mechanoreceptors depolarize in response to tissue deformation to 

transduce neural signals that provide sensory information on intrinsic and extrinsic joint loads. 

Four types of mechanoreceptors are dispersed throughout articular tissues [115]: a) Ruffini 

receptors behave as both static and dynamic receptors based on their low-threshold, slow-

adapting characteristics and are thought to mediate the sensation of joint motion; b) Pacinian 

corpuscles are exclusively classified as dynamic receptors due to their rapidly adapting nature; c) 

Golgi tendon organs are stimulated at the extremes of joint motion; d) free nerve endings become 

active when articular tissues are subjected to damaging mechanical deformation. Additionally, 

muscle spindles are a type of mechanoreceptor found in skeletal muscle that contribute to 

proprioception [116]. Muscle spindles are comprised of three types of intrafusal fibers that 

differentially inform the CNS regarding muscle length or rate of change in length [117, 118]. 

These different types of mechanoreceptors have distinct response profiles to the same type of 

stimulus, which allows more discrete sensory information concerning mechanical stimuli to be 

transmitted to the CNS [119].  Afferent fibers that mediate proprioception project into the 

medical aspect of the dorsal roots and enter the dorsal horn of the spinal cord. From there, many 
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afferents form synaptic connections with second order neurons located in deeper layers of the 

dorsal horn, which ascend through the ipsilateral spinal cord [120]. Thus, integration of sensory 

input received from all parts of the body begins at the level of the spinal cord and is conveyed to 

all three levels of motor control: the cerebral cortex, brain stem, and spinal reflexes [121]. 

Ascending pathways to the cerebral cortex provide the conscious appreciation of joint 

position sense and kinesthesia. Specifically, coded signals from peripheral receptors ascend to 

the cortex via the dorsal column-medial lemniscal tract, relaying through the ventral posterior 

lateral (VPL) nucleus of the thalamus [120]. Most of the axons arising from neurons in the VPL 

project to cortical neurons located in layer 4 of the primary somatosensory cortex (S1), located in 

the postcentral gyrus of the parietal lobe [122]. From S1, there are a number of ways in which 

proprioception afferents gain access to circuits that initiate voluntary movements. Evidence from 

animal and human research shows that S1 and M1 are interconnected through rich fiber 

pathways [123, 124]. These connections are thought to help modulate the relationship between 

sensory and motor components of sensorimotor processes [125–127]. Neurons in S1 also project 

to other parietal areas which, in turn, supply inputs to neurons in primary motor and premotor 

areas of the frontal lobe [115]. Higher order cortical centers are also involved in processing 

proprioception information. One such area is the secondary somatosensory cortex (S2), which 

lies in the upper bank of the lateral sulcus. S2 receives somatosensory projections directly from 

the VPL and also indirectly, i.e., from S1 [128]. Connectivity mapping has shown that 

subregions of S2 in the human parietal operculum are densely connected to the pre-central gyrus 

and premotor cortex, suggesting that S2 has a functional role in sensory-motor integration 

processes like incorporating sensory feedback into motor actions [129]. 
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2.2 The Role of Proprioception in Motor Control 

Within a neurologically intact system, proprioception is responsible for relaying 

perturbations or changes in the external environment and also for modulating activity of motor 

neurons via descending efferent commands [130]. Contemporary theories of neuromuscular 

control emphasize the significance of proprioception in the planning of all motor output [114]. 

Convergent evidence demonstrates that proprioception provides a unique sensory component to 

optimize the control and regulation of coordinated movements, motor learning, and error 

correction during movements [12, 13, 131–133]. For example, disrupting proprioception 

signaling in neurologically healthy participants via tendon vibration produces consistent errors of 

wrist movement trajectories [134]. This integrated sensorimotor system is particularly 

noteworthy for hand and finger function given the large hand representation in the sensorimotor 

cortex [135].  

Proprioception is believed to play a critical role in the Hebbian synapse, a widely used 

model for the process of learning in biological and artificial networks [136, 137]. This model 

proposes that greater neural plasticity is achieved when afferent input is optimally coupled to 

efferent commands [136]. Hebbian mechanisms are engaged when presynaptic and postsynaptic 

neurons are coincidently active and when neurotransmitter release occurs within a few tens of 

milliseconds after a multi-input-stimulated postsynaptic action potential [138, 139]. Following 

stroke, such coincident activity could reinforce that appropriate pre- and post-synaptic elements 

within a surviving circuit (or within a new circuit formed by axonal sprouting) are functioning 

correctly [27]. These coincidentally active connections are selected for retention or strengthening 

and contribute to behavioral recovery. Mounting evidence supports a fundamental role for 

Hebbian mechanisms in producing activity-dependent changes in synaptic strength in models of 
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learning and memory [140]. Likewise, it is thought that specific forms of use-dependent 

rehabilitative training can influence rewiring and functional outcome of motor behavior after 

stroke [141–143]. 

One type of use-dependent training believed to support Hebbian-like plasticity is robot-

assisted rehabilitation. As discussed in Chapter 1, robotics have been a recent focus of attention 

with regard to their efficacy in inducing recovery of motor function post-stroke. The common 

conception of how robot-assisted training might facilitate motor recovery after CNS injury is 

based on a Hebbian-like theory of learning. It can be conceptualized mathematically as:                                          

such that correlated motor output (M) and sensory input (S) summed over 

many movement attempts (N), is the driving force for use-dependent change in motor outcome 

(∆O). The function f( ) expresses the presence of patient-specific neurological limits, partially 

dictated by the anatomy of the injury, on what practice can achieve in terms of recovered motor 

function. Given these principles, robot-assisted movement training could ostensibly enhance 

motor learning after stroke by finishing movements that patients initiate but are unable to 

complete, thereby intensifying joint, muscle, and cutaneous sensory input that is correlated with 

the patient’s motor output.  

Direct evidence for Hebbian-like mechanisms of motor recovery after stroke is lacking. 

Overall, the principle of Hebbian plasticity has received limited direct study in the context of 

post-stroke rehabilitation in part due to difficulty in designing a robotic device that would 

facilitate such studies. To investigate this model of motor learning, a robotic training device 

would need to enhance the sensory input associated with movement in order to strengthen 

functional connections between somatosensory neurons and motor output neurons in the cortex. 
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However, patient effort is considered crucial to increasing motor-plasticity during rehabilitation 

therapy [144, 145] and thus, voluntary motor movements on behalf of the patient would be 

required. Achieving this is a challenge robot-assisted therapies often face, as there is a possibility 

of the robot ‘taking over’ movement practice from the patient and allowing the patient to reduce 

their effort at the task [146, 147]. Additionally, time-correlated activity of efferent and afferent 

signals is critical to the Hebbian theory of learning. Robotic enhancement of somatosensation 

would need to occur in tight timing correlation with a patient’s voluntary motor output.  

An additional challenge to studying Hebbian-like recovery of motor function induced by 

a robotic device is the ambiguous understanding of the post-stroke somatosensory system. 

Somatosensory-induced brain plasticity is believed to support recovery of motor function [148], 

yet little is known about how sensory function predicts response to robot-assisted training. 

Researchers agree that it is especially important to assess proprioceptive function after central 

nervous system injury when the goal is to rehabilitate motor functions [149]. The neuroimaging 

methodologies that have so thoroughly investigated neural injury and function of the motor 

system have yet to fully extend to the somatosensory system. A better understanding of the 

relationship between somatosensory networks and motor recovery may allow researchers to 

confirm that robotic rehabilitation works in a Hebbian-like manner (i.e., is dependent on intact 

somatosensory pathways), and thereby lead to more accurate prediction of patient response to 

therapy. It might also lead to more suitable rehabilitation strategies in clinical settings and better 

matching the right patients with the right types of therapy. 
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2.3 Characterizing Post-Stroke Proprioception: An Incomplete Picture 

Although the functional anatomy of proprioception in the peripheral and central nervous 

systems has been well studied in neurologically intact systems, post-stroke proprioception has 

not been fully characterized. Given that proprioception information is conveyed to the spinal 

cord, brain stem, and cerebral cortex using diffuse networks, it is unsurprising that 

proprioception deficits are particularly common after stroke. These sensory impairments are 

usually paralleled by motor deficits [150]. 

The field of stroke rehabilitation has seen several attempts to identify the percentage of 

stroke survivors with impaired somatosensation. Proprioceptive impairment is thought to occur 

in the contralesional upper limb in 50% or more of patients with stroke [151–158]. However, 

individual studies vary widely on the incidence of somatosensory dysfunction from 11% [159] to 

as high as 85% [160]. Regarding proprioception, Carey and Matyas found 49% of post-acute 

stroke survivors had impaired limb position sense, [155] whereas studies with  chronic subjects 

have reported impaired proprioception ranging from 27% [161] to 52% [162]. Although the 

ipsilesional limb is typically thought of as the “unaffected” limb after stroke, ipsilesional 

proprioception deficits have also been observed [154, 163], yet the incidence of bilateral 

proprioception deficits is debated. Variation in incidence reports likely reflects the variation in 

assessment methodology, population under study, and the phase of recovery during which 

patients were investigated. 

While the incidence of proprioception dysfunction is debated, researchers consistently 

agree upon the importance of assessing proprioception after stroke. Proprioception is critical to 

overall patient outcome, demonstrated via correlations between proprioception deficits and 
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length of hospitalization, increased mortality rates, detrimental effects on personal safety after 

discharge, and diminished quality of life [22, 153, 164–167]. Tyson and colleagues observed in 

their sample of 102 stroke patients that somatosensory deficits were related to functional 

mobility, independence in activities of daily living, balance, and weakness [161]. In sum 

somatosensory deficits, and proprioception impairments in particular, have an important negative 

effect on motor and functional performance [168]. 

Several neuroimaging studies have aimed to identify the neurological underpinnings of 

proprioception deficits after stroke. A direct lesion to S1 or along the primary afferent sensory 

pathway is likely to result in some level of somatosensory dysfunction [169]. Many studies have 

observed proprioception impairments after lesions to brain regions known to be involved in 

sensory processing such as the thalamus [170, 171], posterior limb of the internal capsule [172], 

and S1 and the posterior parietal cortices [172, 173]. The voxel-wise association between lesion 

location and somatosensory deficits in patients after stroke has also been explored. One recent 

study revealed that lesions in the sensory fibers of the superior thalamocortical radiation and the 

parietal operculum were associated with proprioception deficits in the arm and hand of 38 

patients with acute stroke [174]. Yet, from the limited number of studies conducted so far, there 

is still limited certainty in optimal approaches to identifying a specific association between lesion 

site and proprioception function [175]. 

Neuroimaging studies have also investigated functional changes in somatosensory brain 

regions after stroke. One common finding after unilateral stroke is a shift in interhemispheric 

balance of activation from ipsilesional to contralesional sensorimotor areas. In parallel to studies 

of laterality shifts in M1 discussed in Chapter 1, the larger the imbalance between the S1’s in 
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subjects with chronic stroke, the poorer motor task performance [176]. Resolution of S1 

imbalance (i.e., a return to a state of normal functional activation) is associated with 

sensorimotor recovery [26, 177]. Regional analyses of S1 activity also support this conclusion, as 

a close relationship between increases in therapy-induced hand function and increases in 

ipsilesional S1 peak activation has been observed [178]. Similarly, fMRI activity in ipsilesional 

S2 has been linked with improved hand function after rehabilitation therapy [179]. Thus, sensory 

network activity appears to be closely related to sensory function and therapy-induced motor 

gains seen after stroke. 

From a behavioral standpoint, the relationship between proprioception function and 

motor recovery is not as easily defined. Some studies have reported a significant correlation 

between these two variables [180, 181], while others have not [40, 182, 183]. For example, 

Wade et al. evaluated 25 prognostic factors and reported that initial motor deficit and loss of 

position sense in the arm were both significant correlates of motor function recovery of the 

hemiplegic upper arm [181]. In contrast, Katrak et al. found that proprioception in the upper arm 

was not correlated with recovery of hand movement of function over a 3 month period [182]. 

These mixed results may be due to the differences in proprioception measures, the specific body 

part assessed, and heterogeneity in subject populations. Because of the complexity of the central 

sensory system, studies employing objective behavioral mapping techniques and multimodal 

imaging will yield the most useful data in elucidating the role of somatosensation in recovery 

from brain damage [125]. 
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2.4 Assessing Proprioception 

Although physicians and therapists agree on the importance of assessing proprioception 

function after stroke [184], current methods used to evaluate proprioception are riddled with 

problems. In a survey among 172 clinicians, 98% routinely provided treatment in sensory 

impairments, yet fewer than 30% reported use of standardized measurements for somatosensory 

assessments [185]. Moreover, seemingly ‘standardized’ somatosensation assessments have in 

fact been found to be not standardized [21, 22]. On a whole, clinical assessments of 

proprioception remain crude and are known to have low sensitivity and high variability [21, 

154], floor effects [19] and poor inter-rater reliability [20, 21, 158, 166]. This variation and 

subjectivity of somatosensory testing undoubtedly contributes to the challenges with defining the 

frequency of discriminative somatosensory loss. 

Given the complexity of proprioception, it has been difficult to develop a single measure 

that can capture proprioception acuity. Many somatosensory testing batteries exist, such as the 

Fugl-Meyer sensory scale [186], Nottingham Sensory Assessment (NSA) [22, 187], and 

Rivermead assessment of somatosensory performance (RASP) [22, 162]. Although these 

batteries demonstrate improved standardization and reliability, variation across studies may still 

be influenced by measures used, body parts tested, time post-stroke when studies are performed, 

and the populations investigated. This was demonstrated in a recent publication that 

systematically reviewed the possibilities of assessing proprioception [188]. A total of 57 studies 

were included in the report, from which 32 different methods for assessing proprioception were 

described. Variations came with respect to measuring different proprioception subsenses (i.e., 

active versus passive position, motion detection, or direction discrimination), measuring different 

joints, and the use of different types of equipment and values [188]. 
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A sensitive, reliable, and purely objective tool would overcome many of the challenges 

that clinical assessments face. Robots have potential to fulfill this role. Robotic devices have 

been developed to quantify sensorimotor impairments in the upper arm, wrist, and hand 

following stroke [151, 189–193]. Perhaps the most widely used robotic assessment of 

proprioception is executed by KINARM (BKIN Technologies Ltd.). The KINARM device 

applies mechanical loads at the shoulder and/or elbows in order to move a subject’s impaired 

upper limb into different positions along the horizontal plane. Subjects then mirror these 

positions with their other (free) arm with vision occluded [194]. Prior studies utilizing such 

devices have revealed that stroke and traumatic brain injury patients frequently have sensory 

deficits despite receiving normal scores on traditional clinical assessments [151, 189, 193]. 

Though this approach is a marked improvement from clinical assessments in terms of reliability, 

sensitivity, and granularity, it poses a problem in that the ipsilesional (“unimpaired”) limb is 

assumed to have fully intact proprioception. Yet in fact, the ipsilesional limb is known to display 

proprioception deficits post-stroke [154, 163]. 

In order to investigate the degree of proprioception loss from post-stroke pathology, a 

sensitive and objective behavioral assessment of proprioception that does not rely on the 

ipsilesional limb for mirror matching is essential. Such an assessment would not only facilitate 

the characterization of post-stroke proprioception, it would also provide an independent 

behavioral variable that could be used to evaluate proprioception’s predictive power for therapy-

induced motor gains. 
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CHAPTER 3 

USE OF A ROBOTIC DEVICE TO MEASURE AGE-RELATED 
DECLINE IN FINGER PROPRIOCEPTION 

Abstract 

Age-related changes in proprioception are known to affect postural stability, yet the 

extent to which such changes affect the finger joints is poorly understood despite the importance 

of finger proprioception in the control of skilled hand movement. We quantified age-related 

changes in finger proprioception in 37 healthy young, middle-aged, and older adults using two 

robot-based tasks wherein participants’ index and middle fingers were moved by an exoskeletal 

robot. The first task assessed finger position sense by asking participants to indicate when their 

index and middle fingers were directly overlapped during a passive crisscross movement; the 

second task assessed finger movement detection by asking participants to indicate the onset of 

passive finger movement. When these tasks were completed without vision, finger position sense 

errors were 48% larger in older adults compared to young participants (p < 0.05); proprioceptive 

reaction time was 78% longer in older adults compared to young adults (p < 0.01). When visual 

feedback was provided in addition to proprioception, these age-related differences were no 

longer apparent. No difference between dominant and non-dominant hand performance was 

found for either proprioception task. These findings demonstrate that finger proprioception is 

impaired in older adults and visual feedback can be used to compensate for this deficit. The 

findings also support the feasibility and utility of the FINGER robot as a sensitive tool for 

detecting age-related decline in proprioception. 
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Introduction 

Proprioception, the sense of how our bodies are positioned, is a critical component of 

voluntary movement control and is important for generating smooth, coordinated movements and 

for maintaining upright posture and balance [195]. Muscle spindles [118, 196], cutaneous 

receptors [197], and joint mechanoreceptors [198, 199] provide proprioceptive feedback to the 

central nervous system that is essential for determining the position of distal body segments 

[132]. Not surprisingly, functionally deafferented individuals suffer profound disturbances in 

arm and hand function [12, 200], postural control [201], and locomotion [202].  

A number of investigations have provided evidence that proprioception is affected by 

healthy aging and have focused on the ability of older individuals to detect passive motion or 

reproduce experimentally pre-determined joint positions in the lower limb [203–205]. It has also 

been well documented that these changes in lower extremity proprioception contribute to the 

decreases in postural stability often associated with healthy aging [206, 207]. Collectively, these 

data have been taken as evidence of compromised proprioceptive acuity that is thought to 

contribute to age-related postural instability [208], which lends to an increased risk of falls in 

older adults [209, 210].  

Evidence also exists that upper limb static position sense is impaired in older adults, as 

demonstrated by an object-based spherical hand grasp-matching task [211] and by limb position 

reproduction tasks about the elbow [212, 213] and wrist [214]. Additionally, passive movement 

detection thresholds about the wrist joint are up to twice as high in older compared to young 

healthy participants [215]. However, little is known regarding the effect of age on proprioception 

the finger joints, despite the importance of proprioceptive feedback for coordinated hand and arm 
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control that is of critical use in activities of daily living and in maintaining functional 

independence [151, 152]. This age-related decline in joint position sense acuity needs further 

characterization, including direct measurement of finger joint proprioception. 

To our knowledge, there are only a few tests designed to assess position sense in finger 

joints [211, 216, 217]. Clinical assessments of proprioception are commonly based on 

discriminating the upward or downward position of a passively moved finger [21, 184]. While 

traditional evaluations of sensory function often include proprioceptive tasks [184] and have 

proven useful in evaluating the condition of patients with stroke [155] and other impairments, 

these assessments are frequently insensitive, unreliable, subjective, and found to lack 

standardization [21, 22]. In contrast, robotic assessments are quantitative, sensitive, and can 

detect motor and sensory deficits in patients who receive normal scores on traditional clinical 

assessment measures [61, 189, 218]. For example, KINARM is a device that measures and 

perturbs shoulder and elbow joint positions and has provided reliable quantitative assessments of 

deficits in limb position sense for patients with stroke and traumatic brain injury [151, 152, 213, 

219]. The largest study to date that assessed systematic aging-related declines in position sense 

with robotics used the robot to move one arm passively to a location in space, then asked the 

participant to match the location of the arm [213]. Several age-related declines in shoulder and 

elbow proprioception were identified, including variability and absolute error. Extending the use 

of robotics to assessing proprioception in healthy individuals can improve understanding of the 

effects of healthy aging on human proprioception and dexterity.  

In this study, we examined finger proprioception in healthy participants through the use 

of a novel exoskeleton robot called FINGER. FINGER is capable of individually assisting both 
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the index and middle fingers through a natural grasping motion [220]. Each finger is individually 

guided by an 8-bar mechanism that controls the orientation and position of the proximal phalanx 

and the position of the middle phalanx, thus providing a naturalistic curling motion around the 

metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints  (Fig. 3.1). We designed a 

novel finger proprioception task, as well as a second task that mimics current neurological 

practice, and used them to assess young, middle-aged, and older adults. We hypothesized that 

older participants would generate larger errors in the passive finger position sense test and have 

delayed proprioceptive reaction times compared to younger participants. Additionally, we 

hypothesized that adding visual feedback of the hand being tested during these tasks would help 

participants to compensate for any proprioception errors. As a secondary aim, we also compared 

the two proprioception tasks across each participant's dominant and non-dominant finger joints 

to determine if a relative hand advantage for proprioceptive processing was present. 

Methods 

Subject Enrollment 

Healthy participants, aged 22-87 years were recruited. Exclusion criteria included any 

history of hand injury (such as wrist, hand, or finger fractures or the presence of surgical 

hardware) or pathology (such as diabetes, stroke, or arthritis). Handedness was determined using 

the Edinburgh Handedness Inventory [221]. The local ethics committee approved this study and 

written informed consent was obtained from each participant prior to participating, following 

procedures established by the University of California Irvine Institutional Review Board. 
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Experimental Design with FINGER 

The experiment took place across a single session and involved use of the exoskeleton 

rehabilitation robot, FINGER (Fig. 3.1) [220]. FINGER is capable of individually moving both 

the index and middle fingers through a natural grasping motion. Each finger can be individually 

guided by an 8-bar mechanism that controls the orientation and position of the proximal phalanx 

and the position of the middle phalanx. Each 8-bar mechanism has a single degree-of-freedom 

and is actuated by a high bandwidth and low-friction linear electric actuator. In designing 

FINGER, a regression analysis was used to determine the angular relationship between the 

middle and proximal phalanges for 7 healthy motion capture participants, using a second-order 

polynomial equation (Fig. 3.2) [220]. As the relationship between the PIP and MCP joints has 

been quantified and movement of these joints is highly correlated, for simplicity we reference 

error with regard to the MCP joint. However, position sense assessments reported here are 

thought to derive from both the PIP and MCP. 

In this experiment, we used the FINGER robot to actively move the participant’s passive 

index and middle fingers through a crisscross motion (Fig. 3.2). All movements followed 

minimum jerk trajectories calculated to take the desired finger from its starting point to its target 

point over the course of 5 seconds, with fingers moving at a MCP angular velocity of 0.24 

radians per second. For all crisscrossing movements, FINGER moved participants' index and 

middle fingers in opposing directions and always came to pause with the fingers separated by 

30% of the natural range of motion (ROM) for these two fingers. Thus, at only one point in time 

during each crisscross movement were the participants' index and middle fingers directly 

aligned. The rate of change of the separation distance between the fingers was identical for all 

crisscrossing movements (Fig. 3.2). However, the position in space where the fingers were 
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directly aligned varied for each crisscross movement. In order to achieve this, FINGER 

alternated between symmetric and asymmetric finger movement paths (Fig. 3.2). During 

symmetric movements, the index and middle fingers made mirrored movements through 30% 

ROM; during asymmetric movement paths, one finger moved through a larger range than the 

other to create different finger velocity profiles. The magnitude of asymmetry varied between 

10-70% ROM before fingers came to rest separated at 30% ROM, with the various asymmetric 

movement paths presented in a pseudo-randomized order. A pause time with duration pseudo-

randomized to be between 0-3 seconds followed each crisscrossing movement in order to 

generate crisscross finger motions that were non-periodic and therefore unpredictable to 

participants through use of timing strategies.  

Two proprioception tasks were performed using the same robot-controlled finger motions 

generated by FINGER: a finger overlap task and a movement onset task. For each task, a total of 

12 crossover movements occurred over approximately 2 minutes. Participants first performed the 

finger overlap task, then each was assessed to confirm that they understood the overlap task, and 

then they performed the movement detection task on either their dominant or non-dominant 

hand. All experimental procedures were then repeated with their other hand. The order of hand 

testing was counter-balanced across participants. The timing sequence of each finger movement 

and each rest period was identical within and across participants. All participants wore noise-

canceling headphones throughout testing to neutralize any sound emitted from FINGER. 
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Figure 3.1.    FINGER robot with two 8-bar finger curling mechanisms and two actuators that 
allow for naturalistic grasping motions by controlling the angle and position of the proximal 
phalanx and the position of the middle phalanx. The index and middle fingers attach to the 
robot and are guided through crisscross finger movements during the proprioception tasks; 
movement stops and reverses directions when fingers are separated at 30 % of range of motion 
(defined by bold lines). 
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Passive Finger Position Sense: Overlap Task 

Passive finger position sense was measured with a finger overlap task. During the overlap 

task, all participants were properly fitted into FINGER and asked to relax their hand. Test trials 

were repeated if any evidence of active movement was observed. Participants were instructed to 

press the spacebar on a keyboard with their free hand when they perceived their index and 

middle fingers from their test hand were directly overlapped on top of one another. Participants 

completed the overlap task under two different feedback conditions: first with visual access to 

their hand and then with vision occluded. Error was defined as the amount of finger separation, 

measured in degrees about the MCP, that existed when the participant indicated they felt their 

index and middle fingers were directly overlapped. Error included angles with both negative and 

positive degrees, as responses occurred both before and after fingers were directly overlapped 

(0̊). However, unless otherwise stated all analyses report group errors as averages of absolute 

errors.   

Following completion of the overlap task, participants completed an assessment to 

evaluate their comprehension of the overlap task. Participants who were able to describe the 

desired finger position when they tapped the spacebar using specific keywords (such as 

"overlapped", "aligned", and "in parallel") were deemed cognitively aware and compliant of the 

overlap task instructions. This assessment also had participants indicate if they could feel their 

fingers 1) start moving, 2) stop moving, or 3) cross over during the overlap task. These three 

questions referenced the index and middle fingers separately and were answered yes/no. The 

entire assessment was completed for both the dominant and non-dominant hands, directly after 

concluding the overlap task with vision occluded for each hand. 
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Figure 3.2.     Example index and middle finger movement paths during proprioception tasks 
generated by the FINGER robot. FINGER moved participants' index and middle fingers in 
opposing directions to create crisscross motions. One crossover event occurred during each 
crisscross movement wherein the index and middle fingers were directly overlapping. The 
position in space where the crossover event occurred varied for each crisscross movement; to 
create this effect, the fingers alternated between symmetric and asymmetric movements. Each 
crisscross movement occurred over 5 seconds, followed by a pseudo-random 0-3 second pause. 
During the pause, index and middle fingers were separated at 30% of the ROM by FINGER. 
Varying finger velocity profiles and pseudo-random pause times created non-periodic 
crisscross movements that participants could not predict using timing strategies. 
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Passive Movement Detection: Movement Onset Task 

Passive movement detection was measured with a movement onset task. During passive 

movement detection testing, which was a form of reaction time test, participants were instructed 

to press the spacebar on a keyboard with their free hand when they first perceived any passive 

movement in their fingers. Participants completed the movement onset task under two different 

feedback conditions: first with visual access to their hand and then with vision occluded. 

Performance was quantified as the amount of time delay, in milliseconds (ms), between the onset 

of robot initiated finger movement and the moment the participant pressed the spacebar to 

indicate perceived motion. 

Statistical Analysis 

Statistical analyses were conducted using JMP 11 software, were 2-tailed, and used 

α=0.05. Normally distributed data and data that could be transformed to a normal distribution 

were analyzed using parametric statistics, otherwise non-parametric statistics were used.  

Participant performance on the overlap task and on the movement onset task was 

analyzed separately. Initial analyses examined the effect of age on finger proprioceptive ability. 

An omnibus mixed effect model, with participants as a random effect and age group category as 

a fixed effect, was performed to assess the main effect of age on each of the proprioception tasks. 

The main effects of visual feedback condition and hand dominance were also evaluated to 

elucidate any differences between the three age groups according to hand dominance and 

according to the presence or absence of visual feedback. Post hoc analyses were performed using 

Fisher's Least Significant Difference test. Within group analyses were performed using a mixed 

effect model, with participants as a random effect and visual feedback condition and hand 
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dominance as fixed effects. Post hoc analyses were again performed using Fisher's Least 

Significant Difference test.  

Results 

We recruited 37 healthy adult volunteers aged 20 years and above. The measurements 

were acquired from three groups of adults: 12 young participants (average age: 24.5 ± 1.6 years 

(mean ± SD), range: 22-28, 5 males), 12 middle-aged participants (average age: 44.5 ± 9.4 years, 

range: 30-60, 3 males), and 13 older participants (average age: 73.3 ± 6.8 years, range: 67-87, 8 

males). Of the 37 participants, 35 were right-handed. Performance on the overlap task and the 

movement onset task was collected under four different conditions: dominant hand with vision, 

dominant hand without vision, non-dominant hand with vision, non-dominant hand without 

vision. Not all participants completed the four different testing conditions as the full protocol 

was incorporated in stages; the number of participants for each test is given within Figs. 3.3 and 

3.4. 

Overlap Task Results  

Results from the assessment immediately following the overlap task revealed that all 

participants understood the instructions for the overlap task and attempted to press the spacebar 

when their index and middle fingers were directly overlapped. Likewise, 95% of participants 

were able to feel their index and middle fingers start moving, stop moving, and crossover during 

the task. Only one participant in the middle-aged group was unable to feel their index finger start 

moving; one participant in the older age group reported they could not feel their fingers cross 

over. Although these participants reported lack of somatosensation, each did demonstrate 
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comprehension of the overlap task, and so data from all participants are included in the following 

statistical analyses.  

For participant average absolute errors, a difference in performance on the overlap task 

was found to exist as a main effect of age (F(2,31)=5.74, p=0.007, Fig. 3.3A); the main effect for 

visual feedback condition was trending (F(1,99)=2.83, p=0.09); and the main effect for hand 

dominance was not significant (F(1,88)=0.10, p=0.75). Given our hypothesis that vision would 

help participants compensate for any deficits in proprioception, we proceeded with one-way 

ANOVAs to evaluate any main effect of age for the four test conditions: dominant hand, 

dominant hand+vision, non-dominant hand, non-dominant hand+vision (Fig. 3.3). Difference in 

overlap error according to age was detected for both hands when participants completed the task 

with vision occluded (dominant hand: F(2,34)=4.84, p=0.01; non-dominant hand: F(2,33)=3.53, 

p=0.04). Post-hoc tests for the dominant hand revealed the older age group made significantly 

larger errors than the young (t(34)=2.05, p=0.04) and middle-aged groups (t(34)=3.04, p=0.004). 

For example, the older participants made on average 48% larger finger position sense errors 

compared to young participants. Similarly, post-hoc tests for the non-dominant hand indicated 

the older group made larger errors than the young (t(33)=2.04, p=0.04) and middle-aged groups 

(t(33)=2.46, p=0.02). Conversely, a difference in overlap error according to age was not detected 

when participants completed the task with visual feedback (dominant hand+vision: F(2,25)=0.78,  

p=0.47; non-dominant hand+vision: F(2,25)=1.73, p=0.19). The overlap task mixed-effects model 

did not indicate a significant interaction for categorical age groups and visual feedback condition 

(F(2,99)=0.52, p=0.6). 
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Overlap error can also be evaluated by computing signed averages, wherein negative and 

positive errors reveal if participants responded before or after their fingers were directly 

overlapped, respectively (Fig. 3.3B). Signed average overlap errors were calculated for each age 

group (young: -3.2 ± 2.9° (mean ± SD); middle-aged: -0.01 ± 3.9°; older: 2.6 ± 6.3°). Across all 

age groups and task conditions, 49% of participants made negative signed average overlap 

errors, indicating that participants anticipated the moment their fingers would cross. 
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Figure 3.3.    (A) Average absolute error, in degrees about the MCP, made on the overlap task 
for the dominant and non-dominant hands, with and without vision. The older age group 
performed significantly worse than the young and middle-aged groups for both the dominant and 
non-dominant hands without vision. However, no difference existed between the age groups 
when participants were permitted visual feedback of their hand. Numbers in parentheses indicate 
the number of participants tested for each condition. Error bars are standard error. * = p<0.05.  
** = p<0.01. (B) Histogram distribution of signed average errors made on the overlap task. 
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Movement Onset Task Results  

For participant average movement onset detection times, a difference in performance on 

the movement onset task was found to exist as a main effect of age (F(2,25)=4.16, p=0.03, Fig. 

3.4) and a main effect of visual feedback condition (F(1,82)=6.01, p=0.01); the main effect for 

hand dominance was not significant (F(1,82)=2.83, p=0.10). Using the same age group divisions 

from the overlap task analyses, subsequent one-way ANOVAs were performed to detect any 

differences among age groups for the four testing conditions (Fig. 3.4). A main effect of age was 

found for both hands when participants performed the movement onset task with vision occluded 

(dominant hand: F(2,25)=4.74, p=0.02; non-dominant hand: F(2,25)=4.29, p=0.02). Post-hoc tests 

for the dominant hand revealed the older age group had significantly longer reaction times than 

the young age group (t(25)=3.08, p=0.005). For example, proprioceptive reaction time was 78% 

longer in older adults compared to young adults. Likewise, post-hoc tests for the non-dominant 

hand indicated the older group had significantly longer reaction times than the young age group 

(t(25)=2.90, p=0.007). Conversely, a difference in movement onset detection time according to 

age was not detected when participants had visual input during the task (dominant hand+vision: 

F(2,25)=1.84, p=0.18; non-dominant hand+vision: F(2,25)=0.59, p=0.56). 

Moreover, the movement onset task mixed-effects model indicated a significant 

interaction for categorical age groups and visual feedback condition (F(2,81)=4.31, p=0.02). 

Within-group analyses indicated a significant main effect for vision for the young age group 

(F(1,22)=13.03, p=0.002), but not for the middle-aged or older age groups. A paired t-test revealed 

detection times for the young age group with visual feedback were longer than those without 

visual feedback (t(22)=3.6, p=0.002).  
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Figure 3.4.     Mean time to detect finger movement onset during the movement onset task for 
the dominant and non-dominant hands, with and without vision. The older age group 
performed significantly worse than the young age group for both the dominant and non-
dominant hands without vision. However, no difference existed among the groups when 
participants were permitted visual feedback while completing the task. Error bars are standard 
error. ** = p<0.01 
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Discussion 

The primary aim of the present study was to evaluate age-related changes in finger joint 

position and movement sense by means of a novel robotic proprioception assessment. We 

hypothesized that passive finger movement tasks with FINGER would detect diminished 

proprioceptive ability in older adults compared to younger adults. Our results from 37 

individuals aged 22-80 years revealed significant age-related declines in PIP and MCP joint 

proprioception. In the case of the overlap task, wherein index and middle fingers were passively 

moved in opposing directions and participants indicated when their fingers were directly 

overlapped, older participants demonstrated diminished finger position sense and made 48% 

larger errors than young healthy participants (Fig. 3.3). Moreover, the movement onset task also 

showed that older participants were 78% slower in detecting the onset of passive finger 

movements than young participants (Fig. 3.4). These proprioceptive deficits were masked when 

older participants were permitted vision of their hand. Additional assessments indicated hand 

dominance did not affect finger proprioception in either task.  These results describe a decline of 

finger proprioception and finger proprioception reaction time with normal aging, a finding of 

concern to our aging population given that finger joint proprioceptive ability strongly relates to 

precise control of hand movements performed during activities of daily living. 

The results presented here support the view that age-related proprioception decline is a 

generalized phenomenon that older adults experience throughout multiple effector systems of the 

body. These data are the first to provide strong evidence that finger joint position sense and 

movement onset detection are significantly impaired in healthy older adults, a finding that 

supports observations of generalized declines in proprioceptive ability with aging. Previous 

research indicates lower limb proprioception, specifically position sense of toes, ankles, and 
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knees [209], decreases with normal aging. Declines in active and passive joint movement of the 

elbow and wrist have been detected in the elderly at comparable rates reported for the lower limb 

[212–215]. For example, in an arm position-matching task, errors in hand-based position sense 

parameters increased 36% across adulthood [213]. The present findings report a similar decline 

in proprioception of the finger joints. It is important to note, however, that task design likely has 

a significant influence in evaluating joint position sense, and thus direct comparisons across 

protocols are difficult. What is clear is that age-related proprioceptive impairment is pervasive 

across limbs, including the fingers. 

Age-Related Changes Affecting Finger Proprioception 

Numerous peripheral and central level neurophysiological factors might account for the 

observed age-related changes in proprioception [222]. A general loss of sensitivity affecting 

stretch-sensitive mechanoreceptors [223], age-related alterations in cutaneous receptors, 

decreased density of Meissner and Pacinian corpuscles per unit of skin area [224], and a decline 

in joint mechanoreceptors [225] likely contribute to the impaired dynamic position sense 

detected in the older participants. 

In addition to these probable contributions from the peripheral nervous system, it is likely 

that some component of age-related decline in proprioceptive function is related to changes in 

the central nervous system [206]. This could theoretically be due to some combination of 

elementary sensory signaling or cognitive decline. Regarding the latter, joint position errors 

made by the elderly can be modulated by the amount of proprioceptive processing required [212, 

226, 227], suggesting task type and experimental design can indeed impact the severity of 

proprioceptive impairments detected. In the current study, the overlap and movement onset tasks 
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do not rely on proprioceptive memory (as in ipsilateral remembered matching) or 

interhemispheric transfer (as in mirroring tasks). Thus, we suggest that the proprioception 

assessments presented here are independent of cognitive attentional resources available to older 

individuals and likely reflect the neurophysiological underpinnings of finger proprioception for 

different age groups. 

Advantages of Proprioception Testing with FINGER 

Joint position sense is usually assessed in patients with stroke [151, 158] or as a test for 

sensory deficits due to aging or disease [228, 229]. Robotic devices can quantitatively assess 

sensorimotor dysfunction with heightened sensitivity in these populations [61]. For example, 

robotic assessments have revealed patients frequently have deficits in motor and sensory 

functions despite receiving normal scores on traditional clinical measures [189]. Additionally, 

seemingly ‘standardized’ somatosensation assessments have in fact been found to be subjective 

and have poor inter-rate reliability [21, 22], deeming traditional proprioceptive measurements 

both unreliable and insensitive. As this study sought to detect minor differences in proprioceptive 

ability that may exist between healthy individuals as a function of age, we designed 

proprioception tasks using FINGER. Using this finger-curling robot allowed us to design two 

passive proprioception tasks.  

Various tasks designed to measure the ability to sense joint movement have been 

developed. An early study in motion sense found that compared to young adults, older 

participants were less capable of sensing motion of the metacarpophalangeal and 

metatarsophalangeal joints in the absence of vision [230]. Movement detection thresholds have 

also been studied in relation to normal aging for lower limb joints, such as the ankle [231, 232] 
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and knee [203, 233]. More recently, robotics have been employed to enhance acuity in studies 

addressing kinesthesia in the elbow and wrist joints [151, 193, 213, 215, 218, 219]. The present 

study is the first to our knowledge to extend conventional measurements of passive movement 

detection to the finger joints using robotics.  

The overlap task was designed to address the intrinsic dual functionality of 

proprioception, which refers to both position sense and movement detection. The ability to 

monitor position during motion has been termed “dynamic position” sense. Traditional position 

sense studies have had participants mirror a static position with their free limb [212]. While 

employing robotics in this setting has introduced objective scoring [151, 193, 213, 215], testing 

paradigms that incorporate sense of position and sense of movement are challenging to design. 

The overlap task presented here introduces a quantitative assessment for dynamic finger position 

sense (Figs. 3.1, 3.2). Because sense of position and sense of movement are both important in 

proprioception and strongly contribute to fine motor control during voluntary movement 

execution [234, 235], we suggest the overlap task, which tests both senses, provides enhanced 

insight to the decay of proprioceptive ability as a result of normal aging. Indeed, this task 

detected decreased proprioception in the older age group compared to both the young and 

middle-aged groups and therefore proved to be a more sensitive probe than the movement onset 

task, which characterizes sense of movement alone and did not consistently detect a difference 

between the older and middle-aged groups. 

Role of Feedback Condition on Proprioception 

In a number of highly skilled motor activities, responses to kinesthetic stimulus rather 

than a visual one would seem beneficial since the kinesthetic route is faster to process [236–239]. 
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Despite this, kinesthetic cues are rarely the only means through which one perceives movement. 

On both the overlap task and movement onset task, our older age group demonstrated impaired 

proprioception compared to the young group without vision, but performed comparably when 

vision was included. Previous studies have confirmed the importance of vision in the control of 

posture under challenging conditions [240–242] and suggest that the visual system is relied upon 

to compensate for diminished proprioception in the lower limbs and upper limbs [200]. It is 

likely that visual input plays a similar compensatory role in the finger joints, which allows older 

participants to complete proprioception tasks indistinguishably from younger participants.  

It is well-known that reaction times generally increase with aging and this effect is seen 

in response to stimuli across all sensory modalities [243–245]. Thus, it may seem possible that 

such aging-related increases in reaction time would map onto increases observed in overlap 

error, making it possible that the observed deficit was due to prolonged reaction time rather than 

impaired proprioception per se. It is important to note that by design, the overlap task is 

inherently independent of reaction time because it is anticipatory by nature. Longer preparatory 

intervals are known to reduce reaction time [245]; given that participants could anticipate the 

timing that their slowly moving fingers would cross, this preparatory interval was extended 

during the overlap task. Thus, 49% of participants made signed average overlap errors that were 

negative (Fig. 3.3B). The prevalence of negative errors on the overlap task reveals that 

participants anticipated the crossover event and sometimes reacted too early. The overlap task is 

therefore anticipatory in nature and delays in reaction time due to aging are unlikely to confound 

the results presented here. 
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One should also consider the role of reaction time in the movement onset task. It is 

logical that reaction time does play a role in the movement onset task, as it is in essence a test of 

proprioceptive reaction time. However, the results from the movement onset task are likely 

indicative of more than a simple delay of reaction time with age. For example, if these results 

revealed a delay in reaction time alone, there should be a difference between older and young 

age groups regardless of visual feedback condition. This is not the case, as all age groups 

performed similarly on the movement onset task when they were permitted visual access to their 

hand (Fig. 3.4). One may be tempted to attribute the similar performances amongst the groups 

when visual feedback was permitted to the young participants' seemingly slowed reaction times. 

Indeed, visual feedback significantly increased movement onset detection time for the young age 

group, but this is not an atypical observation. Visual responses are known to have slower 

processing times compared to those of kinesthesia [236–239]. Moreover, visual input tends to 

dominate input from somatosensory modalities [246]. For the young participants, a tendency to 

depend on visual feedback of the hand rather than proprioception when performing this task 

resulted in slower response times than when they completed the task without vision, thereby 

requiring them to utilize their highly attuned proprioceptive abilities. It is likely that the older age 

group also relied on visual feedback to complete this task when given the opportunity. Yet, the 

older age group did not demonstrate a significant main effect for visual feedback condition.  This 

suggests that proprioceptive abilities for elderly individuals were diminished and therefore 

rendered the slower processing time of visual input undetectable. By any means, given the 

potential confounds of reaction time on the movement onset task, the overlap task is perhaps a 

more ideal way to parse out the effects of delayed reaction time from the effects of age-related 

decline in finger proprioception. 
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Lack of Asymmetry Due to Hand Dominance 

Studies regarding static position sense about the elbow have indicated asymmetries in 

younger individuals with the non-dominant arm exhibiting an enhanced ability to utilize limb 

position feedback [247]. Interpreted as a specialization of the non-dominant hemisphere system 

for position-related proprioception processing [206, 248], this finding has been seen in older 

adults for conditions requiring interhemispheric transfer of proprioceptive information (i.e. static 

limb matching tasks) [212–214]. Although a lifetime of dominant hand use may suggest 

enhanced dynamic movement onset detection for dominant limbs, dynamic movement 

reproduction does not differ between the two arms [222, 249] nor does passive movement onset 

detection in wrist joints differ according to hand dominance for elderly participants [215]. 

Likewise, in the present study the main effect of hand dominance failed to reach statistical 

significance for the overlap and movement onset tasks. This suggests that decay in 

proprioceptive ability with natural aging is generalized to both upper limbs. Moreover, it 

highlights the influence of task design in detecting kinesthetic asymmetries. 

The results of this study extend our current understanding of the extent of age-related 

proprioception declines and confirm that such declines are general phenomena affecting the most 

distal part of the upper extremity. Additionally, they introduce two novel robotic techniques for 

quantitatively assessing dynamic position sense in the finger joints, one being free of possible 

reaction time confounds. These results may also have clinical value. The functional 

consequences of impaired finger joint proprioceptive ability strongly relate to precise control of 

finger movements performed during activities of daily living [250, 251]. This is particularly 

relevant for our aging society where physiological declines in finger proprioception are naturally 
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occurring, and may also be useful for understanding diseases in which sensory function is 

affected such as stroke.  
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CHAPTER 4 

NEURAL CORRELATES OF PROPRIOCEPTIVE DEFICITS AFTER STROKE 

Abstract 

Proprioception of the fingers is essential for motor control. Reduced proprioception after 

stroke is linked to increased length of hospitalization and mortality. However, the neural 

correlates of proprioceptive deficits after stroke remain incompletely understood, in part due to 

weaknesses of clinical proprioception assessments. The current study examined the neural basis 

of finger proprioceptive deficits after stroke, hypothesizing that a model incorporating neural 

injury and neural function of the somatosensory system would be key. Finger proprioception was 

measured using a robot in 27 subjects with chronic stroke, among whom measures of neural 

injury (damage to gray and white matter, including corticospinal and thalamocortical sensory 

tracts), neural function (activation and connectivity of cortical sensorimotor areas), and clinical 

status (demographics and behavioral measures) were also assessed. Impairment in finger 

proprioception was present contralesionally in 67%, and bilaterally in 56%. Robotic measures of 

proprioceptive deficits were found more sensitive than standard scales and were specific to 

proprioception function. Multivariate modeling found that contralesional proprioceptive deficits 

were best explained by combining a measure of neural function (S2-M1 connectivity) with a 

measure of neural injury (total sensory system injury, r2=0.63, p=0.0006). Proprioceptive 

impairment of the fingers occurs frequently after stroke and is best measured using a quantitative 

device such as a robot. Anatomical injury to somatosensory networks and functional connectivity 

between S2-M1 best explained proprioception performance. With this neural circuitry identified, 

it is possible to develop more effective neurorehabilitation therapies. 
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Introduction 

Proprioception of the fingers is central to human behavior. Proprioceptive deficits may be 

present in 50% or more of patients with stroke [151, 154, 165] and can be present in both 

ipsilesional and contralesional limbs after unilateral infarct [154]. Reduced proprioception after 

stroke is associated with longer hospitalization, increased mortality, and diminished quality of 

life [154, 165, 168]. 

The goal of the current study was to understand key factors underlying inter-subject 

differences in finger proprioception after stroke, findings that could inform approach to therapy. 

Simply measuring injury to sensory areas incompletely explains proprioception deficits after 

stroke [175]. The primary hypothesis, therefore, was that proprioception deficits would be best 

explained by a model combining measures of neural injury and neural function, given increasing 

evidence that both forms of measurement are needed to most robustly explain variance in 

behavioral outcomes after stroke [11, 16, 17]. A new method for measuring sensory system 

injury, lesion overlap with the thalamocortical sensory tract, was examined. 

A key consideration in this study was the method by which proprioception is measured. 

Bedside tests of proprioception are subjective and non-standardized [154], plus have low 

sensitivity, high variability, floor effects, and low reliability [19, 20, 154, 158, 166]. Robotic 

devices have been shown to better quantify arm sensory impairments following stroke [151, 190, 

193] but to date have not been used to measure post-stroke proprioceptive deficits in finger 

joints, an afferent data stream critical to human function [135]. Towards this, we developed and 

employed a novel exoskeletal robotic device that measures finger proprioception with high 

sensitivity [220, 252]. 
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Methods 

Subject Enrollment   

Twenty-seven subjects with unilateral chronic stroke were recruited. Key inclusion 

criteria were age 18-80; radiologically confirmed stroke >6 months prior; arm motor deficit 

(contralesional Box & Blocks score at least 10% <ipsilesional hand) with preserved 

contralesional hand movement (Box & Blocks score ≥3). Subjects were excluded if they had 

significant cognitive impairment or another diagnosis affecting hand function. Proprioception 

data collected for a previously published normative study [252] using identical methods in 25 

healthy age-matched subjects were used as control data. The local ethics committee approved 

this study, and written informed consent was obtained from each subject prior to participating 

following procedures established by the University of California Irvine Institutional Review 

Board. 

Proprioception Assessment 

Passive finger position sense was measured using the FINGER (Finger Individuating 

Grasp Exercise Robot) exoskeleton robotic device [220, 252], which guides index and middle 

fingers through motion around metacarpophalangeal and proximal interphalangeal joints, 

allowing for individual finger guidance. The robot slowly (up to 13 degrees/second) moved the 

index and middle fingers in opposing directions during a series of 12 non-periodic finger-

crossing movements, of different distances and angular velocities, in pseudorandom order. For 

each finger-crossing movement, subjects were instructed to press a keyboard spacebar when they 

perceived their index/middle fingers were directly aligned relative to one another. This task 

spanned two minutes for each hand, with ipsilesional hand tested first. The angular distance 

between the metacarpophalangeal joints when the spacebar was pressed was calculated for each 
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finger-crossing movement. Proprioception error reported here reflects the average error across 

the 12 finger-crossing movements for each hand of each subject. 

Prior to testing each hand, subjects performed passive range of motion exercises using the 

FINGER robot to ensure no pain or discomfort. The examiner then walked through a practice 

round with each subject, confirming that they understood and could demonstrate the task. Next, 

appropriate attention and cognitive status were confirmed by requiring that each subject could 

correctly repeat full task instructions to the examiner. 

The robot-guided finger-crossing movements during the task were relatively slow, and as 

a result identification of direct finger alignment was not dependent on reaction time, as subjects 

were able to anticipate the moment of finger crossing. This was demonstrated in our previous 

study of unimpaired control subjects, wherein about half of the proprioception errors were made 

before and half following direct finger alignment [252]. Thus, this proprioception task with the 

FINGER robot measures ability to integrate proprioceptive information during relatively slow 

movement of the fingers to detect direct finger alignment. 

Subject Characteristics 

Demographics/History:  Medical history was obtained, including handedness [221]. 

Sensorimotor Behavior: Stroke severity was assessed with the NIH Stroke Scale 

(NIHSS). Motor status was evaluated with the Action Arm Research Test (ARAT), Box & 

Blocks Test (B&B), Nine Hole Peg Test (NHPT; number of seconds to complete the task, 

maximum score 60s) and Finger Tapping Test (FT; number of finger taps over 10s). The motor 

and sensory Fugl-Meyer (FM) arm assessments were obtained. 
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Image Acquisition 

On a 3T Philips MRI, high-resolution T1-weighted images were acquired using a 3-

dimensional MP-RAGE sequence (150 slices, 1mm3 voxels). T2 FLAIR images were also 

acquired. Four runs of BOLD fMRI were acquired using a T2*-weighted gradient-echo sequence 

(TR=2,000 ms, TE=30 ms, each run with 48 brain volumes=96 s), during which subjects were 

visually guided to alternate 24 seconds rest with 24 seconds active 0.5 Hz index and middle 

finger flexion/extension movements while wearing a non-actuated plastic exoskeleton similar to 

the robotic interface used during the proprioception task. An investigator observed movements 

during scanning ensured compliance. 

Brain Injury 

Grey Matter Injury: Using MRIcron (www.mccauslandcenter.sc.edu/crnl/mricron/) , each 

participant’s infarct was outlined by hand on the T1-weighted MRI image, informed by FLAIR 

image, in a standardized manner as described previously [95]. Stroke masks were transformed 

into Montreal Neurological Institute (MNI) standard stereotaxic space using the Functional 

Magnetic Resonance Imaging of the Brain Software Library (FSL, https://fsl.fmrib.ox.ac.uk/). 

Stroke masks for participants with right-sided lesions were flipped about the midsagittal plane.  

Degree of overlap between cortical regions of interest (ROIs) and each stroke mask was 

calculated. Using Marsbar [253], sphere ROIs representing hand M1, hand S1, and secondary 

somatosensory cortex (specifically operculum parietal (OP) 4, denoted here as S2) [129] were 

generated. Percent stroke mask overlap with each ROI was calculated for each subject.  

White Matter Injury: Because fiber tracking with diffusion tensor imaging (DTI) can be 

problematic in brain regions affected by stroke, white matter injury for each subject was 
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quantified by examining the extent to which each infarct overlapped with white matter tract 

templates generated from healthy controls. Injury to the corticospinal tract (CST) was measured 

as percent overlap between each subject's infarct and the normal CST, as described previously 

[97].  

As part of the current study, we devised a new method for measuring sensory tract injury.  

Injury to the thalamocortical sensory tract (TST, Fig. 4.1) was measured as amount of overlap in 

MNI stereotaxic space between the normal TST and each subject's infarct. The normal TST was 

developed with diffusion tensor imaging (DTI) from 17 healthy control subjects (Fig. 4.1) [97]. 

To create the normal TST tract, control subject images in native space were first corrected for 

eddy current distortions and head motion artifacts using FSL. FSL's BEDPOSTX program was 

then used to generate probability distributions of diffusion parameters at each voxel, including 

modeling for diffusion of crossing fibers along two directions. With the thalamus as the seed 

region, connectivity-based segmentation was used to assign each voxel in the seed some 

probability of being connected to each of various targets, including the post-central 

gyrus. Subject-specific masks of thalamic regions with highest probability of connection to the 

post-central gyrus were generated. Each mask was visually inspected and compared to an 

anatomical atlas [122], confirming that they were located in the approximate region classically 

defined as VPL. Next, probabilistic tractography was performed in each subject using the dorsal 

two-thirds of the post-central gyrus as the seed region, the VPL as a waypoint target mask, and a 

mid-sagittal slice as an exclusion mask. The resulting individual subject tracts were binarized, 

transformed into MNI space, summed, and thresholded to include only voxels that were common 

to the tracts of ≥6 subjects. Similar to methodology used to calculate percent injury to CST [11, 

17, 254], injury to the TST was calculated as the percent injury to the normal TST. This was 
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accomplished by overlaying stroke masks in MNI space with the normal TST tract. Because of 

seed point locations, values for white matter injury for subjects with infarcts inferior to the 

thalamus were omitted from statistical analyses. 

 

 

 

 

Figure 4.1.    CST and TST tracts generated from probabilistic tractography of DTI data from 
healthy control subjects. Blue tract is CST; red tract, TST. (A) tracts are overlaid on a T1-
weighted MRI template. (B) glass brain visualization of the tracts. 
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Total System Injury: A comprehensive measure of system injury within the stroke-

affected hemisphere was calculated for the sensory system and the motor system. To quantify 

total sensory system injury, S1, S2, and TST percentage injury measures were each standardized, 

then values were averaged for each subject (Fig. 4.2). For total motor system injury, standardized 

injury measures to M1 and CST were averaged.  

 

Figure 4.2   Total Sensory System Injury is an aggregate metric of primary somatosensory 
cortex (S1), secondary somatosensory cortex (S2), and thalamocortical sensory tract (TST) 
injury. Percentage injury of these individual regions (shown in green) was calculated via lesion 
overalap (lesion shown in red; overlap shown in yellow) and standardized, then averaged for 
each subject to create a comprehensive anatomical injury metric for the somatosensory system.  
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Cortical Function 

Two measures of regional brain function were extracted from fMRI images: 

(1) activation volume and (2) peak activation beta (contrast) estimate, each measured in 

contralesional and ipsilesional M1, S1, and S2. To do so, functional data from the four BOLD 

fMRI runs were preprocessed using the Statistical Parametric Mapping 12 (SPM12) software 

(http://www.fil.ion.ucl.ac.uk/spm/). Preprocessing steps included realignment to the first image, 

coregistration to the mean EPI image, normalization to the standard MNI EPI template, and 

spatial smoothing (FWHM = 6 mm). Data were visually inspected for head movement and were 

rejected for subjects with >2mm head displacement. 

For statistical analysis, the fMRI data were modeled as a boxcar convolved with a 

hemodynamic response. A high-pass filter of 128 s was used to remove low signal changes. 

Functional run data were inspected for outliers due to excessive head motion (>1 mm translation 

or >0.2 radians rotation between each volume) and signal noise (Z > 3 from the mean image 

intensity) using the Artifact Detection Tool (http://www.nitrc.org/projects/artifact_detect). 

Outliers were de-weighted during statistical analysis. Single-subject t-maps (task versus rest) 

were generated using p < 0.001 uncorrected for multiple comparisons. Activation volume and 

contrast estimates were then extracted in SPM12 using small volume correction for M1, S1, and 

S2 ROIs on each brain side. 

Cortical Connectivity  

Connectivity was assessed as the temporal correlation using an ROI-ROI approach. After 

the fMRI data were preprocessed in SPM12, intra- and interhemispheric functional connectivity 

metrics were calculated using the CONN toolbox [255]. Time courses were filtered between 
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0.008 and 0.13 to minimize low-frequency drift and high-frequency noise. Within-subject 

realignment parameters, outliers, and main session effects were included as first-level covariates. 

Functional connectivity was evaluated between ipsilesional M1 and contralesional M1, 

ipsilesional S1, and ipsilesional S2 (iM1-cM1, iM1-iS1, and iM1-iS2, respectively); between 

ipsilesional S1 and contralesional S1, and ipsilesional S2 (iS1-cS1, iS1-iS2, respectively); and 

between ipsilesional S2 and contralesional S2 (iS2-cS2). Primary analysis of S2 examined OP 4, 

as above, but OP 1 [256] was also examined to enable secondary hypothesis testing. Fisher-

transformed correlation coefficients were extracted for each connection in each subject.  

Statistical Analysis 

The frequency of proprioception impairment for the contralesional and ipsilesional hand 

of subjects with stroke was defined using a 2-SD criterion of abnormality based on performance 

of age-matched controls. To evaluate between-group (contralesional, ipsilesional, and control) 

differences, a mixed-effect model with subject as a random effect and group as a fixed effect was 

performed; post hoc analyses used Fisher's LSD or paired t-tests. 

Bivariate screening was performed to identify measures that best accounted for inter-

subject variability in contralesional proprioception error. Normally distributed data and data that 

could be transformed to a normal distribution were analyzed using parametric statistics, 

otherwise nonparametric statistics were used. Analyses were two-tailed with α=0.05 and used 

JMP software (version 9.0.0, SAS Institute). For each of the 5 main categories (two of which are 

clinical measures, demographics/medical history and sensorimotor behavior; two of which are 

measures of neural function, cortical function, and cortical connectivity; and one of which is a 

measure of neural injury, brain injury), results of bivariate screening determined whether any 
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individual assessment survived as a correlate of proprioception error and would be advanced to 

multivariate modeling. 

A forward stepwise multivariate linear regression approach (0.1 to enter, 0.15 to leave the 

model) was used to understand inter-subject proprioceptive variability, advancing the most 

significant predictors from each category identified in bivariate screening (as long as bivariate 

screening showed p<0.1).  

Results 

Behavioral data from 27 subjects with unilateral chronic stroke were available for 

analysis (Table 4.1). All completed testing except two who could not complete MRI 

(claustrophobia). Two subjects were excluded from cortical function and connectivity analyses 

due to excessive head motion during scanning, while five subjects were excluded from white 

matter injury analysis due to lesion location below the thalamus. 
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Table 4.1.   Characteristics of Subjects with Stroke 
 

Variable Value 

Demographics/medical history  
Age, mean yr±SD 58±14 
Gender, M/F  19/8 
Hand dominance, R/L/A  24/3/0 
Diabetes mellitus, yes/no 6/21 
Hypertension, yes/no 15/12 
Hypercholesterolemia, yes/no 15/12 
Geriatric Depression Scale, mean±SD 4.07±3.73 
Time poststroke, median mo [IQR] 30 [9-44] 
Stroke type, ischemic/hemorrhagic  18/9 
Stroke hemisphere, L/R 13/14 
Stroke in dominant hemisphere, yes/no 13/14 
NIHSS, normal = 0 2.41±2.25 

Sensorimotor Behavior, mean±SD Contralesional Ipsilesional 
ARAT, normal = 57 32.74±22.41  
FM Arm Motor, normal = 66 45.9±11.7  
FM Arm Sensory, normal = 12 10.89±2.42 12.00±0.00 
B&B score 22.2±18.0 55.9±8.2 
NHPT score 54.6±10.7 25.1±7.9 
FT score 14.4±12.3 47.2±10.2 

Brain injury  
Infarct volume, cm3, mean±SD 20.6±23.4 
M1 injury, yes/no 5/20 
M1 % injury, mean±SD 10.1±21.1 
S1 injury, yes/no 7/18 
S1 % injury, mean±SD 17.0±30.8 
S2 injury, yes/no 9/16 
S2 % injury, mean±SD 11.6±24.7 
CST injury, yes/no 18/2 
CST % injury, mean±SD 34.3±28.7 
TST injury, yes/no 17/3 
TST % injury, mean±SD 7.5±6.7 
Total motor system injury 0.9±0.8 
Total sensory system injury 0.05±0.7 
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A = ambidextrous; ARAT = Action Arm Research Test; B&B = Box & Blocks; c = 
contralesional; CST = corticospinal tract; F = female; FM = Fugl-Meyer; FT = Finger 
Tapping; i = ipsilesional; IQR = interquartile range; L = left; M = male; M1 = primary 
motor cortex; NHPT = Nine Hole Peg Test; NIHSS = NIH stroke scale; R = right; S1 = 
primary somatosensory cortex; S2 = secondary somatosensory cortex; SD = standard 
deviation; TST = thalamocortical sensory tract. 

 
 
 

 
 

  

Cortical function, mean (SD) Contralesional Ipsilesional 
M1 activation volume, voxels 24.9±34.1 51.4±39.2 
S1 activation volume, voxels 36.0±33.5 53.3±39.9 
S2 activation volume, voxels 107.8±89.5 132.8±108.5 
M1 activation, contrast estimate 2.0±1.9 3.7±2.0 
S1 activation, contrast estimate 2.1±1.1 2.8±1.5 
S2 activation, contrast estimate 2.4±1.5 2.3±1.7 

Cortical connectivity, mean (SD)  
iM1-cM1 correlation coefficient 0.18±0.21 
iM1-iS1 correlation coefficient 0.45±0.19 
iM1-iS2 correlation coefficient 0.09±0.19 
iS1-cS1 correlation coefficient 0.14±0.20 
iS1-iS2 correlation coefficient 0.08±0.21 
iS2-cS2 correlation coefficient 0.27±0.21 
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Proprioception Error 

Subjects with stroke successfully completed the robotic proprioception assessment, most 

showed deficits in both hands, and this methodology was found to be correlated with, but more 

sensitive than, standard clinical scales of sensory function. 

Subjects with stroke were excellent at detecting finger-crossing movements during the 

proprioception task, with 25/27 detecting all 12 finger-crossing movements, similar to the 

proportion of healthy controls (23/25) who detected all 12 finger-crossing movements. There 

was little floor effect, as only a single subject with stroke scored the maximum error. Subjects 

with stroke made both early and late responses during the task (Fig. 4.3A), indeed half (50.8%) 

of all errors preceded finger crossing, mirroring findings in healthy subjects [252].  

In neurologically intact control subjects, error for the dominant hand was 7.3±3.8°; for 

the non-dominant hand, 6.8±3.0°. There was no significant difference between the two hands 

(p=0.40) and so for subsequent analyses, control error refers to average of dominant and non-

dominant hands. In subjects with stroke, proprioception error for the contralesional hand was 

16.2±6.4° (mean±SD); for the ipsilesional hand, 13.3±5.4°. Proprioception performance for the 

contralesional hand and ipsilesional hand were positively correlated (Fig. 4.3B, r=0.65, 

p=0.0002). The main effect of group was significant (p<0.0001) as were post hoc pairwise 

comparisons: contralesional errors were greater than ipsilesional errors (p=0.006) as well as 

controls (p<0.0001), and ipsilesional errors were greater than controls (p<0.0001).  

Impaired proprioception was detected for the majority of subjects with stroke:  67% had 

contralesional impairments, 63% had ipsilesional impairments, and 56% had bilateral 

impairments. By comparison, by the FM sensory scale, only 7/27 (26%) had contralesional arm 
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sensory impairment and 0 had ipsilesional arm sensory impairment; the NIHSS sensory subscale 

showed sensory deficits in 12/27 (44.4%). Notably, robot-assessed proprioception deficits were 

specific to sensory function, as contralesional proprioception error correlated with clinical 

sensory assessments (FM sensory score: r=-0.39, p=0.046; NIHSS sensory subscore: r=0.47, 

p=0.01) but not with clinical motor assessments (FM motor score: p=0.19), or other clinical 

metrics (NIHSS language subscore: p=0.55; NIHSS attention subscore p=0.20; Geriatric 

Depression Scale score: p=0.37).  

Given that proprioception testing of one hand required metacarpophalangeal joint flexion 

of the opposite hand to press the spacebar, it is important to assess the relationship between 

proprioception error of the tested hand and motor status of the opposite hand. There was a weak 

relationship between contralesional hand proprioception error and ipsilesional FT score (r=-0.43, 

p=0.03). However, this correlation explained only 18% of variance in contralesional 

proprioception error and was not significant when age was accounted for, a covariate previously 

demonstrated to be of importance when assessing proprioception using FINGER in a healthy 

population [252]. Moreover, the trial-to-trial variance in proprioception testing had no 

relationship with finger motor status of ipsilesional hand (p=0.8). Proprioception error in the 

ipsilesional hand was not related to motor status (FT score) of the contralesional hand. 
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Figure 4.3.    The primary method for measuring proprioception error was magnitude, and this 
can be further understood by also considering timing of proprioception errors. (A) Distribution of 
error times (time between when the two fingers moved by the robot actually crossed and when 
the subject reported them as crossed), for each hand. Amount of early versus late responses did 
not differ according to hand tested (p=0.78). (B) Magnitude of proprioceptive error (number of 
actual degrees separating the two fingers when the subject reported them as crossed). These 
errors were classified as abnormal when >2SD beyond normative values from healthy age-
matched controls (dashed lines). Impaired performance for the contralesional hand is indicated to 
the right of the vertical dashed line, while impaired performance for the ipsilesional hand is 
indicated above the horizontal dashed line. The solid diagonal line indicates equal contralesional 
and ipsilesional hand impairment. A total of 56% patients had bilateral impairment.  
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Correlates of Proprioceptive Error 

Bivariate screen found significant correlates of proprioception error in four categories 

(Table 4.2), with NIHSS (demographics/medical history), ARAT (sensorimotor behavior), Total 

Sensory System Injury (brain injury), and iM1-iS2 functional connectivity (cortical connectivity) 

most significant within their categories; no cortical activation measures were significant. 

Notably, when connectivity between iM1-iS2 was calculated using the OP 1 subdivision of S2 

instead of the OP 4 subdivision, iM1-iS2 connectivity no longer correlated with contralesional 

proprioception error (p=0.54). Excluding subjects with ≥50% damage to cortical ROIs [257] had 

no significant effect on bivariate correlations. 
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Table 4.2.    Bivariate Correlations with Contralesional Proprioception Error 
 

Variable 
Correlation with 

Contralesional Proprioception 
r p 

Demographics/medical history   
Age 0.38 0.048 
Gender, M/F 0.38 0.047 
Hand dominance, R/L/A  0.22 0.27 
Diabetes mellitus, yes/no 0.04 0.84 
Hypertension, yes/no 0.05 0.81 
Hypercholesterolemia, yes/no 0.33 0.09 
Geriatric Depression Scale 0.17 0.37 
Time post-stroke -0.36 0.06 
Stroke type, ischemic/hemorrhagic  0.15 0.76 
Stroke hemisphere, L/R 0.10 0.61 
Stroke in dominant hemisphere, Y/N 0.07 0.74 
NIHSS 0.39 0.04 

Sensorimotor Behavior   
ARAT -0.42 0.03 
FM Arm Motor -0.26 0.19 
FM Arm Sensory -0.39 0.046 

B&B -0.27 0.17 
NHPT 0.32 0.11 
FT -0.13 0.49 

Brain injury   
Infarct volume -0.13 0.52 
M1 injury, yes/no 0.18 0.39 
M1 % injury 0.19 0.36 
S1 injury, yes/no 0.09 0.67 
S1 % injury 0.14 0.52 
S2 injury, yes/no 0.19 0.36 
S2 % injury -0.05 0.80 
CST injury, yes/no 0.33 0.15 
CST % injury 0.24 0.30 
TST injury, yes/no 0.44 0.049 
TST % injury 0.37 0.10 
Total motor system injury 0.37 0.10 
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Total sensory system injury 0.63 0.003 
Cortical function   

iM1 activation volume 0.08 0.72 
cM1 activation volume 0.13 0.57 
iS1 activation volume 0.23 0.30 
cS1 activation volume 0.16 0.49 
iS2 activation volume -0.03 0.88 
cS2 activation volume 0.11 0.62 
iM1 activation: contrast estimate 0.04 0.83 
cM1 activation: contrast estimate 0.03 0.88 
iS1 activation: contrast estimate 0.01 0.98 
cS1 activation: contrast estimate 0.16 0.47 
iS2 activation: contrast estimate -0.18 0.43 
cS2 activation: contrast estimate 0.15 0.51 

Cortical connectivity   
iM1-cM1 connectivity 0.10 0.64 
iM1-iS1  connectivity -0.002 0.98 
iM1-iS2  connectivity -0.43 0.04 
iS1-cS1  connectivity -0.001 0.99 
iS1-iS2   connectivity -0.08 0.70 
iS2-cS2  connectivity -0.12 0.58 

A = ambidextrous; ARAT = Action Arm Research Test; B&B = Box & Blocks; c = 
contralesional; CST = corticospinal tract; F = female; FM = Fugl-Meyer; FT = Finger 
Tapping; i = ipsilesional; L = left; M = male; M1 = primary motor cortex; NHPT = Nine 
Hole Peg Test; NIHSS = NIH stroke scale; R = right; S1 = primary somatosensory cortex; S2 
= secondary somatosensory cortex; TST = thalamocortical sensory tract. 
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Multivariate Modeling 

When the strongest correlates from each of the four categories with a significant finding 

on bivariate screening were entered into a model, two terms survived:  Total Sensory System 

Injury (p=0.002, Fig. 4.4A) and iM1-iS2 functional connectivity (p=0.01, Fig. 4.4B). The 

resultant multivariate model containing these terms explained 63% of variance in proprioception 

error for the contralesional hand of subjects with stroke (p=0.0006). 

 

 

 

Figure 4.4.    For subjects with stroke, (A) smaller total sensory system injury (r=0.63, 
p=0.003) and (B) greater ipsilesional M1-ipsilesional S2 functional connectivity (r=-0.43, 
p=0.04) were each associated with smaller contralesional finger proprioception error. 
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Discussion 

Proprioception of the fingers is essential for motor control and human behavior. Reduced 

proprioception after stroke is linked to increased length of hospitalization, mortality, and 

personal safety issues [154, 165, 168]. However, the neural correlates of proprioceptive deficits 

after stroke remain incompletely understood, in part due to weaknesses of clinical approaches to 

measuring proprioception and sensory system injury. These issues were addressed in the current 

study, including a new method for measuring injury to the thalamocortical sensory tract in 

individual patients (Fig. 4.1B). The FINGER robot was used to measure contralesional finger 

proprioception deficit, present in 67%. Sensory system injury was measured in aggregate and 

included measures of S1, S2, and TST injury (Fig 4.2). 

The current study found that 67% of subjects with stroke have contralesional finger 

proprioceptive deficits, consistent with prior reports focused on the arm [151, 154, 165]. These 

robotic measures of proprioceptive deficits were specific, correlating with scores on sensory but 

not motor, cognitive, or other scales. Historically, proprioception assessment has been deemed 

subjective, insensitive, non-standardized, and unreliable [19, 20, 154, 158, 166]. Robotic 

methods have been advanced but with limitations, for example, the KINARM robot [151, 194] 

requires participants to move the ipsilesional arm into a position that mirrors the static position 

held by the contralesional arm, which attains robotic precision but requires transcallosal 

processing of sensory signals plus precise ipsilesional limb sensorimotor function. This confound 

was avoided with the current approach, which was found to be valid in relation to two clinical 

scales of sensory impairment. A robotic assessment such as with the FINGER robot provides a 

continuous and linear measurement, features that have advantages for behavioral studies [258]. 

Finger proprioceptive deficits were also present in the ipsilesional fingers in 63% of subjects 
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(Fig. 4.3B), which may reflect post-stroke disturbances of interhemispheric signal transfer [16, 

259].  

Proprioceptive deficits in contralesional fingers varied widely. This variability was best 

explained by a multivariate model that incorporated measures of neural injury (less severe total 

sensory system injury) and neural function (greater iM1-iS2 functional connectivity). These 

results emphasize the importance of incorporating both neural injury and neural function to 

understand behavioral status in chronic stroke. This combined approach explained far more 

variance in proprioception error (63%) than any single measure did (≤32%, Table 4.2). Including 

measures of both injury and function to understand behavior is consistent with preclinical [30] 

and human motor studies [11, 16, 17] and here extends this model for understanding behavior 

after stroke to sensory systems. 

To date, relatively little is known about the specific association between lesion location 

and proprioceptive dysfunction [174, 260]. One challenge to understanding this relationship may 

be that sensory functions such as proprioception arise from a highly distributed network [23, 24, 

135], and so a single regional sensory system injury measure may provide insufficient insights. 

In the current study we examined an aggregate measure of total sensory system injury (Fig. 4.2), 

including both white matter and grey matter injury, and this was superior to any single regional 

sensory system injury measure for explaining proprioception (Table 4.2, Fig. 4.4A). White 

matter injury was measured using a new method, lesion overlap with the TST, via a canonical 

tract generated a priori that aimed to model the sensory component of the superior thalamic 

radiation [174] (Fig. 4.1), injury to which has been linked to post-stroke sensory deficits [174, 

261]. Gray matter injury within total sensory system injury was measured as lesion overlap with 
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regions representing hand area of S1 and S2. Integrity of S1 has been previously shown to have 

an impact on proprioceptive function [260]. The S2 region, which responds bilaterally to 

somatosensory stimuli and has distinct subdivisions [129, 256, 262], has received increased 

attention as important to understanding somatosensory deficits after brain injury [259, 263]. 

Results emphasize the value of measuring both gray matter and white matter injury to best 

understand stroke effects on a widely distributed system. 

The aspect of neural function that best explained proprioception performance was a 

measure of functional connectivity, reflecting strength of temporal synchrony of blood oxygen 

level-dependent signals between spatially remote brain regions, which has increasingly been 

used to investigate behavioral state post-stroke though not proprioception. In the current study, a 

single instance of connectivity, between iM1-iS2, was identified as a correlate of proprioception 

error, such that stronger regional connectivity was associated with better proprioception 

performance (Fig. 4.4B). Notably, this connectivity metric was significant only when the OP 4 

subregion of S2 was evaluated; OP 4 has a strong anatomical and functional connection with S1 

and with M1 and is thought to play a key role in sensory-motor integration [256]. In comparison, 

the OP 1 sub-region of S2 has strong connections with anterior inferior parietal cortex, is 

responsible for complex functions such as tactile working memory and perceptual learning [264]; 

connectivity between ipsilesional M1 and OP 1 sub-region of S2 did not survive bivariate screen 

(p=0.54).  

Strengths of the current study include use of a sensitive and quantitative robotic 

assessment of proprioception, and examination of multiple classes of candidate explanatory 

variables. A population with a wide range of sensorimotor deficits was evaluated, increasing the 
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likelihood that results generalize. The study is limited by modest sample size, which is further 

complicated by incomplete testing in some subjects, e.g., due to claustrophobia. Also these 

results require validation in an independent sample size. Together, results indicate that finger 

proprioception impairment post-stroke is common, bilateral, and best modeled by measures of 

neural injury and neural function. 
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CHAPTER 5 

SOMATOSENSORY SYSTEM INTEGRITY PREDICTS 
HAND FUNCTIONAL GAINS AFTER STROKE 

Abstract 

Somatosensation is important for motor learning but has received limited attention in 

post-stroke motor rehabilitation. In the context of robotic therapy designed to enhance 

proprioceptive feedback via a Hebbian model, we hypothesized that variability in motor gains 

would be predicted by baseline somatosensory integrity. In 30 patients with chronic stroke, 

behavioral performance, neural injury, and cortical function were quantified for the 

somatosensory and motor systems. Patients then received a 3-week robot-based therapy targeting 

finger movements. Hand function improved after treatment (Box&Blocks score increase of 2.8 

blocks, p=0.001) but with substantial variability (4.7 block SD); 9 subjects showed improvement 

exceeding the minimal clinically important difference (6 blocks), while 8 subjects showed no 

improvement, all of whom had >2 SD greater proprioception deficit vs. 25 controls. In terms of 

baseline behavioral assessments, a somatosensory measure (finger proprioception assessed 

robotically) best predicted treatment gains, outperforming motor measures. When measures of 

neural injury and neural function were examined to explain variability in treatment response, 

somatosensory-related variables were again the strongest predictors. A multivariate model 

combining total sensory system injury and sensorimotor cortical connectivity (between 

ipsilesional primary motor and secondary somatosensory cortices) explained 56% of variance in 

treatment-induced hand functional gains (p=0.002). Proprioceptive ability and measures of 

somatosensory network injury and function best explained inter-subject differences in treatment-

related hand function gains. These results underscore the importance of baseline somatosensory 
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integrity over the more commonly emphasized baseline motor ability for improving hand 

function after stroke, and provide insights for individualizing rehabilitation therapy.  

Introduction 

Persistent functional deficits after stroke, particularly in the arm, are common, often 

profound in magnitude, and are an increasing health care problem in the United States [265]. A 

number of rehabilitation therapies have been developed to address such deficits, however, 

patients vary substantially in their response to treatment [9, 266]. The ability to predict a 

patient’s response to a treatment targeting upper extremity function would enable physicians to 

better match patients with an effective form of therapy, increasing statistical power in clinical 

trials and optimizing resource allocation in clinical practice. 

In an effort to understand this variability, studies have evaluated extent of neural injury 

and features of neural function prior to therapy [10, 11, 16–18], most often with a focus on the 

motor system.  However, the somatosensory system may also be important for improving hand 

function. In the intact CNS, proprioception plays a critical role in motor learning [267] and 

motor control [12, 13], with proprioceptive signals reaching numerous cerebral cortex regions 

[149] and modulating motor neuron activity [130]. In cats [268] and primates [269–272], injury 

to CNS somatosensory structures produces few motor deficits but substantially slows/reduces 

acquisition of new motor skills. In humans, there has been limited study of how stroke-related 

injury to CNS somatosensory structures affects motor recovery. 

To address this issue, we designed a robotic rehabilitation therapy that adopted a 

framework based on principles of Hebbian plasticity, a widely used model for learning [136, 

137] that emphasizes improved neuronal plasticity through repeated and optimally timed 
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efferent-afferent interactions and that can provide useful strategies for enhancing post-stroke 

motor recovery [14]. Here, robotic assistance was used to maximize time-correlated 

proprioception input in response to voluntary motor output, focusing on the fingers given their 

high density of proprioceptive sensors and large cortical representation [135]. We hypothesized 

that if a Hebbian process drove sensorimotor plasticity for this this training approach, then 

therapeutic effects should depend on baseline integrity of both somatosensory and motor 

systems. 

In a trial of 30 patients using this approach, hand functional gains were found to be 

significant but highly variable across patients [273]. Consistent with our hypothesis, these gains 

depended on proprioceptive capability of the fingers measured behaviorally at baseline, assessed 

using a robotic finger position matching paradigm. 

The primary goal of the current report was to determine if somatosensory integrity 

considered more comprehensively–not just behaviorally, but also in terms of injury to and neural 

function of the somatosensory system–survive as predictors of the hand functional gains 

observed in this study when considered alongside baseline motor system measures. That is, we 

sought to identify the somatosensory and motor factors that most reliably predict which patients 

will, and will not, achieve hand functional gains in order to explain the wide variance in response 

to this Hebbian-based intervention. Our primary hypothesis was that baseline assessments of the 

somatosensory system would be the strongest predictors of treatment gains. A secondary 

hypothesis was that measures of both neural injury and neural function would be needed to best 

explain inter-subject variability, consistent with previous studies examining neural predictors of 

therapeutic benefit for other therapies [11, 16–18]. 
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Methods 

Patient Enrollment 

Subjects with unilateral chronic hemiparetic stroke gave informed consent to be part of a 

study of robotic-assisted finger therapy (ClinicalTrials.gov ID# NCT02048826), as approved by 

the University of California, Irvine Institutional Review Board. Inclusion and exclusion criteria 

(Table 5.1) aimed to capture patients with chronic hemiparetic stroke across a wide range of 

motor deficits at a time point when motor status after stroke was stable, i.e., at a plateau [7]. The 

subjects described here are the same as those discussed in Chapter 4 for identifying the 

neurological underpinnings of proprioception; the current report is focused on predicting 

treatment-induced hand functional gains. 

 

Table 5.1.    Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

Age ≥ 18, ≤ 80 years Contraindication to MRI 

Stroke with onset 6 months prior Severe cognitive impairment 

Residual hand motor deficit (B&B stroke-
affected hand ≤ 10% non-affected hand) 

Concurrent diagnosis affecting arm/hand 
function 

Preserved voluntary hand movements 
(B&B ≥ 3 blocks over 60 sec) 

Hand motor status not at stable plateau  
(∆ B&B >6 between baseline visits) 

B&B = Box and Blocks Test 
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After enrollment, medical history and sensorimotor behavioral status were assessed. 

Next, measurements were made in four categories of candidate neural predictors: (1) neural 

injury; plus three categories of neural function (2) cortical function, (3) cortical connectivity, and 

(4) EEG coherence. Patients then underwent a 3-week course of robotic therapy. The primary 

endpoint was the change from baseline to 1 month post-therapy in the Box & Blocks (B&B) 

score, a measure of manual dexterity [274] classified in the International Classification of 

Function [275]. 

Robotic Therapy 

Careful consideration of prior successful randomized, controlled studies with robotic 

therapy devices was used to guide an ideal approach for studying Hebbian-like plasticity induced 

via robotic rehabilitation. Lessons learned from studies with the BiManuTrac device [276], 

HWARD device [15], and the pioneering arm-training robot MIT-MANUS [62, 63] have 

indicated an ideal approach may be to: 1) focus on distal training, 2) incorporate robot assistance 

that intensely stimulates proprioceptive afference, and 3) allow a high frequency of movement, 

while also requiring high levels of motor output from the patient. Because the fingers have a 

well-developed neuro-muscular system to which the brain has dedicated significant resources 

[120], and finger function is an integral part of activities of daily living, the exoskeletal finger 

curling robot FINGER was developed with the aforementioned features for use in these studies 

[220]. 

During the 3-week period, subjects underwent nine 1-hour treatment sessions of robotic 

finger therapy, performing approximately 8,000 total training movements. Therapy sessions 

consisted of playing a game similar to Guitar Hero®, the 3rd largest video game franchise in 

history, wherein subjects made repeated grasp movements of the index finger, middle finger, or 
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both of the affected hand using the FINGER robot. Game play required subjects to play along 

with a song by attempting to hit streaming notes by flexing one or both of these fingers, as 

specified by note color, to a desired angle then stopping at the correct moment; this required the 

participant to stop finger flexion inside of a narrow target at the very time when the scrolling 

musical note was passing. After successfully hitting a note, the subjects were then required to 

extend their fingers back to a neutral position before the game would give a point, then proceed 

to the next note. 

The robotic therapy approach employed a Hebbian approach by using active assist mode 

to ensure appropriate proprioceptive feedback in a narrow and physiologically appropriate time 

window [220]. During each individuated natural finger grasping motions, the FINGER robot 

helped both finger flexion and extension in active assist mode, and was programmed to provide 

assistance only for patient-initiated movements; participants were randomized into high and low 

assistance groups, but this did not affect change in B&B [273] and so participants are combined 

in current analyses. The assistive forces provided by the robot guided fingers along a 

physiological spatiotemporal trajectory using a compliant position controller, thereby increasing 

the amount and temporal precision of proprioceptive feedback in a manner that was time-

correlated with attempted motor activity.  To reduce slacking the robot only provided these 

forces if the participants initiated the movements themselves as determined using the robot’s 

force sensors. This precise “assist-as-needed” control strategy was made possible by a high level 

of control fidelity, achieved by using a high bandwidth of force control and very low friction via 

lightweight, high-speed, ungeared linear actuators using an 8-bar mechanism, with further 

friction reduction achieved through feed-forward control compensation. 

Measures of Sensorimotor Behavior 
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A single, licensed physical therapist performed all clinical behavioral assessments. In 

addition to the B&B score, the stroke-affected arm was also characterized at baseline with other 

tests (Table 5.2) that included Action Arm Research Test (ARAT) [277], Upper-Extremity Fugl-

Meyer Scale (FM) [83], Nine Hole Peg Test (NHPT) [278], and Finger Tapping (FT) test [279]. 

Clinical assessments of sensory function included the light touch and proprioception sub-scores 

of the FM scale [186]. 

The FINGER robot not only provided therapy, but also was used to assess proprioception 

of the index and middle fingers on the stroke-affected hand. As described previously in Chapter 

3, the FINGER robot can be used to evaluate passive finger position sense via a series of 12 non-

periodic finger-crossing movements wherein the index and middle fingers are slowly moved in 

opposing directions. For each finger-crossing movement, subjects pressed a keyboard spacebar 

to indicate the moment when they perceived their fingers were directly aligned relative to one 

another. Error, defined as the angular distance between the two metacarpophalangeal joints when 

the spacebar was pressed, is presented here as the average error across the 12 finger-crossing 

movements (Table 5.2). 

Neuroimaging Metrics 

Many of the neuroimaging metrics employed in Chapter 4 are utilized within the present 

study to generate possible predictors of response to therapy. For a detailed review of 

methodology, see Chapter 4 Methods. 

Brain Injury: On a 3T Philips MRI, high-resolution T1-weighted and T2-FLAIR images 

were acquired. Measures of infarct volume, grey matter injury, and white matter injury were 
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derived from MRI images (Table 5.2). These metrics include injury to M1, S1, S2, CST, TST, 

total motor system injury, and total sensory system injury. 

Measures of Cortical Function: Four runs of BOLD fMRI were acquired at baseline. 

During image acquisition, patients wore a plastic distal arm exoskeleton similar to the robotic 

therapy interface and viewed a video from the robotic therapy Guitar Hero® game. The video 

guided the paretic hand to alternate between rest and active 0.5 Hz index and middle finger 

grasp-release movements similar to those made during therapy with the FINGER robot. Three 

measures of brain function were extracted for M1, S1, and S2 ROIs on each brain side (Table 

5.2): (1) activation beta (contrast) estimate, (2) activation volume, and (3) activation volume 

Laterality Index, a measure of hemispheric dominance ranging from +1 (activation only in the 

ipsilesional hemisphere) to -1 (activation only in the contralesional hemisphere; calculated 

according to Fernández et al. [280].  

Measures of Cortical Connectivity: Functional connectivity was assessed from the BOLD 

fMRI images with an ROI-ROI approach. Ipsilesional and contralesional ROIs were used to 

extract the following Fisher-transformed correlation coefficients for each subject: iM1-cM1, 

iM1-iS1, iM1-iS2, iS1-cS1, iS1-iS2, iS2-cS2 (Table 5.2). 

Measures of EEG Coherence: Three minutes of awake, eyes-open, resting-state brain 

activity was acquired by dense array surface EEG using the 256-lead Hyrdocel net (Electrical 

Geodesics, Inc.). Data were preprocessed to remove extra-brain artifacts as described previously 

[281, 282]. Resting-state connectivity was estimated from EEG coherence in the high beta (20-

30 Hz) frequencies using electrodes overlying M1, S1, or S2 as the seed region (Table 5.2). 
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Statistical Analysis 

Normally distributed data and data that could be transformed to a normal distribution 

were analyzed using parametric statistics, otherwise nonparametric statistics were used. Analyses 

were two-tailed with α=0.05 and used JPM-11. A paired t-test was used to evaluate the effects of 

robotic therapy on motor function from baseline to 1-month post therapy. Linear regression was 

used to identify behavioral measures related to treatment-induced hand functional gains. 

Comparisons with 25 age-matched healthy controls used data described in Chapter 3. 

To identify measures of neural injury and neural function that predict motor gains, a 

bivariate screen evaluated each variable within the four neurological-based categories (brain 

injury, cortical function, cortical connectivity, and EEG coherence). Results of bivariate 

screening determined whether any individual variable in a category survived as a predictor of 

hand functional gains and would be advanced to multivariate modeling. The most significant 

predictors from each category identified in bivariate screening (as long as bivariate screening 

showed p<0.1) were advanced into a forward stepwise multivariate linear regression approach 

(0.1 to enter, 0.15 to leave the model) in order to best predict treatment-induced hand functional 

gains. 
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Results 

Data from 30 subjects were available for analysis (Table 5.2). All 30 subjects had 100% 

compliance with therapy. All completed testing except for four who could not complete MRI 

(claustrophobia), three who could not complete EEG (cap incompatibility with hair accessories), 

and three who were not administered the robotic proprioception test (protocol implemented in 

stages). Three subjects were excluded from fMRI-derived analyses due to excessive head motion 

during scanning, while five subjects were excluded from white matter injury analysis due to 

lesion location extending into brainstem. 

Overall, patients showed statistically significant hand functional gains from therapy as 

measured by the primary endpoint, ∆B&B at 1 month post-therapy.  Measurement of the B&B 

score at baseline was stable, with a non-significant difference of 0.6 ± 1.9 blocks (mean ± SD 

p=0.09) seen between the two baseline measurements taken 6 days apart.  However, the change 

from average baseline to 1 month post-therapy was significant (∆B&B: 2.8 ± 4.7 blocks, p = 

0.001), with substantial variability in treatment response:  9 subjects improved by 6 or more 

blocks, the minimal clinically important difference (MCID) for B&B [283], while 8 subjects 

failed to show any improvement in B&B score. 
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Table 5.2: Independent Variables: Baseline Values and Correlation with Motor Gains 

Measure Baseline Value 
Correlation with 
motor gains: 
r p 

Demographics/medical    
Age, mean yr (SD) 57.8 (13.18) -0.03 0.88 
Gender, F/M 10/20 0.14 0.47 
Hand dominancea, R/L/A  27/3/0 0.11 0.56 
Diabetes mellitus, yes/no 6/24 0.04 0.84 
Hypertension, yes/no 15/15 0.13 0.50 
Hypercholesterolemia, yes/no 16/14 0.03 0.89 
Time poststroke, mean mo (SD) 37.24 (46.67) 0.31 0.08 
Stroke type, ischemic/hemorrhagic  19/11 0.30 0.47 
Stroke hemisphere, L/R 14/16 0.07 0.72 
Stroke in dominant hemisphere, yes/no 15/15 0.04 0.82 
NIHSS, normal = 0 2.3 (2.18) 0.22 0.25 
Geriatric Depression Scale 3.76 (3.66) -0.06 0.72 

Sensorimotor Behavior, mean (SD)    
Proprioception error 16.15 (6.41) -0.60 0.001 
ARAT, normal = 57 33.97 (21.99) 0.48 0.01 
FM Motorb, normal = 66 46.4 (11.63) 0.27 0.15 
B&B Score 22.97 (18.11) 0.31 0.09 
NHPT Score 54.72 (10.30) 0.24 0.20 
FT Score 13.66 (13.05) 0.31 0.11 
FM Sensoryb, normal = 12 10.87 (2.33) 0.29 0.13 

Light touch subscoreb, normal = 4 3.4 (1.04) 0.30 0.11 
Proprioception subscoreb, normal = 8 7.47 (1.55) 0.32 0.09 

Neurological Variables:    
Brain injury    

Infarct volume, mean cm3 (SD) 19.85 (23.30) 0.18 0.36 
M1 % injury, mean (SD) 9.69 (20.81) 0.38 0.07 
S1 % injury, mean (SD) 16.31 (30.34) 0.37 0.08 
S2 % injury, mean (SD) 11.18 (24.34) 0.18 0.39 
Cortex % injury, mean (SD) 1.27 (2.22) 0.12 0.56 
CST % injury, mean (SD) 32.44 (29.16) 0.09 0.70 
TST % injury, mean (SD) 36.01 (28.84) 0.02 0.92 
Total Motor System Injury 0.77 (0.51) 0.38 0.09 
Total Sensory System Injury 0.79 (0.44) -0.49 0.03 

Cortical function, mean (SD)    
iM1 activation volume 51.39 (39.22) 0.36 0.10 
cM1 activation volume 24.89 (34.08) -0.18 0.42 
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iS1 activation volume 53.27 (39.90) 0.20 0.38 
cS1 activation volume 36.02 (33.47) -0.13 0.57 
iS2 activation volume 132.75 (108.47) 0.22 0.32 
cS2 activation volume 107.84 (89.45) -0.02 0.92 
iM1 contrast estimate 3.71 (2.05) 0.31 0.16 
cM1 contrast estimate 1.98 (1.91) -0.16 0.49 
iS1 contrast estimate 2.79 (1.52) 0.29 0.20 
cS1 contrast estimate 2.07 (1.14) -0.26 0.23 
iS2 contrast estimate 2.29 (1.67) 0.20 0.38 
cS2 contrast estimate 2.44 (1.52) -0.14 0.53 
M1 Laterality Index 0.55 (0.60) 0.28 0.20 
S1 Laterality Index 0.25 (0.77) 0.60 0.01 
S2 Laterality Index 0.02 (0.79) 0.20 0.39 

Cortical connectivity, mean (SD)    
iM1-cM1 connectivity 0.17 (0.21) 0.01 0.96 
iM1-iS1 connectivity 0.45 (0.19) 0.09 0.68 
iM1-iS2 connectivity 0.09 (0.19) 0.46 0.03 
iS1-cS1 connectivity 0.14 (0.20) 0.18 0.40 
iS1-iS2 connectivity 0.08 (0.21) 0.45 0.03 
iS2-cS2 connectivity 0.27 (0.21) 0.22 0.30 

EEG Beta coherence, mean (SD)    
iM1-cM1 0.19 (0.10) -0.31 0.12 
iM1-iPr 0.23 (0.06) 0.17 0.38 
iM1-iPf 0.14 (0.11) -0.22 0.27 
iS1-cS1 0.19 (0.11) -0.46 0.02 
iS1-iPr 0.46 (0.08) -0.03 0.87 
iS1-iPf 0.07 (0.07) 0.04 0.83 
iS2-cS2 0.24 (0.15) -0.25 0.22 
iS2-iPr 0.20 (0.08) -0.01 0.95 
iS2-iPf 0.17 (0.11) -0.31 0.12 

a Handedness determined using the Edinburgh Handedness Inventory [221] 
b Fugl-Meyer assessment was for upper extremity only 

A = ambidextrous; ARAT = Action Arm Research Test; B&B = Box & Blocks; c = 
contralesional; CST = corticospinal tract; F = female; FM = Fugl-Meyer; FT = Finger 
Tapping; i = ipsilesional; L = left; M = male; M1 = primary motor cortex; NHPT = Nine 
Hole Peg Test; NIHSS = NIH stroke scale; Pf = prefrontal cortex; Pr = parietal cortex; R = 
right; S1 = primary somatosensory cortex; S2 = secondary somatosensory cortex; TST = 
thalamocortical sensory tract. 
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Behavioral Factors Related to Treatment-Induced Hand Functional Gains 

Better proprioception at baseline was associated with larger treatment gains, such that 

subjects with smaller proprioception error prior to therapy had greater hand functional gains after 

therapy (r=-0.60, p=0.0008, Fig. 5.1). This relationship does not simply reflect the link between 

proprioception and motor status, as at baseline proprioception error was not significantly related 

to B&B score (p=0.2), or to other motor assessment. Furthermore, proprioception error remained 

a significant predictor of functional hand gains (∆B&B) even when specifically controlling for 

baseline motor status (baseline B&B score) using partial correlation (r=-0.59, p=0.002). Intact 

proprioception at baseline was necessary to achieve hand functional gains, as all eight subjects 

who failed to show any improvement in B&B score had proprioception errors at least 2 SDs 

greater than those measured in the 25 age-matched healthy controls. 

Baseline motor status also predicted treatment-induced hand functional gains, but with 

weaker predictive value as compared to baseline proprioception status. For example, baseline 

score on B&B showed only a trend for predicting ∆B&B (r=0.31, p=0.09). Among the four other 

baseline motor assessments, only the ARAT score was found to significantly predict motor gains 

(r=0.48, p=0.007), though this was a weaker predictor as compared to proprioception.  

In secondary analyses, other behavioral measures, such as depression score (r=-0.06, 

p=0.7) and NIHSS score (r=-0.21, p=0.3) were not significantly associated with hand functional 

gains (Table 5.2).  
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Figure 5.1    Better proprioception function at baseline predicted treatment-related gains in hand 
function (r=-0.60, p=0.0008), defined as change in B&B score from baseline to 1 month post-
therapy. Proprioception error is the number of degrees separating index and middle fingers at the 
time when the subject reported them as directly aligned; smaller error is indicative of better 
proprioception function. 
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Neurological Factors that Predict Treatment-Induced Hand Functional Gains 

Measures of neural injury and neural function in somatosensory and motor systems at 

baseline were examined to better understand how proprioceptive integrity was associated with 

larger treatment gains. On bivariate screening, all four categories of neural injury/function had at 

least one variable that significantly predicted treatment-induced hand functional gains (Table 

5.2), with the most significant being Total Sensory System Injury (r=-0.49, p=0.03), for brain 

injury; S1 Laterality Index (r=0.60, p=0.01), for cortical function; iM1-iS2 functional 

connectivity (r=0.46, p=0.03), for cortical connectivity; and iS1-cS1 coherence (r=-0.46, 

p=0.02), for EEG coherence. Excluding patients with ≥50% damage to cortical ROIs had no 

effect on these findings. 

When these four variables were entered into a forward stepwise model, two survived: a 

measure of neural injury (Total Sensory System Injury, p=0.004; Figure 2A) and a measure of 

neural function (cortical connectivity, i.e., iM1-iS2 functional connectivity, p=0.04; Figure 2B). 

The multivariate model containing these two terms explained 56% of variance in treatment-

induced hand functional gains (r=0.75, p=0.002; Table 5.3, Figure 5.2C). 
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Figure 5.2.    (A) Smaller Total Sensory System Injury (r=-0.49, p=0.03) and (B) greater 
ipsilesional M1-ipsilesional S2 (iM1-iS2) functional connectivity (r=0.46, p=0.03) each 
significantly predicted larger treatment-related gains in hand function (change in B&B score 
from baseline to 1 month post-therapy). Total Sensory System Injury is an aggregate 
measurement of injury to TST, S1, and S2. (C) Change in hand function predicted by the final 
model in relation to actual change. 
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Table 5.3.    Multivariate Predictor Model 

Variable Estimate Standard 
Error 95 % CI p 

Intercept 6.403 1.614 –  0.001 

Total Sensory System Injury -5.481 1.617 -8.92 to -2.03 0.004 

iM1-iS2 connectivity 8.254 3.854 0.04 to 16.47 0.04 

For the final model, r=0.75 (p=0.002).  

iM1 = ipsilesional primary motor cortex; iS2= ipsilesional secondary somatosensory cortex 

Discussion 

Stroke is a leading cause of disability, due in part to reduced hand function, as upper 

extremity paresis is present in 76% of patients [2], and 50% of patients have upper extremity 

proprioception deficits 6 months after stroke [284].  A number of rehabilitation therapies aim to 

improve hand function. Patients show wide differences in response to such therapies, in part 

reflecting variability in injury and neural function [11, 16–18], emphasizing the need for 

improved methods to match patients with a manner of rehabilitation therapy tailored to their 

needs. The current study provided 30 patients with robot-assisted finger training that optimized 

proprioception feedback using a Hebbian-based mechanism of sensory feedback. These are some 

of the first controlled data to support a Hebbian hypothesis for robot-assisted training, the other 

being a study of a hand robot in which the group receiving a higher dose of active assistance 

during training showed greater arm gains [15].  However, treatment gains in the current study 

were highly variable. Behaviorally, differences in treatment gains were best explained by 

proprioception status, and indeed intact proprioception at baseline was necessary to achieve any 

motor gains. When the neural basis of inter-subject differences in treatment gains were 

examined, the best predictors consistently came from somatosensory rather than motor measures, 
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and included measures of both neural injury and neural function. Together, these findings 

provide useful insights towards the goal of individualizing rehabilitation after stroke. 

Better proprioception at baseline was the strongest behavioral predictor of motor gains 

(Table 5.2; Fig. 5.1). This is consistent with a study by Vidoni and Boyd, who found that among 

12 patients with chronic stroke, deficits in proprioception predicted behavioral change associated 

with 100 trials (two hours) of tracking training [285]. The link between proprioception and 

treatment-related gains in the current cohort was also described in our report of clinical trial 

results [273]; here we extend that finding by comparing with predictive value of other sensory 

measures as well as motor measures. Indeed, the relationship between baseline proprioception 

and subsequent treatment-related hand function gains was independent of any association that 

baseline motor behavior had with treatment-related gains:  proprioception error did not correlate 

with any baseline motor measure and remained a significant predictor of gains even after 

controlling for baseline motor status. Furthermore, all eight subjects who failed to show any 

improvement in B&B score had proprioception errors at least 2 SDs greater than those found in 

25 age-matched healthy controls (see Chapter 3). Together, these experimental findings are 

consistent with clinical observations, e.g., that somatosensory deficits after stroke are associated 

with poorer outcomes in motor function, longer hospitalization, increased mortality, and 

diminished quality of life [153, 154, 165, 168]. In a meta-analysis of stroke studies, Meyer et al 

found proprioception was related to arm functional status [286]. These findings are concordant 

with evidence that proprioception provides a unique component for optimizing motor control 

[12, 13, 131, 132] and supports the idea that the Hebbian framework attempted in the current 

intervention supported motor gains.  
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A major aim of this study was to identify the neural basis for inter-subject differences in 

treatment-related gains in hand motor function. The data indicate that measures of both 

somatosensory and motor systems have predictive value, but emphasize greater predictive value 

for somatosensory system injury and function as compared to the motor system measures (Table 

5.2). The two variables that were retained in the final multivariate model, Total Sensory System 

Injury and iM1-iS2 functional connectivity, were derived from somatosensory and sensorimotor 

systems (Table 5.3). These findings are consistent with behavioral findings, where a 

somatosensory measure, proprioception, was the best predictor of treatment-related gains in hand 

function. Total Sensory System Injury is an aggregate measure that includes TST, S1, and S2 

injury. These anatomical regions have been shown to have an impact on somatosensory function 

[175] yet, the Total Sensory System Injury aggregate measure demonstrated superior predictive 

value than any element alone (Fig. 5.2A; Table 5.2). This finding suggests that the motor 

learning induced here was dependent on preserved anatomical integrity of a distributed 

somatosensory network, and emphasizes the value of comprehensive injury metrics 

incorporating both grey matter and white matter. Previous studies of CNS somatosensory system 

injury in animals are consistent with current findings but to our knowledge there has been limited 

study to date beyond lesions to post-central gyrus.  Sakamoto et al [268] removed primary 

sensory cortex unilaterally in cats and found that while there was no obvious difference in limb 

use, learning of a new forelimb motor skill contralateral to the lesion was reduced. Lesions to 

post-central gyrus produce little if any deficits in the control of limb movements [269–272], but 

learning of a new motor behavior is either slowed or decreased, whether lesions are small [272] 

or large [269, 270].  
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The final multivariate model also contained a measure of neural function, connectivity 

between iM1 and iS2 (Fig. 5.2B).  This highlights the importance of sensorimotor processing in 

motor rehabilitation targeting hand function. S2 has a strong anatomical and functional 

connection with S1 and M1, and is known to play a key role in sensorimotor integration [256]. 

This finding suggests that the robot-assisted therapy used here, with its emphasis on bolstering 

afferent signals, required intact functional interactions between higher order sensorimotor 

regions, as subjects with weaker iM1-iS2 connectivity were less successful in achieving gains in 

hand motor function. The emergence of both a neural injury and a neural function measure in the 

final predictive model is in line with preclinical [30] and clinical studies [11, 16–18] that 

emphasize neural injury and function as key determinants of post-stroke functional outcome.  

Strengths of the current study include examination of somatosensory system and motor 

system status, and consideration of multiple classes of neural candidate predictor variables in 

parallel.  Baseline measures of the primary endpoint were very stable (0.6 blocks between 

baseline measurements).  The potential to study a Hebbian-based intervention was enabled by 

several features of FINGER robot design, and by targeting fingers, which are highly innervated 

with respect to proprioception [135]. Weaknesses of the study include the fact that data could not 

be collected from some subjects for each neuroimaging technique. A measure of peripheral nerve 

sensory function was not available but might have influenced results. Results reported here might 

be specific to the Hebbian-based learning targeting finger movements as provided by the 

FINGER robot, and results might not generalize to treatments that make less demand on finger 

proprioceptive function. The multivariate model identified here explained 56% of variance in 

outcome (Table 5.3), and while this exceeds performance of any single neural measure (up to 

36%, see Table 5.2), additional factors need to be identified to explain remaining variance. 
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Stroke is an extremely heterogeneous disease. Gains from rehabilitation therapies are 

maximized when content of therapy is appropriately matched to an individual patient’s behavior, 

injury, and brain state. The current findings indicate that proprioception is important to achieving 

hand function gains with a Hebbian-based robot-assisted therapy. Consistent with this finding, 

variability in treatment gains was best explained by measures of CNS somatosensory system 

injury and function. The current findings may be useful to define approaches to individualize 

rehabilitation therapy and thereby maximize treatment-related gains. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Stroke is a highly heterogeneous disease, not only in its initial presentation but also in the 

extent of spontaneous recovery and response to restorative therapies. With 50-70% of survivors 

experiencing long-term motor deficits, new approaches are needed to improve motor function. 

Progress can be made in the form of developing new therapies or identifying new biomarkers of 

motor recovery that could help guide treatment and explain patient heterogeneity. With regard to 

the latter, recent research has illuminated advantages of a multimodal approach for 

understanding interindividual differences in therapy-induced motor gains. An emphasis has been 

placed on structural and functional neuroimaging of the motor system. Though this is a striking 

improvement over behavioral assessments alone, it fails to incorporate the other half of 

sensorimotor function: proprioception. Sensory information underlies the planning of all motor 

output, and without intact proprioception, one cannot optimize motor control. Indeed, 

somatosensory-induced brain plasticity is the working hypothesis for how robot-assisted 

rehabilitation training might induce recovery of motor function. Literature findings are 

convergent that it is especially important to assess proprioception status after central nervous 

system injury when the goal is to rehabilitation motor functions. Despite this, nothing is known 

about how proprioception predicts response to robot-assisted training. Previous attempts to do so 

have been limited by inadequate methodology for evaluating proprioception behavior. Therefore, 

the salience of the current studies lies in the development of a sensitive, objective, and granular 

approach to assessing proprioception function and the utilization of a multimodal approach that 

incorporates neural injury and function metrics of the somatosensory system in addition to the 
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oft-investigated motor system. Specifically, this dissertation set out to define the role of 

proprioception in robot-assisted motor therapy. 

The aim of the first study (Chapter 3) established the use of an exoskeletal robot, 

FINGER, to objectively and sensitively assess finger proprioception. Within a neurologically 

intact population, the FINGER robot was able to detect age-related declines in finger 

proprioception for young (22-28 years), middle-aged (30-60 years), and older adults (>65 years). 

Proprioception errors were 48% larger in older adults than in young adults, yet when visual 

feedback was permitted during testing these age-related differences subsided. The experimental 

paradigm utilized a passive finger position sense task wherein subjects indicated a direct overlap 

of their index and middle fingers during a finger-crossing movement. This assessment addressed 

the intrinsic dual functionality of proprioception, such that both position sense and movement 

detection were reflected in task performance. This study characterized the extent of age-related 

proprioception decline for the first time in finger joints. Moreover, this study introduces a novel 

robotic technique for objectively and sensitively assessing dynamic position sense in the finger 

joints with a continuous and linear measurement. It is a particularly pertinent tool given that the 

functional consequences of impaired finger joint proprioceptive ability strongly relate to precise 

control of finger movements performed during activities of daily living. 

The second study (Chapter 4) examined the neural basis of finger proprioception deficits 

after stroke. Historically, this has been a difficult objective in part due to weaknesses of clinical 

proprioception assessments and challenges in conceptualizing sensory system neural injury. 

Thus, this study utilized the FINGER robot proprioception assessment and identified 

contralesional proprioception impairments in 67% of chronic stroke subjects and bilateral 
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deficits in 56%. Robotic measures were specific to proprioception function and were more 

sensitive than clinical assessments. To characterize these deficits, variables belonging to 5 

categories (demographics/medical history, sensorimotor behavior, brain injury, cortical function, 

and cortical connectivity) were examined. A new method of measuring thalamocortical sensory 

tract (TST) integrity was developed to quantify injury to the somatosensory system. An 

aggregate measure of TST, S1, and S2 injury – termed Total Sensory System Injury – was 

superior to any single neural injury measure for explaining proprioception impairment. A 

multivariate model incorporating this neural injury measure and an aspect of neural function, 

namely iM1-iS2 functional connectivity which plays a key role in sensory-motor integration, 

best explained proprioception behavior. The findings illuminate key neurological underpinnings 

of proprioception worthy of consideration for future studies investigating the role of 

proprioception in Hebbian-induced plasticity. 

The third and final study composing this dissertation (Chapter 5) moved beyond 

characterizing post-stroke proprioception and attempted to define the role of proprioception as it 

pertains to achieving functional gains from robot-assisted motor therapy. To stimulate 

somatosensory-induced brain plasticity, a robot-assisted rehabilitation therapy was designed with 

the FINGER robot to assist subjects in individually moving their index and middle fingers in 

naturalistic curling motions. The therapeutic goal was to strengthen functional connections 

between somatosensory neurons and motor output neurons in the cortex, and thus baseline 

proprioception metrics were hypothesized to have value in predicting therapy-induced motor 

gains. Patients showed significant motor gains due to therapy and baseline proprioception status, 

as measured by the FINGER robot, was the best sensorimotor behavioral predictor. To identify 

neurological factors that predict motor gains, variables of neural injury, cortical function, cortical 
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connectivity, and cortical coherence pertaining to the motor and somatosensory system were 

examined for their predictive value. A multivariate model of neural injury and function explained 

56% of variance in outcome, far more than any single neurological measure alone. The two 

neurological variables that composed this model were Total Sensory System Injury and iM1-iS2 

functional connectivity, the same two variables previously identified as neural correlates to 

proprioception. Notably, all somatosensory-related variables outperformed their motor system 

counterparts. A novel finding of this study was that for the first time, proprioception behavior 

and neurological underpinnings were used to best predict motor outcome. This study confirms 

that somatosensory function, specifically proprioception, is critical for motor learning induced 

with a Hebbian-based, robot-assisted therapy. 

Implications and Future Directions 

Taken together, the studies composing this dissertation contribute novel and 

corroborative data towards the need to incorporate proprioception measures into therapeutic 

decision-making after stroke. The data demonstrate that proprioception is an integral aspect of 

post-stroke motor learning. For the first time, robot-assisted motor rehabilitation has been shown 

to be dependent on the neurological integrity of the somatosensory system, extending 

proprioception’s predictive value far beyond general outcome measures.  

Future neuroimaging studies attempting to understand the variability in stroke or 

response to therapy would benefit from incorporating somatosensory system metrics. In the 

present study, somatosensory variables were more significant predictors of motor outcome than 

oft-cited motor variable predictors. This may be a reflection on the type of therapy used in the 

studies described here, as it was designed to amplify somatosensory-induced neuroplasticity. Or, 
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these results may be specific to the fingers – a system with many resources allocated to 

proprioception. Until neuroimaging studies fully address somatosensory system variables, the 

robust influence of proprioception of the motor learning process (or lack thereof) will remain 

unclear. 

Additionally, future studies should address the feasibility of rehabilitating the 

proprioceptive system itself. There is preliminary evidence to suggest that conventional and 

robot-assisted sensory re-education training leads to positive improvement in upper-limb 

proprioception in acute [287] and chronic patients [167, 288–290]. Despite this, the number of 

studies examining proprioception dysfunction is small and future work with large sample sizes is 

needed to corroborate these effects. Moreover, because this field is still in its infancy, the 

treatment programs that yield the most effective outcomes remain an open question. This would 

be an exceptionally worthwhile investigation, given that the data reported here demonstrate that 

intact proprioception is critical to achieving motor gains. 

The studies described here also have direct clinical implications. They illuminate the 

striking need for an objective and sensitive assessment of dynamic proprioception in a clinical 

setting. If properly designed, a simple in-clinic proprioception test could help physicians pair 

patients with the best therapy options. For example, proprioception status could ostensibly be 

incorporated into an algorithm for predicting the potential for recovery of motor function after 

stroke. One might imagine a clinical operations paradigm wherein stroke survivors first complete 

a proprioception assessment and, depending on somatosensory system status, move forward to 

sensory rehabilitation prior to engaging in motor rehabilitation. More efforts should be made 

toward developing an in-clinic option for objectively and sensitively assessing proprioception, as 
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this type of insight cannot currently be gained from the clinical proprioception assessments 

currently available. 

Conclusions 

In summary, proprioception is critical to improving motor function in a chronic stroke 

population. Neuroimaging-derived measures of somatosensory system injury and function are 

the strongest determinants of likelihood of recovery with a robot-assisted rehabilitative therapy. 

No comparative measure of the motor system exhibited such utility. The data also highlight the 

utility of an objective and sensitive proprioception assessment and the ability to identify 

neurological correlates to proprioception behavior if accurate measures are acquired. Given the 

clear functional impact of somatosensory deficits after stroke, further research is warranted as to 

more specific rehabilitative training paradigms designed to foster recovery of sensorimotor 

function. These studies will hopefully spur support for examining somatosensory-related 

neuroimaging and behavioral metrics in large, restorative therapy clinical trials. 
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APPENDIX I 

LIST OF ABBREVIATIONS AND DEFINITIONS 

ANOVA  analysis of variance 

ARAT action arm research test 

B&B box and blocks score 

BOLD blood oxygen-level dependent 

c contralesional i.e., the neurologically intact hemisphere, located ipsilateral to the 
paretic limb 

CNS central nervous system 

CST corticospinal tract 

DTI diffusion tensor imaging 

EEG electroencephalography 

EPI echo-planar imaging 

FA fractional anisotrophy 

FINGER finger individuating grasp exercise robot 

FM Fugl-Meyer assessment 

fMRI functional magnetic resonance imaging 

FT finger tapping test 

i ipsilesional i.e., the lesioned hemisphere, located contralateral to the paretic limb 

IQR inter-quartile range 

M1 primary motor cortex 

MCP metacarpophalangeal joint 

MNI Montreal Neurological Institute 
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MRI magnetic resonance imaging 

NHPT nine hole peg test 

NIHSS NIH stroke scale 

OP1 parietal operculum area 1 

OP4 parietal operculum area 4 

Pf prefrontal 

PIP proximal interphalangeal joint 

Pr parietal 

ROI region of interest 

ROM range of motion 

S1 primary somatosensory cortex 

S2 secondary somatosensory cortex 

SD standard deviation 

Total Motor System Injury  Aggregate measure of injury to M1 and CST 

Total Sensory System Injury  Aggregate measure of injury to S1, S2, and TST 

TST thalamocortical sensory tract 

VPL ventral posterior lateral nucleus 
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