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SUMMARY

 Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to

climate change. This requires simulating which trees, if any, are able to recruit under changing 

environmental conditions. We present a new recruitment scheme for VDMs in which 

functional-type-specific recruitment rates are sensitive to light, soil moisture, and the 

productivity of reproductive trees.
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 We evaluate the scheme by predicting tree recruitment for four tropical tree functional types 

under varying meteorology and canopy structure at Barro Colorado Island, Panama. We 

compare predictions to those of a current VDM, quantitative observations, and ecological 

expectations.

 We find that the scheme improves the magnitude and rank order of recruitment rates among 

functional types and captures recruitment limitations in response to variable understory light, 

soil moisture, and changing precipitation regimes. 

 Our results indicate that adopting this framework will improve VDM capacity to predict 

functional-type-specific tree recruitment in response to climate change, thereby improving 

predictions of future forest distribution, composition, and function. 

Key words: forest regeneration, tree recruitment, vegetation demographic models, Earth system 

models, vegetation dynamics.

INTRODUCTION

Tree recruitment, the rate at which trees grow into the smallest size class tracked by observations, 

affects global terrestrial ecosystem functioning by determining the rate of regrowth and the future 

vegetation composition after disturbance (Chazdon, 2003; Johnstone et al., 2016; Martínez-Vilalta & 

Lloret, 2016). It is the outcome of a dynamic set of environmentally sensitive processes including seed 

production, dispersal, and seedling establishment (Hubbell et al., 1999; Chazdon, 2003; Wright & 

Calderón, 2006; Wright et al., 2007; Jabot et al., 2008; Markl et al., 2012; Hacket-Pain et al., 2018). 

Changing climate and disturbance regimes affect recruitment through their influence on the 

regeneration niche: the set of environmental conditions needed for plants to produce viable seed, 

establish as seedlings, and recruit (Grubb, 1977). When an established population’s regeneration niche 

contracts, it results in a change in forest composition or distribution (Engelbrecht et al., 2007; Poorter, 

2007; Jabot et al., 2008; Bond, 2008; Valdez et al., 2019). Multiple lines of evidence indicate that 

climate change and land use are already affecting forest regeneration globally (Chazdon, 2003; 

Kueppers et al., 2017; Serra-Diaz et al., 2018; Valdez et al., 2019; Sansevero et al., 2020). For 

example, more severe droughts are linked to declines in post-fire tree recruitment (Stevens-Rumann et 

al., 2017; Tepley et al., 2017), and increasing hurricane intensity is predicted to change forest 

composition through differential seedling survival (Comita et al., 2009). Limitations to tree recruitment
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that change biome boundaries (e.g., Bond, 2008, Sansevero et al., 2020) or the functional composition 

of a forest (e.g., Johnstone et al., 2006) affect ecosystem resilience and function through structural and 

physiological traits (Poulter et al., 2011; Zhang et al., 2018; Bonan, 2019), making their prediction 

essential for forecasting terrestrial biosphere function in the Earth system.  

There is growing interest in using vegetation demographic models (VDMs) to represent vegetation 

dynamics within Earth System Models (ESMs; Bonan, 2015; Fisher et al., 2018). VDMs are “a special 

class of DGVM, which include representation/tracking of multiple size-classes or individuals of the 

same PFT, which can encounter multiple light environments within a single climatic grid cell” (Fisher 

et al., 2018). In contrast to the sophisticated algorithms VDMs use to predict growth and mortality, 

their representations of recruitment lack a sufficiently process-based approach (McDowell et al., 2020; 

Hanbury-Brown et al., 2022). Gap models, forest landscape models and mechanistic species 

distribution models have successfully represented key regeneration processes influencing recruitment 

such as seed production, dispersal, germination, and seed decay in stand- and landscape-scale 

simulations (Mladenoff, 2004; Lischke et al., 2006; Lischke & Loffler, 2006; Scheller et al., 2007; 

Holm et al., 2012; Mok et al., 2012; Larocque et al., 2016), but their modeling approaches are 

generally less suitable for large scale ESM-coupled simulations because they are computationally 

expensive and do not conserve carbon. To operate within these constraints many VDMs represent 

“cohorts” of trees, which belong to the same PFT and size class, and are tracked as pools of carbon 

occupying spatially implicit forest patches (e.g. Medvigy et al., 2009; Fisher et al., 2015). Each 

cohort’s associated number density of stems is calculated based on representative tree diameter and 

allometry.

VDMs such as LPJ-GUESS and SEIB-DGVM rely on parameter tuning and rough proxies for 

understory light and space to calculate recruitment rates and use bioclimatic envelopes to predict PFT 

distributions (Smith et al., 2001; Sato et al., 2007; Sato, 2009). Bioclimatic envelopes rely on the 

tenuous assumption that historical correlations between species distributions and climate metrics are 

sufficient to predict future distributions under novel climates and species assemblages (Pearson & 

Dawson, 2003; Journé et al., 2020). VDMs based on the Ecosystem Demography (ED) concept 

(Moorcroft et al., 2001), have dropped bioclimatic envelopes in favor of allowing biogeography to 

emerge from ecophysiology and competition, but no mechanistic constraints have replaced bioclimatic 
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envelopes for limiting recruitment. Instead, a fixed fraction of net positive carbon production is 

allocated to a reproductive carbon pool from which new individuals emerge at a rate that is a constant 

fraction of this pool (Moorcroft et al., 2001; Medvigy et al., 2009; Fisher et al., 2018). This captures 

the effect of adult productivity on seed production, but environmental conditions in the seedling layer 

do not affect recruitment in these models. This limits their ability to capture how climate change will 

affect the regeneration niche, future recruitment limitations, forest distribution, and functional 

composition. The need to improve predictions is particularly critical for tropical forests which make up 

the “least certain major component of the global carbon budget” (Mitchard, 2018).

Here we present a new Tree Recruitment Scheme (TRS) for VDMs that more mechanistically 

constrains recruitment rates based on carbon production from reproductively mature trees, light at the 

forest floor, and soil moisture in the simulated rooting zone of seedlings. We seek to capture the size 

dependence of reproductive output and the light- and moisture-dependence of seedling emergence, 

survival, and the transition out of the seedling pool. By incorporating these environmentally sensitive 

processes we hope to capture more realistic recruitment responses to varying light, soil moisture, and 

changing precipitation patterns. We evaluate the TRS by simulating tree recruitment in a seasonally dry

tropical forest under observed meteorological conditions, a synthetic El Niño (Powell et al., 2017), 

wetter-than-observed, and drier-than-observed precipitation scenarios. We compare the scheme’s 

predictions of recruitment rates (at the 1 cm dbh size class) to predictions from the Ecosystem 

Demography model version 2 (Medvigy et al., 2009), forest demographic data, and ecological 

expectations and conclude by discussing how the TRS is positioned to improve VDM predictions of 

forest distribution, composition, and function under global change.

MATERIALS AND METHODS

Model description

VDMs represent the forested landscape as a mosaic of spatially implicit patches varying in time since 

the last disturbance. This creates a patchwork of heterogenous biotic and abiotic conditions under 

which cohorts of trees recruit, grow, compete, and die (Fisher et al., 2018). Trees within cohorts are all 

the same size and PFT, but each patch can contain multiple cohorts of different sizes and PFTs. We 

designed the TRS, currently implemented in R (R Core Team, 2020), to operate within each of these 

forest patches where it predicts PFT-specific, environmentally sensitive tree recruitment rates. It was 
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developed primarily from studies at BCI, with an initial focus on tropical tree PFTs that vary along axes

of drought and shade tolerance (Fig. 2), but is designed to be extensible to all tropical forests. Our 

primary goal is to mechanistically constrain recruitment. In each daily timestep the TRS receives 

cohort-level carbon for growth and reproduction (Cg+r; net after tissue turnover and allocation to 

storage) from its host VDM. Regeneration processes, described in detail below, move dynamic 

fractions of Cg+r through a seedbank and seedling pool (Fig. 1) which are tracked in units of carbon. 

Carbon emerging out of the seedling pool each day is passed back to the VDM and can be converted 

into a number density of new recruits. Carbon in seeds or seedlings that die or that is allocated to non-

seed reproductive biomass, moves to a reproductive litter pool (also passed back to the VDM), thereby 

conserving carbon.

Figure 1. The TRS receives carbon for growth and reproduction from the host VDM. Daily 

regeneration processes (depicted with hour glasses) transfer reproductive carbon through seed bank and

seedling carbon pools (depicted as circles). Processes are sensitive to diameter at breast height (DBH) 

or environmental conditions (see inset key). The host model’s reproductive litter pool receives non-seed

reproductive carbon, dead seeds, and dead seedlings. Carbon for new recruits can be passed back to the 

host VDM in units of carbon or as a number density of new recruits. Parenthetical references to Figure 

2 show relationships between regeneration processes and DBH and environmental conditions.
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Allocation to reproduction

The probability a tree is reproductive increases sigmoidally with size within species (Visser et al., 

2016). Past models assume reproductive allocation is insensitive to size (Smith et al., 2001) or invariant

above a fixed size threshold (Sato et al., 2007; Medvigy et al., 2009; Fisher et al., 2015). In contrast, 

the TRS allocates a dynamic fraction of cohort-level Cg+r  to reproduction based on the cohort’s size and

reproductive allocation (RA) function (Eqn 1, Fig. 1a, Fig. 2a). Each mature cohort in the host VDM 

can contribute to recruitment via the TRS if they are in positive carbon balance. The effective fraction 

of cohort-level Cg+r allocated to reproduction, FE,repro (Eqn 2), is calculated based on a sigmoidal 

relationship relating the cohort’s current dbh to the probability of being reproductive (Prepro; Eqn 1). We 

assume that all reproductive individuals allocate to reproduction at a constant, PFT-specific rate, Frepro 

(see Table 1 for all TRS parameters), which is modified by Prepro to calculate FE,repro (Eqn 2)

(Eqn 1)

(Eqn 2)

where  aRA and bRA are PFT-specific parameters describing the shape of the sigmoidal curve (Fig. 2a). 

This functional form is consistent with empirical data (Visser et al., 2016; Minor & Kobe, 2019; 

Andrus et al., 2020). The TRS subsequently multiplies FE,repro by Cg+r to get reproductive carbon per 

cohort.

142

144

146

148

150

152

154

156

158

160

162

6



Figure 2. Regeneration processes represented by the Tree Recruitment Scheme are sensitive to size (a),

soil moisture (b,d), and light (c,e,f,). Functions are parameterized for four tropical tree PFTs at Barro 

Colorado Island, Panama: light demanding, drought intolerant (LD-DI); light demanding, drought 

tolerant (LD-DT); shade tolerant, drought intolerant (ST-DI); and shade tolerant, drought tolerant (ST-
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DT). Note that moisture deficit days (panel d) are not equivalent between DT and DI PFTs because 

they accumulate according to PFT-specific values of Ψcrit. In panels c, e, and f, the dotted vertical lines 

indicate mean understory light conditions on BCI (2% top of canopy radiation) and the dashed vertical 

lines indicate conditions in a small-medium sized light gap (20% top of canopy radiation). Cg+r = 

carbon for growth and reproduction; dbh = diameter at breast height; PAR = photosynthetically active 

radiation. 

Allocation to seed vs. non-seed reproductive biomass and seed mortality 

In nature, only a subset of the carbon allocated to reproduction becomes seeds, with the rest going to 

flowers, fruit flesh, capsules, etc. (Wenk et al., 2017), but previous models assume that all reproductive 

carbon becomes seed (Fisher et al., 2015). The TRS partitions each cohort’s reproductive carbon into 

seed carbon and non-seed reproductive carbon (e.g., flowers, fruit flesh, and capsules) based on a 

prescribed, PFT-specific fraction of reproductive carbon that is seed, Fseed (Fig. 1b). Available seed 

carbon moves to a seed bank each day and non-seed reproductive carbon moves to a reproductive litter 

pool (Fig. 1b). Seeds in the seed bank die at a PFT-specific, constant rate, Smort, which represents all 

modes of seed mortality including predation and decay.

Seedling emergence

Seedling emergence is sensitive to soil moisture (Garwood, 1983; Atondo-Bueno et al., 2016; Ruiz 

Talonia et al., 2017; Foster et al., 2020) and light (Pearson et al., 2002), but prior regeneration schemes

in VDMs either do not represent seedling emergence (Sato et al., 2007; Medvigy et al., 2009) or 

represent it as an environmentally insensitive constant (Fisher et al., 2015). In the TRS, by contrast, 

emergence depends on both soil moisture and light.  

Light-dependence of germination is captured on day i in a Michaelis-Menten rate modifier [0,1] 

(Eqn 3)

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

8



dependent on PARi, the photosynthetically active radiation at the seedling layer on day i, and PARcrit, a 

PFT-specific threshold governing the shape of the germination response to light (Fig. 2c).  Most 

tropical pioneer species exhibit an increase in germination probability with light, whereas shade-

tolerants are insensitive to light (captured by PARcrit = 0).  

If soil moisture is above a critical threshold, Ψemerg, the seedling emergence rate on day i, Femerg,i, is 

dynamically calculated based on the mean soil matric potential (SMP) in the top 0-10 cm over a rolling 

window of days, Wemerg, prior to i (Fig. 1d, Fig. 2b). The moisture response parameter, bemerg, modifies 

the mean seedling emergence coefficient (aemerg) in response to variation in SMP such that 

. (Eqn 4)

Eqn 4 produces pulses of seedling emergence in response to seasonal and interannual precipitation 

events, and stalls seedling emergence under relatively dry conditions. 

This formulation captures observed patterns of variation in seedling emergence in relation to 

fluctuations in soil moisture (Garwood, 1983; Foster et al., 2020) and spatial variation in understory 

light levels (Vazquez-Yanes et al., 1990; Pearson et al., 2002). At BCI there is a pulse of seedling 

emergence at the onset of the wet season with the earliest emerging species responding within ~2 

weeks of wet season precipitation (Garwood, 1983). The observed seasonal recruitment pulse at BCI is 

more pronounced for light demanding (LD, “pioneer”) species than for shade tolerant (ST) species (see 

Fig. 7 in Garwood, 1983), which is represented with a higher value for bemerg.

Moisture and light-sensitive seedling survival

Seedling survival decreases at low soil moisture and low light, affecting forest composition across 

environmental gradients (Kobe, 1999; Engelbrecht et al., 2007), but this dynamic is missing in previous

models. The TRS seeks to capture this with a PFT-specific moisture stress threshold, Ψcrit, below which 

the seedling pool starts to accumulate moisture deficit days (MDD) similar to the concept of growing 
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degree days. The MDD value on day i is summed within a rolling window of days, WΨ, prior to i such 

that

. (Eqn 5)

This formulation simultaneously captures the magnitude and duration of moisture stress. We used 

observations of seedling wilting points from a prior manipulative drought experiment (Engelbrecht & 

Kursar, 2003; Engelbrecht et al., 2007) to explore the relationship between moisture deficit day 

accumulation and mortality. We found that observed drought-induced mortality was 0 up to a critical 

accumulation of MDD, MDDcrit, at which point a convex quadratic relationship best explained drought-

induced seedling mortality as a function of MDD (Fig. 1e, Fig. 2d, see SI Methods S1 and Fig. S1 for 

more details). The mortality rate from moisture stress (MΨ) on day i is therefore

(Eqn 6)

Seedlings also die from insufficient light, which we refer to as light stress. The light stress mortality 

rate, ML, on day i is a function of PAR at the seedling layer, Lseedling, accumulating within a rolling 

window of days, WL, prior to i (Fig. 1e, Fig. 2e). Two PFT-specific parameters determine the shape of 

the negative exponential relationship

(Eqn 7)

where aML is a PFT-specific light response parameter and bML is the intercept. We based this function on 

an analysis by Kobe (1999) who tested four functional forms and found that the negative exponential 

best described light stress mortality for two shade tolerant (ST) and one light demanding (LD) species 

that were transplanted into varied light environments. This function is supported by observations that 

seedling mortality generally increases as light decreases (Kitajima, 1994; Poorter, 1999; Bloor & 

Grubb, 2003; Comita & Hubbell, 2009). Tolerance to low light conditions varies considerably across 

species depending on life history strategy (Kitajima, 1994; Wright et al., 2010), which can be captured 

with PFT-specific values of aML (Table 1). A background seedling mortality rate, Mbackground, represents 

other seedling mortality (e.g. herbivory, pathogens, tree fall, etc.). Total seedling mortality is the sum of

moisture-dependent, light-dependent and background mortality.  
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Recruitment
The rate of transition from seedling to sapling increases with understory light (Brokaw, 1985; Rüger et 

al., 2009), but prior models do not capture this sensitivity (Sato et al., 2007; Fisher et al., 2015) or use 

proxies for absolute light (Smith et al., 2001). In contrast, recruitment in the TRS is represented with a 

dynamic seedling to sapling transition rate (TR) which is the fraction of total carbon in the seedling 

pool, Cseedling, that recruits each day (Fig. 1f). The TR on day i is calculated as a power function of mean

PAR at the seedling layer within a rolling window of days, WL, prior to i (Fig. 2f). If SMP on day i, Ψi, 

is drier than Ψcrit the transition rate goes to zero such that

(Eqn 8)

where aTR is a coefficient derived from the mean transition rate at observed mean understory PAR (see 

SI Methods S1) and bTR is the light response modifier. The light response modifier produces 

accelerating (LD PFTs) or decelerating (ST PFTs) responses to light (Fig. 2f) depending on if bTR is 

greater or less than 1. Of a variety of functional forms tested at BCI, a power function with species-

specific light response modifiers best explained observed variation in recruitment rates under spatially 

heterogenous patch-level light (Rüger et al., 2009). This formulation is more broadly supported by the 

growth-mortality functional trade-off axis where LD species can take advantage of higher light 

conditions through faster relative growth rates (Wright et al., 2010). Carbon transitioning out of the 

seedling layer can be converted to a number density of new recruits based on the amount of carbon 

required to form an individual in the smallest size class tracked by the VDM, Z0, such that the number 

of new recruits predicted on day i, Ri, is  

. (Eqn 9)

Eqn 9 is very similar to how VDMs currently convert reproductive carbon into new recruits, but the 

key difference is that the TRS only makes this conversion after the functions presented here (Eqns 1–8;

Fig. 2) have more mechanistically constrained the amount of carbon available for recruitment. 
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Simulations at Barro Colorado Island, Panama

We ran the TRS at the 50-ha forest dynamics plot (FDP) on BCI in central Panama (9.151°N, 

79.855°W). BCI receives an average of 2662 ± 479 (SD) mm of precipitation per year and experiences 

a four-month dry season (<100 mm of precipitation per month). All living trees in the FDP > 1 cm in 

dbh have been censused every 5 years since 1985 (Condit, 1998), which provides the opportunity to 

benchmark recruitment rates into the 1 cm size class. 

We used monthly model output from the Ecosystem Demography model version 2 with hydrodynamics

(hereafter referred to as ED2; Medvigy et al., 2009; Powell et al., 2018) to run the TRS at BCI. In prior

work ED2 was initialized from bare ground at BCI and run with recycled 2008-2014 observed 

meteorology (i.e. “BASE”) until predictions of above ground biomass (AGB) reached dynamic 

equilibrium after 700 years (see Powell et al. (2018), Fig. 3; referred to as simulation year 0 in the 

simulations presented here). After ED2’s spin-up period, its predictions of forest demography were 

benchmarked against observations of aboveground biomass, size-dependent basal area and tree 

mortality from the FDP and a series of hydroclimate scenarios were run (discussed below). The TRS 

requires approximately 4 years of its own spin up before the seed bank and seedling pool come into 

dynamic equilibrium with mature tree productivity and environmental conditions, so we began TRS 

evaluations 705 years after ED2 was initialized from bare ground. ED2’s output provided the TRS with

top of canopy (TOC) solar radiation (W m-2), SMP (we used 6 cm below the surface), and each cohort’s

dbh and number density. ED2’s history of Cg+r was not saved, so we used its history of carbon allocated 

to reproduction, along with knowledge of its relatively simple RA scheme, to back-calculate Cg+r. 

Similar to an offline “one-way-coupled” model setup (Forrest et al., 2020), the TRS’s predictions of 

recruitment were not passed back to ED2.

To test the performance of the TRS, we simulated 15 years of BASE meteorology in a patch with 2% of

the TOC light to match average conditions in the understory of the BCI FDP (Rüger et al., 2009), 

converting solar irradiance to PAR using a conversion rate of 0.45 (García-Rodríguez et al., 2020). We 

compared predictions of recruitment rates into the 1 cm size from ED2 and the TRS to recruitment 

from census observations at the BCI FDP between 2005 and 2015 (Condit et al., 2019) because these 

census intervals overlapped with the observed meteorology used for the ED2 simulations. Following 

Powell et al. (2018), we calculated recruitment only for species that can reach a stature  20 cm dbh 
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and used expert knowledge (see SI Table S1) to exclude any remaining understory specialists. The FDP

census intervals are ~5 years, so we estimated recruitment rates accounting for mortality undetected 

before individuals’ first census following established methods (see Eqn 11 in Kohyama et al., 2018). To

compare the TRS’s predictions of recruitment to ED2’s, we emulated ED2’s current recruitment 

subroutine in R which provided more flexibility in making comparisons among scenarios and allowed 

us to use a value for Z0 (carbon required to build a new recruit) that matched FDP observations. ED2 

allocates a fixed fraction of Cg+r to reproduction (Frepro; 0.1) and a seedling mortality parameter (Mseedling; 

0.09 day-1) further reduces the carbon available for recruitment.

To evaluate predictions of PFT-specific recruitment across a range of understory light environments, 

we ran the TRS with 20 years of BASE meteorology in 20 different patches where light at the seedling 

layer varied between 1 and 100% of TOC solar radiation. To evaluate PFT-specific recruitment 

responses to variable soil moisture we ran 20-yr simulations in 20 different patches where seasonal 

patch-level SMP varied from observed soil moisture to unrealistically dry conditions (mean annual 

SMP ranged from -0.25 to -2.5 MPa), but where light was constant (2% of the TOC), and all patches 

experienced BASE meteorology. Therefore, soil moisture was decoupled from light conditions in these

simulations to demonstrate recruitment responses to soil moisture gradients that may arise from 

topographic variation within a site. 

In addition to BASE meteorology we ran the TRS with ED2 output from three previously published  

hydroclimate scenarios: 1) a synthetic “El Niño” time series which includes two exceptionally strong 

droughts, based on observed precipitation during the 1982/83 El Niño at BCI (Powell et al., 2017; 

Powell et al., 2018 Note S2), within 30 years (the “SYN-ENSO” scenario), 2) a “WET” scenario where

precipitation increased 30% compared to BASE precipitation, and 3) a “DRY-DS” scenario where dry 

season (January–April) precipitation was reduced 75% compared to BASE (Powell et al., 2018). For 

each of these scenarios, we ran the TRS for 30 years and recorded annual PFT-specific recruitment 

rates. Each precipitation scenario changed soil moisture (Fig. S3) and mature tree productivity (Fig. 3), 

thereby changing Cg+r used by the TRS. ED2 predicts that the ST PFTs have a greater share of AGB 

than the LD PFTs at BCI (Powell et al., 2018), but the relative share of total forest NPP is more 

variable among the PFTs over time, and the LD-DT PFT often accounts for the greatest share of NPP 

(Fig. 3). 
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Figure 3. Net primary productivity (NPP) predicted by ED2 under four precipitation scenarios used to 

run the TRS. BASE = recycled 2008-2014 observed meteorology (a); SYN-ENSO = two exceptionally 

strong El Niño events within 30 years (b); WET = 30% increase in precipitation compared to BASE 

(c); DRY-DS = dry season (January–April) precipitation reduced by 75% compared to BASE (d). 

Dashed lines indicate El Niño events. Note: NPP in the BASE scenario reached dynamic equilibrium 

(Fig. S4) despite the directional trends apparent over this relatively short 30-yr time period. Lines have 

a LOESS smoother for easier interpretation of rank order and trends among PFTs. Published estimates 

of observed PFT-level NPP are not available, but the predicted mean NPP over this period, summed 

over the four PFTs (2.8 g C m-2 day-1), is 15% lower than empirical estimates of total ecosystem-level 

NPP (3.3 g C m-2 day-1; Martínez Cano et al., 2020, Running et al., 2015). LD-DI = light demanding, 

drought intolerant; LD-DT = light demanding, drought tolerant; ST-DI = shade tolerant, drought 

intolerant; ST-DI = shade tolerant, drought tolerant.
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Parameterization for BCI

We parameterized the TRS with the same four tropical tree PFTs used in Powell et al. (2018) which 

differ along axes of shade tolerance and drought tolerance: 1) light demanding, drought intolerant (LD-

DI), 2) light demanding, drought tolerant (LD-DT), 3) shade tolerant, drought intolerant (ST-DI), and 

4) shade tolerant, drought tolerant (ST-DT). To calculate PFT-level recruitment benchmarks from 

species-level observations we used a wood density threshold whereby species above 0.49 g cm-3 were 

assigned to the ST PFT and species below this threshold were assigned to the LD PFT (Powell et al. 

2018). We categorized species as DT or DI based on three observational datasets including a 

manipulative drought experiment (Engelbrecht & Kursar, 2003; Engelbrecht et al., 2007) and 

occurrence probabilities across aridity gradients at the site scale (Harms et al., 2001) and regional scale 

(Condit et al., 2013; SI Methods S2, Table S2). All parameter values used for these simulations are 

shown in Table 1. We tested model sensitivity to all parameters by increasing each parameter value by 

10% above the default values and evaluating the corresponding change in predicted recruitment rates. 

Table 1. Tree Recruitment Scheme default parameterization for Barro Colorado Island (BCI), Panama 

grouped by regeneration processes shown in Fig. 1; see SI Methods S1 for parameter derivations; PFT 

= plant functional type; Cg+r  = carbon for growth and reproduction; RA = reproductive allocation; dbh 

= diameter at breast height; PAR = photosynthetically active radiation; MDD = Moisture deficit days;  

LD-DI = light demanding, drought intolerant; LD-DT = light demanding, drought tolerant; ST-DI = 

shade tolerant, drought intolerant; ST-DI = shade tolerant, drought tolerant.

Name Value Units Description Derivation / Source
Allocation to reproduction

Frepro 0.1
(all PFTs)

- Fraction of Cg+r 
allocated to 
reproduction

Smith et al. (2001), Fisher et al. (2015) based 
on Harper (1977) 

aRA LD-DI: 0.0058
LD-DT: 0.0059
ST-DI: 0.0042 
ST-DT: 0.0049

∆ RA
[∆ dbh]-1

Governs RA as 
function of dbh 
(logit function 
coefficient)

Logistic regression fit to observations by 
Wright et al. (2015), Visser et al. (2016)

bRA LD-DI: -3.1380
LD-DT: -2.4607
ST-DI: -2.6518 
ST-DT: -2.6171

- Governs RA as 
function of dbh 
(intercept in logit 
function)

Logistic regression fit to observations by 
Wright et al. (2015), Visser et al. (2016)

Allocation to seed vs. non-seed reproductive biomass and seed mortality
Fseed 0.5 (tuned to 

0.24)
(all PFTs)

- Fraction of 
reproductive C 
that is seed

Based on range cited by Wenk et al. (2017)

Smort 0.0014
(all PFTs)

day-1 Seed mortality 
rate

Fisher et al. (2015) based on Lischke et al. 
(2006)
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Seedling emergence
aemerg 0.0003 day-1 Coefficient for 

seedling 
emergence rate 

Calculated from Pearson et al. (2002)

bemerg LD-DI: 1.6
LD-DT: 1.6
ST-DI: 1.2 
ST-DT: 1.2

- Seedling 
emergence 
sensitivity to soil 
moisture

Calibrated to observations of seasonal seedling
emergence (Garwood, 1983)

Wemerg 14 (all PFTs) days Time window for  
emergence 
response to soil 
moisture

Observations of seasonal seedling emergence 
(Garwood, 1983)

Ψemerg -0.15745 MPa Soil moisture 
required for 
emergence

This study, see SI Methods S1

PARcrit  0.656 MJ m-2 
day-1

Critical PAR level 
for light-sensitive 
germination

Based on observations of mean irradiance 
(PAR) in small gaps (25m2) at BCI (Pearson et 
al., 2002)

Moisture and light-sensitive seedling survival
Mbackground LD-DI: 0.17 

LD-DT: 0.18 
ST-DI: 0.19 
ST-DT: 0.11 

yr-1 Background 
seedling mortality 
rate

Calculated from seedling censuses done at BCI
(2003-2012); Johnson et al. (2017)

Ψcrit DI: -0.176
DT: -0.252

MPa Seedling moisture 
stress threshold

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

MDDcrit DI: 46
DT: 14

-MPa 
days

Moisture deficit 
day threshold for 
seedling mortality

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

aΨ DI: 1.04E-16
DT: 4.07E-17

- Moisture-based 
mortality 
coefficient

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

bΨ DI:-5.5E-10
DT:-6.4E-11

- Moisture-based 
mortality 
coefficient

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

cΨ DI:3.5E-04
DT:1.3E-05

- Moisture-based 
mortality 
coefficient

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

WΨ 126
(all PFTs)

days Rolling window 
for MDD

Based on observations from Engelbrecht & 
Kursar (2003), Engelbrecht et al. (2005)

aML LD:-0.033
ST:-0.00990

- Light-based 
mortality 
coefficient

Based on observations by Kobe (1999)

bML LD:-3.84
ST:-7.15

- Light-based 
mortality 
coefficient

Based on observations by Kobe (1999)

WL 64
(all PFTs)

days Rolling window 
for seedling light 
response

Based on observations by Augspurger (1984)

Recruitment 
aTR LD:0.010

ST:0.007
- Seedling to 

sapling transition 
rate coefficient

Derived from parameters used in CLM(ED) 
and FATES; Fisher et al. (2015)

bTR LD: 1.0653
ST: 0.8615

- Recruitment light 
response 
parameter

Based on Ruger et al. (2009)
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Convert carbon to number density of recruits 
Z0 160 (~1 cm dbh;

all PFTs)
g C C per new recruit Based on value used in ED2 (Powell et al. 

2018)

RESULTS

Benchmarking recruitment at BCI

Compared to predictions from the default ED2 formulation, the new TRS improves predictions of 

recruitment magnitude and rank order across all PFTs using default parameters (i.e. no parameter 

tuning; Fig. 4). ED2 incorrectly predicts that recruitment is dominated by the LD-DT PFT while the 

TRS correctly predicts that the ST-DT PFT dominates recruitment. Manually adjusting parameters that 

control the amount of reproductive carbon available for recruitment can further improve biases in the 

magnitude of recruitment rates for both models compared to their default parameter set. For example, 

increasing ED2’s seedling mortality parameter from 0.09 to 0.986 day-1 and reducing Fseed in the TRS 

by half across all PFTs improves predictions of recruitment magnitude in both models (tuned values are

used for subsequent results). However, parameter adjustments do not improve ED2 predictions of the 

rank order of recruitment rates, nor do they address its environmental insensitivity (discussed below). 

Although the TRS correctly predicts that ST recruitment is greater than LD recruitment it incorrectly 

predicts that LD-DT recruitment is greater than LD-DI recruitment.
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Figure 4. Observed mean annual tree recruitment (at 1-cm dbh) for four plant functional types (PFTs) 

at BCI (center) compared with model predictions under 20 yr of observed meteorology (2008–2014 

recycled) using default and tuned parameter values for the Tree Recruitment Scheme (TRS) and 

Ecosystem Demography model v.2 with hydrodynamics (ED2). ‘TRS tuned’ and ‘ED2 tuned’ are 

predictions after reducing the TRS’s F seed parameter by half and increasing ED2’s M seedling

parameter from 0.094 to 0.986. ‘BCI obs.’ are PFT-level mean annual observed recruitment rates 

averaged from the two 5-yr census intervals between 2005 and 2015 in the BCI Forest Dynamics Plot.

Sensitivity to variable light and soil moisture

Recruitment in ED2 is insensitive to understory light (Fig. 5b). In contrast, the TRS predicts PFT-

specific, light-sensitive recruitment responses to varying understory light (Fig. 5a). All PFTs in the TRS

show recruitment increasing with light and this variation is strongest for the LD PFTs. Even under high 

light the LD-DI PFT recruits at a relatively low rate because it comprises a smaller share of total forest 

NPP under BASE meteorology (Fig. 3a), demonstrating the TRS’s dual sensitivity to seedling layer 

conditions and adult productivity.

400

402

404

406

408

410

412

414

18



Figure 5. Predictions of tree recruitment (at 1 cm dbh) across a range of idealized patch-level light 

(a,b) and soil moisture (c,d) conditions with local observed meteorology (2008-2014) at Barro 

Colorado Island. Observed PFT-specific mean annual recruitment rates (“BCI obs.”) are shown for 

reference and were calculated from 2005–2010 and 2010–2015 census intervals. Observed means are 

plotted at light levels equal to the mean understory light level across all patches in the Forest Dynamics

Plot (Rüger et al., 2009) (a,b) and soil moisture equal to the mean measured at the BCI Lutz catchment 

between 2008 and 2014 (Paton, 2019) (c,d). Error bars show the interannual variation in recruitment 

within each patch (SD); in many cases these are smaller than the symbol size. TOC = top of canopy.
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Among low light patches (2% TOC) that vary in soil moisture (Fig. 5c,d), the TRS predicts PFT-

specific, moisture-sensitive recruitment responses (Fig. 5c). All PFTs show complete recruitment 

failure when the 20-yr mean SMP reaches -2 MPa (Fig. 5c). Recruitment drops faster for the more 

vulnerable DI PFTs. When soil moisture is high the ST-DI PFT recruits better than the LD-DT PFT 

despite a much lower share of NPP, reflecting its ability to recruit in low light conditions when 

moisture is not limiting. However, when SMP drops below -1.0 MPa, soil moisture limits recruitment 

more than light and all PFTs show minimal recruitment.

Recruitment predictions under ENSO and WET precipitation scenarios

Predictions of recruitment (at 1 cm dbh) responses to ENSO and increasing precipitation (i.e. WET 

scenario) differ between the TRS and ED2. ED2 and the TRS both show a sharp reduction (~30%) in 

recruitment for all PFTs across two synthetic El Niño events, but the TRS slightly buffers this reduction

for DT PFTs (Fig. 6a,b). A closer look at recruitment dynamics during an El Niño year (Fig. 6c,d) 

shows that ED2 and the TRS differ in the duration of recruitment failure for DT and DI PFTs. In ED2, 

drought stress in the adult cohorts causes recruitment to decline in proportion to NPP and then 

gradually ramp back up as NPP becomes positive at the end of the El Niño event. Recruitment in the 

TRS only fails when SMP drops below PFT-specific Ψcrit and seedlings persist (but don’t recruit) 

through the dry season, allowing them to take advantage of wetter conditions with a strong pulse of 

recruitment at the end of the El Niño dry season (Fig. 6c). This aligns with observations of sapling 

recovery after the strong 1982/83 El Niño (Condit et al., 2017). The TRS’s environmentally sensitive 

seedling pool changed the transient recruitment response to El Niño.
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Figure 6. Predictions of tree recruitment (at 1 cm dbh) in a low light patch, 2% top of canopy (TOC) 

solar radiation, under 30 yrs of local observed meteorology with a strong synthetic El Niño event every 

20 years (SYN-ENSO) (a,b). Dotted lines indicate the El Niño years. Seasonal predictions of tree 

recruitment in a patch with 2% TOC light across the El Niño in simulation years 29/30 are shown in 
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panels c and d. Note that the ED2 output has a monthly timestep. Soil matric potential is below -2 MPa 

during March, April, and May (see Fig. S5 for more details). 

Under the WET scenario the LD-DI PFT starts to dominate total forest NPP (Fig. 3), which results in 

different recruitment responses between ED2 and the TRS. ED2 predicts a corresponding, immediate 

increase in LD-DI recruitment regardless of the light environment (Fig. 7b,d), reflecting its insensitivity

to patch-level light. In contrast, the TRS does not allow the LD-DI PFT to dominate recruitment in low 

light patches (Fig. 7a), because the light component of its regeneration niche is not met despite its 

increasing share of NPP (Fig. 3). However, under high light the TRS predicts a significant increase in 

LD-DI recruitment (Fig. 7c), similar to ED2. Under the DRY-DS scenario both models predicted lower 

recruitment rates, but differ in the timing of recruitment declines (see SI Note 1 and Fig. S2 for more 

details on the DRY-DS precipitation scenario).
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Figure 7. Predictions of tree recruitment (at 1 cm dbh) under 30 yrs of the WET scenario, a 30% 

increase in precipitation compared to baseline. Predictions are shown under 2% top of canopy (TOC) 

light (a,b) and 20% TOC light (c,d).

Parameter sensitivity

The light response parameter for seedling mortality (bML) has the greatest leverage on recruitment 

outcomes (Fig. 8), which is expected given that light is a key limiting resource in mature tropical forest 

understories. The remaining top four parameters with the most leverage on recruitment are part of the 

upstream reproductive allocation scheme (Fig. 8, Table 1). Parameters governing moisture stress 

mortality, emergence, and transition rates do not show leverage because the parameter sensitivity 
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simulations were run under BASE meteorology where soil moisture does not fall below the observed 

wilting thresholds (Engelbrecht et al., 2007) required to trigger moisture-based mortality responses.

Figure 8. Recruitment sensitivity to a 10% change in parameter value (see Table 1 for parameter 

descriptions).

DISCUSSION

The TRS predicts tree recruitment as a function of understory light, soil moisture, and productivity of 

reproductively mature cohorts. We evaluated the TRS by parameterizing it for a seasonally dry tropical 

forest and running simulations under observed meteorology and canopy structure, variable patch-level 
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understory light and soil moisture, and with three altered precipitation scenarios (ENSO, wetter-than-

observed, and drier-than-observed). The TRS improves upon ED2 predictions by capturing recruitment 

sensitivity to light and soil moisture, and allowing more realistic recruitment responses to 

environmental heterogeneity without the computational cost of simulating seedling cohorts or 

individuals explicitly.

Benchmarking recruitment at BCI 

We attribute the TRS’s improved predictions of recruitment magnitude and PFT rank order (Fig. 4) to 

PFT-specific, light-sensitive germination, seedling mortality from light stress and light-sensitive 

seedling to sapling transition rates. Despite its dominant share of total forest NPP, the LD-DT PFT 

experienced seedling mortality rates almost 13 times greater than the ST PFTs in BCI’s understory, 

resulting in recruitment predictions more consistent with quantitative observations at the BCI FDP (Fig.

4). The TRS’s prediction that recruitment is dominated by ST PFTs is consistent with ecological 

expectations in a mature, closed canopy forest where shade tolerant PFTs should be favored during 

community assembly (Comita & Hubbell, 2009; Lebrija-Trejos et al., 2010; Wright et al., 2010). In 

contrast to observations, the TRS predicts that LD-DT recruitment is twice as high as LD-DI (Fig. 4) 

which could be due to erroneous species assignments to DT and DI PFTs or because we did not 

simulate observed spatial heterogeneity in patch-level soil moisture at BCI, such as occurs along 

hillslopes (Becker et al., 1988), or due to soil moisture and NPP biases predicted by ED2.  

Sensitivity to variable light and moisture conditions 

Light sensitive recruitment in the TRS (Fig. 5) is consistent with prior experimental evidence and 

ecological expectations showing that LD species recruit at higher densities under brighter conditions, 

such as in light gaps or forest fragments (Brokaw, 1985; Dupuy & Chazdon, 2008; d’Oliveira & Ribas, 

2011). These predictions primarily emerge within the TRS from light-sensitive seedling mortality and 

seedling-to-sapling transition rates, but the size and productivity of adult cohorts are also influential. 

For example, the LD-DT PFT is particularly dominant among recruits at high light because of its large 

share of total forest NPP under BASE meteorology (Fig. 3). PFT-specific responses to increasing light 

are important for representing gap phase dynamics (Brokaw, 1985) and because disturbance rates are 

increasing with climate change (Turner, 2010; Seidl et al., 2017), likely chronically increasing 
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understory light. Therefore, incorporating the TRS into VDMs will improve predictions of PFT-specific

light responses that mediate functional turnover. 

The TRS captured PFT-specific, moisture-sensitive recruitment limitations (Fig. 5), which we attribute 

to the inclusion of moisture-sensitive seedling emergence, seedling mortality, and seedling to sapling 

transition rates. The DT PFTs maintained very low recruitment at -2 MPa of SMP due to a more 

negative (i.e. dry) Ψcrit value, allowing them to accumulate less moisture deficit days than the DI PFTs 

under dry conditions. Capturing moisture-sensitive recruitment limitations is important for predicting 

PFT distributions because soil moisture varies dramatically throughout large parts of the tropics and 

influences differential seedling survival and mature forest composition (Engelbrecht et al., 2007; 

Condit et al., 2013). By more accurately reflecting the early life-stage at which moisture-based 

environmental filtering is believed to take place (Engelbrecht et al., 2007), the TRS will enable VDMs 

to more mechanistically predict functional turnover across topographic and regional moisture gradients 

and in response to changing precipitation regimes (Martínez-Vilalta & Lloret, 2016).

The TRS’s representation of moisture-sensitive recruitment is more consistent with ecological 

expectations and observations (Engelbrecht et al., 2007) compared to ED2, which assumes that 

recruitment rates are insensitive to SMP (Fig. 5). Enabling PFT-specific, moisture-sensitive recruitment

rates is helpful for VDMs that already have a sophisticated representation of mature plant hydraulics 

because the understory is typically more humid than the canopy (Fetcher et al., 1985), which can help 

seedlings survive drought in some contexts (Gómez-Aparicio et al., 2008; Andivia et al., 2018). 

Conversely, their shallower root systems can leave them more vulnerable to wide fluctuations in soil 

moisture occurring near the soil surface (Brum et al., 2018). Representing these aspects of the 

regeneration niche will help VDMs predict forest composition in response to simultaneous but 

potentially different hydrological conditions experienced by the canopy and the seedling layer.

Responses to ENSO and WET precipitation scenarios

The TRS’s more complete representation of the regeneration niche creates novel predictions of how 

recruitment of 1-cm dbh saplings will respond to varying meteorological scenarios. Unlike ED2, the 

TRS allowed DT sapling recruitment to continue into March (Fig. 6c) until SMP dropped below the DT

Ψcrit value, thereby capturing PFT-specific responses to seedling layer conditions under El Niño. It also 
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captures a large pulse of recruitment from a persisting seedling pool when the El Niño dry season ends 

(Fig. 6c). The TRS’s ability to capture PFT-specific recruitment responses to El Niño is consistent with 

observations showing that some seedlings persist through severe El Niños (Engelbrecht et al., 2002), 

some suffer increased mortality (Gilbert et al., 2001), and that recruitment responses vary by PFT (Slik,

2004). The TRS’s temporal decoupling of adult productivity from seedling dynamics allows understory

light and soil moisture to drive the transient recruitment response instead of remaining directly 

proportional to adult NPP as occurs in ED2 (Fig. 6d). Decoupling recruitment from adult NPP by 

including a seed bank and a seedling pool reproduced observed time lags between seed production and 

seedling recruitment (Garwood, 1983; Wright & Muller-Landau, 2005) as well as time lags between 

seedling emergence and recruitment into the 1 cm size class (Chang-Yang et al., 2021). However, the 

residence time of surviving carbon in the seedling pool, 737 days, may still be shorter than the time it 

takes for many seedlings in closed canopy tropical forests to recruit (Chang-Yang et al., 2021). Many 

tropical forest trees lose their leaves in response to El Niño (Detto et al., 2018) letting more light into 

the understory, which is observed to simultaneously increase understory recruitment and mortality rates

depending on functional traits such as wood density (Slik, 2004). The TRS is better positioned to 

predict these PFT-specific recruitment responses to changing understory conditions as El Niño events 

become more frequent and severe (Haszpra et al., 2020).  

Recruitment predictions under the WET scenario demonstrate the TRS’s dual sensitivity to changes in 

adult productivity and seedling layer conditions. As precipitation increases under the WET scenario the 

LD-DI PFT dominates total forest NPP (Fig. 3), but the TRS only allows this to translate into 

recruitment dominance under higher light (Fig. 7c). Conversely, under low light, the TRS only allows 

recruitment to increase slightly in response to increased LD-DI propagule pressure; low light stops it 

from dominating recruitment (Fig. 7a). This is consistent with theory and observations that recruitment 

can be limited by both propagule pressure and environmental filtering during establishment (Jabot et 

al., 2008). The TRS’s dual sensitivity to adult productivity and seedling layer conditions also means 

that it will provide the host VDM with a seedling layer composition more reflective of forest 

composition and understory conditions in any given timestep. This is significant because when a 

disturbance occurs, pulses of recruitment arise from the existing seedling layer, thereby influencing the 

composition of trees recruiting into the canopy (Brokaw, 1985).
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Compatibility with VDMs 

The TRS is positioned to improve VDMs by making the representation of tree recruitment more 

mechanistic while maintaining a computationally efficient approach.  It tracks pools of carbon instead 

of individuals or cohorts, regeneration processes are predicted as a function of variables that are already

tracked by VDMs, and carbon is conserved. The TRS can be run at any site where a host VDM can run,

which at a minimum requires local meteorological data and a PFT parameter set. Predictions of 

recruitment can be evaluated most readily at long term forest dynamics plots with repeated census 

events that track all trees down to the 1 cm dbh size class (e.g. the CTFS-ForetsGeo plot network; 

Davies et al., 2021), but once the TRS is coupled to a host VDM it will be possible to evaluate 

recruitment into larger size classes. In sum, the TRS’s formulation is designed to be compatible with 

existing VDM model architecture and observational data.

The TRS minimizes the introduction of new, sensitive parameters that are hard to empirically constrain.

Four out of the five most sensitive TRS parameters are part of the size dependent reproductive 

allocation (RA) function (Fig. 8, Eqn 1), which is expected because RA determines the amount of 

carbon flowing to all subsequent processes (Fig. 1). Frepro already exists in VDMs and it is possible to 

use existing litter fall data to empirically constrain it in tropical forests (Hanbury-Brown et al., 2022). 

Fseed has not been quantified at the ecosystem or PFT level, but is measurable from field observations 

(Wenk et al., 2017), highlighting the need and opportunity to quantify it at VDM-relevant scales. The 

probabilistic relationship between size and RA (governed by aRA and bRA) can be derived from logistic 

regression applied to readily available observations of dbh and reproductive status (e.g. Visser et al., 

2016). The light response parameter for seedling mortality (bML) can be derived from observations of 

seedling mortality under experimentally manipulated light (e.g. Augspurger, 1984; Kobe, 1999; 

Balderrama & Chazdon, 2005). With the exception of aTR (discussed below), the remaining parameters 

are observable and have less leverage on recruitment, but would still need to be quantified or 

synthesized to run the TRS in extra-tropical biomes or with new PFTs. 

Limitations and future work

Evaluating the TRS in a one-way coupled configuration (i.e. offline from a host VDM) allowed us to 

evaluate the TRS’s behavior in a reduced complexity environment without idiosyncratic host model 

feedbacks that are hard to diagnose. However, until the TRS is fully integrated into a VDM we can’t 
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assess how feedbacks between recruitment and adult demographics will influence predictions of future 

forest composition. We avoided simulations longer than 30 years for this reason. Secondly, the TRS 

only includes the first order processes limiting tree recruitment within tropical forest patches. We did 

not address dispersal because it is an inter-patch process that should be implemented directly in VDMs 

in a way that is congruent with how each model abstracts spatial processes. The representation of PFT-

specific inter-patch dispersal limitation (which could be based on traits such as seed size) will likely 

alter the recruitment rates presented here because more dispersal limited PFTs will be less likely to 

reach new high resource patches. The TRS also does not address vegetative propagation and post-

disturbance resprouting, known to be an important regeneration strategy (Dietze & Clark, 2008; Clarke 

et al., 2013), because this process should be embedded within each VDM’s storage allocation scheme. 

Despite these limitations, testing and presenting the TRS as an offline module is consistent with recent 

calls from the Earth system modeling community for “modular complexity as a strategy” whereby new 

functionality is organized as modules to mitigate the intractability of increasingly complex ESM 

components (Fisher & Koven, 2020). 

Following the need to balance process fidelity with manageable complexity and computational cost 

(Fisher & Koven, 2020), we focused on a first order set of processes that we hypothesize is required to 

capture future recruitment limitations in tropical forests under climate change. However, the TRS omits

processes that may require additional consideration. Pathogen attack (Spear et al., 2015) and herbivory 

(Weissflog et al., 2018) are both known to play roles iparameters regulating seedling population 

dynamics at the species level and susceptibility to these causes of mortality may covary with functional

traits (Coley & Barone, 1996; Spear & Broders, 2021). We used a constant seed mortality rate because 

we lacked the data to parameterize PFT-specific environmentally sensitive seed mortality in tropical 

forests and the parameter had relatively little leverage on recruitment rates (Fig. 8). Nevertheless, seed 

mortality rates likely vary among stands, biomes, and PFTs by more than the 10% value used in our 

parameter sensitivity experiment (Notman & Gorchov, 2001; Obroucheva et al., 2016), indicating the 

need for further evaluation. Nitrogen availability is believed to influence the functional composition of 

recruits during secondary forest development (Batterman et al., 2013) indicating that nutrient 

limitations on recruitment may be important to represent. There is evidence that seed production varies 

with interannual variation in solar irradiance, precipitation, and stand structure (Wright & Calderón, 

2006; O’Brien et al., 2018; Hacket-Pain et al., 2018; Detto et al., 2018; Minor & Kobe, 2019; Andrus 
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et al., 2020) and a representation of these sensitivities may help facilitate the prediction of masting in 

future models (Vacchiano et al., 2018), but observations of how RA varies with these variables is still 

missing for most tropical tree PFTs, so we have not included environmentally sensitive RA here. 

Currently, all seedlings in the TRS access water at the same depth, but seedling rooting depth is a 

critical functional trait mediating seedling physiological responses to drought (Brum et al., 2018), 

making this a key area for future data collection, synthesis, and algorithm development. Additionally, 

manipulative experiments analyzing how vapor pressure deficit and temperature extremes interact with 

soil moisture (e.g. Will et al., 2013) to affect seedling mortality would improve upon existing drought 

experiments (e.g. Engelbrecht & Kursar, 2003; Engelbrecht et al., 2007) and may facilitate more robust

algorithms for moisture stress mortality. 

We did not implement a carbon assimilation scheme for the seedling layer. Instead, following the 

current ED-based convention (Moorcroft et al., 2001; Fisher et al., 2015) all carbon used to produce 

new recruits must come from the stock of Cg+r. This is done to avoid resolving photosynthesis for many 

small cohorts of seedlings, but the corresponding loss of process fidelity means that the fraction of 

seedling carbon that becomes new recruits at mean understory light (calculated using aTR) is not 

comparable with observations of seedling to sapling (>= 1 cm dbh) transition probabilities. Future work

is required to assess the complexity-fidelity tradeoffs associated with implementing a simple carbon 

assimilation scheme in the seedling pool to allow for easier model-data intercomparison of this 

transition. Additional functions, such as temperature-sensitive seedling emergence for extra-tropical 

forests, could easily be added to the TRS, making the framework presented here (Fig. 1) extensible 

globally.

CONCLUSION

The TRS provides a more mechanistic constraint on the amount of carbon available for recruitment 

within VDMs, thereby improving predictions of recruitment compared to a current VDM. Representing

tree recruitment as the outcome of critical regeneration processes sensitive to carbon production, light, 

and soil moisture, enabled predictions of recruitment in a tropical forest that are more consistent with 

prior observations and ecological expectations. The core infrastructure of the scheme is simple and 

versatile, and the scheme’s parameter set is designed to be minimal and observable. Parameter 

estimation may require additional empirical synthesis and/or new observations to constrain outside of 
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well-studied ecosystems. Through its improved representation of the regeneration niche, the TRS is 

well positioned to advance predictions of future tree recruitment under changing climate and 

disturbance regimes. This is essential to predicting future forest composition, distribution, and function.
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SUPPORTING INFORMATION LEGENDS

Methods S1. Derivation of parameter values for Barro Colorado Island

Fig. S1. Observations of moisture deficit and seedling mortality

Methods S2. Assigning species to drought tolerant and drought intolerant PFTs

Note S1. The DRY-DS precipitation scenario

Fig. S2. Results from the DRY-DS precipitation scenario

Table S1. Expert classification of tree growth forms (understory, midstory, canopy) at BCI (.xlsx file)

Table S2. Species assignments to plant functional types (.xlsx file)

Figure S3. ED2 predictions of soil matric potential under BASE, WET, SYN-ENSO, and DRY-DS 
precipitation scenarios.

Fig. S4. ED2 predictions of PFT-specific NPP under BASE, WET, SYN-ENSO, and DRY-DS 

precipitation scenarios

Fig. S5. ED2 predictions of soil matric potential during a synthetic El Niño drought at Barro Colorado 

Island.
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