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Experimental determination of the energy per particle in partially filled Landau levels
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We describe an experimental technique to measure the chemical potential, µ, in atomically thin
layered materials with high sensitivity and in the static limit. We apply the technique to a high
quality graphene monolayer to map out the evolution of µ with carrier density throughout the N=0
and N=1 Landau levels at high magnetic field. By integrating µ over filling factor, ν, we obtain
the ground state energy per particle, which can be directly compared with numerical calculations.
In the N=0 Landau level, our data show exceptional agreement with numerical calculations over
the whole Landau level without adjustable parameters, as long as the screening of the Coulomb
interaction by the filled Landau levels is accounted for. In the N=1 Landau level, comparison
between experimental and numerical data reveals the importance of valley anisotropic interactions
and the presence of valley-textured electron solids near odd filling.

Partially filled Landau levels (LLs) are a paradigmatic
example of flat band systems where dominant Coulomb
interactions lead to a rich phase diagram of correlation
driven electron states. Theoretically, the partially filled
LL provides a compromise between phenomenological
richness and computational tractability. However, quan-
titatively benchmarking numerical methods with trans-
port measurements is typically limited to a discrete set of
LL filling factors, ν. Thermodynamic quantities such as
the chemical potential µ are more closely related to theo-
retically calculable quantities. Owing to recent progress
in improving sample quality[1] and the fact that the sin-
gle particle band structure is known to a high degree of
accuracy, graphene is an ideal venue to pursue quantita-
tive understanding of partially filled LLs. In this Letter
we report precise measurements of µ in a high quality
monolayer graphene layer at both zero and high magnetic
fields. Typical measurements of thermodynamic quanti-
ties in graphene probe the compressibility ∂n/∂µ at finite
frequency[2–5], hindering accurate measurements in the
quantum Hall regime where equilibration times can be-
come long. Our measurements probe µ directly[6] in the
static, ω → 0 limit. This allows us to determine µ across
a continuous range of ν, and subsequently the total en-
ergy per flux quantum, E, where µ = ∂E/∂ν.

Our heterostructure consists of two graphene mono-
layers embedded between top and bottom graphite gates
(see Figs. 1a-b and S1), with each conducting layer sep-
arated by a hexagonal boron nitride (hBN) dielectric
of approximately 40nm thickness. The dual graphite-
gated structure ensures low charge inhomogeneity on
both graphene monolayers while allowing independent
control of their respective carrier densities through the
static gate voltages applied to the top gate (vt), bottom
gate (vb), and top monolayer (vd). Internal contacts[12–

16] are attached to the top monolayer—designated the
‘detector’—and are used to measure its bulk conduc-
tivity σd. The charge density of the detector layer is
nd = ct(vt − vd) + c0(φ − vd). Here ct and c0 are the
top gate-detector and detector-sample geometric capaci-
tances and φ is the electric potential of the sample mono-
layer. To measure µ, we ground the sample layer so that
φ = µ, and keep vd constant. Variations in µ are then
given by δµ = 1

c0
δnd− ct

c0
δvt. Next, we adjust δvt to main-

tain δnd = 0[17]. This gives δµ via the simple relation
δµ = −ctδvt/c0, with the only input being the capacitive
lever arm ct/c0, which can be precisely measured (see
Fig. S2).

Functionally, δnd = 0 is enforced by choosing a “tar-
get” density nd such that σd is at a conductance mini-
mum corresponding to the Dirac point at B=0T or a weak
FQH state at high B. Figure 1b shows the schematic of
our measurement circuit. σd is measured in voltage bias
mode, by applying an AC voltage ṽd at frequency f1 to
one of the internal contacts and measuring the result-
ing current. σd measured at B=0T is shown in Fig. 1c.
In order to mitigate the effects of contact resistance in
the detector, which are also tuned by vt and vd, we use
dσd

dvt
= 0 as the feedback condition. To do so, we apply an

additional voltage modulation to the top gate (ṽt) at fre-
quency f2. Demodulating the current at frequency f2−f1

produces a signal proportional to dσd

dvt
. The value of δvt

is then adjusted by a feedback loop to zero this signal,
giving the desired δµ. While the current measurement
is done at finite frequency to allow low noise readout, it
does not require charging of the sample layer at these
frequencies. This allows us to access regimes where the
sample layer conductivity is very small and equilibration
times are very large. In practice, measurements are typ-
ically done with equilibration times of τ ≈ 1 sec.
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FIG. 1. (a) Optical image of the device. The scale bar is 10µm. (b) Measurement schematic. Static gate voltages are applied
to the top gate (vt), bottom gate (vb), and detector monolayer (vd). AC voltages are applied to one detector layer contact at
f1 = 13.77Hz (ṽd) and to the top gate at f2 = 110Hz (ṽt), producing a current proportional to σd at f1 and to dσd/dvt at
f2 − f1 at the second detector layer contact, measured with a DL1211 current preamplifier and demodulated with a SR860
lock-in amplifier. dσd/dvt serves as the error signal for a digital feedback loop (PID) whose output δvt is added to the top gate
voltage, fixing the carrier density of the detector. Under these conditions, δµ = −ctδvt/c0. (c) σd (blue) and δσd/δvt (red) as
a function of δvt. (d) µ(n) at B=0T (red) and 0.2T (blue), measured at T=15mK. (e) Density of states dn/dµ calculated by
numerical differentiation of data in panel (d). The ZLL is split by a sublattice gap[7, 8] of ∆AB = 6.9meV. (f) n-dependent

vF measured by fitting B=0T data to µ2 = (∆AB/2)2 + (~vF
√
π|n|)2 with ∆AB fixed and vF a free function of n. The red

curve is a fit to theoretical models[9–11] of Fermi velocity renormalization by Coulomb interactions.

Fig. 1d shows µ measured at B=0T and 200mT, plot-
ted as a function of the sample carrier density n =
c0(vd − µ) + cb(vb − µ), where cb is the capacitance be-
tween the sample and the bottom gate. µ(n) shows
the
√
n dependence expected for the linearly dispersing

bands of monolayer graphene[2], as well as steps asso-
ciated with LL formation when a small magnetic field
is applied. To quantitatively model the data, we take
µ2 = (∆AB/2)2 + (~vF

√
π|n|)2, where ∆AB is the sub-

lattice splitting[7, 8] and vF is the Fermi velocity. We
determine ∆AB = 6.9meV from the splitting of the
zero energy LL (ZLL) centered at µ = 0, evident in
Fig. 1e where we plot dn(µ)/dµ as determined by nu-
merical differentiation of the µ(n) data (see also Fig.
S3). Figure 1f shows vF (n), determined by fixing ∆AB

but allowing vF to be a free n-dependent parameter.
vF is enhanced at low densities, consistent with past
experiments[18, 19] and well fit by theoretical models of
Fermi velocity renormalization[9–11], as shown by the red
curve in Fig. 1f and described in the SI.

At high magnetic fields, the LLs of monolayer graphene
are approximately four-fold degenerate due to the spin
and valley degrees of freedom. Fig. 2a presents µ(ν) at
B=14T across the ZLL that spans −2 < ν < +2, where
ν = 2π`2Bn is the LL filling factor. The high quality of the
detector layer is crucial for achieving high experimental µ
resolution, as FQH conductivity minima in the detector

layer provide sensitive transducers for the sample layer
chemical potential (see Fig. S4). Over large regions of
density, µ(ν) decreases as a function of ν (negative com-
pressibility), despite the naive expectation that µ should
increase monotonically with ν due to Coulomb repulsion.
This is because the chemical potential measured here is
actually relative to that of a classical capacitor, which
subtracts off the q = 0 part of the Coulomb interaction
1
2V (q = 0)n2. It is well understood [17, 21] that negative
compressibility then arises because correlations lower the
energy of quantum Hall states relative to that of a uni-
form charge distribution. µ jumps at each integer ν indi-
cating incompressible integer quantum Hall states arising
from the broken symmetry of the spin and valley com-
ponents of the isospin. Additional jumps are observed
at a series of fractional ν associated with incompressible
fractional quantum Hall (FQH) states at ν∗ = p/2p ± 1
(p = 1, 2, 3, ...) and ν∗ = p/4p± 1 (with p = 1 and 2)[3–
5, 22]. Here ν∗ = |ν − ν0| indicates the filling relative
to an adjacent integer filling ν0 ∈ Z. At high B, regions
(shaded in blue) around integer ν are good insulators,
and so are no longer accessible at low temperatures due
to the hours- or days-long equilibration time of the sam-
ple layer (see Fig. S5).

The four copies of the ZLL are nearly identical, sug-
gesting that the LL is close to fully spin and valley po-
larized at this magnetic field. This is expected based
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FIG. 2. (a) µ(ν) within the ZLL measured at B=14T and
nominal T=15mK. Blue regions indicate domains of ν where
the charging time of the sample exceeds the measurement
time of ∼1 second. (see Fig. S5). (b) µ at B=18T and
nominal T=40mK for low ν∗, measured relative to ν = −1
(orange), ν = 0 (blue), and ν = 1 (red). The cyan and purple
curves are calculated µ for a Wigner crystal with screened
and unscreened Coulomb interactions, respectively, taking
εhBN = 4.0 and αG = 1.85; shaded ranges reflect uncertainty
in those parameters as described in main text. (c) Numeri-
cally calculated[20] total ground state energy of the N=0 LL
after accounting for the screened Coulomb interactions. (d)
Comparison of experimentally determined (solid lines) and

numerically calculated (dark blue crosses) Ẽ. Both exper-
imental and numerical data have a linear-in-ν∗ background
subtracted so that Ẽ vanishes at integer ν∗. Data were taken
at B=18T and T=40mK.

on the measured value of ∆AB , which splits the valley
degree of freedom in the ZLL; in combination with the
Zeeman energy, FQH physics is expected to be predom-
inantly single component[15] in this regime of magnetic
fields. We begin our quantitative analysis at low ν∗ where
electron Wigner crystal phases[23, 24] are the expected
ground state. In transport measurements, the Wigner
crystal manifests as a low-temperature insulator that un-
dergoes a metal-insulator transition at finite tempera-
ture due to pinning of the crystal by weak disorder, as
observed in both GaAs/AlGaAs quantum wells[25] and
more recently in graphene[26]. The largely classical na-
ture of the correlations in this regime make thermody-
namic modelling tractable, and quantitative agreement
obtains between theory[27] and compressibility measure-
ments in GaAs/AlGaAs quantum wells[17, 22].

Fig. 2b shows µ plotted as a function of ν∗ near differ-
ent integer fillings within the ZLL. For comparison, we
also show theoretical calculations of µ in the Wigner crys-
tal phase developed for the case of unscreened Coulomb
interactions[24], where µ(ν∗) = −1.173|ν∗|1/2EC . Here

EC = e2

εhBN`B
is the Coulomb energy. The model has only

one parameter, the dielectric constant εhBN =
√
ε‖ε⊥,

which is the geometric average of the in and out-of plane
dielectric constants of the hBN substrate. ε⊥ = 3.0 can
be determined in situ, but ε‖ is not precisely known,
though it is thought to be ε‖ ≈ 6.6[28]. Even ac-
counting for uncertainty in this parameter, the model
does not agree with experiment. Quantitative agree-
ment is achieved, however, by considering the screen-
ing of the Coulomb interactions by the graphite gates,
which are accounted for using standard electrostatic cal-
culations, and by the filled Dirac sea, which we account
for within the random phase approximation (RPA)[29].
RPA takes as an additional input parameter the graphene
fine structure constant αG. Still treating the electrons as
a classical Wigner crystal, we numerically evaluate the
Madelung-type energy for the screened interaction Vscr(r)
to obtain µ(ν∗)[30]. To reflect uncertainty in the input
parameters, we show a range spanning εhBN ∈ (4.0, 4.5)
and αG ∈ (1.75, 2.2), in addition to reference curves for
εhBN = 4.0 and αG = 1.85.

The screened Coulomb interaction provides an excep-
tionally good match to the experimental data, suggesting
that no additional effects are present and that accounting
for the screening is sufficient to achieve quantitative un-
derstanding of this regime. We note that based on spin-
wave transmission measurements[26], spin Skyrmions ap-
pear to play a role in the Wigner solid phases near
ν = ±1. We do observe a small but systematic dis-
crepancy between µ near even and odd integer ν in the
Wigner crystal regime. This suggests that the large Zee-
man energy, EZ ≈ .03EC , restricts the Skyrmion size to
the point where they do not generate significant correc-
tions to µ at low ν∗.

Closer to the center of the LL, correlations become
quantum in nature and even numerical calculation of
µ is not tractable for arbitrary ν. However, numerical
methods can accurately calculate the total energy per
flux quantum E(ν) at many rational values of ν, as has
long been the focus of exact diagonalization and density
matrix renormalization group (DMRG) studies. Fig. 2c
shows the ground state energy calculated using infinite
DMRG[20] (iDMRG) on a circumference L = 18`B cylin-
der for a number of rational ν, assuming wave functions
are restricted to a single spin and valley component and
making use of the screened interaction Vscr.

The calculated E is dominated by a linear background,
µ0ν

∗, that is proportional to the exchange-correlation en-
ergy of the integer quantum Hall effect; the correlations
underlying the FQH effect are reflected in the deviations
of the calculated E from this background. In Fig. 2d,
we subtract off the linear contribution by instead plot-
ting Ẽ = E − ν∗E(ν∗ = 1) (Fig. 2d), which ensures
Ẽ(0) = Ẽ(1) = 0. This can be compared with exper-

iment by integrating µ(n), Ẽ(ν∗) =
∫ ν∗

0
(µ(ν) − µ0)dν,
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FIG. 3. (a) µ in the N=1 LL at T=15mK and B=13T. (b) µ
measured near ν0 = −2, −4, and −6. Solid lines are µ calcu-
lated from the Wigner crystal model with parameters identi-
cal to those used in Fig. 2b. (c) µ near ν0 = −3 and −5. The
solid lines showing the Wigner crystal model do not match
the data, suggesting the importance of valley Merons[31] near
these fillings. (d) Comparison of experimentally determined

Ẽ with numerical simulations for −3 < ν < −2. 1-component
numerical calculations underestimate the experimental result
by a significant margin. Including both valley components
as well as the contribution of lattice scale anisotropies as in
Eq. 1 with gz = gxy = 0.1(a/`B)EC can restore agreement to
within 100µeV ≈ 2.5× 10−3EC .

where µ0 is chosen to ensure Ẽ(0) = Ẽ(1) = 0. To aid
in fixing µ0 accurately, the experimental data is extrap-
olated to integer ν by using the Wigner crystal model.
Numerical and experimental data agree to within exper-
imental uncertainty in αG and εhBN without additional
adjustable parameters. Similarly, the measured thermo-
dynamic gap at charge neutrality, 53meV, agrees with
theoretically calculated jump in µ to within 4% [30].
These constitute remarkably good quantitative agree-
ment for a many-body system.

Fig. 3a shows µ measured across the first excited
LL, corresponding to orbital quantum number N=1 and
spanning ν ∈ (−6,−2). In contrast to the N=0 level,
both the size of the chemical potential jumps associated
with FQH gaps[15] and the magnitude of the negative
compressibility systematically decrease with increasing
|ν|. This trend arises naturally due to the nature of
the screened Coulomb interaction Vscr [29]: in the ZLL,
particle-hole symmetry makes the screening ν indepen-
dent, but within the N=1 LL screening smoothly inter-
polates between the N=0 and N=2 values as the four-
component LL fills. Indeed, applying this interpolation
to the Wigner crystal regime near even filling factors pro-
duces an excellent quantitative match between the data
and theory (Fig. 3b).

The N=1 LL and ZLL are further distinguished by the
effect of the sublattice symmetry breaking ∆AB , which
splits the valleys in the ZLL but has negligible effect on
the energies of the N=1 LL. This manifests most obvi-
ously in our data in the low-ν∗ regimes around near odd
integer filling, shown in Fig. 3c. In contrast to the com-
parable regimes of ν∗ near even integers, and throughout
the ZLL, the data are not matched by the predictions of
Vscr for a single electron Wigner crystal. To understand
this data, we note that tilted field magnetotransport
experiments[32] find evidence for a spin polarized state
at ν = ±4 in which excitations are either single spin flips
or small Skyrmions, similar to the situation at ν = ±1
in the ZLL. At ν = ±3,±5, in contrast, activated gaps
show minimal tilted field dependence, consistent with the
lowest energy charged excitations being valley textures.
Theoretically, the ground state of a spin-polarized but
valley-unpolarized LL applicable to ν = ±3,±5 is then
expected to be a solid of such valley textures[31], with re-
sulting corrections to E and consequently to µ. Notably,
the corrections to the energy will be largest when the
valley textures are most extended. The observed anoma-
lous µ(ν) supports the idea that the low single-particle
valley anisotropy in the N=1 LL stabilizes a solid of ex-
tended valley textures. This could be tested in the future
by extending numerical calculations[31] of such solids to
include the screened Coulomb interaction.

The multicomponent nature of the N=1 LL is further
evidenced in Fig. 3d, where iDMRG simulations of a sin-
gle component system fail to reproduce the experimen-
tally determined Ẽ when using the same model param-
eters which produce good agreement in the ZLL. Inter-
estingly, iDMRG finds a significantly lower total energy
compared to experiment. This suggests a missing contri-
bution to the energy, since adding degrees of freedom to
a variational parameter space can only lower the numer-
ically calculated energy, increasing the discrepancy. An
appealing candidate is the anisotropy of the Coulomb in-
teractions at small length scales, which breaks the valley-
SU(2) symmetry and can be expected to provide correc-
tions of Eani ∼ a

`B
EC ≈ 1.75 meV at B=13T, where

a = .246nm is the graphene lattice constant. Though
known to be important in the ZLL[1] near ν = 0, evidence
for short range anisotropy in the N=1 LL has been lim-
ited to the observation of a possible valley-ordered state
at ν = 4 for low magnetic fields[15], and they have not re-
ceived much attention in the theoretical literature[33, 34].

To model their effect, we analyze the interactions
which arise when projecting a short-range Hubbard-U
interaction into the N=1 LL. For simplicity we assume
full-spin polarization so that electrons are described by a
two-component field ψr indexed by valley τz. It is conve-
nient to express the result as the continuum interaction
which would produce the same Hamiltonian if the elec-
trons were in the N=0 LL. Taking into account the inter-
play of the form-factors of the N=1 LL and the sublattice
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structure, we find the general form[30]

Hani =
1

2

∫
d2r1/2

[
gzψ

†
r1τ

zψr1`
4
B∇4δ(r1 − r2)ψ†r2τ

zψr2

+gxyψ
†
r1τ

xψr1`
2
B∇2δ(r1 − r2)ψ†r2τ

xψr2 + (x→ y)
]

(1)

where gi ∼ a
`B
Ec. Note that the interactions are deriva-

tives of δ-functions; in contrast, the same exercise in the
ZLL would find contact interactions[34, 35]. Because
the FQH effect around density ν∗ = 1

m attaches zeros
(zi−zj)m to the inter-electron wave function, a ∇2mδ in-
teraction effectively “turns-off” for densities below 1

m+1 .
In the ZLL, this means the anisotropies only operate for
−1 < ν < 1, while in the N=1 we predict the anisotropies
act for all 2 + 1/3 < ν < 6 − 1/3. This is indeed the
region where our 1-component numerics deviate from ex-
periment.

Treating gz, gxy as adjustable phenomenological pa-
rameters, we perform 2-component iDMRG numerics
that include Hani. Fig. 3d shows the results for gxy =
gz = 0.1 a

`B
EC , which agree with experiment to within

100 µeV, comparable to the discrepancies observed in the
ZLL. In both LLs these discrepancies amount to 2×10−3

of the bare Coulomb energy EC .
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Supplementary Information

I. DEVICE FABRICATION METHOD

The stack is made using polypropylene carbonate (PC) film to pick up graphite top gate, two graphene layers, and
the bottom gate in sequence, with BN around 40nm in between each conducting layer. Fig. S1 illustrates the different
steps of the fabrication process. The detailed description of each step is as follows:

a. We start by making openings on the graphite top gate using O2 plasma(RIE, 60W, 300mT). Then a layer of
BN is transferred on top of the stack to cover the openings.

b. We then evaporate an aluminum mask to define the shape of the top graphene layer and the Corbino contacts.

c. We use CHF3/O2 plasma(40/4sccm, 0.5Pa, 200W source power and 30W bias power) and O2 plasma alterna-
tively to remove the top two BN layers and the top gate. The etch rate is carefully calibrated so the BN beneath
the top graphene is etched by only 5-10nm, preventing electrical short of the two graphene layers.

d. A second aluminum mask is evaporated on top of the first mask to define the contacts of the bottom graphene,
and a subsequent CHF3/O2 etch, which etches through the entire stack, is performed.

e. The contacts (Cr/Pd/Au=2nm/15nm/150nm) are evaporated in two steps: first, we make contacts to the
internal slots on the top graphene layer; then another BN is transfered to cover the edge of the stack so the
internal contacts can be connected to the leads; finally a deposition is performed to make all the other contacts.

FIG. S1. Optical images of the device at each fabrication step. a. The device is started with a stack consisting of graphite
top and bottom gates, two layers of graphene, with BN in between them. b. Circular openings are made in the graphite top
gate. c. An hBN flake is transferred onto the top gate. d. An aluminum mask for defining the shape of the stack and slots
for Corbino contacts is evaporated on top of the stack. e. The stack after the first etch. f. After evaporation of the second
aluminum mask for contacts to the bottom graphene. g. The stack after the second etch. h. First evaporation of the contacts.
i. After putting another BN on top. j. Second evaporation of contacts, leaving a completed device. The scale bar is 10µm.

II. CALIBRATION OF CAPACITANCE LEVER ARM

The BN thicknesses determined from atomic force microscopy (AFM) measurement are dt=45nm (for BN1 between
top gate and top graphene), d0=40nm (for BN2 between two graphene), and db=44nm (BN3 between bottom graphene
and bottom gate); together, these in principle can be used to determine all capacitive lever arms. However, the lever
arm can be determined more accurately by measuring ratios of these capacitances directly in situ by sweeping gate
voltages and tracking the charge neutral point (CNP) of the graphene layers (Fig. S2). To determine d0/dt, the bottom
gate voltage is ramped according to vb = −vdc0/cb to keep the bottom graphene density fixed. The carrier density in
the top graphene is determined by nd = ctvt − (ct + c0)vd. At the CNP nd = 0, and therefore vd

vt
= ct

ct+c0
= 1

1+dt/d0
.

The slope of linear fit at CNP gives vd/vt = 0.475± .00023(Fig. S2b), which corresponds to d0/dt = 0.905± .00083.
Similarly, we can sweep vd and vb to determine d0/db. The top gate voltage is set to vt = (1+ c0/ct)vd to keep the top
graphene carrier density fixed. At CNP of the bottom graphene, vd/vb = cb/c0 = d0/db = −0.8732±0.0015(Fig. S2c).
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FIG. S2. Determining capacitance lever arm by sweeping dual-gates. a. Measurement circuit. b. Top graphene conductance
σd as a function of vt and vd. c. Bottom graphene resistance Rd as a function of vb and vd.

III. SUBLATTICE SPLITTING ∆AB
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FIG. S3. Density of states as a function of chemical potential at various magnetic fields.

Fig. S3 shows dν/dµ ∝ DOS at different magnetic fields. While the neighbouring cyclotron gaps are shifting with
varying magnetic field, the gap at the charge neutral point is clearly independent of the magnetic field. Such a feature
is consistent with a single particle AB sublattice splitting due to the Moiré superlattice between the graphene and
the BN[7, 36].
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IV. FERMI VELOCITY NORMALIZATION AT ZERO MAGNETIC FIELD

Here we give details about the determination of the Fermi velocity shown in Fig. 1f. The correlation-induced
renormalized Fermi velocity is described by the following equation[9–11]:

vF
v0
F

= 1− rs
π

[
5

3
+ ln(rs)] +

rs
8
ln(

nc
n

) (S1)

with v0
F = 106m/s being the single particle Fermi velocity and n is the carrier density of the sample graphene. There

are two fitting parameters: the interaction parameter rs = .437 ± .004, and the ultraviolet cutoff nc = (.87 ± .02) ×
1014cm−2.

V. TRANSPORT IN THE DETECTOR GRAPHENE AT FINITE MAGNETIC FIELD
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FIG. S4. Transport measurement of the “detector” graphene at 14T and 15mK. The upper panel is the current through the
graphene, and the lower panel is the top gate modulation of the current.

.

At high magnetic field, we keep the carrier density of the detector graphene fixed at a fractional quantum Hall gap.
Most of our measurements are performed with the density fixed at ν = 1/5, where the local minimum is the sharpest
(Fig. S4).

VI. NON-EQUILIBRIUM STATE IN THE INTEGER QUANTUM HALL GAP

As shown in Fig. S5, the chemical potential around the integer quantum Hall gaps within the ZLL shows hysteretic
behavior when sweeping vb in opposite directions. The hysteresis is reduced at lower B, as well as at higher T, is
nearly gone at 4K and B=14T. This phenomena has also been observed in GaAs 2DEG in several physical quantities,
such as resistance[37–40], magnetization[41, 42], chemical potential[43], and surface acoustic wave measurements[44].
These nonequilibrium effects preclude measurement of the chemical potential in the regimes where they are observed.
All data presented in the main text are measured in the regime where no hysteresis is observed.
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FIG. S5. Hysteresis in the integer quantum Hall gaps. a. µ as a function of vb in the N=0 LL. The data are taken at 14T
and nominal 15mK. The red arrows mark the vb sweep direction. b. Detail of the ν = 0 integer quantum Hall gap. The arrows
label vb sweep direction. The hysteresis is significantly reduced at 4K.

VII. COMPARISON OF THE THEORETICALLY CALCULATED ν = 0 GAP WITH THE
EXPERIMENTAL VALUE
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FIG. S6. µ(ν) in the ZLL at 18T. The temperature is nominally 40mK. The data are extended to ν∗ = 0 by using the Wigner
crystal model described in the main text (orange curves).

.

Theoretically, the gap at ν = 0 is predicted to be ∆µ =
∫
dq2Vscr(q)e

−q2`2B/2 +∆AB−EZ = 55.3meV, where we have

used the screened Coulomb interaction Vscr calibrated form Fig. 2b.
∫
dq2Vscr(q)e

−q2`2B/2 = 2(E(0)−E(1)) = 50.4meV,
where E(0) and E(1) are energy at ν∗ = 0 and ν∗ = 1 calculated by iDMRG (plot in Fig. 2c); ∆AB = 6.9meV is the
sublattice splitting; EZ ≈ 2meV is the Zeeman energy. To compare with experiment, we extrapolate the µ(ν) data,
which is cutoff in the window |ν| < 0.025 due to the large IQHE charging time, to ν = 0 using the Wigner-crystal
model of Fig. 2b, giving a gap of ∆µ = 53.1meV, in very good agreement (4%) with theory. Note that the bare
Coulomb interaction predicts ∆µ = 72.5meV, supporting the importance of screening.

VIII. EFFECTIVE INTERACTION FROM RPA AND GATE SCREENING

Here we present our model for calculating the dielectric function in Fig. 2 in the main text, which takes into account
screening from the proximate graphite gates and RPA screening from the Dirac sea of the graphene itself. The RPA
treatment is adopted from Ref. [29].

The static dielectric function due to inter-LL virtual excitations of the MLG can be obtained within the random
phase approximation (RPA):

εν(q) = 1− V0(q)Πν(q, ω = 0) (S2)

VRPA(q) = V0(q)/εν(q) (S3)
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FIG. S7. Dielectric function and effective interaction potential of Wigner crystal in the N=0 LL. Upper panel: Static dielectric
function with gate screening (εhBN = 4.0) and the RPA screening (αG = 1.85) taken into account. Lower panel: Effective
potential of the Wigner crystal. The orange dashed line is the effective energy without considering any screening effect, or

Veff(q) = 2πe2

εhBNq
e−(qlB)2/2; the blue line is the effective potential with gate and RPA screening correction.

where q is the wave vector and Πν(q, ω) is the polarizability of non-interacting graphene at filling factor ν and frequency
ω (we ignore retardation effects by making the static approximation ω = 0). In the absence of gates, V0(q) would

take the pure Coulomb form V0(q) = 2πe2

εhBNq
, with εhBN =

√
εhBN,⊥εhBN,‖ the dielectric constant of the surrounding

boron-nitride substrate and e the electron charge. However, we also need to account for screening from the graphite
gates, which we model as metallic equipotentials at distances d1, d2 below / above the graphene layer. A standard

electrostatic calculation shows that V0(q) = 2πe2

εhBNq
fd1,d2(q) for the form factor

fd1,d2(q) = 2
tanh(βd1q) tanh(βd2q)

tanh(βd1q) + tanh(βd2q)
, β =

√
εhBN,‖

εhBN,⊥
(S4)

The polarizability (per isospin) consists of a sum over all inter-LL transitions m→ n allowed by the Pauli principle:

Πν(q) =
∑

−Λ<m,n<Λ

νm(1− νn)Πm,n(q) (S5)

where m,n label LLs, νm is the filling of LL m, and Λ � 1 is a high energy cutoff. The contribution from each
transition Πm,n(q) is sensitive to the structure of the LL wave functions via their “form factors,” as described in detail
in Ref. [29]. For general q, the resulting sum must be evaluated numerically. The result converges slowly with the
cutoff (as Λ−1/2), so we scale the cutoff from Λ = 100 → 200 and extrapolate Λ → ∞ with a quadratic polynomial
in Λ−1/2. Calculating Πν(q) on a high-resolution grid (∆q = 0.01`−1

B ), the result is then interpolated to continuous
q for input to the Wigner crystal and DMRG calculations. The contribution to Π from each of the four isospins is
additive.

IX. WIGNER CRYSTAL MODEL

The energy per electron of a classical Wigner crystal interacting through effective interaction Veff(r) is

Ne
NΦ

E =
1

2

∑
Ri 6=0

Veff(Ri)−
∫
d2rVeff(r)

ν∗

2π`2B

 =
1

2

 ν∗

2π

∑
Gi 6=0

Veff(Gi)− Veff(Ri = 0)

 (S6)

Here Ri runs over the real-space Bravais lattice of the crystal, the exclusion Ri 6= 0 drops the self-interaction of the
electron, and the subtraction accounts for the interaction between each electron and a neutralizing background charge
density ν∗

2π`2B
. Alternatively, it can be expressed as a sum over reciprocal vectors Gi. E is the the energy per flux, so

that µ(ν) = ∂νE(ν) gives the desired chemical potential. Note that because of the background subtraction, E < 0,
because the correlations of the Wigner crystal reduce the Coulomb interaction relative to a “jellium” of uniform
charge.

For the effective interaction, we take the gate and RPA screened interaction discussed above and include in addition
the “form-factor” FN (q) of the N-th LL: Veff(q) = VRPA(q)|FN (q)|2. In the N=0 LL, F0(q) = e−

1
4 (q`B)2 . The result
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can then be numerically evaluated in q-space, taking advantage of the form factor to cutoff the sum over Gi when
Gi`B � 1. The resulting energy, for both the bare and screened Coulomb interactions, is shown in Fig. S8.

E/
N

Φ
 (E

c)

0

-1

-2

-3

-4

0.00 0.05 0.10 0.15 0.20
ν

FIG. S8. Energy per flux. The orange dashed line plots the Wigner crystal energy calculated from bare Coulomb interaction[24];
the blue line is the energy with gate and RPA screening taken into account (εhBN = 4.0, αG = 1.85).

The treatment of the crystal as classical is valid so long as the wave functions of the electrons, which go as

|φ(r − Ri)|2 ∝ e
− r2

2`2
B , are non-overlapping. This requires the interparticle distance satisfy R � `B , or ν � 1.

At higher densities, the wave functions overlap and exchange-energy becomes important. However, at these higher
densities the Wigner crystal melts and the electrons enter FQH states.

X. ANISOTROPIES IN THE N=1 LANDAU LEVEL

When taking into account only the long range (r � a) part of the Coulomb interaction, the N=1 LL has an SU(4)
symmetry relating valley and spin. However, lattice-scale effects (including the short-range part of the Coulomb
interaction and phonons) break the valleys’ involvement in this symmetry at order a/`B , where `B is the magnetic
length. The resulting “valley anisotropies” determine the nature of quantum-Hall symmetry breaking, as has been
well explored both theoretically and experimentally in the N=0 LL[32–34, 45–49].

In the N=0 LL, the interaction anisotropy is thought to be well approximated by “contact” interactions (Vani ∝
δ(r)). However, the N=0 LL is distinguished by the special form of its LL orbitals, which lock the valley and sublattice
(A/B) degrees of freedom. In the N=1 LL, in contrast, both valleys are delocalized 50-50 over the two sublattices,
differing only in the precise shape (form factor) of their wave functions. Here we argue that this generically leads to
anisotropies which are derivatives of δ(r), leading to a very different density dependence in the FQH regime.

To understand the valley anisotropies in the MLG N=1 LL at a phenomenological level, it should be sufficient to
consider the interaction arising from a short-range Hubbard-U type interaction. The continuum field operator for
spin s, sublattice a is expanded in valleys τ as

ψ̂sa(r) =
∑
τ

eiτ
zK·rψ̂sτa(r) (S7)

=
∑
τ,N,k

eiτ
zK·rφτNka (r)ĉsτNk (S8)

In the second line, we further expand the continuum operator in terms of Landau-gauge wave functions φτNka (r),
where k labels the Landau-gauge momenta and N the LL index. Henceforth, we restrict to the N=1 LL, so drop N
from the sum. The N=1 LL-projected density operator for sublattice a is then

na(r) =
∑

e−i(τ−τ
′)K·rφ̄τka (r)φτ

′k′

a (r)ĉ†sτk ĉsτ ′k′ (S9)

It is then convenient to pass to momentum space using the technology of LL form-factors. The MLG LL wave
functions can be expanded as φτka (r) =

∑
n φ

τ
n,a 〈r|n, k〉, where |n, k〉 is a Landau-gauge wave function of the n-th

massive (GaAs-like) LL. Inserting into the expression for na(r) and Fourier transforming, the sublattice-resolved



13

density operators are given in terms of GaAs form factors Fn,n′ and guiding-center operators ρ̄µν(q). Recall that the
guiding-center operators between isospin components µ = (s, τ), ν are defined to be

ρ̄µ,ν(q) =
∑
k

e−iqxk`
2
Bc†µk−qy/2cν k+qy/2 (S10)

Inserting na(r) into a Fourier transform, the density decouples into intra-valley and inter-valley contributions,

na(q) =
∑
τ

φ̄τn,aφ
τ
n′,aFn,n′(q)ρ̄sτ,sτ (S11)

n+
a (q) = φ̄+

n,aφ
−
n′,aFn,n′(q)ρ̄s+,s− (S12)

n−a (q) = φ̄−n,aφ
+
n′,aFn,n′(q)ρ̄s−,s+ (S13)

corresponding to the q ∼ 0 and q ∼ ±2K parts of the density respectively. In the N=1 LL (ignoring the small mass

∆AB), φ+ = (|1〉 , |0〉)/
√

2, φ− = (|0〉 ,− |1〉)/
√

2. The form factors are Fn,n = e−q
2`2B/4Ln(q2`2B/2), where Ln is the

n-th Laguerre polynomial.
The most general form of a density-density interaction is then

H =
1

2

∑
a

[
Vab(q)na(−q)nb(q) + V +

ab(q)n
+
a (−q)n−b (q) + V −ab(q)n

−
a (−q)n+

b (q)
]

(S14)

subject to constraints of symmetry and hermiticity.

S1. Intra-valley Hubbard-U

We first consider the intra-valley part of a sublattice-diagonal interaction

H =
1

2

∑
q,a

U(q)na(−q)na(q) (S15)

For a Hubbard-U interaction, for example, the normalization is implicitly U(r) = U0a
2δ(r), where a is the graphene

lattice scale and U0 ∼ e2

4πεa , so U(q) = U0a
2. In units ofquantum Hall scales EC and `B , u(q) = `−2

B U(`Bq)/EC =

U0
a2

`2B

ε`B
e2 = U0

εa
e2

a
`B

.

The form-factor contraction takes the form∑
a

φ̄τn1,aφ
τ
n2,aφ̄

τ ′

n′1,a
φτ
′

n′2,a
Fn1,n2

(−q)Fn′1,n′2(q) = δττ ′(F0,0(−q)F0,0(q) + F1,1(−q)F1,1(q))/4 (S16)

+ σxττ ′(F0,0(−q)F1,1(q) + F1,1(−q)F0,0(q))/4 (S17)

This leads to sum and difference

F (q) ≡ (F0,0(q) + F1,1(q))/2 (S18)

F z(q) ≡ (F0,0(q)− F1,1(q))/2 = e−
1
4 `

2
Bq

2

(1− (1− `2Bq2/2))/2 = e−
1
4 `

2
Bq

2

`2Bq
2/4 (S19)

HU =
1

2

∑
q

U(q)
1

2

(
|F (q)|2ρ̄sτ,sτ (q)ρ̄s′τ ′,s′τ ′(−q) + |F z(q)|2σzτ,τσzτ ′,τ ′ ρ̄sτ,sτ (q)ρ̄s′τ ′,s′τ ′(−q)

)
(S20)

HU =
1

2

∑
q

U(q)
1

2

(
|F (q)|2ρ̄(q)ρ̄(−q) + |F z(q)|2ρ̄z(q)ρ̄z(−q)

)
(S21)

Here ρ̄µ = Tr(ρ̄τµ). Plugging in F z, the anisotropy is

Hz
U =

1

2

∑
q

e−
1
2 `

2
Bq

2 `4Bq
4U(q)

32
ρ̄z(q)ρ̄z(−q) (S22)

The key observation is that U(q) → `4Bq
4U(q). So even if U(q) is taken to be a contact interaction, the effective

interaction is not.
It is instructive to compare this with the analogous calculation in the N=0 LL, where φ+ = (|0〉 , 0), φ− = (0, |0〉)

(valley-sublattice locking). Following the same calculation, we then find F z(q) ∝ F0,0(q) = e−
1
2 q

2

, so the interactions
is a simple contact interaction.
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S2. Inter-valley Hubbard-U

The q ∼ 2K part of the sublattice-resolved density operators take the form

n+
A(q) =

1

2
F01(q)ρ̄+(q) (S23)

n+
B(q) = −1

2
F10(q)ρ̄+(q) (S24)

n+
A(q)n−A(−q) + n+

B(q)n−B(−q) =
1

2
|F01(q)|2ρ̄+(q)ρ̄−(−q) (S25)

So, by a similar argument as the intra-valley part, we obtain

Hxy
U =

1

2

∑
q

U(q)|F01(q)|2ρ̄+(q)ρ̄−(−q) (S26)

where τ± = τx ± iτy. Plugging in the form-factors, |F01(q)|2 ∝ q2. So, in contrast to the q4 z-anisotropy, the
xy-anisotropy scales with q2.

S3. Phenomenological Hamiltonian

Together, this motivates a phenomenological anisotropy Hamiltonian of the form

Hani =
EC
2

∑
q

e−
1
2 `

2
Bq

2

(gz`
4
Bq

4ρ̄z(q)ρ̄z(−q) + gxy`
2
Bq

2ρ̄+(q)ρ̄−(−q)) (S27)

in units of `B and EC . The dimensionless coefficients g are expected to be of order a/`B . Passing back to real-space,
the q2, q4 dependence maps on to the `2mB ∇2mδ(r) form given in the main text.

To implement these anisotropies numerically, we note that a potential V (q) can be expanded in terms of the
“Haldane pseudopotentials” as V (q) = 2

∑
m Lm(q2) (note there seems to be some disagreement in the literature

on factors of 2π). We can use this to determine the following pseudopotential decompositions {Vm} for q2m: 1 →
{ 1

2},−q
2 → {− 1

2 ,
1
2}, q

4 → {1,−2, 1}. These Haldane pseudopotentials are then contracted with the appropriate

index structure in the τx/y/z space and added to the Hamiltonian for two-component iDMRG calculations.
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