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Optimal time lags from causal 
prediction model help stratify 
and forecast nervous system 
pathology
Theodoros Bermperidis1*, Richa Rai1, Jihye Ryu4, Damiano Zanotto5, Sunil K. Agrawal6,7, 
Anil K. Lalwani8,9 & Elizabeth B. Torres1,2,3*

Traditional clinical approaches diagnose disorders of the nervous system using standardized 
observational criteria. Although aiming for homogeneity of symptoms, this method often results 
in highly heterogeneous disorders. A standing question thus is how to automatically stratify a 
given random cohort of the population, such that treatment can be better tailored to each cluster’s 
symptoms, and severity of any given group forecasted to provide neuroprotective therapies. In 
this work we introduce new methods to automatically stratify a random cohort of the population 
composed of healthy controls of different ages and patients with different disorders of the nervous 
systems. Using a simple walking task and measuring micro-fluctuations in their biorhythmic motions, 
we combine non-linear causal network connectivity analyses in the temporal and frequency domains 
with stochastic mapping. Thea methods define a new type of internal motor timings. These are 
amenable to create personalized clinical interventions tailored to self-emerging clusters signaling 
fundamentally different types of gait pathologies. We frame our results using the principle of 
reafference and operationalize them using causal prediction, thus renovating the theory of internal 
models for the study of neuromotor control.

Patients with Fragile-X Tremor Ataxia syndrome (FXTAS), patients with Parkinson’s Disease (PPD) and patients 
in the broad spectrum of Autism (ASD) my all have motor issues detectable and tractable through gait patterns 
at different stages of their  lifespan1–8. Generally, these disorders share some common  genes9–11, but their pheno-
typic features differ depending on the person’s age and on the evolution of various epigenetic  factors1,12. While 
the autistic patient may arrive at the diagnosis via Psychiatric/Psychological measures, devoid of motor criteria, 
it is highly probable that the PPD will do so through motor criteria from a movement disorders specialist in 
Neurology. In contrast, the FXTAS patient may receive an ASD diagnosis during childhood, when differences in 
communication and social interactions gain priority over motor  issues13,14 but then, later in life, as motor issues 
exacerbate, they may gain the diagnosis of PPD. FMR1-premutation carriers may be considered neurotypical 
until later in adult life, when tremor, ataxia, and symptoms of parkinsonism become highly  visible15,16. Indeed, 
the FMR1 CGG repeat length predicts motor  dysfunction17 of the type that PD manifest much later in life.

We know that motor activity reveals that aging with Autism greatly departs from typical  aging18 despite 
whether the person is or is not on psychotropic  medications19. We are also aware that parkinsonism, typically 
associated with human  aging3,20, is prevalent in Autistic  adults21. Indeed, the rate of parkinsonism in the general 
population aged 65–70 has been estimated at 0.9%20, compared to 20% in ASD aged after  3921, when excess 
involuntary motions at rest have been  quantified18,22.
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Parkinsonism in FMR1-premutation carriers may be indistinguishable from  PD23. And Fragile-X syndrome 
(FXS) has high penetrance in  Autism24 with genetic overlap across Parkinson, Ataxias, ASD and  FXTAS9. Fur-
thermore, in Autisms of known etiology, such as SHANK3 deletion  syndrome25, a constellation of sensory and 
cognitive issues parallels motor abnormalities detectable through their  gait8. The genetic and clinical overlap 
across these disorders motivate us to search for similarities and differences in relation to a well-known disorder 
of gait. Using the screening version of the vestibular Dizziness Handicap Inventory (DHI-S)26,27 we compare the 
neuromotor dynamics of gait in patients ranked according to this clinical  scale28, to patients with the above-
mentioned clinical disorders. We posit that if we were to automatically stratify a random draw of the population 
containing these disorders (alongside age- and sex-matched controls) we may be able to eventually tailor gait-
related accommodations to highly heterogeneous disorders such as ASD. Since there is a common pool of genes 
affecting both neurodevelopment and neurodegeneration, identifying clinically-characterized gait issues in these 
disorders, might open a new path to pre-emptively offer neuroprotective motor-sensory-based accommodations 
in early neurodevelopment gone  astray9.

Gait studies integrated with wearable sensors in natural activities have been very useful to ascertain various 
aspects of these  phenotypes16,29–31, but population statistics employed in these analyses are not personalized. They 
primarily focus on descriptive summary statistics from a priori assumed distributions, a procedure that incurs 
in loss of gross  data32. Further, owing to anatomical disparities confounding gait parameters, we need scaling 
methods that standardize outcomes and provide proper similarity metrics to compare across different subtypes 
of a given disorder. There is room to examine individual motor fluctuations within the context of dynamic net-
work analyses and causal  prediction33. Here we integrate causal and non-causal network connectivity analytics 
to examine self-emergent patterns from standardized micro-movement spikes derived from gait-kinematics. We 
discuss our results within a new unifying framework to study disorders of the nervous systems across different 
diagnoses of disparate clinical criteria and yet, converging functional phenotypes.

Results
Granger causality (GC) is a mathematical concept that allows us to quantify the causal effect of a stochastic 
process A on a second stochastic process B. It compares the prediction error of a dynamic model that predicts 
the evolution of B without the presence of A with the error of a prediction model that includes both A and B. 
If the inclusion of A improves the prediction, we say that A causally predicts B (A→B) and we can assess the 
degree to which this is determined by the method of choice. Our approach to modeling and calculating the 
Granger causality assumes models with a single internal delay. This allows us to find, within a particular range, 
the internal delay that maximizes the causality from A to B. To implement our methods using time series data 
from a grid of 23 sensors collecting bodily orientations and acceleration as the person walks, we first extract 
the angular speed time series (rad/s) and the linear accelerations (m/s2) over the span of 3-min walks. We then, 
build a data type that we have created, the micro-movements spikes  (MMS34) which extracts the moment-to-
moment fluctuations in the signal’s amplitude provided by the peaks, and the fluctuations in inter-peak interval 
timings. This data derived from the sensors is unitless as it is standardized to characterize the dynamic behavior 
of motion by scaling out anatomical differences. This standardization of the data also enables us to compare the 
stochastic signatures across these participants’ motions in a random draw of the population, while considering 
different ages and different clinical genotypes and phenotypes. As we keep the indexes into the original physi-
cal unit ranges, we can further estimate cross-population scales and boundaries for each parameter of interest.

Upon standardization, we apply our technique between each directed pair of MMS time series across all 23 
nodes corresponding to different joints across the full body. The maximum outwards GC of each node towards 
the rest of the body for the average GC-directed network of each group revealed marked differences from group 
to group. Furthermore, the average Optimal Lag network of maximum lags from a node to the rest of the body, 
assuming that the MMS series of that node, is the causal stochastic process, also revealed fundamental differences 
on timing across the different ages and nervous systems’ disorders. We detail them below:

Granger-causal networks reveal age-dependent gait differences in typical controls. As age 
increases in healthy participants, we see fundamental differences emerging across the patterns of GC prediction 
between their upper and lower body. The relative causal connectivity between upper to lower body is higher in 
elderly participants than in young controls. This can be appreciated in Fig. 1A using an anthropomorphic inter-
connected network representation of the full body using the 23 nodes. The size of the node is proportional to the 
GC out degree value of that node as it connects to all other nodes. Furthermore, elderly control participants have 
in general lower optimal lag times of the lower extremities (p = 0.0293, t test) suggesting an overall slowdown in 
information transmission and feedback between upper and lower extremities. Often, patterns such as bradykin-
esia and loss of gait control are found in pathologies of the nervous system. Yet, here we observe them as a part of 
the natural aging process in this cross-sectional cohort of healthy controls. We use a colormap representation to 
indicate the lag values in Fig. 1A, whereas in Fig. 1B, we provide the empirical frequency histograms of the inter-
peak interval timings of the MMS. The corresponding physical times expressed in seconds distribute according 
to the continuous Gamma family of probability distributions, optimally fit to the empirical data, in a maximum 
likelihood estimation (MLE) sense. These patterns are depicted for the healthy controls in Fig. 1B (top panels) 
while empirically estimated summary statistics are depicted in Fig. 1C.

FMR1-carriers are different from controls of comparable age and from PPD. Premutation car-
riers of the FMR1 gene show a significant decrease in GC connectivity across the body in relation to the young 
controls of comparable age (p = 0.0061; t test) This is depicted in Fig. 1A along with fundamental differences in 
the patterns of optimal lags, which are abnormally lower than controls (p = 2.7160e-04; t test). This reduction 
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in optimal lag values in the premutation carriers is accompanied by a reduction in their timing variability that 
resembles (and perhaps forecasts) the type of reduction in variability observed in the PPD. The latter shows a 
significant reduction in GC across the body relative to the elderly controls (p = 0.0021; t test). This is particularly 
the case in the torso, with lower lags in the lower body, when we compare them to the elderly controls. Figure 1C 
summarizes the statistics of the timing. This parameter space reveals healthy patterns of timing variability in the 
controls vs. atypically lower variability patterns in the premutation carriers and the PPD.

Motor timings and inter-peak interval timings differ between SHANK3 participants and age- 
and sex-matched controls. Subjects diagnosed with SHANK3 deletion syndrome exhibit overall higher 
motor timings, especially in the upper body nodes, compared to age- and sex-matched controls, but also in 
relation to patients with other disorders. This can be appreciated in Fig. 1A–C, where we express the differences 
across an avatar representation (1A), using all nodes accessible to our instrumentation, frequency histograms 
of interpeak interval timings fitted by empirical probability density functions (PDFs) (1B) and a parameter space 
(1C) summarizing the statistics derived from the average empirically estimated behavior of the cohort. Regard-
ing inter-peak interval timings from the derived Micro-Movement Spikes  time series of all nodes, SHANK3 
deletion participants show significantly lower mean values from their age- and sex-matched controls, following a 
similar pattern to that observed in FMR1 carriers. SHANK3 deletion participants are often diagnosed with ASD, 
as are some FMR1 premutation carriers. The two groups here exhibit lower inter-peak interval timings than age- 
and sex-matched neurotypicals controls who performed the gait task under the same settings.

Prevelance of causal feedback loops is much higher in the controls. An important concept in the 
theory of neuromotor control, first introduced by von Holst and Mittelstaedt in 1950, is known as the principle of 
 reafference35. Every time a motor movement is to be initiated, a motor signal is sent to the periphery to perform 
a certain movement through the efferent nerves, which is called efference. Similarly, the sensory input coming 

Figure 1.  GC optimal lag maps and timing information. (A) Anthropomorphic network representation of 
human walking patterns. The nodes’ size is proportional to the number of outgoing links connected to the 
other nodes in the network (out degree) of the average GC network. The color of the nodes is the maximum 
optimal lag response of a node with the rest of the body for the average Lag Response network. A unit of one 
lag refers to the distance in time between two peaks. The actual physical time between the two peaks can vary. 
(B) The frequency histograms depict the distribution of the inter-peak timings for each group. The empirical 
distributions are well fitted by the gamma family of distributions. (C) Large departure from ideal patterns at 
college age are observed in the youngest developing (still growing) children and in the elderly controls. Further 
separation of the various pathologies is captured in relation to age-matched controls. For the youngest controls 
(5–7 years old) from the SHANK3 dataset, the average inter-peak timing is 0.1885s with a std of 0.1095, 
compared to the SHANK3 participants 0.1762 with a std of 0.1047. For the young controls of college age, 0.1129 
with a std of 0.0780. For the elderly controls, 0.1238 with a std of 0.0781. For the FMR1 carriers, 0.0993 with a 
std of 0.0705. For the PPDs, 0.1122 with a std of 0.0719.
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from the periphery towards the Central Nervous System (CNS) is called afference. The afference consists of two 
components. The first component is called exo-afference and is the afferent input generated from the environ-
ment. The second component is called endo-afference, which is the sensory input self-generated from the body’s 
own actions. We discovered that during complex actions, the endo-afference is separable into intended segments 
(under voluntary control), and incidental segments (occurring spontaneously and largely beneath  awareness36). 
Because of its internal origins and its relation to movements, the latter is known as kinesthetic reafference, though 
it also includes pain and temperature afference from the corresponding fibers at the periphery. According to the 
principle of reafference, every time a movement is initiated by sending information to the motor system, a copy 
of the signal is created, called the efferent copy or corollary discharge, and is sent to the CNS to inform of the 
impending movement. This enables the CNS to distinguish sensory signals stemming from external environ-
mental factors, from sensory signals coming from the body’s own actions. The efference copy is provided as input 
to a forward internal model to predict the sensory consequences of the motor action to be initiated. Comparing 
the predicted movement with the actual movement is precisely what allows the CNS to recognize its own actions 
and at a higher cognitive level, form a sense of self. In the internal models of neuromotor control, the intended 
consequences from voluntary acts can be evaluated using the principle of  reafference37. A non-trivial extension 
of this idea is to include, in addition to consequences from voluntary actions, the unintended consequences from 
those incidental actions that occur spontaneously, without instructions or precise external sensory goals. This 
idea has been proposed and investigated by our group, to define different levels of  volition36,38–40, and offered as 
a fundamental ingredient of the more general concept of motor agency.

The principle of reafference has been a source of inspiration for decades in biology, cognitive science, vision, 
neuromotor control and robotics, and attempts to model it fall usually within the realm of control theory and 
dynamical  systems41. Our approach to operationalize this principle does not assume a particular deterministic 
feedforward model. It rather assumes stochastic dynamic models for each body node and for pairs of body nodes. 
If the principle of reafference implies the presence of feedback loops between the CNS and the periphery, the 
fact that information is carried along efferent and afferent pathways and processed in various organs of the CNS 
implies that it is not an instantaneous process, but it is characterized by some internal timing. In fact, timing is 
important to accurately predict the consequences of one’s actions, coordinating such actions in space and time. 
Timing plays a central role in agency, leading to a sense of action ownership and self-awareness. Hence, the 
causal analytics, being sensitive to the choice of timing of the model, can be used to estimate the actual motor 
timings in the nervous system.

But how exactly can we detect the presence or not of a feedback loop between two nodes? Once again, the 
answer can be found in one of Granger’s definitions in his original  paper42. Following the formal definition of 
causality, he proceeds to define feedback. According to the definition, if A and B are two stochastic processes, 
and A causes B in the Granger sense, but also B causes A in the Granger sense, i.e., causality occurs in both 
directions, then that implies the presence of a feedback loop between the two processes. Then, simply checking 
for each undirected pair of body nodes, we can check whether the causal connectivity graph that we derived 
earlier exhibits causality in both directions. Then, we can determine whether there is a feedback loop between 
the nodes, within the accuracy of our model and the choice of timing.

Addressing Granger’s notion of feedback (up to our limited assumption of an autoregressive model explained 
in the Materials and Methods Figs. 14 and 15) provides the results depicted in Fig. 2. As the results from Fig. 1 
suggested, the healthy controls show (cross sectionally) the effect of natural aging, this time, on the feedback 
patterns that we take pairwise across these 23 nodes of the body. Consistent with the Fig. 1A summarizing the 
group patterns (in one direction A→B), we see the patterns of feedback loops across each group, detected when 
including B→A and obtaining GC in both directions. Young healthy controls have a more distributed pattern 
across the body, in contrast to elderly controls, who show a diminished pattern in the lower extremities accom-
panied by an abnormally higher feedback-loop pattern across the upper extremities, perhaps compensating for 
their lacking in the lower extremities. This decrease in feedback loops generalizes across all bodily nodes in PPD, 
but interestingly, the decrease is even more evident in the FMR1 premutation carriers, closer in age to the healthy 
young controls. At such a young age compared to the PPD, these patterns in the FMR1 premutation carriers 
forecast trouble on the horizon, of the type that elderly PPD eventually experience. The younger controls (for the 
SHANK3) show fewer feedback loops than the older controls (for the FMR1/PPD group), a result that might be 
explained as the older participants have reached full gait maturation, but the young ones are still growing and 
adapting their gait. Participants with the SHANK3 deletion have a higher prevalence of feedback loops than those 
age-matched neurotypicals. This is consistent with lack of synergies across their  body8, a feature that makes the 
brain’s motor control problem rather challenging, as with the FMR1 pre-mutation carriers. Both disorders have 
high ASD penetrance, as does the prevalence of their gait issues across the lifespan. Further differentiating across 
these groups will be important to refine gait pathologies and their possible origins in neurodevelopmental vs. 
neurodegenerative stages. This outcome pertaining their neuromotor dynamics reveals important neurological 
characteristics of each disorder.

Identification of different groups’ subtypes. One of the current challenges in data-driven analyses is 
to automatically identify self-emerging subtypes of a disorder on a spectrum, as patterns stratify to form clus-
ters of data points across a given scatter. We here address this automatic stratification of a random draw of the 
population composed of different types of patients and ages, using various parameter spaces derived from the 
stochastic patterns of the gross data that is often thrown away or smoothed out through grand averaging.

For each participant from the FMR1/PPD dataset, we calculated the trajectory of the Center of Mass of the 
lower body in 3D space and we extracted the MMS series from the Euclidean norm of the position time series. 
Upon obtaining the standardized (scaled) speed amplitudes, we obtained the peaks and calculated the empirical 
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distributions of the inter-peak-interval timings of these MMS series. We noted the presence of multiple modes 
in the frequency histograms and performed the Hartigan Dip test of  unimodality43. We performed this statistical 
test both on the patterns from each participant separately and pooling the data across participants for each group. 
For the latter, we did so after concatenating the MMS series data of all subjects within a group. A similar analysis 
was performed for each participant from the SHANK3/DHI dataset. The Hartigan Dip Unimodality test per 
group showed that for all groups the total empirical distributions fail the unimodality test. All groups distributed 
bimodally, yet how the modes grouped had specific patterns particular to each group. This is depicted in Fig. 3.

The first mode with lower values of the standardized MMS peaks amplitude was well fit by an exponential 
distribution, whereas the second mode was well fit by a Gaussian distribution that had the lowest dispersion 
in healthy young controls. In elderly controls, the percentage of points in the exponential mode increased, as 
did in FMR1 premutation carriers (closer in age to the young controls) and the PPD, with the latter showing 
distribution patterns comparable to the carriers. To see this, for each participant, we found in which mode the 
MMS activity was highest and calculated the percentages of participants per group with the highest activity in 
each mode. Most young and elderly controls have the highest MMS activity in the Gaussian mode. FMR1 carri-
ers and PPDs have higher prevalence of activity in the exponential mode. Furthermore, the SHANK3 deletion 
participants have higher prevalence of activity in the exponential mode, compared to their age- and sex-matched 
controls. Moreover, SHANK3 controls have the lowest exponential mode activity out of all groups, a result that 
may reflect the early maturational stage of their developing nervous system in a rapidly growing body (Fig. 4). 
This result suggests that healthy gait requires a proper balance between these two modes, and that examination 
of their distribution across the population could provide clues on the status of the person’s gait health.

These patterns motivated a parameter space whereby we represent points as triplets -points in a three-dimen-
sional space, with coordinates representing the % of Mode 1 (exponential), the Dip value from the Hartigan’s 
Dip Unimodality test, and a scalar, giving the speed to frequency ratio (we discuss below the motivation for 
using this ratio). We then performed k-means clustering analyses on the scatter of points from each group, to 

Figure 2.  Feedback loops differ across groups. For each group, the figures show the percentage of subjects 
within the group for whom a feedback loop was detected between each pair of body nodes. Young controls (of 
college age) differ from the elderly controls who, on average, show higher feedback loops in the upper body, 
whereas some very young controls (here called SHANK3 controls) 5–7 years of age are still maturing their gait, 
and developing modular synergies across the body. They differ from the SHANK3 deletion syndrome, who show 
lack of synergies simplifying the motor control problem that abundant degrees of freedom pose to the brain. 
Patients with Parkinson’s disease show an atypical lower feedback across the body, which is further exacerbated 
in FRM1 premutation carriers, despite their youth.
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identify potential subtypes of activity in each cohort of participants. Figure 5A depicts the results (under the 
Euclidean distance metric; note that using the first mode in this representation is sufficient, as the second mode 
percentages are complementary, i.e., the sum of percentages add to unit). Here the young controls have 3 clusters, 
and the other groups show 2 clusters (cluster elements are represented proportional to the size of the marker).

We identified 3 sub-types for the young controls group and 2 sub-types for the elderly controls. There is an 
apparent negative correlation between higher dips and lower first mode (exponential) activity. The FMR1 car-
rier group has two subtypes. The first subtype has high first mode activity and low dip and the second subtype 
has low first mode activity and high dip. A similar subtyping pattern is observed for the PD group. SHANK3 
controls exhibit a positive correlation between exponential mode activity and dip, whereas participants with 
SHANK3 deletion syndrome exhibit a negative correlation between those two. We localized an ASD participant 
with Tourette’s syndrome in this space, to examine high levels of exponential mode activity (the maximum of the 
cohort) considering the excess motor ticks of this participant. This localization helps us interpret the result as 
it sets bounds on the parameter space for cases of ASD of known etiology. Furthermore, the bivariate empirical 
distribution of DHI scores and dip values showed that the vast majority of DHI participants follow unimodal 
distributions of motor activity, while any multimodal activity is detected mostly in mild to moderate DHI score 
individuals. The results from the distribution analysis can be appreciated in Fig. 5B. In 5A and 5C the size of the 
marker denotes the group within each cohort. Differences in unimodality across DHI participants with severe 
scores, combined with differential patterns in MMS peak amplitude values in Fig. 3 hint at possible different 
groupings, a question that we further explore below.

Figure 3.  Unimodality vs. Multi-modality in the distributions of MMS from peak angular speed amplitudes 
differentiate the various groups. Different modes are specific to each cohort, mode 1 exponential and mode 2 
Gaussian, with different dispersions and percentages of points in each mode. In contrast to other groups, both 
the low- and the high-score DHI groups, exhibit unimodal (highly kurtotic) distributions.
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Groups differ relative to young controls within a parameter space from the data stochastic 
features. The above results motivated us to quantify the departure of each group from the young controls of 
college age (as an ideal, normative state of motor control). To that end, since the lower body and the pelvis play 
a crucial role in gait control, we first characterized the patterns of fluctuation in the motions of the pelvic area 
and upper leg nodes) by fitting the continuous Gamma family of probability distributions as the optimal family 
in an MLE sense. Through this process, we obtained the scale parameter, which in the case of the Gamma family, 
is also the noise to signal ratio (NSR). We obtained the average NSR and computed skewness of the MMS series 
of the pelvic area for each subject. We also obtained the GC network asymmetry for each subject (See Meth-
ods). This paramer space is shown in Fig. 6 across all three comparisons.Two sample t tests, showed that young 
controls differ from elderly controls in mean skewness (with bortherline significance, p value = 0.096, confidence 
interval = [0.0465, 0.0299]). They also differ from PPDs, signficantly at the 0.05 alpha level, in mean pelvic NSR (p 
value = 0.0193, confidence interval = [− 0.047, − 0.00047187]). Finally, they differ significantly from FMR1 carriers 
in assymetry (p value = 0.0107, confidence interval = [− 0.3386, − 0.051]). In each plot, we fitted surfaces over the 
data samples for the young controls to help visualize the differences and localize each cluster shifting across the 
parameter space relative to this normative surface.

Figure 4.  Percentages of distribution’s modes varies across groups with lowest Exponential mode in young 
controls and highest in FMR1 carriers and PPD. Gaussian mode is highest in the young and elderly controls and 
comparable between PPD (higher) and FMR1-carriers. Gaussian mode is significantly higher in participants 
with SHANK3 deletion syndrome, large departure from the youngest controls in the study. The exponential 
mode is at the lowest in very young developing children, higher in college age controls and at its highest in the 
elderly controls. An excess in this mode suggests pathological gait patterns in FMR1 and PPD.
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Notice in Fig. 6 that FMR1 and PPD depart similarly from the normative surface of young controls, while 
the elderly controls occupy a different location in this parameter space.

Normalized causality, optimal timings, and efferent-afferent asymmetries in the causal and motor timing 
activity of subjects from the SHANK3 deletion syndrome dataset separated them from the corresponding age- 
and sex-matched SHANK3 controls. This separation had a pattern analogous to the case of FMR1 participants, 
showing a consistent departure in causal dynamics from the corresponding neurotypical cases. The subject 
diagnosed with Tourette’s syndrome showed extreme values across all parameter spaces. His motor patterns 
included excessive motor ticks that visibly interfered with his gait. This extreme case helped us interpret those 
high bounds in exponential mode depicted in Fig. 5. The results of the new analysis can be appreciated in Fig. 7.

Automatic stratification of a random draw of the population suffering from gait disturbances 
distinguishes between gait pathologies from vestibular-cortical and sub-cortical prob-
lems. We considered 118 participants with gait disturbances involving dizziness, the sensation of vertigo, 
fatigue, presyncope and disequilibrium. These are quantified through the vestibular handicap inventory, the Diz-
ziness Handicap Inventory screening tool (DHI-S)28. This tool spans scores ranging from zero-value, with a cut-
off at 16, whereby zero-16 are considered mild, while those above 16 are considered severe. We used these scores 
in conjunction with the digital data from both feet as participants walked in similar ways as those suffering from 

Figure 5.  Subgroups within each group revealed by group’s clusters. (A, B) The clusters for each group using 
the k-means clustering algorithm with 3 for young controls and 2 for each of the other groups. Subtypes of 
activity emerge for all groups. The empirical distributions for the MMS of the norm of the lower body center of 
mass, COM 3D position or lower body angular acceleration (for subjects from the SHANK3 study) data series 
for the 6 groups are bimodal for all 6 groups. (B) For subjects in the DHI study, we calculated the empirical 
bivariate distribution of DHI scores and dips. (C) For the controls from the SHANK3 study low exponential 
mode activity implies high dip values. For the SHANK3 participants, high exponential mode activity implies low 
dip values. Note that a participant with Tourette’s syndrome (manifesting an excess of motor ticks) and who also 
received an ASD diagnosis, had the maximum exponential activity over all subjects.
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other disorders and typically developing or aging. Using these DHI ranges, we then examined the cohort of 
controls across the lifespan, as well as the cohorts of PPD, FMR1 and those with a diagnosis of ASD of known 
etiology (SHANK3 deletion syndrome) and of idiopathic ASD. Our motivation here was to combine the MMS 
data type, our methods of analyses and various parameter spaces across all 187 participants, to localize various 
neurological disorders and ASD, with an eye for self-emerging clusters. We seek to characterize these disorders 
in relation to gait from vestibular handicap, to ask if the gait issues that we detected in ASD participants are 
closer to those quantified in DHI elderly, or to those found in the PPD elderly or the FMR1 participants. Unlike 
the vestibular handicap gait issues, the latter are linked to subcortical neurodegeneration rather than higher level 
sensory perception and integration. Given the current ASD definition relying on higher-level perceptual and 
sensory issues, and the high prevalence of ear infection and auditory brain stem issues since early  infancy44, it is 
possible that their gait problems align with the vestibular integration, rather than the subcortical motor control 
problems. This hypothesis is addressed below:

First, we represent the DHI participants in a normalized parameter space spanned by feet causal forces 
(defined by the ratio of causality divided by the corresponding time lags), and average timings. We then identify 
fundamental differences across DHI score levels. As Fig. 8A shows, those participants with the high DHI scores 
(above 16) separate well from those with mild scores (0–16). The mild scores are not significantly different (results 
of two sample t test between DHI subjects with zero and DHI subject with low score; p value for NSR p = 0.568, 
for right-to-left force p = 0.657, for left-to-right p = 0.4 > 0.05), while the high DHI scatter establishes a reference 
region to help assess other disorders in relation to the clinical symptoms of this clinical phenotype.

Second, using the high DHI scatter as reference, we define a parameter space spanned by the Noise-to-Signal 
ratio (NSR) and the causal forces from left-to-right foot and right-to-left foot acceleration MMS for all subjects, 
which ensures that all participants are tested under the exact same number of sensors and bodily parts, using the 
same standardized waveform of MMS. There, the vestibular DHI participants departed from adult and elderly 
controls, grouping instead, along the NSR axis, with the youngest, still-developing controls. Their NSR levels 
matched those of the ASD-SHANK3 deletion syndrome and five Idiopathic-ASD participants that we included 
as reference (owing to their known high MMS  NSR32,34). The subcortically driven neurodegenerative PPD and 
the FMR1 carriers separated from the vestibular DHI adults, closer in age than the ASD participants. As such, 
biomechanical gait noise derived from linear acceleration MMS, automatically separated these gait disorders 
with different clinical diagnosis (Fig. 8B). Figure 8C shows the summary tendencies of each group (obtained 
by calculating the centroid of each cluster). Furthermore, we appreciate on the projection plane spanned by the 
NSR and the right leg (RL) force parameter, that the spread of participants with high vestibular DHI scores is 
much higher than that of ASD participants and age-matched controls (Fig. 8D). The scatter along the right-to-left 
causality-to-timings ratio distinguishes SHANK3-ASD, idiopathic-ASD and vestibular DHI disorders, despite 
the common levels of NSR. Note, that for all participants, the Granger Causality values used to calculate the 
forces were tested for statistical significance and causality was indeed detected at the 1% significance level. For a 
detailed description of the procedure followed we point the reader to the supplementary material.

Perhaps this separation could be attributed to the intrinsic difference in neuromotor dynamics between these 
groups. It seems that while NSR reveals differences and similarities in the phenotypical motor component of a 
class of heterogenous groups and disorders, causal analysis reveals important underpinning differences in neu-
romotor dynamics. Finally, even though both SHANK3 deletion syndrome and FMR1 premutation carrier syn-
drome may often receive a diagnosis of ASD at a young age, they are clearly differentiated in this parameter space.

Figure 6.  Parameter space reveal differences across controls, elderly controls and PPD participants. NSR, GC 
network asymmetry and average Skewness are used to build a parameter space showing departure from ideal 
young controls’ scatter fitted by a surface. Scatters from the FMR1carriers, the elderly controls and the PPD 
largely depart from young controls’ surface. Color bar reflects skewness range of values.
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It is possible that our MMS derived from acceleration paired with these new analytics, distinguish important 
nuance behaviors currently missed by the naked eye of an observer. The results from these acceleration-based 
analyses yield support for a separation between disorders that are fundamentally driven by subcortical structures 
(e.g., PPD, FMR1) and those which might be primarily tied to cortical and vestibular structures (e.g., idiopathic- 
and SHANK3-ASD). While the former may be formulated within a framework of biomechanical full-body motor 
control, postural coordination and motor synergies, the latter also include an element of sensory integration 
(auditory, visual, and proprioceptive signals) and perceptual issues tied to peripersonal space, temporal dynam-
ics, and gravity-specific control.

To examine temporal information within the efference-reafference framework, we calculated for each undi-
rected pair of angular speed MMS time series (i.e., the full time series, not only the peaks) the coupling frequency 
for which the cross-coherence is maximized. To that end, we found the average of all cross-coherence outputs of a 
node’s MMS series with all the other MMS series nodes in the network (see Supplementary Materials). The time 
between two MMS is essentially a form of inter-spike interval timing for the information flow crossing each body 
node. Therefore, we average for each group the inter-spike times of each node and compare the rate of putative 
afferent (incoming) and efferent (outgoing) activity. Figure 9 shows the patterns from a series of t-tests between 
the timings, using every possible combination of the two groups for each node. Zero entries mean that the t 
test was not significant, non-zero entries show the average differences between the mean times for each group.

We note that FMR1 carriers exhibit much higher inter-peak timings in the thoracic area and the lower leg 
area than the PPD subjects. Both young and elderly controls seem to have much higher inter-peak timings in 

Figure 7.  Parameter spaces reveal differences across ASD-SHANK3 deletion participants and the youngest 
controls of the study. (A) Normalized values of average causality and motor timings separates these participants 
with ASD of known etiology from age- and sex-matched controls. The one control subject diagnosed with ASD 
Tourette’s syndrome is an outlier and has the highest average motor timings value. (B) Normalized values of 
timings asymmetry also separate this type of ASD from controls and once again, the ASD-Tourette’s syndrome 
participant is an outlier that exhibits the maximum value of asymmetry both in causality and timings.
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the (non-dominant) left arm and hand than PPD patients. Interestingly, FMR1 carriers seem to depart further 
away in their timing profiles from elderly controls than elderly do from the young controls. This suggests that 
the healthy aging process may not significantly alter the afferent or efferent rate of activity in any specific area 
of the body, despite increasing the inter-peak interval timing (on average) for the entire body. As we saw earlier 
(Fig. 1) these consistent patterns perhaps hint that aging may not be anatomically specific with regards to the 
rate of activity. On the other hand, aging seems to decrease the efferent and afferent activity as well as increase 
the internal motor timings of the system. Further analyses of the SHANK3 cohort (accessing 15 rather than 23 
nodes) indicated that for most body parts, young developing controls seem to have higher inter-peak timings 
than those with SHANK3 deletion syndrome. As we saw in Fig. 1C, on average, controls have higher inter-peak 
timings. This is the case here across most nodes, though, for certain body parts, the opposite trend (negative 
values) can be observed. Most notably, the head node is the most negative, indicating higher inter-peak timings 
in SHANK3 deletion syndrome (Fig. 9). This is not surprising, given that SHANK3 codes for a scaffold protein 
located at the post-synaptic density (PSD) of glutamatergic synapses. These are important for the formation and 
stabilization of synapses, as they assemble glutamate receptors with their intracellular signaling apparatus and 
cytoskeleton at the  PSD45. Thus, delays in signal transmission are expected to be reflected, as we use inter-peak 
timings as a proxy of this internal process.

Given the differentiation between adult controls and very young participants (including those with SHANK3- 
and idiopathic-ASD), we then focus our next analyses on the young controls of college age, the elderly controls 
and the PPD and FMR1 participants, and separately perform the same analyses on the youngest groups of con-
trols and ASDs. The cohort corresponding to the lower NSR cluster in Fig. 8B is presented in Fig. 10, while the 
cohort with higher NSR in Fig. 8B is presented in Fig. 11.

Analyses across the 23 nodes accessible with instrumentation are visualized as an anthropomorphic intercon-
nected network representation in Fig. 10A. The figure shows the average inter-peak interval times as the color 
of the node. The average cross-coherence output of each node’s MMS series is proportional to the size of the 
node. We appreciate differences between the size of the nodes for the different groups, hence reflecting differ-
ences in the maximum coupling frequencies. Methods Fig. 13 shows the analytical pipeline to obtain pairwise 

Figure 8.  Vestibular DHI vs. subcortical PPD and FMR1 automatically segregate and point at gait differences in 
idiopathic- and SHANK3-ASD. (A) Severe vestibular DHI scores above 16 are clinically significant and separate 
from low-to-mild cases in the parameter space of average timings, left-to-right, right-to-left feet acceleration 
MMS forces (causality divided by corresponding lags) (B). High vestibular DHI, idiopathic ASD, SHANK3-ASD 
participants and their youngest age- and sex-matching controls separate along both the NSR and the force axes, 
from the older controls, the PPD and the FRM1 carriers. In non-DHI participants, circular markers represent 
females and triangular markers represent males. Two sample t tests showed no significant differences between 
males and females. (p values across x–y–z dimensions for the upper cluster; .25, .94, .83 > .05, p values across 
x–y-z dimensions for the lower cluster; .26, .12, .06 > .05). (C) The averaged point (centroid) of each group 
emphasizes the separation in (B). (D) A 2-D projection of the 3-D plot of (B) with all DHI included, shows that 
despite similarities in the NSR of the vestibular DHI and ASDs, those participants with a high DHI score depart 
from still-developing youngest participants and from ASD participants (both idiopathic and of known etiology).
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cross-coherence, along maximal values of the coupling and corresponding phase lags and frequencies employed 
in the derivation of relevant parameter spaces.

For each subject, we calculated the average speed of the COM of the lower body, as well as the average 
frequency of the speed time series. We did so, to study how the kinematics of a subject relate to the stochastic 
signatures of the MMS activity. For all groups, except the FMR1 group the speed generally increases with respect 
to the frequency while for the FMR1 carriers the speed decreases. This is depicted in Fig. 10B.

The speed is in m/s and frequency is in Hz, or 1/s. Therefore, speed over frequency has unit of meters. Behind 
this unit analysis, an important biomechanical concept is “hidden”. Due to the periodic nature of gait, frequency 
expresses the number of walking cycles or strides per unit time. Speed on the other hand, is the average distance 
traveled by the center of mass of the lower body per unit time. Distance over time divided by number of walking 
cycles over time gives us the distance traveled per stride. Revisiting Fig. 5, we observe that the third dimension, 
which is speed over frequency does not really differ between participants of each group. This indicates that cumu-
lative distance per stride might be an invariant quantity by which we could characterize each group. Figure 10C 
shows the different patterns of cumulative distance per stride across participants. We note here that the larger 
the amount of high frequency jitter in the MMS, the larger the accumulation counting towards the stride length. 
As such, some participants in the PPD and FMR1 carriers (both of which develop tremor eventually) already 
show signs of this dysregulation of involuntary jitter in the walking patterns.

Discussion
This study explored walking activity in the context of natural aging and well-established neurological conditions 
tied to vestibular and subcortical disruptions. These included patients with a broad range of vestibular Dizziness 
Handicap (according to the DHI-S inventory) and PPD, FMR1 (Fragile X premutation carriers who may also 
receive an ASD diagnosis at an early age). We aimed at examining the patterns of variability from kinematic 
parameters that would automatically stratify this random draw of the population comprising a multitude of 
ages and disorders. Furthermore, we explored the movement trajectories of multiple nodes across the body, 
with the purpose of deriving proxy metrics related to internal temporal lags in information flow. To that end, we 
framed our problem within the context of causal prediction models of outgoing efferent and incoming reafferent 
information flow, derived from time series of MMS. We found that using parameter spaces derived from causal 
connectivity analyses and associated temporal lags, we can stratify a random draw of the population compris-
ing various disorders of the nervous system. The main clusters that automatically self-emerge from our analyses 
separate vestibular- from subcortical-gait issues and forecast differentiable gait problems in FMR1 participants 
and the elderly undergoing natural aging.

We distinguish the newly defined internal time lags from external movement times modelled a priori in 
biomechanics and robotics. Such trajectories’ time profiles are often modelled using the equations of motions 
to study human movements’ trajectories within some optimization framework (e.g., optimal control models 
such as minimum  jerk46, minimum torque  rate47, minimum  energy48, among others). Temporal dynamics have 

Figure 9.  The average differences in inter-peak timings (seconds) taken for each group across all nodes, reveal 
separation between groups. A difference of zero (cyan color) indicates no significant difference (p = 0.05).
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been modelled as well in studies of motor control, within the frameworks of stochastic optimal control and 
reinforcement  learning49. In human and animal psychophysics studies associated with reaction times, temporal 
information is often derived from computer mouse-clicks or lever presses, respectively, within the context of 
perceptual learning, decision making and other tasks in the cognitive  domain50. We also distinguish from those 
studies the notion of internal temporal lags reported here.

To better appreciate the difference between the internal time lags examined here and those from biomechan-
ics, or from reaction time tasks, we invite the reader to distinguish between a person-centered perspective, i.e., 
obtained in personalized and objective manner, and an observer-centered perspective. The latter makes a state-
ment about the observer’s appreciation of actions’ trajectory timing under some a priori defined population sta-
tistics, or grand averaging parametric model. It also imposes a theoretical classical mechanical time-dependency 
that is incongruent with empirical data. Empirical studies show that the geometry and the forces characterizing 
motion trajectories are separable. Unlike in inanimate rigid bodies in motion, in biological bodies with nervous 
systems, the trajectory’s temporal dynamics depend on the level of intent that cortical neurons plan and update 
online (e.g.,51 vs38,52–55). The temporal dynamics of motion trajectories also depend on subcortical regions thought 
to specify the rate of change in bodily configurations, as the body transitions from one configuration to the 
 next56,57, and we can model it and study it in  PPD53,55. In contrast to these centrally defined timings, internal time 
lags examined here, aim at characterizing temporal dynamics from the efferent and reafferent flow of information 
across the person’s body, at the periphery. This characterization is done empirically, by estimating the person’s 
stochastic signatures from the individual fluctuations in the signals’ peak amplitudes and inter-peak-intervals’ 
timings within the framework of causal prediction in time series forecasting  analyses33,58. Furthermore, our 
characterization non-trivially augments von Holst’s principle of reafference, to include non-voluntary aspects of 
actions’ consequences into the feedback that the brain receives from internally self-generated actions.

In the present study, we aimed to study time from a person-centered approach rather than from an external 
observer approach. This led to self-emerging stratification of the cohort. Instead of a priori assuming a given 

Figure 10.  Stride-length differences from speed to frequency ratio obtained from the center of mass 
trajectories, separate healthy aging from nervous systems disorders. (A) Network representation in 
anthropomorphic avatar form. The size of the nodes is proportional to the maximum coupling frequency (the 
one that maximizes cross-coherence) of a node with the rest of the body and the color of the nodes is the average 
time distance (s) between two MMS peaks. (B) Parameter space comparing speed vs. frequency. Focusing on the 
trajectory of the center of mass of the lower body, mean speed over mean frequency of the speed time series has 
a positive upward trend for healthy controls. This contrasts to a negative trend in FMR1-carriers and variable 
trends in PPD. (C) Both types of trends and variations span a range of values across both dimensions with stride 
length periodically accumulated differing across groups. Participant 8 in the FMR1 group is a full mutation 
subject.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20904  | https://doi.org/10.1038/s41598-021-00156-2

www.nature.com/scientificreports/

distribution to characterize the moment-by-moment fluctuations in the walking parameters, we let the data drive 
our exploration, revealing maximally informative parameter spaces that automatically separated our cohort into 
clusters that differentiated between temporal dynamics of vestibular and subcortical gait pathologies. While 
models of biomechanical times cannot account for empirical results in motor control pointing at a fundamental 
separation between intended and unintended actions, animal and human models of reaction times highlight the 
subjective nature of time perception during reaction tasks in  mammals59. Such models make a general population 
statement, rather than an individualized characterization of the temporal dynamic’s phenomena.

Indeed, proper parameter spaces allowed us to separate natural aging, PPD and FMR1 premutation carrier 
syndrome from the baseline of motor activity in young controls. Furthermore, typical, and compromised neu-
rodevelopment (in the form of idiopathic- and SHANK3-ASD) revealed a fundamental departure from gait issues 
tied to subcortical structures and closer to vestibular dysfunction. Of particular interest was the finding that in 
natural aging, the lower extremities seem to be compromised, leading to a reduction in the causal prediction of 
lower body by upper body extremities. This is accompanied by a lengthening of the optimal time lags describing 
information flow derived from fluctuations in movements. The naturally aging person seems to have communica-
tion flow with higher NSR than the younger controls. This result was clearly expressed in lower feedback from 
the legs and feet to the upper body. The peripheral flow of information appeared to be severely compromised in 
the elderly PPD and surprisingly so in much younger FMR1 carriers.

The moment-by-moment fluctuations in the peak amplitudes of the MMS derived from linear and angular 
accelerations offered new ways to stratify this random draw of the population comprising multiple disorders of 
gait. Of particular interest here is the multimodal nature of the peaks’ distributions revealing a prevalence of the 
exponential family that increased with natural aging and was much more prominent in FMR1 carriers and PPD 
participants. In contrast, during early childhood, we see a prevalence of the Gaussian mode that is atypically lower 

Figure 11.  Stride-length differences from speed to frequency ratio obtained from the center of mass 
trajectories, separate young neurotypical controls from SHANK3-ASD participants. (A) Network representation 
in anthropomorphic avatar form. The size of the nodes is proportional to the maximum coupling frequency (the 
one that maximizes cross-coherence) of a node with the rest of the body and the color of the nodes is the average 
time distance (s) between two MMS peaks. (B) Parameter space comparing speed vs. frequency. Focusing on the 
trajectory of the center of mass of the lower body, mean speed over mean frequency of the speed time series has 
a positive upward trend for healthy controls. This contrasts to a slight negative trend in SHANK3. (C) Visible 
and consistent differences in stride length with SHANK3 deletion participants showing an abnormally small 
stride length in relation to age- and sex-matched controls.



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20904  | https://doi.org/10.1038/s41598-021-00156-2

www.nature.com/scientificreports/

in SHANK3-ASD, manifesting atypically higher exponential mode. This result highlights the random, memory-
less nature of the fluctuations in these groups with pathological gait. It also explains the marked reduction in 
causal prediction of upper-to-lower body and the lack of feedback from lower to upper body found in the FMR1 
carriers and in the PPD participants. Importantly, the person-centered approach used in this work was amenable 
to reveal within each group (developing, young, elderly, PPD, FMR1 carrier, idiopathic- and SHANK3-ASD) 
different subtypes according to the center of position derived from the lower body kinematics. We used these 
results to further derive parameter spaces that combined asymmetry in Granger Causality, noise-to-signal ratio, 
and distribution skewness, to express and to differentiate each group in relation to young controls. Pair-wise 
differentiation and patterns were also revealed by the inter-peak timing analyses of the trunk, arms, and legs 
regions, with different trends in natural aging vs. aging with a nervous system pathology.

The results from this study are amenable to build digital screening tools using parameter spaces derived from 
a simple walking task. Furthermore, the work offers a unifying framework to help predict the early appearance of 
large departure from normative ranges in young controls, both for normal aging and for young participants who 
are FMR1 carriers. This is important, given the high penetrance of FX-related syndrome in other neurological 
conditions across the lifespan. Among these are ASD, FXTAS and PD. The methods described here may offer a 
new way to detect these gait problems 15–20 years ahead of their clinical onset and as such, could help advance 
neuroprotective intervention models.

While our analysis uncovered the relationship and similarity between PPD and FMR1 carrier syndrome, it 
also sheds light to the process of natural aging and how individuals with PPD age differently from neurotypi-
cals. Our results indicate that in elderly controls, there is higher overall causal connectivity in the lower body 
compared to young controls. It is possible that this is related to the degeneration of motor functions in the lower 
body which comes naturally with aging. To preserve balance and avoid falls, the nervous system will incur in 
higher cognitive load. As such, natural walking, a process that is rather automatic in young people becomes 
cognitively effortful and requires higher concentration as we age. This higher cognitive (central) demand may 
be reflected in the lower body connectivity at the periphery, and poorer lower-to-upper feedback patterns found 
in the elderly participants.

The results also reveal fundamental differences between PPD and much younger FMR1 carriers, who nev-
ertheless, also showed a marked reduction in feedback from the lower to the upper extremities. These two sub-
groups were far apart in age, yet both revealed large departure from young controls and timing patterns closer 
to those of the elderly controls.

The PPD cohort, shows not only a significant increase in lower-body connectivity, but also a marked reduction 
in upper-body connectivity. This pattern suggests that the degeneration of motor control in PPD is not limited 
to the lower body, but that in fact, it is a disease that affects the motor system in a general and systemic way. A 
higher cognitive load is required to control the lower body which as a side effect may result in poor connectivity 
in the upper body, and poor systemic coordination with impaired kinesthetic sensory feedback. Interestingly, 
when comparing how the inter-peak timings of each body node differ between groups, we can conclude that 
in that sense, the elderly controls and the FMR1 carriers are almost identical to young controls. On the other 
hand, PPDs have significant different inter-peak intervals’ timings than young controls. This not only shows the 
departure of PPD from natural aging, but also shows that despite the Parkinsonian symptoms of FMR1 syndrome, 
the latter is still a fundamentally different condition than PD.

To further explore differences in gait pathologies, we examined a large cohort of participants with a broad 
range of scores from the vestibular Dizziness Handicap Inventory screening (DHI-S). This questionnaire quanti-
fies the person’s overall malaise vertigo, fatigue, and lack of balance. Then, we further characterized these scores 
using digital data from walking activities, to assess their gait. We used linear acceleration (as it relates to vestibular 
function) and derived the MMS and similar standardized ratios as with the other participants. Using the feet 
data, we localize the cohort on the parameter spaces that we designed and automatically separated the high-score 
(severe) DHI participants from those with lower (low to mild) condition. Using the severe cohort as reference, 
we localized PPD, FMR1, young and elderly controls along with still-growing young children with typical and 
atypical neurodevelopment. The latter included idiopathic- and SHANK3-ASD. They grouped with the severe 
vestibular DHI, along the NSR axis of our parameter space, rather than with the PPD and FMR1 participants 
and age-matched controls. This result distinguishes vestibular from subcortical gait disturbances and may help 
us further refine the heterogeneous ASD.

Future paths of inquiry. Finally, as a potential actionable application of the present work to mitigate the 
high levels of noise found in the walking patterns of ASDs, PPD and FMR1 carriers, we used the relationship 
that Granger’s causal prediction methods offer between frequency and time domains. Inspired by Granger’s 
approach, we developed a network-connectivity based model of noise cancellation (Supplementary Fig. 1). Spe-
cifically, we systematically removed frequencies reportedly associated with tremor in the  literature60 and quan-
tified the outcomes of this systematic removal on the noise portrait derived from the time series analyses of 
angular speed peaks of walking patterns. We found differing ranges of optimal tremor removal relative to healthy 
young vs. elderly controls group. The former revealed optimal ranges for frequencies above 19 Hz, while the lat-
ter showed frequency band with lower limits, near 10 Hz. More exploration of these aspects of noise cancellation 
are warranted, yet using the present approach exploring internal optimal time lags within the context of causal 
prediction, we open new avenues of personalized support tailored to differentiable gait issues in neurodevelop-
ment (ASD) and neurodegeneration (PPD) with forecasted problems in FMR1 carriers.

Besides the frequency-time relations highlighted in the above exploration, the work also revealed important 
spatio-temporal features of the MMS. Namely, through examination of the joint empirical distributions of MMS 
derived from fluctuations in the angular speed peaks’ amplitude and the MMS derived from the fluctuations in 
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inter-peaks-interval timings, we found interdependences and complex patterns rendering invalid the common 
assumption of independence in the spikes data (Supplementary Fig. 2). This result also opens new questions 
about common assumptions of stationarity and homogeneity in the data. Future empirical and theoretical work 
will be necessary to advance this important area of research, vital for interpretation and statistical inference of 
behavioral phenomena.

Conclusions
In summary, we offer a new unifying framework to stratify a random draw of the population based on natural 
walking patterns, identify subtypes withing each group and differentially anticipate gait pathologies of the nerv-
ous systems bound to appear in neurodevelopment, natural aging and emerge from genetic-based constraints. 
Furthermore, our simple models are computationally viable for real time implementation. As such, we suggest 
actionable models of noise cancellation to build supportive interventions tailored to different subgroups of vestib-
ular and subcortical gait pathologies. Our work warrants investigation on computational models to help enhance 
causal prediction and feedback from movements and to improve internal temporal lags of information flow.

Materials and methods
This study was approved by the Rutgers and the Columbia University Institutional Review Boards (IRBs) abiding 
by the precepts of the Helsinki Act. A total of 187 participants were included in the analyses (See Supplementary 
Table 1 for general demographics and Supplementary Tables 1–5 for demographics and clinical information in 
each group). Patients with Parkinson’s Disease (PPD) were recruited through the clinical_trials.gov site, the 
Robert Wood Johnson clinic. Participants with Dizziness Handicap were recruited through Columbia University, 
during their visit to the Otology and Neurotology clinic. ASD participants were recruited from the New Jersey 
Autism Center of Excellence (https:// www. njace. us/) and SHANK3 deletion ASD participants were part of a 
clinical trial in collaboration with Mount Sinai. Informed consent was obtained from the participants according 
to our Rutgers and Columbia University IRB-approved protocols. Different aspects of these data unrelated to 
stochastic gait analyses, were previously  published7,28,61,62.

Experimental design and statistical analyses. Participants (PPD, ASD, FMR1 and Controls of all 
ages) wore the XSens system (17 wearable sensors across the body collecting position, orientation, and accel-
eration at an internal sampling rate of 1000 Hz with an output rate of 60–100 Hz, and the SHANK3 deletion 
syndrome participants wore 15 wearable sensors, Polhemus Liberty output sampling at 240 Hz, co-registering 
data streams from 15 to 23 joints across the body, depicted in Fig. 12A). In-house MATLAB routines were used 
to implement the Frenet-Serret  frame63 and derive various kinematics parameters. Position was used to derive 
linear velocity and linear acceleration fields, which were converted to scalar fields of speed (m/s) and accelera-
tion (m/s2) respectively. Then, maxima and minima were obtained as landmarks to track the speed of the center 
of mass (e.g., Fig. 12B) (obtained by replacing mass with length in the original Eq. 1).

Participants in the vestibular DHI cohort wore SoleSound, a fully portable research prototype developed at 
the Columbia University Robotics and Rehabilitation Laboratory and previously validated as an instrumented 
footwear system for the measurement of spatiotemporal gait  parameters28. There are two nine-DOF inertial 
measurement units in each footwear unit: one placed inside the sole of the sandal along the midline of the foot 
below the tarsometatarsal junctions, and the second is in a small plastic housing which is then secured with a 
Velcro strap to the anterior aspect of the subject’s lower leg, below the knee. Four piezo-resistive force sensors are 
additionally located on the sole of each footwear unit to measure the pressure beneath the calcaneus, the head of 
the fifth metatarsal, the head of the first metatarsal, and the distal phalanx of the hallux. Together, the piezoresis-
tive sensors and the inertial measurement units measure pressure under the foot and kinematic data of the foot 
and shank, including the ankle plantar-dorsiflexion angle. An ultrasonic unit is mounted on the posteromedial 
side of the sole and enables the system to estimate the base of walking. The hip pack unit contains a single-board 
computer that synchronizes and processes raw data at a sample rate of 500 Hz. We used the kinematics data 
(acceleration) in our analyses.

Overall, we have 8 Young Controls, 15 College-Age controls, 8 Adult Controls, 4 Elderly Controls, 1 Tourette’s 
ASD, 4 Idiopathic ASD, 7 FMR1 Carriers, 1 FMR1 Full Mutation, 118 DHI Participants, 15 SHANK3 participants, 
7 Participants with Parkinson’s Disease (PPD), all together a total of 188 participants.

Time series of linear and angular accelerations were used to derive the standardized micro-movement spikes 
(MMS), to serve as input to further analytical pipelines (Fig. 12C). Then various ratios and standardized indexes 
were obtained, to allow for examination of full body and feet behaviors as available, across the full cohort of 187 
participants, independent of their anatomical differences and sensor types.

Micromovement spikes (MMS). The MMS are defined as the normalized peaks of any kinematics time series 
of the fluctuations in amplitude, as the signal deviates from the mean amplitude. Specifically, to obtain the 
micromovements time series from the angular speed time series we first calculate the peaks. Each peak is then 
normalized by the local average speed of the speed, i.e., the average value of the two minima before and after the 
peak to scale out anatomical differences owing to disparate age and physical dimensions (Eq. 2).

(1)Vcom =

∑23
i=1ViL i

∑23
i=1L i

https://www.njace.us/


17

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20904  | https://doi.org/10.1038/s41598-021-00156-2

www.nature.com/scientificreports/

Figure 12.  Methods figure. (A) Data acquisition using a grid of wearable sensors calibrating position and 
orientation in real time and sampling changes of position and orientation in time, internal sampling rate 1 kHz, 
output 60–120 Hz (specs at xsens Mtw Awinda, https:// www. xsens. com/ produ cts/ mtw- awinda). (B) Center 
of Mass trajectories (m) in 3D parameterized using the Frenet-Serret frame to study geometric aspects of the 
curve. (C) Linear speed used to mark pauses and peaks along the curve, thus allowing us to express behavioral 
landmarks along other kinematics parameters such as the angular speed quantifying bodily rates of 23 joints’ 
rotations. The MMS are derived from the fluctuations in angular speed amplitude. Red dots mark peaks 
(transitions of speed slope from positive to negative).

Figure 13.  The MMS time series extraction from the angular speed tracking stochastic trajectories from all 
joints (red dot marks the pelvis for instance).

https://www.xsens.com/products/mtw-awinda
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Figure 14.  The pipeline for the calculation of the maximum cross-coherence and the frequency for which it is 
maximized.

It has been shown that the resulting MMS time series follows the generalized gamma distribution in human 
motion and applied to  gait34,64. Then, from the resulting time series we subtract the gamma fitted mean (fitted 
using maximum likelihood estimation, MLE). When tracking the MMS continuously, we can used them as a 
peripheral proxy of the efferent an afferent activity of the central nervous system. Figure 13 shows the pipeline 
describing the MMS extraction from the sensor data.

Cross-coherence. The cross-coherence between two times series (assumed to be the realizations of unknown 
stochastic processes) is defined as the cross-spectral density between the two series normalized by the product 
of their auto-spectral  densities65. Since human motion is non-linear, in this study we use cross-coherence to 
quantify the similarity between any two body nodes’ MMS time series in the frequency domain. Notice that 
cross-coherence implies causality only for ergodic signals and linear systems. As such, we will employ causal 
analyses (explained later.) We then identify the frequency for which the cross-coherence function is maximized. 
Figure 14 shows the analytical pipeline for the calculation of maximal cross-coherence.

Mean frequency. The mean frequency of a spectrogram P(f ) is calculated as:

where fj is the central frequency of the j-th bin of the spectrum and Pj the corresponding value of the power 
spectral density. N is the total number of  bins66.

Granger causality. The MMS serve as a proxy to reflect the inner activity of the nervous system as it is expressed 
by the kinematics of the various body parts. Hence, we now have a network of times series (23 nodes) that pro-
vide information about the mechanisms of the CNS to control the peripheral activity for each subject and each 
group of subjects. Specifically, we are interested in the relationship between two time series of MMS. Traditional 
concepts, such as mutual information, cross-correlation and cross-coherence are being widely used to estimate 
the mutual information between two stochastic  processes67, or to investigate how one relates to the other in the 
time or frequency  domain62,68,69. However, they provide no information about the direction in which the infor-
mation flows, i.e., which stochastic process is the cause and which the effect.

Other concepts such as Transfer Entropy (TE) and Granger Causality (GC) give us both the direction in which 
the information flows, as well as the quantity of the information flowing from the causal stochastic process to the 
effector stochastic  process70. In the case of Gaussian processes these two are  equivalent71. TE does not require 
a model and is based on information theory concepts. GC on the other hand, requires fitting an AR model of 
order N to the time series data.

For the purposes of this paper, we choose the concept of GC. There are two reasons for our choice. First, upon 
problem simulations, GC proved to have a much smaller computational complexity than TE, to be amenable 
for real-time implementation of our proposed methods. Second, assuming an autoregressive model can help us 
estimate the response lags between different body activities. We define the response lag as the number of MMS 
peaks needed for information to flow from the afferent input of a body part to the efferent output of another 
body part. We note here that the simple ARmodel that we chose here is just the beginning of our investigation 

(2)Npeak =
peakV

peakV + avgVlocalmin−to−localmin

(3)fmean =

∑N
j=1

fjPj
∑N

j=1
Pj
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in humans, but other models of causality have been explored in other problem domains (e.g.,  see72). Further-
more, previous work has paved the way to address the complex problem of causal delays. Popular methods, 
such as the transfer entropy method and the convergent cross mapping method were shown to be unreliable, 
in the general case, for causal delay estimation, especially in the presence of strong oscillatory  behavior73. The 
conclusions derived regarding this yet-to-be solved general causal delay estimation problem can potentially 
motivate for the development of more specialized methods, designed for the case of causal delay estimation in 
the realm of neuromotor dynamics. Here we choose different approaches to adapt these concepts and simplify 
them to study stochastic and non-linear complex dynamical patterns of human gait. While our goal of seeking 
automatic stratification of a random draw of the population is more modest than that of causal coupling delay 
detection, we still face several computational challenges. The present is a first attempt to address the challenge 
of characterizing a multiplicity of gait-related pathologies across the human lifespan using standardized indexes 
amenable to localize all participants on a common parameter space and reveal self-emerging clusters. As such, 
we here explore a simpler digital screening, rather than a digital diagnostics tool.

To explain how we estimate the response lags between the activities of any two body parts we must first explain 
the concept of GC: Granger, in his original paper defined causality for a pair of stochastic processes X and Y in 
a solid, mathematical  way42. Assume we have a closed system or “universe” in which all available information is 
contained in the stochastic processes X and Y and let  Xt and  Yt be the realizations of these stochastic processes up 
to time t. Let  Ut be all the information accumulated from both time series up to t − 1. U-Y implies all information 
apart from Y. Granger gave the following definition of causality. Using his own  words42:

“If σ 2(X|U)<σ 2(X|U − Y) , we say that Y is causing X, denoted by  Yt =>  Xt. We say that  Yt is causing  Xt, 
if we are better able to predict  Xt using all available information than if the information apart from  Yt has 
been used”.

The operator A|B , where A, B are stochastic processes means the “construction” of a model where A is 
predicted from B. The operator σ 2(A|B) means the variance of the error of the model A|B . Granger’s definition 
implies that if a model that predicts the dynamic behavior of X that does not include Y, has a greater on average 
error than a model that includes Y, then Y “causes” X in that sense. Furthermore, Granger gave a formal defini-
tion of “causality lag”, which simply informs us how far in the past we should consider samples of X and Y in our 
prediction to get an optimal prediction.

“If  Yt =>  Xt, we define the (integer) causality lag m to be the least value of k such that σ 2(X|U − Y(k))
<σ 2(X|U − Y(k + 1)) . Thus, knowing the values  Yt-j, j=0,1,…m−1, will be of no help in improving the 
prediction of  Xt”.

Simply put, the concept of causality lag refers to the maximum lag in the past of the realization of the stochas-
tic process Y, beyond which, including more past samples will result in a bigger prediction error.

Granger also referred to “instantaneous causality”, which simply means that in the prediction we also include 
the present values of the stochastic processes. In our present work, due to the non-instantaneous nature of neural 
information, we assume that prediction should include only the past values. In his solution to the problem of 
estimating causality for econometric time series, Granger assumed autoregressive models of some appropriate 
order and used techniques of spectral  analysis58. He defined two models, one simple causal model that includes 
the past samples of both time series and one non-causal model that includes only the effector process. For our 
purposes, we formulated our own model and approach to Granger causality which allows us to quantify the 
internal motor timings of the system.

Granger Causality has been used extensively in many applications over the years. In a recent work, a simplified 
Granger Causality map was used to identify root causes of process disturbances. A directed causality graph was 
built using autoregressive models between operating units and the weights were adjusted based on F-values of 
parametric granger causality F-tests and then a maximum spanning tree algorithm was implemented to detect 
causes of process disturbance propagation across the units. This shows that Granger Causality can be employed 
on a network level where there are multiple processes that interact with each other, such as in our  case74. For 
our purposes, we formulated our own model and approach to Granger causality which allows us to quantify the 
internal motor timings of the system. We decided not to perform parametric tests and avoided using high order 
autoregressive models precisely because we wanted to develop a simpler technique that could run on real time 
and have a direct biological interpretation with regards to the motor timings of the CNS. Clearly, this is a first 
attempt to model these phenomena and as such, further attempts to continue our investigation on automatic 
stratification and screening are warranted.

Let X and Y be the two univariate stochastic processes and  Xn,  Yn the corresponding time series we obtained 
from our sensors. For a choice l of the internal time lag of the system, we assume the non-causal and causal 
models:

where w1,w2 are assumed to be independent discrete time processes and a1, a2, b constants we want to estimate 
from the statistical properties of our data. We also make the hypothesis that the noise processes are independ-
ent from X and Y. Assuming that the noise processes are gaussian implies they have zero means. To apply this 
model without loss of generality we simply pre-process our data by centering them around zero. Note that we 

(4)xn = a1xn−l + w1n

(5)xn = a2xn−l + byn−l + w2n
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assumed in our model independence of the processes, but it would suffice to assume them uncorrelated, which 
is weaker condition than independence.

To proceed, we multiply Eq. (4) with xn and we get:

Applying the expectation operator E(.) on both sides of Eq. (6):

Since noise w1 and the process X are independent, it means they are uncorrelated. Therefore:

From which we get an estimate for the constant a:

where Rxx(τ ) = E{xnxn−τ } is the autocovariance function of X.
We continue by multiplying (5) with xn:

Also, we multiply (5) with xn−l:

Taking the expectation on both sides of (9) and (10), since X and Y are uncorrelated, we finally arrive to the 
system of equations:

where Rxy(τ ) = E{xnyn−τ } is the cross-correlation function between X and Y.
Assuming (11) has a solution, we can estimate a2, b .
The final step in our analysis is to find the variances of the noises.
We square Eqs. (4) and (5):

Applying the expectation in both sides, since the noises are assumed to be independent of the processes, all 
cross- correlation terms between processes and noises are zero, therefore:

Since the variance of a noise processes w is σ 2 = E{(w − wmean)
2} , in our case where the noises are zero 

mean, eventually:

Thus, solving system (9) gives us the constants of the system for a given choice of lag and then Eqs. (16), 
(17) give us the errors of the non-causal and causal models. Following the logarithmic definition of  causality75:

If the causal model better predicts the behavior of Χ for a given internal motor lag, σ 2
2 < σ 2

1  then GC > 0.
A standard causal autoregressive (AR) model of order one is of the form:

Which is order 1. However, what is the physical meaning of “order 1”? It means we assume the previous 
sample, one lag in the past of X, contribute to the prediction of X. It is an arbitrary quantity when we consider 
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it independently of the sampling rate Fs of our sensors. In context however, one lag is 1Fs  seconds, which is the 
fundamental unit of time of our system. In our model, we assume:

This can still be assumed an autoregressive model of order 1 in which the fundamental unit of time is not one 
sampling period but l  sampling periods. Different choices of l  will give autoregressive models for different time 

xn = axn−l + byn−l + noise

Figure 15.  Pipeline for the estimation of the Granger Causality, Response time values and Force between two 
body parts.
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scales. The time scale l  for which causality is maximized is our definition of “internal motor timing”, because at 
this time scale, we have the maximum flow of information from Y to X.

We make the following hypothesis. At any given moment, the process  Yt transmits information to the process 
 Xt through the CNS. The response lag between the two processes is the time needed for information to travel 
from the afferent process  Yt to the efferent process  Xt. Following this train of thought we can assume that the lag 
parameter of the AR models that maximizes the GC is the best estimation of the corresponding response time 
between  Xt and  Yt. Therefore, we propose the following pipeline of analysis to find the maximum GC and estimate 
the response lags between any two sensor MMS time series of the subjects (Fig. 14).

Finally, we define “force” as the ratio between maximum GC and the corresponding optimal lag. We propose 
that this quantity is indicative of the speed of information transmittance, as it considers both the causal influence 
of one time series on another time series as well as the rate at which it takes place (Fig. 15).
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