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ABSTRACT OF THE DISSERTATION

Essays in Econometrics

by

Daniel Steven Ober-Reynolds

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Andres Santos, Chair

This dissertation contains two chapters. The first chapter studies causal parameters

that depend on a moment of the joint distribution of potential outcomes. Such parameters

are especially relevant in policy evaluation settings, where noncompliance is common and

accommodated through the model of Imbens & Angrist (1994). The sharp identified set

for these parameters is an interval with endpoints characterized by the value of optimal

transport problems. Sample analogue estimators are proposed based on the dual problem of

optimal transport. These estimators are
√
n-consistent and converge in distribution under

mild assumptions. Inference procedures based on the bootstrap are straightforward and

computationally convenient. The ideas and estimators are demonstrated in an application

revisiting the National Supported Work Demonstration job training program. Estimates

suggest that workers who would see below average earnings without treatment tend to see

above average benefits from treatment.

The second chapter proposes a methodology for studying the robustness of results drawn

from incomplete datasets. Selection is measured as the squared Hellinger divergence between

the distributions of complete and incomplete observations, which has a natural interpreta-
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tion. The breakdown point is defined as the minimal amount of selection needed to overturn a

given result. Reporting point estimates and lower confidence intervals of the breakdown point

is a simple, concise way to communicate a result’s robustness. An estimator of the break-

down point of results drawn from GMM models is proposed and shown
√
n-consistent and

asymptotically normal under mild assumptions. Lower confidence intervals of the breakdown

point are simple to construct. The chapter concludes with a simulation study illustrating

the good finite sample performance of the procedure.
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CHAPTER 1

Estimating Functionals of the Joint Distribution of

Potential Outcomes with Optimal Transport

1.1 Introduction

Researchers studying the causal effects of a binary treatment see an observation’s treated or

untreated outcome, but never both. As a result, the data identify the marginal distributions

of each potential outcome, but not their joint distribution. This “fundamental problem

of causal inference” (Holland, 1986) leaves parameters depending on the joint distribution

partially identified.

This paper studies a wide class of parameters that depend on a moment of the joint

distribution of potential outcomes. The setting is the canonical potential outcomes frame-

work with binary treatment, a binary instrument satisfying a monotonicity restriction, and

finitely supported covariates (Imbens & Angrist, 1994; Abadie, 2003). In this setting, the

sharp identified set for such parameters is an interval with endpoints characterized by the

value of optimal transport problems. Sample analogue estimators based on the dual problem

of optimal transport are tractable, both for computation and asymptotic analysis. These

estimators are shown to converge in distribution through the functional delta method. This

allows for straightforward inference procedures based on the bootstrap.

The proposed estimators are especially attractive due to their wide applicability and

computational simplicity. The class of parameters under study is broad, including the corre-

lation between potential outcomes, the probability of benefitting from treatment, and many
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more examples discussed in section 1.2. As argued in Heckman et al. (1997), such param-

eters are of particular interest to policymakers and economists carrying out econometric

policy evaluation. Noncompliance with the assigned treatment status is common in these

settings. Most studies accomodate noncompliance with the same framework adopted in this

paper, and could make use of these estimators with no additional identifying assumptions.

Computing the estimator and constructing confidence sets entails nothing more challenging

than solving linear programming problems, for which there are fast and efficient algorithms

readily available.

This paper contributes to a large econometrics literature studying parameters of the joint

distribution of potential outcomes. Many papers in this literature focus on a subset of the

parameters considered here, especially the cumulative distribution function (cdf) or quan-

tiles of treatment effects (Manski, 1997; Heckman et al., 1997; Firpo, 2007; Fan & Park,

2010, 2012; Firpo & Ridder, 2019; Callaway, 2021; Frandsen & Lefgren, 2021). This lim-

ited focus allows greater use of known analytical expressions when deriving sharp bounds,

especially the famed Makarov bounds on the cdf and Fréchet-Hoeffding bounds on the joint

distribution. Several recent works develop methods applicable to broad parameter classes

by employing procedures that do not require analytical expressions for the identified set.

Russell (2021) studies continuous functionals of the joint distribution of discrete potential

outcomes, through a computationally intensive (sometimes infeasible) search over all permis-

sible distributions of model primitives. Fan et al. (2023) study parameters identified through

moment conditions in several incomplete data settings – including potential outcome models

– by searching over an infinite dimensional space of smooth copulas. This paper occupies

a middle ground: by focusing on parameters that depend on a scalar moment of the joint

distribution and working with optimal transport, I obtain expressions for the bounds with

tractable sample analogues. This approach allows consideration of a wide variety of param-

eters while maintaining computational tractability.

This paper also contributes to a growing literature on applications of optimal transport
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to econometrics; see Galichon (2017) for a survey. Several recent working papers utilize op-

timal transport for issues related to casual inference, including inverse propensity weighting

(Dunipace, 2021), matching on covariates (Gunsilius & Xu, 2021), and obtaining counter-

factual distributions (Torous et al., 2021). In concurrent and highly complementary work,

Ji et al. (2023) consider a very similar class of parameters to the present paper and also

propose inference based on the dual problem of optimal transport. Their focus, accomodat-

ing non-discrete covariates without resorting to parametric models, leads to theory based on

cross fitting and high-level assumptions on first stage estimators. The goal of the present

paper is to provide simple, low-level conditions and computationally convenient estimators

in the common case where covariates are discrete. This leads to theory based on Hadamard

directional differentiability and the functional delta method quite distinct from that of Ji

et al. (2023).

The remainder of this paper is organized as follows. Section 1.2 formalizes the setting and

introduces the class of parameters under study. Optimal transport is introduced in section

1.3, and used in identification in section 1.4. Section 1.5 proposes the estimators and contains

the asymptotic results. Section 1.6 explores the finite sample properties of the estimators in

a brief simulation study. Section 1.7 contains the application, showing suggestive evidence

that the the National Supported Work Demonstration job training program was especially

beneficial for workers who would see below average incomes without training. All formal

results are proven in the appendix.

1.2 Setting and parameter class

1.2.1 Setting

Consider a potential outcomes framework with binary treatment, a binary instrument, and

finitely supported covariates (Imbens & Angrist, 1994; Abadie, 2003). Let Y denote the

scalar, real-valued outcome of interest and D ∈ {0, 1} indicate treatment status. Further let
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Y1 denote the potential outcome when treated and Y0 the potential outcome when untreated.

The observed outcome Y is given by

Y = DY1 + (1−D)Y0. (1.1)

The difference in potential outcomes, Y1 − Y0, is called the treatment effect.

The binary instrument is denoted Z ∈ {0, 1}. Let D1 denote the treatment status when

Z = 1, and D0 the treatment status when Z = 0. The observed treatment status D is given

by

D = ZD1 + (1− Z)D0. (1.2)

It is assumed that the instrument itself does not affect the outcome.1 Units with 1 = D1 >

D0 = 0 are known as compliers.

Assumption 1 formalizes the setting.

Assumption 1 (Setting). {Yi, Di, Zi, Xi}ni=1 is an i.i.d. sample with (Y,D,Z,X) ∼ P ,

Y ∈ Y ⊆ R, D ∈ {0, 1}, Z ∈ {0, 1}, X ∈ X = {x1, . . . , xM} ⊆ Rdx (1.3)

where Y , D, and Z are related to (Y1, Y0, D1, D0) through equations (1.1) and (1.2), and the

random vector (Y1, Y0, D1, D0, Z,X) satisfies

(i) Instrument independence: (Y1, Y0, D1, D0) ⊥ Z | X,

(ii) Monotonicity: P (D1 ≥ D0) = 1,

(iii) Existence of compliers: P (D1 > D0, X = x) > 0 for each x, and

(iv) P (X = x, Z = z) > 0 for each (x, z).

1One could hypothesize potential outcomes varying with the value of the instrument, i.e. Ydz for each
(d, z). The exposition here implicitly assumes instrument exclusion, also known as the Stable Unit Treatment
Value Assumption: that P (Yd1 = Yd0) = 1 for each d.
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Assumption 1 is essentially equivalent to assumption 2.1 in Abadie (2003), with the ad-

dition that covariates are finitely supported. Instrument independence is sometimes referred

to as ignorability, and satisfied in most randomized controlled trials where Z indicates being

assigned to treatment. Monotonicity is typically a weak assumption in such settings.

It is worth emphasizing that this setting nests the case where treatment is exogenous.

Specifically, when D1 = 1 and D0 = 0 (degenerately), every unit is a complier. In this

case equation (1.2) shows treatment status equals the instrument: D = Z. Instrument

independence simplifies to (Y1, Y0) ⊥ D | X, and monotonicity is trivially satisfied.

Interest focuses on the distribution of compliers. Such focus is especially policy relevant

when “the policy is the instrument” i.e., the proposed change in policy is to assign Z = 1 to all

units. Abadie (2003) shows that assumption 1 suffices to identify the marginal distributions

of Y1 and Y0 for the subpopulation of compliers.

Lemma 1.2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distribu-

tions of Yd conditional on D1 > D0 and X = x, denoted Pd|x, are identified by

EPd|x [f(Yd)] ≡ E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

(1.4)

for any integrable function f . Furthermore, the distribution of X conditional on D1 > D0 is

identified by

sx ≡ P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

(1.5)

The joint distribution of potential outcomes is not identified. This is a result of the

fundamental problem of causal inference: there is no unit where both Y1 and Y0 are observed,
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and as a result the joint distribution of (Y1, Y0) is not identified for any subpopulation. Let

P1,0 denote the joint distribution of (Y1, Y0) conditional on compliance, and P1,0|x denote the

joint distribution conditional on compliance and X = x. These are related through the law

of iterated expectations; for any function c(y1, y0) with values in R,

EP1,0 [c(Y1, Y0)] = E[E[c(Y1, Y0) | D1 > D0, X] | D1 > D0] =
∑
x

sxEP1,0|x [c(Y1, Y0)].

This relation can also be expressed as P1,0 =
∑

x sxP1,0|x.

A joint distribution with marginals P1|x and P0|x is called a coupling of P1|x and P0|x.

P1,0|x is such a coupling, and is otherwise unrestricted by assumption 1. It follows that the

identified set for P1,0|x is the set of distributions π1,0|x for (Y1, Y0) with marginals π1|x = P1|x

and π0|x = P0|x, denoted

Π(P1|x, P0|x) ≡
{
π1,0|x : π1|x = P1|x, π0|x = P0|x

}
. (1.6)

Moreover, the identified set for P1,0 is
{
π1,0 =

∑
x sxπ1,0|x : π1,0|x ∈ Π(P1|x, P0|x)

}
.

1.2.2 Parameter class

The idea at the core of this paper is to bound a moment of the joint distribution of potential

outcomes by optimization. Accordingly, the focus is on scalar parameters of the form

γ ≡ g(θ, η) (1.7)

where g is a known function and θ ≡ EP1,0 [c(Y1, Y0)] ∈ R is a scalar moment of the joint

distribution of (Y1, Y0) conditional on compliance. The function c is known, and referred

to as a cost function in connection with the optimal transport literature. This class of

parameters is broad, as illustrated by the examples given below. In each of these examples

η is a finite collection of moments of the marginal distributions conditional on compliance:
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η = (EP1 [η1(Y1)], EP0 [η0(Y0)]) ∈ RK1+K0 . The formal results focus on this case, but could be

generalized to allow η to be other point identified nuisance parameters.

The following conditions are stronger than necessary for identification of the sharp iden-

tified set of γ, but will be used when constructing and studying estimators. Assumption 2

places restrictions on the cost function to ensure optimal transport can be used characterize

and estimate the sharp identified set for θ.

Assumption 2 (Cost function). Either

(i) c(y1, y0) is Lipschitz continuous and Y is compact, or

(ii) c(y1, y0) = 1{y1−y0 ≤ δ} for a known δ ∈ R and the cumulative distribution functions

Fd|x(y) = P (Yd ≤ y | D1 > D0, X = x) are continuous.

Assumption 2 covers every example listed below. Continuous cost functions c are given

a unified analysis, but for reasons discussed in section 1.3 discontinuous cost functions must

be handled on a case-by-case basis. I focus on the leading case of interest in applications,

c(y1, y0) = 1{y1−y0 ≤ δ}, corresponding to the cumulative distribution of treatment effects.

The approach developed in this paper could likely be generalized to cover other discontinuous

cost functions; for example, results in the appendix allow estimation of the sharp lower bound

of P ((Y1, Y0) ∈ C) for any open, convex set C ⊆ R2.

Assumption 2 (ii) requires the cdfs Fd|x be continuous. As discussed in section 1.4, this

ensures the set being estimated is the sharp identified set for the parameter of interest.

However, the estimation and inference results of section 1.5 hold regardless of whether the

cdfs are continuous or not; when the cdfs are not continuous, the estimand is a valid outer

identified set.

Under assumptions 1 and 2, the sharp identified set for θ = E[c(Y1, Y0) | D1 > D0] is an

interval [θL, θH ]. Assumption 3 contains conditions on g and η.
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Assumption 3 (Function of moments). The parameter is γ = g(θ, η) ∈ R, where

θ = E[c(Y1, Y0) | D1 > D0] ∈ R, η = E
[
η1(Y1), η0(Y0) | D1 > D0

]
∈ RK1+K0

for known functions g, c, η1 and η0 such that

(i) E[‖ηd(Y )‖2] <∞ for d = 1, 0,

(ii) g(·, η) is continuous, and

(iii) the functions

gL(tL, tH , e) = min
t∈[tL,tH ]

g(t, e), gH(tL, tH , e) = max
t∈[tL,tH ]

g(t, e)

are continuously differentiable at (tL, tH , e) = (θL, θH , η).

Note that when θ itself is of interest, assumption 3 is satisfied with g(θ, η) = θ. Assump-

tion 3 (ii) ensures the identified set for γ is the interval [γL, γH ], and assumption 3 (iii) is

used to apply the delta method. It is straightforward to show assumption 3 (iii) holds when g

is continuously differentiable in both arguments and g(·, η) is strictly increasing, as the latter

condition implies gL(θL, θH , η) = g(θL, η) and gH(θL, θH , η) = g(θH , η) and the former condi-

tion implies they are continuously differentiable. This argument applies to every parameter

listed below. When g is differentiable but g(·, η) is not monotonic, it is often possible to use

the implicit function theorem applied to first order conditions to derive sufficient conditions

for the corresponding arg min and arg max to be differentiable, and thus for assumption 3

(iii) to hold.

1.2.2.1 Examples

The following examples are intended both to fix ideas and illustrate the broad scope of the

parameter class described above.
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Example 1.2.1 (Summary statistics). Many summary statistics can be rewritten in the

form γ = g(θ, η). For example, suppose interest is in the variance of treatment effects for

compliers: γ = Var(Y1 − Y0 | D1 > D0). This parameter can be rewritten as

γ = Var(Y1 − Y0 | D1 > D0) = EP1,0 [(Y1 − Y0)2]− (EP1 [Y1]− EP0 [Y0])2,

This parameter fits the form γ = g(θ, η) required of display (1.7), with θ = EP1,0 [(Y1− Y0)2],

η = (η(1), η(2)) = (EP1 [Y1], EP0 [Y0]), and g(θ, η) = θ − (η(1) − η(2))2. The cost function

c(y1, y0) = (y1 − y0)2 satisfies assumption 2 (i) when Y, the support of the outcome Y , is

bounded.

Similarly, suppose the researcher is interested in the correlation between Y1 and Y0 for

compliers. Set γ = Corr(Y1, Y0 | D1 > D0), which can be rewritten as

γ = Corr(Y1, Y0 | D1 > D0) =
EP1,0 [Y1Y0]− EP1 [Y1]EP0 [Y0]√

EP1 [Y
2

1 ]− (EP1 [Y1])2
√
EP0 [Y

2
0 ]− (EP0 [Y0])2

This parameter also fits the form γ = g(θ, η) in display (1.7), with θ = EP1,0 [Y1Y0], η =

(η(1), η(2), η(3), η(4)) = (EP1 [Y1], EP1 [Y
2

1 ], EP0 [Y0], EP0 [Y
2

0 ]), and

g(θ, η) = θ−η(1)×η(3)√
η(2)−(η(1))2

√
η(4)−(η(3))2

. The cost function c(y1, y0) = y1y0 satisfies assumption 2

(i) when Y is bounded.

Example 1.2.2 (Expected percent change). The expected percent change in the outcome

can be written as 100 × E
[
Y1−Y0
Y0
| D1 > D0

]
%. This is a unit-invariant causal parameter

that is a natural summary measure when Y0 exhibits considerable variation. For example, a

treatment effect of Y1−Y0 = 5 is typically of greater economic significance when the untreated

outcome is small, say Y0 = 10, than when Y0 = 100.

The expected percent change is proportional to

γ = E

[
Y1 − Y0

Y0

| D1 > D0

]
= EP1,0

[
Y1 − Y0

Y0

]
,
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which fits the form of display (1.7), with γ = θ = EP1,0

[
Y1−Y0
Y0

]
. The cost function c(y1, y0) =

y1−y0
y0

satisfies assumption 2 (i) when Y is bounded and bounded away from zero.

Example 1.2.3 (Equitable policies). Policy makers are often interested in whether a policy

is equitable – that is, whether the benefits are concentrated among those who would have

undesirable outcomes without treatment.

One parameter that speaks to these concerns is the covariance between treatment effects

and untreated outcomes among compliers: γ = Cov(Y1 − Y0, Y0 | D1 > D0). Notice that

γ < 0 implies those with below average Y0 tend to see above average treatment effects. This

parameter can be rewritten as

γ = Cov(Y1 − Y0, Y0 | D1 > D0) = EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

and fits the form g(θ, η) with θ = EP1,0 [(Y1 − Y0)Y0], η = (EP1 [Y1], EP0 [Y0]), and g(θ, η) =

θ − (η(1) − η(2))η(2). The cost function c(y1, y0) = (y1 − y0)y0 satisfies assumpion 2 (i) when

Y is bounded.

Many related parameters share a sign with Cov(Y1 − Y0, Y0 | D1 > D0) and are also

suitable for such an analysis. For example, consider the OLS slope when regressing Y1 − Y0

on Y0 and a constant: γ = Cov(Y1−Y0,Y0|D1>D0)
Var(Y0|D1>D0)

. This parameter can be rewritten as

γ =
Cov(Y1 − Y0, Y0 | D1 > D0)

Var(Y0 | D1 > D0)
=
EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

EP0 [Y
2

0 ]− (EP0 [Y0])2
,

which fits the form of display (1.7) with θ = EP1,0 [(Y1−Y0)Y0], η = (EP1 [Y1], EP0 [Y0], EP0 [Y
2

0 ]),

and g(θ, η) = θ−(η(1)−η(2))η(2)
η(3)−(η(2))2

.

Example 1.2.4 (Proportion that benefit). The share of compliers benefiting from treatment,

written

γ = P (Y1 > Y0 | D1 > D0),
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is naturally of interest in applications where theory gives little indication whether the treat-

ment will have a positive or negative effect. For example, Allcott et al. (2020) study the

effect of deactivating facebook on subjective well-being. The authors find significant positive

average effects of deactivation, but find substantial heterogeneity in follow-up interviews.

This parameter fits the form of display (1.7), with γ = θ = EP1,0 [1{Y1 − Y0 ≤ 0}]. The

cost function c(y1, y0) = 1{y1 − y0 ≤ 0} satisfies assumption 2 (ii) if the cdfs Fd|x(y) are

continuous.

The share benefiting from treatment is also of particular interest when the intervention

comes at a financial cost and the outcome of interest is a pecuniary return. Examples include

job training programs intended to increase a worker’s income (e.g. the National Supported

Work Demonstration studied in Couch (1992)) or management practices intended to raise a

firm’s accounting profit (e.g. the employee referral program studied in Friebel et al. (2023)).

To illustrate, suppose the researcher observes {Ri, Ci, Di, Zi}ni=1, where R is observed revenue

and C is the observed cost. These are related to treatment status D ∈ {0, 1}, potential

revenues (R1, R0), and potential costs (C1, C0) by

R = DR1 + (1−D)R0, C = DC1 + (1−D)C0.

The observed profit, Y = R− C, is related to treatment status by

Y = D (R1 − C1)︸ ︷︷ ︸
≡Y1

+(1−D) (R0 − C0)︸ ︷︷ ︸
≡Y0

.

The probability the change in revenue exceeds the change in cost is

P (R1 −R0 > C1 − C0 | D1 > D0) = P (Y1 > Y0 | D1 > D0).
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Example 1.2.5 (Quantiles). Suppose the parameter of interest is any qτ solving

P (Y1 − Y0 ≤ qτ | D1 > D0) = τ (1.8)

This parameter has a similar interpretation to the τ -th quantile.2 qτ cannot be viewed as

γ = g(θ, η). However, by viewing θ(δ) = P (Y1 − Y0 ≤ δ | D1 > D0) = EP1,0 [1{Y1 − Y0 ≤ δ}]

as a function of δ, the results below can be adapted to construct a confidence set for the

identified set of this parameter as described in appendix 1.9.1.2.

1.3 Optimal transport

This section defines and discusses optimal transport, which is used to characterize the iden-

tified set and construct estimators. Given any marginal distributions P1 and P0 and a cost

function c(y1, y0), the Monge-Kantorovich formulation of optimal transport is the problem

of choosing a coupling π ∈ Π(P1, P0) to minimize the expected cost:

OTc(P1, P0) ≡ inf
π∈Π(P1,P0)

Eπ[c(Y1, Y0)]. (1.9)

This minimization problem in (1.9) is referred to as the primal problem, and will be used to

characterize the identified set of θ.

The dual problem of optimal transport will be used to construct and analyze estimators.

Let Φc denote the set of functions ϕ(y1) and ψ(y0) whose pointwise sum is less than c(y1, y0):

Φc ≡ {(ϕ, ψ) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} . (1.10)

The dual problem chooses a pair of functions in Φc to maximize the sum of the corresponding

2The τ -th quantile is usually defined as the unique value q̃τ = inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}. When the
τ level set of the cumulative distribution function P (Y1 − Y0 ≤ ·) is nonempty, the τ -th quantile has the
interpretation that 100×τ% of the population has treatment effect less than or equal to q̃τ . Every qτ solving
(1.8) has the same interpretation.
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expectations:

sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (1.11)

When the cost function is lower semicontinuous and bounded from below, the primal problem

is attained and strong duality holds:

OTc(P1, P0) = min
π∈Π(P1,P0)

Eπ[c(Y1, Y0)] = sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (1.12)

The dual problem is used to construct and analyze estimators. Indeed, the identification of

Pd|x in lemma 1.2.1 suggests straightforward sample analogues of EPd|x [f(Yd)] for a given f ,

which makes it possible to form a sample analogue of the dual problem in a setting with

instruments.

Although it is clear how to form a sample analogue of the dual problem, it is not imme-

diately clear how to analyze the resulting estimator. Fortunately, the dual problem can be

simplified by restricting the maximization problem to a smaller set of functions. Estimators

based on this restricted dual problem can then be studied with empirical process techniques.

The feasible set of the dual problem is restricted with the concept of c-concavity. Notice

the dual problem’s objective is monotonic, in the sense that ϕ(y1) ≤ ϕ̃(y1) for all y1 implies

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] ≤ EP1 [ϕ̃(Y1)] + EP0 [ψ(Y0)].

Increasing ψ pointwise will also increase the dual objective. Speaking loosely, any function

pair (ϕ, ψ) ∈ Φc for which the constraint ϕ(y1) + ψ(y0) ≤ c(y1, y0) is “slack” cannot be a

solution to the dual problem and can therefore be ignored. This motivates the definition of

the c-transforms of a function ϕ:

ϕc(y0) ≡ inf
y1
{c(y1, y0)− ϕ(y1)}, ϕcc(y1) ≡ inf

y0
{c(y1, y0)− ϕc(y0)}.

For any pair of functions (ϕ, ψ) ∈ Φc, these definitions imply ψ(y0) ≤ ϕc(y0), ϕ(y1) ≤ ϕcc(y1),
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and ϕcc(y1)+ϕc(y0) ≤ c(y1, y0). Further c-transformations are irrelevant because (ϕcc)c = ϕc,

so a function ϕ is called c-concave if ϕcc = ϕ. If the c-transforms are integrable, the dual

problem can be restricted to c-concave conjugate pairs, (ϕcc, ϕc). c-concave functions often

“inherit” properties of the cost function c. For example, if c is Lipschitz continuous then

ϕc and ϕcc are Lipschitz continuous as well. These properties can be used to define sets of

functions Fc and F cc (depending on the cost function c but not on the distributions P1, P0)

such that

sup
(ϕ,ψ)∈Φc

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (1.13)

Two cases suffice for the parameters considered in this paper. When the cost function

c(y1, y0) is Lipschitz continuous and Y is compact, define

Fc ≡ {ϕ : Y → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y1)− ϕ(y′1)| ≤ L|y1 − y′1|} (1.14)

F cc ≡ {ψ : Y → R ; −2‖c‖∞ ≤ ψ(y0) ≤ 0, |ψ(y0)− ψ(y′0)| ≤ L|y0 − y′0|} (1.15)

where ‖c‖∞ = sup(y1,y0)|c(y1, y0)| and L is the Lipschitz constant of c. When c(y1, y0) =

1{(y1, y0) ∈ C} for an open, convex set C, let

Fc ≡ {ϕ : Y → R ; ϕ(y1) = 1{y1 ∈ I} for some interval I} (1.16)

F cc ≡ {ψ : Y → R ; ψ(y0) = −1{y0 ∈ Ic} for some interval I} (1.17)

Equation (1.13) shows the optimal transport functional OTc(P1, P0) depends only on the

values of EP1 [ϕ(Y1)] and EP0 [ψ(Y0)] for (ϕ, ψ) ∈ Fc × F cc . For any set A, let `∞(A) denote

the space of real-valued bounded functions defined on A, equipped with the supremum norm:

`∞(A) = {f : A→ R ; ‖f‖∞ = supa∈A|f(a)| <∞}. Optimal transport can be viewed as the
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map OTc : `∞(Fc)× `∞(F cc )→ R given by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

EP1 [ϕ(Y1)] + EP0 [ψ(Y0)]. (1.18)

This problem will be referred to as the restricted dual problem. Estimators formed with this

map can be studied with empirical process techniques.

In summary, OTc(P1, P0) will be viewed as the functional in (1.9) when considering

identification, and as the functional given in (1.18) when considering estimation. By ensuring

c is either Lipschitz continuous or the indicator of an open convex set, strong duality and

c-concavity ensures these functionals agree on the space of probability distributions.

1.4 Identification

This section derives expressions for the sharp bounds on the parameter of interest that make

use of optimal transport. Recall the parameter of interest is γ = g(θ, η), where η is a point

identified parameter, θ = E[c(Y1, Y0) | D1 > D0] is a scalar, and g and c are known functions.

Begin by rewriting θ with the law of iterated expectations:

θ = E[E[c(Y1, Y0) | D1 > D0, X] | D1 > D0] = E[θX | D1 > D0]

where θx ≡ E[c(Y1, Y0) | D1 > D0, X = x] = EP1,0|x [c(Y1, Y0)]. As noted at the end of

section 1.2.1, the identified set for P1,0|x is the set of couplings of P1|x and P0|x, denoted

Π(P1|x, P0|x). It follows that the identified set for θx is the set of values that can be expressed

as Eπ[c(Y1, Y0)] for some π ∈ Π(P1|x, P0|x). The set Π(P1|x, P0|x) is convex, implying that

the identified set for θx is an interval. Let θLx and θHx denote its lower and upper endpoint

respectively.

To ensure the restricted dual problem can be used for estimation, θLx and θHx are character-

ized through an optimal transport problem with a suitable cost function. When assumption
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2 (i) holds (c(y1, y0) is Lipschitz continuous and Y is compact), define

cL(y1, y0) ≡ c(y1, y0), cH(y1, y0) ≡ −c(y1, y0)

θL(P1|x, P0|x) ≡ OTcL(P1|x, P0|x), θH(P1|x, P0|x) ≡ −OTcH (P1|x, P0|x). (1.19)

Note that θLx = θL(P1|x, P0|x) and θHx = θH(P1|x, P0|x).

The cumulative distribution function of Y1−Y0 corresponds to the cost function c(y1, y0) =

1{y1 − y0 ≤ δ}, which is not lower semicontinuous. This challenge is circumvented by

a small change in the cost function. When assumption 2 (ii) holds (the cost function is

c(y1, y0) = 1{y1 − y0 ≤ δ}) define

cL(y1, y0) ≡ 1{y1 − y0 < δ}, cH(y1, y0) ≡ 1{y1 − y0 > δ}

θL(P1|x, P0|x) ≡ OTcL(P1|x, P0|x), θH(P1|x, P0|x) ≡ 1−OTcH (P1|x, P0|x) (1.20)

It follows from definitions that θHx = θH(P1|x, P0|x). Moreover, cL(y1, y0) ≤ c(y1, y0) implies

θL(P1|x, P0|x) is a valid lower bound for θx. It is sharp if P1|x, P0|x have continuous cumulative

distribution functions, in which case θLx = θL(P1|x, P0|x). It is worth emphasizing again that

the estimation and inference results of section 1.5 ahead hold regardless of whether the

cdfs are continuous or not; when the cdfs are not continuous, the estimand is a valid outer

identified set.

Under assumptions 1 and 2, the identified set for θ = EP1,0 [c(Y1, Y0)] = E[c(Y1, Y0) | D1 >

D0] is the compact interval [θL, θH ] with endpoints

θL = E[θLX | D1 > D0], θH = E[θHX | D1 > D0]
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Under assumptions 1, 2, and 3, the identified set for γ is [γL, γH ], with endpoints

γL = gL(θL, θH , η) = inf
t∈[θL,θH ]

g(t, η), γH = gH(θL, θH , η) = sup
t∈[θL,θH ]

g(t, η) (1.21)

The following theorem summarizes the discussion above. Let θL(·, ·) and θH(·, ·) be given

by (1.19) or (1.20) depending on the cost function, and set

θLx = θL(P1|x, P0|x), θHx = θH(P1|x, P0|x), (1.22)

θL = E[θLX | D1 > D0], θH = E[θHX | D1 > D0], (1.23)

γL = gL(θL, θH , η), γH = gH(θL, θH , η) (1.24)

Theorem 1.4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3

are satisfied. Then the sharp identified set for γ is [γL, γH ].

All results are proven in the appendix.

It is worth pausing to consider the role of covariates. When covariates are available, ignor-

ing them leads to wider bounds that are not sharp. Specifically, the marginal distributions P1

and P0 could be used to form a lower bound on θ with θL(P1, P0) = infπ∈Π(P1,P0) Eπ[cL(Y1, Y0)].

This bound minimizes over the whole set Π(P1, P0) = {π1,0 ; π1 = P1, π0 = P0}, but the

identified set for P1,0 is the subset given by
{
π1,0 =

∑
x sxπ1,0|x ; π1,0|x ∈ Π(P1|x, P0|x)

}
. The

bounds defined by equations (1.22) and (1.23) is found while enforcing the additional con-

straints that π1,0|x ∈ Π(P1|x, P0|x) for each x. These additional constraints imply θL(P1, P0) ≤

θL, and similarly θH ≤ θH(P1, P0).

Extreme cases illustrate when covariates are informative. If X is independent of (Y1, Y0)

conditional on D1 > D0, then Pd|x = Pd for each x, Π(P1|x, P0|x) = Π(P1, P0), and the

inequalities in the preceding paragraph hold as equalities. In the other extreme, suppose

P1|x or P0|x (or both) are degenerate. This would follow from Yd being a function of X.

When one or more of the distributions is degenerate, there is only one possible coupling.
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Since Π(P1|x, P0|x) is a singleton, θLx = θHx and θx = E[c(Y1, Y0) | D1 > D0, X = x] is point

identified. If this occurs for all x ∈ X , θ and γ are point identified.

Remark 1.4.1 (Makarov bounds). The proof of theorem 1.4.1 given in the appendix uses

properties of optimal transport to argue that under assumptions 1 and 2 (ii), [θL, θH ] is the

sharp identified set for P (Y1 − Y0 ≤ δ | D1 > D0). Nonetheless, it is interesting to note that

the proof shows

θLx = OTcL(P1|x, P0|x) = sup
y
{F1|x(y)− F0|x(y − δ)}

θHx = 1−OTcH (P1|x, P0|x) = 1− sup
y
{F0|x(y − δ)− F1|x(y)} = 1 + inf

y
{F1|x(y)− F0|x(y − δ)}

which are the Makarov bounds on P (Y1 − Y0 ≤ δ | D1 > D0, X = x) studied in Fan & Park

(2010).

Remark 1.4.2 (Pointwise vs. uniformly sharp CDF bounds). Under assumptions 1 and 2

(ii), [θL, θH ] is the sharp identified set for P (Y1− Y0 ≤ δ | D1 > D0) at the point δ. Viewing

these bounds as functions of δ, θL(δ) and θH(δ) are not uniformly sharp bounds for the

cumulative distribution function P (Y1−Y0 ≤ δ | D1 > D0), in the sense that not every CDF

F (·) satisfying θL(δ) ≤ F (δ) ≤ θH(δ) for all δ could be the CDF of Y1 − Y0. See Firpo &

Ridder (2019) for a detailed discussion of this point.

1.5 Estimators

Sample analogues of the expressions identifying P1|x, P0|x, and sx in lemma 1.2.1 provide

convenient plug-in estimators of γL and γH . This section formally defines the estimators

and studies their asymptotic properties.

The following notation simplifies expressions for the sample analogues. Let P denote the

distribution of an observation (Y,D,Z,X), and f be a real-valued function. Use P (f) to refer

to EP [f(Y,D,Z,X)]. Similarly, let Pd|x(f) ≡ EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x].
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Let Pn denote the empirical distribution formed from the sample {Yi, Di, Zi, Xi}ni=1, and

Pn(f) = 1
n

∑n
i=1 f(Yi, Di, Zi, Xi). The following indicator function notation also simplifies

expressions:

1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z},

1x,z(X,Z) = 1{X = x, Z = z}, 1x(X) = 1{X = x}

For example, P (D = d,X = x, Z = z) shortens to P (1d,x,z), and 1
n

∑n
i=1 1{Di = 1, Xi =

x, Zi = 0} to Pn(11,x,0).

The probabilities pd,x,z = P (1d,x,z), px,z = P (1x,z), and px = P (1x) are estimated with

empirical analogues:

p̂d,x,z ≡ Pn(1d,x,z), p̂x,z ≡ Pn(1x,z), p̂x ≡ Pn(1x)

In this notation, sx = P (X = x | D1 > D0) and its empirical analogue ŝx are

sx =
(p1,x,1/px,1 − p1,x,0/px,0)px∑
x′(p1,x′,1/px′,1 − p1,x′,0/px′,0)p′x

, ŝx ≡
(p̂1,x,1/p̂x,1 − p̂1,x,0/p̂x,0)p̂x∑
x′(p̂1,x′,1/p̂x′,1 − p̂1,x′,0/p̂x′,0)p̂x′

(1.25)

The maps Pd|x and their empirical analogues are

Pd|x(f) =
P (1d,x,d × f)/px,d − P (1d,x,1−d × f)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d
,

P̂d|x(f) ≡ Pn(1d,x,d × f)/p̂x,d − Pn(1d,x,1−d × f)/p̂x,1−d
p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d

. (1.26)

Computing P̂d|x(f) for a given f is straightforward:

P̂d|x(f) =

1
p̂x,d

1
n

∑n
i=1 1d,x,d(Di, Xi, Zi)f(Yi)− 1

p̂x,1−d

1
n

∑n
i=1 1d,x,1−d(Di, Xi, Zi)f(Yi)

p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d

=
n∑
i=1

ωd,x,i × fi
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where fi = f(Yi) and the weights ωd,x,i can be computed directly from data:

ωd,x,i ≡
1

n
× 1d,x,d(Di, Xi, Zi)/p̂x,d − 1d,x,1−d(Di, Xi, Zi)/p̂x,1−d

p̂d,x,d/p̂x,d − p̂d,x,1−d/p̂x,1−d
. (1.27)

Under assumption 3, η = (η1, η0) = (EP1 [η1(Y1)], EP0 [η0(Y0)]). Each vector ηd ∈ RKd has

coordinates η
(k)
d =

∑
x sxPd|x(η

(k)
d ). Empirical analogues η̂ = (η̂1, η̂0) are formed by η̂

(k)
d =∑

x ŝxP̂d|x(η
(k)
d ).

The sample analogue estimators of γL and γH are based on equations (1.22), (1.23), and

(1.24):

θ̂Lx ≡ θL(P̂1|x, P̂0|x), θ̂Hx ≡ θH(P̂1|x, P̂0|x), (1.28)

θ̂L ≡
∑
x

ŝxθ̂
L
x , θ̂H ≡

∑
x

ŝxθ̂
H
x , (1.29)

γ̂L ≡ gL(θ̂L, θ̂H , η̂), γ̂H ≡ gH(θ̂L, θ̂H , η̂) (1.30)

Where the functions θL(·, ·) and θH(·, ·) are defined by either (1.19) or (1.20) depending on

the cost function. These expressions involve the optimal transport functional OTc(P1|x, P0|x).

The sample analogue of the restricted dual problem discussed in section 1.3 is written

OTc(P̂1|x, P̂0|x) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1|x(ϕ) + P̂0|x(ψ), (1.31)

where the sets Fc and F cc are defined by displays (1.14) and (1.15) when assumption 2 (i)

holds, and by displays (1.16) and (1.17) when assumption 2 (ii) holds.

Computing OTc(P̂1|x, P̂0|x) is especially straightforward when treatment is exogenous.

Recall the claim of equation (1.13): the supremum of P1|x(ϕ) + P0|x(ψ) over the larger set

Φc is the same value when restricted to Φc ∩ (Fc × F cc ). The argument behind this claim

uses monotonicity of the maps Pd|x. When treatment is exogenous, P̂d|x corresponds to a

probability distribution and is therefore also monotonic. The claim holds replacing Pd|x with
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P̂d|x, implying the function classes Fc and F cc can be ignored in computation:

OTc(P̂1|x, P̂0|x) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1|x(ϕ) + P̂0|x(ψ) = sup
(ϕ,ψ)∈Φc

P̂1|x(ϕ) + P̂0|x(ψ)

= sup
{ϕi,ψj}i,j

n∑
i=1

ω1,x,iϕi +
n∑
j=1

ω0,x,jψj (1.32)

s.t. ϕi + ψj ≤ c(Yi, Yj) for all 1 ≤ i, j ≤ n.

The final problem in this display is a linear programming problem with 2n choice variables

and n2 constraints, and can be further simplified by removing choice variables (and the

corresponding constraints) whose weights ωd,x,i equal zero. Many weights do equal zero, as

only observations with Xi = x correspond to nonzero weights.

When there is noncompliance in the sample, P̂d|x does not correspond to a probability

distribution. This can be seen by noting that for observations i where Zi differs from Di, the

weight ωd,x,i defined in display (1.27) is negative. Nonetheless, it remains computationally

tractable to search over Φc ∩ (Fc × F cc ). For example, when the cost function is continuous

OTc(P̂1|x, P̂0|x) remains a linear programming problem with additional linear constraints

enforcing |ϕi + ψj| ≤ L|Yi − Yj|, −‖c‖∞ ≤ ϕi ≤ ‖c‖∞, and −2‖c‖∞ ≤ ψj ≤ 0.

1.5.1 Weak convergence

The estimators proposed above are especially attractive because they are a (Hadamard direc-

tionally) differentiable map of the empirical distribution. Specifically, there exists a collection

of functions F and a map T : `∞(F) → R2 described by equations (1.25), (1.26), (1.28),

(1.29), and (1.30) such that

(γ̂L, γ̂H) = T (Pn), (γL, γH) = T (P )
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The set F consists of the functions in Fc, F cc , and the coordinate functions defining η, mul-

tiplied by various indicator functions. It is formally defined in appendix 1.9.3. Assumptions

1, 2, and 3, suffice to show F is Donsker and T (·) is continuous at P , and therefore that the

esimators are consistent:

(γ̂L, γ̂H) = T (Pn)
p→ T (P ) = (γL, γH) (1.33)

The map T (·) is not only continuous, but Hadamard directionally differentiable. An applica-

tion of the functional delta method gives the conclusion
√
n((γ̂L, γ̂H)− (γL, γH)) converges

in distribution, a result stated formally in theorem 1.5.2 below.

In order to build hypothesis tests or construct confidence intervals based on the asymp-

totic distribution of
√
n((γ̂L, γ̂H) − (γL, γH)), one must be able to estimate the asymptotic

distribution. This is possible under assumptions 1, 2, and 3, with a procedure described in

section 1.5.2.2. Under an additional assumption, a straightforward bootstrap will do. For

each instance of the restricted dual problem used in defining T (·), the set of maximizers

Ψc(P1|x, P0|x) ≡ arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ) (1.34)

is nonempty. If the solutions are suitably unique for each instance, the map T (·) is fully

Hadamard differentiable at P and a straightforward bootstrap will consistently estimate the

asymptotic distribution. Assumption 4 states this high-level uniqueness condition, while the

following lemma 1.5.1 gives low-level sufficient conditions for it to hold. Let Yd,x be the

support of Y conditional on D = d and X = x, and 1Yd,x(y) = 1{y ∈ Yd,x} be the indicator

function for this set.

Assumption 4 (Unique solutions). For each x ∈ X , each c ∈ {cL, cH}, and any
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(ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1|x, P0|x), there exists s ∈ R such that

1Y1,x × ϕ1 = 1Y1,x × (ϕ2 + s) and 1Y0,x × ψ1 = 1Y0,x × (ψ2 − s)

P -almost surely.

Lemma 1.5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(y1, y0) that is continuously differentiable,

and

(ii) for each (d, x), the support of Pd|x is Yd,x, which is a bounded interval.

Then assumption 4 holds.

When treatment is exogenous, condition (ii) of lemma 1.5.1 simplifies to the assumption

that the distribution of Yd | X = x has bounded support [y`d,x, y
u
d,x]. In a setting with

instruments, this condition requires the support of Y1 for compliers is a bounded interval

containing the support of Y1 for always-takers, and the support of Y0 for compliers is a

bounded interval containing the support of Y0 for never-takers.

Assumption 4 can hold even when the conditions of lemma 1.5.1 do not. For example,

when the parameter of interest is the cumulative distribution function of the treatment

effects evaluated at a point and assumption 2 (ii) is satisfied, the dual problem is essentially

optimizing over the difference of CDFs (see remark 1.4.1). Although the cost functions are

not continuously differentiable, it is still plausible for this optimization problem to have

a unique solution. For further discussion of uniqueness of the dual solutions of optimal

transport, see Staudt et al. (2022).

The following theorem gives the main weak convergence result.

Theorem 1.5.2 (Weak convergence). Suppose assumptions 1, 2, and 3 hold, and let G be

the weak limit of
√
n(Pn − P ) in `∞(F). Then T is Hadamard directionally differentiable at
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P tangentially to the support of G, and

√
n((γ̂L, γ̂H)− (γL, γH)) =

√
n(T (Pn)− T (P ))

L→ T ′P (G)

If assumption 4 also holds, then T ′P is linear on the support of G and T ′P (G) is bivariate

normal.

1.5.2 Inference

To make use of theorem 1.5.2 for inference, this section develops methods of estimating the

law of T ′P (G) by utilizing the bootstrap. The “exchangeable bootstrap” procedures discussed

in van der Vaart & Wellner (1997) are computationally convenient. These procedures define

a new map P∗n ∈ `∞(F) pointwise with

P∗n(f) =
1

n

n∑
i=1

Wif(Yi, Di, Zi, Xi) (1.35)

for nonnegative random variables {Wi}ni=1 independent of the data {Yi, Di, Zi, Xi}ni=1, and

satisfying technical conditions omitted here. Two notable examples include the nonpara-

metric bootstrap of Efron (1979) and the “Bayesian” bootstrap of Rubin (1981). Either

bootstrap can be used to estimate the asymptotic distribution. The Bayesian bootstrap may

be preferable in small samples for reasons discussed below.

Definition 1.5.1 (Nonparametric bootstrap). Let (W1, . . . ,Wn) ∼ Multinomial(n, (1/n, . . .

, 1/n)) be independent of the data {Yi, Di, Zi, Xi}ni=1. Define P∗n ∈ `∞(F) pointwise with

(1.35).

Definition 1.5.2 (Bayesian bootstrap). Let {ξi}ni=1 be i.i.d. exponentially distributed ran-

dom variables with mean 1, independent of the data {Yi, Di, Zi, Xi}ni=1. Set

Wi = ξi/(n
−1
∑n

i=1 ξi), and define P∗n ∈ `∞(F) pointwise with (1.35).
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The map P∗n in (1.35) can be used to compute (γ̂L∗, γ̂H∗) = T (P∗n) in much the same way

that T (Pn) is computed. Specifically, bootstrap analogues of p̂d,x,z, p̂x,z, and p̂x are given by

p̂∗d,x,z =
1

n

n∑
i=1

Wi1d,x,z(Di, Xi, Zi), p̂∗x,z =
1

n

n∑
i=1

Wi1x,z(Xi, Zi), p̂∗x =
1

n

n∑
i=1

Wi1x(Xi),

and the bootstrap analogue of ŝx is

ŝ∗x =
(p̂∗1,x,1/p̂

∗
x,1 − p̂∗1,x,0/p̂∗x,0)p̂∗x∑

x′(p̂
∗
1,x′,1/p̂

∗
x′,1 − p̂∗1,x′,0/p̂∗x′,0)p̂∗x′

The maps P̂d|x have bootstrap analogues

P̂ ∗d|x(f) =
P∗n(1d,x,d × f)/p̂∗x,d − P∗n(1d,x,1−d × f)/p̂∗x,1−d

p̂∗d,x,d/p̂
∗
x,d − p̂∗d,x,1−d/p̂∗x,1−d

=
n∑
i=1

ω∗d,x,ifi

where fi = f(Yi) and ω∗d,x,i are bootstrap versions of the weights in (1.27):

ω∗d,x,i =
Wi

n
×
1d,x,d(Di, Xi, Zi)/p̂

∗
x,d − 1d,x,1−d(Di, Xi, Zi)/p̂

∗
x,1−d

p̂∗d,x,d/p̂
∗
x,d − p̂∗d,x,1−d/p̂∗x,1−d

(1.36)

Finally, (γ̂L∗, γ̂H∗) can be computed with

θ̂L∗x = θL(P̂ ∗1|x, P̂
∗
0|x), θ̂H∗x = θH(P̂ ∗1|x, P̂

∗
0|x), (1.37)

θ̂L∗ =
∑
x

ŝ∗xθ̂
L∗
x , θ̂H∗ =

∑
x

ŝ∗xθ̂
H∗
x , (1.38)

γ̂L∗ = gL(θ̂L∗, θ̂H∗, η̂∗), γ̂H∗ = gH(θ̂L∗, θ̂H∗, η̂∗) (1.39)

1.5.2.1 Simple bootstrap with full differentiability

Under assumption 4, estimating the distribution of T ′P (G) is straightforward.

Theorem 1.5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P∗n be given by definition

25



1.5.1 or 1.5.2. Then conditional on {Yi, Di, Zi, Xi}ni=1,

√
n(T (P∗n)− T (Pn))

L→ T ′P (G)

in outer probability.

It is worth emphasizing the computationally convenience of the bootstrap P∗n given in

(1.35) when treatment is exogenous. The weights given in display (1.36) simplify to

ω∗d,x,i =
Wi

n
× 1{Di = d,Xi = x}

p̂∗x,d
(1.40)

As these weights are nonnegative and sum to one, P̂ ∗d|x is a probability distribution. Ac-

cordingly, the function classes Fc and F cc can be ignored when computing θL(P̂ ∗1|x, P̂
∗
0|x) and

θH(P̂ ∗1|x, P̂
∗
0|x) for the same reasons discussed above.

A researcher utilizing the nonparametric bootstrap in a small sample runs the risk of

a boostrap draw including no observations with (Di, Xi) = (d, x). This would result in

the formula in (1.40) attempting to divide by zero. This problem cannot arise when using

the Bayesian bootstrap suggested in 1.5.2; in this procedure Wi > 0 for each i, and thus

p̂∗x,d = 1
n

∑n
i=1 Wi1{Di = d,Xi = x} > 0 as long as p̂d,x > 0.

1.5.2.2 Alternative for directional differentiability

The solutions to optimal transport may not be unique as assumption 4 requires. As empha-

sized in the statement of theorem 1.5.2, assumption 4 is not needed to obtain the asymptotic

distribution of the estimators – but a straightforward bootstrap may not consistently esti-

mate that limiting distribution. When in doubt, researchers can make use of an alternative

procedure based on the results of Fang & Santos (2019) and described below.

Additional notation is needed to describe this alternative. Let η
(k)
d,x ≡ Pd|x(η

(k)
d ), and T1(·)
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denote the “first stage” function computing P1|x, P0|x, η1,x, η0,x, and sx for each x:

T1(P ) =
({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
Here {ax}x∈X = (ax1 , . . . , axM ). Let {κn}∞n=1 be a sequence in R satisfying κn ↑ ∞ and

κn/
√
n→ 0. Define the set of empirical approximate maximizers:

Ψ̂c,x ≡
{

(ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ) ; OTc(P̂1|x, P̂0|x) ≤ P̂1|x(ϕ) + P̂0|x(ψ) +
κn√
n

}
.

Use this set to define the maps

ÔT
′
c,x(H1, H0) = sup

(ϕ,ψ)∈Ψ̂c,x

H1(ϕ) +H0(ψ)

and

T̂ ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
ÔT

′
cL,x

(H1,x, H0,x),−ÔT
′
cH ,x

(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)
.

The alternative procedure uses the conditional law of

D̂4D̂3T̂
′
2,T1(P )

(√
n(T1(P∗n)− T1(Pn))

)
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given the data, where D̂4 and D̂3 are matrices given by

D̂3 =
[
D̂3,x1 D̂s,x2 . . . D̂s,xM

]
(2+dη)×M(3+dη)

, D̂3,x =


ŝx 0 0 0 θ̂Lx

0 ŝx 0 0 θ̂Hx

0 0 ŝxIK1 0 η̂1,x

0 0 0 ŝxIK0 η̂0,x


(2+dη)×(3+dη)

,

D4 =

∇gL(θ̂L, θ̂H , η̂)ᵀ

∇gH(θ̂L, θ̂H , η̂)ᵀ


2×(2+dη)

,

Theorem 1.5.4. Suppose assumptions 1, 2, and 3 hold, let P∗n be given by definition 1.5.1

or 1.5.2, and {κn}∞n=1 ⊆ R satisfy κn → ∞ and κn/
√
n → 0. Then conditional on

{Yi, Di, Zi, Xi}ni=1,

D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn)))

L→ T ′P (G)

in outer probability.

1.5.2.3 Confidence sets

Theorems 1.5.3 and 1.5.4 make it straightforward to conduct inference. For example, a

simple confidence set for the identified set [γL, γH ] is given by

[
γ̂L − q̂1−α/

√
n, γ̂H + q̂1−α/

√
n
]

where q̂1−α is a consistent estimator of the 1 − α quantile of max{T ′P (G)(1),−T ′P (G)(2)}.

When assumptions 1 through 4 hold, let (γ̂L∗, γ̂H∗) = T (P∗n). When assumptions 1 through

3 hold but assumption 4 is doubtful, let (γ̂L∗, γ̂H∗) = (γ̂L, γ̂H)+ 1√
n
D̂4D̂3T̂2,T1(P )(

√
n(T1(P∗n)−
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T1(Pn))). In either case, compute

q̂1−α = inf
{
q ; P

(
max

{√
n(γ̂L∗ − γ̂L),−

√
n(γ̂H∗ − γ̂H)

}
≤ q | {Yi, Di, Zi, Xi}ni=1

)
≥ 1− α

}
through simulation:

1. Compute (γ̂L, γ̂H) = T (Pn) and, if necessary, D̂4, and D̂3.

2. Generate B boostrap samples, {Wi,b}ni=1 for each b = 1, . . . , B according to definition

1.5.1 or 1.5.2. For each bootstrap sample b, compute (γ̂L∗b , γ̂H∗b ) as described above.

3. Let q̂1−α be the 1− α quantile of {max{
√
n(γ̂L∗b − γ̂L),−

√
n(γ̂H∗b − γ̂H)}Bb=1.

Under the further assumption that the cumulative distribution function of

max{T ′P (G)(1),−T ′P (G)(2)} is continuous and strictly increasing at its 1− α quantile,

lim
n→∞

P
(
[γL, γH ] ⊆

[
γ̂L − q̂1−α/

√
n, γ̂H + q̂1−α/

√
n
])

= 1− α

1.6 Simulations

This section explores the finite sample performance of the estimators through simulations,

with a focus on coverage rates of confidence sets for the identified set. For simplicity, the

data generating process is one of exogenous treatment with no covariates. An observation

consists of the vector (Y,D), where Y = DY1 + (1 − D)Y0. Treatment status D ∈ {0, 1}

is independent of (Y1, Y0), and satisfies P (D = 1) = 0.5. Potential outcomes follow with

a Kumaraswamy distribution with positive parameters ad and bd, having support [0, 1] and

cumulative distribution function

Fd(y) = P (Yd ≤ y) = 1− (1− yad)bd
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The parameter of interest is

γ = θ = P (Y1 − Y0 ≤ δ),

This parameter is chosen to facilitate computation of the true identified set. As noted in

remark 1.4.1, the optimal transport problems involved in characterizing the identified set

have simple analytical expressions. Specifically, the identified set for γ is [γL, γH ], where

γL = sup
y
{F1(y)− F0(y − δ)} , γH = 1 + inf

y
{F1(y)− F0(y − δ)}

These expressions and the closed form cdfs Fd allow the true values of γL and γH to be

computed precisely without simulation. The population cumulative distribution functions

of Y1 and Y0, as well as their difference, are displayed in Figure 1.1.

Figure 1.1: Simulation data generating process, cdfs and dual objective

As is clear from the right panel, there is a unique and well separated maximum and min-

imum of F1(y) − F0(y − δ) that imply population bounds of γL = 0.156 and γH = 0.828.
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The uniqueness of these optimizers indicate that T (·) is fully differentiable, and thus the

straightforward bootstrap described by theorem 1.5.3 consistently estimates the asymptotic

distribution.

In each simulation, an i.i.d. sample {Yi, Di}ni=1 is drawn according to the data generating

process described above. The estimators are computed as described in section 1.5:

γ̂L = OTcL(P̂1, P̂0), γ̂H = 1−OTcH (P̂1, P̂0)

where the cost functions are cL(y1, y0) = 1{y1−y0 < δ} and cH(y1, y0) = 1{y1−y0 > δ} and

optimal transport is computed as

OTc(P̂1, P̂0) = sup
{ϕi,ψj}i,j

n∑
i=1

ω1,iϕi +
n∑
j=1

ω0,jψj

s.t. ϕi + ψj ≤ c(Yi, Yj) for all 1 ≤ i, j ≤ n

3,000 bootstrap draws are used to compute the confidence set

CI =
[
γ̂L − ĉ1−α/

√
n, γ̂H + ĉ1−α/

√
n
]

with α = 0.05, following the procedures outlined in section 1.5.2.3.

It is well known that estimators optimizing over sample averages are biased in small sam-

ples (Haile & Tamer, 2003; Kreider & Pepper, 2007; Chernozhukov et al., 2013). Specifically,

the expectation of a sup over a sample average is larger than the sup over its popoulation

counterpart due to convexity of the sup function. This suggests that in small samples γ̂L

is biased upward, and γ̂H biased downward, leading to estimated bounds that are tighter

than their population counterparts. Although theorems 1.5.2 and 1.5.3 guarantee correct

coverage asymptotically, this finite sample bias can lead to undercoverage in small samples.

Table 1.1 reports the empirical bias and standard deviation of the estimator, as well as
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the empirical coverage of the confidence set, from 300 simulations.

Table 1.1: Simulations without bias correction

n
Bias St. Dev. Emp. Coverage

γ̂L γ̂H γ̂L γ̂H CI

100 0.047 -0.051 0.065 0.066 0.900

200 0.031 -0.031 0.049 0.049 0.917

300 0.030 -0.021 0.040 0.040 0.893

The bias is notable in magnitude relative to the standard deviation in these small sample

sizes. Empicial coverage is slightly below the nominal value.

The bootstrap bias correction found in Efron & Tibshirani (1994) is simple to implement

in the current setting. The finite sample bias of the lower and upper bounds is given by

E[γ̂L]−γL and E[γ̂H ]−γH respectively. These are estimated by b̂ias
L

= B−1
∑B

b=1 γ̂
L∗
b − γ̂L

and b̂ias
H

= B−1
∑B

b=1 γ̂
H∗
b − γ̂H . The bootstrap bias corrected estimate of the bounds are

given by

γ̂LBC = γ̂L − b̂ias
L
, γ̂HBC = γ̂H − b̂ias

H

The bootstrap bias correction is often found to reduce finite sample bias in simulations and to

offer a higher order refinement in various settings (Horowitz, 2001; Hahn et al., 2002). In the

context of smooth functions of sample moments, Horowitz (2001) notes that the asymptotic

distribution of the corrected estimator is the same as that of the uncorrected estimator when

B increases sufficiently quickly with n. The boostrap bias corrected confidence set for the

identified set is given by

CIBC =
[
γ̂LBC − ĉ1−α/

√
n, γ̂HBC + ĉ1−α/

√
n
]
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Table 1.2 reports the results from the same 300 simulations using this bias correction.

Table 1.2: Simulations with bias correction

n
Bias St. Dev. Emp. Coverage

γ̂LBC γ̂HBC γ̂LBC γ̂HBC CIBC

100 0.021 -0.026 0.071 0.071 0.927

200 0.013 -0.015 0.052 0.051 0.953

300 0.015 -0.007 0.042 0.042 0.957

Empirical bias is approximately halved, and coverage is close to the nominal 95%. Efron &

Tibshirani (1994) warns that the bootstrap bias correction may increase the variance of the

estimator, but in this case the standard deviation increased only marginally.

1.7 Application: National Supported Work Demonstration

This section demonstrates the estimators by revisiting the famous National Supported Work

Demonstration program (LaLonde (1986)). This program was implemented in the 1970s

with the aim of helping socially and economically disadvantaged workers obtain job skills.

Those randomly selected into the program were guaranteed a job lasting six to eighteen

months, and frequently met with a counselor to discuss performance. There was no reported

noncompliance.

The “LaLonde” sample studied in Diamond & Sekhon (2013) consists of male participants

and includes 297 treated and 425 control observations. The outcome of interest is real

earnings in 1978. Observed covariates include age, years of education, real earnings in months

13 to 24 prior to randomization, and indicators for whether a participant is a high school

dropout, black, hispanic, or married. Averages and standard deviations of these covariates

by treatment status are reported in table 1.3:
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Table 1.3: Balance table

base inc. age yrs. educ. HS dropout black hispanic married

control
3672.49 24.45 10.19 0.81 0.80 0.11 0.16

(6521.53) (6.59) (1.62) (0.39) (0.40) (0.32) (0.36)

treated
3571.00 24.63 10.38 0.73 0.80 0.09 0.17

(5773.13) (6.69) (1.82) (0.44) (0.40) (0.29) (0.37)

Note: Standard deviations in parentheses.

In this sample, the average treatment effect on 1978 real earnings is $886. It is natural

to ask whether the policy was more beneficial for those who would have low incomes in 1978

without treatment. One parameter addressing this is the OLS slope coefficient of regressing

treatment effects on a constant and Y0:

γ =
Cov(Y1 − Y0, Y0)

Var(Y0)
=
EP1,0 [(Y1 − Y0)Y0]− (EP1 [Y1]− EP0 [Y0])EP0 [Y0]

EP0 [Y
2

0 ]− (EP0 [Y0])2
.

As described in example 1.2.3, the sign of this parameter describes who receives larger

benefits from treatment. Specifically, γ < 0 implies those with below average untreated

outcomes tend to see above average treatment effects.

Discretized versions of baseline income and age are found to be informative covariates.

Baseline income is binned as [0, 0], (0, 4000], or (4000,∞) while age is binned as [16, 23],

or (23,∞). X is the cartesian product of bins. The point estimates for the bounds are

(γ̂L, γ̂H) = (−1.725,−0.003).3 The negative upper bound point estimate suggests that the

treatment was especially beneficial for participants who would otherwise have incomes below

average (for the eligible population). The bias-corrected point estimates based on 3,000

bootstrap draws are (γ̂LBC , γ̂
H
BC) = (−1.731, 0.041), and the bias-corrected 95% confidence

set for the identified set is [−1.956, 0.266]. These suggest that γ may still be zero or slightly

3Covariates are found to be informative, especially for the upper bound. Ignoring covariates, the lower
bound point estimate is −1.783 and the upper bound point estimate is 0.190.
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positive once accounting for sample uncertainty.

This parameter could also be considered conditional on each of the covariate values:

γx ≡
Cov(Y1 − Y0, Y0 | X = x)

Var(Y0 | X = x)
.

Bias corrected point estimates and confidence intervals for each γx are reported in Table 1.4.

Table 1.4: Estimates conditional on covariate values

age base inc. γ̂LBC γ̂HBC CIBC n

(16, 23]

0 -1.97 0.28 [-2.26, 0.56] 140

(0, 4000] -1.74 -0.15 [-1.9, 0.01] 141

(4000, ∞) -1.45 -0.44 [-1.63, -0.27] 90

(23, 55]

0 -2.13 0.81 [-2.65, 1.33] 187

(0, 4000] -1.39 -0.16 [-1.93, 0.38] 56

(4000, ∞) -1.66 0.03 [-2.08, 0.45] 108

It is worth noting the upper bound on the confidence set is negative for young men with

baseline income above $4, 000, and essentially zero for young men with positive income below

$4, 000. For these subpopulations, those who would have had below average incomes in 1978

tended to see above average benefits from treatment.

1.8 Conclusion

This paper studies a large class of causal parameters that depend on a moment of the joint

distribution of potential outcomes, in a setting with binary treatment, a binary instrument

satisfying a monotonicity restriction, and finitely supported covariates. The sharp identified

set of such parameters is characterized with the value of optimal transport problems. Es-

timators based on this identification are
√
n-consistent and converge in distribution under
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mild assumptions, and inference procedures based on the bootstrap are straightforward and

computationally convenient.

1.9 Appendix

1.9.1 Appendix: identification

Following Kitagawa (2015), let T denote the “type” of a unit:

T =



a, always-taker, if (D1, D0) = (1, 1)

c, complier, if (D1, D0) = (1, 0)

n, never-taker, if (D1, D0) = (0, 0)

df, defier, if (D1, D0) = (0, 1)

(1.41)

Note that the primitives (Y1, Y0, D1, D0, Z,X) are equivalent to (Y1, Y0, T, Z,X).

1.9.1.1 Main identification results

Lemma 1.9.1 (Identification of moments). Suppose assumptions 1 and 2 hold. Then the

sharp identified set for θ is [θL, θH ].

Proof. Let T be as defined in (1.41), and note that the primitives of the model

(Y1, Y0, D1, D0, Z,X) are equivalent to (Y1, Y0, T, Z,X). Moreover, the event D1 > D0 is the

event T = c; thus Pd|x is the distribution of Yd | T = c,X = x.

In steps:

1. The identified set for (P1,0|x1 , . . . , P1,0|xM ), the conditional distributions of (Y1, Y0) |

T = c,X = x for each x ∈ X = {x1, . . . , xM}, is Π(P1|x1 , P0|x1)× . . .×Π(P1|xM , P0|xM ).
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That (P1,0|x1 , . . . , P1,0|xM ) ∈ Π(P1|x1 , P0|x1)× . . .×Π(P1|xM , P0|xM ) is immediate. To see

that any element of Π(P1|x1 , P0|x1)× . . .×Π(P1|xM , P0|xM ) is possible given the assump-

tions and distribution of the observables (Y,D,Z,X), fix a distribution of the observ-

ables generated by a distribution of the primitives consistent with the assumptions.

Note that the distribution of observables is summarized by P (D = d, Z = z,X = x)

for each (d, z, x) and the conditional distributions

Y | D = d, Z = z,X = x

Use this observation and the claims of lemma 1.9.5 to see that any two distributions

of the primitives (Y1, Y0, T, Z,X) (consistent with the assumptions), sharing the same

distribution of (T, Z,X), and the same marginal, conditional distributions for

Y1 | T = a,X = x Y0 | T = n,X = x

Y1 | T = c,X = x, Y0 | T = c,X = x

will produce this distribution of observables. Thus, replacing (P1,0|x1 , . . . , P1,0|xM ) from

the distribution of primitives with any

(πx1 , . . . , πxM ) ∈ Π(P1|x1 , P0|x1)× . . .× Π(P1|xM , P0|xM )

will generate the same observed distribution of (Y,D,Z,X), without violating assump-

tion 1 or 2. The claim follows.

2. The identified set for (θx1 , . . . , θxM ) ∈ RM is [θLx1 , θ
H
x1

]× . . .× [θLxM , θ
H
xM

].

Recall that θx = E[c(Y1, Y0) | X = x], and let ΘI,x denote its identified set. Note that
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the previous step implies

ΘI,x =
{
t ∈ R ; t = Eπx [c(Y1, Y0)] for some πx ∈ Π(P1|x, P0|x)

}
Π(P1|x, P0|x) is convex. Notice that for any λ ∈ (0, 1) and π1

x, π
0
x ∈ Π(P1|x, P0|x),

Eλπ1
x+(1−λ)π0

x
[c(Y1, Y0)] = λEπ1

x
[c(Y1, Y0)] + (1 − λ)Eπ0

x
[c(Y1, Y0)]. Together these imply

ΘI,x is convex.

It suffices to show that for any x, ΘI,x = [θLx , θ
H
x ] There are two cases:

(i) If assumption 2 (i) holds, then for each x,

θLx = OTc(P1|x, P0|x) = inf
πx∈Π(P1|x,P0|x)

Eπx [c(Y1, Y0)]

θHx = −OT−c(P1|x, P0|x) = sup
πx∈Π(P1|x,P0|x)

Eπx [c(Y1, Y0)]

Since c is continuous, lemma 1.9.30 implies the optimal transport problems are

attained, say by πLx and πHx respectively. It follows that θLx , θ
H
x ∈ ΘI,x, and it is

clear from their definitions that they bound ΘI,x. Since ΘI,x is convex, it follows

that ΘI,x = [θLx , θ
H
x ].

(ii) If Assumption 2 (ii) holds, then

cL(y1, y0) = 1{y1 − y0 < δ}, cH(y1, y0) = 1{y1 − y0 > δ},

θLx = OTcL(P1|x, P0|x), θHx = 1−OTcH (P1|x, P0|x)

Let πLx , π
H
x ∈ Π(P1|x, P0|x) be such that θLx = EπLx [1{Y1−Y0 < δ}] = PπLx (Y1−Y0 <

δ) and θHx = 1−EπHx [1{Y1−Y0 > δ}] = PπHx (Y1−Y0 ≤ δ). Notice that θHx ∈ ΘI,x.
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Furthermore, 1{y1 − y0 < δ} ≤ 1{y1 − y0 ≤ δ} implies

θLx = inf
πx∈Π(P1|x,P0|x)

Eπx [1{Y1 − Y0 < δ}] ≤ inf
πx∈Π(P1|x,P0|x)

Eπx [1{Y1 − Y0 ≤ δ}]

and thus θLx is a lower bound for ΘI,x. Since ΘI,x is convex, it suffices to show

that θLx ∈ ΘI,x.

Corollary 1.9.44 implies θLx = PπLx (Y1 − Y0 < δ) = supy
{
F1|x(y)− F0|x(y − δ)

}
.

Moreover, Villani (2009) theorem 5.10 part (iii) implies the dual problem

supy
{
F1|x(y)− F0|x(y − δ)

}
is attained as well, say by y∗. Thus

∫
1{y1−y0 ≤ δ}dπLx (y1, y0) =

∫
1{y1 ≤ y∗}dP1|x(y1)−

∫
1{y0 ≤ y∗−δ}dP0|x(y0)

(1.42)

Next, notice that

1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ} ≤ 1{y1 − y0 < δ} (1.43)

which holds for all (y1, y0), must hold with equality πLx -almost surely. Indeed, let

N be the set where the inequality in (1.43) is strict and suppose N is πLx -non-
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negligible. Since πLx ∈ Π(P1|x, P0|x),

∫
1{y1 ≤ y∗}dP1|x(y1)−

∫
1{y0 ≤ y∗ − δ}dP0|x(y0)

=

∫
1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0)

=

∫
N

1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0)

+

∫
Nc

1{y1 ≤ y∗} − 1{y0 ≤ y∗ − δ}dπLx (y1, y0)

<

∫
N

1{y1 − y0 < δ}dπLx (y1, y0) +

∫
Nc

1{y1 − y0 < δ}dπLx (y1, y0)

=

∫
1{y1 − y0 ≤ δ}dπLx (y1, y0)

contradicts (1.42). This implies that πLx concentrates on

{(y1, y0) ; y1 ≤ y∗, y0 > y∗ − δ, y1 − y0 < δ}︸ ︷︷ ︸
both sides of (1.43) equal 1

∪ {(y1, y0) ; y1 > y∗, y0 > y∗ − δ, y1 − y0 ≥ δ}︸ ︷︷ ︸
both sides of (1.43) equal 0

∪ {(y1, y0) ; y1 ≤ y∗, y0 ≤ y∗ − δ, y1 − y0 ≥ δ}︸ ︷︷ ︸
both sides of (1.43) equal 0

Notice the only point in the set {(y1, y0) ; y1−y0 = δ} where πLx could put positive

mass is the point (y1, y0) = (y∗, y∗ − δ). But since P1|x has a continuous CDF,

0 ≤ πLx ({(y∗, y∗ − δ)}) ≤ πLx ({y∗} × Y0) = P1|x({y∗}) = 0

Thus PπLx (Y1−Y0 = δ) = 0, and so PπLx (Y1−Y0 ≤ δ) = PπLx (Y1−Y0 < δ) = θL(x).

Thus θLx ∈ ΘI,x, and hence ΘI,x = [θL(x), θH(x)].

Therefore the identified set for θx is [θLx , θ
H
x ]. It follows from this and step one above

that the identified set (θx1 , . . . , θxM ) is [θLx1 , θ
H
x1

]× . . .× [θLxM , θ
H
xM

].
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3. Recall that θ = E[c(Y1, Y0) | T = c] = E[E[c(Y1, Y0) | T = c,X]] =
∑

x sxθx. Since

sx = P (X = x | T = c) is point identified for each x, it follows from step two above

that the identified set for θ is [θL, θH ] where

θL =
∑
x

sxθ
L
x , θH =

∑
x

sxθ
H
x

This concludes the proof.

Theorem 1.4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3

are satisfied. Then the sharp identified set for γ is [γL, γH ].

Proof. Lemma 1.9.1 shows that under assumptions 1 and 2, the sharp identified set for θ is

[θL, θH ]. Let ΓI be the identified set for γ, and note that

ΓI = {γ ∈ R ; γ = g(t, η) for some t ∈ [θL, θH ]}

Assumption 2 implies c is bounded; under assumption 2 (i) the continuous c : Y×Y → R

takes a maximum and minimum on the compact set Y×Y , while under assumption 2 (ii) the

cost function only takes values 0 or 1. It follows that θL and θH are finite and thus [θL, θH ]

is compact.

Assumption 3 (ii) is that g(·, η) is continuous, and thus the extreme value theorem implies

γL = inft∈[θL,θH ] g(t, η) and γH = supt∈[θL,θH ] g(t, η) are both elements of ΓI . The intermediate

value theorem then implies ΓI = [γL, γH ].

1.9.1.2 Quantiles

Example 1.2.5 considers the parameter qτ solving

P (Y1 − Y0 ≤ qτ | D1 > D0) = τ
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As noted in that example, the sharp identification results for P (Y1 − Y0 ≤ δ | D1 > D0)

can be adapted to characterize the sharp identified set for qτ . First view the bounds on the

cumulative distribution function as functions of δ:

cL,δ(y1, y0) = 1{y1 − y0 < δ}, cH,δ(y1, y0) = 1{y1 − y0 > δ},

θLx (δ) = OTcL,δ(P1|x, P0|x), θHx (δ) = 1−OTcH,δ(P1|x, P0|x)

θL(δ) =
∑
x

sxθ
L
x (δ) θH(δ) =

∑
x

sxθ
H
x (δ)

Let QI,τ denote the sharp identified set for qτ .

Lemma 1.9.2 (Identification of qτ ). Suppose assumptions 1 and 2 (ii) hold. Then q ∈ QI,τ

if and only if θL(q) ≤ τ ≤ θH(q).

Proof. By definition, q ∈ ΓI,τ if and only if there exists a distribution of the primitives, π,

consistent with the observed distribution, such that Pπ(Y1 − Y0 ≤ q) = τ . Lemma 1.9.1

shows that θL(q) ≤ τ ≤ θH(q) if and only if there exists a distribution of the primitives, π,

such that Pπ(Y1 − Y0 ≤ q) = τ . This concludes the proof.

Lemma 1.9.2 implies that inverting a test of H0 : θL(q) ≤ τ ≤ θH(q) against the alterna-

tive H1 : τ < θL(q) or θH(q) < τ will lead to valid confidence sets for qτ .

Consider instead defining qτ to be the closed subset of R given by

qτ = [inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, inf{y ; P (Y1 − Y0 ≤ y) > τ}]

Note that this qτ is the singleton inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, unless P (Y1 − Y0 ≤ ·) is flat

when equal to τ , in which case it equals the τ -level set {y ; P (Y1−Y0 ≤ y) = τ}. (Compare

Ehm et al. (2016), who define the τ -th quantile equivalently as qτ = [sup{y ; P (Y1 − Y0 ≤

y) < τ}, sup{y ; P (Y1 − Y0 ≤ y) ≤ τ}].)
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Lemma 1.9.3 (Identification: τ -th quantile). Let qτ be defined as

qτ ≡ [inf{y ; P (Y1 − Y0 ≤ y) ≥ τ}, inf{y ; P (Y1 − Y0 ≤ y) > τ}] (1.44)

Suppose assumption 1 and 2 (ii) hold, and let QI,τ denote the identified set of qτ defined

by (1.44). Then q ∈ QI,τ if and only if θL(q) ≤ τ ≤ θH(q).

Proof. Suppose θL(q) ≤ τ ≤ θH(q). Lemma 1.9.1 implies there exists a distribution π of

the primitives consistent with assumption 2 (ii) such that Pπ(Y1 − Y0 ≤ q) = τ . Thus

q ∈ [inf{y ; Pπ(Y1 − Y0 ≤ y) ≥ τ}, inf{y ; Pπ(Y1 − Y0 ≤ y) > τ}] and hence q ∈ QI,τ .

Before showing the other direction, we next show that assumption 2 (ii) implies θL(δ) is

continuous. Specifically, apply corollary 1.9.44 to find θLx (δ) = supy{F1|x(y) − F0|x(y − δ)}.

So for any δ, δ′,

θLx (δ)− θLx (δ′) = sup
y
{F1|x(y)− F0|x(y − δ)} − sup

y
{F1|x(y)− F0|x(y − δ′)}

≤ sup
y

{
F0|x(y − δ′)− F0|x(y − δ)

}
≤ sup

y

∣∣F0|x(y − δ′)− F0|x(y − δ)
∣∣

and thus |θLx (δ)−θLx (δ′)| ≤ supy
∣∣F0|x(y − δ′)− F0|x(y − δ)

∣∣. Recall that any continuous CDF

is in fact uniformly continuous, and so F0|x is in fact uniformly continuous. Let ε > 0, choose

η > 0 such that for any y, y′ ∈ R with |y − y′| < η, one has |F0|x(y) − F0|x(y
′)| < ε/2, and

notice that

|δ − δ′| < η =⇒ sup
y

∣∣F0|x(y − δ′)− F0|x(y − δ)
∣∣ ≤ ε/2 < ε

This shows θLx (δ) is continuous, and so θL(δ) =
∑

x sxθ
L
x is continuous.

Return to showing the other direction, through the contrapositive. Suppose it is not the
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case that θL(q) ≤ τ ≤ θH(q). There are two possibilities:

1. Suppose θH(q) < τ . Then there is no distribution π of the primitives such that Pπ(Y1−

Y0 ≤ q) ≥ τ , hence there is no distribution where q ∈ [inf{y ; P (Y1 − Y0 ≤ y) ≥

τ}, inf{y ; P (Y1 − Y0 ≤ y) > τ}] and thus q 6∈ QI,τ .

2. Suppose τ < θL(q). If one further supposes that q ∈ QI,τ , then θL(·) would have a

jump discontinuity at q, contradicting the continuity shown above.

Specifically, if τ < θL(q) and q ∈ QI,τ , then there exists a distribution π of the

primitives such that Pπ(Y1 − Y0 ≤ q) > τ and q ∈ [inf{y ; Pπ(Y1 − Y0 ≤ y) ≥

τ}, inf{y ; Pπ(Y1−Y0 ≤ y) > τ}], implying that Pπ(Y1−Y0 ≤ ·) jumps at q from below

τ to above θL(q):

lim
ε→0

Pπ(Y1 − Y0 ≤ q − ε) < τ < θL(q) ≤ Pπ(Y1 − Y0 ≤ q)

This jump discontinuity at q is at least of size ε = θL(q) − τ > 0. But then θL(·)

would have a jump discontinuity of at least size ε at q as well, a contradiction of the

continuity of θL(·) shown above.

Thus if τ < θL(q), then q 6∈ QI,τ .

In either case, q 6∈ QI,τ . This completes the proof.

1.9.1.3 Additional identification lemmas

The lemmas below contain results well known in the literature. They are included here with

proofs for completeness.

Lemma 1.9.4. Let P1 be any distribution and P0 be degenerate at ỹ0 ∈ R. Then the only
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possible coupling of P1 and P0 is characterized by the cumulative distribution function

P (Y1 ≤ y1, Y0 ≤ y0) =


P (Y1 ≤ y1) if y0 ≥ ỹ0

0 if y0 < ỹ0

Proof. First suppose y0 < ỹ0. Then 0 ≤ P (Y1 ≤ y1, Y0 ≤ y0) ≤ P (Y0 ≤ y0) = 0.

Next suppose y0 ≥ ỹ0. Then 1 ≥ P ({Y1 ≤ y1} ∪ {Y0 ≤ y0}) ≥ P (Y0 ≤ y0) = 1 implies

that

P (Y1 ≤ y1, Y0 ≤ y0) = P (Y1 ≤ y1) + P (Y0 ≤ y0)︸ ︷︷ ︸
=1

−P ({Y1 ≤ y1} ∪ {Y0 ≤ y0})︸ ︷︷ ︸
=1

= P (Y1 ≤ y1)

which completes the proof.

Lemma 1.9.5 below summarizes the empirical content of the model described in assump-

tion 1. In particular, it implies that any two distributions of the primitives consistent with

assumption 1 that share the same marginal distribution of (T, Z,X) and marginal, condi-

tional distributions of

Y1 | T = a,X = x Y0 | T = n,X = x

Y1 | T = c,X = x, Y0 | T = c,X = x

will produce the same distribution of observables.
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Lemma 1.9.5. Suppose assumpion 1 holds. Then

P (D = 1 | Z = 0, X = x) = P (T = a | X = x)

P (D = 0 | Z = 1, X = x) = P (T = n | X = x)

P (D = 1 | Z = 1, X = x) = P (T ∈ {a, c} | X = x)

P (D = 0 | Z = 0, X = x) = P (T ∈ {c, n} | X = x)

and for any integrable function f ,

E[f(Y ) | D = 1, Z = 1, X = x] = E[f(Y1) | T ∈ {a, c}, X = x]

E[f(Y ) | D = 0, Z = 0, X = x] = E[f(Y0) | T ∈ {c, n}, X = x]

Furthermore,

if P (D = 1 | Z = 0, X = x) > 0,

then E[f(Y ) | D = 1, Z = 0, X = x] = E[f(Y1) | T = a,X = x]

if P (D = 0 | Z = 1, X = x) > 0,

then E[f(Y ) | D = 0, Z = 1, X = x] = E[f(Y0) | T = n,X = x]

Proof. Assumption 1 (ii) implies 1{D1 = 0, D0 = 1} = 0. The definition of T in (1.41) then

implies

1{D0 = 1} = 1{D1 = 1, D0 = 1}+
((((((((((
1{D1 = 0, D0 = 1} = 1{T = a}

1{D1 = 0} = 1{D1 = 0, D0 = 0}+
((((((((((
1{D1 = 0, D0 = 1} = 1{T = n}

1{D1 = 1} = 1{D1 = 1, D0 = 1}+ 1{D1 = 1, D0 = 0} = 1{T ∈ {a, c}}

1{D0 = 0} = 1{D1 = 1, D0 = 0}+ 1{D1 = 0, D0 = 0} = 1{T ∈ {c, n}}
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These observations, equation (1.2), and assumption 1 (i) imply

P (D = 1 | Z = 0, X = x) = P (D0 = 1 | X = x) = P (T = a | X = x),

P (D = 0 | Z = 1, X = x) = P (D1 = 0 | X = x) = P (T = n | X = x),

P (D = 1 | Z = 1, X = x) = P (D1 = 1 | X = x) = P (T ∈ {a, c} | X = x), and

P (D = 0 | Z = 0, X = x) = P (D0 = 0 | X = x) = P (T ∈ {c, n} | X = x)

Note the first two equalities can be summarized as P (D = d | Z = z,X = x) = P (Dz = d |

X = x).

Next, let f : R→ R be integrable. Assumption 1 (i) and equations (1.1) and (1.2) imply

that for any (d, z, x),

P (D = d | Z = z,X = x)E[f(Y ) | D = d, Z = z,X = x]

= P (Dz = d | X = x)E[f(Yd) | Dz = d,X = x]

and since P (D = d | Z = z,X = x) = P (Dz = d | X = x), this implies

0 = P (D = d | Z = z,X = x)
(
E[f(Y ) | D = d, Z = z,X = x]− E[f(Yd) | Dz = d,X = x]

)
(1.45)

Assumption 1 (iii) implies

P (D = 1 | Z = 1, X = x) = P (T ∈ {a, c} | X = x) ≥ P (T = c | X = x) > 0

P (D = 0 | Z = 0, X = x) = P (T ∈ {c, n} | X = x) ≥ P (T = c | X = x) > 0
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Use strict positivity of P (D = 1 | Z = 1, X = x) and P (D = 0 | Z = 0, X = x) to see that

E[f(Y ) | D = 1, Z = 1, X = x] = E[f(Y1) | D1 = 1, X = x] = E[f(Y1) | T ∈ {a, c}, X = x]

E[f(Y ) | D = 0, Z = 0, X = x] = E[f(Y0) | D0 = 0, X = x] = E[f(Y0) | T ∈ {c, n}, X = x]

Similarly, (1.45) implies

if P (D = 1 | Z = 0, X = x) > 0,

then E[f(Y ) | D = 1, Z = 0, X = x] = E[f(Y1) | T = a,X = x]

if P (D = 0 | Z = 1, X = x) > 0,

then E[f(Y ) | D = 0, Z = 1, X = x] = E[f(Y0) | T = n,X = x]

this concludes the proof.

Lemma 1.2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distribu-

tions of Yd conditional on D1 > D0 and X = x, denoted Pd|x, are identified by

EPd|x [f(Yd)] ≡ E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

(1.4)

for any integrable function f . Furthermore, the distribution of X conditional on D1 > D0 is

identified by

sx ≡ P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

(1.5)
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Proof. First notice that using T as defined in (1.41),

E[f(Yd) | D1 > D0, X = x] = E[f(Yd) | T = c,X = x] =
E[f(Yd)1{T = c} | X = x]

P (T = c | X = x)
(1.46)

Now notice that

D1 −D0 = (1−D0)− (1−D1) = 1{Dd = d} − 1{D1−d = d}

for either d ∈ {1, 0}. Monotonicity (assumption 1 (ii)) implies that this is an indicator for

T = c:

D1 −D0 = 1{D1 = 1, D0 = 0} = 1{T = c}

So,

E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

= E[f(Yd)1{Dd = d} | X = x]− E[f(Yd)1{D1−d = d} | X = x]

= E[f(Yd)(1{Dd = d} − 1{D1−d = d}) | X = x]

= E[f(Yd)1{T = c} | X = x] (1.47)

Lemma 1.9.5 shows that

P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)

= P (T ∈ {a, c} | X = x)− P (T = a | X = x) = P (T = c | X = x)
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and similarly,

P (D = 0 | Z = 0, X = x)− P (D = 0 | Z = 1, X = x)

= P (T ∈ {c, n} | X = x)− P (T = n | X = x) = P (T = c | X = x)

Thus for either d ∈ {1, 0},

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x) = P (T = c | X = x). (1.48)

It follows from (1.46), (1.47), and (1.48) that

EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | X = x, Z = d]− E[f(Y )1{D = d} | X = x, Z = 1− d]

P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)
,

and from (1.48) that

sx = P (X = x | D1 > D0) = P (X = x | T = c) =
P (T = c | X = x)P (X = x)∑
x′ P (T = c | X = x′)P (X = x′)

=
[P (D = 1 | X = x, Z = 1)− P (D = 1 | X = x, Z = 0)]P (X = x)∑
x′ [P (D = 1 | X = x′, Z = 1)− P (D = 1 | X = x′, Z = 0)]P (X = x′)

.

This concludes the proof.

1.9.2 Appendix: properties of optimal transport

Suppose that strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0) (1.49)
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for sets of universally bounded functions Fc ⊆ L1(P1) and F cc ⊆ L1(P0). See lemmas 1.9.38

and 1.9.42 for examples.4 Then for suitable sets F1 and F0 with Fc ⊆ F1 and F cc ⊆ F0, the

map OTc(P1, P0) = infπ∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) can be viewed as

OTc : `∞(F1)× `∞(F0)→ R, OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ) (1.50)

where Pd(f) =
∫
f(yd)dPd(yd) = EPd [f(Yd)].

The functional in (1.50) is defined over the familiar Banach space `∞(F1)× `∞(F0). This

makes it straightforward to show that optimal transport, as a functional from this space to

R, has certain desirable properties.

1.9.2.1 Continuity

Lemma 1.9.6 (Optimal transport is uniformly continuous). Suppose that for some uni-

versally bounded Fc ⊆ L1(P1) and F cc ⊆ L1(P0), (1.49) holds. Then the optimal transport

functional, given by (1.50), is uniformly continuous.

Proof. Define

S : `∞(F1)× `∞(F0)→ `∞(F1 ×F0), S(H1, H0)(ϕ, ψ) = H1(ϕ) +H0(ψ)

Ξc : `∞(F1 ×F0)→ R, Ξc[G] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

G(ϕ, ψ)

and notice that OTc(H1, H0) = Ξc(S(H1, H0)). Since s : R2 → R given by s(h1, h2) = h1 +h2

4 Fc and Fcc are typically found with the following steps:

(i) Start with a known strong duality result; for some Φcs ⊆ Φc,

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φcs

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0)

(ii) Compute Fc(Φcs) and Fcc (Φcs) defined by (1.85).

(iii) Notice that Fc(Φcs) ⊆ Fc and Fcc (Φcs) ⊆ Fcc for known and easy to study sets Fc, Fcc
Lemma 1.9.36 and remark 1.9.2 are useful to ensure Fc and Fcc are universally bounded.
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is uniformly continuous, we have that S is uniformly continuous (see lemma 1.9.47). Lemma

1.9.49 shows that Ξc is uniformly continuous. The composition of uniformly continuous

functions is uniformly continuous, implying OTc is uniformly continuous. This completes

the proof.

1.9.2.2 Directional Differentiability

The optimal transport functional given by (1.50) is Hadamard directionally differentiable.

The formal result, stated below, requires that Fc and F cc each be equipped with a semimetric.

The semimetrics chosen must be such that P1 ∈ `∞(Fc) and P0 ∈ `∞(F cc ) are continuous

and the product space Fc ×F cc and its subset Φc ∩ (Fc ×F cc ) are compact.

The setting suggests a very convenient semimetric. Let P be the distribution of an

observation, i.e. (Y,D,Z,X) ∼ P . Note that under assumption 1, the distributions Pd|x are

dominated by P with bounded densities
dPd|x
dP

. Specifically, recall that

EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

Let 1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z}, pd,x,z = P (D = d,X = x, Z = z), and

px,z = P (X = x, Z = z). Observe that

E[f(Yd) | D1 > D0, X = x] = E

[
f(Y )

1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d
pd,x,d/px,d − pd,x,1−d/px,1−d

]
= E

[
f(Y )E

[
1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d
| Y
]]

reveals the densities to be
dPd|x
dP

(Y ) = E
[
1d,x,d(D,X,Z)/px,d−1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d−pd,x,1−d/px,1−d
| Y
]
.

We now drop the subscript x for the remainder of this appendix. Because P dominates
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both P1 and P0 with bounded densities, the L2,P semimetric works very well:

L2,P (f1, f2) =
√
P ((f1 − f2)2) =

√
EP [(f1(Y )− f2(Y ))2] (1.51)

Equip the product space F1 ×F0 with the product semimetric:

L2((f1, g1), (f2, g2)) =
√
L2,P (f1, f2)2 + L2,P (g1, g2)2 (1.52)

To apply the L2,P semimetric, each f ∈ F1 and f ∈ F0 are defined on whole domain Y .

Lemma 1.9.7 (Hadamard directional differentiability of optimal transport). Let c : Y×Y →

R be lower semicontinuous, F1,F0 be sets of measurable functions mapping Y to R, and

Fc ⊆ F1 and F cc ⊆ F0 be universally bounded subsets. Suppose that

1. Strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0),

2. P dominates P1 and P0 with bounded densities,

3. Fd is P -Donsker and supf∈Fd |P (f)| <∞ for each d = 1, 0, and

4. (F1 ×F0, L2) and the subset

Φc ∩ (Fc ×F cc ) = {(ϕ, ψ) ∈ Fc ×F cc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

are complete.

Then OTc : `∞(F1)× `∞(F0)→ R defined by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)
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is Hadamard directionally differentiable at (P1, P0) tangentially to

DTan = C(F1, L2,P )× C(F0, L2,P ). (1.53)

The set of maximizers Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is nonempty, and

the derivative OT ′c,(P1,P0) : DTan → R is given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Proof. For legibility, the proof is broken down into four steps:

1. Define

S : `∞(F1)× `∞(F0)→ `∞(F1 ×F0), S(H1, H0)(ϕ, ψ) = H1(ϕ) +H0(ψ)

Ξc : `∞(F1 ×F0)→ R, Ξc[G] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

G(ϕ, ψ)

and notice that OTc(H1, H0) = Ξc(S(H1, H0)). This suggests application of the chain

rule.

2. S is linear and continuous at every point of `∞(F1) × `∞(F0), which implies it is

(fully) Hadamard differentiable at any (H1, H0) ∈ `∞(F1) × `∞(F0) tangentially to

`∞(F1)× `∞(F0), and is its own derivative. Indeed, for any (H1n, H0n) → (H1, H0) ∈

`∞(F1)× `∞(F0) and any tn ↓ 0,

lim
n→∞

∥∥∥∥S((H1, H0) + tn(H1n, H0n))− S(H1, H0)

tn
− S(H1, H0)

∥∥∥∥
Fc×Fcc

= lim
n→∞

‖S(H1n, H0n)− S(H1, H0)‖Fc×Fcc = 0

3. Consider Ξc. Verify the conditions of lemma 1.9.55:

(a) (F1 ×F0, L2) and the subset Φc ∩ (Fc ×F cc ) are compact.
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First recall that a subset of semimetric space is compact if and only if it is totally

bounded and complete.5 Completeness of both sets is assumed, so it suffices to

show they are totally bounded. Since Φc ∩ (Fc × F cc ) is a subset of F1 × F0, it

suffices to show the latter set is totally bounded.

Using the assumption that Fd is P -Donsker and supf∈Fd |P (f)| < ∞, we have

that supϕ∈Fc |P (ϕ)| < ∞ and (Fd, L2,P ) is totally bounded (see van der Vaart &

Wellner (1997) problem 2.1.2.). It follows that the product space (F1×F0, L2) is

totally bounded.6

(b) S(P1, P0) ∈ C(F1 ×F0, L2).

Notice that

|P1(f1)− P1(f2)| ≤ P1(|f1 − f2|) ≤
√
P1((f1 − f2)2) = L2,P1(f1, f2)

where the second inequality is an applications of Jensen’s inequality. This implies

P1 ∈ C(F1, L2,P1). Moreover, since P1 � P and dP1

dP
≤ K1 <∞ for some K1 ∈ R,

L2,P1(f1, f2) =

(∫
(f1 − f2)2dP1

dP
dP

)1/2

≤ K
1/2
1

(∫
(f1 − f2)2dP

)1/2

= K
1/2
1 L2,P (f1, f2)

shows that C(F1, L2,P1) ⊆ C(F1, L2,P ) and so P1 ∈ C(F1, L2,P ). A similar argu-

ment shows P0 ∈ C(F0, L2,P ).

5See van der Vaart & Wellner (1997), footnote on p. 17.
6For ε > 0, let (f1, . . . , fK) be the centers of L2,P -balls of radius ε/

√
2 that cover F1, and (g1, . . . , gM )

be the center of L2,P -balls of radius ε/
√

2 that cover F0. Then for any (f, g) ∈ F1 ×F0, there exists fk and
gm such that L2,P (f, fk) < ε/

√
2 and L2,P (g, gm) < ε/

√
2, and so

L2((f, g), (fk, gm) =
√
L2,P (f, fk)2 + L2,P (g, gm)2 <

√
(ε/
√

2)2 + (ε/
√

2)2 = ε

and thus the KM balls in (F1 ×F0) of radius ε centered at (fk, gm) for some k,m cover F1 ×F0.
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Use the inequalities above to see that

|S(P1, P0)(f1, g1)− S(P1, P0)(f2, g2)| = |P1(f1)− P1(f2) + P0(g1)− P0(g2)|

≤ L2,P1(f1, f2) + L2,P0(g1, g2) ≤ K
1/2
1 L2,P (f1, f2) +K

1/2
0 L2,P (ψ1, ψ2)

≤ 2 max{K1/2
1 , K

1/2
0 }max{L2,P (f1, f2), L2,P (g1, g2)}

= 2 max{K1/2
1 , K

1/2
0 }

√
max{L2,P (f1, f2)2, L2,P (g1, g2)2}

≤ 2 max{K1/2
1 , K

1/2
0 }

√
L2,P (f1, f2)2 + L2,P (g1, g2)2

= 2 max{K1/2
1 , K

1/2
0 }L2((f1, g1), (f2, g2))

hence L2((f1, g1), (f2, g2)) < ε/(2 max{K1/2
1 , K

1/2
0 }) implies

|S(P1, P0)(f1, g1)− S(P1, P0)(f2, g2)| < ε

and therefore S(P1, P0) ∈ C(F1 ×F0, L2).

Lemma 1.9.55 shows that Ξc is Hadamard directionally differentiable at S(P1, P0) tan-

gentially to C(F1 ×F0, L2), with derivative

Ξ′c,S(P1,P0) : C(F1 ×F0, L2)→ R, Ξ′c,S(P1,P0)(H) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H(ϕ, ψ)

where Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is nonempty, because P1 +

P0 = S(P1, P0) is continuous and Φc ∩ (Fc ×F cc ) is compact.

4. Now consider the tangent spaces to ensure the composition of the derivatives is well de-

fined. Observe that if (H1, H0) ∈ C(F1, L2,P )×C(F0, L2,P ) then S(H1, H0) = H1+H0 ∈

C(F1 × F0, L2).7 It follows from the chain rule (lemma 1.9.50) that OTc is Hadamard

directionally differentiable at (P1, P0) tangentially to C(F1, L2,P ) × C(F0, L2,P ) with

7Fix (f, g) ∈ F1 ×F0 and let δ1 > 0 and δ0 > 0 be such that L2,P1
(f, f̃) < δ1 implies H1(f, f̃) < ε/2 and
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derivative OTc : C(F1, L2,P )× C(F0, L2,P )→ R given by

OT ′c,(P1,P0)(H1, H0) = Ξ′c,S(P1,P0)(S ′(P1,P0)(H1, H0)) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

1.9.2.3 Full differentiability

The property distinguishing directional from full differentiability on a subspace is linearity of

the derivative (Fang & Santos (2019), proposition 2.1). In the case of optimal transport, the

derivative found in lemma 1.9.7 is linear on a large subspace of the tangent space when the

solution to the dual problem is suitably unique. When it holds, this is sufficient for simpler

bootstrap procedures to work for inference.

The dual solutions

(ϕ, ψ) ∈ Ψc(P1, P0) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

are referred to as Kantorovich potentials. Notice that for any s ∈ R,

P1(ϕ+ s) + P0(ψ − s) = P1(ϕ) + P0(ψ)

shows the most one can hope for is uniqueness up to a constant; if (ϕ, ψ) ∈ Ψc(P1, P0), then

(ϕ+ s, ψ− s) ∈ Ψc(P1, P0) as well.8 It is well known in the optimal transport literature that

L2,P0
(g, g̃) < δ0 implies H0(g, g̃) < ε/2. The inequality

L2,P (f, f̃) + L2,P (g, g̃) ≤ 2 max{L2,P (f, f̃), L2,P (g, g̃)}

= 2

√
max{L2,P (f, f̃)2, L2,P (g, g̃)2} = 2L2((f, g), (f̃ , g̃))

implies that if L2((f, g), (f̃ , g̃)) < min{δ1, δ2}/2 then |S(H1, H0)(f, g)−S(H1, H0)(f̃ , g̃)| ≤ |H1(f)−H1(f̃)|+
|H0(g)−H0(g̃)| < ε.

8See Staudt et al. (2022) for extended discussion on uniqueness of Kantorovich potentials.
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when the distributions P1, P0 have full support on a convex, compact subset of R and c is

differentiable, the Kantorovich potential is indeed unique in this way on the supports of P1

and P0.

Lemma 1.9.8. Suppose that

1. c(y1, y0) is continuously differentiable.

2. Pd has compact support Yd = [y`d, y
u
d ] ⊆ R, and

Let Fc and F cc be defined by (1.14) and (1.15) respectively, and

Ψc(P1, P0) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

Then for any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), there exists s ∈ R such that for all (y1, y0) ∈

Y1 × Y0

ϕ1(y1)− ϕ2(y1) = s, ψ1(y0)− ψ2(y0) = −s

Proof. The proof is quite similar to that of Santambrogio (2015) proposition 7.18.

Let (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0). For k = 1, 2, ϕk and ψk (being elements of Fc and F cc
respectively) are L-Lipschitz and hence absolutely continuous. This implies all four functions

are differentiable Lebesgue-almost everywhere, and that for any (y1, y0) ∈ Y1 × Y0,

ϕk(y1) = ϕk(y
`
1) +

∫ y1

y`1

ϕ′k(y)dy ψk(y0) = ψk(y
`
0) +

∫ y0

y`0

ψ′k(y)dy

Notice that the subset of Y1 where both ϕ1 and ϕ2 are differentiable also has full Lebesgue

measure. It suffices to show that ϕ′1(y1) = ϕ′2(y1) on this set (and ψ′1(y0) = ψ′2(y0) on the

subset of Y0 where both ψ1 and ψ2 are differentiable, which also has full Lebesgue measure),
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from which it will follow that for any (y1, y0) ∈ Y1 × Y0,

ϕ1(y1)− ϕ2(y1) = ϕ1(y`1)− ϕ2(y`1) +

∫ y1

y`1

(ϕ′1(y)− ϕ′2(y))dy = ϕ1(y`1)− ϕ2(y`1)︸ ︷︷ ︸
:=sϕ

ψ1(y0)− ψ2(y0) = ψ1(y`)− ψ2(y`) +

∫ y0

y`0

(ψ′1(y)− ψ′2(y))dy = ψ1(y`0)− ψ2(y`0)︸ ︷︷ ︸
:=sψ

Finally, observe that P1(ϕ2) + P0(ϕ2) = P1(ϕ1) + P0(ψ1) = P1(ϕ2 + sϕ) + P0(ψ2 + sψ) =

P1(ϕ2) + P0(ψ2) + sϕ + sψ implies sϕ = −sψ.

The remainder of the proof shows that for any ȳ1 in the set where both ϕ1 and ϕ2 are

differentiable, ϕ′1(ȳ1) = ϕ′2(ȳ1). The same arguments work to show the corresponding claim

regarding ψ1 and ψ2.

There exists π ∈ Π(P1, P0) that solves the primal problem (see lemma 1.9.30). For any

such π,

1. Supp(P1) = {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ Supp(π)}

This follows because Pr1(Supp(π)) := {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ Supp(π)} is

dense in Supp(P1), and Pr1(Supp(π)) is closed because Y0 is compact.9

9Specifically, for any A ⊆ Y1 × Y0 ⊆ R2, let Pr1(A) = {y1 ∈ Y1 ; ∃y0 ∈ Y0 s.t. (y1, y0) ∈ A} be the
cartesian projection of the set A onto the first coordinate. Let P1 ∈ P(Y1), P0 ∈ P(Y0), and π ∈ Π(P1, P0).
As noted in Staudt et al. (2022) (Remark 1), Pr1(Supp(π)) ⊆ Supp(P1) with the possibility that inclusion
is strict.

However, Pr1(Supp(π)) is always dense in Supp(P1): let y1 ∈ Supp(P1) and δ > 0 be arbitrary, and
suppose for contradiction that Bδ(y1)∩Pr1(Supp(π)) = ∅. Then

(
Bδ(y1)×Y0

)
∩Supp(π) = ∅ follows from

the definition of Pr1(Supp(π)), and thus

0 = π
((
Bδ(y1)× Y0

)
∩ Supp(π)

)
= π

((
Bδ(y1)× Y0

))
+ π (Supp(π))− π

((
Bδ(y1)× Y0

)
∪ Supp(π)

)
= π

((
Bδ(y1)× Y0

))
= P1(Bδ(y1)) > 0

a contradiction showing Bδ(y1) ∩ Pr1(Supp(π)) 6= ∅. Thus Pr1(Supp(π)) is dense in Supp(P1).
Moreover, if Y0 is compact then the map Pr1 is closed: suppose A ⊆ Y1 × Y0 ⊆ R2 is closed, and

{y1n}∞n=1 ⊆ Pr1(A) converges to y1. Then there exists {y0n}∞n=1 ⊆ Y0 such that (y1n, y0n) ∈ A for each n.
Since Y0 is compact, there exists a subsequence {y0nk

}∞k=1 and y0 such that limk→∞ y0nk
= y0. Then notice

that limk→∞(y1nk
, y0nk

) = (y1, y0). Since A is closed, (y1, y0) ∈ A.
Supp(π) is closed by definition, hence Pr1(Supp(π)) is closed and dense in Supp(P1), from which it follows

that Supp(π) = Supp(P1).
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2. For all (y1, y0) ∈ Supp(π), ϕk(y1) + ψk(y0) = c(y1, y0).

It is easy to see that the equality holds π-almost surely. To see it holds specifically on

the support, notice that optimality of π and (ϕk, ψk) implies that

∫
c(y1, y0)dπ(y1, y0) =

∫
ϕk(y1)dP (y1) +

∫
ψk(y0)dP0(y0)

and recall that ϕk(y1)+ψk(y0) ≤ c(y1, y0) holds for all (y1, y0) ∈ Y×Y . If the inequality

were strict for some (y′1, y
′
0) ∈ Supp(π), then continuity of ϕk, ψk, and c would imply

the inequality is sharp on a ball centered at (y1, y0) of some positive radius, denoted

B, leading to the contradiction

∫
c(y1, y0)dπ(y1, y0) =

∫
B

c(y1, y0)dπ(y1, y0) +

∫
Bc
c(y1, y0)dπ(y1, y0)

>

∫
B

ϕk(y1) + ψk(y0)dπ(y1, y0) +

∫
Bc
ϕk(y1) + ψk(y0)dπ(y1, y0)

=

∫
ϕk(y1) + ψk(y0)dπ(y1, y0) =

∫
ϕk(y1)dP1(y1) +

∫
ψk(y0)dP0(y0)

3. For any ȳ1 ∈ Supp(P1), the above implies there there exists ȳ0 ∈ Y0 such that (ȳ1, ȳ0) ∈

Supp(π), and hence ϕk(ȳ1) + ψk(ȳ0) = c(ȳ1, ȳ0). For any such ȳ0,

y1 7→ ϕk(y1)− c(y1, ȳ0) is maximized at ȳ1 (1.54)

Indeed, if there were y′1 ∈ Y1 such that ϕk(y
′
1)− c(y′1, ȳ0) > ϕk(ȳ1)− c(ȳ1, ȳ0), then by

adding ψk(ȳ0) to both sides we find

ϕk(y
′
1) + ψk(ȳ0)− c(y′1, ȳ0) > ϕk(ȳ1) + ψk(ȳ0)− c(ȳ1, ȳ0) = 0

This implies ϕk(y
′
1) + ψk(ȳ0) > c(y′1, ȳ0), which contradicts ϕk(y

′
1) + ψk(ȳ0) ≤ c(y′1, ȳ0)

for all (y1, y0) ∈ Y1 × Y0.
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4. Now observe that if ȳ1 ∈ (y`1, y
u
1 ) is a point at which ϕk is differentiable, then (1.54)

implies ϕ′k(ȳ1) = ∂c
∂y1

(ȳ1, ȳ0).10 Thus if ȳ1 ∈ (y`1, y
u
1 ) is a point at which both ϕ1 and ϕ2

are differentiable, then

ϕ1(ȳ1) =
∂c

∂y1

(ȳ1, ȳ0) = ϕ2(ȳ1)

This completes the proof.

To specify the subset of the tangent space on which OT ′c,(P1,P0) is linear, let Yd ⊆ Y

and 1Yd(y) = 1{y ∈ Yd}. Let G denote a set of real-valued functions g : Y → R with the

following property: if g ∈ G, then 1Yd × g ∈ G.11 Let `∞Yd(G) be the set of bounded, linear

functions H : G → R that evaluate constant functions to zero and “ignore” the value of

functions outside of Yd. Specifically, define

`∞Yd(G) =
{
H ∈ `∞(G) ; for all a, b ∈ R and f, g ∈ G,

(i) H(f) = H(1Yd × f), (ii) if a ∈ G then H(a) = 0, and

(iii) if af + bg ∈ G then H(af + bg) = aH(f) + bH(g)
}

(1.55)

Here we slightly abuse notation; a ∈ G refers to the function mapping each point in Y to the

constant a ∈ R. Equip `∞Yd(G) with the supremum norm, ‖H‖G = ‖H‖∞ = supg∈G|H(g)|. As

shown in appendix 1.9.3, first stage estimators of (P1, P0) based on the empirical distribution

have weak limits concentrated on `∞Y1(Fc)× `
∞
Y0(F

c
c ) where Yd is the support of Pd.

Lemma 1.9.9. `∞Yd(G) defined by (1.55) is closed.

Proof. Let {Hn}∞n=1 ⊆ `∞Yd(G) be Cauchy, and let H be its limit in the Banach space `∞(G).

It suffices to show H ∈ `∞Yd(G).

Toward this end, first notice that ‖Hn −H‖G → 0 implies that for any f ∈ G, |Hn(f)−

H(f)| → 0. Next observe that if the constant function a ∈ G, then 0 = limn→∞|Hn(a) −
10Notice that the “choice” of π or ȳ0 doesn’t matter, because ϕ′

k(ȳ1) can take only one value.
11If we have a set G̃ that does not satisfy this property, the set G = G̃ ∪

{
1Yd
× g ; g ∈ G̃

}
will satisfy it.
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H(a)| = limn→∞|H(a)| = |H(a)|. For any function f ∈ G, since Hn(f) = Hn(1Yd × f),

0 ≤ |H(f)−H(1Yd × f)| ≤ |H(f)−Hn(f)|+ |H(1Yd × f)−Hn(1Yd × f)| → 0

and thusH(1Yd×f) = H(f). Finally, suppose a, b ∈ R and f, g ∈ G are such that af+bg ∈ G.

Similar to the argument above, since Hn(af + bg) = aHn(f) + bHn(g),

0 ≤ |H(af + bg)− aH(f)− bH(g)|

≤ |H(af + bg)−Hn(af + bg)|+ |aHn(f) + bHn(f)− aH(f)− bHn(g)|

≤ |H(af + bg)−Hn(af + bg)|+ |a||Hn(f)−H(f)|+ |b||Hn(g)−Hn(g)| → 0

and thus H(af + bg) = aH(f) + bH(g).

This shows H ∈ `∞Yd(G), and completes the proof.

Lemma 1.9.10 (Full differentiability of optimal transport). Let c : Y × Y → R be lower

semicontinuous, F1,F0 be sets of measurable functions mapping Y to R, and Fc ⊆ F1 and

F cc ⊆ F0 be universally bounded subsets. Suppose that

1. Strong duality holds:

inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0),

2. P dominates P1 and P0 with bounded densities,

3. Fd is P -Donsker and supf∈Fd |P (f)| <∞ for each d = 1, 0, and

4. (F1 ×F0, L2) and the subset

Φc ∩ (Fc ×F cc ) = {(ϕ, ψ) ∈ Fc ×F cc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)}

are complete.
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Let Y1,Y0 ⊆ Y and Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ), and further assume

5. For any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), there exists s ∈ R such that

1Y1 × ϕ1 = 1Y1 × (ϕ2 + s), P -a.s. and 1Y0 × ψ1 = 1Y0 × (ψ2 − s), P -a.s.

Then OTc : `∞(F1)× `∞(F0)→ R defined by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

is fully Hadamard differentiable at (P1, P0) tangentially to

DTan,Full =
(
`∞Y1(Fc)× `

∞
Y0(F

c
c )
)
∩
(
C(F1, L2,P )× C(F0, L2,P )

)
(1.56)

with derivative OT ′c,(P1,P0) : DTan,Full → R given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Proof. The first four assumptions allow application of lemma 1.9.7 to find that OTc :

`∞(F1)× `∞(F0)→ R given by

OTc(P1, P0) = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1(ϕ) + P0(ψ)

is Hadamard directionally differentiable at (P1, P0) tangentially to DTan = C(F1, L2,P ) ×

C(F0, L2,P ). The set of maximizers Ψc(P1, P0) = arg max(ϕ,ψ)∈Φc∩(Fc×Fcc ) P1(ϕ) + P0(ψ) is

nonempty, and the derivative OT ′c,(P1,P0) : DTan → R is given by

OT ′c,(P1,P0)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1,P0)

H1(ϕ) +H0(ψ)

Next observe that for any (H1, H0) ∈ DTan,Full, H1 +H0 is flat on Ψc(P1, P0). Specifically,
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for any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1, P0), let s be such that

1Y1 × ϕ1 = 1Y1 × (ϕ2 + s), P -a.s. and 1Y0 × ψ1 = 1Y0 × (ψ2 − s), P -a.s.

Then

H1(ϕ1) +H0(ψ1) = H1(1Y1 × ϕ1) +H0(1Y0 × ψ1)

= H1(1Y1 × (ϕ2 + s)) +H0(1Y0 × (ψ2 − s))

= H1(ϕ2 + s) +H0(ψ2 − s)

= H1(ϕ2) +H1(s) +H0(ψ2)−H0(s)

= H1(ϕ2) +H0(ψ2)

where the first, third, fourth, and fifth equalities hold because (H1, H0) ∈ `∞Y1(Fc)× `
∞
Y0(F

c
c ),

and the second because (H1, H0) ∈ C(F1, L2,P )× C(F0, L2,P ).

Now use this “flatness” to observe the derivative is linear. Let (H1, H0), (G1, G0) ∈

DTan,Full, a, b ∈ R, and (ϕ̃, ψ̃) ∈ Ψc(P1, P0), and notice that

OT ′c,(P1,P0)(a(H1, H0) + b(G1, G0)) = sup
(ϕ,ψ)∈Ψ(P1,P0)

(aH1 + bG1)(ϕ) + (aH0 + bG0)(ψ)

= aH1(ϕ̃) + bG1(ϕ̃) + aH0(ψ̃) + bG0(ψ̃) = a(H1(ϕ̃) +H0(ψ̃)) + b(G1(ϕ̃) +G0(ψ̃)

= a× sup
(ϕ,ψ)∈Ψ(P1,P0)

{H1(ϕ) +H0(ψ)}+ b× sup
(ϕ,ψ)∈Ψ(P1,P0)

{G1(ϕ) +G0(ψ)}

= aOT ′c,(P1,P0)(H1, H0) + bOT ′c,(P1,P0)(G1, G0)

Since OT ′c,(P1,P0) is linear on the subspace DTan,Full, Fang & Santos (2019) proposition 2.1

implies OTc is fully Hadamard differentiable at (P1, P0) tangentially to DTan,Full.
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1.9.3 Appendix: weak convergence

Recall that

θLx = θL(P1|x, P0|x), θHx = θH(P1|x, P0|x)

θL =
∑
x

sxθ
L
x , θL =

∑
x

sxθ
H
x

γL = inf
t∈[θL,θH ]

g(t, η) γH = sup
t∈[θL,θH ]

g(t, η)

where η = (η1, η0), with ηd ∈ RKd having coordinates

η
(k)
d =

∑
x

P (X = x | D1 > D0)E[η
(k)
d (Yd) | D1 > D0, X = x] =

∑
x

sxη
(k)
d,x

Here η
(k)
d,x = Pd|x(η

(k)
d ), which are collected as ηd,x = (η

(1)
d,x, . . . , η

(Kd)
d,x ).

Define the following sets of functions:

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . , K1

}
(1.57)

F̃0 =
{
f : Y → R ; f = ψ for some ψ ∈ F cc , or f = η

(k)
0 for some k = 1, . . . , K0

}
Fd,x =

{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}
where Yd,x is the support of Y | D = d,X = x, and 1Yd,x(y) = 1{y ∈ Yd,x}. The additional

functions of the form f(y) = 1Yd,x(y)g(y) are used to characterize the support of the weak

limit of
√
n(P̂d|x − Pd|x) in `∞(Fd,x). The maps Pd|x can be written as

Pd|x : Fd,x → R, Pd|x(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,1−d)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
(1.58)
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and finally, define the set

F =
⋃
d,x,z

{1d,x,z × f ; f ∈ Fd,x} ∪ {1d,x,z,1x,z,1x}. (1.59)

This appendix defines and studies the map T : DC ⊆ `∞(F) → R2 given by (γL, γH) =

T (P ). The coming results show that F is P -Donsker, and the map T is Hadamard direc-

tionally differentiable at P . Together these imply, through the functional delta method, the

weak convergence of
√
n(T (Pn)− T (P )) (Fang & Santos (2019)).

Several operations in the definition of the map T are repeated for each x ∈ X =

{x1, . . . , xM}, leading to large expressions. These are shortened with the notation {ax}x∈X ,

which refers to (ax1 , . . . , axM ). For example,

({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
= (P1|x1 , P0|x1 , η1,x1 , η0,x1 , sx1 , . . . , P1|xM , P0|xM , η1,xM , η0,xM , sxM )

is an element of
∏M

m=1 `
∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R.

The function T is viewed as the composition of four functions: T (P ) = T4(T3(T2(T1(P )))).

1. T1 is the map to the conditional distributions and ηd,x:

T1(P ) = ({P1|x, P0|x, η1,x, η0,x, sx}x∈X ),

2. T2 involves optimal transport:

T2({(P1|x, P0|x, η1,x, η0,x, sx)}x∈X ) = ({θLx , θHx , η1,x, η0,x, sx}x∈X ),

3. T3 takes expectations over covariates: T3({(θLx , θHx , η1,x, η0,x, sx)}x∈X ) = (θL, θH , η),

4. T4 optimizes over t ∈ [θL, θH ]: T 4(θL, θH , η) = (γL, γH).
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1.9.3.1 Verifying Donsker conditions

Before studying this map, this subsection shows the relevant sets are Donsker. The function

classes Fc and F cc given by (1.14) and (1.15), or by (1.16) and (1.17), are well known Donsker

classes as noted below. The results of van der Vaart & Wellner (1997) chapter 2.10 allow

these to be extended to show F1,x and F0,x are Donsker. It follows quickly that F is Donsker.

Lemma 1.9.11. Suppose that Y ⊂ R is compact and c : Y ×Y → R is L-Lipschitz. Let Fc,

F cc be given by (1.14) and (1.15) respectively. Then Fc and F cc are universally Donsker.

Proof. Note that any distribution defined on the compact Y has a finite 2 + δ moment. The

result follows from the bracketing number bound given by van der Vaart & Wellner (1997)

corollary 2.7.4.

Lemma 1.9.12. Fc and F cc given by (1.16) and (1.17) are universally Donsker.

Proof. The intervals (convex subsets of R) form a well-known VC class with VC-dimension

at most 3. Consider an arbitrary set of three real numbers {y1, y2, y3} with y1 < y2 < y3, and

notice that no interval can pick out the set {y1, y3}; that is, there does not exist an interval

I with {y1, y3} = {y1, y2, y3} ∩ I. Since the intervals cannot shatter finite sets of size 3, the

VC-dimension of the intervals is at most 3.

Similarly, the complements of intervals form a VC class of VC-dimension at most 4.

Consider {y1, y2, y3, y4} with y1 < y2 < y3 < y4 and notice that no complement of an interval

can pick out {y1, y3}. Since the complements of intervals cannot shatter finite sets of size 4,

the VC-dimension of the complements of intervals is at most 4.

The claim follows, because any (suitably measurable) VC class is Donsker for any prob-

ability measure (van der Vaart & Wellner (1997) section 2.6.1).

Lemma 1.9.13. Let G be P -Donsker and 1A be the indicator function for the set A. Then

the set {1A × g ; g ∈ G} is P -Donsker.
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Proof. The proof is an application of van der Vaart & Wellner (1997) theorem 2.10.6. Specifi-

cally, let φ : G×{1A} → R be the map φ(g,1a) = 1A×g. Notice that for any f, g ∈ G1×{1A},

|φ ◦ f(w)− φ ◦ g(w)|2 = |1A(w)× f1(w)− 1A(w)× g1(w)|2

= 1A(w)× |f1(w)− g2(w)|2

≤ |f1(w)− g1(w)|2 =
k∑
`=1

(f`(w)− g`(w))2

and thus van der Vaart & Wellner (1997) condition (2.10.5) holds. Moreover, notice that for

any g ∈ G, (1A × g)2 ≤ g2 and P -square integrability of g ∈ G implies 1A × g is P -square

integrable. Thus van der Vaart & Wellner (1997) theorem 2.10.6 implies {1A × g ; g ∈ G}

is P -Donsker.

Lemma 1.9.14 (Fd,x are P -Donsker). Suppose assumptions 1, 2, and 3 hold. Let Fc and

F cc be given by (1.14) and (1.15), or by (1.16) and (1.17). Let Fd,x be as defined in (1.57).

Then Fd,x is P -Donsker and supf∈Fd,x|P (f)| <∞.

Proof. 1. We first show F̃d is P -Donsker and supg∈F̃d |P (f)| < ∞. The argument shows

the argument for F̃1, as the same argument works when applied to F̃0.

Begin by noticing that

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . , K1

}
= Fc ∪

{
η

(1)
1 , . . . , η

(K1)
1

}
Since

{
η

(1)
1 , . . . , η

(K1)
1

}
is a finite number of functions which, by assumption 3 (i), have

finite second P -moment: P ((η
(k)
1 )2) < ∞. Thus

{
η

(1)
1 , . . . , η

(K1)
1

}
is Donsker. Fc is

Donsker by lemma 1.9.11 or 1.9.12, and so F̃1 = Fc ∪
{
η

(1)
1 , . . . , η

(K1)
1

}
is the union of
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two P -Donsker sets. Since

‖P‖F̃1
= max{ sup

ϕ∈Fc
|P (ϕ)|, |P (η

(1)
1 )|, . . . , |P (η

(K1)
1 )|} <∞

van der Vaart & Wellner (1997) example 2.10.7 shows F̃1 is P -Donsker. Note we have

also shown that supg∈F̃1
|P (f)| <∞.

2. Now notice that

Fd,x =
{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}
= F̃d ∪

{
1Yd,x × g ; g ∈ F̃d

}
Lemma 1.9.13 shows

{
1Yd,x × g ; g ∈ F̃d

}
is P -Donsker. Moreover, since Fc is uni-

formly bounded,

‖P‖{1Yd,x×g ; g∈F̃d}

= max

{
sup
ϕ∈Fc
|P (1Yd,x × ϕ)|, |P (1Yd,x × η

(1)
1 )|, . . . , |P (1Yd,x × η

(K1)
1 )|

}
<∞

It follows that

‖P‖Fd,x = sup
f∈Fd,x

|P (f)| = max

 sup
f∈F̃d
|P (f)|, sup

f∈{1Yd,x×g ; g∈F̃d}
|P (f)|

 <∞

Thus van der Vaart & Wellner (1997) example 2.10.7 implies F1 is P -Donsker.

Lemma 1.9.15 (F is P -Donsker). Suppose assumptions 1, 2 and 3 hold. Then F is P -
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Donsker, implying

√
n(Pn − P )

L→ G in `∞(F),

where G is a tight, mean-zero Gaussian process with P (G ∈ C(F , L2,P ) = 1.

Proof. Lemma 1.9.13 shows {1d,x,z × f ; f ∈ Fd,x} is P -Donsker. Moreover, Fd,x is the union

of a subset of universally bounded functions (in either Fc or F cc ) and a finite subset of square

integrable functions. It follows that

‖P‖{1d,x,z×g ; g∈Fd,x} = sup
f∈{1d,x,z×g ; g∈Fd,x}

|P (f)| <∞

Next notice that

F =
⋃
d,x,z

{1d,x,z × f ; f ∈ Fd,x} ∪ {1d,x,z,1x,z,1x}

is the union of a finite number of P -Donsker sets, with

‖P‖F = max
d,x,z

max

 sup
f∈{1d,x,z×g ; g∈Fd,x}

|P (f)|, |P (1d,x,z)|, |P (1x,z)|, |P (1x)|,


 <∞

It follows from van der Vaart & Wellner (1997) example 2.10.7 that F is P -Donsker,

which implies
√
n(Pn − P )

L→ G in `∞(F), where G is a tight, mean-zero Gaussian pro-

cess. Moreover, van der Vaart & Wellner (1997) section 2.1.2 and problem 2.1.2 imply that

P (G ∈ C(F , L2,P ) = 1.
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1.9.3.2 Conditional Distributions, T1(P ) = ({P1|x, P0|x, η1,x, η0,x, sx}x∈X )

Lemma 1.2.1 shows that the distributions of Yd | D1 > D0, X = x, denoted Pd|x, are identified

by

Pd|x(f) = EPd|x [f(Yd)] = E[f(Yd) | D1 > D0, X = x]

=
E[f(Y )1{D = d} | Z = d,X = x]− E[f(Y )1{D = d} | Z = 1− d,X = x]

P (D = d | Z = d,X = x)− P (D = d | Z = 1− d,X = x)

and the distribution of X conditional on D1 > D0 is identified by

sx = P (X = x | D1 > D0)

=
[P (D = 1 | Z = 1, X = x)− P (D = 1 | Z = 0, X = x)]P (X = x)∑
x′ [P (D = 1 | Z = 1, X = x′)− P (D = 1 | Z = 0, X = x′)]P (X = x′)

Recall the notation shortening indicators

1d,x,z(D,X,Z) = 1{D = d,X = x, Z = z},

1x,z(X,Z) = 1{X = x, Z = z}, 1x(X) = 1{X = x}

and notice that Pd|x : `∞(Fd)→ R and sx ∈ R, given by

Pd|x(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,0)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
,

sx =
[P (11,x,1)/P (1x,1)− P (11,x,0)/P (1x,0)]P (1x)∑
x′ [P (11,x′,1)/P (1x′,1)− P (11,x′,0)/P (1x′,0)]P (1x′)

,

are functions of P ∈ `∞(F). Moreover, η
(k)
d,x = E[η

(k)
d (Yd) | D1 > D0, X = x] = Pd|x(η

(k)
d ) and

ηd,x = (η
(1)
d,x, . . . , η

(K1)
d,x ) is simply an evaluation of Pd|x at the points η

(k)
d ∈ Fd,x.
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This map is given by

T1 : DC ⊆ `∞(F)→
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× R(K1) × R(K0) × R

T1(P ) =
({
P1|x, P0|x, η1,x, η0,x, sx

}
x∈X

)
= (P1|x1 , P0|x1 , η1,x1 , η0,x1 , sx1 , . . . , P1|xM , P0|xM , η1,xM , η0,xM , sxM )

where the domain, DC ⊆ `∞(F), ensures the map never divide by zero:

DC =
{
G ∈ `∞(F) ; for all (d, x, z), G(1x) > 0, G(1x,z) > 0, and

G(1d,x,d)/G(1x,d)−G(1d,x,1−d)/G(1x,1−d) > 0
}

(1.60)

Note that assumption 1 implies P ∈ DC , a claim shown in the proof of lemma 1.9.17 below.

Lemma 1.9.51 shows that Hadamard differentiable functions with the same domain can

be “stacked”. Moreover, the coordinates corresponding to the η terms are evaluations of

Pd|x at specific coordinates; since evaluation is linear and continuous, the map defining these

terms is fully Hadamard differentiable if the other maps are fully Hadamard differentiable.

Thus it suffices to ensure the maps Cd,x : DC → R and Cs,x : DC → R given by Cd,x(P ) = Pd|x

and Cs,x(P ) = sx are fully Hadamard differentiable at P tangentially to `∞(F).

Lemma 1.9.16 (Maps to conditional distributions are fully Hadamard differentiable). Let

F be defined by (1.59), and DC be defined by (1.60). Define the functions C1,x, C0,x, and

Cs,x with

Cd,x : DC → `∞(Fd,x), Cd,x(G)(f) =
G(1d,x,d × f)/G(1x,d)−G(1d,x,1−d × f)/G(1x,1−d)

G(1d,x,d)/G(1x,d)−G(1d,x,1−d)/G(1x,1−d)
,

Cs,x : DC → R, Cs,x(G) =
[G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)]G(1x)∑
x′ [G(11,x′,1)/G(1x′,1)−G(11,x′,0)/G(1x′,0)]G(1x′)

All three functions are fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F),
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with derivatives C ′d,x,G : `∞(F)→ `∞(Fd,x) and C ′s,x,G : `∞(F)→ R described in the proof.

Proof. In steps:

1. We first show differentiability of C1,x. The argument applies the chain rule. An in-

ner function “rearranges” elements of DC ⊆ `∞(F), which can be viewed as a fully

Hadamard differentiable mapping (see lemma 1.9.52). An outer function maps that

rearrangment to `∞(F1), and is shown fully Hadamard differentiable at G ∈ DC by

applying corollary 1.9.54.

In detailed steps:

(a) Define Dq = {(n1, p11, p1, n0, p10, p0) ∈ R6 ; p1 > 0, p0 > 0, p11/p1 − p10/p0 > 0}

and

q : Dq → R, q(n1, p11, p1, n0, p10, p0) =
n1/p1 − n0/p0

p11/p1 − p10/p0

Recall the following notation from corollary 1.9.54:

`∞(F1,Dq) =

{
r : F1 → R6 ; r(ϕ) ∈ Dq, sup

ϕ∈F1

‖r(f)‖ <∞
}
⊆ `∞(F1)6

`∞q (F1,Dq) =

{
r ∈ `∞(F1,Dq) ; sup

f∈F1

|q(r(f))| <∞
}

For elements r ∈ `∞(F1,Dq), the composition q(r(ϕ)) is well defined for any

ϕ ∈ F1. For elements r ∈ `∞q (F1,Dq), composition defines a bounded map; that

is, ϕ 7→ q(r(ϕ)) defines an element of `∞(F1). Finally, define

Q : `∞q (F1,Dq)→ `∞(F1), Q(r)(ϕ) = q(r(ϕ))

(b) For the rearrangement, define F̃1,x,1 ≡ {11,x,1 × f ; f ∈ F1},
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F̃1,x,0 ≡ {11,x,0 × f ; f ∈ F1}, and

R̃1,x : DC → `∞(F̃1,x,1)× `∞({11,x,1})× `∞({1x,1})

× `∞(F̃1,x,0)× `∞({11,x,0})× `∞({1x,0})

R̃1,x(G)(11,x,1 × f,11,x,1,1x,1,11,x,0 × f,11,x,0,1x,0)

= (G(11,x,1 × f), G(11,x,1), G(1x,1), G(11,x,0 × f), G(11,x,0), G(1x,0))

Lemma 1.9.52 shows that R̃1,x is fully Hadamard differentiable tangentially to

`∞(F) and is its own derivative; i.e. R̃′1,x,g = R̃1,x. Now view R̃1,x as a map from

DC ⊆ `∞(F) to `∞q (F1,Dq), i.e. define R1,x : DC → `∞q (F1,Dq) pointwise with

R1,x(G)(f) = R̃1,x(G)(11,x,1 × f,11,x,1,1x,1,11,x,0 × g,11,x,0,1x,0)

= (G(11,x,1 × f), G(11,x,1), G(1x,1), G(11,x,0 × f), G(11,x,0), G(1x,0))

Note that G ∈ DC implies

sup
f∈F1

|q(R1,x(G)(f))| = sup
f∈F1

∣∣∣∣G(11,x,1 × f)/G(1x,1)−G(11,x,0 × f)/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

∣∣∣∣ <∞
and thus R1,x(G) ∈ `∞q (F1,Dq).

(c) To apply corollary 1.9.54, observe that q(n1, p11, p1, n0, p10, p0) = n1/p1−n0/p0
p11/p1−p10/p0 is
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continuously differentiable on Dq with gradient ∇q : Dq → R6 given by

∇q(n1, p11, p1, n0, p10, p0) =
(
∂q
∂n1

, ∂q
∂p11

, ∂q
∂p1
, ∂q

∂n0
, ∂q

∂p10
, ∂q

∂p0

)ᵀ
,

∂q

∂n1

=
1/p1

p11/p1 − p10/p0

∂q

∂p11

= − n1/p1 − n0/p0

(p11/p1 − p10/p0)2

1

p1

=

[
1/p1

p11/p1 − p10/p0

]
(−q)

∂q

∂p1

=
(p11/p1 − p10/p0)(−n1/p

2
1)− (n1/p1 − n0/p0)(−p11/p

2
1)

(p11/p1 − p10/p0)2

=
−n1/p

2
1

p11/p1 − p10/p0

+
q(p11/p

2
1)

p11/p1 − p10/p0

=

[
1/p1

p11/p1 − p10/p0

]
qp11 − n1

p1

∂q

∂n0

=
−1/p0

p11/p1 − p10/p0

∂q

∂p10

= − n1/p1 − n0/p0

(p11/p1 − p10/p0)2

(
− 1

p0

)
=

[
−1/p0

p11/p1 − p10/p0

]
(−q)

∂q

∂p0

=
(p11/p1 − p10/p0)(n0/p

2
0)− (n1/p1 − n0/p0)(p10/p

2
0)

(p11/p1 − p10/p0)2

=
n0/p

2
0

p11/p1 − p10/p0

− q(p10/p
2
0)

p11/p1 − p10/p0

=

[
−1/p0

p11/p1 − p10/p0

]
qp10 − n0

p0

Furthermore, there exists δ > 0 such that

R1,x(G)(F1) =

{
r ∈ R6 ; inf

f∈F1

‖r −R1,x(G)(ϕ)‖ ≤ δ

}
⊆ Dq

and so lemma 1.9.54 implies Q is fully Hadamard differentiable at R1,x(G) tan-

gentially to `∞(F1)6 with derivative Q′R1,x(G) : `∞(F1)6 → `∞(F1) given pointwise

by

Q′R1,x(G)(J)(f) = [∇q(R1,x(G)(ϕ))]ᵀ J(f)

(d) Finally, observe that C1,x(G) = Q(R1,x(G)) and apply the chain rule (lemma

1.9.50) to find that C1,x is fully Hadamard differentiable at G tangentially to
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`∞(F) with derivative

C ′1,x,G : `∞(F)→ `∞(F1,x), C ′1,x,G(H) = Q′R1,x(G)(R1,x(H))

Writing out an evaluation clarifies the notation of the derivative:

C ′1,x,G(H)(f) = Q′R1,x(G)(R1,x(H))(f) = [∇q(R1,x(G)(f))]ᵀR1,x(H)(f) (1.61)

=

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
H(11,x,1 × f)

+

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
(−C1,x(G)(f))H(11,x,1)

+

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
× C1,x(G)(f)×G(11,x,1)−G(11,x,1 × f)

G(1x,1)
H(1x,1)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
H(11,x,0 × f)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
(−C1,x(G)(f))H(11,x,0)

+

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
× C1,x(G)(f)×G(11,x,0)−G(11,x,0 × f)

G(1x,0)
H(1x,0)

2. The same arguments imply the claim regarding C0,x.

Specifically, notice that C0,x is the same outer transformation applied to a different

rearrangement: let

R1,x(G)(ϕ) = (G(11,x,1 × ϕ), G(11,x,1), G(1x,1), G(11,x,0 × ϕ), G(11,x,0), G(1x,0))

R0,x(G)(ϕ) = (G(10,x,0 × ψ), G(10,x,0), G(1x,0), G(10,x,1 × ψ), G(10,x,1), G(1x,1))
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observe that

C1,x(G)(f) =
G(11,x,1 × f)/G(1x,1)−G(11,x,0 × f)/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)
= q(R1,x(G)(f))

C0,x(G)(f) =
G(10,x,0 × f)/G(1x,0)−G(10,x,1 × f)/G(1x,1)

G(10,x,0)/G(1x,0)−G(10,x,1)/G(1x,1)
= q(R0,x(G)(f))

Thus, the same argument shows C0,x : DC → `∞(F0,x) is fully Hadamard differen-

tiable at any G ∈ DC tangentially to `∞(F), and C ′0,x,G(H)(f) can be found with the

appropriate substitutions in (1.61) above.

3. Finally consider Cs,x. Notice that

Dqs,x =
{
{p1,x,1, px,1, p1,x,0, px,0, px}x∈X ∈ R5M ;

px,1 > 0, px,0 > 0, p1,x,1/px,1 − p1,x,0/px,0 > 0, px > 0 for all x ∈ X
}

qs,x : Dqs,x → R,

qs,x({p1,xm,1, pxm,1, p1,xm,0, pxm,0}Mm=1) =
(p1,x,1/px,1 − p1,x,0/px,0)px∑M

m=1(p1,xm,1/pxm,1 − p1,xm,0/pxm,0)pxm

is continuously differentiable at any point in Dqs,x with gradient

∇q({p1,xm,1, pxm,1, p1,xm,0, pxm,0, pxm}Mm=1) ∈ R5M

Furthermore, notice that for any G ∈ DC , Cs,x(G) = qs,x(Rs,x(G)), where

Rs,x : `∞(F)→ R5M ,

Rs,x(G) = ({G(11,xm,1), G(1xm,1), G(11,xm,0), G(1xm,0), G(1xm)}Mm=1)

It follows that Cs,x : DC → R is fully Hadamard differentiable at any G ∈ DC tangen-
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tially to `∞(F). The derivative is

C ′s,x,G(H) =
M∑
m=1

∂qs,x
∂p1,xm,1

(Rs,x(G))×H(11,xm,1) +
∂qs,x
∂pxm,1

(Rs,x(G))×H(1xm,1)

+
∂qs,x
∂p1,xm,0

(Rs,x(G))×H(11,xm,0) +
∂qs,x
∂pxm,0

(Rs,x(G))×H(1xm,0)

+
∂qs,x
∂pxm

(Rs,x(G))×H(1xm)

This completes the proof.

Lemma 1.9.17 (T1 is fully Hadamard differentiable). Let F be defined by (1.59) and DC by

(1.60). Let Cd,x and Cs,x be as defined in lemma 1.9.16, and

η̃d,x : DC → RKd , η̃d,x(G) =
(
Cd,x(G)(η

(1)
d,x), . . . , Cd,x(G)(η

(Kd)
d,x )

)
Further define

T1 : DC →
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

T1(G) =
(
{C1,x(G), C0,x(G), η̃1,x(G), η̃0,x(G), Cs,x(G)}x∈X

)
T1 is fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F).

Proof. Lemma 1.9.16 shows that Cd,x and Cs,x are fully Hadamard differentiable at any

G ∈ DC tangentially to `∞(F).

Define the evaluation maps

ev
η
(k)
d

: `∞(Fd,x)→ R, ev
η
(k)
d

(H) = H(η
(k)
d )

Note that each ev
η
(k)
d

is continuous and linear, and is therefore fully Hadamard differentiable
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at any H ∈ `∞(Fd,x) tangentially to `∞(Fd,x) (and is its own derivative). Moreover,

η̃d,x(G) = (ev
η
(1)
d

(Cd,x(G)), . . . , ev
η
(K1)
d

(Cd,x(G)))

is the composition of an inner function that is fully Hadamard differentiable at any G ∈ DC ,

and an other function that is fully differentiable at any H ∈ `∞(Fd,x). Therefore η̃d,x is fully

Hadamard differentiable at any G ∈ DC tangentially to `∞(F).

Next apply lemma 1.9.51 to find that

T1 : DC →
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

T1(G) =
(
{C1,x(G), C0,x(G), η̃1,x(G), η̃0,x(G), Cs,x(G)}x∈X

)
is fully Hadamard differentiable at any G ∈ DC tangentially to `∞(F).

Support of the weak limit of
√
n(T1(Pn)− T1(P ))

The next few lemmas study the support of the asymptotic distribution of
√
n(T1(Pn)−T1(P ));

in particular, it concentrates on the tangent set of the next map studied in appendix 1.9.3.3.

Lemma 1.9.18 (Continuity of C ′d,x,G(H)(·)). Let Cd,x be as defined in lemma 1.9.16. If

G,H ∈ C(F , L2,P ), then C ′d,x,G(H) ∈ C(Fd,x, L2,P ).

Proof. Consider C ′1,x,G(H) first. Fix f ∈ F1,x and let ε > 0. Let

Coef1(G) =

[
1/G(1x,1)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
Coef2(G) =

[
−1/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

]
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and use display (1.61) to see that

|C ′1,x,G(H)(f)− C ′1,x,G(H)(g)|

=

∣∣∣∣∣Coef1(G)× [H(11,x,1 × f)−H(11,x,1 × g)]

+ Coef1(G)× (− [C1,x(G)(f)− C1,x(G)(g)])H(11,x,1)

+ Coef1(G)

× [C1,x(G)(f)− C1,x(G)(g)]×G(11,x,1)− [G(11,x,1 × f)−G(11,x,1 × g)]

G(1x,1)
H(1x,1)

+ Coef2(G)× [H(11,x,0 × f)−H(11,x,0 × g)]

+ Coef2(G)× (− [(C1,x(G)(f))− C1,x(G)(g)])H(11,x,0)

+ Coef2(G)

× [C1,x(G)(f)− C1,x(G)(g)]×G(11,x,0)− [G(11,x,0 × f)−G(11,x,0 × g)]

G(1x,0)
H(1x,0)

∣∣∣∣∣
Recall that C1,x(G)(f) = G(11,x,1×f)/G(1x,1)−G(11,x,0×f)/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)
, and thus

C1,x(G)(f)− C1,x(G)(g)

=
[G(11,x,1 × f)−G(11,x,1 × g)]/G(1x,1)− [G(11,x,0 × f)−G(11,x,0 × g)]/G(1x,0)

G(11,x,1)/G(1x,1)−G(11,x,0)/G(1x,0)

use this to see that

|C ′1,x,G(H)(f)− C ′1,x,G(H)(g)|

≤ A1 × |H(11,x,1 × f)−H(11,x,1 × g)|+ A2 × |G(11,x,1 × f)−G(11,x,1 × g)|

+ A3 × |H(11,x,0 × f)−H(11,x,0 × g)|+ A4 × |G(11,x,0 × f)−G(11,x,0 × g)|

(1.62)

for finite constants A1, A2, A3, and A4 that depend on G and H, but not on f or g. Now
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use G,H ∈ C(F , L2,P ) to choose δz,H > 0 and δz,G > 0 such that

L2,P (11,x,1 × f,11,x,1 × g) < δ1,H =⇒ |H(11,x,1 × f)−H(11,x,1 × g)| < ε/(4A1)

L2,P (11,x,1 × f,11,x,1 × g) < δ1,G =⇒ |G(11,x,1 × f)−G(11,x,1 × g)| < ε/(4A2)

L2,P (11,x,0 × f,11,x,0 × g) < δ0,H =⇒ |H(11,x,0 × f)−H(11,x,0 × g)| < ε/(4A3)

L2,P (11,x,0 × f,11,x,0 × g) < δ0,G =⇒ |G(11,x,0 × f)−G(11,x,0 × g)| < ε/(4A4) (1.63)

Finally, notice that

L2,P (11,x,z × f,11,x,z × g) =
√
P ((11,x,z × f − 11,x,z × g)2) =

√
P (11,x,z × (f − g)2)

≤
√
P ((f − g)2) = L2,P (f, g) (1.64)

It follows from (1.62), (1.63), and (1.64) that

L2,P (f, g) < min{δ1,H , δ1,G, δ0,H , δ0,G} =⇒ |C ′1,x,G(H)(f)− C ′1,x,G(H)(g)| < ε

i.e., C ′1,x,G(H)(·) is continuous at f . Since f ∈ F1,x and G,H ∈ C(F , L2,P ) were arbitrary,

this shows that G,H ∈ C(F , L2,P ) implies C ′1,x,G(H) ∈ C(F1,x, L2,P ).

The same argument shows that G,H ∈ C(F , L2,P ) implies C ′0,x,G(H) ∈ C(F0,x, L2,P ).

This completes the proof.

Lemma 1.9.19 (Support of T ′1,P (G)). Let F be defined by (1.59) and T1 be as defined in

lemma 1.9.17.

1. If assumption 1 holds, P ∈ DC and hence T1 is fully Hadamard differentiable at P

tangentially to `∞(F).
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2. If assumptions 1, 2, and 3 hold,

√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G)

where G is the Gaussian limit of
√
n(Pn − P ) in `∞(F) discussed in lemma 1.9.15.

3. If assumptions 1, 2, and 3, then P (T ′1,P (G) ∈ DTan,Full) = 1 where

DTan,Full =
M∏
m=1

(
`∞Y1,xm (F1,xm)× `∞Y0,xm (F0,xm)

)
∩
(
C(F1,xm , L2,P )× C(F0,xm , L2,P )

)
× RK1 × RK0 × R (1.65)

Proof. In steps:

1. P ∈ DC and differentiability of T1 at P .

Assumption 1 implies P ∈ DC , given by (1.60). To see this, recall that assumption 1

(iv) is that P (1x,z) = P (X = x, Z = z) > 0 (implying P (1x) = P (X = x) = P (X =

x, Z = 1) + P (X = x, Z = 0) > 0). Furthermore,

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

= P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)

= P (D1 > D0 | X = x) > 0

The second equality is shown in the proof of lemma 1.2.1, and the inequality is as-

sumption 1 (iii). Lemma 1.9.17 thus shows that T1 is fully Hadamard differentiable at

P tangentially to `∞(F).

2. Functional delta method.

Under assumptions 1, 2, and 3, lemma 1.9.15 shows that
√
n(Pn − P )

L→ G in `∞(F).
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The functional delta method (van der Vaart (2007) theorem 20.8) then implies

√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G), in
M∏
m=1

`∞(F1,xm)× `∞(F0,xm)× RK1 × RK0 × R

3. Support of T ′1,P (G).

Notice that T ′P (G) =
({
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

}
x∈X

)
,

where η̃d,x are defined in lemma 1.9.17. Let

Sx =
(
`∞Y1,xm (F1,xm)×`∞Y0,xm (F0,xm)

)
∩
(
C(F1,xm , L2,P )×C(F0,xm , L2,P )

)
×RK1×RK0×R

and note that it suffices to show

P
(
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

)
= 1

for each x. Moreover,

P
((
η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

)
∈ RK1 × RK0 × R

)
= 1

is immediate. To complete the proof we must show P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x)) =

P (C ′d,x,P (G) ∈ C(Fd,x, L2,P )) = 1.

(a) To see that P (C ′d,x,P (G) ∈ C(Fd,x, L2,P )) = 1, first note that for any functions

f1, f2 ∈ F ,

|P (f1)− P (f2)| ≤ P (|f1 − f2|) = P (
√

(f1 − f2))

≤
√
P ((f1 − f2)2) = L2,P (f1, f2)

where the second inequality is an application of Jensen’s inequality. Thus P ∈

C(F , L2,P ).
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Next apply lemma 1.9.18 to see that G ∈ C(F , L2,P ) implies

C ′d,x,P (G) ∈ C(Fd,x, L2,P ). It follows that

1 = P (G ∈ C(F , L2,P )) ≤ P
(
C ′d,x,P (G) ∈ C(Fd,x, L2,P )

)
(b) To see that P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x)) = 1, we show that P (

√
n(Cd,x(Pn) −

Cd,x(P )) ∈ `∞Yd,x(Fd,x)) = 1.

First recall the definition given in (1.55):

`∞Yd,x(Fd,x) =
{
H ∈ `∞(Fd,x) ; for all a, b ∈ R and f, g ∈ Fd,x,

H(f) = H(1Yd,x × f), if a ∈ Fd,x then H(a) = 0, and

if af + bg ∈ Fd,x then H(af + bg) = aH(f) + bH(g)
}

i.
√
n(Cd,x(Pn)− Cd,x(P )) is linear and evaluates constants to zero.

This follows because Cd,x(Pn) and Cd,x(P ) are linear and “return constants”.

To see this, recall that Cd,x(P ) ∈ `∞(Fd,x) is given pointwise by

Cd,x(P )(f) =
P (1d,x,d × f)/P (1x,d)− P (1d,x,1−d × f)/P (1x,1−d)

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

Use this to see that for any a, b ∈ R and f, g ∈ Fd,x. if af + bg ∈ Fd,x,

then linearity of P implies Cd,x(P )(af + bg) = aCd,x(P )(f) + bCd,x(P )(g) and

Cd,x(Pn)(af + bg) = aCd,x(Pn)(f) + bCd,x(Pn)(g). Similarly, if a ∈ Fd,x is

the constant function always returning a, then Cd,x(P )(a) = a. The same

observations apply to Cd,x(P) ∈ `∞(Fd,x).
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Therefore

√
n(Cd,x(Pn)− Cd,x(P ))(af + bg)

=
√
n(Cd,x(Pn)(af + bg) = −Cd,x(P )(af + bg))

=
√
n(aCd,x(Pn)(f) + bCd,x(Pn)(g)− aCd,x(P )(f)− bCd,x(P )(g))

= a×
√
n(Cd,x(Pn)− Cd,x(P ))(f) + b×

√
n(Cd,x(Pn)− Cd,x(P ))(g)

and furthermore, if a ∈ Fd,x, then

√
n(Cd,x(Pn)− Cd,x(P ))(a) =

√
n(a− a) = 0

ii. Cd,x(P ) “ignores values outside Yd,x”; i.e. Cd,x(P )(f) = Cd,x(P )(1Yd,x × f).

To see this, notice

Cd,x(P )(f) (1.66)

=
E[f(Y )1{D = d} | X = x, Z = d]− E[f(Y )1{D = d} | X = x, Z = 1− d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

=
P (D = d | X = x, Z = d)E[f(Y ) | D = d,X = x, Z = d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)

− P (D = d | X = x, Z = 1− d)E[f(Y ) | D = d,X = x, Z = 1− d]

P (1d,x,d)/P (1x,d)− P (1d,x,1−d)/P (1x,1−d)
.

Since Yd,x is the support of Y | D = d,X = x,

E[f(Y ) | D = d,X = x, Z = z]

= E[f(Y )1{Z = z} | D = d,X = x]/P (Z = z | D = d,X = x)

=
E[1{Y ∈ Yd,x}f(Y )1{Z = z} | D = d,X = x]

P (Z = z | D = d,X = x)

= E[1{Y ∈ Yd,x}f(Y ) | D = d,X = x, Z = z]
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Along with (1.66), this implies Cd,m(P )(f) = Cd,m(P )(1Yd,x × f).

iii. Now notice that with probability one the sample is a subset of the support,

and when this is so, Cd,x(Pn) ignores values outside of Yd,x.

Specifically, observe that

Cd,x(Pn)(f) (1.67)

=

[
1
n

∑n
i=1 1{Di = d,Xi = x}1{Zi = d}f(Yi)

]
/
[

1
n

∑n
i=1 1{Xi = x, Zi = d}

]
Pn(1d,x,d)/Pn(1x,d)− Pn(1d,x,1−d)/Pn(1x,1−d)

−

1
n

∑n
i=1 1{Di=d,Xi=x}1{Zi=1−d}f(Yi)

1
n

∑n
i=1 1{Xi=x,Zi=1−d}

Pn(1d,x,d)/Pn(1x,d)− Pn(1d,x,1−d)/Pn(1x,1−d)

Note that because Yd,x is the support of Y | D = d,X = x, we have that

with probability one, {Yi, Di, Zi, Xi}ni=1 ⊆ S ≡
⋃
d,z,x Yd,x × {d} × {z} × {x}.

Indeed, since Yd,x×{d}×{z}×{x} ⊆ R4 are disjoint for each distinct (d, z, x),

P ((Yi, Di, Zi, Xi) ∈ S) = P

(
(Yi, Di, Zi, Xi) ∈

⋃
d,z,x

Yd,x × {d} × {z} × {x}

)

=
∑
d,z,x

P (Yi ∈ Yd,x, Di = d,Xi = x, Zi = z)

=
∑
d,z,x

P (Di = d,Xi = x, Zi = z)×

=P (Zi=z|Di=d,Xi=x)︷ ︸︸ ︷
P (Yi ∈ Yd,x, Zi = z | Di = d,Xi = x)

P (Zi = z | Di = d,Xi = x)

=
∑
d,z,x

P (Di = d,Xi = x, Zi = z) = 1

Since {Yi, Di, Zi, Xi}ni=1 is i.i.d.,

P ({Yi, Di, Zi, Xi}ni=1 ⊆ S) = P

(
n⋂
i=1

{(Yi, Di, Zi, Xi) ∈ S}

)

=
n∏
i=1

P ((Yi, Di, Zi, Xi) ∈ S) = 1
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When {Yi, Di, Zi, Xi}ni=1 ⊆ S holds, 1{Di = d,Xi = x} ≤ 1{Yi ∈ Yd,x} =

1Yd,x(Yi) and thus 1Yd,x(Yi)× 1{Di = d,Xi = x} = 1{Di = d,Xi = x}. This

and (1.67) implies that when {Yi, Di, Zi, Xi}ni=1 ⊆ S holds,

Cd,x(Pn)(f) = Cd,x(Pn)(1Yd,x × f)

iv. Use the facts established above to see that

P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(F1,x))

= P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(Fd,x) | {Yi, Di, Zi, Xi}ni=1 ⊆ S)

= 1

Lemma 1.9.9 is that `∞Yd,x(F1,x) is closed, so Portmanteau (van der Vaart &

Wellner (1997) theorem 1.3.4) implies

1 = lim sup
n→∞

P (
√
n(Cd,x(Pn)− Cd,x(P )) ∈ `∞Yd,x(F1,x))

≤ P (C ′d,x,P (G) ∈ `∞Yd,x(F1,x))

In summary, we have

1 = P
((
η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G)

)
∈ RK1 × RK0 × R

)
= P (C ′d,x,P (G) ∈ `∞Yd,x(Fd,x))

= P
(
C ′d,x,P (G) ∈ C(Fd,x, L2,P )

)
From which it follows that

1 = P
(
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

)
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for each x, and therefore

P (T ′1,P (G) ∈ DTan,Full)

= P

(⋂
x∈X

{
C ′1,x,P (G), C ′0,x,P (G), η̃′1,x,P (G), η̃′0,x,P (G), C ′s,x,P (G) ∈ Sx

})
= 1

This completes the proof.

1.9.3.3 Optimal transport, T2({P1|x, P0|x, η1,x, η0,x, sx}x∈X ) = ({θLx , θHx , η1,x, η0,x, sx}x∈X )

The second map applies the directional differentiability of optimal transport shown in ap-

pendix 1.9.2.2. There are three assumptions in lemma 1.9.7 to verify: strong duality, Donsker

conditions, and completeness. Strong duality is shown by lemmas 1.9.38 and 1.9.42, and the

Donsker conditions are shown by lemma 1.9.14. It remains to verify the completeness as-

sumptions.

Verifying completeness

Lemma 1.9.20 (Completeness of dual problem feasible set in L2 for smooth cost functions).

Suppose Y ⊂ R is compact and c : Y ×Y → R is L-Lipschitz. Let Fc, F cc be given by (1.14)

and (1.15) respectively:

Fc = {ϕ : Y → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y)− ϕ(y′)| ≤ L|y − y′|} ,

F cc = {ψ : Y → R ; −2‖c‖∞ ≤ ψ(y) ≤ 0, |ψ(y)− ψ(y′)| ≤ L|y − y′|} ,

Further let Φc be defined by (1.80), and Fd defined by (1.57). Let L2,P be given by (1.51),

and L2 be given by (1.52). Then (F1,x×F0,x, L2) and its subset Φc∩ (Fc×F cc ) are complete.

Proof. In steps:
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1. (Fc, L2,P ) and (F cc , L2,P ) are complete.

The proof that (Fc, L2,P ) is complete is broken into steps:

(a) Let {ϕn}∞n=1 ⊆ Fc be L2,P -Cauchy. The Lp semimetrics are complete for any

probability distribution (Pollard (2002) section 2.7 and chapter 2 problem [19]),

thus there exists ϕ̃ such that L2,P (ϕn, ϕ̃) → 0. Convergence in L2,P implies

convergence almost surely along a subsequence (Pollard (2002) section 2.8). Thus

there exists a subsequence {ϕnk}∞k=1 such that limk→∞ ϕnk(y) = ϕ̃(y) for P -almost

every y. Let N1 ⊆ Y be the P -negligible set where this fails.

(b) Observe that on N c
1 = Y \N1, ϕ̃ obeys the bounds and Lipschitz continuity of Fc.

Specifically,

−‖c‖∞ ≤ lim
k→∞
−‖c‖∞ ≤ lim

k→∞
ϕnk(y)︸ ︷︷ ︸
ϕ̃(y)

≤ lim
k→∞
‖c‖∞ ≤ ‖c‖∞

Furthermore, for any y, y′ ∈ N c
1 ,

|ϕ̃(y)− ϕ̃(y′)| = | lim
k→∞

ϕnk(y)− lim
k→∞

ϕnk(y
′)| = lim

k→∞
|ϕnk(y)− ϕnk(y′)|

≤ lim
k→∞

L|y − y′| = L|y − y′|

(c) Now define functions ϕ̄, ϕ : Y → R with

ϕ̄(y1) = sup
y′1∈Nc

1

{ϕ̃(y′1)− L|y1 − y′1|}, ϕ(y1) = max{ϕ̄(y1),−‖c‖∞}

Then L2,P (ϕn, ϕ)→ 0 and ϕ ∈ Fc, which shows (Fc, L2,P ) is complete.

i. L2,P (ϕn, ϕ) → 0 follows from ϕ(y) = ϕ̃(y) for all y ∈ N c
1 . To see this, let

y ∈ N c
1 . Since ϕ̃ is L-Lipschitz on N c

1 , it follows that for any y′ ∈ N c
1 ,

ϕ̃(y′)− L|y − y′| ≤ ϕ̃(y)
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and thus ϕ̄(y) = ϕ̃(y). This implies ϕ̄(y) = ϕ̃(y) ≥ −‖c‖∞, and thus ϕ(y) =

ϕ̄(y) = ϕ̃(y). Thus ϕ(y) = ϕ̃(y) for P -almost all y, implying L2,P (ϕ̃, ϕ) = 0

and thus L2,P (ϕn, ϕ)→ 0.

ii. To see that ϕ ∈ Fc, first notice that ϕ̄(y) = supy′∈Nc
1
{ϕ̃(y′) − L|y − y′|} ≤

supy′∈Nc
1
ϕ̃(y) ≤ ‖c‖∞, and hence ϕ̄ obeys the upper bound for Fc. It then

follows easily that ϕ(y) = max{ϕ̄(y),−‖c‖∞} obeys both the upper and lower

bound. Next notice that ϕ̄ is L-Lipschitz on all of Y :

ϕ̄(y)− ϕ̄(y′) = = sup
ỹ∈Nc

1

{ϕ̃(ỹ)− L|y − ỹ|} − sup
ỹ′∈Nc

1

{ϕ̃(ỹ′)− L|y′ − ỹ′|}

≤ sup
ỹ∈Nc

1

{ϕ̃(ỹ)− L|y − ỹ| − (ϕ̃(ỹ)− L|y′ − ỹ|)}

= sup
ỹ∈Nc

1

L (|y′ − ỹ| − |y − ỹ|) ≤ L|y − y′|

where the last inequality follows from the reverse triangle inequality. It follows

that ϕ(y1) = max{ϕ̄(y1),−‖c‖∞} is also L-Lipschitz, and thus ϕ ∈ Fc.

2. Very similar steps show that (F cc , L2,P ) is complete; the only substantial changes are

replacing the lower bounds with −2‖c‖ and the upper bounds with 0.

3. Note that since (Fc×F cc , L2) is the product space of (Fc, L2,P ) and (F cc , L2,P ), it follows

that (Fc ×F cc , L2) is complete.

4. Φc ∩ (Fc ×F cc ) is complete.

To see that Φc ∩ (Fc × F cc ) is complete, let {(ϕn, ψn)}∞n=1 ⊆ Φc ∩ (Fc × F cc ) be L2-

Cauchy, and follow the same steps shown above to define (ϕ, ψ) ∈ Fc × F cc such that

L2((ϕn, ψn), (ϕ, ψ)) → 0. It remains to show that ϕ(y1) + ψ(y0) ≤ c(y1, y0) for all

(y1, y0) ∈ Y × Y ⊆ R2.
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Since c is L-Lipschitz,

c(y1, y0)− c(y′1, y0) ≥ −L‖(y1, y0)− (y′1, y
′
0)‖ ≥ −L|y1 − y′1| − L|y0 − y′0|

which implies c(y′1, y
′
0)− L|y1 − y′1| − L|y0 − y′0| ≤ c(y1, y0). Thus

ϕ̄(y1) + ϕ̄(y0) = sup
y′1∈Nc

1

{ϕ̃(y′1)− L|y1 − y′1|}+ sup
y′0∈Nc

0

{ψ̃(y′0)− L|y0 − y′0|}

= sup
(y′1,y

′
0)∈Nc

1×Nc
0

{
ϕ̃(y′1) + ψ̃(y′0)− L|y1 − y′1| − L|y0 − y′0|

}
≤ sup

(y′1,y
′
0)∈Nc

1×Nc
0

{c(y′1, y′0)− L|y1 − y′1| − L|y0 − y′0|}

≤ sup
(y′1,y

′
0)∈Nc

1×Nc
0

{c(y1, y0)} = c(y1, y0)

Finally,

ϕ(y1) + ψ(y0) = max{ϕ̄(y1),−‖c‖∞}+ max{ψ̄(y0),−2‖c‖}

= max{ϕ̄(y1) + ϕ̄(y0), ϕ̄(y1)− 2‖c‖∞,−‖c‖∞ + ψ̄(y0),−‖c‖∞ − 2‖c‖}

≤ max{c(y1, y0),−‖c‖∞,−‖c‖∞,−3‖c‖∞}

≤ c(y1, y0)

where the first inequality follows from ϕ̄(y1) ≤ ‖c‖∞ and ψ̄(y0) ≤ 0.

5. (F1,x ×F0,x, L2) is complete.

As this is the product space of (F1,x, L2,P ) and (F0,x, L2,P ), it suffices to show these

individual spaces are complete.
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Now recall that Fd,x is defined by (1.57):

F̃1 =
{
f : Y → R ; f = ϕ for some ϕ ∈ Fc, or f = η

(k)
1 for some k = 1, . . . , K1

}
F̃0 =

{
f : Y → R ; f = ψ for some ψ ∈ F cc , or f = η

(k)
0 for some k = 1, . . . , K0

}
Fd,x =

{
f : Y → R ; f = g or 1Yd,x × g for some g ∈ F̃d

}

Recall that the union of a finite number of complete sets is complete. Since (Fc, L2,P )

and F cc , L2,P ) are complete and any finite set is complete, F̃d is complete. Next recog-

nize that Fd,x = F̃d ∪
{
1Yd,x × g ; g ∈ F̃d

}
is the union of a finite number of sets, and

thus it suffices to show
{
1Yd,x × g ; g ∈ F̃d

}
is complete.

Let {1Yd,x × gn}∞n=1 ⊆
{
1Yd,x × g ; g ∈ F̃d

}
be L2,P -Cauchy. Lemma 1.9.14 shows that

Fd,x is Donsker and supf∈Fd,x |P (f)| <∞, which implies (Fd,x, L2,P ) is totally bounded

(see van der Vaart & Wellner (1997) problem 2.1.2.). Since F̃d is a complete subset of

a totally bounded set, it is compact. Thus {gn}∞n=1 ⊆ F̃d is a sequence in a compact

semimetric space, and therefore has a convergent subsequence {gnk}∞k=1. Let g ∈ F̃d

be its limit, and notice that

0 ≤ L2,P (1Yd,x × gnk ,1Yd,x × g) =
√
P ((1Yd,x × gnk − 1Yd,x × g)2)

≤
√
P ((gnk − g)2)

= L2,P (gnk , g)→ 0

and thus 1Yd,x × ϕnk → 1Yd,xg. It follows that 1Yd,x × ϕn → 1Yd,xg, and thus{
1Yd,x × g ; g ∈ F̃d

}
is complete.

This completes the proof.

Lemma 1.9.21 (Completeness of dual problem feasible set in L2 for indicator cost func-

tions). Let Y ⊆ R, C ⊆ Y × Y be nonempty, open, and convex, and let c : Y × Y → R be
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given by c(y1, y0) = 1C(y1, y0) = 1{(y1, y0) ∈ C}. Let Fc, F cc be given by (1.16) and (1.17)

respectively:

Fc = {ϕ : Y → R ; ϕ(y1) = 1I(y1) for some interval I} ,

F cc = {ψ : Y → R ; ψ(y0) = −1Ic(y0) for some interval I} ,

Further let Φc be defined by (1.80), and Fd,x defined by (1.57). Let L2,P be given by (1.51),

and L2 be given by (1.52). Then (F1,x×F0,x, L2) and its subset Φc∩ (Fc×F cc ) are complete.

Proof. The proof is similar in structure to that of lemma 1.9.20.

1. (Fc, L2,P ) is complete.

Let {ϕn}∞n=1 ⊆ Fc be L2,P -Cauchy. Note that ϕn(y) = 1In(y) for some interval In.

Just as in the proof of lemma 1.9.20, there exists ϕ̃ such that L2,P (ϕn, ϕ̃) → 0, and

a subsequence {ϕnk}∞k=1 such that limk→∞ ϕnk(y) = ϕ̃(y) for P -almost every y. Let

N ⊂ Y be the P -negligible set where this convergence fails.

Let y ∈ N c, and notice that ϕnk(y) = 1Ink
(y) ∈ {0, 1} for all k and {ϕnk(y)}∞k=1

converging in R implies that ϕnk(y) is eventually constant as k grows. This implies

ϕ̃(y) ∈ {0, 1}, and hence for some set A ⊂ Y ,

ϕ̃(y) = 1A(y) for all y ∈ N c

We will show that for some interval I, A ∩ N c = I ∩ N c. Let y1, y2, y3 ∈ N c satisfy

y1 < y2 < y3 and y1, y3 ∈ A, but be otherwise arbitrary. It suffices to show that y2 ∈ A;

we can then define I to be the interval with endpoints inf A and supA (including

the lower endpoint if inf A = minA > −∞, and including the upper endpoint if

supA = maxA <∞), and define the function ϕ : Y1 → R with ϕ(y1) = 1I(y1).12

12Explicitly, I is defined as follows: (a) I = (`, u) if neither ` = inf A nor u = supA is attained in R
(b) I = [`, u) if ` = inf A = minA, but u = supA is not attained in R (c) I = (`, u] if ` = inf A is not
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Notice that limk→∞ 1Ink (y3) = 1A(y3) = 1 and limk→∞ 1Ink (y3) = 1A(y3) = 1 implies

that 1Ink (y1) and 1Ink
(y3) are eventually constant and equal to 1, i.e. there exists

K1, K3 ∈ N such that

y1 ∈ Ink for all k ≥ K1, and y3 ∈ Ink for all k ≥ K3

Since Ink is an interval, this implies

y2 ∈ Ink for all k ≥ max{K1, K3}

i.e. 1Ink (y2) = 1 for all such k, and therefore 1A(y2) = limk→∞ 1An(y2) = 1. Thus

y2 ∈ A.

It follows that ϕ̃(y) = ϕ(y) = 1I(y) for all y ∈ N c. Thus L2,P (ϕ̃, ϕ) = 0, and

L2,P (ϕn, ϕ)→ 0. Since ϕ ∈ Fc, this completes the proof that (Fc, L2,P ) is complete.

2. (F cc , L2,P ) is complete.

The argument is similar. Let {ψn}∞n=1 ⊆ Fc be L2,P -Cauchy. Note that ψn(y) = 1Icn(y)

for some interval In. There exists ψ̃ such that L2,P (ψn, ψ̃) → 0, and a subsequence

{ψnk}∞k=1 such that limk→∞ ψnk(y) = ψ̃(y) for P -almost every y. Let N ⊂ Y be the

P -negligible set where this convergence fails.

Since ψnk(y) = 1Icnk
(y) ∈ {0, 1} for all k and y, and limk→∞ ψnk(y) = ψ̃(y) for all

y ∈ N c, we have ψ̃(y) ∈ {0, 1} for all such y and thus for some set A ⊆ Y ,

ψ̃(y) = 1Ac(y) for all y ∈ N c

Once again, it suffices to show A∩N c = I∩N c for some interval I. Consider y1, y2, y3 ∈

N c, y1 < y2 < y3, with y1, y3 ∈ A. limk→∞ ψnk(y1) = ψ̃(y1) = 0 and limk→∞ ψnk(y3) =

attained in R, but u = supA = maxA (d) I = [`, u] if both ` = inf A = minA and u = supA = maxA.
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ψ̃(y3) = 0 implies that ψnk(y1) = 1Icnk
(y1) and ψnk(y3) = 1Icnk

(y3) are eventually

constant and equal to 0, i.e. for some K1, K3 ∈ N,

y1 ∈ Ink for all k ≥ K1, y3 ∈ Ink for all k ≥ K3

since Ink is an interval for every k, this implies

y2 ∈ Ink for all k ≥ max{K1, K3}

thus ψ̃(y2) = limk→∞ ψnk(y2) = 0. It follows that A ∩ N c = I ∩ N c, where I is the

interval defined by endpoints inf A and supA, which are included if attained and finite.

Define ψ(y) = 1Ic(y) and notice ψ ∈ F cc . We have ψ(y) = ψ̃(y) for all y ∈ N c and

hence L2,P (ψ̃, ψ) = 0. Thus L2,P (ψn, ψ)→ 0, showing (F cc , L2,P ) is complete.

3. Note that (Fc × F cc , L2) is the product space of the complete spaces (Fc, L2,P ) and

(F cc , L2,P ), and so is complete.

4. We next show Φc ∩ (Fc×F cc ) = {(ϕ, ψ) ∈ Fc ×F cc ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} is com-

plete.

Let {(ϕn, ψn)}∞n=1 ⊆ Φc ∩ (Fc × F cc ) be L2-Cauchy, and let (ϕ̃, ψ̃) be a limit in

Fc × F cc . Since L2,P (ϕn, ϕ̃) → 0 there exists a subsequence {(ϕnk , ψnk)}∞k=1 such that

limk→∞ ϕnk(y1) = ϕ̃(y1) for P -almost all y1. Let N1 be the negligible set where this

fails. Furthermore, L2,P (ψnk , ψ̃)→ 0 as k →∞ and so there is a further subsequence

{(ϕnkj , ψnkj )}
∞
j=1 such that limj→∞ ψnkj (y0) = ψ̃(y0) for P -almost all y0. Let N0 be the

negligible set where this fails. It is then clear that if (y1, y0) ∈ N c
1 ×N c

0 , then

ϕ̃(y1) + ψ̃(y0) = lim
j→∞
{ϕnkj (y1) + ψnkj (y0)} ≤ lim

j→∞
c(y1, y0) = 1C(y1, y0) (1.68)
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Note that ϕ̃ = 1Iϕ̃ , and ψ̃ = −1Ic
ψ̃

for some intervals Iϕ̃ and Iψ̃. Let

`1 = inf Iϕ̃ ∩N c
1 , u1 = sup Iϕ̃ ∩N c

1 , `0 = inf Iψ̃ ∩N
c
0 , u0 = sup Iψ̃ ∩N

c
0

and define ϕ = 1Iϕ where Iϕ is the interval with endpoints `1, u1 (included if the

inf/sup are finite and attained), and ψ = −1Icψ where Icψ is the interval with endpoints

`0, u0 (included if the inf/sup are finite and attained). Notice that Iϕ = Iϕ̃, P -almost

surely and Iψ = Iψ̃, P -almost surely.

Notice that for (y1, y0) ∈ (N c
1 × N c

0)c to satisfy ϕ(y1) + ψ(y0) = 1Iϕ(y1) − 1Icψ(y0) >

1C(y1, y0), it would have to be the case that (y1, y0) ∈ (Iϕ̃ × Iψ̃)∩ (N c
1 ×N c

0)c \C. Let

(y1, y0) ∈ (Iϕ× Iψ)∩ (N c
1 ×N c

0)c, and note that there exists y`1, y
u
1 ∈ Iϕ ∩N c

1 with y`1 ≤

y1 ≤ yu1 and y`0, y
u
0 ∈ Iψ ∩N c

0 with y`0 ≤ y0 ≤ yu0 . Notice that [y`1, y
u
1 ]× [y`0, y

u
0 ] ⊆ C, be-

cause C is convex and (1.68) holds for the “corners”: (`1, `0), (`1, u0), (u1, `0), (u1, u0) ∈

(Iϕ×Iψ)∩(N c
1×N c

0). Thus (Iϕ̃×Iψ̃)∩(N c
1×N c

0)c\C = ∅, showing that ϕ(y1)+ψ(y0) ≤

c(y1, y0) holds for all (y1, y0) ∈ Y1 × Y0. This shows Φc ∩ (Fc ×F cc ) is complete.

5. The argument thet (F1,x ×F0,x, L2) is complete is identical to the argument given in

step 5 of the proof of lemma 1.9.20.

This completes the proof.

1.9.3.4 Differentiability of T2

We first apply lemma 1.9.7 to show show that θL(·, ·) and θH(·, ·), given by either (1.19) or

(1.20) depending on the function c, are Hadamard differentiable.

Lemma 1.9.22. Suppose assumptions 1, 2, and 3 hold. Then θL(·, ·) and θH(·, ·) given

by (1.19) or (1.20) are Hadamard directionally differentiable at (P1|x, P0|x) tangentially to
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C(F1,x, L2,P )× C(F0,x, L2,P ). The argmax sets

ΨcL(P1|x, P0|x) = arg max
(ϕ,ψ)∈ΦcL∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

ΨcH (P1|x, P0|x) = arg max
(ϕ,ψ)∈ΦcH∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

are nonempty, and the derivatives θL′(P1|x,P0|x), θ
H′
(P1|x,P0|x) : C(F1,x, L2,P ) × C(F0,x, L2,P ) → R

are given by

θL′(P1|x,P0|x)(H1, H0) = sup
(ϕ,ψ)∈ΨcL (P1|x,P0|x)

H1(ϕ) +H0(ψ) (1.69)

θH′(P1|x,P0|x)(H1, H0) = −

[
sup

(ϕ,ψ)∈ΨcH (P1|x,P0|x)

H1(ϕ) +H0(ψ)

]
(1.70)

If assumption 4 also holds, then θL and θH are fully Hadamard differentiable at (P1|x, P0|x)

tangentially to

DTan,Full,x =
(
`∞Y1,x(F1,x)× `∞Y0,x(F0,x)

)
∩
(
C(F1,x, L2,P )× C(F0,x, L2,P )

)
with the derivatives θL′(P1|x,P0|x), θ

H′
(P1|x,P0|x) : DTan,Full,x → R also given by (1.69) and (1.70).

Proof. We apply lemma 1.9.7. It is clear from inspection that the cost functions cL and cH

are lower semicontinuous, the sets Fd,x defined by (1.57) consists of measurable functions

mapping Y to R, and that the subsets Fc and F cc given by (1.14) and (1.15), or by (1.16)

and (1.17), are universally bounded. Moreover,

1. Strong duality holds.

(i) If assumption 2 (i) holds, then lemma 1.9.38 shows that strong duality holds.

(ii) If assumption 2 (ii) holds, then lemma 1.9.42 shows that strong duality holds.

97



2. Assumption 1 implies P dominates Pd|x with bounded densities
dPd|x
dP

. Indeed,

EPd|x [f(Yd)]

=
EP [f(Y )1{D = d} | X = x, Z = d]− EP [f(Y )1{D = d} | X = x, Z = 1− d]

P (D = d | X = x, Z = d)− P (D = d | X = x, Z = 1− d)

= EP

[
f(Y )

1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d
pd,x,d/px,d − pd,x,1−d/px,1−d

]
= EP

[
f(Y )E

[
1d,x,d(D,X,Z)/px,d − 1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d − pd,x,1−d/px,1−d
| Y
]]

Notice that
dPd|x
dP

(Y ) = EP

[
1d,x,d(D,X,Z)/px,d−1d,x,1−d(D,X,Z)/px,1−d

pd,x,d/px,d−pd,x,1−d/px,1−d
| Y
]

must be nonneg-

ative P -almost surely; if the set A =
{
y ;

dPd|x
dP

(y) < 0
}

was P -non-negligible, the

displays above would imply the contradiction P (Yd ∈ A | D1 > D0, X = x) < 0.

Moreover,
dPd|x
dP

is bounded because the integrand of this conditional mean is bounded.

3. Lemma 1.9.14 shows that under assumptions 1, 2, and 3, Fd,x is P -Donsker and

supf∈Fd,x |P (f)| <∞ for d = 1, 0, and

4. The set (F1 ×F0, L2) and its subset Φc ∩ (Fc ×F cc ) are complete.

(i) If assumption 2 (i) holds, then lemma 1.9.20 shows these sets are complete.

(ii) If assumption 2 (ii) holds, then lemma 1.9.21 shows these sets are complete.

It follows from the chain rule that θL and θH are Hadamard directionally differentiable with

the claimed directional derivatives.

Now suppose assumptions 1, 2, 3, and 4 hold. Lemma 1.9.10 implies θL and θH are fully

Hadamard differentiable at (P1|x, P0|x) tangentially to

DT,Full,x =
(
`∞Y1,x(F1,x)× `∞Y0,x(F0,x

)
∩
(
C(F1,x, L2,P )× C(F0,x, L2,P )

)
with derivatives given by the same expressions.
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We can now show the differentiability properties of T2.

Lemma 1.9.23 (T2 is Hadamard differentiable). Let DTan and DTan,Full be given by

DTan =
M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R

DTan,Full =
M∏
m=1

(
`∞Y1,xm (F1,xm)× `∞Y0,xm (F0,xm)

)
∩
(
C(F1,xm , L2,P )× C(F0,xm , L2,P )

)
× RK1 × RK0 × R

and define

T2 :
M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R→
M∏
m=1

R× R× RK1 × RK0 × R,

T2({P1|x, P0|x, η1,x, η0,x, sx}x∈X ) =
(
{θL(P1|x, P0|x), θ

H(P1|x, P0|x), η1,x, η0,x, sx}x∈X
)

Under assumptions 1, 2, and 3, T2 is Hadamard directionally differentiable at

T1(P ) = ({P1|x, P0|x, sx, η1,x, η0,x}x∈X ) tangentially to DTan, with derivative

T ′2,T1(P ) : DTan →
M∏
m=1

R× R× RK1 × RK0 × R

T ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
θL′(P1|x,P0|x)(H1,x, H0,x), θ

H′
(P1|x,P0|x)(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)

If assumption 4 also holds, then T2 is fully Hadamard differentiable at T1(P ) tangentially

to DTan,Full, with derivative T2,T1(P ) : DTan,Full →
∏M

m=1 R×R×RK1 ×RK0 ×R given by the

same expression.

Proof. Lemma 1.9.22 shows that under assumptions 1, 2, and 3, θL(·) and θH(·) are Hadamard

directionally differentiable at (P1|x, P0|x) tangentially to C(F1,x, L2,P )×C(F0,x, L2,P ) for each
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x ∈ X . If assumption 4 also holds, lemma 1.9.22 shows these derivatives are linear on the

subspace DTan,Full, and hence θL(·) and θH(·) are fully Hadamard differentiable tangentially

to DTan,Full. The other coordinates are the identity mapping, which is fully Hadamard

differentiable. Apply lemma 1.9.51 to obtain the result.

1.9.3.5 Expectations, T3({θLx , θHx , η1,x, η0,x, sx}x∈X ) = (θL, θH , η)

Lemma 1.9.24. Define

T3 :
M∏
m=1

R× R× RK1 × RK0 × R→ R× R× RK1 × RK0

T3({θLx , θHx , η1,x, η0,x, sx}x∈X ) =

(∑
x∈X

sxθ
L
x ,
∑
x∈X

sxθ
H
x ,
∑
x∈X

sxη1,x,
∑
x∈X

sxη0,x

)

T3 is fully (Hadamard) differentiable at any V = ({θLx , θHx , η1,x, η0,x, sx}x∈X ) ∈
∏M

m=1 R×

R× R× RK1 × RK0 tangentially to
∏M

m=1 R× R× RK1 × RK0 × R with derivative

T ′3,V :
M∏
m=1

R× R× RK1 × RK0 × R→ R× R× RK1 × RK0

T ′3,V ({hLx , hHx , hη1,x, hη0,x, hs,x}x∈X )

=

(∑
x∈X

sxh
L
x + hs,xθ

L(x),
∑
x∈X

sxh
H
x + hs,xθ

H(x),
∑
x∈X

sxhη1,x + hs,xη1,x,
∑
x∈X

sxhη0,x + hs,xη0,x

)

Proof. The inner product

IP : RM × RM → R, IP (r1, r2) = 〈r1, r2〉 =
M∑
m=1

r
(m)
1 r

(m)
2

is fully Hadamard differentiable at any (r1, r2) ∈ RM × RM tangentially to RM × RM with
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derivative

IP ′(r1,r2) : RM × RM → R,

IP ′(r1,r2)(h1, h2) = 〈r1, h2〉+ 〈h1, r2〉 =
M∑
m=1

r
(m)
1 h

(m)
2 + h

(m)
1 r

(m)
2

Apply lemma 1.9.51 to obtain the result.

1.9.3.6 Optimization over t ∈ [θL, θH ]: T4(θL, θH , η) = (γL, γH)

Lemma 1.9.25. Let gL, gH : R× R× RK1 × RK0 → R be as defined in assumption 3:

gL(θL, θH , η1, η0) = inf
t∈[θL,θH ]

g(t, η1, η0), gH(θL, θH , η1, η0) = sup
t∈[θL,θH ]

g(t, η1, η0)

Define

T4 : R× R× RK1 × RK0 → R× R

T4(θL, θH , η1, η0) =
(
gL(θL, θH , η1, η0), gH(θL, θH , η1, η0)

)
Under assumption 3, gL and gH are continuously differentiable at (θL, θH , η1, η0) =

T3(T2(T1(P ))) with gradients

∇gL = ∇gL(θL, θH , η1, η0) ∈ R2+K1+K0 , ∇gH = ∇gH(θL, θH , η1, η0) ∈ R2+K1+K0

Therefore T4 is fully Hadamard differentiable at (θL, θH , η1, η0) tangentially to R×R×RK1×
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RK0, with derivative

T ′4,T3(T2(T1(P ))) : R× R× RK1 × RK0 → R× R

T ′4,T3(T2(T1(P )))(h
L, hH , hη1 , hη0)

=
(〈
∇gL, (hL, hH , hη1 , hη0)

〉
,
〈
∇gH , (hL, hH , hη1 , hη0)

〉)
Proof. Assumption 3 (iii) is that gL and gH are continuously differentiable. The result

follows.

1.9.3.7 The map T (P ) = (γL, γH), consistency, and weak convergence

Lemma 1.9.26. Let T1, T2, T3, and T4 be as defined in lemmas 1.9.17, 1.9.23, 1.9.24, and

1.9.25 respectively. Let

({
P̂1|x, P̂0|x, η̂1,x, η̂0,x, ŝx

}
x∈X

)
= T1(Pn)(

{θ̂Lx , θ̂Hx , η̂1,x, η̂0,x, ŝx}x∈X
)

= T2(T1(Pn))

(θ̂L, θ̂H , η̂) = T3(T2(T1(Pn))),

(γ̂L, γ̂H) = T4(T3(T2(T1(Pn))))

be the empirical analogue estimators. If assumptions 1, 2, and 3 hold, then each of these

estimators are consistent.

Proof. Lemmas 1.9.17, 1.9.23, 1.9.24, and 1.9.25 show that T1, T2, T3, and T4 are Hadamard

(directionally) differentiable at P , T1(P ), T2(T1(P )), and T3(T2(T1(P ))) respectively, tangen-

tially to sets that include zero. It follows that these functions are continuous at P , T1(P ),

T2(T1(P )), and T3(T2(T1(P ))) respectively. Lemma 1.9.15 implies that Pn
p→ P in `∞(F),
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so it follows from the continuous mapping theorem that

T1(Pn)
p→ T1(P ),

T2(T1(Pn))
p→ T2(T1(P )),

T3(T2(T1(Pn)))
p→ T3(T2(T1(P ))), and

T4(T3(T2(T1(Pn))))
p→ T4(T3(T2(T1(P )))).

Lemma 1.9.27 (T is Hadamard directionally differentiable). Let DC be defined by (1.60),

and

T : DC → R2, T (G) = T4(T3(T2(T1(G))))

If assumptions 1, 2, 3 holds, then T is Hadamard directionally differentiable at P tangentially

to C(F , L2,P ) with derivative given by

T ′P : C(F , L2,P )→ R2, T ′P (G) = T ′4,T3(T2(T1(P )))(T
′
3,T2(T1(P ))(T

′
2,T1(P )(T

′
1,P (G))))

If assumption 4 also holds, then T is fully Hadamard differentiable at P tangentially to the

support of G as defined in lemma 1.9.15.

Proof. Lemma 1.9.17 shows that T1 is fully Hadamard differentiable at any point in DC

tangentially to `∞(F). Lemma 1.9.23 shows that under assumptions 1, 2, and 3, T2 is

Hadamard directionally differentiable at T1(P ) tangentially to

DTan =
M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R

Lemma 1.9.18 implies that if H ∈ C(F , L2,P ), then T ′1,P (H) ∈ DTan. It follows from the chain
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rule (lemma 1.9.50) that T2 ◦ T1 is Hadamard directionally differentiable at P tangentially

to C(F , L2,P ). Lemma 1.9.24 shows T3 is fully differentiable at any point in its domain

tangentially to the entire relevant space, and lemma 1.9.25 shows T4 is fully differentiable

at T3(T2(T1(P ))) tangentially to the entire relevant space. The chain rule thus implies the

first claim: under assumptions 1, 2, and 3, T = T4 ◦ T3 ◦ T2 ◦ T1 is Hadamard directionally

differentiable at P tangentially to C(F , L2,P ) with the claimed derivative.

If assumption 4 also holds, lemma 1.9.23 implies that T2 is fully differentiable at T1(P )

tangentially to DTan,Full. Lemma 1.9.19 shows the support of T ′1,P (G) is contained within

DTan,Full. It follows that T ′P (·) = T ′4,T3(T2(T1(P )))(T
′
3,T2(T1(P ))(T

′
2,T1(P )(T

′
1,P (·)))) is linear on the

support of G, and hence Fang & Santos (2019) proposition 2.1 implies T is fully Hadamard

differentiable at P tangentially to the support of G.

Lemma 1.5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(y1, y0) that is continuously differentiable,

and

(ii) for each (d, x), the support of Pd|x is Yd,x, which is a bounded interval.

Then assumption 4 holds.

Proof. Note that both cL(y1, y0) = c(y1, y0) and cH(y1, y0) = −c(y1, y0) are continuously

differentiable. Moreover, since the support of Pd|x is Yd,x which is a bounded interval, the

support can be written as [y`d,x, y
u
d,x]. So for any x ∈ X and either c ∈ {cL, cH}, lemma 1.9.8

shows that for any (ϕ1, ψ1), (ϕ2, ψ2) ∈ Ψc(P1|x, P0|x), there exists s ∈ R such that for all

(y1, y0) ∈ Y1,x × Y0,x

ϕ1(y1)− ϕ2(y1) = s, ψ1(y0)− ψ2(y0) = −s
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and thus

1Y1,x × ϕ1 = 1Y1,x × (ϕ2 + s), P -a.s. and 1Y0,x × ψ1 = 1Y0,x × (ψ2 − s), P -a.s..

Therefore assumption 4 holds.

Theorem 1.5.2 (Weak convergence). Suppose assumptions 1, 2, and 3 hold, and let G be

the weak limit of
√
n(Pn − P ) in `∞(F). Then T is Hadamard directionally differentiable at

P tangentially to the support of G, and

√
n((γ̂L, γ̂H)− (γL, γH)) =

√
n(T (Pn)− T (P ))

L→ T ′P (G)

If assumption 4 also holds, then T ′P is linear on the support of G and T ′P (G) is bivariate

normal.

Proof. The result is an application of the functional delta method (see Fang & Santos (2019)

theorem 2.1) and lemma 1.9.27.

Indeed, `∞(F) and R2 are Banach spaces, and under assumptions 1, 2, and 3 lemma 1.9.27

shows T is Hadamard directionally differentiable at P tangentially to C(F , L2,P ). Lemma

1.9.15 shows that
√
n(Pn−P )

L→ G in `∞(F), where G is tight and supported in C(F , L2,P ).

Fang & Santos (2019) theorem 2.1 gives the result that
√
n(T (Pn)− T (P ))

L→ T ′P (G).

If assumption 4 holds as well as assumptions 1, 2, and 3, then lemma 1.9.27 shows that

T is fully differentiable on the support of G. Since G is Gaussian and T ′P is continuous and

linear on the support of G, T ′P (G) ∈ R2 is Gaussian.
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1.9.4 Appendix: inference

1.9.4.1 Bootstrap

Lemma 1.9.28. Suppose assumptions 1, 2, and 3 are satisfied. Let P∗n be given by definition

1.5.1 or 1.5.2. Then Fang & Santos (2019) assumption 3 is satisfied:

(i) P∗n is a function of {Yi, Di, Zi, Xi,Wi}ni=1, with {Wi}ni=1 independent of

{Yi, Di, Zi, Xi}ni=1.

(ii) P∗n satisfies supf∈BL1
|E [f(

√
n(P∗n − Pn)) | {Yi, Di, Zi, Xi}ni=1]− E[f(G)]| = op(1).

(iii)
√
n(P∗n − Pn) is asymptotically measurable (jointly in {Yi, Di, Zi, Xi,Wi}ni=1).

(iv) f(
√
n(P∗n − Pn)) is a measurable function of {Wi}ni=1 outer almost surely in

{Yi, Di, Zi, Xi}ni=1 for any continuous and bounded real-valued f .

Proof. Note that assumption 3(i) is satisfied by construction. van der Vaart & Wellner

(1997) example 3.6.9, 3.6.10, and theorem 3.6.13 implies assumpion 3(ii) holds:

sup
f∈BL1

∣∣E [f(
√
n(P∗n − Pn)) | {Yi, Di, Zi, Xi}ni=1

]
− E[f(G)]

∣∣ P ∗→ 0

and further that

E
[
f(
√
n(P∗n − Pn))∗

]
− E

[
f(
√
n(P∗n − Pn))∗

]
= op(1)

for any f ∈ BL1, where f(
√
n(P∗n−Pn))∗ and f(

√
n(P∗n−Pn))∗ denote the minimal measurable

majorant and maximal measurable minorant of f(
√
n(P∗n−Pn)), respectively. Note that for

any continuous and bounded f , f(
√
n(P∗n − Pn)) is continuous in {Wi}ni=1, and is hence

measurable satisfying Fang & Santos (2019) assumption 3(iv). Fang & Santos (2019) lemma

S.3.9 then implies assumption 3(iii) is satisfied as well.
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Theorem 1.5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P∗n be given by definition

1.5.1 or 1.5.2. Then conditional on {Yi, Di, Zi, Xi}ni=1,

√
n(T (P∗n)− T (Pn))

L→ T ′P (G)

in outer probability.

Proof. By application of Fang & Santos (2019) theorem 3.1. There are three numbered

assumptions:

1. Fang & Santos (2019) assumption 1 is satisfied; `∞(F) and R2 are indeed Banach

spaces, and lemma 1.9.27 shows that under this paper’s assumptions 1, 2, and 3, the

map T is Hadamard directionally differentiable at P tangentially to C(F , L2,P ).

2. Fang & Santos (2019) assumption 2 is satisfied; lemma 1.9.15 shows that
√
n(Pn−P )

L→

G in `∞(F), where G is tight and supported in C(F , L2,P ).

3. Lemma 1.9.28 shows that Fang & Santos (2019) assumption 3 is satisfied.

Finally, note that G is Gaussian and mean zero; it follows that its support is a vector

subspace of `∞(F). Thus Fang & Santos (2019) theorem 3.1 implies T is (fully) Hadamard

differentiable tangentially to the support of G if and only if

sup
f∈BL1

∣∣E [f (√n(T (P∗n)− T (Pn))
)
| {Yi, Di, Zi, Xi}ni=1

]
− E [f(T ′P (G))]

∣∣ = op(1)

Since lemma 1.9.27 shows that under assumptions 1, 2, 3, and 4, T is fully Hadamard

differentiable tangentially to the support of G, this completes the proof.

107



1.9.4.2 Alternative for directional differentiability

Lemma 1.9.29. Let assumptions 1, 2, and 3 hold, and {κn}∞n=1 ⊆ R satisfy κn →∞

and κn/
√
n→ 0. For c ∈ {cL, cH}, let

Ψc(P1|x, P0|x) = arg max
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P1|x(ϕ) + P0|x(ψ)

Ψ̂c,x =

{
(ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ) ; OTc(P̂1|x, P̂0|x) ≤ P̂1|x(ϕ) + P̂0|x(ψ) +

κn√
n

}

and OT ′c,(P1|x,P0|x), ÔT
′
c,x : C(F1,x, L2,P )× C(F0,x, L2,P )→ R, be given by

OT ′c,(P1,|x,P0|x)(H1, H0) = sup
(ϕ,ψ)∈Ψc(P1|x,P0|x)

H1(ϕ) +H0(ψ)

ÔT
′
c,x(H1, H0) = sup

(ϕ,ψ)∈Ψ̂c,x

H1(ϕ) +H0(ψ)

Then for any (H1, H0) ∈ C(F1,x, L2,P )× C(F0,x, L2,P ),

∣∣∣ÔT ′c,x(H1, H0)−OT ′c,(P1,|x,P0|x)(H1, H0)
∣∣∣ p→ 0

Proof. The proof is similar that of Fang & Santos (2019) lemma S.4.8. As the subscript x

plays no role, we drop it from the notation.

In steps:

1. We first esteablish an inequality used several times below. Note that for any

(ϕ̃, ψ̃), (ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ),

‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0 ≥ P̂1(ϕ)− P1(ϕ) + P̂0(ψ)− P0(ψ)

‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0 ≥ P1(ϕ̃)− P̂1(ϕ̃) + P0(ψ̃)− P̂0(ψ̃)
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Add these to obtain

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
≥ P̂1(ϕ)− P1(ϕ) + P̂0(ψ)− P0(ψ) + P1(ϕ̃)− P̂1(ϕ̃) + P0(ψ̃)− P̂0(ψ̃), (1.71)

2. We next show

lim
n→∞

P
(

Ψ(P1, P0) ⊆ Ψ̂c

)
= 1 (1.72)

Let (ϕ̃, ψ̃) ∈ Ψ(P1, P0), and rearrange (1.71) to find

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
≥ P̂1(ϕ) + P̂0(ψ)− P̂1(ϕ̃)− P̂ (ψ̃) + P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)︸ ︷︷ ︸

≥0

≥ P̂1(ϕ) + P̂0(ψ)− P̂1(ϕ̃)− P̂ (ψ̃)

and therefore

sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

P̂1(ϕ) + P̂0(ψ) ≤ P̂1(ϕ̃) + P̂ (ψ̃) + 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)

holds for any (ϕ̃, ψ̃) ∈ Ψc(P1, P0). It follows that 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< κn√

n

implies (ϕ̃, ψ̃) ∈ Ψ̂c, and hence

P

(
2

√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< 1

)
≤ P

(
Ψ(P1, P0) ⊆ Ψ̂c

)

Lemma 1.9.26 implies ‖P̂1−P1‖F1 +‖P̂0−P0‖F0

p→ 0. Since
√
n

κn
→ 0, this implies that

2
√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
= op(1) and therefore

lim
n→∞

P
(

Ψ(P1, P0) ⊆ Ψ̂c

)
≥ lim

n→∞
P

(
2

√
n

κn

(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
< 1

)
= 1
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as was to be shown.

3. We next show that for any δ > 0,

lim
n→∞

P
(

Ψ̂c ⊆ (Ψ(P1, P0))δ
)

= 1 (1.73)

where (Ψ(P1, P0))δ is an open δ-enlargement of Ψ(P1, P0) under L2; i.e.

(Ψ(P1, P0))δ =

{
(f, g) ; inf

(ϕ,ψ)∈Ψ(P1,P0)
L2((ϕ, ψ), (f, g)) < δ

}

Toward this end, note that

η ≡

[
sup

(ϕ,ψ)∈Φc∩(Fc×Fcc )

{P1(ϕ) + P0(ψ)} − sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )\(Ψ(P1,P0))δ

{P1(ϕ) + P0(ψ)}

]
> 0

η > 0 follows from compactness of Φc∩(Fc×F cc ) and continuity of P1 +P0 with respect

to L2 (see the proof of lemma 1.9.7).

Rearrange (1.71) to find

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)

≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+ P̂1(ϕ̃) + P̂0(ψ̃)− P̂1(ϕ)− P̂0(ψ)

Take suprema over (ϕ̃, ψ̃) ∈ Φc ∩ (Fc ×F cc ) to find

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)

≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
(1.74)

+ sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃)− P̂1(ϕ)− P̂0(ψ)
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Suppose there exists (ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ) \ (Ψ(P1, P0))δ such that

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) +
κ√
n
.

For any such (ϕ, ψ), (1.74) implies

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− P1(ϕ)− P0(ψ)

≤ 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+

κn√
n

from which it follows that

2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+

κn√
n

≥ sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P1(ϕ̃) + P0(ψ̃)− sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )\(Ψ(P1,P0))δ

{P1(ϕ) + P0(ψ)}

= η

To summarize: if there exists (ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ) \ (Ψ(P1, P0))δ such that

sup
(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) +
κ√
n
,
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then 2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+ κn√

n
≥ η, from which it follows that

P
(

Ψ̂c 6⊆ (Ψ(P1, P0))δ
)

= P

(
sup

(ϕ̃,ψ̃)∈Φc∩(Fc×Fcc )

P̂1(ϕ̃) + P̂0(ψ̃) ≤ P̂1(ϕ) + P̂0(ψ) +
κ√
n

for some (ϕ, ψ) ∈ Φc ∩ (Fc ×F cc ) \ (Ψ(P1, P0))δ
)

≤ P

(
2
(
‖P̂1 − P1‖F1 + ‖P̂0 − P0‖F0

)
+

κn√
n
≥ η

)
→ 0

where the final limit claim follows from η > 0, κn/
√
n→ 0, and ‖P̂1 − P1‖F1 + ‖P̂0 −

P0‖F0 = op(1).

4. (1.72) and (1.73) imply that for any δ > 0, P
(

Ψc(P1, P0) ⊆ Ψ̂c ⊆ Ψc(P1, P0)δ
)
→

1. It follows that there exists a sequence {δn}∞n=1 ⊆ R+ with δn ↓ 0 such that

P
(

Ψ(P1, P0) ⊆ Ψ̂c ⊆ Ψ(P1, P0)δn
)
→ 1. When Ψ(P1, P0) ⊆ Ψ̂c ⊆ Ψ(P1, P0)δn holds,

∣∣∣ÔT ′c,x(H1, H0)−OT ′c,(P1,P0)(H1, H0)
∣∣∣

≤ sup
(ϕ,ψ)∈Ψc(P1,P0)δn∩Φc∩(Fc×Fcc )

{H1(ϕ) +H0(ψ)} − sup
(ϕ,ψ)∈Ψc(P1,P0)

{H1(ϕ) +H0(ψ)}

≤ sup
(ϕ1,ψ1),(ϕ2,ψ2)∈Φc∩(Fc×Fcc ); L2((ϕ1,ψ1),(ϕ2,ψ2))<δn

{H1(ϕ1) +H0(ψ1)−H1(ϕ2)−H0(ψ0)}

= op(1)

where the op(1) claim follows from H1 +H0 being continuous and Φc∩ (Fc×F cc ) being

compact, implying H1 +H0 is in fact uniformly continuous.

This concludes the proof.

Theorem 1.5.4. Suppose assumptions 1, 2, and 3 hold, let P∗n be given by definition 1.5.1

or 1.5.2, and {κn}∞n=1 ⊆ R satisfy κn → ∞ and κn/
√
n → 0. Then conditional on
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{Yi, Di, Zi, Xi}ni=1,

D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn)))

L→ T ′P (G)

in outer probability.

Proof. The overall strategy is to apply Fang & Santos (2019) theorem 3.2, viewing T1(Pn) as

the estimator for T1(P ), T1(P∗n) as the bootstrap, and T−1 ≡ T4 ◦ T3 ◦ T2 as the directionally

differentiable function. There are four assumption to verify.

1. To see that Fang & Santos (2019) assumption 1 holds,

(i) the map

T4 ◦ T3 ◦ T2 :
M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R→ R2

is a map between Banach spaces.

(ii) by lemmas 1.9.23, 1.9.24, 1.9.25 and the chain rule (lemma 1.9.50), T−1 ≡ T4 ◦

T3 ◦ T2 is Hadamard directionally differentiable at T1(P ) tangentially to

DTan =
M∏
m=1

C(F1,xm , L2,P )× C(F0,xm , L2,P )× RK1 × RK0 × R.

2. To see that the estimator T1(Pn) satisfies Fang & Santos (2019) assumption 2, note

that

(i) T1(P ) ∈
∏M

m=1 `
∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R and lemma 1.9.19 shows

T1(Pn) : {Yi, Di, Zi, Xi}ni=1 →
M∏
m=1

`∞(F1,x)× `∞(F0,x)× RK1 × RK0 × R

satisfies
√
n(T1(Pn)− T1(P ))

L→ T ′1,P (G).
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(ii) T ′1,P (G) is tight because G is tight and T ′1,P is continuous. Lemma 1.9.19 also

shows the support of T ′1,P (G) is included in DTan.

3. The bootstrap T1(P∗n) satisfies Fang & Santos (2019) assumption 3:

(i) T1(P∗n) is a function of {Yi, Di, Zi, Xi,Wi}ni=1 with {Wi}ni=1 independent of

{Yi, Di, Zi, Xi}ni=1.

(ii) T1 is fully Hadamard differentiable at P tangentially to `∞(F), and hence the

functional delta method implies
√
n(T1(Pn) − T1(P ))

L→ T ′1,P (G). Lemma 1.9.28

shows that P∗n satisfies Fang & Santos (2019) assumption 3, and thus Fang &

Santos (2019) theorem 3.1 implies

sup
f∈BL1

∣∣E [f(
√
n(T1(P∗n)− T1(Pn))) | {Yi, Di, Zi, Xi}ni=1

]
− E[f(T ′1,P (G))]

∣∣ = op(1)

(iii) Condition (iv) below holds, and hence Fang & Santos (2019) lemma S.3.9 implies
√
n(T1(P∗n)− T1(Pn)) is asymptotically measurable.

(iv) Note that for any continuous and bounded function f , f(
√
n(T1(P∗n) − T1(Pn)))

is continuous in {Wi}ni=1 and hence is a measurable function of {Wi}ni=1.

4. Fang & Santos (2019) assumption 4 is about the estimator of the derivative.

Notice that T ′−1,T1(P ) = T ′4,T3(T2(T1(P ))) ◦ T ′3,T2(T1(P )) ◦ T ′2,T1(P ) is given by

T ′−1,T1(P ) : DTan → R2, T ′−1,T1(P )(h) = D4D3T
′
2,T1(P )(h)

Estimate this derivative with

T̂ ′−1,T1(P ) : DTan → R2, D̂4D̂3T̂
′
2,T1(P )(h)

The estimator T̂ ′−1,T1(P ) satisfies the conditions of Fang & Santos (2019) lemma S.3.6,

and therefore Fang & Santos (2019) assumption 4. These conditions are
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(a) Modulus of continuity: ‖T̂ ′−1,T1(P )(h1) − T̂ ′−1,T1(P )(h2)‖ ≤ Cn‖h1 − h2‖ for some

Cn = Op(1).

(b) Pointwise consistency: for any h, ‖T̂−1,T1(P )(h)− T−1,T1(P )(h)‖ = op(1).

To see these claims in detail:

(a) For any matrix A, let ‖A‖o = supx;‖x‖2=1‖Ax‖2 be the operator norm.

‖T̂ ′−1,T1(P )(h1)− T̂ ′−1,T1(P )(h2)‖ = ‖D̂4D̂3T̂
′
2,T1(P )(h1)− D̂4D̂3T̂

′
2,T1(P )(h2)‖

≤ ‖D̂4D̂3‖o × ‖T̂ ′2,T1(P )(h1)− T̂ ′2,T1(P )(h2)‖

≤ ‖D̂4D̂3‖o × ‖h1 − h2‖

where the last claim follows because T̂ ′2,T1(P ) is 1-Lipschitz (shown below). Next

notice D̂4
p→ D4 and D̂3

p→ D3 by the CMT, which implies ‖D̂4D̂3‖o = Op(1) as

required.

To see that T̂ ′2,T1(P ) is 1-Lipschitz, recall from appendix 1.9.3.3 that

T̂ ′2,T1(P ) ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X )

=
({
ÔT

′
cL,x

(H1,x, H0,x),−ÔT
′
cH ,x

(H1,x, H0,x), hη1,x, hη0,x, hs,x

}
x∈X

)
The maps ÔT cL,x,−ÔT cH ,x are 1-Lipschitz. Specifically, note that

|ÔT
′
cL,x

(H1,x, H0,x)− ÔT
′
cL,x

(G1,x, G0,x)|

=

∣∣∣∣∣ sup
(ϕ,ψ)∈Ψ̂c,x

{H1,x(ϕ) +H0,x(ψ)} − sup
(ϕ,ψ)∈Ψ̂c,x

{G1,x(ϕ) +G0,x(ψ)}

∣∣∣∣∣
≤ sup

ϕ∈F1,x

|H1,x(ϕ)−G1,x(ϕ)|+ sup
ψ∈F0,x

|H0,x(ψ)−G0,x(ψ)|

= ‖H1,x −G1,x‖F1,x + ‖H0,x −G0,x‖F0,x
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and similarly, −ÔT cH ,x is 1-Lipschitz. The other maps in T̂2,T1(P ) are the identity

map, which is also 1-Lipschitz. It follows that T̂2,T1(P ) is 1-Lipschitz.

(b) To show pointwise consistency, fix h = ({H1,x, H0,x, hη1,x, hη0,x, hs,x}x∈X ) and note

that

‖T̂ ′−1,T1(P )(h)− T−1,T1(P )‖ = ‖D̂4D̂3T̂2,T1(P )(h)−D4D3T2,T1(P )(h)‖

≤ ‖(D̂4D̂3 −D4D3)T ′2,T1(P )(h)‖+ ‖D4D3(T̂2,T1(P )(h)− T2,T1(P )(h))‖

≤ ‖D̂4D̂3 −D4D3‖o × ‖T ′2,T1(P )(h)‖+ ‖D4D3‖o × ‖T̂2,T1(P )(h)− T2,T1(P )(h)‖

Since D̂4D̂3
p→ D4D3 by the CMT, it suffices to show

‖T̂2,T1(P )(h)− T2,T1(P )(h)‖ = op(1)

The only nonzero coordinates correspond to ÔT
L′
cL,x

(H1,x, H0,x) and

−ÔT
H′
cH ,x

(H1,x, H0,x):

‖T̂2,T1(P )(h)− T2,T1(P )(h)‖2

=
(
ÔT

′
cL,x

(H1,x, H0,x)−OT ′cL,(P1|x,P0|x)(H1,x, H0,x)
)2

+
(
ÔT

′
cH ,x

(H1,x, H0,x)−OT ′cH ,(P1|x,P0|x)(H1,x, H0,x)
)2

= op(1) + op(1)

where the last op(1) claim follows from lemma 1.9.29.

We conclude through Fang & Santos (2019) lemma S.3.6 that Fang & Santos (2019)

assumption 4 is satisfied.
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Finally, apply Fang & Santos (2019) theorem 3.2 to find that

sup
f∈BL1

∣∣∣E [f(D̂4D̂3T̂2,T1(P )(
√
n(T1(P∗n)− T1(Pn))))

]
− E [f(T ′P (G))]

∣∣∣ = op(1)

as was to be shown.

1.9.5 Appendix: duality in optimal transport

This appendix contains terminology, notation, and results regarding optimal transport used

in this paper. Many of these results can be found in the monographs Villani (2003), Villani

(2009), or Santambrogio (2015).

1.9.5.1 Primal and dual problems

Let Y1,Y0 be Polish subsets of R, equipped with their Borel sigma algebras. Let P(Yd) be

the set of probability distributions defined on Yd, and Pd ∈ P(Yd). Let P(Y1 × Y0) be the

set of probability distributions on the product space Y1 × Y0.

A probability measure π ∈ P(Y1 × Y0) has marginals P1 and P0 if

For all A ⊂ Y1 measurable, π(A× Y0) = P1(A) =

∫
1A(y1)dP1(y1) (1.75)

For all B ⊂ Y0 measurable, π(Y1 ×B) = P0(B) =

∫
1B(y0)dP0(y0) (1.76)

The collection of such joint distributions with marginals P1 and P0 is denoted

Π(P1, P0) = {π ∈ P(Y1 × Y0) ; π satisfies (1.75) and (1.76)} (1.77)

The cost function is a measurable function c : Y1×Y0 → R. The functional I : P(Y1×Y0)→

R ∪ {+∞} is defined as

Ic[π] =

∫
c(y1, y0)dπ(y1, y0) (1.78)
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The optimal cost OTc(P1, P0) is the infimum of Ic[π] over Π(P1, P0):

OTc(P1, P0) = inf
π∈Π(P1,P0)

Ic[π] = inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0) (1.79)

This minimization problem in (1.79) is known as optimal transport. When attained, a so-

lution to (1.79) is called an optimal transference plan or optimal coupling. Attainment is

common; Villani (2009) theorem 4.1 implies:

Lemma 1.9.30 (Optimal transport is attained). Let c : Y1 × Y0 → R be lower semicontin-

uous and bounded from below. Then there exists π∗ ∈ Π(P1, P0) such that

Eπ∗ [c(Y1, Y0)] = inf
π∈Π(P1,P0)

∫
c(y1, y0)dπ(y1, y0)

The dual problem will require some additional notation. For any probability measure P

let L1(P ) denote the P -integrable functions. Define

Φc =
{

(ϕ, ψ) ∈ L1(P1)× L1(P0) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)
}
, (1.80)

and J : L1(P1)× L1(P0)→ R by

J(ϕ, ψ) =

∫
Y1
ϕ(y1)dP1(y1) +

∫
Y0
ψ(y0)dP0(y0) (1.81)

The dual problem of optimal transport is

sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = sup
(ϕ,ψ)∈Φc

∫
ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0) (1.82)
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1.9.5.2 Duality

For any topological space Z, let Cb(Z) denotes the set of functions f : Z → R that are

continuous and bounded, and

Φc ∩ Cb = {(ϕ, ψ) ∈ Cb(Y1)× Cb(Y0) ; ϕ(y1) + ψ(y0) ≤ c(y1, y0)} (1.83)

The following weak duality statement is Villani (2003) proposition 1.5.

Lemma 1.9.31 (Weak duality).

sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) ≤ inf
π∈Π(P1,P0)

Ic[π]

The following strong duality statement can be directly inferred from Villani (2009) the-

orem 5.10, or Santambrogio (2015) theorem 1.42, and so is presented without proof.

Theorem 1.9.32 (Strong duality). Let c : Y1 × Y0 → R be lower semi-continuous and

bounded from below. Then

inf
π∈Π(P1,P0)

Ic[π] = sup
ϕ,ψ∈Φc

J(ϕ, ψ) = sup
(ϕ,ψ)∈Φc∩Cb

J(ϕ, ψ) (1.84)

Moreover, the infimum of the left-hand side of (1.84) is attained.

1.9.5.3 c-concave functions

For any function ϕ : Y1 → R and cost function c(y1, y0), define the c-transform of ϕ as the

function ϕc : Y0 → R given by

ϕc(y0) = inf
y1∈Y1
{c(y1, y0)− ϕ(y1)}.
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Similarly, ψc(y1) = infy0∈Y0{c(y1, y0)− ψ(y0)} is the c-transform of ψ. ϕ is called c-concave

if ϕcc = (ϕc)c = ϕ. If ϕ is c-concave, then (ϕ, ϕc) is called a c-concave conjugate pair.

The following lemma 1.9.33 is exercise 2.35 found in Villani (2003) and presented without

proof.

Lemma 1.9.33 (Villani (2003) exercise 2.35). Let Y1 and Y0 be nonempty sets and c :

Y1 × Y0 → R be an arbitrary function. Let ϕ : Y1 → R. Then

(i) ϕ(y1) + ϕc(y0) ≤ c(y1, y0) for all (y1, y0) ∈ Y1 × Y0

(ii) ϕcc(y1) ≥ ϕ(y1) for all y1 ∈ Y1, and

(iii) ϕccc(y0) = ϕc(y0) for all y0 ∈ Y0

It follows that ϕcc = ϕ if and only if ϕ is c-concave.

For H ⊆ {(f, g) ; f : Y1 → R, and g : Y0 → R}, let

F cc (H) =

{
ϕc : Y0 → R ; ∃(f, g) ∈ H s.t. ϕc(y0) = inf

y1∈Y1
{c(y1, y0)− f(y1)}

}
(1.85)

Fc(H) =

{
ϕ : Y1 → R ; ∃ϕc ∈ F c

c (H) s.t. ϕ(y1) = inf
y0∈Y0
{c(y1, y0)− ϕc(y0)}

}

Fc(H) is called the c-concave functions generated by H, and F cc (H) the c-conjugates generated

by H.13 Notice that not every (ϕ, ψ) ∈ Fc(H)×F cc (H) is a c-concave conjugate pair.

Lemma 1.9.34 (Restricting the dual to c-concave functions). Let Φcs ⊆ Φc be such that

1. strong duality holds: infπ∈Π(P1,P0) Ic[π] = sup(ϕ,ψ)∈Φcs J(ϕ, ψ), and

13H is a typically a subset of L1(P1)×L1(P0). As defined the sets Fc(H) and Fcc (H) only depend on the
functions in H that map Y0 to R. This notational choice is more natural with the reasoning of lemma 1.9.34
below.
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2. the c-concave functions generated by Φcs are integrable: Fc(Φcs)×F cc (Φcs) ⊂ L1(P1)×

L1(P0).

Then

inf
π∈Π(P1,P0)

Ic[π] = sup
ϕ∈Fc(Φcs)

J(ϕ, ϕc) = sup
(ϕ,ψ)∈Φc∩

(
Fc(Φcs)×Fcc (Φcs)

) J(ϕ, ψ).

Proof. Let (ϕ, ψ) ∈ Φcs. ψ(y0) ≤ c(y1, y0)− ϕ(y1) implies ψ(y0) ≤ ϕc(y0), and lemma 1.9.33

shows both that ϕ(y1) ≤ ϕcc(y1) and the pair (ϕcc, ϕc) is a c-concave conjugate pair; thus

(ϕcc, ϕc) ∈ Φc ∩
(
Fc(Φcs)×F cc (Φcs)

)
.

Since ϕcc and ϕc are integrable by assumption, J(ϕ, ψ) ≤ J(ϕcc, ϕc) and hence

inf
π∈Π(P1,P0)

Ic[π] = sup
(ϕ,ψ)∈Φcs

J(ϕ, ψ) ≤ sup
ϕcc∈Fc(Φcs)

J(ϕcc, ϕc) ≤ sup
(ϕ,ψ)∈Φc∩(Fc(Φcs)×Fcc (Φcs))

J(ϕ, ψ)

Finally, since Φc ∩ (Fc(Φcs)×F cc (Φcs)) ⊂ Φc, it follows that

sup
ϕ∈Fc(Φcs)

J(ϕ, ϕc) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = inf
π∈Π(P1,P0)

Ic[π]

with the final equality following from strong duality.

Lemma 1.9.35 (Continuous cost function implies measurability of c-concave functions). If

c : Y1 ×Y0 → R is continuous, then for any ψ : Y0 → R, ϕ(y1) = infy0∈Y0{c(y1, y0)− ψ(y0)}

and ϕc(y0) = infy1∈Y1{c(y1, y0)− ϕ(y1)} are upper semicontinuous and hence measurable.

Proof. The pointwise infimum of a family of upper semicontinuous functions is upper semi-

continuous (Aliprantis & Border (2006) Lemma 2.41). Since c(y1, y0) is continuous, for any

fixed y0 ∈ Y0 the function y1 7→ c(y1, y0)− ψ(y0) is continuous and hence

ϕ(y1) = inf
y0∈Y0
{c(y1, y0)− ψ(y0)}
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is upper semicontinuous. Similarly, ϕc(y0) = infy1∈Y1{c(y1, y0)−ϕ(y1)} is upper semicontin-

uous. Being upper semicontinuous, ϕ and ϕc are measurable.

Remark 1.9.1. Compare lemma 1.9.35 with Villani (2009) Remark 5.5 discussing measur-

ability of c-concave functions. Note that continuity of c is sufficient but not necessary for

measurability of c-concave functions; see section 1.9.5.5 for counterexamples.

Lemma 1.9.36 (Universal bound on the the dual problem feasible set). Suppose c : Y1 ×

Y0 → R is bounded. Let cL ≡ inf(y1,y0)∈Y1×Y0 c(y1, y0) and cH ≡ sup(y1,y0)∈Y1×Y0 c(y1, y0).

1. For any bounded functions ϕ : Y1 → R and ψ : Y0 → R, ϕc and ψc are bounded.

2. For any bounded, measurable c-conjugate pair (ϕ, ϕc) there exists ϕ̄ such that

(i) ϕ̄ and ϕ̄c satisfy the bounds:

cL ≤ ϕ̄(y1) ≤ cH cL − cH ≤ ϕ̄c(y0) ≤ 0

for all (y1, y0) ∈ Y1 × Y0.

(ii) J(ϕ, ϕc) = J(ϕ̄, ϕ̄c).

Proof. For claim 1, let ϕ be bounded and note that

cL − supϕ ≤ inf
y1∈Y1
{c(y1, y0)− ϕ(y1)}︸ ︷︷ ︸

=ϕc(y0)

≤ cH − supϕ (1.86)

are finite bounds on ϕc. The upper bound on ϕc follows from the existence of a sequence

{y1j}∞j=1 with ϕ(y1j) → supy1∈Y1 ϕ(y1), because ϕc(y0) = infy1∈Y1{c(y1, y0) − ϕ(y1)} ≤

c(y1j, y0)− ϕ(y1j) ≤ cH − ϕ(y1j) for all j. The same argument shows ψc is bounded, specifi-

cally,

cL − supψ ≤ inf
y0∈Y0
{c(y1, y0)− ψ(y0)}︸ ︷︷ ︸

=ψc(y1)

≤ cH − supψ (1.87)
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For claim 2, let (ϕ, ϕc) be a c-conjugate pair, i.e. ϕ(y1) = infy0∈Y0{c(y1, y0) − ϕc(y0)}.

Notice that for any s ∈ R,

(ϕ+ s)c(y0) = inf
y1∈Y1
{c(y1, y0)− ϕ(y1)− s} = ϕc(y0)− s

(ϕ+ s)cc(y0) = inf
y0∈Y0
{c(y1, y0)− ϕc(y1) + s} = ϕ(y1) + s

Define ϕ̄(y1) = ϕ(y1) − supϕ + cH , and notice that sup ϕ̄ = cH . Thus (1.86) implies

cL − cH ≤ ϕ̄c(y0) ≤ 0 for all y0 ∈ Y0, and so (1.87) implies cL ≤ ϕ̄cc(y1) = ϕ̄(y1) ≤ cH .

Finally,

J(ϕ, ϕc) =

∫
ϕ(y1)dP1(y1) +

∫
ϕc(y0)dP0(y0)

=

∫
ϕ(y1)− supϕ+ cHdP1(y1) +

∫
ϕc(y0) + supϕ− cHdP0(y0)

= J(ϕ̄, ϕ̄c)

which completes the proof.

Remark 1.9.2. Lemma 1.9.36 shows that it is often without loss of generality to restrict the

dual to classes of functions sharing universal bounds. For an example, see lemma 1.9.38

below.

Note that when cL = 0, the bounds simplify to

0 ≤ ϕ̄(y1) ≤ ‖c‖∞, − ‖c‖∞ ≤ ϕ̄c(y0) ≤ 0

as in Villani (2003) Remark 1.13. Also note that, when any universal bound suffices, one

can take

− ‖c‖∞ ≤ ϕ̄(y1) ≤ ‖c‖∞, − 2‖c‖∞ ≤ ϕ̄c(y0) ≤ 0
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which depend only on ‖c‖∞ = sup(y1,y0)∈Y1×Y0|c(y1, y0)|.

1.9.5.4 c-concave functions of smooth cost functions

For α ∈ (0, 1] and L > 0, c : Y1 × Y0 → R is called (α,L)-Hölder continuous if

|c(y1, y0)− c(y′1, y′0)| ≤ L‖(y1, y0)− (y′1, y
′
0)‖α

for all (y1, y0), (y′1, y
′
0) ∈ Y1 × Y0.

Lemma 1.9.37 (Hölder cost implies Hölder c-concave functions). Let c : Y1 × Y0 → R be

(α,L)-Hölder continuous. For any g : Y0 → R,

ϕ(y1) = inf
y0∈Y0
{c(y1, y0)− g(y0)}, ϕc(y0) = inf

y1∈Y1
{c(y1, y0)− ϕ(y1)}

are (α,L)-Hölder continuous.

Proof. Hölder continuity implies c(y1, y0) ≤ c(y′1, y0) +L|y1− y′1|α holds for any y0 ∈ Y0 and

any y1, y
′
1 ∈ Y1. It follows that

ϕ(y1) = inf
ỹ0∈Y0
{c(y1, ỹ0)− g(ỹ0)} ≤ c(y1, y0)− g(y0) ≤ c(y′1, y0)− g(y0) + L|y1 − y′1|α

implying ϕ(y1)− (c(y′1, y0)− g(y0)) ≤ L|y1 − y′1|α. Therefore

ϕ(y1)− ϕ(y′1) = ϕ(y1)− inf
y0∈Y0
{c(y′1, y0)− g(y0)} ≤ L|y1 − y′1|α

holds for any y1, y
′
1 ∈ Y1. Reverse the role of y1 and y′1 to find ϕ(y′1)− ϕ(y1) ≤ L|y′1 − y1|α,

and hence ϕ is (α,L)-Hölder. The same argument implies ϕc is (α,L)-Hölder.

Lemma 1.9.38 is relevant for compact Y1,Y0 ⊂ R, and L-Lipscthiz c : Y1 × Y0 → R.
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Under these conditions, define

Fc = {ϕ : Y1 → R ; −‖c‖∞ ≤ ϕ(y1) ≤ ‖c‖∞, |ϕ(y1)− ϕ(y′1)| ≤ L|y1 − y′1|} (1.88)

F cc = {ψ : Y0 → R ; −2‖c‖∞ ≤ ψ(y0) ≤ 0, |ψ(y0)− ψ(y′0)| ≤ L|y0 − y′0|} (1.89)

Lemma 1.9.38 (Strong duality for smooth cost functions). Let Y1,Y0 ⊂ R be compact,

c : Y1×Y0 → R be L-Lipschitz, and Fc, F cc be given by (1.88) and (1.89) respectively. Then

strong duality holds:

inf
π∈Π(P1,P0)

Ic[π] = sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

J(ϕ, ψ)

Proof. First notice lemma 1.9.37 implies Fc(Φc ∩ Cb) and F cc (Φc ∩ Cb), the set of c-concave

functions and c-conjugates generated by Φc ∩ Cb respectively, consist of L-Lipschitz func-

tions.14 Since c is continuous and Y1 ×Y0 is compact, ‖c‖∞ = supy1,y0∈Y1×Y0|c(y1, y0)| <∞.

Continuity implies these c-concave functions are measurable, and lemma 1.9.36 shows they

are bounded. Thus Fc(Φc∩Cb)×F cc (Φc∩Cb) ⊆ L1(P1)×L1(P0), and so lemma 1.9.34 implies

inf
π∈Π(P1,P0)

Ic[π] = sup
ϕ∈Fc(Φc∩Cb)

J(ϕ, ϕc)

Lemma 1.9.36 and remark 1.9.2 further shows that for every ϕ ∈ Fc(Φc ∩ Cb), there exists

a shifted function ϕ̄ such that supy1∈Y1|ϕ̄(y1)| ≤ ‖c‖∞, −2‖c‖ ≤ ϕ̄c(y0) ≤ 0, ϕ̄ and ϕ̄c are

L-lipschitz, and J(ϕ, ϕc) = J(ϕ̄, ϕ̄c). Thus

sup
ϕ∈Fc(Φc∩Cb)

J(ϕ, ϕc) = sup
ϕ∈Fc

J(ϕ, ϕc)

Finally,

sup
ϕ∈Fc

J(ϕ, ϕc) ≤ sup
(ϕ,ψ)∈Φc∩(Fc×Fcc )

J(ϕ, ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = inf
π∈Π(P1,P0)

Ic[π]

14Note that Fc(Φc ∩ Cb) and Fcc (Φc ∩ Cb) are not necessarily Fc and Fcc defined in the statement of the
lemma.
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completes the proof.

Remark 1.9.3. Suppose Y1 and Y0 are compact and c(y1, y0) is continuously differentiable

on an open set containing Y1 × Y0. Then c restricted to Y1 × Y0 is bounded and Lipschitz.

That c : Y1 × Y0 → R is bounded follows from c being continuous, Y1 × Y0 being

compact, and the extreme value theorem. To see that c restricted to Y1×Y0 is L-Lipschitz,

let (y1, y0), (y′1, y
′
0) ∈ Y1 ×Y0 be arbitrary and note that the mean value theorem applied to

g(t) = c(t(y1, y0) + (1− t)(y′1, y′0)) implies there exists s ∈ (0, 1) such that

(c(y1, y0)− c(y′1, y′0)) = g(1)− g(0) = g′(s)

= 〈∇c(s(y1, y0) + (1− s)(y′1, y′0)), (y1, y0)− (y′1, y
′
0)〉

Notice that Cauchy-Schwarz then implies

|c(y1, y0)− c(y′1, y′0)| ≤ ‖∇c(s(y1, y0) + (1− s)(y′1, y′0))‖‖(y1, y0)− (y′1, y
′
0)‖

≤ sup
(y′′1 ,y

′′
0 )∈Y1×Y0

‖∇c(y′′1 , y′′0)‖‖(y1, y0)− (y′1, y
′
0)‖

Finally, notice L = sup(y′′1 ,y
′′
0 )∈Y1×Y0‖∇c(y

′′
1 , y
′′
0)‖ is finite because Y1 × Y0 is compact and

(y1, y0) 7→ ‖∇c(y1, y0)‖ is continuous.

1.9.5.5 c-concave functions when c(y1, y0) = 1{(y1, y0) ∈ C}

Theorem 1.9.39 (Strong duality with indicator costs). Let C be a nonempty, open subset

of Y1 × Y0, and c : Y1 × Y0 → R given by c(y1, y0) = 1C(y1, y0) = 1{(y1, y0) ∈ C}. Then

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)
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where

ΦI
c =

{
(A,B) ; A ⊂ Y1 is closed and nonempty, B ⊂ Y0 is measurable,

and 1A(y1)− 1B(y0) ≤ 1C(y1, y0)
}
.

Proof. Villani (2003) Theorem 1.27 implies

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

A closed

∫
1A(y1)dP1(y1)−

∫
1AC (y0)dP0(y0)

where AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} is the projection of (A×Y0) \C onto Y0. It is

clear that

sup
A closed

∫
1A(y1)dP1(y1)−

∫
1AC (y0)dP0(y0) ≤ sup

A⊆Y1,B⊆Y0

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

with A, B measurable. Notice it is without loss to exclude A = ∅, because J(1∅,−1B) ≤

0 = J(1Y1 ,1Y0) and 1Y1(y1)− 1Y0(y0) = 0 ≤ 1C(y1, y0) for all (y1, y0) ∈ Y1 × Y0. Thus

sup
A⊆Y1,B⊆Y0

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

Weak duality (lemma 1.9.31) implies

sup
(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dP0(y0) ≤ inf

π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0)

and the result follows.

The strong duality result of theorem 1.9.39 is especially useful when combined with a

careful characterization of the corresponding c-concave functions. To describe these, let
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A ⊆ Y1 be nonempty, and define

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , (y1, y0) ∈ C

}
,

(1.90)

C0m = {y0 ∈ Y0 ; ∀y1 ∈ Y1, (y1, y0) ∈ C} , C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C}

(1.91)

CC
0m =


C1m if C0m = ∅

∅ if C0m 6= ∅
, CC

1m =


C0m if C1m = ∅

∅ if C1m 6= ∅
(1.92)

Note that AC is well defined whenever A 6= ∅, and to ensure ACC is well defined we require

AC 6= Y0. C0m is denoted as such because 1C0m(y0) = infy1∈Y1 1C(y1, y0) is the subset of Y0

found by minimizing 1C(y1, y0) over y1 ∈ Y1.

Lemma 1.9.40 (c-concave functions for indicator costs). Let C be a nonempty, open subset

of Y1×Y0, c : Y1×Y0 → R given by c(y1, y0) = 1C(y1, y0), A ⊆ Y1 be closed and nonempty,

and ϕ(y1) = 1A(y1) = 1{y1 ∈ A}. Then

1. ϕc(y0) = −1AC (y0),

2. if AC 6= Y0, then ϕcc(y1) = 1ACC (y1), and

3. If AC = Y0, then J(ϕcc, ϕc) = J(1C1m , 0)

Proof. 1. Notice 1C(y1, y0)− 1A(y1) ∈ {−1, 0, 1}, and

ϕc(y0) = inf
y1∈Y1
{1C(y1, y0)− 1A(y1)}

will never take value 1 because any y1 ∈ A implies the objective is at most 0. Further-

more, if there exists y1 ∈ A such that (y1, y0) 6∈ C, then the infimum attains −1. If

there does not exist such y1, then ϕc(y0) = 0. Thus ϕc(y0) = −1AC (y0).
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2. Suppose AC 6= Y0. Notice that 1C(y1, y0) + 1AC (y0) takes values in {0, 1, 2}, and

ϕcc(y1) = inf
y0∈Y0
{1C(y1, y0) + 1AC (y0)}

will never equal 2 because Y0 \ AC 6= ∅. Moreover, the infimum will equal 1 if and

only if (y1, y0) ∈ C for all y0 ∈ Y0 \ AC ; thus ϕcc(y1) = 1ACC (y1).

3. If AC = Y0, then ϕcc(y1) = infy0∈Y0{1C(y1, y0) + 1} = 1C1m(y1) + 1 and

ϕccc(y0) = inf
y1∈Y1
{1C(y1, y0)− 1C1m(y1)− 1} = 1CC1m

(y0)− 1

To see that (1C1m)c = 0 if C1m 6= ∅, notice the objective 1C(y1, y0) − 1C1m(y0) takes

values in {−1, 0, 1}, and because C1m 6= ∅ will never take value 1. For the objec-

tive to take value −1 at a given y1, it must be the case that 1C1m(y1) = 1 and

there exists y0 such that 1C(y1, y0) = 0, but this contradicts the definition C1m =

{y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C}.

However, recall that ϕccc(y0) = ϕc(y0) as shown in lemma 1.9.33. Since ϕc(y0) =

−1AC (y0) = −1Y0(y0) = −1, this implies (1CC0m)(y0) = 0. Then notice that

J(ϕcc, ϕc) = J(1C1m + 1,−1) = J(1C1m , 0)

Remark 1.9.4. Compare theorem 1.9.39 and lemma 1.9.40 with Villani (2003) theorem 1.27.

Lemma 1.9.41 (Convex C implies c-concave functions defined with convex sets). Let C be a

nonempty, open, convex subset of Y1×Y0, and c : Y1×Y0 → R given by c(y1, y0) = 1C(y1, y0).

Let A ⊆ Y1 be nonempty.

1. AC equals Y0 \B for some convex set B.
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2. If AC 6= Y0, then ACC is convex.

3. C1m is convex.

Proof. For claim 1, notice that

AC =
{
y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) ∈

(
Y1 × Y0

)
\ C
}

=
⋃
y1∈A

{
y0 ∈ Y0 ; (y1, y0) ∈

(
Y1 × Y0

)
\ C
}

=
⋃
y1∈A

Y0 \ {y0 ∈ Y0 ; (y1, y0) ∈ C}

= Y0 \
⋂
y1∈A

{y0 ∈ Y0 ; (y1, y0) ∈ C}

Since C is convex, {y ∈ Y0 ; (y1, y0) ∈ C} is also convex for any y1. The intersection of an

arbitrary collection of convex sets is convex, so AC = Y0 \B for some convex B.

Consider claim 2 next. Notice that

ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , (y1, y0) ∈ C

}
=

⋂
y0∈Y0\AC

{y1 ∈ Y1 ; (y1, y0) ∈ C}

Since C is convex, {y1 ∈ Y1 ; (y1, y0) ∈ C} is convex as well, and thus ACC is convex.

Finally, we show claim 3. Similar to ACC , notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} =
⋂
y0∈Y0

{y1 ∈ Y1 ; (y1, y0) ∈ C}

is the intersection of convex sets and therefore convex.

Refer to the convex subsets of R as intervals ; specifically, I ⊂ R is called an interval if I
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takes the form

(`, u) [`, u) (`, u] [`, u]

where ` = −∞ is allowed for (`, u) and (`, u] and u = ∞ is allowed for (`, u) and [`, u). Ic

is the complement of the interval I.

Lemma 1.9.42 is relevant when the cost function is c(y1, y0) = 1{(y1, y0) ∈ C} for some

nonempty, open, convex C ⊆ Y1 × Y0. When this is so, define

Fc = {ϕ : Y1 → R ; ϕ(y1) = 1I(y1) for some interval I} (1.93)

F cc = {ψ : Y0 → R ; ψ(y0) = −1Ic(y0) for some interval I} (1.94)

Lemma 1.9.42 (Strong duality for indicator cost functions of a convex set). Let Y1,Y0 ⊆ R,

C ⊆ Y1×Y0 be nonempty, open, and convex, and let c : Y1×Y0 → R be given by c(y1, y0) =

1C(y1, y0). Let Fc and F cc be given by (1.93) and (1.94) respectively. Then strong duality

holds:

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩
(
Fc×Fcc

) ∫ ϕ(y1)dP1(y1)+

∫
ψ(y0)dP0(y0) (1.95)

Proof. Recall that theorem 1.9.39 shows

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(A,B)∈ΦIc

∫
1A(y1)dP1(y1)−

∫
1B(y0)dν(y0)

where

ΦI
c =

{
(A,B) ; A ⊂ Y1 is closed and nonempty, B ⊂ Y0 is measurable,

and 1A(y1)− 1B(y0) ≤ 1C(y1, y0)
}
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Next apply lemma 1.9.34. Let ϕ(y1) = 1A(y1) for some closed and nonempty A ⊂ Y1. There

are two possibilities:

1. AC = Y0, in which case J(ϕcc, ϕc) = J(1C1m , 0), or

2. AC 6= Y0, in which case J(ϕcc, ϕc) = J(1ACC ,−1AC ).

Since C is convex, C1m, and ACC are convex subsets of R (i.e., intervals), as shown in

lemma 1.9.41. AC is the complement of an interval, and 0 = 1∅(y0) is the indicator of the

complement of R, which is the interval (−∞,∞). Since all functions involved are bounded,

they are all integrable, and lemma 1.9.34 implies

inf
π∈Π(P1,P0)

∫
1C(y1, y0)dπ(y1, y0) = sup

(ϕ,ψ)∈Φc∩
(
Fc(ΦIc)×Fcc (ΦIc)

) ∫ ϕ(y1)dP1(y1) +

∫
ψ(y0)dP0(y0)

Finally, note that Fc(ΦI
c) ⊆ Fc and F cc (ΦI

c) ⊆ F cc , which implies the strong duality claim in

display (1.95) holds.

1.9.5.6 Special cases: cL(y1, y0) = 1{y1 − y0 < δ} and cH(y1, y0) = 1{y1 − y0 > δ}

Lemma 1.9.43. Let F1(y) = P1(Y1 ≤ y) =
∫
1{y1 ≤ y}dP1(y1) denote the cumulative

distribution function (CDF) of P1, and let F0 the CDF of P0. Let cL(y1, y0) = 1{y1−y0 < δ}.

Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 < δ}dπ(y1, y0)

= max

{
sup
y
{F1(y)− F0(y − δ)}, P1(Y1 < min{Y0}+ δ)

}
(1.96)

Proof. Let C = {y1 − y0 < δ}. Apply theorem 1.9.39 and lemma 1.9.40 to find that

OTcL(P1, P0) = max{sup
A∈A

P1(Y1 ∈ ACC)− P0(Y0 ∈ AC), P1(Y1 ∈ C1m)}
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where

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , (y1, y0) ∈ C

}
,

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} .

and A is the collection of closed, nonempty subsets of Y1 such that AC 6= Y0.

First consider supA∈A P1(Y1 ∈ ACC) − P0(Y0 ∈ AC). Let A ∈ A and ϕ(y1) = 1A(y1).

Thus

AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} = {y0 ∈ Y0 ; y0 ≤ max{A} − δ},

ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , y1 − y0 < δ

}
= {y1 ∈ Y1 ; y1 ≤ max{A}}

where we’ve used the fact that AC 6= Y0 implies sup{A} < ∞ and so sup{A} = max{A}

because A is closed. Therefore

J(ϕcc, ϕc) = P1(Y1 ∈ ACC)− P0(Y0 ∈ Ac)

= P1(Y1 ≤ max{A})− P0(Y0 ≤ max{A} − δ)

which takes the form F1(y)− F0(y − δ) for y = max{A}.

Now consider P1(Y1 ∈ C1m), and notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} = {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 − y0 < δ}

= {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 < min{Y0}+ δ}

Thus P1(Y1 ∈ C1m) = P1(Y1 < min{Y0}+ δ). The result follows.

Remark 1.9.5. C1m may be closed; e.g., let Y1 = [0, 1] ∪ [3, 10], let Y0 = [2, 10], and δ = 0.

Then C1m = {y1 ∈ Y1 ; y1 < 2} = [0, 1].
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Corollary 1.9.44. Let cL(y1, y0) = 1{y1 − y0 < δ} and P1, P0 have continuous cumulative

distribution functions F1(y) = P1(Y1 ≤ y) and F0(y) = P0(Y0 ≤ y) respectively. Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 < δ}dπ(y1, y0) = sup

y
{F1(y)− F0(y − δ)} (1.97)

Proof. Continuity of the cumulative distribution functions implies P1(Y1 = δ + min{Y0}) =

P0(Y0 = min{Y0}) = 0, and thus

P1(Y1 < δ + min{Y0}) = P1(Y1 ≤ δ + min{Y0})− P0(Y0 ≤ min{Y0})

Which takes the form F1(y)− F0(y − δ) for y = δ + min{Y0}. It follows that

max

{
sup
y
{F1(y)− F0(y − δ)}, P1(Y1 < min{Y0}+ δ)

}
= sup

y
{F1(y)− F0(y − δ)}

and lemma 1.9.43 gives the result.

Lemma 1.9.45. Let cH(y1, y0) = 1{y1 − y0 > δ}. Then

OTcH (P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 > δ}dπ(y1, y0)

= max

{
sup
y
{P1([y,∞))− P0([y − δ,∞))}, P1((max{Y0}+ δ,∞))

}
(1.98)

Proof. The proof is similar to that of lemma 1.9.43. Let C = {y1 − y0 > δ}. Apply theorem

1.9.39 and lemma 1.9.40 to find that

OTcL(P1, P0) = max{sup
A∈A

P1(Y1 ∈ ACC)− P0(Y0 ∈ AC), P1(Y1 ∈ C1m)}
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where

AC = {y0 ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} , ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , (y1, y0) ∈ C

}
,

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} .

and A is the collection of closed, nonempty subsets of Y1 such that AC 6= Y0.

Consider supA∈A P1(Y1 ∈ ACC) − P0(Y0 ∈ AC). Let A ∈ A and ϕ(y1) = 1A(y1), and

notice that

AC = {y ∈ Y0 ; ∃y1 ∈ A, (y1, y0) 6∈ C} = {y0 ∈ Y0 ; y0 ≥ min{A} − δ},

ACC =
{
y1 ∈ Y1 ; ∀y0 ∈ Y0 \ AC , y1 − y0 < δ

}
= {y1 ∈ Y1 ; y1 ≥ min{A}}

Where as in the proof of lemma 1.9.43, AC 6= Y0 implies inf{A} > −∞ and so inf{A} =

min{A} because A is closed. Thus

J(ϕcc, ϕc) = P1(Y1 ∈ ACC)− P0(Y0 ∈ Ac)

= P1(Y1 ≥ min{A})− P0(Y0 ≥ min{A} − δ)

which takes the form P1([y,∞))− P0([y − δ,∞)) for y = min{A}.

Now consider P1(Y1 ∈ C1m), and notice that

C1m = {y1 ∈ Y1 ; ∀y0 ∈ Y0, (y1, y0) ∈ C} = {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 − y0 > δ}

= {y1 ∈ Y1 ; ∀y0 ∈ Y0, y1 > max{Y0}+ δ}

Thus P1(Y1 ∈ C1m) = P1(Y1 > max{Y0}+ δ). The result follows.

Corollary 1.9.46. Let cH(y1, y0) = 1{y1 − y0 > δ} and P1, P0 have continuous cumulative
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distribution functions F1(y) = P1(Y1 ≤ y) and F0(y) = P0(Y0 ≤ y) respectively. Then

OTcL(P1, P0) = inf
π∈Π(P1,P0)

∫
1{y1 − y0 > δ}dπ(y1, y0) = sup

y
{F0(y − δ)− F1(y)} (1.99)

Proof. Continuity of the cumulative distribution functions implies that for any y,

P1([y,∞))− P0([y − δ,∞)) = P1((y,∞))− P0((y − δ,∞))

= (1− F1(y))− (1− F0(y − δ))

= F0(y − δ)− F1(y)

and furthermore,

P1(Y1 > δ + max{Y0}) = 1− F1(δ + min{Y0})− (1− F0(max{Y0})

= F0(max{Y0})− F1(δ + max{Y0})

equals F0(y − δ)− F1(y) for y = max{Y0}+ δ. Finally, lemma 1.9.45 gives

OTcH (P1, P0) = max

{
sup
y
{P1([y,∞))− P0([y − δ,∞))}, P1((max{Y0}+ δ,∞))

}
= sup

y
{F0(y − δ)− F1(y)}

1.9.6 Appendix: miscellaneous lemmas

1.9.6.1 Continuity

Lemma 1.9.47 (Continuity of maps between bounded function spaces). Let f : Df ⊆ RK →

RM be uniformly continuous. Define the subset of bounded functions on T taking values in
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Df :

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K

Let F : `∞(T,Df )→ `∞(T )M be defined pointwise as F (g)(t) = f(g(t)). Then F is uniformly

continuous.

Proof. To see that F : `∞(T,Df ) → `∞(T )M is well defined, recall that uniform continuity

of f implies f is bounded on bounded sets. Since {g(t) ; t ∈ T} is bounded for any

g ∈ `∞(T,Df ), this implies supt‖f(g(t))‖ <∞ and hence F (g) ∈ `∞(T )M .

To see uniform continuity of F , let ε > 0 and use uniform continuity of f to choose δ > 0

such that for all x, x̃ ∈ Df ,

‖x− x̃‖ < δ =⇒ ‖f(x)− f(x̃)‖ < ε/2

Now let g, g̃ ∈ `∞(T,Df ) satisfy ‖g− g̃‖T = supt∈T‖g(t)− g̃(t)‖ < δ. Then ‖g(t)− g̃(t)‖ < δ

for all t ∈ T , and hence ‖f(g(t))− f(g̃(t))‖ < ε/2 for all t ∈ T , and therefore

‖F (g)− F (g̃)‖T = sup
t∈T
‖f(g(t))− f(g̃(t))‖ ≤ ε

2
< ε

which completes the proof.

Corollary 1.9.48. Let f : Df ⊆ RK → RM be continuous and bounded on bounded subsets

of Df . Let g0 ∈ `∞(T,Df ) where `∞(T,Df ) is as defined in lemma 1.9.47. Suppose that for

some δ > 0,

g(T )δ ≡
{
x ∈ RK ; inf

t∈T
‖g0(t)− x‖ ≤ δ

}
is a subset of Df . Then F : `∞(T,Df )→ `∞(T )M defined pointwise by F (g)(t) = f(g(t)) is

continuous at g0.

Proof. For any g ∈ `∞(T,Df ), we have F (g) ∈ `∞(T )M because {x ; x = g(t) for some t ∈
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T} is bounded and f is bounded on bounded subsets.

Let {gn}∞n=1 ⊆ `∞(T,Df ) be such that gn → g0 in `∞(T )K . It suffices to show that

F (gn) → F (g0) in `∞(T )M . Let f̃ : g(T )δ → RM be the restriction of f to g0(T )δ; i.e.,

f̃(x) = f(x). Note that because g0(T )δ is a closed and bounded subset of RK , it is compact,

and hence f̃ is uniformly continuous by the Heine-Cantor theorem. Apply lemma 1.9.47 to

find that

F̃ : `∞(T, g(T )δ)→ `∞(T )M , F̃ (g)(t) = f̃(g(t)) = f(g(t))

is continuous. Since gn → g0 in `∞(T )K , there exists N such that for all n ≥ N , ‖gn−g0‖T =

supt∈T‖gn(t)− g0(t)‖ < δ. Let g̃k = gk+N . Notice that

g̃k(T ) =
{
x ∈ RK ; x = gk(t) for some t ∈ T

}
⊆ g0(T )δ,

and hence g̃k ∈ `∞(T, g0(T )δ). Continuity of F̃ and g̃k → g0 implies F̃ (g̃k)→ F̃ (g̃0). Thus

0 = lim
k→∞
‖F̃ (g̃k)− F̃ (g0)‖T = lim

k→∞
‖F (gk+N)− F (g0)‖T = lim

n→∞
‖F (gn)− F (g0)‖T

which completes the proof.

Lemma 1.9.49 (Uniform continuity of restricted sup). For any set X, subset A ⊆ X, and

bounded real-valued functions f, g ∈ `∞(X),

∣∣∣∣sup
x∈A

f(x)− sup
x∈A

g(x)

∣∣∣∣ ≤ sup
x∈A
|f(x)− g(x)| (1.100)

and therefore σA : `∞(X)→ R given by σA(f) = supx∈A f(x) is uniformly continuous.
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Proof. Observe that

sup
x∈A

f(x)− sup
x∈A

g(x) ≤ sup
x∈A
{f(x)− g(x)} ≤ sup

x∈A
|f(x)− g(x)|

and

−
[
sup
x∈A

f(x)− sup
x∈A

g(x)

]
= sup

x∈A
g(x)− sup

x∈A
f(x) ≤ sup

x∈A
{g(x)− f(x)} ≤ sup

x∈A
|f(x)− g(x)|

Together these inequalities imply

− sup
x∈A
|f(x)− g(x)| ≤ sup

x∈A
f(x)− sup

x∈A
g(x) ≤ sup

x∈A
|f(x)− g(x)|

which is equivalent to (1.100).

To see uniform continuity, let ε > 0 and choose δ = ε. Whenever ‖f−g‖X = supx∈X |f(x)−

g(x)| < δ,

|σA(f)− σA(g)| =
∣∣∣∣sup
x∈A

f(x)− sup
x∈A

g(x)

∣∣∣∣ ≤ sup
x∈A
|f(x)− g(x)| ≤ sup

x∈X
|f(x)− g(x)| < δ = ε

which completes the proof.

1.9.6.2 Differentiability

This appendix reviews definitions and various facts related to Hadamard directional differ-

entiability. The following definitions can be found in Fang & Santos (2019).

Let D, E be Banach spaces (complete, normed, vector spaces), and φ : Dφ ⊆ D→ E.

(i) φ is (fully) Hadamard differentiable at x0 ∈ Dφ tangentially to D0 ⊆ D if there exists
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a continuous linear map φ′x0 : D0 → E such that

lim
n→∞

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0(h)

∥∥∥∥
E

= 0

for all sequences {hn}∞n=1 ⊆ D and {tn}∞n=1 ⊆ R such that hn → h ∈ D0 and tn → 0 as

n→∞, and x0 + tnhn ∈ Dφ for all n.

(ii) φ is Hadamard directionally differentiable at x0 ∈ Dφ tangentially to D0 ⊆ D if there

exists a continuous map φ′x0 : D0 → E such that

lim
n→∞

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0(h)

∥∥∥∥
E

= 0

for all sequences {hn}∞n=1 ⊆ D and {tn}∞n=1 ⊆ R+ such that hn → h ∈ D0 and tn ↓ 0 as

n→∞, and x0 + tnhn ∈ Dφ for all n.

Fang & Santos (2019) proposition 2.1 shows that linearity is the key property distin-

guishing directional and full Hadamard differentiability. Specifically, if φ is Hadamard di-

rectionally differentiable at x0 tangentially to a subspace D0, and φ′x0 is linear, then φ is in

fact fully Hadamard differentiable at x0 tangentially to D0.

Hadamard directional differentiability obeys the chain rule.

Lemma 1.9.50 (Chain rule). Let D1, D2, and E be Banach spaces and φ1 : Dφ1 ⊆ D1 → D2,

φ2 : Dφ2 ⊆ D2 → E be functions. Suppose

(i) φ1(Dφ1) = {y ∈ D2 ; y = φ1(x) for some x ∈ Dφ1} ⊆ Dφ2,

(ii) φ1 is Hadamard directionally differentiable at x0 ∈ Dφ1 tangentially to DT
1 ⊆ D1, with

derivative φ′1,x0(h), and

(iii) φ2 is Hadamard directionally differentiable at φ1(x0) ∈ Dφ2 tangentially to DT
2 ⊆ D2,

with derivative φ′2,φ1(x0)(h)
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Let DT =
{
x ∈ DT

1 ; φ′1,x0(x) ∈ DT
2

}
. The composition function

φ : Dφ1 → E, φ(x) = φ2(φ1(θ))

is Hadamard directionally differentiable at x0 tangentially to DT , with

φ′x0 : DT → E, φ′x0(h) = φ′2,φ1(x0)(φ
′
1,x0

(h))

Proof. That φ is well defined is clear from assumption (i). To show its Hadamard directional

differentiability, let {hn}∞n=1 ⊆ Dφ1 and {tn}∞n=1 ⊆ R+ be such that hn → h ∈ DT , tn ↓ 0,

and x0 + tnhn ∈ Dφ1 for all n. Assumption (ii) implies that

lim
n→∞

∥∥∥∥φ1(x0 + tnhn)− φ1(x0)

tn
− φ′1,x0(h)

∥∥∥∥
D2

= 0 (1.101)

Let gn = 1
tn

[φ1(x0 + tnhn)− φ1(x0)], g = φ′1,x0(h), and notice that (1.101) implies gn → g in

D2.

Assumption (i) implies φ1(x0)+ tngn = φ1(x0 + tnhn) ∈ Dφ2 for each n, and the definition

of DT implies g ∈ DT
2 . Assumption (iii) implies that

lim
n→∞

∥∥∥∥φ2(φ1(x0) + tngn)− φ2(φ1(x0))

tn
− φ′2,φ1(x0)(g)

∥∥∥∥
E

= 0 (1.102)

Substitute φ2(φ1(x0) + tngn) = φ2(φ1(x0 + tnhn)), and g = φ′1,x0(h), into (1.102) to find

lim
n→∞

∥∥∥∥φ2(φ1(x0 + tnhn))− φ2(φ1(x0))

tn
− φ′2,φ1(x0)(φ

′
1,x0

(h))

∥∥∥∥
E

= 0

which completes the proof.

Remark 1.9.6. When defining and differentiating composition of functions, the outer func-

tion’s properties determine restrictions that must be placed on the inner function to ensure
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the composition function is well defined and differentiable.

A familiar example of this is that the domain of the “inner function” φ1 may need to be

restricted to ensure the composition map is well defined. For a simple example, x3 is well

defined and differentiable for any x ∈ R, but log(x3) is only well defined (and differentiable)

for x ∈ (0,∞).

A less familiar example shows up only when considering Hadamard differentiability tan-

gentially to a set. The tangent spaces of each function jointly determine the tangent space

of the derivative of the composition map.

The next lemma shows that Hadamard directionally differentiable functions can be

“stacked”.

Lemma 1.9.51 (Stacking Hadamard differentiable functions). Let D, E1, and E2 be Banach

spaces, and Dφ ⊆ D. Suppose φ(1) : Dφ → E1 and φ(2) : Dφ → E2 are Hadamard directionally

differentiable tangentially to D0 ⊆ D at x0 ∈ Dφ with derivatives φ
(1)′
x0 : D0 → E1 and

φ
(2)′
x0 : D0 → E2. Define

φ : Dφ → E1 × E2, φ(x) =
(
φ(1)(x), φ(2)(x)

)
Then φ is Hadamard directionally differentiable tangentially to D0 at x0, with derivative

φ′x0 : D0 → E1 × E2, φ′x0(h) =
(
φ

(1)′
x0 (h), φ

(2)′
x0 (h)

)
Proof. Hadamard directional differentiability of φ(1) and φ(2) tangentially to D0 at x0 implies

that for any sequences {hn}∞n=1 ⊆ D and {tn} ⊆ R+ such that hn → h ∈ D0, tn ↓ 0, and
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x0 + tnhn ∈ Dφ for all n,

lim
n→∞

∥∥∥∥φ(1)(x0 + tnhn)− φ(1)(x0)

tn
− φ(1)′

x0
(h)

∥∥∥∥
E1

= 0, and

lim
n→∞

∥∥∥∥φ(2)(x0 + tnhn)− φ(2)(x0)

tn
− φ(2)′

x0
(h)

∥∥∥∥
E2

= 0

Since ‖(e1, e2)− (ẽ1, ẽ2)‖E1×E2 = ‖e1 − ẽ1‖E1 + ‖e2 − ẽ2‖E2 metricizes E1 × E2 (Aliprantis &

Border (2006) lemma 3.3), we have

∥∥∥∥φ(x0 + tnhn)− φ(x0)

tn
− φ′x0(h)

∥∥∥∥
E1×E2

=

∥∥∥∥∥∥∥
(
φ(1)(x0 + tnhn), φ(2)(x0 + tnhn)

)
−
(
φ(1)(x0), φ(2)(x0)

)
tn

−
(
φ

(1)
x0 (h), φ

(2)
x0 (h)

)∥∥∥∥∥∥∥
E1×E2

=
∥∥∥(φ(1)(x0+tnhn)−φ(1)(x0)

tn
− φ(1)′

x0 (h), φ(2)(x0+tnhn)−φ(2)(x0+tnhn)
tn

− φ(2)′
x0

)∥∥∥
E1×E2

=

∥∥∥∥φ(1)(x0 + tnhn)− φ(1)(x0)

tn
− φ(1)′

x0
(h)

∥∥∥∥
E1

+

∥∥∥∥φ(2)(x0 + tnhn)− φ(2)(x0)

tn
− φ(2)′

x0
(h)

∥∥∥∥
E2

Taking the limit as n→∞ gives the result.

Hadamard differentiability in bounded function spaces

It is common to “rearrange” Donsker sets; i.e. view them not as scalar-valued but vector-

valued with each coordinate occuring over a particular subset of functions (see van der Vaart

(2007) p. 270). The following lemma shows that one direction of the equivalence can be

viewed as an application of the delta method.

Lemma 1.9.52 (Rearranging Donsker sets). Suppose F = F1 ∪ . . .∪FK is P -Donsker, and
√
n(Pn−P )

L→ G in `∞(F). The map φ : `∞(F)→ `∞(F1)× . . .× `∞(FK) defined pointwise

by

φ(g)(f1, . . . , fK) = (g(f1), . . . , g(fK))
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is fully Hadamard differentiable at any P ∈ `∞(F) tangentially to `∞(F), and is its own

derivative:

φ′P : `∞(F)→ `∞(F1)× . . .× `∞(FK), φ′P (h) = φ(h)

and hence

√
n(φ(Pn)− φ(P ))

L→ φ(G) in `∞(F1)× . . .× `∞(FK)

Proof. The map φ is linear; let a, b ∈ R and g, h ∈ `∞(F) and notice that for any (f1, . . . , fK) ∈

F1 × . . .×FK ,

φ(ag + bh)(f1, . . . , fK) = ((ag + bh)(f1), . . . , (ag + bh)(fK))

= (ag(f1) + bh(f1), . . . , ag(fK) + bh(fK))

= a(g(f1), . . . , g(fK)) + b(h(f1) . . . , h(fK))

= aφ(g)(f1, . . . , fK) + bφ(h)(f1, . . . , fK)

= (aφ(g) + bφ(h))(f1, . . . , fK)

hence φ(ag + bh) = (aφ(g) + bφ(h)), as these functions agree on all of F1 × . . .×FK .

Next observe that φ is continuous. Recall that the product topology on `∞(F1) × . . . ×

`∞(FK) is generated by the norm

‖(g1, . . . , gK)− (h1, . . . , hK)‖F1×...×FK = max{‖g1 − h1‖F1 , . . . , ‖gK − hK‖FK};
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see Aliprantis & Border (2006) lemma 3.3. Thus

‖φ(g)− φ(h)‖F1×...×FK = max

{
sup
f1∈F1

|g(f1)− h(f1)|, . . . , sup
fK∈FK

|g(fK)− h(fK)|
}

= ‖g − h‖F

and hence φ is continuous.

Since φ is linear and continuous, it is (fully) Hadamard differentiable at any point tan-

gentially to `∞(F) and is its own Hadamard derivative; indeed, for an: for all sequences

hn → h ∈ `∞(F) and tn ↓ 0 ∈ R, one has g + tnhn ∈ `∞(F) and

lim
n→∞

∥∥∥∥φ(g + tnhn)− φ(g)

tn
− φ(h)

∥∥∥∥
F1×...×FK

= lim
n→∞

‖φ(hn)− φ(h)‖F1×...×FK = 0

Finally, since
√
n(Pn − P )

L→ G in `∞(F), the functional delta method (van der Vaart

(2007) theorem 20.8) implies
√
n(φ(Pn)− φ(P ))

L→ φ(G) in `∞(F1)× . . .× `∞(FK).

Although the following lemma and its corollary are stated for functions taking values in

R, by combining it with lemma 1.9.51 a similar result can be obtained for functions taking

values in RM , similar to the setting of lemma 1.9.47. Compare van der Vaart & Wellner

(1997) lemma 3.9.25.

Lemma 1.9.53 (Hadamard differentiability of maps between bounded function spaces). Let

f : Df ⊆ RK → R. Suppose that

1. f is continuously differentiable, and

2. the gradient of f ,

∇f : Df → RK , ∇f(x) =
(
∂f
∂x1

(x) . . . ∂f
∂xK

(x)
)ᵀ
,

is uniformly continuous.
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Define the subset of `∞(T )K taking values in Df ,

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K

and the subset of `∞(T,Df ) such that composition with f defines a bounded function:

`∞f (T,Df ) =

{
g ∈ `∞(T,Df ) ; sup

t∈T
|f(g(t))| <∞

}

Then F : `∞f (T,Df )→ `∞(T ) defined pointwise with F (g)(t) = f(g(t)) is (fully) Hadamard

differentiable tangentially to `∞(T )K at any g0 ∈ `∞f (T,Df ), with derivative F ′g0 : `∞(T )K →

`∞(T ) given pointwise by

F ′g0(h)(t) = [∇f(g0(t))]ᵀ h(t) =
K∑
k=1

∂f

∂xk
(g0(t))hk(t)

Proof. The domain of `∞f (T,Df ) ensures that F : `∞f (T,Df )→ `∞(T ) is well defined.

Let {hn}∞n=1 ⊆ `∞(T )K and {rn}∞n=1 ⊆ R such that hn → h ∈ `∞(T )K , rn → 0, and

g0 + rnhn ∈ `∞f (T,Df ) for each n. For each n and each t ∈ T , apply the mean value theorem

to find λn(t) ∈ (0, 1) such that gn(t) := λn(t)(g0(t) + rnhn(t)) + (1− λn(t))g0(t) satisfying15

f(x0(t) + rnhn(t))− f(x0(t)) = [∇f(gn(t))]ᵀ (x0(t) + rnhn(t)− x0(t))

= rn [∇f(gn(t))]ᵀ hn(t)

15The mean value theorem being invoked here is the standard result: for any x, x̃ ∈ Df , let gx,x̃ : [0, 1]→ R
be given by gx,x̃(λ) = f(λx̃+(1−λ)x). Then gx,x̃(0) = f(x) and gx,x̃(1) = f(x̃), and the mean value theorem
tells us that there exists λ ∈ (0, 1) such that

f(x̃)− f(x) = gx,x̃(1)− gx,x̃(0) = g′x,x̃(λ)(1− 0) = [∇f(λx̃+ (1− λ)x)]
ᵀ

(x̃− x)
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Use this to see that for all n and all t ∈ T ,

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣ = |∇f(gn(t))ᵀhn(t)−∇f(g0(t))ᵀh(t)|

≤ |∇f(gn(t))ᵀhn(t)−∇f(g0(t))ᵀhn(t)|+ |∇f(g0(t))ᵀhn(t)−∇f(g0(t))ᵀh(t)|

≤ ‖∇f(gn(t))−∇f(g0(t))‖ × ‖hn(t)‖+ ‖∇f(g0(t))‖ × ‖hn(t)− h(t)‖

where the first inequality is by the triangle inequality and the second by Cauchy-Schwarz in

RK . It follows that

sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣
≤ sup

t∈T
‖∇f(gn(t))−∇f(g0(t))‖ × sup

t∈T
‖hn(t)‖ (1.103)

+ sup
t∈T
‖∇f(g0(t))‖ × sup

t∈T
‖hn(t)− h(t)‖ (1.104)

Consider the term in (1.103). Recall that for some λn(t) ∈ (0, 1),

gn(t) = λn(t)(g0(t) + rnhn(t)) + (1− λn(t))g0(t)

= λn(t)rnhn(t) + g0(t)

and so

‖gn − g0‖T = sup
t∈T
‖λn(t)rnhn(t)‖ ≤ |rn| × sup

t∈T
‖hn(t)‖ → 0

where the limit claim follows from supt∈T‖hn(t)‖ = ‖hn‖T → ‖h‖T <∞ (implying

{supt∈T‖hn(t)‖}∞n=1 is bounded) and rn → 0. Thus gn → g0 in `∞(T )K . Using this and

uniform continuity of ∇f : Df → RK , lemma 1.9.47 implies ∇f(gn) → ∇f(g0) in `∞(T )K ,

i.e.

‖∇f(gn)−∇f(g0)‖T = sup
t∈T
‖∇f(gn(t))−∇f(g0(t))‖ → 0
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Using once again that {supt∈T‖hn(t)‖}∞n=1 is bounded, this implies

lim
n→∞

sup
t∈T
‖∇f(gn(t))−∇f(g0(t))‖ × sup

t∈T
‖hn(t)‖ = 0 (1.105)

Now consider the term in (1.104). supt∈T‖∇f(g0(t))‖ <∞ because ‖∇f(·)‖ is uniformly

continuous and supt∈T‖g0(t)‖ < ∞, just as in the proof of lemma 1.9.47. Furthermore,

limn→∞ supt∈T‖hn(t)− h(t)‖ = 0, so

lim
n→∞

sup
t∈T
‖∇f(g0(t))‖ × sup

t∈T
‖hn(t)− h(t)‖ = 0 (1.106)

Combining (1.103) through (1.106) we obtain

lim
n→∞

sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
−∇f(g0(t))ᵀh(t)

∣∣∣∣ = 0

which concludes the proof.

Remark 1.9.7. Lemma 1.9.53 specifies the domain of F as

`∞f (T,Df ) =

{
g ∈ `∞(T,Df ) ; sup

t∈T
|f(g(t))| <∞

}
.

It is often straightforward to clarify the space `∞f (T,Df ) in particular cases; for example,

`∞f (T,Df ) = `∞(T,Df ) if f satisfies any one of the following: (i) f is bounded, (ii) f is

Lipschitz, or (iii) f is bounded on bounded subsets (e.g., f(x) = x is bounded on bounded

subsets) See also lemma 1.9.16.

Lemma 1.9.53 requires∇f(·) be uniformly continuous, but this often stronger than neces-

sary. When hoping to argue F : `∞f (T,Df )→ `∞(T ) defined pointwise with F (g)(t) = f(g(t))

is (fully) Hadamard differentiable at g0 ∈ `∞f (T,Df ), it suffices that f is continuously dif-

ferentiable on a closed set slightly larger than the (bounded) range of g0. Compactness of

this expanded range and the fact that continuous functions on compact sets are uniformly
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continuous allow us to apply the preceding lemma. This logic is formalized in the following

corollary.

Corollary 1.9.54 (Hadamard differentiability of maps between bounded function spaces,

corollary). Let f : Df ⊆ RK → R be continuously differentiable.

Define the subset of `∞(T )K taking values in Df ,

`∞(T,Df ) =

{
g : T → RK ; g(t) ∈ Df , sup

t∈T
‖g(t)‖ <∞

}
⊆ `∞(T )K

and the subset of `∞(T,Df ) such that composition with f defines a bounded function:

`∞f (T,Df ) =

{
g ∈ `∞(T,Df ) ; sup

t∈T
|f(g(t))| <∞

}

Let g0 ∈ `∞f (T,Df ), and suppose that for some δ > 0,

g0(T )δ ≡
{
x ∈ RK ; inf

t∈T
‖x− g0(t)‖ ≤ δ

}
⊆ Df .

Then F : `∞f (T,Df ) → `∞(T ) defined pointwise by F (g)(t) = f(g(t)) is (fully) Hadamard

differentiable at g0 tangentially to `∞(T )K, with derivative F ′g0 : `∞(T )K → `∞(T ) given

pointwise by

F ′g0(h)(t) = [∇f(g0(t))]ᵀ h(t) =
K∑
k=1

∂f

∂xk
(g0(t))hk(t)

Proof. Let f̃ : g0(T )δ → R be the restriction of f to g0(T )δ. Note that f̃ is continuously

differentiable on the compact g0(T )δ ⊆ RK , hence ∇f̃ is in fact uniformly continuous by the

Heine-Cantor theorem. Apply lemma 1.9.53 to find that

F̃ : `∞f (T, g0(T )δ)→ `∞(T ), F̃ (g)(t) = f̃(g(t)) = f(g(t))
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is (fully) Hadamard differentiable at g0, with derivative F̃ ′g0 : `∞(T )K → `∞(T ) given

pointwise by F̃ ′g0(h)(t) = [∇f(g0(t))]ᵀ h(t). By definition, this means that for any se-

quences {h̃n}∞n=1 ⊆ `∞(T )K and {r̃n}∞n=1 ⊆ R such that h̃n → h̃ ∈ `∞(T )K , r̃n → 0,

and g0 + r̃nh̃n ∈ `∞(T, g0(T )δ) for all n,

lim
n→∞

∥∥∥∥∥ F̃ (g0 + r̃nh̃n)− F̃ (g0)

r̃n
− F ′g0(h̃)

∥∥∥∥∥
T

= 0 (1.107)

Let {hn}∞n=1 ⊆ `∞(T )K , {rn}∞n=1 ⊆ R be such that hn → h ∈ `∞(T )K , rn → 0, and

g0 + rnhn ∈ `∞(T,Df ) for all n. It suffices to show that

∥∥∥∥F (g0 + rnhn)− F (g0)

rn
− F ′g0(h)

∥∥∥∥
T

= sup
t∈T

∣∣∣∣f(g0(t) + rnhn(t))− f(g0(t))

rn
− [∇f(g0(t))]ᵀ h(t)

∣∣∣∣
has limit zero.

Notice that g0 + rnhn → g0 in `∞(T )K , so for some N we have that for all n ≥ N ,

‖g0 + rnhn − g0‖T = rn supt∈T‖hn‖ < δ. It follows that for k ∈ N, g0 + rk+Nhk+N ∈

`∞(T, g0(T )δ) and hence r̃k = rk+N and h̃k = hk+N are sequences for which (1.107) applies.

Therefore,

lim
n→∞

∥∥∥∥F (g0 + rnhn)− F (g0)

rn
− F ′g0(h)

∥∥∥∥
T

= lim
k→∞

∥∥∥∥F (g0 + rk+Nhk+N)− F (g0)

rk+N

− F ′g0(h)

∥∥∥∥
T

= lim
k→∞

∥∥∥∥∥ F̃ (g0 + r̃kh̃k)− F̃ (g0)

r̃k
− F ′g0(h)

∥∥∥∥∥
T

= 0

Where the second equality follows from F̃ (g0 + r̃kh̃k) = F (g0 + rk+Nhk+N) and F̃ (g0) =

F (g0).
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The following lemma is lemma S.4.9 from Fang & Santos (2019), but the authors state it

for a metric space. The same proof works to show that statement holds in semimetric spaces

as well.

Lemma 1.9.55 (Hadamard directional differentiability of supremum). (Fang & Santos

(2019) lemma S.4.9)

Let (A, d) be a compact semimetric space, A a compact subset of A, and

ψ : `∞(A)→ R, ψ(p) = sup
a∈A

p(a)

Then ψ is Hadamard directionally differentiable at any p0 ∈ C(A, d) tangentially to C(A, d).

ΨA(p0) = arg maxa∈A p0(a) is nonempty, and the directional derivative is given by

ψ′p0 : C(A, d)→ R, ψ′p0(p) = sup
a∈ΨA(p0)

p(a)

1.9.7 Appendix: extensions

This appendix briefly describes a few simple extensions.

1.9.7.1 Conditioning on X ∈ A

In many applications parameters conditional on a covariate taking a particular value are of

interest. For example, the share of compliers of a particular demographic benefiting from

treatment is P (Y1 > Y0 | D1 > D0, demographic). Such parameters can be written in the

form

γA = g(θA, ηA)
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where for a known set A ⊆ X ,

θA ≡ E[c(Y1, Y0) | D1 > D0, X ∈ A], ηA ≡ E[η1(Y1), η0(Y0) | D1 > D0, X ∈ A]

The identified set for γA is straightforward to characterize and estimate. First note that

θA = E[θX | D1 > D0, X ∈ A] =
1

sA

∑
x∈A

sxθx

where sA =
∑

x∈A sx. The proof of theorem 1.4.1 shows that the sharp identified set for

(θx1 , . . . , θxM ) is in fact [θLx1 , θ
H
x1

]× . . .× [θLxM , θ
H
xM

]. It follows that the sharp identified set for

θA is [θLA, θ
H
A ], where

θLA =
1

sA

∑
x∈A

sxθ
L
x , θHA =

1

sA

∑
x∈A

sxθ
H
x

and the sharp identified set for γA is [γLA, γ
H
A ] where

γLA = min
t∈[θLA,θ

H
A ]
g(t, ηA), γHA = max

t∈[θLA,θ
H
A ]
g(t, ηA),

Let ŝx, θ̂
L
x , and θ̂Hx be as defined in section 1.5. Let ŝA =

∑
x∈A ŝx and

θ̂LA =
1

ŝA

∑
x∈A

ŝxθ̂
L
x , θ̂H(A) =

1

ŝA

∑
x∈A

ŝxθ̂
H
x

γ̂LA = min
t∈[θ̂LA,θ̂

H
A ]
g(t, η̂A), γ̂HA = max

t∈[θ̂LA,θ̂
H
A ]
g(t, η̂A),

Under assumptions 1, 2, and 3,
√
n((γ̂LA, γ̂

H
A )− (γLA, γ

H
A ) will converge weakly. With assump-

tion 4 the straightforward bootstrap will consistently estimate its asymptotic distribution.
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1.9.7.2 Multiple treatment arms with exogenous treatment

The results above are easily extended to a setting with multiple treatment arms and exoge-

nous treatment. Let d ∈ {0, 1, . . . , J}, index the mutually exclusive treatment arms, with

d = 0 indicating control. Let Yd be the potential outcome with treatment d, and Dd equal

one if the unit has treatment d and zero otherwise. The observed outcome is

Y =
J∑
d=0

DdYd

Let D = (D0, D1, . . . , DJ) and assume (Y0, Y1, . . . , YJ) ⊥ D | X. The marginal distributions

of Yd | X = x, denoted Pd|x, are identified with the relation

EPd|x [f(Yd)] = E[f(Yd) | X = x] =
E[f(Y )Dd | X = x]

P (Dd = 1 | X = x)

Let γd = g(θd, ηd) where θd = E[c(Yd, Y0)]. Consider estimating the sharp identified set

for (γ1, . . . γJ). For example, an RCT with two treatment arms may have similar average

treatment effects. The treatment arms may be further distinguished by comparing P (Y1 −

Y0 > 0) with P (Y2 − Y0 > 0), or Cov(Y1 − Y0, Y0) with Cov(Y2 − Y0, Y0).

Let θd,x = E[c(Y1, Y0) | X = x]. The sharp identified set for (θ1,x, . . . , θJ,x) is given by

[θL1,x, θ
H
1,x]× . . .× [θLJ,x, θ

H
J,x]

where θLd,x = θL(Pd|x, P0|x) and θHd,x = θH(Pd|x, P0|x) as in section 1.4.16 The sharp identified

set for θd is [θLd , θ
H
d ] where θLd =

∑
x sxθ

L
d,x and θHd =

∑
x sxθ

H
d,x, and the sharp identified set

for (γ1, . . . γJ) is

[γL1 , γ
H
1 ]× . . .× [γLJ , γ

H
J ]

16This follows from existing results and the gluing lemma, found in Villani (2009) (pp. 11-12).
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Sample analogues (γ̂L1 , γ̂
H
1 , . . . , γ̂

L
J , γ̂

H
J ) can be formed just as in section 1.5. Under natural

adjustments to assumptions 2, 3, and 4, the same arguments work to show

√
n((γ̂L1 , γ̂

H
1 , . . . , γ̂

L
J , γ̂

H
J )− (γL1 , γ

H
1 , . . . , γ

L
J , γ

H
J ))

is asymptotically Gaussian and the bootstrap consistently estimates its asymptotic distribu-

tion.
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CHAPTER 2

Robustness to Missing Data:

Breakdown Point Analysis

2.1 Introduction

Virtually every economic dataset is plagued by missing and incomplete records. Survey

nonresponse is the most visible cause, and appears to be worsening over time. Bollinger

et al. (2019) report that the Current Population Survey’s Annual Social and Economics

Supplement item and whole nonresponse has been increasing, reaching 43% in 2015. By

linking these data with the Social Security Administration Detailed Earnings Record, the

authors show that the distribution of nonreponders differs from that of responders even after

conditioning on a large set of covariates.

Samples with missing or incomplete observations fail to identify the population distribu-

tion (Manski, 2005). To make progress, researchers commonly apply standard procedures

to the complete observations. This practice is typically justified by assuming the data are

“missing completely at random” (MCAR); that is, incomplete observations follow the same

distribution as that of the complete observations. In many settings such an assumption is

implausible. Without it, the conclusions drawn are uncomfortably qualified as being about

the distribution of the complete observations, rather than the actual distribution of interest.

This paper proposes a method to investigate the robustness of a conclusion when as-

serted about the whole population. Results are more robust when overturning them would

require more selection. To make this intuition precise, selection is measured with the squared
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Hellinger divergence between the distribution of complete observations and that of the in-

complete observations. Although many different statistical divergences could be used to

measure selection, squared Hellinger is interpretable as a measure of how well the variables

under study would predict an observation being complete. This gives the values of the se-

lection measure context, allowing researchers to guage how much selection can be expected

in a given setting.

The breakdown point is the minimum amount of selection needed to overturn a conclu-

sion. Readers who doubt the setting exhibits that much selection will find the conclusion

compelling. In models identified with the generalized method of moments (GMM), the

breakdown point is the constrained minimum of the value function of a convex optimization

problem. Estimators of the breakdown point are constructed from the dual of this convex

inner problem, and shown to be
√
n-consistent and asymptotically normal. Lower confidence

intervals are simple to construct. Reporting the point estimates and lower confidence inter-

vals of the breakdown point is a simple, concise way to communicate a result’s robustness.

This approach has a number of advantages over existing methods for incomplete datasets.

Sample selection models consider regressions with samples where the dependent variable is

sometimes missing, and obtain point identification by modeling the selection process (Heck-

man, 1979; Das et al., 2003). These models require the data include a variable changing

the probability of observation but not the dependent variable. This “exclusion restriction”

is difficult to satisfy in many applications. The breakdown point approach proposed here

can be used on most common GMM models (including but not restricted to regressions with

missing outcomes), and requires no additional data. The breakdown point can be estimated

even if the incomplete observations are in fact completely missing, a distinct possibility when

using survey data.

The econometric literature on missing data has also explored bounding the parameter of

interest based on the support (Manski, 2005; Horowitz & Manski, 2006). If all parameter

values within these “worst-case” bounds satisfy the researcher’s conclusion, then the conclu-
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sion is undoubtedly robust. Unfortunately, the bounds may be uninformative in practice.

Proponents of this approach are well aware these bounds are conservative, and propose this

exercise as a place to begin an investigation rather than end one. Additional identifying

assumptions should then be considered, in order to make plain to readers what needs to be

assumed to reach a given conclusion (Manski, 2013). The breakdown approach proposed

here is a simple version of this exercise, as the assumption that selection is less than the

breakdown point leads one to conclude the hypothesis under investigation.

A growing literature advocates for breakdown analysis as a general, tractable method

to assess the sensitivity of a result to relaxations of identifying assumptions. The term

“identification breakdown point” can be found as early as Horowitz & Manski (1995) in the

context of corrupted data. Masten & Poirier (2020) advocates for the approach generally,

and illustrates it with the potential outcomes framework. Diegert et al. (2022) define and

study breakdown points in linear regressions suffering from omitted variable bias.

This paper is not the first to notice the appeal of breakdown point analysis in the context

of missing data. Kline & Santos (2013) consider a setting with a missing scalar, propose

measuring selection with the maximal Kolmogorov-Smirnov (KS) distance between the con-

ditional distributions of complete and incomplete observations across all values of covari-

ates, and advocate for “reporting the minimal level of selection necessary to undermine a

hypothesis,” (p. 233). The methodology proposed here has some notable advantages. First,

measuring selection with the maximal KS distance limits researchers to the case where only a

scalar is missing, while measuring selection as proposed here allows any number of variables

to be missing. Second, in a given setting it is easier to gauge whether the variables under

study are likely to be good predictors of missingness than what share of the missing data is

missing at random. This makes squared Hellinger a more natural measure of selection than

KS distance. Which approach is more tractable will depend on the parameter of interest.

Kline & Santos (2013) derives sharp, closed form bounds to the conditional quantiles of

the missing variable, and frame the conclusion to be investigated in terms of those quan-
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tiles. This paper assumes the parameter of interest is identified with GMM and uses the

model directly, giving up closed form solutions. In thoery this could lead to computational

difficulties, but the simulations in section 2.5 present no issue.

The remainder of this paper is structured as follows: section 2.2 formalizes the setting,

the proposed measure of selection, and the breakdown point. The dual problem is presented

and discussed in section 2.3. Section 2.4 defines the estimator and states the main results on

estimation and inference, which are proven in the appendix. Section 2.5 presents a simulation

study investigating the finite sample performance of these estimators. Section 2.6 concludes.

2.2 Measuring selection and breakdown analysis

Suppose the available data is the i.i.d. sample {(Di, DiYi, Xi)}ni=1, where Zi ≡ (Yi, Xi) ∈

Rdy ×Rdx contains the variables of interest and Di ∈ {0, 1} indicates whether Yi is observed.

Note that Yi may be a vector, and Xi may be empty. Let pD ≡ P (D = 1) denote the

probability of observing Y , P1 the distribution of Z conditional on D = 1, and P0 the

distribution of Z conditional onD = 0. P1 and P0 are called the complete case and incomplete

case distributions respectively. The distribution of interest is the unconditional distribution

of Z, given by pDP1 + (1 − pD)P0. When X is nonempty, the marginal distribution of X

conditional on D = 0 is denoted P0X . For simplicitly, X is assumed to have the same finite

support when D = 0 as when D = 1, which greatly simplifies asymptotic analysis. Remark

2.2.3 below discusses this assumption further.

To fix ideas, consider data collection via survey. Y is a vector of data the survey hopes

to collect, which is observed only if the recipient responds (D = 1). The survey’s response

rate, pD = P (D = 1), is essentially always less than one in practice. It is common for

administrative data to provide basic information about a survey recipient (such as age,

occupation, etc.), which is collected in X.

Analyses based on the complete observations may not convince researchers who worry
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that P0 differs from P1. Such concerns are common, as few settings plausibly satisfy the

missing completely at random assumption. However, it is often similarly implausible that

P0 differs greatly from P1. Researchers who convincingly argue that P0 is not too different

from P1 can still convince their audience of conclusions drawn from an analysis of P1.1

A quantitative measure of the difference between P1 and P0 is needed to make this

argument formal and convincing. The statistics literature provides a natural solution in

the form of divergences : functions mapping two probability distributions to the nonnegative

real line that take value zero if and only if the two distributions are the same. There are

many such functions. To be useful as a measure of selection, a divergence should have a

tractable interpretation, so that researchers can gauge whether a given amount of selection

is reasonable for their setting.

2.2.1 An interpretable measure of selection

Missing data cause greater concern when researchers expect the variables of interest (Z) to

be a good predictor of incompleteness (D). Consider again the example of data collection via

survey. Researchers are rightfully more concerned about survey nonresponse when asking

about the respondent’s arrest record than when asking for opinions on recent television

programming. People with criminal records may be less willing to answer questions about

that record.2 This suggests that the distribution of responders may look quite different from

the distribution of nonresponders, and that criminal records would be a good predictor of

nonresponse.

To illustrate this more formally, let f1 and f0 be densities of P1 and P0 with respect to

1In some cases, such as correctly specified regression models, it suffices that the conditional distributions
fY |X=x,D=0(y | x) are the same as the identified fY |X=x,D=1(y | x). This weaker “missing at random”
(MAR) assumption is also rarely plausible in practice, and analyses based on this assumption often rely
heavily on the model being correctly specified.

2For example, Brame et al. (2012) estimate the cumulative prevalence of arrest from ages 8 to 23 from a
survey directly asking about prior arrests. The authors report upper and lower bounds derived by assuming
the entire set of nonresponders had or had not been arrested, essentially the worst-case bounds advocated
for by Manski (2005).
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pDP1 + (1− pD)P0 respectively:

f1(z) =
P (D = 1 | Z = z)

pD
, f0(z) =

(1− P (D = 1 | Z = z))

1− pD

An optimist may assume D is independent of Z, implying that P (D = 1 | Z = z) = P (D =

1) = pD and f0 = f1 = 1. In contrast, a pessimist may assume D is close to a deterministic

function of Z, allowing Z to predict D well. This would imply P (D = 1 | Z = z) is close to

1 or 0 for many values of z, and that f1 differs greatly from f0.

As in the survey example, the setting often makes it clear whether Z would be a good

predictor of D. This hueristic is useful to identify and discuss selection concerns. The

following lemma shows that measuring selection as the squared Hellinger distance between

P0 and P1 captures this intuition, with larger values corresponding to Z having greater

capability of predicting D.3

Lemma 2.2.1. Let (Z,D) ∈ Rdz ×{0, 1} be random variables with pD = P (D = 1) ∈ (0, 1).

Let Z | D = 1 ∼ P1 and Z | D = 0 ∼ P0. Then

H2(P0, P1) = 1−
E
[√

Var(D | Z)
]

√
Var(D)

(2.1)

where the expectation is taken with respect to pDP1 + (1 − pD)P0, the marginal distribution

of Z.

All results are proven in the appendix.

Equation (2.1) states that the squared Hellinger distance between P0 and P1 is the ex-

pected percent of the standard deviation of D reduced by conditioning on Z. In the extreme

3The Hellinger distance between probability measures Q and P is

H(Q,P ) ≡

1

2

∫ (√
dQ

dλ
(z)−

√
dP

dλ
(z)

)2

dλ(z)

1/2

where λ is any measure dominating both P and Q.
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case where Var(D | Z) = Var(D), equation (2.1) implies H2(P0, P1) = 0 and the condi-

tional distributions are the same. As the ability of Z to predict D grows, the variance of D

conditional on Z decreases and H2(P0, P1) grows toward one.

Remark 2.2.1. It’s straightforward to see that Var(D | X) ≥ Var(D | X, Y ) implies

H2(P0, P1) = 1−
E
[√

Var(D | Y,X)
]

√
Var(D)

≥ 1−
E[
√

Var(D | X)]√
Var(D)

= H2(P0X , P1X)

where P0X , P1X are the marginal distributions of X conditonal on D = 0 and D = 1

respectively. This lower bound on the selection is identified from the sample, and motivates

the common practice of comparing the distribution of X conditional on D = 0 with that of

X conditional on D = 1; the distributions P0 and P1 can only be “further” apart.

2.2.2 Divergences

Squared Hellinger provides an intuitive measure of selection, but there are many other op-

tions. A function d(·‖·) mapping two probability distributions P and Q to R is called a

divergence if 1. d(Q‖P ) ≥ 0, and 2. d(Q‖P ) = 0 if and only if P = Q. Divergences need not

be symmetric nor satisfy the triangle inequality. The set of f -divergences are particularly

well behaved. Given a convex function f : R → [0,∞] satisfying f(t) = ∞ for t < 0 and

taking a unique minimum of f(1) = 0, the corresponding f -divergence is given by

df (Q‖P ) ≡


∫
f
(
dQ
dP

)
dP if Q� P

∞ otherwise

(2.2)

Many popular divergences are equal to f -divergences when P dominates Q.
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Table 2.1: Common f -divergences

Name Common formula f(t)

Squared Hellinger H2(Q,P ) = 1
2

∫ (√
dQ
dP

(z)− 1

)2

dP (z) 1
2
(
√
t− 1)2

Kullback-Leibler (KL) KL(Q‖P ) =
∫

log
(
dQ
dP

(z)
)
dQ(z) t log(t)− t+ 1

“Reverse” KL KL(P‖Q) =
∫

log
(
dP
dQ

(z)
)
dP (z) − log(t) + t− 1

Cressie-Read – tγ−γt+γ−1
γ(γ−1)

, γ < 1

Although squared Hellinger has intuitive appeal outlined in Section 2.2.1, the breakdown

point analysis proposed in this paper remains tractable for any f -divergence listed in Table

2.1.4 Precise assumptions regarding the f -divergence are collected in Assumption 5 below.

Remark 2.2.2. Measuring selection with an f -divergence facilitates estimation and inference,

as the space of distributions Q with df (Q‖P1) <∞ corresponds to the set of densities with

respect to P1. In substance, this assumes P0 � P1 and rules out selection mechanisms that

“truncate” data.

2.2.3 Breakdown analysis in GMM models

Suppose a preliminary analysis supports an alternative hypothesis H1 over a null hypothesis

H0.5 The breakdown point is the minimum amount of selection needed to overturn such

a conclusion. When selection is measured in terms of the squared Hellinger distance, the

breakdown point translates the claim that H0 is true into a claim about the ability of Z to

4It is worth noting that the Cressie-Read divergence nests the other three as special cases. Squared
Hellinger corresponds to 1

2f1/2. l’Hôpital’s rule shows that Kullback-Leibler corresponds to limγ→1 fγ and
Reverse Kullback-Leibler to limγ→0 fγ . See Broniatowski & Keziou (2012) for additional discussion.

5For example, such an analysis may be based on the complete observations assuming MCAR, or using
imputation and assuming Y is MAR conditional on X.
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predict D. Specifically, if H0 were true then 1 − E[
√

Var(D|Z)]√
Var(D)

would be weakly larger than

the breakdown point. If this is implausible, then H0 is similarly implausible.

This section formalizes this idea for generalized method of moment (GMM) models.

Suppose the parameter of interest β ∈ B ⊆ Rdb is characterized as the unique solution to a

finite set of moment conditions,

E[g(Z, β)] = 0 ∈ Rdg

where the expectation is taken with respect to the unconditional distribution, pDP1 + (1 −

pD)P0. The conclusion to be investigated is that β falls outside a particular set B0 ⊂ B,

motivating the null and alternative hypotheses

H0 : β ∈ B0, H1 : β ∈ B \B0

Recall that the observed data is {(Di, DiYi, Xi)}ni=1, where Di = 1{Yi is observed}. The

sample identifies P1, pD, and P0X . A hypothetical distribution of the incomplete observations

Q rationalizes the parameter b if it has the identified marginal distribution of X, QX = P0X ,

and the implied unconditional distribution pDP1 + (1− pD)Q solves the moment conditions

for b. The set of such distributions implying finite selection is

Pb ≡ {Q ; Q� P1, QX = P0X , pDEP1 [g(Z, b)] + (1− pD)EQ[g(Z, b)] = 0} . (2.3)

The breakdown point δBP is the minimum selection needed to rationalize the null hypothesis:

δBP ≡ inf
b∈B0

inf
Q∈Pb

df (Q‖P1) (2.4)

where the infimum over the empty set is understood as ∞. A simple example illustrates the

idea.
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Example 2.2.1. Let Y ∈ R and β = E[Y ] = pDEP1 [Y ] + (1− pD)EP0 [Y ]. Let pD = 0.7 and

P1 be U [0, 1]. The claim to support is H1 : β > 0.4, and selection is measured with squared

Hellinger. Pb is the set of continuous distributions on [0, 1] with expectation b−pD/2
1−pD

, so that

Q ∈ Pb implies

pDEP1 [Y ] + (1− pD)EQ[Y ] =
pD
2

+ (1− pD)
b− pD/2
1− pD

= b

The inner minimization in (2.4) chooses the distribution that minimizes selection while ra-

tionalizing b. The outer minimization chooses the parameter that minimizes selection while

rationalizing H0 : β ≤ 0.4. Unsurprisingly, the outer minimization is solved by b = 0.4.

The breakdown point δBD is slightly above 0.2. A researcher convinced H2(P0, P1) ≤ 0.2

should conclude β > 0.4.

Figure 2.1: ν(b) and pDP1 + (1− pD)Q∗, where Q∗ ∈ P0.4 minimizes selection.

Breakdown analysis can also be framed as an exercise in partial identification, as in

Kline & Santos (2013), Masten & Poirier (2020), and Diegert et al. (2022). In this framing,

the researcher considers assumptions of the form df (P0, P1) ≤ δ for some δ > 0, which
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continuously relax the assumption P0 = P1. The identified set for β grows with δ. As long

as the identified set is a subset of B \B0, it is clear the researcher’s conclusion holds. The

breakdown point δBP can then be defined as either the largest δ for which the identified

set is contained in B \ B0, or the smallest δ for which the identified set has nontrivial

intersection with B0 (the latter of which corresponds to the definition given in (2.4)). For

further discussion of this equivalent framing of the breakdown point, see appendix 2.7.2.2.

The remainder of this paper constructs a
√
n-consistent and asymptotically normal esti-

mator of δBP , and constructs a lower confidence interval for δBP . Researchers working with

partially complete datasets should discuss the plausible amount of selection in their setting,

and report the point estimate and the lower confidence interval for δBP for each asserted

conclusion. This will make plain to readers which conclusions are more sensitive to missing

data concerns, and whether crucial results are sufficiently robust.

2.2.4 Preview of results

The estimation proceeds by separating the optimizations in (2.4). Define the primal problem

ν(b) = inf
Q∈Pb

df (Q‖P1) (2.5)

and notice that δBP = infb∈B0 ν(b). The first step is to estimate the value function ν over a

set B ⊆ B large enough that infb∈B0 ν(b) = infb∈B∩B0 ν(b), while the second step estimates

δBP through a simple plug-in estimator.

The primal problem is an infinite dimensional convex optimization problem over the space

of probability distributions, but one that is very well studied in convex analysis. In particular,

when Pb defined in (2.3) is characterized by a finite number of moment conditions, (2.5) has

a well behaved, finite-dimensional dual problem with the same value function (Borwein &

Lewis, 1991, 1993; Csiszár et al., 1999; Broniatowski & Keziou, 2006). Section 2.3 discusses

this dual problem and the assumptions needed to make use of it. Under regularity conditions
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discussed in section 2.4, sample analogue estimators based on this dual problem are uniformly

consistent and asymptotically Gaussian on compact sets. Differentiability of the infimum

then implies convergence in distribution of the plug-in estimator.

To conclude this section, Assumption 5 collects conditions on the setting, the GMM

model, and the f -divergence used to measure selection.

Assumption 5 (Setting). {(Di, DiYi, Xi)}ni=1 is an i.i.d. sample from a distribution satis-

fying

(i) pD = P (D = 1) ∈ (0, 1),

(ii) X | D = 1 and X | D = 0 have the same finite support {x1, . . . , xK},

(iii) E [supb∈B‖g(Z, b)‖ | D = 1] <∞, where Z = (Y,X), and

(iv) f : R → [0,∞] is closed, proper, strictly convex, essentially smooth, takes its unique

minimum of f(t) = 0 at t = 1, and satisfies f(t) = ∞ for all t < 0. The interior

of dom(f) ≡ {t ∈ R ; f(t) < ∞}, denoted (`, u), satisfies ` < 1 < u, and f is twice

continuously differentiable on (`, u).

The finite support condition in (ii) ensures that Pb defined in (2.3) is characterized by a

finite number of moments (see remark 2.2.3 below for additional discussion). Condition (iv)

ensures the f -divergence used to measure selection is well behaved, and is satisfied by every

divergence in Table 2.1.6 In particular, strict convexity of f ensures the primal problem (2.5)

has a unique solution (P1-almost surely). f is required to be essentially smooth to ensure

the dual problem has a unique solution. The requirements that f(x) take a unique minimum

of 0 at x = 1 and f(x) =∞ for x < 0 ensures that df (Q‖P ) is a well defined f -divergence.

Remark 2.2.3. If X is not finitely valued, it is easy to see that requiring QX match a finite

number of moments of P0X will estimate a value no larger than δBP . If this value is large

6See appendix 2.7.3 for definitions of the convex analysis terms used in Assumption 5 (iv).
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enough to assuage missing data concerns, the breakdown point can only be larger. When

the distribution of X is characterized by a countable set of moments, it may be possible to

increase the number of moments with the sample size to estimate δBP directly. This is left

for future research.

2.3 Duality

As defined in display (2.5), ν(b) is the value function of an infinite dimensional convex

optimization problem. Fortunately, when selection is measured with an f -divergence, (2.5)

becomes a well-studied problem known by various names: maximal entropy (Csiszár et al.

(1999)), partially finite programming (Borwein & Lewis (1991)), or simply f -divergence

projection (Broniatowski & Keziou (2006)). The convex analysis results in these papers

connect the primal problem in (2.5) to a finite dimensional dual problem that is much easier

to study and estimate. Under mild conditions, the value function of this dual problem

coincides with the value function of the primal.

To state the dual problem, first note that the primal can be viewed as a problem over

the set of densities with respect to P1:

ν(b) = inf
q
E [f(q(Y,X)) | D = 1]

s.t. E[h(Y,X, b)q(Y,X) | D = 1] = c(b)

where

h(z, b) ≡ h(y, x, b) ≡


g(y, x, b)

1{x = x1}
...

1{x = xK}

 , c(b) ≡



−pD
1−pD

E[g(Y,X, b) | D = 1]

P (X = x1 | D = 0)
...

P (X = xK | D = 0)

 , (2.6)
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The dual problem corresponding to the problem in display (2.5) is given by

V (b) ≡ sup
λ∈Rdg+K

λᵀc(b)− E [f ∗ (λᵀh(Y,X, b)) | D = 1] (2.7)

where f ∗ is the convex conjugate of f , given by f ∗(r) ≡ supt∈R{rt− f(t)}. For convenience,

table 2.2 summarizes the convex conjugate for several common divergences.

Table 2.2: Common f -divergence conjugates and effective domains

Name f(t) `, u f ∗(r) `∗, u∗

Squared Hellinger 1
2
(
√
t− 1)2 ` = 0, u =∞ 1

2

(
1

1−2r
− 1
)

`∗ = −∞, u∗ = 1/2

Kullback-Leibler t log(t)− t+ 1 ` = 0, u =∞ exp(r)− 1 `∗ = −∞, u∗ =∞

“Reverse” KL − log(t) + t− 1 ` = 0, u =∞ − log(1− r) `∗ = −∞, u∗ = 1

Remark 2.3.1. To ensure q corresponds to a probability density, the constraints must enforce∫
q(z)dP (z) = 1. This is implied by the constraints ensuring QX = P0X when X is present.

If there are no always-observed variables, set h(z, b) =
(
g(z, b)ᵀ 1

)ᵀ
∈ Rdg+1 and c(b) =(

−pD
(1−pD)

E[g(Y,X, b) | D = 1]ᵀ 1
)ᵀ

.

2.3.1 Weak and strong duality

Assumption 5 suffices to show V (b) ≤ ν(b). This fact is known as weak duality, and implies

that

inf
b∈B∩B0

V (b) ≤ inf
b∈B∩B0

ν(b) = δBP (2.8)

for any B ⊆ B. This inequality shows that using the dual problem for estimation of the

breakdown point is at worst conservative: if infb∈B∩B0 V (b) is large enough to assuage selec-

tion concerns, researchers are assured that the breakdown point can only be larger.
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Assuming only slightly more ensures strong duality holds, that is, V (b) = ν(b). Recall

from Assumption 5 (iv) that the interior of dom(f) = {t ∈ R ; f(t) <∞} is denoted (`, u).

Assumption 6 (Strong duality). B ⊆ B is convex, compact, and satisfies infb∈B0 ν(b) =

infb∈B∩B0 ν(b). Furthermore, for each b ∈ B,

(i) there exists Qb ∈ Pb such that ` < ∂Qb

∂P1
(z) < u, almost surely P1, and

(ii) λ(b) solving (2.7) is in the interior of {λ ; E[|f ∗(λᵀh(Z, b))| | D = 1] <∞}.

That strong duality holds under these conditions is a well known result.7

Theorem 2.3.1 (Strong duality). Suppose assumptions 5 and 6 hold. Then for each b ∈ B,

ν(b) = V (b), with dual attainment.

The first order condition of the dual problem (2.7) provides intuition. Exchanging ex-

pectation and differentiation, the first order condition is



−pD
1−pD

EP1 [g(Y,X, b)]

P (X = x1 | D = 0)
...

P (X = xK | D = 0)

 = EP1

(f ∗)′ (λ(b)ᵀh(Y,X, b))


g(Y,X, b)

1{X = x1}
...

1{X = xK}




where λ(b) ∈ Rdg+K solves the dual problem. Consider (f ∗)′(λ(b)ᵀh(y, x, b)) as a density

with respect to P1. Notice that the first dg equations of the first order condition ensure

pDEP1 [g(Y,X, b)] + (1−pD)EP1 [(f
∗)′ (λ(b)ᵀh(Y,X, b)) g(Y,X, b)] = 0, while the remaining K

equalities ensure the marginal distribution of X matches P0X . In fact, the proof of theorem

2.3.1 shows that under assumptions 5 and 6, (f ∗)′ (λ(b)ᵀh(y, x, b)) is the P1-density of the

solution to the primal.

7To the authors knowledge, the first to show strong duality holds under similar conditions was Borwein &
Lewis (1991). The proof of theorem 2.3.1, found in appendix 2.7.4, uses a result due to Csiszár et al. (1999).
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Assumption 6 ensures the set on which ν is estimated is large enough to estimate the

breakdown point, but not so large as to contain parameter values that cannot be rationalized

with a well behaved P1-density. To illustrate, consider again example 2.2.1: Y is a scalar,

β = E[Y ] = pDEP1 [Y ] + (1 − pD)EP0 [Y ], and P1 is U [0, 1], but for tractability suppose

that Kullback-Leibler is used to measure selection. Since P0 takes values on [0, 1], the

Manski bounds for β are
[
pD
2
, 1− pD

2

]
. Appendix 2.7.6.1 shows that strong duality is satisfied

whenever b ∈
(
pD
2
, 1− pD

2

)
. Thus for this example, B can be any convex, compact set in the

interior of the Manski bounds.

Assumption 6 is maintained throughout the remainder of the paper. Accordingly, the

notation ν will be used for the value function of the dual problem as well.

2.4 Estimation

2.4.1 The estimator

The sample analogue of the dual problem provides an estimator of the value function, and

suggests a simple plug-in estimator of the breakdown point. The asymptotic properties of

these estimators are easier to study if the objective of the dual problem is expressed with a

single unconditional expectation, which comes at the cost of additional notation.

First define the matrix J(D) ≡

−DIdg 0

0 (1−D)IK

 where Idg and IK are identity

matrices. Notice that E
[
J(D)h(DY,X,b)

(1−pD)

]
= c(b) and

ν(b) = sup
λ∈Rdg+K

E

[
λᵀJ(D)h(DY,X, b)

1− pD
− Df ∗ (λᵀh(DY,X, b))

pD

]
(2.9)

Define

ϕ(D,DY,X, b, λ, p) ≡ λᵀJ(D)h(DY,X, b)

1− p
− D

p
f ∗(λᵀh(DY,X, b)) (2.10)
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and observe that the dual problem is supλ∈Rdg+K E[ϕ(D,DY,X, b, λ, pD)]. The estimator of

the value function is defined pointwise by

ν̂n(b) ≡ sup
λ∈Rdg+K

1

n

n∑
i=1

ϕ(Di, DiYi, Xi, b, λ, p̂D,n) (2.11)

where p̂D,n ≡ 1
n

∑n
i=1Di estimates pD. Finally, δ̂BPn ≡ infb∈B∩B0 ν̂n(b) estimates the break-

down point.

2.4.2 Asymptotic normality

The following assumption suffices for δ̂BPn to be
√
n-consistent and asymptotically nor-

mal. First observe that the estimands θ0(b) = (ν(b), λ(b), pD) solve the moment conditions

E[φ(D,DY,X, b, θ0(b))] = 0, where

φ(D,DY,X, b, θ) = φ(D,DY,X, b, v, λ, p) =


ϕ(D,DY,X, b, λ, p)− v

∇λϕ(D,DY,X, b, λ, p)

D − p

 , (2.12)

Let Gr(θ0) ≡ {(b, θ(b)) ; b ∈ B} denote the graph of θ0. For η > 0, the closed η-expansion

about this graph is Gr(θ0)η ≡
{

(b, θ) ∈ B × Rdg+K+2 ; inf(b′,θ′)∈Gr(θ0)‖(b, θ)− (b′, θ′)‖ ≤ η
}

.

Assumption 7 (Estimation). Suppose that

(i) B0 is closed,

(ii) minb∈B∩B0 ν(b) has a unique solution,

(iii) the matrix E[h(Y,X, b)h(Y,X, b)ᵀ | D = 1] is nonsingular for each b ∈ B,

(iv) g(y, x, b) is continuously differentiable with respect to b for each (y, x), and
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(v) there exists a convex, compact set ΘB containing Gr(θ0)η for some η > 0 satisfying

max

E
[

sup
(b,θ)∈ΘB

‖φ(D,DY,X, b, θ)‖2

]
, E

( sup
(b,θ)∈ΘB

‖∇(b,θ)φ(D,DY,X, b, θ)‖

)2
 <∞.

As previewed in section 2.2.4, δ̂BPn is viewed as a two-step estimator where ν̂n estimates

ν in the first step, and δ̂BPn = infb∈B∩B0 ν̂n(b) is a simple plug-in estimator for δBP =

infb∈B∩B0 ν(b). Conditions (iii), (iv), and (v) imply
√
n(ν̂n−ν) converges weakly in the space

of bounded functions on B, to a limiting process that is almost surely continuous. This is

shown by linearizing 0 = 1
n

∑n
i=1 φ(Di, DiYi, Xi, b, θ̂n(b)) uniformly over b ∈ B. Conditions

(i) and (ii) ensure minimization over B ∩B0 is a differentiable map on the set of continuous

functions of B. The delta method then implies
√
n(δ̂BPn − δBP ) converges in distribution to

a normal distribution.

Assumption 7 (i) and (iv) are easily verified by inspection of B0 and g respectively.

Conditions (iii) and (v) are similar to conditions required of generalized empirical likelihood

estimators (see, e.g., Antoine & Dovonon (2021) assumption 1 (v) and assumption 3 (iv),

(vii)). Assumption 7 (ii) deserves additional scrutiny. When B0 is a convex set, condition

(ii) holds when ν is a strictly convex function. The following lemma shows that this is the

case when g(y, x, b) describes a linear model with an occasionally missing outcome.

Lemma 2.4.1 (Convex value function, linear models). Suppose assumptions 5 and 6 hold,

the sample is {Di, DiYi, Xi1, Xi2}ni=1 where Yi ∈ R, Xi1 ∈ Rdx1, and Xi2 ∈ Rdx2, and the

parameter β is identified by

E[(Y −Xᵀ1β)X2] = 0

Then ν̂n and ν are convex. If in addition E[X2X
ᵀ
1 ] has full column rank, then ν is strictly

convex.

Lemma 2.4.1 covers instrumental variable models directly, and ordinary least squares as a
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special case (by setting X2 = X1). It also covers parameters of the form β = E[g̃(Y,X)], be-

cause the OLS regression of g̃(Y,X) on a constant recovers E[g̃(Y,X)]. Simulation evidence

presented in appendix 2.7.6 suggests data generating processes and models not covered by

lemma 2.4.1 also produce convex ν. Remark 2.4.1 below discusses an approach to relaxing

assumption 7 (ii), at the cost of additional complexity.

Theorem 2.4.2 below formally states the convergence in distribution result along with

consistency of an estimator of the asymptotic variance. The variance depends on the jacobian

term Φ(b) ≡ E[∇θφ(D,DY,X, b, θ0(b))], which is estimated with

Φ̂n(b) ≡ 1

n

n∑
i=1

∇θφ(D,DY,X, b, θ̂n(b)), (2.13)

where θ̂n(b) ≡ (ν̂n(b), λ̂n(b), p̂D,n) and λ̂n(b) ≡ arg maxλ∈Rdg+K
1
n

∑n
i=1 ϕ(Di, DiYi, Xi, b, λ, p̂D,n).

Equations (2.21) and (2.22) in appendix 2.7.1.1 contain expressions for ∇θφ(D,DY,X, b, θ).

Theorem 2.4.2 (Asymptotic normality). Suppose assumptions 5, 6, and 7 hold. Let b̂n ≡

arg minb∈B∩B0
ν̂n(b) and

σ̂2
n ≡

1

n

n∑
i=1

(
(Φ̂n(b̂n)−1)(1)φ(D,DY,X, b̂n, θ̂n(b̂n))

)2

where (Φ̂n(b̂n)−1)(1) is the first row of the matrix Φ̂n(b̂n)−1. Then
√
n(δ̂BPn −δBP )

σ̂n

d→ N(0, 1).

2.4.3 Inference

A large breakdown point implies the incomplete distribution P0 would have to differ greatly

from P1 to rationalize the null hypothesis. If δBD is larger than the plausible amount of se-

lection in the setting, the null hypothesis is similarly implausible. Skeptical readers following

this argument may worry the point estimate δ̂BPn is larger than δBP due to sample noise –

but the force of the argument is only strengthened if δ̂BPn falls below δBP .
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To address these concerns, researchers should report lower confidence intervals along with

point estimates of the breakdown point. Theorem 2.4.2 implies that under assumptions 5,

6, and 7,

ĈIL ≡ δ̂n −
σ̂n√
n
c1−α (2.14)

satisfies limn→∞ P (ĈIL ≤ δBP ) = 1 − α when c1−α is the 1 − α quantile of the standard

normal distribution.

Remark 2.4.1. Assumption 7 (ii) can be relaxed at the cost of additional complexity. Without

assumption 7 (ii),
√
n(ν̂n − ν) still converges in `∞(B) to Gν , a tight Gaussian process

on B, and minimization of a function over B ∩ B0 remains a (Hadamard) directionally

differentiable map on the set of continuous functions of B. The delta method continues to

imply
√
n(δ̂BPn − δBP ) converges in distribution to infb∈m(ν) Gν(b), where m(ν) is the set of

minimizers of ν over B ∩B0.

Given a bootstrap ν̂∗n such that
√
n(ν̂∗n − ν̂n) converges weakly in probability conditional

on {Di, DiYi, Xi}ni=1 to Gν , confidence intervals can still be constructed by utilizing the tools

developed in Fang & Santos (2019). One approach is to estimate the set m(ν) through

“near minimizers” of ν̂n and using this estimated set to form an estimator of the map

h 7→ infb∈m(ν) h(b). The confidence interval for δBP is formed by replacing c1−α in equation

(2.14) with the 1 − α quantile of this estimated function applied to the bootstrap sample;

see Fang & Santos (2019) theorem 3.2 and appendix lemma S.4.8. As most cases of interest

appear to satisfy assumption 7 (ii), this extension is left for future research.

2.5 Simulations

This section presents simulation results on a variety of different data generating processes.

This serves both to illustrate the wide scope of models which can make use of breakdown

point analysis and to investigate the finite sample properties of the proposed estimators. In

each case, selection is measured using squared Hellinger divergence.
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2.5.1 Expectation

Recall example 2.2.1. The parameter of interest is the mean of a scalar random variable Y ,

β = E[Y ] = pDEP1 [Y ] + (1− pD)EP0 [Y ], and the sample is {Di, DiYi}ni=1. The distribution

of Y | D = 1 is the uniform distribution on [0, 1]. The probability of observing Y is

pD = P (D = 1) = 0.7. To support the claim H1 : β > 0.4, let H0 : β ≤ 0.4. Recall that

the true breakdown point, δBP , of this example is just over 0.2.

The following table summarizes 1,000 simulations for several different sample size.8

Table 2.3: Simulations, expectation

n Bias St. Dev. Coverage Ave. CI Length

1,000 0.005 0.056 98.5 0.090

3,000 0.002 0.032 96.3 0.051

5,000 0.001 0.025 95.8 0.039

10,000 0.001 0.017 95.8 0.028

The simulations show little bias. Coverage is slightly above the targeted 95% significance

level in smaller samples.

2.5.2 Linear models

Linear models are the among the most common tools used by empirical researchers. This

subsection uses simulations to investigate linear regression with exogenous regressors.9

Consider the model

Y1 = β0 + β1X1 + β2Y2 + β3X2 + ε = W ᵀβ + ε, (2.15)

8Here Ave. CI Length = 1
500

∑500
s=1(δ̂BPn,s − ĈIL,s).

9Lemma 2.4.1 shows that when the outcome of a regression is the only missing variable, ν(·) is convex.
Appendix 2.7.6.2 shows simulation evidence that the ν(·) of the following DGP is convex.
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where W =
(

1 X1 Y2 X2

)ᵀ
are the exogenous regressors: E[Wε] = 0. Here Y1 is a

continuous outcome variable, X1 = {0, 1} is the regressor of interest, Y2 is a continuously

distributed control, and X2 ∈ {0, 1, 2} is a discrete control. The conclusion to be investigated

is that the coefficient on X1 is positive:

H0 : β1 ≤ 0, H1 : β1 > 0 (2.16)

The researcher observes the sample {Di, DiY1i, DiY2i, X1i, X2i}ni=1 and uses squared Hellinger

to measure selection.

The data generating process specification takes inspiration from mincerian wage equa-

tions. For worker i, let Y1i be i’s log-income, X1i an indicator for i being a college graduate,

Y2i be i’s work experience, and X2i the number of parents with college degrees (0, 1, or 2).

Specifically, let X2 be multinomial, X1 ∼ Binomial
(
X2+1

4

)
, and Y2 ∼ Beta(3−X1, 3).10 Let

ε̃ ∼ U [−1, 1] (independent of all other variables), and ε = (X1 + 1)ε̃. The coefficients are

specified as β0 = β1 = β2 = 1 and β3 = 0.5. Finally, Y1 is generated according to equation

(2.15). Notice the support of (Y1, Y2, X1, X2) is compact, ensuring the moment conditions in

assumption 7 (v) are satisfied.

For the missing data process, let D = 1{εX1 + 10X1 + 5(X2 − 1) > η}, where η ∼

N(µη, σ
2
η). The population value of the breakdown point is approximated as the point

estimate obtained from a sample with one million observations. This sample reveals P (D =

1) is about 0.71, and suffers from selection. Specifically, ignoring the incomplete observations

is equivalent to solving 1
n

∑n
i=1

Di
p̂D,n

(Yi − W ᵀ
i β̂

MCAR
n )Wi = 0 for β̂MCAR

n , which results in

β̂MCAR
n = (1.04, 1.37, 1.02, 0.42). This large sample suggests the breakdown point of the

conclusion β1 > 0 is about 0.163.

The following table summarizes 1,000 simulations for several different sample sizes.

10P (X2 = 0) = 0.5, P (X2 = 1) = 0.3, and P (X2 = 2) = 0.2
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Table 2.4: Simulations, OLS

n Bias St. Dev. Coverage Ave. CI Length

1,000 0.016 0.049 98.7 0.076

3,000 0.007 0.026 95.8 0.041

5,000 0.004 0.019 95.5 0.031

10,000 0.003 0.013 94.5 0.022

Once again the simulations show little bias, with coverage slightly above the targeted 95%

significance level in smaller samples.

2.5.3 Logistic regression

The logistic model is a popular choice for estimating the conditional probability of an event.

Let Z = (Z1, Z−1) ∈ {0, 1} × Rd and suppose that P (Z1 = 1 | Z−1) = Λ(Zᵀ−1β), where

Λ(t) ≡ exp(t)
1+exp(t)

. Since the log-likelihood is concave, estimating this model through maximum

likelihood is equivalent to solving the first order condition

E[(Z1 − Λ(Zᵀ−1β))Z−1] = 0

and so can be viewed as nonlinear GMM, with moment function g(z, b) = (z1−Λ(zᵀ−1b))z−1.

This simulation considers the model’s prediction for P (Z1 = 1 | Z−1 = z̄) = Λ(z̄ᵀβ) for a

known z̄, and investigates the robustness of the conclusion that this conditional probability

is at least 0.5. The corresponding null and alternative hypotheses are

H0 : Λ(z̄ᵀβ) ≤ 0.5, H1 : Λ(z̄ᵀβ) > 0.5 (2.17)

Simulation evidence presented in appendix 2.7.6.3 suggests the data generating process de-

scribed below produces a convex value function. Since H0 is equivalent to z̄ᵀβ ≤ ln(0.5) −
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ln(1− 0.5) = 0 and is therefore convex, this suggests that assumption 7 (ii) holds.

The data generating process is one where the outcome is always observed, and the ex-

planatory variables are sometimes missing. Specifically, Y = Z−1 ∈ R3 is constructed

by drawing Ỹ ∼ N(0,Ω) and setting Y (j) = 2 × (Φ(Ỹ (j)) − 0.5); the result is that each

Y (j) has uniform marginal distributions on [−1, 1], and nontrivial covariance matrix. The

always-observed variable is the outcome, X = Z1. The true underlying coefficients are

β = (1,−1, 0.1), and the missing data process is conditionally binomial with P (D = 1 | X =

x, Y = y) = max{0.8 −X, Y (3)/2 + 0.5}; that is, the probability of a complete observation

is at least 0.8 when X = 1 and grows weakly with Y (3).

The resulting samples suffer from selection. A sample with one million observations

suggests that P (D = 1) is about 0.65. Ignoring the incomplete observations is equivalent

to solving 1
n

∑n
i=1

D
p̂D,n

g(DiYi, Xi, β̂
MCAR
n ) = 0, which results in β̂MCAR

n = (1,−1, 0.79). The

estimated squared Hellinger distance between P0X and P1X is 0.076. The covariate value of

interest is ȳ = (−0.35,−0.25, 0.5). The true value for Λ(ȳᵀβ) is 0.488, while the estimate

assuming using the complete observations of the large sample above is Λ(ȳᵀβ̂MCAR
n ) = 0.573.

The point estimate for the breakdown point described by (2.17) using this large sample is

0.108. This is treated as the truth when evaluating the 1,000 simulations per sample size

summarized in the following table:

Table 2.5: Simulations, logistic

n Bias St. Dev. Coverage Ave. CI Length

1,000 0.003 0.018 94.5 0.029

3,000 -0.000 0.010 96.1 0.017

5,000 0.001 0.008 94.8 0.013

10,000 -0.000 0.005 95.9 0.009

These simulations shows essentially zero bias and approximately correct coverage.
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2.6 Conclusion

This paper proposes breakdown point analysis as a tractable approach to assessing the sen-

sitivity of a researcher’s conclusion to the common MCAR assumption. When defined with

squared Hellinger, the breakdown point δBP has a natural interpretation: if the result were

false, the variables under study (Z) would have to predict an observation being selected into

the sample (D) at least well enough that H2(P0, P1) = 1−E[
√

Var(D | Z)]/
√

Var(D) ≥ δBP .

Estimators based on the sample analogue of the dual problem are shown
√
n-consistent and

asymptotically normal, which facilitates the construction of lower confidence intervals. Re-

searchers working with incomplete datasets should report the breakdown point estimate and

lower confidence interval along with standard results, making transparent to their audience

how robust the conclusion is to relaxing the MCAR assumption.

2.7 Appendix

2.7.1 Appendix: notation

This appendix summarizes notation and facts used throughout the paper and appendices.

2.7.1.1 Calculations

A number of expressions are useful for verifying conditions in proofs and programming

estimators. These are collected here for convenience.

Recall that θ0(b) = (ν(b), λ(b), pD), where ν(b) is the population value of the value func-

tion, λ(b) is the corresponding Lagrange multiplier, and pD = P (D = 1). The notation
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θ = (v, λ, p) ∈ Rdg+K+2 refers to a vector in Euclidean space.

ϕ(D,DY,X, b, λ, p) ≡ λᵀJ(D)h(DY,X, b)

1− p
− D

p
f ∗(λᵀh(DY,X, b)) (2.18)

φ(D,DY,X, b, θ) = φ(D,DY,X, b, v, λ, p) ≡


ϕ(D,DY,X, b, λ, p)− v

∇λϕ(D,DY,X, b, λ, p)

D − p

 , (2.19)

Φ(b) = E[∇φ(D,DY,X, b, θ0(b))] (2.20)

∇θφ(d, dy, x, b, θ) = ∇v,λ,p


ϕ(d, dy, x, b, λ, p)− v

∇λϕ(d, dy, b, λ, p)

d− p



=


−1 ∇λϕ(d, dy, x, b, λ, p)ᵀ ∇pϕ(d, dy, x, b, λ, p)

0 ∇2
λϕ(d, dy, x, b, λ, p) ∇p∇λϕ(d, dy, x, b, λ, p)

0 0 −1

 (2.21)

∇λϕ(d, dy, x, b, λ, p) =
J(d)h(dy, x, b)

1− p
− d

p
(f ∗)′(λᵀh(dy, x, b))h(dy, x, b) (2.22)

∇2
λϕ(d, dy, x, b, λ, p) = −d

p
(f ∗)′′(λᵀh(dy, x, b))h(dy, x, b)h(dy, x, b)ᵀ

∇pϕ(d, dy, x, b, λ, p) =
λᵀJ(d)h(dy, x, b)

(1− p)2
+
d

p2
f ∗(λᵀh(dy, x, b))

∇p∇λϕ(d, dy, x, b, λ, p) =
J(d)h(dy, x, b)

(1− p)2
+
d

p2
(f ∗)′(λᵀh(dy, x, b))h(dy, x, b)

2.7.1.2 Graphs

Let X ⊆ Rdx and Y ⊆ Rdy . For a function f : X → Y , the graph of the function refers to

the set Gr(f) = {(x, f(x)) ; x ∈ X} ⊆ X × Y . Define the closed δ-expansion of the graph
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of f :

Gr(f)δ ≡
{

(x, y) ∈ X × Y ; inf
(x′,y′)∈Gr(f)

‖(x, y)− (x′, y′)‖ ≤ δ

}
Note that Gr(f)δ is closed, and bounded if Gr(f) is bounded.

Given Z ⊆ Rdz and g : X → Z, one can view (f, g) as a function from X to (Y, Z):

(f, g) : X → (Y, Z), (f, g)(x) = (f(x), g(x))

Define the graph of this function, Gr(f, g) = {(x, f(x), g(x)) ; x ∈ X} ⊆ X × Y × Z, and

the closed δ-expansion about this graph:

Gr(f, g)δ =

{
(x, y, z) ∈ X × Y × Z ; inf

(x′,y′,z′)∈Gr(f,g)
‖(x, y, z)− (x′, y′, z′)‖ ≤ δ

}

Several easily constructed subsets of Gr(f, g)δ imply useful inequalities. For example,

inf
(x′,y′,z′)∈Gr(f,g)

‖(x, y, g(x))− (x′, y′, z′)‖ ≤ inf
(x′,y′,z′)∈Gr(f,g)

‖(x, y, g(x))− (x′, y′, g(x))‖

= inf
(x,y)∈Gr(f)δ

‖(x, y)− (x′, y′)‖

implies
{

(x, y, g(x)) ; (x, y) ∈ Gr(f)δ
}
⊆ Gr(f, g)δ. It follows that for a function h : X ×

Y × Z → R,

sup
(x,y)∈Gr(f)δ

h(x, y, g(x)) ≤ sup
(x,y,z)∈Gr(f,g)δ

h(x, y, z).

Similarly,

‖(x, y, z)− (x′, y′, z′)‖ ≤ ‖(x, y, z)− (x′, y′, z)‖+ ‖(x′, y′, z)− (x′, y′, z′)‖

= ‖(x, y)− (x′, y′)‖+ ‖z − z′‖
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implies that

inf
(x′,y′)∈Gr(f)δ/2, z′∈Gr(g)δ/2

‖(x, y, z)− (x′, y′, z′)‖

≤ inf
(x′,y′)∈Gr(f)δ/2

‖(x, y)− (x′, y′)‖+ inf
z′∈Gr(g)δ/2

‖z − z′‖.

It follows that
{

(x, y, z) ; (x, y) ∈ Gr(f)δ/2, (x, z) ∈ Gr(g)δ/2
}
⊆ Gr(f, g)δ, and hence for a

function h : X × Y × Z → R,

sup
(x,y)∈Gr(f)δ/2, z∈Gr(g)δ/2

h(x, y, ) ≤ sup
(x,y,z)∈Gr(f,g)δ

h(x, y, z).

Finally, note that any constant ȳ ∈ Y can be viewed as a trivial function of X. The

graph of this function is the set Gr(ȳ) = {(x, ȳ) ; x ∈ X} and Gr(ȳ)δ is the set

{(x, y) ; x ∈ X, ‖y − ȳ‖ ≤ δ}.

2.7.1.3 Spaces of bounded functions

For any set T , `∞(T ) = {f : T → R ; supt∈T |f(t)| <∞} denotes the set of real-valued

bounded functions on T . `∞(T ) is equipped with the sup-norm: for f ∈ `∞(T ), ‖f‖∞ =

‖f‖T = supt∈T |f(t)|. The space of bounded functions taking values in RK for some K ∈ N

is the product space `∞(T )K = `∞(T )× . . .× `∞(T )︸ ︷︷ ︸
K times

, but can also be viewed as a process

on `∞(T × {1, . . . , K}). The latter notation makes it clear that standard empirical process

results, typically stated for scalar-valued processes, apply.

If (T, d) is a compact metric space, the extreme value theorem implies the set of contin-

uous functions on T are also bounded and hence form of a subpace of `∞(T ). This subspace

is denoted

C(T, d) = {f : T → R ; f is continuous}
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the notation C(T ) will be used to mean C(T, d) when the metric d is clear from context.

Some results will refer to subsets of bounded functions whose graphs falls into a particular

set. Specifically, let Et ⊆ RdE for each t ∈ T , ET = {(t, e) ; e ∈ Et}, and `∞(T,ET )dE be

the subset of `∞(T )dE whose graph is a subset of ET :

`∞(T,ET )dE =

{
g : T → RdE ; g(t) ∈ Et, sup

t∈T
‖g(t)‖ <∞

}
⊂ `∞(T )dE

For an example of how this will be used, let x̄ > 0 and note that the function f(t, e) = ln(t+e)

is uniformly continuous on the set {(t, e) ; t + e ≥ x̄}. Defining Et = {e ∈ R ; e ≥ x̄ − t}

and ET as above, we have that f(t, e) is uniformly continuous on this set. This implies that

f̃ : `∞(T,ET )→ `∞(T ) given by f̃(g)(t) = f(t, g(t)) = ln(t+ g(t)) is continuous (see lemma

2.7.4).

2.7.1.4 Matrices

For a matrix A ∈ RJ×K , let ‖A‖o = supx ; ‖x‖2=1‖Ax‖2 be the operator norm of A, and

‖A‖max = maxij|aij|, where aij ∈ R is the entry in the i-th row and j-th column of A. Let

σ1(A) ≥ . . . ≥ σK(A) ≥ 0 be the ordered singular values of A. For a square K × K real

matrix A, let α1(A) ≥ . . . ≥ αK(A) be the ordered eigenvalues of A.

Recall that all norms on finite dimensional real vector spaces are strongly equivalent,

meaning that if ‖·‖1 and ‖·‖2 are any norms on RJ×K , there exist constants c, C > 0 such

that c‖A‖1 ≤ ‖A‖2 ≤ C‖A‖1 for any matrix A ∈ RJ×K . If A : T → RJ×K for some set

T , it follows that E[supt‖A(t)‖] < ∞ for any norm if and only if E[supt‖A(t)‖max] < ∞.

Notice that strong equivalence with ‖·‖max implies that, for any submatrix Ã(t) of A(t),

E[supt‖A(t)‖] <∞ implies E[supt‖Ã(t)‖] <∞.

Recall that the singular values of a matrix A ∈ RJ×K are related to the eigenvalues of
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the K × K square matrix AᵀA by σk(A) =
√
αk(AᵀA). The operator norm of a matrix

is equal to its largest singular value, ‖A‖o = σ1(A), and for invertible matrix A and any

k = 1, . . . , K, 1
σk(A)

is a singular value of A−1. These imply ‖A−1‖o = 1
σK(A)

. Finally, for a

vector x ∈ RK , ‖xxᵀ‖o = ‖xᵀx‖o = ‖x‖2.

2.7.2 Appendix: measuring selection and breakdown analysis

2.7.2.1 Measuring selection

Lemma 2.2.1 is found in subsection 2.2.1.

Lemma 2.2.1. Let (Z,D) ∈ Rdz ×{0, 1} be random variables with pD = P (D = 1) ∈ (0, 1).

Let Z | D = 1 ∼ P1 and Z | D = 0 ∼ P0. Then

H2(P0, P1) = 1−
E
[√

Var(D | Z)
]

√
Var(D)

(2.1)

where the expectation is taken with respect to pDP1 + (1 − pD)P0, the marginal distribution

of Z.

Proof. The marginal, unconditional distribution of Z is P = pDP1 + (1 − pD)P0. This

distribution dominates P1 and P0, which have densities

f1(z) =
P (D = 1 | Z = z)

pD
, f0(z) =

(1− P (D = 1 | Z = z))

1− pD
,
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with respect to P . This implies

H2(P0, P1) =
1

2

∫ (√
f0(z)−

√
f1(z)

)2

dP (z) =
1

2

[∫
f0(z) + f1(z)− 2

√
f1(z)f0(z)dP (z)

]
= 1−

∫ √
P (D = 1 | Z = z)(1− P (D = 1 | Z = z))dP (z)√

pD(1− pD)

= 1−
EP

[√
Var(D | Z)

]
√

Var(D)
.

2.7.2.2 Nominal identified sets

The exercise proposed in section 2.2.3 can also be understood with a framework of nomi-

nally identified sets. This approach to exposition is used in Kline & Santos (2013), Masten

& Poirier (2020), and Diegert et al. (2022), and described for the current setting in this

appendix.

Under the assumption d(P0‖P1) ≤ δ and P0 � P1, the identified set for βP is a function

of δ:

BID(δ) =
{
b ∈ B ; ∃Q, pDEP1 [g(Z, b)] + (1− pD)EQ[g(Z, b)] = 0, and d(Q ‖ P1) ≤ δ

}
(2.23)

Notice BID(δ) is always growing with δ, in the sense that δ < δ′ =⇒ BID(δ) ⊆ BID(δ′).

The researcher is primarily interested in testing H0 : β ∈ B0 against H1 : β ∈ B1 =

B \ B0. Naturally, if BID(δ) has trivial intersection with B0 she is confident in rejecting

H0. This leads to the question “what is the largest value of δ such that BID(δ) has empty

intersection with B0?” Formally, define the breakdown point as

δ̄BD = sup {δ ∈ R+ ; BID(δ) ∩B0 = ∅} (2.24)
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if BID(0) ∩B0 = ∅, otherwise define δ̄BD := 0.

2.7.2.3 Characterization through a value function

Let

Pb = {Q ; Q� P1, QX = P0X , pDEP1 [g(Z, b)] + (1− pD)EQ[g(Z, b)] = 0} ,

be the set of distributions that “rationalizes” β = b. Notice that if there exists Q ∈ Pb such

that d(Q ‖ P1) ≤ δ, then b ∈ BID(δ). This suggests the identified sets can be characterized

through the value function

ν(b) = inf
Q∈Pb(Q)

d(Q ‖ P1), (2.25)

where the infimum over the empty set is defined to be +∞. Observe that ν(b) < δ implies

b ∈ BID(δ), and if the infimum is attained at some minimum, then ν(b) ≤ δ if and only if

b ∈ BID(δ).

Lemma 2.7.1 shows that the definition of the breakdown point given in (2.24) is equivalent

to that given by (2.4).

Lemma 2.7.1 (Characterization of breakdown point).

inf
b∈B0

ν(b) = δ̄BD

Proof. Define the “robust region” as the set of δ ∈ R+ where the identified set has trivial

intersection with the null hypothesis:

RR = {δ ∈ R+ ; BID(δ) ∩B0 = ∅}

and let RRc = R+ \ RR = {δ ∈ R+ ; BID(δ) ∩ B0 6= ∅} be its compliment in R+. Notice
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that

δ̄BD =


supRR if RR 6= ∅

0 otherwise

The proof consists of two steps:

1. Showing that

δ̄BD = inf RRc (2.26)

where the infimum over the empty set is defined to be ∞.

2. Arguing that

inf
b∈B0

ν(b) ≤ inf RRc, and inf
b∈B0

ν(b) ≥ inf RRc,

Step 1. is a consequence of BID(δ) being a growing set (in the sense that δ ≤ δ′ =⇒

BID(δ) ⊆ BID(δ′)). Define δ̄∗ = inf RRc = inf{δ ∈ R+ ; BID(δ)∩B0 6= ∅}. There are three

possibilities:

(i) δBD = 0. Then RRc contains (0,∞), hence 0 ≤ δ̄∗ = inf RRc ≤ inf(0,∞) = 0.

(ii) δBD ∈ (0,∞). Notice that δ ≤ δ′ =⇒ BID(δ) ⊆ BID(δ′) implies that δ ≤ δ′ =⇒

(BID(δ) ∩B0) ⊆ (BID(δ′) ∩B0), from which it follows that

δ ≤ δ′ and δ′ ∈ RR =⇒ δ ∈ RR

δ ≤ δ′ and δ ∈ RRc =⇒ δ′ ∈ RRc

since δ̄BD ∈ (0,∞), we have RR contains [0, δ̄BD). Similarly, RRc contains (δ̄∗,∞),

and since RR ∩ RRc = ∅, we have δ̄BD ≤ δ̄∗. For n ∈ N, let δn := δ̄∗ − 1
n
≥ 0, and
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notice that BID(δn) ∩B = ∅, equivalently, δn ∈ RR. Therefore

δ̄∗ − 1

n
≤ δ̄BD ≤ δ̄∗

let n→∞ to see that δBD = δ∗.

(iii) δBD = ∞. Then the argument above implies RR contains [0,∞), so RRc = ∅ and

δ∗ =∞.

Therefore (2.26) holds.

For step 2., first notice that

inf
b∈B0

ν(b) = inf
b∈B0

inf
Q∈Pb

d(Q ‖ P1) = inf
⋃
b∈B0

{
d(Q ‖ P1) ; Q ∈ Pb

}
(2.27)

If δ is such that BID(δ) ∩ B0 6= ∅, then there exists b ∈ B0 and Q ∈ Pb such that

d(Q ‖ P1) ≤ δ. This implies

inf RRc = inf {δ ∈ R+ ; BID(δ) ∩B0 6= ∅} ≥ inf
⋃
b∈B0

{
d(Q ‖ P1) ; K ∈ Pb

}

Conversely, for each real number a satisfying a = d(Q ‖ P1) for some Q ∈ Pb, b ∈ B0, we

have that a ∈ {δ ; BID(δ) ∩B0 6= ∅}. This implies

inf
⋃
b∈B0

{d(Q ‖ P1) ; Q ∈ Pb} ≥ inf {δ ; BID(δ) ∩B0 6= ∅} = inf RRc

Putting (2.26), (2.27), and these two inequalities together we obtain

inf
b∈B0

ν(b) = inf
⋃
b∈B0

{
d(Q ‖ P1) ; Q ∈ Pb

}
= inf {δ ; BID(δ) ∩B0 6= ∅} = δBD

as was claimed. �
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2.7.3 Appendix: additional duality discussion

This short appendix contains no original results, but collects definitions and useful facts

related to convex analysis.

2.7.3.1 Definitions

For reference, see Broniatowski & Keziou (2012), or Rockafellar (1970).

Let f : R → (−∞,∞]. The effective domain of f is dom(f) = {x ∈ R ; f(x) < ∞}. f

is called proper if dom(f) is nonempty. f is called convex if dom(f) is a convex set. For a

convex f : E ( R → R, f can be extended to R by setting f(x) = ∞ for all x 6∈ E. This

extended function is still convex.

Now consider a convex f : R → (−∞,∞]. Notice that convexity implies dom(f) is a

subset of R with interior of the form (`, u). ` or u may be infinite, and limx�`+ f(x) or

limx→u− f(u) may be finite. f is called closed if 1. limx→`+ f(x) = ∞ if ` > −∞, and

2. limx→u− f(x) = ∞ if u < ∞. f is called essentially smooth if 1. f is differentiable

on (`, u), 2. limx→`+ f
′(x) = −∞ if ` > −∞, and 3. limx→u− f

′(x) = ∞ if u < ∞. The

convex conjugate or Legendre-Fenchel transform of a convex function f is defined as f ∗(y) =

supx∈R{xy − f(x)}.

2.7.3.2 Results

Now let f be closed, proper, and convex. The following are results not proven here; see

footnotes for references.

• f ∗ is a closed, proper, convex function.11

• (f ∗)∗ = f ; that is, the convex conjugate of f ∗ is f .12

11Rockafellar (1970), p. 104.
12Rockafellar (1970) p. 104, theorem 12.2
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• f is strictly convex if and only if f ∗ is essentially smooth.13

• f is essentially smooth if and only if f ∗ is strictly convex.14

• If f is strictly convex and essentially smooth, then f ′ is one-to-one and (f ′)−1(y) =

(f ∗)′(y) for all y ∈ dom(f ∗).15

• If f is strictly convex, essentially smooth, and twice differentiable, then f ∗ is twice

differentiable and (f ∗)′′(y) = 1
f ′′((f ′)−1(y))

.16

• If f is strictly convex and essentially smooth with dom(f) ⊆ [0,∞), then (f ′)−1(x) ≥

0.17

• If f is convex, f(x) = 0 at x = 1, and f is strictly convex on a neighborhood of 1 then∫
f(k(z))dP (z) = 0 if and only if k(z) = 1, P -a.s..18

2.7.4 Appendix: proofs of duality results

Lemma 2.7.2 (Unique primal solution). Suppose f is strictly convex on its domain, pD ∈

(0, 1), and the infimum in (2.5) is finite. Then any solution attaining the infimum in (2.5)

is unique, P1-almost surely.

Proof. Let Q0, Q1 ∈ Pb attain the finite infimum in (2.5), and let q0 and q1 denote their densi-

ties with respect to P1. We have that −pD
(1−pD)

EP1 [g(Y,X, b)] = EQ0 [g(Y,X, b)] = EQ1 [g(Y,X, b)]

and Q0
X = Q1

X = P0X . For any α ∈ (0, 1), the measure Qα = αQ1 + (1 − α)Q0 ∈ Pb is

feasible in (2.5), and characterized by the P1-density αq1 + (1− α)q0.

13Borwein & Lewis (1993) p. 251, or Rockafellar (1970) theorem 26.3 on p. 253.
14This follows from the two preceding facts.
15Broniatowski & Keziou (2012) p. 2559. See also Rockafellar (1970) corollary 23.5.1 on p. 219, corollary

26.3.1 on p. 254, and theorem 26.5 on p. 258.
16Broniatowski & Keziou (2012), p. 2559. See also the preceding fact.
17Broniatowski & Keziou (2012), p. 2557.
18Broniatowski & Keziou (2012), p. 2556.
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Suppose for contradiction that Q0 and Q1 differ on a set of positive P1-measure. Strict

convexity implies that for any (y, x) in that set,

f(αq1(y, x) + (1− α)q0(y, x)) < αf(q1(y, x)) + (1− α)q0(y, x)

Integrating with respect to P1 reveals df (αQ
1 + (1 − α)Q0‖P1) < αdf (Q

1‖P1) + (1 −

α)df (Q
0‖P1), contradicting optimality of Q0, Q1.

Lemma 2.7.3 (Weak duality). Let ν(b) and V (b) be as defined in (2.5) and (2.7), respec-

tively. If assumption 5 holds, then V (b) ≤ ν(b) for any b ∈ B.

Proof. First note that if ν(b) =∞ the inequality holds trivially.

Suppose ν(b) < ∞. Then Pb 6= ∅, hence there exists at least one density q(z) =

dQ
dP1

(z) satisfying
∫
h(z, b)q(z)dP1(z) = c(b). Notice that f ∗(r) = supt∈R{rt − f(t)} implies

f(t) + f ∗(r) ≥ f(t) + rt− f(t) = rt. Use this to see that for any Q ∈ Pb with P1-density q,

f(q(z)) + f ∗(λᵀh(z, b)) ≥ λᵀh(z, b)q(z)

=⇒ f(q(z)) ≥ λᵀh(z, b)q(z)− f ∗(λᵀh(z, b))

integrating over z with respect to P1 gives

∫
f(q(z))dP1(z) ≥ λᵀ

∫
h(z, b)q(z)dP1(z)︸ ︷︷ ︸

=c(b)

−
∫
f ∗(λᵀh(z, b))dP1(z)

=⇒ df (Q‖P1) ≥ λᵀc(b)− E [f ∗(λᵀh(z, b)) | D = 1]

the left hand side of the last inequality doesn’t depend on λ ∈ Rdg+K , while the right hand
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side doesn’t depend on Q ∈ Pb. Hence,

ν(b) = inf
Q∈Pb

df (Q‖P1) ≥ sup
λ∈Rdg+K

{λᵀc(b)− E [f ∗(λᵀh(Z, b)) | D = 1]} = V (b).

Theorem 2.3.1 (Strong duality). Suppose assumptions 5 and 6 hold. Then for each b ∈ B,

ν(b) = V (b), with dual attainment.

Proof. Let M be the set of measurable functions mapping z = (x, y) 7→ R. Consider the

relaxed problem

ν̃(b) = inf
q∈P̃b

∫
f(q(y, x))dP1(y, x)

P̃
b

=

{
q ∈M ;

∫
h(y, x, b)q(y, x)dP1(y, x) = c(b)

}

for any q ∈ P̃
b
, K(ψ) =

∫
ψ(y, x)q(y, x)dP1(y, x) is a (possibly signed) measure with total

measure one. Notice this problem has the same objective as the primal problem (2.5), but

a larger feasible set (the set of finite signed measures with total measure one).

Now apply Theorem II.2 of Csiszár et al. (1999), with trivial K = {c(b)}. The dual of the

relaxed problem is (2.7). Assumption 6 (i) is the “constraint qualification” of Csiszár et al.

(1999) Theorem II.2, implying strong duality holds for the relaxed problem, ν̃(b) = V (b),

and the dual problem’s value is attained at a maximum. Let λ(b) solve the dual problem.

Assumption 6 (ii) allows application of the second part of Theorem II.2, implying the solution

to the relaxed problem is given by

qb(y, x) = (f ′)−1(λ(b)ᵀh(y, x, b)) = (f ∗)′(λ(b)ᵀh(y, x, b))

By assumption 5 (iv) and Lemma 2.7.2, this solution is unique P1-almost surely.
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Now we show that qb in fact solves the primal problem, (2.5). Notice qb is nonnegative,

because f ′ is only defined on the non-negative reals. Furthermore,

∫
qb(x, y)dP1(x, y) =

∫ K∑
k=1

1{x = xk}qb(x, y)dP1(x, y)

=
K∑
k=1

∫
1{x = xk}qb(x, y)dP1(x, y)

=
K∑
k=1

P (X = xk | D = 0)

= 1

where the third equality follows from
∫
h(y, x, b)qb(x, y)dP1(x, y) = c(b). So the measure Qb

given by Qb(ψ) =
∫
ψ(y, x)qb(y, x)dP1(y, x) is a probability distribution dominated by P1.

Therefore Qb ∈ Pb is feasible in the primal problem (2.5). Being feasible in the primal and

solving the relaxed problem, Qb must also solve the primal problem.

2.7.5 Appendix: proofs of estimation results

2.7.5.1 Technical lemmas

These results are self contained, with notation not related to the present paper.

Lemma 2.7.4 (Uniform continuity of maps between bounded functions). Let T be a set,

Et ⊆ RdE for each t ∈ T , ET = {(t, e) ; t ∈ T, e ∈ Et}, and `∞(T,ET )dE be the subset of

`∞(T )dE whose graph is a subset of ET :

`∞(T,ET )dE =

{
g : T → RdE ; g(t) ∈ Et, sup

t∈T
‖g(t)‖ <∞

}
⊂ `∞(T )dE
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Let f : ET → Rdf be such that supt∈T‖f(t, g(t))‖ <∞ for any g ∈ `∞(T,ET )dE , and define

f̃ : `∞(T,ET )dE → `∞(T )df , f̃(g)(t) = f(t, g(t)).

If {f(t, ·)}t∈T is uniformly equicontinuous, then f̃ is uniformly continuous.

Proof. Let ε > 0, and use uniform equicontinuity to choose δ > 0 such that

|e1 − e2| < δ =⇒ |f(t, e1)− f(t, e2)| < ε/2

for any t ∈ T . Notice that if g1, g2 ∈ `∞(T,ET )dE with ‖g1−g2‖T = supt∈T |g1(t)−g2(t)| < δ,

then

‖f̃(g1)− f̃(g2)‖T = sup
t∈T
|f(t, g1(t)− f(t, g2(t))| ≤ ε/2 < ε

and hence ‖g1 − g2‖T < δ =⇒ ‖f̃(g1)− f̃(g2)‖T < ε.

Remark 2.7.1. Lemma 2.7.4 implies many simpler special cases. For example, suppose that

for all t, t′ ∈ T , f(t, e) = f(t′, e) and Et = E ⊆ R. Then lemma 2.7.4 simplifies to:

if f : E → R is uniformly continuous, then f̃ : `∞(T ) → `∞(T ) defined pointwise by

f̃(g)(t) = f(g(t)) is continuous.

Lemma 2.7.5 (Restricted infimum is uniformly continuous). For any A ⊆ T and any

f, g ∈ `∞(T ), ∣∣∣∣inf
t∈A

f(t)− inf
t∈A

g(t)

∣∣∣∣ ≤ sup
t∈A
|f(t)− g(t)|

as a result, ι : `∞(T )→ R given by ι(h) = inft∈A h(t) is uniformly continuous.
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Proof. Notice that

sup
t∈A

f(t)− sup
t∈A

g(t) ≤ sup
t∈A
{f(t)− g(t)} ≤ sup

t∈A
|f(t)− g(t)|, and

−
[
sup
t∈A

f(t)− sup
t∈A

g(t)

]
= sup

t∈A
g(t)− sup

t∈A
f(t) ≤ sup

t∈A
{g(t)− f(t)} ≤ sup

t∈A
|g(t)− f(t)|

= sup
t∈A
|f(t)− g(t)|,

hence − supt∈A|f(t)− g(t)| ≤ supt∈A f(t)− supt∈A g(t) ≤ supt∈A|f(t)− g(t)|, or equivalently

∣∣∣∣sup
t∈A

f(t)− sup
t∈A

g(t)

∣∣∣∣ ≤ sup
t∈A
|f(t)− g(t)|.

Use this to see the claimed inequality:

∣∣∣∣inf
t∈A

f(t)− inf
t∈A

g(t)

∣∣∣∣ =

∣∣∣∣− sup
t∈A
{−f(t)} −

(
− sup

t∈A
{−g(t)}

)∣∣∣∣ =

∣∣∣∣sup
t∈A
{−g(t)} − sup

t∈A
{−f(t)}

∣∣∣∣
≤ sup

t∈A
|−g(t)− {−f(t)}| = sup

t∈A
|f(t)− g(t)|.

Regarding the continuity claim, let ε > 0 and set δ = ε. Then

|ι(f)− ι(g)| ≤ sup
t∈A
|f(t)− g(t)| ≤ sup

t∈T
|f(t)− g(t)| = ‖f − g‖T ,

hence ‖f − g‖T < δ implies |ι(f)− ι(g)| < ε.

Lemma 2.7.6 (Restricted infimum is Hadamard directionally differentiable). Let (T, d) be

a metric space, A a compact subset of T , and

ι : `∞(T )→ R, ι(f) = inf
t∈A

f(t)

Then ι is Hadamard directionally differentiable at any f ∈ C(T, d) tangentially to C(T, d).
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ΨA(f) = arg mint∈A f(t) is nonempty, and the directional derivative is given by

ι′f : C(T, d)→ R, ι′f (h) = inf
t∈ΨA(f)

h(t)

If ΨA(f) is the singleton {tf}, then ι is fully Hadamard differentiable at f tangentially to

C(T, d) and ι′f (h) = h(tf ).

Proof. The result is essentially a corollary of Fang & Santos (2019) Lemma S.4.9, which shows

that φ : `∞(A)→ R given by φ(f) = supt∈A f(t) is Hadamard directionally differentiable at

any f ∈ C(A, d) tangentially to C(A, d), with directional derivative

φ′f : C(A, d)→ R, φ′f (h) = sup
t∈ΨA(f)

h(t).

See Fang & Santos (2019) definition 2.1 for definitions of Hadamard directionally differen-

tiable and fully Hadamard differentiable.

Let f ∈ C(T, d) and note that ΨA(f) = arg mint∈A f(t) is nonempty by the extreme value

theorem. Let {hn}∞n=1 ⊆ `∞(T ) and {rn}∞n=1 ⊆ R+ be such that hn → h ∈ C(T, d) and rn ↓ 0.

For g ∈ `∞(T ), let gA : A → R be the restriction of g to A, given by gA(t) = g(t). Observe

that g ∈ C(T, d) implies gA ∈ C(A, d). Now notice that

∣∣∣∣ι(f + rnhn)− ι(f)

rn
− ι′a(h)

∣∣∣∣
=

∣∣∣∣ inft∈A{f(t) + rnhn(t)} − inft∈A f(t)

rn
− inf

t∈ΨA(f)
h(t)

∣∣∣∣
=

∣∣∣∣∣− supt∈A{−f(t)− rnhn(t)} − (− supt∈A{−f(t)})
rn

−

(
− sup

t∈ΨA(f)

{−h(t)}

)∣∣∣∣∣
=

∣∣∣∣∣supt∈A{−f(t) + rn (−hn(t))} − (supt∈A{−f(t)})
rn

−

(
sup

t∈ΨA(f)

{−h(t)}

)∣∣∣∣∣
=

∣∣∣∣φ(−fA + rn(−hn,A))− φ(−fA)

rn
− φ′f (−hA)

∣∣∣∣ ,
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where the last equality follows from the definitions and the fact that ΨA(f) = arg mina∈A f(a) =

arg maxa∈A{−fA(a)}.

hn → h ∈ h ∈ C(T, d) implies −hn,A → −hA ∈ C(A, d). Thus Fang & Santos (2019)

Lemma S.4.9 and the definition of Hadamard directional differentiability implies

lim
n→∞

∣∣∣∣ι(f + tnhn)− ι(f)

tn
− ι′a(h)

∣∣∣∣ = lim
n→∞

∣∣∣∣φ(−fA + tn(−hn,A))− φ(−fA)

tn
− φ′f (−hA)

∣∣∣∣ = 0.

Finally, if ΨA(f) = {tf} then inft∈ΨA(f)(h) = h(tf ) is linear in h, and hence ι is fully

Hadamard differentiable at f .

Lemma 2.7.7 (Uniform consistency of estimated moments). Let X ⊆ RdX , T ⊆ RdT ,

Et ⊆ RdE , ET = {(t, e) ; t ∈ T, e ∈ Et},

γ̂n, γ : T → RdE , and f : X × ET → RK×J .

Suppose that

(i) {Xi}ni=1 is i.i.d.,

(ii) supt∈T‖γ̂n(t)− γ(t)‖ p→ 0,

(iii) Gr(γ) = {(t, γ(t)) ; t ∈ T} is bounded, and

(iv) there exists a finite ε > 0 such that (t, e) 7→ f(x, t, e) is continuous on

Gr(γ)ε ≡
{

(t, e) ∈ ET ; inf
(t′,e′)∈Gr(γ)

‖(t, e)− (t′, e′)‖ ≤ ε

}

for all x ∈ X , and

E

[
sup

(t,e)∈Gr(γ)ε
‖f(X, t, e)‖

]
<∞.
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Then

sup
t∈T

∥∥∥∥∥ 1

n

n∑
i=1

f(Xi, t, γ̂n(t))− E[f(X, t, γ(t))]

∥∥∥∥∥ p→ 0

Proof. The triangle inequality implies

sup
t∈T

∥∥∥∥∥ 1

n

n∑
i=1

f(Xi, t, γ̂n(t))− E[f(X, t, γ(t))]

∥∥∥∥∥
≤ sup

t∈T

∥∥∥∥∥ 1

n

n∑
i=1

f(Xi, t, γ̂n(t))− E[f(X, t, γ̂n(t))]

∥∥∥∥∥
+ sup

t∈T
‖E[f(X, t, γ̂n(t))]− E[f(X, t, γ(t))]‖

Consider the second term first. The dominated convergence theorem, (t, e) 7→ f(x, t, e)

being continuous, and E
[
sup(t,e)∈Gr(γ)ε‖f(X, t, e)‖

]
<∞ implies that

ψ : Gr(γ)ε → RK×J , ψ(t, e) = E[f(X, t, e)]

is continuous. Gr(γ)ε is a closed and bounded subset of RdT × RdE , hence compact by the

Heine-Borel theorem. Thus ψ is in fact uniformly continuous by the Heine-Cantor theorem.

Lemma 2.7.4 then implies

Ψ : `∞(T,Gr(γ)ε)→ `∞(T )K×J , Ψ(g)(t) = ψ(t, g(t))

is continuous. supt∈T ‖E[f(X, t, γ̂n(t))]− E[f(X, t, γ(t))]‖ p→ 0 follows from supt∈T‖γ̂n(t) −

γ(t)‖ p→ 0 and the continuous mapping theorem.

Now consider the first term. Compactness of Gr(γ)ε, continuity of (t, e) 7→ f(x, t, e) on

Gr(γ)ε, and E
[
sup(t,e)∈Gr(γ)ε‖f(X, t, e)‖

]
< ∞ implies that {f(X, t, e) ; (t, e) ∈ Gr(γ)ε} is

Glivenko-Cantelli by van der Vaart (2007) example 19.8. With probability approaching one,
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supt∈T‖γ̂n(t)− γ(t)‖ < ε and when this holds,

sup
t∈T

∥∥∥∥∥ 1

n

n∑
i=1

f(Xi, t, γ̂n(t))− E[f(X, t, γ̂n(t))]

∥∥∥∥∥
≤ sup

(t,g)∈Gr(γ)ε

∥∥∥∥∥ 1

n

n∑
i=1

f(Xi, t, e)− E[f(X, t, e)]

∥∥∥∥∥ p→ 0.

This concludes the proof.

Lemma 2.7.8 (Uniform consistency of matrix inverses). Let Φ̂n,Φ : T → RK×K. If

(i) Φ(t)−1 exists for all t ∈ T ,

(ii) supt∈T‖Φ(t)‖o <∞ and supt∈T‖Φ(t)−1‖o <∞, and

(iii) supt∈T‖Φ̂n(t)− Φ(t)‖o
p→ 0,

then with probability approaching one, the function mapping T to Φ̂n(t)−1 is well defined and

sup
t∈T
‖Φ̂n(t)−1 − Φ(t)−1‖o

p→ 0

Proof. It suffices to show that the singular values of Φ̂n(t) converge in probability to the

singular values of Φ(t), uniformly over t ∈ T :

sup
t∈T

max
k
|σk(Φ̂n(t))− σk(Φ(t))| p→ 0. (2.28)

To see why, notice that ∞ > supt∈T‖Φ(t)−1‖o = supt∈T
1

σK(Φ(t))
= 1

inft∈T σK(Φ(t))
implies

ε ≡ inft∈T σK(Φ(t)) > 0. Condition (2.28) implies that with probability approaching one,

sup
t∈T

max
k

∣∣∣σk(Φ̂n(t))− σk(Φ(t))
∣∣∣ < ε/2,
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and on this event the function mapping T to Φ̂n(t)−1 is well defined. Then notice that

∥∥∥Φ̂n(t)−1 − Φ(t)−1
∥∥∥
o

=
∥∥∥Φ̂n(t)−1(Φ(t)− Φ̂n(t))Φ(t)−1

∥∥∥
o

≤
∥∥∥Φ̂n(t)−1

∥∥∥
o

∥∥∥Φ(t)− Φ̂n(t)
∥∥∥
o

∥∥Φ(t)−1
∥∥
o

implying

sup
t∈T

∥∥∥Φ̂n(t)−1 − Φ(t)−1
∥∥∥
o
≤ sup

t∈T

∥∥∥Φ̂n(t)−1
∥∥∥
o

sup
t∈T

∥∥∥Φ(t)− Φ̂n(t)
∥∥∥
o

sup
t∈T

∥∥Φ(t)−1
∥∥
o

(2.29)

supt∈T‖Φ(t)−1‖o < ∞ and supt∈T‖Φ̂n(t) − Φ(t)‖o
p→ 0 are assumed, the latter imply-

ing supt∈T‖Φ̂n(t)‖o = Op(1) by the continuous mapping theorem. Thus (2.29) implies

supt∈T

∥∥∥Φ̂n(t)−1 − Φ(t)−1
∥∥∥
o

p→ 0.

The argument that (2.28) holds is broken into three steps:

1. Show that Φ̂n(t)ᵀΦ̂n(t) is uniformly consistent for Φ(t)ᵀΦ(t).

Notice that

sup
t∈T

∥∥∥Φ̂n(t)ᵀΦ̂n(t)− Φ(t)ᵀΦ(t)
∥∥∥
o

≤ sup
t∈T

∥∥∥Φ̂n(t)ᵀΦ̂n(t)− Φ̂n(t)ᵀΦ(t)
∥∥∥
o

+ sup
t∈T

∥∥∥Φ̂n(t)ᵀΦ(t)− Φ(t)ᵀΦ(t)
∥∥∥
o

≤ sup
t∈T

∥∥∥Φ̂n(t)ᵀ
∥∥∥
o

sup
t∈T

∥∥∥Φ̂n(t)− Φ(t)
∥∥∥
o

+ sup
t∈T

∥∥∥Φ̂n(t)ᵀ − Φ(t)ᵀ
∥∥∥
o

sup
t∈T
‖Φ(t)‖o

Recall that for any square matrix A ∈ RK×K ,

‖Aᵀ‖max = ‖A‖max ≤ ‖A‖o ≤ K‖A‖max = K‖Aᵀ‖max.
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Use this to see that

sup
t∈T
‖Φ̂n(t)ᵀ‖o ≤ K sup

t∈T
‖Φ̂n(t)‖o

and sup
t∈T

∥∥∥Φ̂n(t)ᵀ − Φ(t)ᵀ
∥∥∥
o
≤ K sup

t∈T

∥∥∥Φ̂n(t)− Φ(t)
∥∥∥
o
,

and therefore

sup
t∈T

∥∥∥Φ̂n(t)ᵀΦ̂n(t)− Φ(t)ᵀΦ(t)
∥∥∥
o

≤ K

(
sup
t∈T
‖Φ̂n(t)‖+ sup

t∈T
‖Φ(t)‖

)
sup
t∈T
‖Φ̂n(t)− Φ(t)‖ (2.30)

supt∈T‖Φ(t)−1‖o <∞ and supt∈T‖Φ̂n(t)− Φ(t)‖o
p→ 0 by assumption, implying

supt∈T‖Φ̂n(t)‖o = Op(1) by the continuous mapping theorem, and thus

supt∈T

∥∥∥Φ̂n(t)ᵀΦ̂n(t)− Φ(t)ᵀΦ(t)
∥∥∥
o

p→ 0 by (2.30).

2. Show the eigenvalues of Φ̂n(t)ᵀΦ̂n(t) converge to the eigenvalues of Φ(t)ᵀΦ(t) uniformly

over t ∈ T .

Apply Weyl’s perturbation theorem, found in Bhatia (1997) as corollary III.2.6: for

Hermitian matrices A and B,

max
k
|αk(A)− αk(b)| ≤ ‖A−B‖o

For real matrices Hermitian is equivalent to symmetric, so Weyl’s perturbation theorem

implies

sup
t∈T

max
k
|αk(Φ̂n(t)ᵀΦ̂n(t))− αk(Φ(t)ᵀΦ(t))|

≤ sup
t∈T
|Φ̂n(t)ᵀΦ̂n(t)− Φ(t)ᵀΦ(t)‖o

p→ 0

In other words, the eigenvalues of Φ̂n(t)ᵀΦ̂n(t) converge to the eigenvalues of Φ(t)ᵀΦ(t)
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uniformly over t ∈ T . These eigenvalues are the squared singular values of Φn(t).

3. Apply the continuous mapping theorem to conclude (2.28) holds.

Let `∞(T, [0,∞)) denote the subset of `∞(T ) consisting of functions h taking nonnega-

tive real values: h : T → [0,∞). Lemma 2.7.4 shows that if f : [0,∞)→ R is uniformly

continuous, then f̃ : `∞(T, [0,∞)) → `∞(T ) given pointwise by f̃(h)(t) = f(h(t)) is

continuous. It is well known that the square root funtion x 7→
√
x is uniformly contin-

uous on [0,∞). Thus (2.28) follows by the continuous mapping theorem.

2.7.5.2 Consistency

Lemma 2.7.9 (Unique dual solution). Suppose assumptions 5 and 6 hold, b ∈ B, and

E[h(Y,X, b)h(Y,X, b)ᵀ | D = 1] is nonsingular. Then M(b, λ) ≡ E[ϕ(D,DY,X, b, λ, pD)] is

strictly concave in λ and λ(b) = arg maxλ∈Rdg+K M(b, λ) is unique.

Proof. Let λ 6= λ̃ and α ∈ (0, 1). Since f is essentially smooth, f ∗ is strictly convex and as

a result,

f ∗((αλ̃+ (1− α)λ)ᵀh(y, x, b)) < αf ∗(λ̃ᵀh(y, x, b)) + (1− α)f ∗(λᵀh(y, x, b)) (2.31)

for any (y, x) where λ̃ᵀh(y, x, b) 6= λᵀh(y, x, b), equivalently, where (λ − λ̃)ᵀh(y, x, b) 6= 0.

Since λ− λ̃ 6= 0, nonsingularity of E[h(Y,X, b)h(Y,X, b)ᵀ | D = 1] implies

0 < (λ− λ̃)ᵀE[h(Y,X, b)h(Y,X, b)ᵀ | D = 1](λ− λ̃) = E[
(
(λ− λ̃)ᵀh(Y,X, b)

)2 | D = 1]
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implies
{

(y, x) ; (λ− λ̃)ᵀh(y, x, b) 6= 0
}

is a P1-nonnegligible set. It follows that

E

[
D

pD
f ∗((αλ̃+ (1− α)λ)ᵀh(DY,X, b))

]
< αE

[
D

pD
f ∗(λ̃ᵀh(DY,X, b))

]
+ (1− α)E

[
D

pD
f ∗(λᵀh(Y,X, b))

]

and hence

M(b, αλ̃+ (1− α)λ) = E[ϕ(D,DY,X, b, αλ̃+ (1− α)λ, pD)]

= E

[
(αλ̃+ (1− α)λ)ᵀJ(D)h(DY,X, b)

1− pD
− D

pD
f ∗((αλ̃+ (1− α)λ)ᵀh(DY,X, b))

]

> αE

[
λ̃ᵀJ(D)h(DY,X, b)

1− pD

]
+ (1− α)E

[
λᵀJ(D)h(DY,X, b)

1− pD

]
− αE

[
D

pD
f ∗(λ̃ᵀh(DY,X, b))

]
− (1− α)E

[
D

pD
f ∗(λᵀh(Y,X, b))

]
= αM(b, λ̃) + (1− α)M(b, λ)

Therefore M(b, ·) is strictly concave. M(b, ·) attains a maximum by Theorem 2.3.1, and

strict concavity implies this maximizer is unique.

Lemma 2.7.10 (Continuous dual solution and value function). Suppose assumptions 5, 6,

and 7 hold. Then λ(b) = arg maxλ∈Rdg+K M(b, λ), ν(b) = M(b, λ(b)), and ∇2
λM(b, λ(b)) are

all continuous.

Proof. Jensen’s inequality and assumption 7 (v) imply that

E

[
sup

(b,ν,λ,p)∈Gr(θ0)η
‖∇(b,ν,λ,p)φ(D,DY,X, b, ν, λ, p)‖

]
<∞
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and, therefore, the following inequalities as well:

E

[
sup

(b,λ)∈Gr(λ)η
‖∇λϕ(D,DY,X, b, λ, pD)‖

]
<∞, and

E

[
sup

(b,λ)∈Gr(λ)η
‖∇2

λϕ(D,DY,X, b, λ, pD)‖

]
<∞

where Gr(λ) = {(b, λ(b)) ; b ∈ B} and Gr(λ)η =
{

(b, λ) ; inf(b′,λ′)∈Gr(λ)‖(b, λ)− (b′, λ′)‖ ≤ η
}

.

The dominated convergence theorem implies M(b, λ) = E[ϕ(D,DY,X, b, λ, pD)] is twice con-

tinuously differentiable with respect to λ in a neighborhood of λ(b) for every b ∈ B, with

∇λM(b, λ) = E [∇λϕ(D,DY,X, b, λ, pD)] and ∇2
λM(b, λ) = E [∇2

λϕ(D,DY,X, b, λ, pD)].

λ(b) must therefore solve the first order condition

0 = ∇λM(b, λ(b)) = E [∇λϕ(D,DY,X, b, λ, pD)] .

Apply the implicit function theorem to this equation. The maps (b, λ) 7→ ∇λM(b, λ) and

(b, λ) 7→ ∇2
λM(b, λ) exist and are continuous on an open neighborhood of (b, λ(b)). Moreover,

strict concavity of M(b, ·) shown in lemma 2.7.9 implies ∇2
λM(b, λ(b)) is negative definite

and hence invertible. It follows from the implicit function theorem (found in Zeidler (1986)

as theorem 4.B) that λ(b) is continuous in a neighborhood of b. Since this holds for every

b ∈ B, the function λ : B → Rdg+K is continuous.

Assumption 7 (v) and the dominated convergence theorem implies

M(b, λ) = E [ϕ(D,DY,X, b, λ, pD)] and (b, λ) 7→ ∇2
λM(b, λ) are continuous. This implies

ν(b) = M(b, λ(b)) and b 7→ ∇2
λM(b, λ(b)) are the composition of continuous functions and

hence continuous.

Lemma 2.7.11 (Uniform consistency of the dual objective). Suppose assumptions 5, 6, and
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7 hold, and let M̂n(b, λ) ≡ 1
n

∑n
i=1 ϕ(Di, DiYi, Xi, b, λ, p̂D,n). Then

sup
(b,λ)∈Gr(λ)η/2

|M̂n(b, λ)−M(b, λ)| p→ 0

where

Gr(λ)η/2 =

{
(b, λ) ; inf

(b′,λ′)∈Gr(λ)
‖(b, λ)− (b′, λ′)‖ ≤ η/2

}
and Gr(λ) = {(b, λ(b)) ; b ∈ B}.

Proof. Note that

sup
(b,λ)∈Gr(λ0)η/2

|ν̂n(b, λ)− ν(b, λ)|

= sup
(b,λ)∈Gr(λ)η/2

∣∣∣∣∣ 1n
n∑
i=1

ϕ(Di, DiYi, Xi, b, λ, p̂D,n)− E[ϕ(D,DY,X, b, λ, pD)

∣∣∣∣∣
and so the claim can be shown by applying technical lemma 2.7.7, with T ≡ Gr(λ)η/2 indexed

by t = (b, λ), and the constant map γ(t) = pD for all t ∈ T . Verify the conditions of lemma

2.7.7:

(i) {Di, DiYi, Xi}ni=1 is i.i.d. by assumption 5.

(ii) sup(b,λ)∈Gr(λ)η/2|p̂D,n − pD| = |p̂D,n − pD|
p→ 0 by the law of large numbers.

(iii) Gr(pD) = {(b, λ, pD) ; (b, λ) ∈ Gr(λ)η/2} = {(b, λ(b), pD) ; b ∈ B} is bounded because

λ is continuous (by lemma 2.7.10) and B is compact by assumption 6.

(iv) pD ∈ (0, 1) implies ε ≡ min{min{pD, 1− pD}, η}/2 > 0. Let

Gr(pD) ≡
{

(b, λ, pD) ; (b, λ) ∈ Gr(λ)η/2
}

and

Gr(pD)ε ≡
{

(b, λ, p) ; inf
(b′,λ′,p′)∈Gr(pD)

‖(b, λ, p)− (b′, λ′, p′)‖ ≤ ε

}
=
{

(b, λ, p) ; (b, λ) ∈ Gr(λ)η/2, |p− pD| ≤ ε
}
.
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Observe that

(b, λ, p) 7→ ϕ(d, dy, x, b, λ, p) =
λᵀJ(d)h(dy, x, b)

1− p
− d

p
f ∗(λᵀh(dy, x, b))

is continuous on Gr(pD)ε for each (d, dy, x). Moreover, (b, λ, p) ∈ Gr(pD)ε implies

inf
(b′,λ′,p′)∈Gr(pD)

‖(b, λ, p)− (b′, λ′, p′)‖ ≤ inf
(b,λ)∈Gr(λ)η/2

‖(b, λ)− (b′, λ′)‖+ |p− pD|

≤ η/2 + ε ≤ η

and hence {(b, ν(b), λ, p) ; (b, λ, p) ∈ Gr(pD)ε} ⊆ Gr(θ0)η. This implies

E

[
sup

(b,λ,p)∈Gr(pD)ε
|ϕ(D,DY,X, b, λ, p)|

]
≤ E

[
sup

(b,v,λ,p)∈Gr(θ0)η
|ϕ(D,DY,X, b, λ, p)|

]

≤ E

[
sup

(b,v,λ,p)∈ΘB
|ϕ(D,DY,X, b, λ, p)|

]
<∞.

Thus the result follows from lemma 2.7.7.

Lemma 2.7.12 (Uniform consistency of the first stage). Suppose assumptions 5, 6, and 7

hold, and let λ̂n(b) = arg maxλ∈Rdg+K M̂n(b, λ). Then

sup
b∈B
‖(ν̂n(b), λ̂n(b), p̂D,n)− (ν(b), λ(b), pD)‖ p→ 0

Proof. Let Λ(b) ≡ {λ ; ‖λ− λ(b)‖ ≤ η/2} and λ̄n(b) = arg maxλ∈Λ(b) M̂n(b, λ). The proof

consists of three steps:

1. Show supb∈B‖λ̄n(b)− λ(b)‖ p→ 0.

The following argument shows that for any ε > 0 there exists ξ > 0 such that

supb∈BM(b, λ(b)) −M(b, λ̄n(b)) ≤ ξ implies supb∈B‖λ̄n(b) − λ(b)‖ < ε, and the prob-

ability of the former event converges to one. Let ε > 0, and recall that M(b, λ) and
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λ(b) are continuous by lemma 2.7.10. This implies M(b, λ(b))−M(b, λ) is continuous

in (b, λ) and

Λ̄B,ε ≡
{

(b, λ) ∈ Gr(λ)η/2 ; ‖λ− λ(b)‖ ≥ ε/2
}

is compact. It follows by the extreme value theorem that sup(b,λ)∈Λ̄B,εM(b, λ(b)) −

M(b, λ) is attained, say by (bs, λs). Lemma 2.7.9 shows λ(b) is the unique maximizer

of M(b, ·) over Λ(b), which is a subset of
{
λ ; (b, λ) ∈ Gr(λ)η/2

}
, and therefore ξ ≡

M(bs, λ(bs)) − M(bs, λs) > 0. Observe that M(b, λ(b)) − M(b, λ̄n(b)) < ξ implies

‖λ̄n(b)− λ(b)‖ < ε/2, and thus

sup
b∈B

M(b, λ(b))−M(b, λ̄n(b)) < ξ =⇒ sup
b∈B
‖λ̄n(b)− λ(b)‖ ≤ ε/2 < ε (2.32)

Now notice that

sup
b∈B

M(b, λ(b))−M(b, λ̄n(b))

≤ sup
b∈B

{
M(b, λ(b))− M̂n(b, λ(b))

}
+ sup

b∈B

{
M̂n(b, λ(b))− M̂n(b, λ̄n(b))

}
︸ ︷︷ ︸

≤0 by defn of λ̄n(b)

+ sup
b∈B

{
M̂n(b, λ̄n(b))−M(b, λ̄n(b))

}
≤ sup

b∈B

∣∣∣M̂n(b, λ(b))−M(b, λ(b))
∣∣∣+ sup

b∈B

∣∣∣M̂n(b, λ̄n(b))−M(b, λ̄n(b))
∣∣∣

≤ 2 sup
(b,λ)∈Gr(λ)η/2

∣∣∣M̂n(b, λ)−M(b, λ)
∣∣∣ . (2.33)

Lemma 2.7.11 implies that sup(b,λ)∈Gr(λ)η/2

∣∣∣M̂n(b, λ)−M(b, λ)
∣∣∣ < ξ/2 holds with prob-

ability approaching one. When it does, (2.32) and (2.33) imply supb∈B‖λ̄n(b)−λ(b)‖ <

ε. Therefore supb∈B‖λ̄n(b)− λ(b)‖ p→ 0.
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2. Show supb∈B|M̂n(b, λ̄n(b))−M(b, λ(b))| p→ 0.

The claim follows from lemma 2.7.11, because

sup
b∈B
|M̂n(b, λ̄n(b))−M(b, λ(b))| = sup

b∈B

∣∣∣∣sup
λ∈Λb

M̂n(b, λ̄n(b))− sup
λ∈Λb

M(b, λ̄n(b))

∣∣∣∣
≤ sup

b∈B
sup
λ∈Λb

∣∣∣M̂n(b, λ)−M(b, λ)
∣∣∣

≤ sup
(b,λ)∈Gr(λ)η/2

∣∣∣M̂n(b, λ)−M(b, λ)
∣∣∣ p→ 0.

3. Show that with probability approaching one, supb∈B‖λ̂n(b)− λ̄n(b)‖ = 0.

This follows from an argument similar to the proof of Theorem 2.7 in Newey & Mc-

Fadden (1994). With probability approaching one, supb∈B‖λ̄n(b)−λ(b)‖ < η/2 and on

this event, λ̄n(b) ∈ int(Λ(b)) = {λ ; ‖λ− λ(b)‖ < η/2} for every b ∈ B. Since

M̂n(b, λ) =
1

n

n∑
i=1

ϕ(Di, DiYi, Xi, b, λ, p̂D,n)

=
1

n

n∑
i=1

λᵀJ(Di)h(DiYi, Xi, b)

1− p̂D,n
− Di

p̂D,n
f ∗(λᵀh(DiYi, Xi, b))

is concave in λ, no λ outside of int(Λ(b)) could make the objective larger than λ̄n(b).

Thus when supb∈B‖λ̄n(b) − λ(b)‖ < η/2 holds, λ̂n(b) = λ̄n(b) for every b ∈ B or

equivalently, supb∈B‖λ̂n(b)− λ̄n(b)‖ = 0.

Theorem 2.7.13 (Consistency of δBP ). Suppose assumptions 5, 6, and 7 hold. Then δ̂BPn
p→

δBP .

Proof. Lemma 2.7.12 implies ν̂n converges in probability to ν in `∞(B), and lemma 2.7.5

shows ι : `∞(B) → R given by ι(f) = infb∈B∩B0 f(b) is continuous. Since δ̂BPn = ι(ν̂n) and

δBP = ι(ν), the result follows from the continuous mapping theorem.
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2.7.5.3 Inference

Lemma 2.7.14 (Bounds on Jacobian terms). Suppose assumption 5, 6, and 7 hold. Then

supb∈B‖Φ(b)‖o <∞ and supb∈B‖Φ(b)−1‖o <∞.

Proof. Recall that Φ(b) = E[∇θφ(D,DY,X, b, θ0(b))]. Jensen’s inequality and convexity of

norms implies

sup
b∈B
‖Φ(b)‖o = sup

b∈B
‖E[∇θφ(D,DY,X, b, θ)]‖o ≤ E

[
sup
b∈B
‖∇θφ(D,DY,X, b, θ)‖o

]
≤ E

[
sup

(b,θ)∈ΘB
‖∇θφ(D,DY,X, b, θ)‖o

]
,

and E
[
sup(b,θ)∈ΘB‖∇θφ(D,DY,X, b, θ)‖

]
<∞ is implied by assumption 7 (v) and Jensen’s

inequality. Therefore supb∈B‖Φ(b)‖o <∞.

To establish supb∈B‖Φ(b)−1‖o <∞, first use expression (2.21) to see that

Φ(b) = E [∇θφ(D,DY,X, b, ν(b), λ(b), pD)]

=


−1 0 E[∇pϕ(D,DY,X, b, λ(b), pD)]

0 E[∇2
λϕ(D,DY,X, b, λ(b), pD)] E[∇p∇λϕ(D,DY,X, b, λ(b), pD)]

0 0 −1


where E[∇λϕ(D,DY,X, b, λ(b), pD)]ᵀ = 0 is the first order condition of the dual problem.

The middle matrix, E[∇2
λϕ(D,DY,X, b, λ(b), pD)], is invertible for each b ∈ B. To see

this, first recall that lemma 2.7.10, this matrix equals ∇2
λM(b, λ(b), which is also continuous

in b. The mapping from matrices to eigenvalues is continuous (see Bhatia (1997) corollary

III.2.6 or its application in the proof of lemma 2.7.8), so the extreme value theorem implies

supb∈B α1(∇2
λM(b, λ(b))) is attained by some b̄ ∈ B. Lemma 2.7.9 argues that M(b̄, λ) is

strictly concave in λ, hence∇2
λM(b̄, λ(b̄)) is negative definite and thus α1(∇2

λM(b̄, λ(b̄))) < 0.
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To summarize,

sup
b∈B

α1(∇2
λM(b, λ(b))) = α1(∇2

λM(b̄, λ(b̄))) < 0

which implies ∇M(b, λ(b)) = E[∇2
λϕ(D,DY,X, b, λ(b), pD)] is invertible for each b ∈ B.

With this invertibility claim, it is straightforward to verify that for each b ∈ B, Φ(b)−1 exists

and is given by

Φ(b)−1 =


−1 0 A13

0 A22 A23

0 0 −1


where

A13 ≡ −E[∇pϕ(D,DY,X, b, λ(b), pD)]

A22 ≡ E[∇2
λϕ(D,DY,X, b, λ(b), pD)]−1

A23 ≡ E[∇2
λϕ(D,DY,X, b, λ(b), pD)]−1E[∇p∇λϕ(D,DY,X, b, λ(b), pD)]

To see that supb∈B‖Φ(b)−1‖o is finite, first recall that for conformable matrices,

∥∥∥∥∥∥
A11 A12

A21 A22

∥∥∥∥∥∥
o

≤ ‖A11‖o + ‖A12‖o + ‖A21‖o + ‖A22‖o, and

‖AB‖o ≤ ‖A‖o‖B‖o.
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Apply these inequalities to find that

sup
b∈B
‖Φ(b)−1‖o

≤ 2 + sup
b∈B
|E[∇pϕ(D,DY,X, b, λ(b), pD)]|+ sup

b∈B
‖E[∇2

λϕ(D,DY,X, b, λ(b), pD)]−1‖o

+ sup
b∈B
‖E[∇2

λϕ(D,DY,X, b, λ(b), pD)]−1‖o × sup
b∈B
‖E[∇p∇λϕ(D,DY,X, b, λ(b), pD)]‖

(2.34)

|E[∇pϕ(D,DY,X, b, λ(b), pD)]| and ‖E[∇p∇λϕ(D,DY,X, b, λ(b), pD)]‖ are the operator norms

of submatrices of Φ(b). Thus supb∈B‖Φ(b)‖o <∞, argued above, implies

sup
b∈B
|E[∇pϕ(D,DY,X, b, λ(b), pD)]| <∞, and sup

b∈B
‖E[∇p∇λϕ(D,DY,X, b, λ(b), pD)]‖ <∞.

(2.35)

Finally, since E[∇2
λϕ(D,DY,X, b, λ(b), pD)] = ∇2

λM(b, λ(b)) is symmetric and negative def-

inite, ‖E[∇2
λϕ(D,DY,X, b, λ(b), pD)]−1‖o = ‖∇2

λM(b, λ(b))−1‖o = 1
|α1(∇2

λM(b,λ(b)))| and

sup
b∈B
‖E[∇2

λϕ(D,DY,X, b, λ(b), pD)]−1‖o

= sup
b∈B
‖∇2

λM(b, λ(b))−1‖o = sup
b∈B

1

|α1(∇2
λM(b, λ(b)))|

=
1

infb∈B|α1(∇2
λM(b, λ(b)))|

=
1

|supb∈B α1(∇2
λM(b, λ(b)))|

<∞, (2.36)

where the final claim follows from supb∈B α1(∇2
λM(b, λ(b))) < 0 as argued above. Taken

together, (2.34), (2.35), and (2.36) show that supb∈B‖Φ(b)−1‖o <∞.

Lemma 2.7.15 (Donsker influence functions). Suppose assumptions 5, 6, and 7 hold. Then

the class of functions {
φ(D,DY,X, b, θ) ; (b, θ) ∈ ΘB

}
is Donsker.
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Proof. By verifying the conditions of van der Vaart (2007) example 19.7.

ΘB is a compact subset of a finite dimensional space, hence bounded. Let (b1, θ1), (b2, θ2) ∈

ΘB and apply the mean value inequality (e.g., Coleman (2012) Corollary 3.2) to find

‖φ(d, dy, x, b1, θ1)− φ(d, dy, x, b2, θ2)‖

≤

[
sup
t∈(0,1)

∥∥∇(b,θ)φ(d, dy, x, tb1 + (1− t)b2, tθ1 + (1− t)θ2)
∥∥
o

]
‖(b1, θ1)− (b2, θ2)‖

≤

[
sup

(b,θ)∈ΘB

∥∥∇(b,θ)φ(d, dy, x, b, θ)
∥∥
o

]
‖(b1, θ1)− (b2, θ2)‖

Assumption 7 (v) includes E
[(

sup(b,θ)∈ΘB

∥∥∇(b,θ)φ(d, dy, x, b, θ)
∥∥
o

)2
]
< ∞. Therefore the

class
{
φ(D,DY,X, b, θ) ; (b, θ) ∈ ΘB

}
is a special case of van der Vaart (2007) example

19.7, and thus Donsker.

Lemma 2.7.16 (Weak convergence of the first stage). Suppose assumptions 5, 6, and 7 hold.

Let I = {1, . . . , dg +K+2}, and view θ̂n(b) ≡ (ν̂n(b), λ̂n(b), p̂D,n) and θ0(b) ≡ (ν(b), λ(b), pD)

as functions mapping B × I to R. Then

√
n(θ̂n − θ0)

L→ G

where G is a tight, mean zero Gaussian process in `∞(B × I). The covariance function of

G is given by

Cov(G(b1, i1),G(b2, i2))

= E
[
(Φ(b1)−1)(i1)φ(D,DY,X, b1, θ0(b1))

{
(Φ(b2)−1)(i2)φ(D,DY,X, b2, θ0(b2))

}]
.

where (Φ(b)−1)(i) is the i-th row of the matrix Φ(b)−1 = E[∇θφ(D,DY,X, b, θ0(b))]−1.

Proof. For legibility, the proof is presented in six steps:
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1. Mean value theorem.

For each b ∈ B, apply the mean value theorem to each coordinate of

0 = 1
n

∑n
i=1 φ(Di, DiYi, Xi, b, θ̂n(b)) and stack the results to obtain

0 =
1

n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b))

+


1
n

∑n
i=1∇θφ

(1)(Di, DiYi, Xi, b, θ̄
1
n(b))

...

1
n

∑n
i=1∇θφ

(dg+K+2)(Di, DiYi, Xi, b, θ̄
dg+K+2
n (b))


︸ ︷︷ ︸

≡Φ̄n(b)

(θ̂n(b)− θ0(b)) (2.37)

where∇θφ
(j)(Di, DiYi, Xi, b, θ) is the j-th coordinate of the vector∇θφ(Di, DiYi, Xi, b, θ),

and θ̄jn = θ0(b) + ajn(b)× (θ̂n(b)− θ0(b)) ∈ Rdg+K+2 for some ajn(b) ∈ (0, 1).19 Notice

‖θ̄jn(b)− θ0(b)‖ =
∥∥∥θ0(b) + ajn(b)× (θ̂n(b)− θ0(b))− θ0(b)

∥∥∥
= ajn(b)× ‖θ̂n(b)− θ0(b)‖

≤ ‖θ̂n(b)− θ0(b)‖

and supb∈B‖θ̂n(b)−θ0(b)‖ p→ 0, shown in lemma 2.7.12, implies supb∈B‖θ̄jn(b)−θ0(b)‖ p→

0.

2. Show supb∈B‖Φ̄n(b)− Φ(b)‖ p→ 0.

First, notice that

Φ̄n(b) =

dg+K+2∑
j=1

ejj
1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ̄
j
n(b))

where ejj is the square (dg +K + 2)× (dg +K + 2) matrix whose (j, j)-th entry is one

19See Newey & McFadden (1994) footnote 25.
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and all other entries are zero.20

Apply lemma 2.7.7 to 1
n

∑n
i=1∇θφ(Di, DiYi, Xi, b, θ̄

j
n(b)) for each j ∈ {1, . . . , dg+K+2}

to argue this is consistent for E[∇θφ(D,DY,X, b, θ0(b))] uniformly over b ∈ B.

(i) {Di, DiYi, Xi}ni=1 is i.i.d. by assumption 5.

(ii) supb∈B‖θ̄jn(b)− θ0(b)‖ p→ 0 is shown in step 1.

(iii) θ0(b) = (ν(b), λ(b), pD) is bounded, since B is compact by assumption 6 and ν(·),

λ(·) are continuous as shown by lemma 2.7.10.

(iv) (b, θ) 7→ ∇θφ(d, dy, x, b, θ) is continuous at any (b, θ) ∈ Gr(θ0)η, by examination of

equations (2.21) and (2.22). Moreover, E
[
sup(b,θ)∈Gr(θ0)η‖∇θφ(D,DY,X, b, θ)‖o

]
is finite; ∇θφ(D,DY,X, b, θ) is a submatrix of ∇(b,θ)φ(D,DY,X, b, θ), while as-

sumption 7 (v) and Jensen’s inequality imply

E

[
sup

(b,θ)∈Gr(θ0)η
‖∇(b,θ)φ(D,DY,X, b, θ)‖o

]

≤ E

[
sup

(b,θ)∈ΘB
‖∇(b,θ)φ(D,DY,X, b, θ)‖o

]
<∞.

So by Lemma 2.7.7,

sup
b∈B

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ̄
j
n(b))− E[∇θφ(D,DY,X, b, θ0(b))]

∥∥∥∥∥
o

p→ 0

20When premultiplying a square matrix A, ejj “selects” the j-th row. For example,

e22A =


0 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

. . .
...

0 0 0 . . . 0




a11 a12 a13 . . . a1J

a21 a22 a23 . . . a2J

a31 a32 a33 . . . a3J

...
. . .

...
aJ1 aK2 aK3 . . . aJJ

 =


0 0 0 . . . 0
a21 a22 a23 . . . a2J

0 0 0 . . . 0
...

. . .
...

0 0 0 . . . 0


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for each j ∈ {1, . . . , dg +K + 2}, from which it follows that

sup
b∈B
‖Φ̄n(b)− Φ(b)‖o

= sup
b∈B

∥∥∥∥∥
dg+K+2∑
j=1

ejj

(
1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ̄
j
n(b))− E[∇θφ(D,DY,X, b, θ0(b))]

)∥∥∥∥∥
o

≤
dg+K+2∑
j=1

sup
b∈B

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ̄
j
n(b))− E[∇θφ(D,DY,X, b, θ0(b))]

∥∥∥∥∥
o

≤ (dg +K + 2)

×max
j

sup
b∈B

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ̄
j
n(b))− E[∇θφ(D,DY,X, b, θ0(b))]

∥∥∥∥∥
o

p→ 0

3. Uniform linearization.

Lemma 2.7.14 shows supb∈B‖Φ(b)‖o < ∞ and supb∈B‖Φ(b)−1‖o < ∞. Since with

supb∈B‖Φ̄n(b)−Φ(b)‖o
p→ 0 is shown in step 2, lemma 2.7.8 implies that with probability

approaching one, Φ̄n(b)−1 is well defined as a function on B. When it is, rearrange

expression (2.37) to find

√
n(θ̂n(b)− θ0(b)) = Φ̄n(b)−1 1√

n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b))

= Gn(b) +Rn(b)

where Gn(b) = Φ(b)−1 1√
n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b)),

and Rn(b) =
[
Φ̄n(b)−1 − Φ(b)−1

] 1√
n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b)).

4. Show Gn
L→ G in `∞(B × I).
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Define G̃n : B → Rdg+K+2 pointwise as

G̃n(b) =
1√
n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b))

{φ(D,DY,X, b, θ0(b)) ; b ∈ B} is a subset of the class considered in lemma 2.7.15, and

is therefore Donsker (see van der Vaart & Wellner (1997) theorem 2.10.1). Thus, G̃n
L→

G̃ in `∞(B)dg+K+2, where G̃ is a tight, mean-zero Gaussian process with covariance

function

Cov(G̃(b1), G̃(b2)) = E [φ(D,DY,X, b1, θ0(b1))φ(D,DY,X, b, θ0(b2))ᵀ]

Now define

L : `∞(B)dg+K+2 → `∞(B × I), L(H)(b, i) = (Φ(b)−1)(i)H(b)

and observe that Gn = L(G̃n). Note that L is a linear operator on H. Lemma 2.7.14

shows supb∈B‖Φ(b)−1‖o <∞, which along with

‖LH‖B = sup
b∈B
‖Φ(b)−1H(b)‖ ≤ sup

b∈B
‖Φ(b)−1‖o sup

b∈B
‖H(b)‖ =

(
sup
b∈B
‖Φ(b)−1‖o

)
‖H‖B

shows that L is bounded, hence continuous. The continuous mapping theorem then

implies

L(G̃n)
L→ L(G̃)

where L(G̃) is a tight, mean-zero Gaussian process on `∞(B ×I). Letting (Φ(b))(i) be

the i-th row of the matrix Φ(b)−1, the covariance function of L(G̃) is

Cov(G(b1, i1),G(b2, i2))

= E
[
(Φ(b1)−1)(i1)φ(D,DY,X, b1, θ0(b1))

{
(Φ(b2)−1)(i2)φ(D,DY,X, b2, θ0(b2))

}]
.
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Notice that the marginals of L(G̃) are equal in distribution to those of G. By van der

Vaart & Wellner (1997) lemma 1.5.3, this implies the two distributions are the same

and hence Gn = L(G̃n)
L→ G.

5. Uniform linearization remainder control.

Since {φ(D,DY,X, b, θ0(b)) ; b ∈ B} is Donsker and E[φ(D,DY,X, b, θ0(b))] = 0 for all

b ∈ B, supb∈B

∥∥∥ 1√
n

∑n
i=1 φ(Di, DiYi, Xi, b, θ0(b))

∥∥∥
o

= Op(1) by the continuous mapping

theorem. Lemma 2.7.14 shows ‖Φ(b)‖o < ∞ and step 2 that ‖Φ(b)−1‖p < ∞, and

‖Φ̄n(b)−Φ(b)‖ p→ 0, so lemma 2.7.8 implies supb∈B
∥∥Φ̄n(b)−1 − Φ(b)−1

∥∥ = op(1). Thus,

sup
b∈B
‖Rn(b)‖ = sup

b∈B

∥∥∥∥∥[Φ̄n(b)−1 − Φ(b)−1
] 1√

n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b))

∥∥∥∥∥
≤ sup

b∈B

∥∥Φ̄n(b)−1 − Φ(b)−1
∥∥ sup
b∈B

∥∥∥∥∥ 1√
n

n∑
i=1

φ(Di, DiYi, Xi, b, θ0(b))

∥∥∥∥∥
p→ 0.

6. Conclusion.

As elements of `∞(B × I), Gn
L→ G and Rn

p→ 0, so

(Gn, Rn)
L→ (G, 0) in `∞(B × I)

by van der Vaart (2007) theorem 18.10. The continuous mapping theorem (van der

Vaart (2007) theorem 18.11) then implies

√
n(θ̂n − θ0) = Gn +Rn

L→ G + 0

which concludes the proof.
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Lemma 2.7.17 (Support of Gν). Suppose assumptions 5, 6, and 7 hold, let G be the the

random element of `∞(B × I) from lemma 2.7.16, and let Gν ∈ `∞(B) be the mean-zero

Gaussian process on B defined pointwise by Gν(b) = G(b, 1). Then
√
n(ν̂n − ν)

L→ Gν in

`∞(B) and P (Gν ∈ C(B)) = 1, where C(B) is the set of continuous functions defined on B.

Proof. Lemma 2.7.16 and the continuous mapping thoerem implies
√
n(ν̂n − ν)

L→ Gν . The

Portmanteau theorem (van der Vaart & Wellner (1997) theorem 1.3.4) shows that this is

equivalent to

lim sup
n→∞

P (
√
n(ν̂n − ν) ∈ F ) ≤ P (Gν ∈ F )

for all closed sets F ⊆ `∞(B). Since C(B) is closed and ν(·) is continuous by lemma 2.7.10,

it suffices to show that ν̂n is continuous with probability approaching one.

The argument is based on the Berge maximum theorem (Aliprantis & Border (2006)

theorem 17.31). Recall λ̂n(b) ≡ arg maxλ∈Rdg+K M̂n(b, λ) and ν̂n(b) = M̂n(b, λ̂n(b)). Let

Λ(b) ≡ {λ ; ‖λ− λ(b)‖ ≤ η/2}. Lemma 2.7.12 implies supb∈B

∥∥∥λ̂n(b)− λ(b)
∥∥∥ < η/2 holds

with probability approaching one, and when it does,

sup
b∈B
|ν̂n(b)− max

λ∈Λ(b)
M̂n(b, λ)| = sup

b∈B

∣∣∣∣∣ sup
λ∈Rdg+K

M̂n(b, λ)− max
λ∈Λ(b)

M̂n(b, λ)

∣∣∣∣∣ = 0

It thus suffices to show that b 7→ maxλ∈Λ(b) M̂n(b, λ) is continuous with probability approach-

ing one. This will follow from the Berge maximum theorem, once it is shown that Λ(·) is a

continuous correspondence and M̂n is continuous on Gr(Λ). Since

Λ(b) ⊆ λ(B)η/2 ≡
{
λ ; inf

λ′∈Λ(B)
‖λ− λ′‖ ≤ η/2

}
=

{
λ ; inf

b′∈B
‖λ− λ(b′)‖ ≤ η/2

}

we can view Λ : B ⇒ λ(B)η/2, and thus

Gr(Λ) =
{

(b, λ) ∈ B × λ(B)η/2 ; λ ∈ Λ(b)
}

= {(b, λ) ; ‖λ− λ(b)‖ ≤ η/2} .
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1. Consider continuity of the objective first.

Assumption 7 (iv) implies h(y, x, b) is continuous in b, and assumption 5 (iv) includes

that f ∗(·) is essentially smooth. It follows that

M̂n(b, λ) =
1

n

n∑
i=1

λᵀJ(Di)h(DiYi, Xi, b)

1− p̂D,n
− Di

p̂D,n
f ∗(λᵀh(DiYi, Xi, b))

is continuous at (b, λ) if and only if λᵀh(DiYi, Xi, b) ∈ (`∗, u∗) for every i, which holds

if and only if M̂n(b, λ) <∞. Notice that

Gr(λ)η/2 ≡
{

(b, λ) ; inf(b′,λ′)∈Gr(λ)‖(b, λ)− (b′, λ′)‖ ≤ η/2
}

contains Gr(Λ) because

(b′, λ′) = (b, λ(b)) is an element of Gr(λ) = {(b, λ(b)) ; b ∈ B}. Assumption 7 (v)

implies sup(b,λ)∈Gr(λ)η/2|M(b, λ)| is finite, and lemma 2.7.11 shows that M̂n is uni-

formly consistent for M on Gr(λ)η/2, thus the continuous mapping theorem implies

sup(b,λ)∈Gr(λ)η/2 |M̂n(b, λ)| p→ sup(b,λ)∈Gr(λ)η/2|M(b, λ)| and therefore

sup(b,λ)∈Gr(λ)η/2|M̂n(b, λ)| is finite with probability approaching one. When it is,

sup
(b,λ)∈Gr(Λ)

M̂n(b, λ) ≤ sup
(b,λ)∈Gr(λ)η/2

|M̂n(b, λ)| <∞.

and M̂n is continuous on Gr(Λ).

2. Now consider continuity of Λ : B ⇒ λ(B)η/2.

Upper hemicontinuity will follow by application of the Closed Graph Theorem, Alipran-

tis & Border (2006) theorem 17.11. B is compact by assumption 6 and 2.7.10 shows

that λ(·) is continuous, therefore λ(B) = {λ(b) ; b ∈ B} is compact, and hence λ(B)η/2

is compact. Suppose {(bn, λn)}∞n=1 ⊆ Gr(Λ) converges to (b, λ). Then b ∈ B because

B is closed. Since λ(·) is continuous, ‖λ(bn)− λ(b)‖ → 0, and therefore

‖λ− λ(b)‖ ≤ ‖λ− λn‖︸ ︷︷ ︸
→0

+ ‖λn − λ(bn)‖︸ ︷︷ ︸
≤η/2

+ ‖λ(bn)− λ(b)‖︸ ︷︷ ︸
→0
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shows that ‖λ − λ(b)‖ ≤ η/2, i.e. λ ∈ Λ(b). Thus (b, λ) ∈ Gr(Λ), so Gr(Λ) is closed.

Aliprantis & Border (2006) theorem 17.11 then implies Λ : B ⇒ λ(B)η/2 is upper

hemicontinuous.

Regarding lower semicontinuity, note that B ⊆ Rdb and λ(B)η/2 ⊆ Rdg+K are both

metric spaces and hence first countable. Thus Aliprantis & Border (2006) theorem

17.21 implies Λ is lower hemicontinuous at b ∈ B if and only if for any sequence

{bn} ⊆ B with bn → b and any λ ∈ Λ(b), there exists a subsequence {bnk}∞k=1 and

elements λk ∈ Λ(bnk) for each k such that λk → λ. For the subsequence we can take

the sequence itself. Notice that λn ≡ λ(bn) + λ− λ(b) satisfies

‖λn − λ(bn)‖ = ‖λ(bn) + λ− λ(b)− λ(bn)‖ = ‖λ− λ(b)‖ ≤ η/2

and therefore λn ∈ λ(bn). Continuity of λ(·) and bn → b implies λn → λ, and thus Λ

is lower semicontinuous.

To summarize,

sup
b∈B

∥∥∥λ̂n(b)− λ(b)
∥∥∥ < η/2 and sup

(b,λ)∈Gr(Λ)

M̂n(b, λ) <∞

hold with probability approaching one. When both hold, ν̂n(b) = maxλ∈Λ(b) M̂n(b, λ) is

continuous by the berge Maximum theorem, implying
√
n(ν̂n − ν) ∈ C(B). Thus

P (
√
n(ν̂n − ν) ∈ C(B)) ≥ P

(
sup
b∈B

∥∥∥λ̂n(b)− λ(b)
∥∥∥ < η/2 and sup

(b,λ)∈Gr(Λ)

M̂n(b, λ) <∞

)
→ 1.

As argued above, the Portmanteau theorem implies P (Gν ∈ C(B)) = 1.

Lemma 2.7.18 (
√
n-consistency and convergence in distribution). Suppose assumptions 5

and 6 hold, and 7 (i), (iii), (iv), (v) hold, but do not assume m(ν) = arg minb∈B∩B0
ν(b) is
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unique. Then

√
n(δ̂BPn − δBP )

d→ inf
b∈m(ν)

Gν(b)

where Gν is the weak limit of
√
n(ν̂n − ν) in `∞(B).

Proof. Let ι : `∞(B)→ R be given by ι(f) = infb∈B∩B0 f(b). Then

√
n(δ̂BPn − δBP ) =

√
n(ι(ν̂n)− ι(ν))

suggests applying the Delta method, found in Fang & Santos (2019) as theorem 2.1. There

are two assumptions to verify:

1. On the map ι:

(i) ι maps (`∞(B), ‖·‖B) to (R, |·|), which are both Banach spaces.

(ii) Lemma 2.7.6 implies that ι is Hadamard directionally differentiable at any f ∈

C(B) tangentially to C(B), and lemma 2.7.10 shows that ν ∈ C(B).

2. On the estimator ν̂n:

(i) As noted in lemma 2.7.17,
√
n(ν̂n − ν)

L→ Gν in `∞(B).

(ii) Gν is tight. Lemma 2.7.17 shows that P (Gν ∈ C(B)) = 1, i.e. the support of Gν

is included in C(B).

Fang & Santos (2019) theorem 2.1 then implies

√
n(ι(ν̂n)− ι(ν)) = ι′ν(

√
n(ν̂n − ν)) + op(1)
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Lemma 2.7.6 shows the directional derivative of ι at ν is given by

ι′ν : C(B)→ R, ι′ν(h) = inf
b∈m(ν)

h(b)

and therefore

√
n(δ̂BPn − δBP ) =

√
n(ι(ν̂n)− ι(ν)) = inf

b∈m(ν)

{√
n(ν̂n(b)− ν(b))

}
+ op(1)

L→ inf
b∈m(ν)

Gν(b).

Theorem 2.4.2 (Asymptotic normality). Suppose assumptions 5, 6, and 7 hold. Let b̂n ≡

arg minb∈B∩B0
ν̂n(b) and

σ̂2
n ≡

1

n

n∑
i=1

(
(Φ̂n(b̂n)−1)(1)φ(D,DY,X, b̂n, θ̂n(b̂n))

)2

where (Φ̂n(b̂n)−1)(1) is the first row of the matrix Φ̂n(b̂n)−1. Then
√
n(δ̂BPn −δBP )

σ̂n

d→ N(0, 1).

Proof. Since m(ν) is a singleton, say m(ν) = {bν}, lemmas 2.7.16 and 2.7.18 imply
√
n(δ̂BPn −

δBP )
d→ N(0, σ2) where

σ2 = E
[(

(Φ(bν)
−1)(1)φ(D,DY,X, bν , θ0(bν))

)2
]

= eᵀ1Φ(bν)
−1E [φ(D,DY,X, bν , θ0(b0))φ(D,DY,X, bν , θ0(b0))ᵀ] (Φ(bν)

−1)ᵀe1

and e1 = (1, 0, . . . , 0) ∈ Rdg+K+2. Now notice that σ̂2
n is the sample analogue:

σ̂2
n ≡

1

n

n∑
i=1

(
(Φ̂n(b̂n)−1)(1)φ(D,DY,X, b̂n, θ̂n(b̂n))

)2

= eᵀ1Φ̂n(b̂n)−1

[
1

n

n∑
i=1

φ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))φ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))ᵀ

]
(Φ̂n(b̂n)−1)ᵀe1
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It suffices to show Φ̂n(b̂n)
p→ Φ(bν) and

1

n

n∑
i=1

φ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))φ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))ᵀ

p→ E [φ(D,DY,X, bν , θ0(b0))φ(D,DY,X, bν , θ0(b0))ᵀ] . (2.38)

With these, the continuous mapping theorem will imply σ̂n
p→ σ, hence (

√
n(δ̂BPn −δBP ), σ̂)

d→

(N(0, σ2), σ), and another application of the continuous mapping theorem gives the conclu-

sion
√
n(δ̂BPn −δBP )

σ̂n

d→ N(0, 1).

To show Φ̂n(b̂n)
p→ Φ(bν) and (2.38), first notice that

{φ(D,DY,X, b, θ)φ(D,DY,X, b, θ)ᵀ ; (b, θ) ∈ Gr(θ0)η}

{∇θφ(D,DY,X, b, θ) ; (b, θ) ∈ Gr(θ0)η}

are special cases of van der Vaart (2007) example 19.8 and thus Glivenko-Cantelli. Specif-

ically, Gr(θ0)η is closed and bounded and hence compact. (b, θ) 7→ φ(D,DY,X, b, θ) ×

φ(D,DY,X, b, θ)ᵀ and (b, θ) 7→ ∇θφ(D,DY,X, b, θ) are continuous by inspection of (2.19),

(2.21), and (2.22). Finally, E
[
sup(b,θ)∈Gr(θ0)η‖∇θφ(D,DY,X, b, θ)‖

]
<∞ and

E

[
sup

(b,θ)∈Gr(θ0)η
‖φ(D,DY,X, b, θ)φ(D,DY,X, b, θ)ᵀ‖o

]

= E

[
sup

(b,θ)∈Gr(θ0)η
‖φ(D,DY,X, b, θ)‖2

]
<∞

are implied by assumption 7 (v).

Next, observe that (b̂n, θ̂n(b̂n))
p→ (bν , θ0(bν)). First, b̂n

p→ bν follows from a standard

extremum estimator argument. The function ν : B → R is continuous, uniquely minimized

over the compact B ∩B0 at bν , and supb∈B|ν̂n(b)− ν(b)| p→ 0 by lemma 2.7.12. Thus Newey

& McFadden (1994) theorem 2.1 implies b̂n = arg minb∈B∩B0
ν̂n(b) are consistent for bν . Use
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the triangle inequality, b̂n
p→ bν , continuity of θ0(b) = (ν(b), λ(b), pD) (lemma 2.7.10), and

supb∈B‖θ̂n(b)− θ0(b)‖ = op(1) (lemma 2.7.12) to see that

‖θ̂n(b̂n)− θ0(bν)‖ ≤ sup
b∈B
‖θ̂n(b)− θ0(b)‖︸ ︷︷ ︸

=op(1)

+ ‖θ0(b̂n)− θ0(bν)‖︸ ︷︷ ︸
=op(1) by CMT

= op(1)

Note that (b, θ) 7→ E[∇θφ(D,DY,X, b, θ)] is continuous on Gr(θ0)η by the dominated

convergence theorem and continuity of (b, θ) 7→ ∇θφ(D,DY,X, b, θ) visible in equations

(2.21) and (2.22). (b̂n, θ̂n(b̂n))
p→ (bν , θ0(bν)), so (b̂n, θ̂n(b̂n)) ∈ Gr(θ0)η holds with probability

approaching one and when it does,

‖Φ̂n(b̂n)− Φ(bν)‖ =

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))− E [∇θφ(D,DY,X, bν , θ0(bν))]

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b̂n, θ̂n(b̂n))− E
[
∇θφ(D,DY,X, b̂n, θ̂n(b̂))

]∥∥∥∥∥
+
∥∥∥E [∇θφ(D,DY,X, b̂n, θ̂n(b̂))

]
− E [∇θφ(D,DY,X, bν , θ0(bν))]

∥∥∥
≤ sup

(b,θ)∈Gr(θ0)η

∥∥∥∥∥ 1

n

n∑
i=1

∇θφ(Di, DiYi, Xi, b, θ)− E [∇θφ(D,DY,X, b, θ)]

∥∥∥∥∥︸ ︷︷ ︸
=op(1) by Glivenko-Cantelli

+
∥∥∥E [∇θφ(D,DY,X, b̂n, θ̂n(b̂))

]
− E [∇θφ(D,DY,X, bν , θ0(bν))]

∥∥∥︸ ︷︷ ︸
=op(1) by CMT

= op(1).

Essentially the same argument implies (2.38) holds, which completes the proof.

2.7.6 Appendix: examples

2.7.6.1 Expectation

This simple example is useful primarily to illustrate the ideas in a concrete setting.
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Suppose the parameter of interest is β = E[Y ] ∈ R, and the sample is {Di, DiYi}ni=1. The

conclusion to be supported is that β > b̄, motivating the null and alternative hypotheses

H0 : β ≤ b̄, H1 : β > b̄

The model is characterized by g(y, b) = y−b. For the dual problem, set h(y, b) =
(
y − b 1

)ᵀ
.

The dual problem is

sup
λ∈R2

λᵀc(b)− EP1 [f
∗(λᵀh(Y, b))] (2.39)

where c(b) =
(
−pD
1−pD

(EP1 [Y ]− b) 1
)ᵀ

.

Dual solution when df is Kullback-Leibler and P1 is U [0, 1]

Suppose that P1, the distribution of Y | D = 1, is U [0, 1]. Let µ1 = E[Y | D = 1] = 1/2.

Note that, since the support of P0 is contained within [0, 1] as well, we have β = E[Y ] ∈

[pDµ1, pDµ1 + (1− pD)]. The endpoints are only attained if P0 concentrates degenerately at

0 or 1 respectively, distributions which violate P0 � P1.

For tractability, let the measure of selection be Kullback-Leibler. For this divergence we

let f(t) = t log(t)− t+ 1, which has convex conjugate f ∗(r) = exp(r)− 1. The dual problem

has first order condition

0 = c(b)− EP1 [(f ∗)′(λᵀh(Y, b))h(Y, b)]

=

 −pD
1−pD

(
1
2
− b
)

1

− E
exp (λ1(Y − b) + λ2)

(Y − b)

1


From the second equation we have

λ2 = − log (E[exp(λ1(Y − b))]) (2.40)
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Suppose b = 1
2
. Then the first equation requires

0 = E

[
exp(λ1(Y − b) + λ2)

(
Y − 1

2

)]
(2.41)

Notice that if λ1 = 0, then (2.40) implies λ2 = 0, and (2.41) holds.

Now suppose b 6= 1/2. Consider the dual objective, and notice that

EP1 [f
∗(λᵀh(Y, b))] =

∫ 1

0

exp(λᵀh(y, b))− 1dy

Since b 6= 1/2, it follows that −pD
1−pD

(1/2− b) 6= 0 and so λ1 6= 0. Thus the integral above can

be solved with u-substition, setting u = λ1(y − b) + λ2:

EP1 [f
∗(λᵀh(Y, b))] =

∫ 1

0

exp(λᵀh(y, b))− 1dy =
1

λ1

∫ λ1(1−b)+λ2

λ1(−b)+λ2
exp(u)du− 1

=
exp(λᵀb1)− exp(λᵀb0)

λᵀe1

− 1

where b1 =
(

1− b 1
)ᵀ

, b0 =
(
−b 1

)ᵀ
, and e1 =

(
1 0

)ᵀ
. Thus (2.39) becomes

sup
λ∈R2

λᵀ

 −pD
1−pD

(1/2− b)

1

− exp(λᵀb1)− exp(λᵀb0)

λᵀe1

+ 1

from which we can compute the first order conditions

0 =

 −pD
1−pD

(1/2− b)

1

− exp(λᵀb1)b1 − exp(λᵀb0)b0

λᵀe1

+
exp(λᵀb1)− exp(λᵀb0)

(λᵀe1)2
e1

Once again, the second equation can be solved for λ2. The following form will be more
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useful:

0 = 1− exp(λ1(1− b) + λ2)− exp(λ1(−b) + λ2)

λ1

=⇒ λ1

exp(λ2)
= exp(λ1(1− b))− exp(λ1(−b)) (2.42)

The first equation is

−pD
1− pD

(
1

2
− b
)

=
exp(λ1(1− b) + λ2)(1− b)− exp(λ1(−b) + λ2)(−b)

λ1

− exp(λ1(1− b) + λ2)− exp(λ1(−b) + λ2)

λ2
1

=
exp(λ2)

λ1

[
exp(λ1(1− b))− b[exp(λ1(1− b))− exp(λ1(−b))]

− exp(λ1(1− b))− exp(λ1(−b))
λ1

]

=
exp(λ1(1− b))

exp(λ1(1− b))− exp(λ1(−b))
− b− 1

λ1

=
exp(λ1)

exp(λ1)− 1
− b− 1

λ1

where the second to last equality uses (2.42) above. Rearranging gives

exp(λ1)

exp(λ1)− 1
− 1

λ1

=
−pD(1/2− b) + (1− pD)b

1− pD
=

2b− pD
2(1− pD)

Now notice that exp(λ1)
exp(λ1)−1

− 1
λ1

is well defined and continuous whenever λ1 6= 0, takes

values between 0 and 1, with limits

lim
λ1→∞

exp(λ1)

exp(λ1)− 1
− 1

λ1

= 1, lim
λ1→−∞

exp(λ1)

exp(λ1)− 1
− 1

λ1

= 0

Repeated applications of l’Hôpital’s rule shows that

lim
λ1→0

exp(λ1)

exp(λ1)− 1
− 1

λ1

= lim
λ1→0

λ1 exp(λ1)− exp(λ1) + 1

λ1(exp(λ1)− 1)
=

1

2
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Therefore there exists a solution whenever 2b−pD
2(1−pD)

∈
(
0, 1

2

)
∪
(

1
2
, 1
)
. Given this solution,

(2.42) can be rearranged to obtain

λ2 = log

(
λ1

exp(λ1(1− b))− exp(λ1(−b))

)

Now notice that

2b− pD
2(1− pD)

> 0 =⇒ b >
pD
2
,

2b− pD
2(1− pD)

< 1 =⇒ b < 1− pD
2

and recall that b = 1/2 implies λ1 = λ2 = 0 solves the dual problem. Therefore the dual

problem has a solution whenever b ∈
(
pD
2
, 1− pD

2

)
.

P1 has compact support, and f ∗(λ1(y − b) + λ2) = exp(λ1(y − b) + λ2)− 1 is continuous

in y for any (λ1, λ2). Thus the extreme value theorem implies the solution is in the interior

of {λ ∈ R2 ; E[|f ∗(λᵀh(Y, b))|] <∞} =
{
λ ∈ R2 ;

∫
|exp(λ1(y − b) + λ2)− 1|dy <∞

}
. The

implied solution to the primal, qb(y) = (f ∗)′(λᵀh(y, b)) = exp(λ1(y − b) + λ2) satisfies 0 <

qb(y) < ∞ on the support of P1 and solves the moment conditions. Thus assumption 6 is

satisfied for any convex, compact B ⊂
(
pD
2
, 1− pD

2

)
.

2.7.6.2 Linear models

Lemma 2.4.1 (Convex value function, linear models). Suppose assumptions 5 and 6 hold,

the sample is {Di, DiYi, Xi1, Xi2}ni=1 where Yi ∈ R, Xi1 ∈ Rdx1, and Xi2 ∈ Rdx2, and the

parameter β is identified by

E[(Y −Xᵀ1β)X2] = 0

Then ν̂n and ν are convex. If in addition E[X2X
ᵀ
1 ] has full column rank, then ν is strictly

convex.
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Proof. Let b0, b1 ∈ B, be distinct, α ∈ (0, 1), and bα = αb1 + (1−α)b0. The proof of theorem

(2.3.1) shows that the primal problem at b0 and b1 is attained by Q0 and Q1 with densities q0,

q1. The moment conditions are 0 = E [X2(Y −Xᵀ1β)] = E [X2Y ]−E [X2X
ᵀ
1 ] β, so Q0 ∈ Pb0

and Q∈Pb1 implies

EQ1 [X2Y ]− EP0X
[X2X

ᵀ
1 ] b1 =

−pD
1− pD

(
EP1 [X2Y ]− EP1 [X2X

ᵀ
1 ] b1

)
, (2.43)

EQ0 [X2Y ]− EP0X
[X2X

ᵀ
1 ] b0 =

−pD
1− pD

(
EP1 [X2Y ]− EP1 [X2X

ᵀ
1 ] b0

)
(2.44)

implying that

EαQ1+(1−α)Q0 [X2Y ]− EP0X
[X2X

ᵀ
1 ] bα =

−pD
1− pD

(EP1 [X2Y ]− EP1 [X2X
ᵀ
1 ] bα)

Similarly, EQ0 [1{X = xk}] = EQ1 [1{X = xk}] = EP0X
[1{X = xk}] for all k = 1, . . . , K. It

follows that Qα ≡ αQ1 + (1− α)Q0 is feasible for bα = αb1 + (1− α)b0. This implies

df (Q
α‖P1) ≥ inf

Q∈Pbα
df (Q‖P1) = ν(bα)

Qα has P1-density qα = αq1 + (1− α)q0. Convexity of f implies that for any (y, x),

αf(q1(y, x)) + (1− α)f(q0(y, x)) ≥ f(αq1(y, x) + (1− α)q0(y, x)) = f(qα(y, x))

integrating with respect to P1 shows that

αdf (Q
1‖P1) + (1− α)df (Q

0‖P1) ≥ df (Q
α‖P1) ≥ ν(bα)

Since the left hand side equals αν(b1) + (1− α)ν(b0), this shows ν is convex. Notice that no

properties of P1, P0X were specified in the argument above, so the same argument works to

show ν̂n(b) is convex in b by replacing P1, P0X with their empirical counterparts.

Finally, to see that ν is strictly convex when E[X2X
ᵀ
1 ] has full column rank, use equations
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(2.43) and (2.44) to see that

(1− pD) [EQ1,n [X2Y ]− EQ0,n [X2Y ]] = [pDEP1 [X2X
ᵀ
1 ] + (1− pD)EP0 [X2X

ᵀ
1 ]]︸ ︷︷ ︸

=E[X2X
ᵀ
1 ]

(b1 − b0)

Since E[X2X
ᵀ
1 ] has full column rank and b1 − b0 6= 0,

(1− pD) [EQ1 [X2Y ]− EQ0 [X2Y ]] 6= 0

and thus Q1 differs from Q0, implying q1 differs from q0 on a set of positive P1 measure. For

(y, x) in that set, strict convexity of f assumed in (5) (iv) implies

αf(q1(y, x)) + (1− α)f(q0(y, x)) > f(αq1(y, x) + (1− α)q0(y, x)) = f(qα(y, x))

integrating with respect to P1 implies αdf (Q
1‖P1) + (1 − α)df (Q

0‖P1) > df (Q
α‖P1), and

thus αν(b1) + (1− α)ν(b0) > df (Q
α‖P1) ≥ ν(bα).

Simulations suggest that OLS more generally produces convex ν(b). Consider the data

generating process described in section 2.5.2. Here the data is of the form

{Di, DiYi1, DiYi2, Xi1, Xi2}ni=1, and the model is given by

Yi1 = β0 + β1X1 + β2Y2 + β3X2 + ε, E




1

X1

Y2

X2

 ε

 = 0

The following figure investigates convexity of the ν(b) (where df (Q‖P ) = H2(Q,P )) numer-

ically, by looking for convexity along random line segments. Specifically, let b1 and b0 be

points in the sample space and compute ν̂n(λb1 + (1− λ)b0) for many values of λ between 0

and 1. The following figure shows the results of this exercise for 10 randomly selected (b0, b1)
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pairs, and shows that no deviation from convexity was detected.

2.7.6.3 Binary choice models

Let V ∈ {0, 1}, W ∈ Rd, and suppose interest is in P (V = 1 | W = w). A common choice

of model assumes

P (V = 1 | W = w) = F (wᵀβ)
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for a known CDF F (·). This model can be derived from a latent variable model of the

form V = 1{W ′β ≥ ξ}, where conditional on W , the unobserved “latent variable” ξ has

distribution F (x).

P (V = 1 | W = w) = P (ξ ≤ W ᵀβ | W = w) = F (wᵀβ)

For example, the logistic regression uses F (x) = Λ(x) = exp(x)
1+exp(x)

, while the probit model

uses F (x) = Φ(x) =
∫ x
∞

1√
2π

exp(−t2/2)dt.

Given i.i.d. data of the form {Vi,Wi}ni=1, the model can be estimated through maximum

likelihood. The likelihood of an observation (V,W ) is F (W ᵀb)V (1−F (W ᵀb)1−V , implying a

population log-likelihood of

`(b) ≡ E [V ln(F (W ᵀb)) + (1− V ) ln(1− F (W ᵀb))]

Assuming F (x) is differentiable with density f(x) and that differentiation and expectation

can be interchanged, the score is given by

s(b) ≡ ∇b`(b) = E

[
f(W ᵀb)

F (W ᵀb) (1− F (W ᵀb))
(V − F (W ᵀb))W

]

and supposing f(x) is differentiable with derivative f ′(x), the Hessian can be calculated and

shown negative definite when E[WW ᵀ] is full rank. This implies the log-likelihood is strictly

concave, and hence the first order condition suffices for maximization. Therefore the model

could also be viewed as a GMM model solving

0 = E

[
f(W ᵀβ)

F (W ᵀβ) (1− F (W ᵀβ))
(V − F (W ᵀβ))W

]
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Logistic model

For the logistic model, F (x) = Λ(x) = exp(x)
1+exp(x)

, we can compute that

f(x) =
exp(x)

(1 + exp(x))2
= F (x)(1− F (x))

and thus the score simplifies to

s(b) = E [(V − Λ(W ᵀb))W ]

This makes it straightforward to compute the Hessian of the log-likelihood as

∇2
b`(b) = E [−Λ(W ᵀb)(1− Λ(W ᵀb))WW ᵀ]

Let U ≡
√

Λ(W ᵀb)(1− Λ(W ᵀb))W and observe that ∇2
b`(b) = −E[UUᵀ] is negative definite

if E[WW ᵀ] is full rank. Thus, the logistic model can be viewed as a GMM model, where β

solves

0 = E [(V − Λ(W ᵀβ))W ]

This model can be put into the form used in assumption 5 with Z = (Z(1), Z−1) = (V,W ),

g(z, b) = (z1 − Λ(zᵀ−1b))z−1, and ∇bg(z, b) = −Λ(zᵀ−1b)(1− Λ(zᵀ−1b))z−1z
ᵀ
−1.

Simulations suggest that the logistic model may also produce a convex ν(b). Consider the

data generating process described in section 2.5.3. The logistic model can also be investigated

for convexity. The same numerical exercise described above results in a figure that again

shows no deviation from convexity.
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