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Abstract

Machine Learning Methods to Optimize the Geometry and Topology of Meshes

by

Arjun Narayanan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Per-Olof Persson, Co-chair

Professor Shawn Shadden, Co-chair

Meshes are used ubiquitously in engineering for representing geometries, perform-
ing computational simulations, and generating computer graphics renderings. Au-
tomatically generating suitable meshes for downstream applications remains a key
bottleneck in many workflows and often requires significant manual intervention. It
is challenging to optimize mesh data-structures because they can be highly unstruc-
tured in their most general form.

A mesh has two fundamental attributes — geometry and topology. Geometry deals
with the position and shape of objects in space. Topology is concerned with the
connectivity of mesh elements. It is essential to optimize both of these attributes to
generate a desirable mesh for a target application such as simulation. This disserta-
tion explores machine learning methods to optimize both of these attributes.

The first part of this dissertation is concerned with mesh topology. We will describe a
deep reinforcement learning framework to optimize the topology of 2D meshes using
elementary mesh editing operations. The framework is trained purely in self-play
reinforcement learning to optimize a given user defined objective function. We de-
scribe a novel neural network architecture that is able to encode the local topology
of a mesh around a given mesh neighborhood. Subsequently, the neural network is
trained to predict a probability distribution over the local action space in order to
maximize the cumulative reward as prescribed by the given objective function. The
agent is trained on randomly generated 2D polygonal shapes. We demonstrate gen-
eralization to inputs that were never seen during training. The proposed framework
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is particularly effective at coarse block decomposition of polygonal shapes where the
aim is to minimize the number of irregular vertices in the mesh.

We will then tackle the problem of geometry. We describe a deep learning method
to automatically generate patient-specific, simulation ready 3D surface meshes of
the human heart directly from clinical imaging. The proposed method is a two-
stage mesh deformation process that transforms a given template mesh to match the
underlying target geometry in the image data. The first stage consists of a learned
affine transformation conditioned on the input image. This stage is trained to roughly
align the template in terms of scale and orientation to the image data. The second
stage consists of a learned local diffeomorphic deformation field conditioned on the
image and the current location of the template. This stage improves the accuracy
of the prediction by capturing finer details of the target geometry. We describe
a novel loss function derived from the kinematics of motion of continuous bodies
that penalizes undesirable phenomenon such as surface interpenetration resulting in
anatomically accurate, physically realistic, simulation ready meshes. The proposed
framework is validated against a large held-out test dataset and compared with prior
state-of-the-art along a variety of accuracy and quality metrics.
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Chapter 1

Introduction

Mesh generation is the process of decomposing a complex shape into a collection
of geometric primitives e.g. triangles and quadrilaterals in 2D and tetrahedra and
hexahedra in 3D. Meshes are widely used in Computer-Aided Design (CAD) and
physics based simulation. While there has been tremendous progress in the past
several decades, mesh generation still remains a significant bottleneck in many sim-
ulation workflows. Indeed, the NASA Computational Fluid Dynamics (CFD) Vision
2030 [64] study identified mesh generation and adaptivity as “significant bottlenecks
in the CFD workflow”.

In almost all practical scenarios, engineers are interested in running simulation on
complex geometries that require so-called “unstructured” meshing. This is in general
a challenging problem that is hard to automate, often requiring significant manual in-
tervention. Further, existing algorithms are often based on human-derived heuristics
that may be incomplete. Rule-based algorithms quickly become very complicated
because of the highly unstructured nature of meshes.

Machine learning (ML) is a technique that has become the de facto solution ap-
proach for other unstructured problems in computer science such as image classifica-
tion and voice recognition wherein it is challenging to develop rule-based algorithms.
ML frames a given task as an optimization problem and leverages large amounts of
data to automatically “learn” useful features through the optimization process.

This dissertation aims to explore the application of machine learning techniques
to select problems from mesh generation. Meshes have two fundamental attributes
– geometry and topology. Geometry deals with the position and shape of objects
in space. For a mesh, this is determined by the position (i.e. coordinates) of its
vertices. Topology is concerned with how things are connected to each other. In
the case of a mesh, this is determined by the connectivity of vertices, edges, faces,
and volumes. Chapter 2 presents a novel ML technique to optimize the topology of
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a given 2D mesh. Chapter 3 extends the prior method to include certain geometric
considerations. Chapter 4 presents an ML technique to optimize the geometry of a
given 3D surface mesh with a specific focus on generating patient-specific models of
the human heart from clinical imaging.

The intersection of machine learning and mesh generation is an area under active
research with myriad techniques and applications. The chapters in this dissertation
are designed to be self-contained with each chapter including a discussion of relevant
prior research work and the similarities / differences with the techniques presented
herein. We hope this dissertation stands as a useful contribution and sparks further
investigation into this exciting field.
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Chapter 2

Optimizing the topology of
triangular and quadrilateral
meshes using deep reinforcement
learning

We present a learning based framework for mesh quality improvement on unstruc-
tured triangular and quadrilateral meshes. Our model learns to improve mesh quality
according to a prescribed objective function purely via self-play reinforcement learning
with no prior heuristics. The actions performed on the mesh are standard local and
global element operations. The goal is to minimize the deviation of the node degrees
from their ideal values, which in the case of interior vertices leads to a minimization
of irregular nodes.

2.1 Introduction

Mesh generation is a crucial part of many applications, including the numerical
simulation of partial differential equations as well as computer animation and visual-
ization. While it can be discussed exactly what makes a mesh appropriate for a given
situation, it is widely accepted that fewer number of irregular nodes lead to better
quality meshes. Therefore, many mesh generation and mesh improvement methods
have been proposed that aim to maximize the regularity of the mesh, in particular
in the case of quadrilateral elements.

For triangular meshes, some of the most popular algorithms are the Delaunay
refinement method [61] and the advancing front method [52]. The resulting meshes
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might be improved by local operations or smoothing, although typically based on
element qualities rather than the regularity of the connectivities. Some quadrilateral
mesh generators are also based on a direct approach, such as the paving method
[8], but most use an indirect approach of creating quadrilateral elements from a tri-
angular mesh. These methods include the popular Q-Morph method [46], element
matching methods such as the Blossom-Quad method [57], and so-called regular-
ization or mesh simplification methods which improve an initial mesh using various
mesh modification techniques [17, 68, 3, 9].

Although many of these mesh modification methods produce impressive results,
we note that the algorithms for how they apply the various mesh operations are
usually highly heuristic in nature [23, 3]. This is expected, since finding an optimal
strategy is a complex discrete optimization problem. Indeed, Canann et al. [12]
highlight the need to “recognize and process patterns of irregularities that occur
over larger groups of elements” in order to achieve meshes with desirable connectiv-
ity and they demonstrate the efficacy of complex mesh edits by composing sequences
of multiple local operations. Developing such heuristics is challenging and laborious,
and it is difficult to adequately explore the state space and action space. Identify-
ing optimal sequences of mesh editing operations that improve mesh quality is not
trivial and is highly dependent on the type of mesh being considered. For instance,
the heuristics that optimize triangular meshes are different from the heuristics that
optimize quadrilateral meshes. Further, traditional optimization methods such as
mixed integer programming are computationally expensive and the computational
cost grows exponentially with problem size making it challenging to adapt these
methods to meshes of different size.

To address the above challenges, we explore deep reinforcement learning as a solu-
tion approach for this optimization problem. A major advantage of such an approach
is that optimal sequences of actions can be discovered by the reinforcement learning
agent purely by interacting with a mesh environment through self-play. This circum-
vents the requirement for human crafted heuristics. The agent can adapt to different
mesh types by training it on an appropriate mesh environment. This provides a uni-
fied approach that can be applied to different mesh types. We formulate our problem
in the language of reinforcement learning (RL) [66] wherein actions available to the
agent are local mesh edit operations and the rewards are the improvement of mesh
regularity as measured by a prescribed objective function. By converting our opti-
mization problem into a sequential decision process consisting of local mesh editing
operations, we avoid the exponential cost of global solution strategies like mixed
integer programming.

In this work, we consider the case of planar straight-sided polygonal geometries.
However, since our method is based purely on mesh connectivity, it may be applied
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to geometries with curved boundaries as well so long as the regularity of vertices
on these boundaries is specified. We generate a coarse initial triangular mesh using
the Delaunay refinement algorithm. In the case of quadrilateral meshes, we perform
Catmull-Clark splits of the triangles, and we also introduce global mesh operations.
One of these is the clean-up, which aims to reduce the total number of elements
which is suitable for generation of block decompositions.

A key component of our framework is the employment of the half-edge data
structure, which in particular allows us to define a convolutional operation on un-
structured meshes. A neural network is trained to produce a probability distribution
for the various actions on local neighborhoods of the mesh, i.e., a policy. The pol-
icy is sampled to determine the next operation to perform. A powerful property of
our method is that it generalizes to both triangular and quadrilateral meshes with
minimal modifications to account for the different actions available on these meshes.
We limit action selection to local mesh neighborhoods, allowing the learned policy
to generalize well to a variety of mesh types and sizes that were not present in the
training data. We demonstrate our methods on several polygonal shapes, where we
consistently obtain meshes with optimal regularity. Extension of this method to
arbitrary polygonal elements is reserved for future work.

Machine learning has been applied to numerous mesh generation problems before.
Pointer networks [73] have been used to generate convex hulls and Delaunay trian-
gulations. Deep RL has been used to learn quadrilateral element extraction rules
for mesh generation [48, 49]. RL has also been employed to learn adaptive mesh
refinement strategies [78, 65]. In [20], RL was used to perform block decomposition
of planar, straight-sided, axis aligned shapes using axis aligned cuts.

Our work differs from prior work in several key ways. Our objective function is
purely based on the connectivity of the mesh and our framework aims to minimize
the number of irregular vertices. We consider local topological edit operations as
our action space. Our novel convolution operation on the half-edge data-structure
provides a powerful, parameterized way of constructing state representations that
encode neighborhood connectivity relationships. We employ a local neighborhood
selection technique that allows us to generalize to different mesh sizes. These key
features enable our method to work on both triangular and quadrilateral meshes of
various sizes.

The half-edge data-structure is able to represent arbitrary polygonal shapes in
2D. Thus our state representation method naturally extends to all such polygonal
shapes. Our reinforcement learning framework can be applied to these shapes so long
as an appropriate action space is defined. We hypothesize that the technique can be
extended to 3-dimensions by leveraging the equivalent of the half-edge data-structure
in higher dimensions [21, 24]. Prior work has explored the action space in 3D e.g.
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tetrahedral [62, 34, 26] and hexahedral meshes [39, 69].

2.2 Problem Statement

In the present work we are interested in optimizing the connectivity of triangular
and quadrilateral meshes. The overall objective is to produce meshes where all the
vertices have a specific number of incident edges. We refer to this as the desired
degree of a vertex. A vertex whose degree is the same as the desired degree is called
regular. A vertex whose degree is different from the desired degree is called irregular,
with the difference between the degree and the desired degree being a measure of
the irregularity of the vertex. Our framework allows the user to specify the desired
degree on all vertices. The user is allowed to specify the desired degree of any newly
introduced vertex.

While there exist robust algorithms for triangular and quadrilateral meshing such
as Delaunay triangulation and paving, these algorithms are not designed to produce
meshes with a specific connectivity structure. A common approach is to use these
algorithms as a starting point and improve the connectivity of the mesh through
various topological mesh editing operations [22]. We adopt this approach and frame
our problem as a Markov Decision Process.

Objective function

Consider a mesh with Nv vertices. Let vertex i have degree di and desired degree d∗i .
Then its irregularity is ∆i = di− d∗i . We compute a global score s as the L1 norm of
∆, which is a measure of the total irregularity in the mesh.

s =
Nv∑
i=1

|∆i| (2.1)

Clearly, a mesh with all regular vertices will have a score s = 0.

Heuristics to determine desired degree

Our heuristic for triangular (quadrilateral) meshes is based on achieving an interior
angle of 60◦ (90◦) in all elements. The desired degree of any vertex in the interior
is 6 (4). The desired degree of a boundary vertex is chosen such that the average
included angle in all elements incident on that boundary vertex is approximately 60◦

(90◦) . The desired degree according to this heuristic can be expressed as,
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d∗ =

{
360/α interior vertex

max (⌊θ/α⌉+ 1, 2) boundary vertex
(2.2)

where ⌊·⌉ is the round to nearest integer operator, θ is the angle of the boundary at
the vertex in question, and α is 60◦ (90◦) for triangles (quadrilaterals). We observed
that rounding to the nearest integer resulted in better performing models than using
d∗ as a continuous value on the boundary. According to this heuristic, the desired
degree of a new vertex introduced on the boundary is set to 4 (3) since we assume
that the edge on which the new vertex is introduced is a straight edge.

Topological operations on meshes

We define the following local operations on triangular meshes. See figure 2.1 for an
illustration.

• Edge Flip: An interior edge in a triangular mesh can be deleted and the
resultant quadrilateral can be re-triangulated across its other diagonal. This
can be seen as “flipping” an edge between two possible states.

• Edge Split: Any edge in a triangular mesh can be split by inserting a new
vertex on the edge and connecting it to the opposite vertices in the adjacent
triangles.

• Edge Collapse: An interior edge in a triangular mesh can be collapsed re-
sulting in the deletion of the two triangles associated with this edge.

Similarly, we define the following local operations on quadrilateral meshes. See
figure 2.2 for an illustration.

• Edge Flip: An interior edge in a quadrilateral mesh can be deleted, and the
resultant hexagon can be quad-meshed in two new ways. This can be seen as
“flipping” an edge clockwise or counter-clockwise.

• Vertex Split: A vertex in a quad mesh can be split along an interior edge
incident at that vertex. This results in the insertion of a new vertex and a new
element into the mesh.

• Element Collapse: A quadrilateral element can be collapsed along either
diagonal by merging the two opposite vertices. The collapse operation can be
seen as the inverse of the split operation defined above.
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Figure 2.1: Configuration (a) and (b) are related by an edge flip. Configuration (c)
can be produced by splitting the interior edge in either (a) or (b). Collapsing the
edge between vertex 3-6 in (d) produces (e).

For quadrilateral meshes we also define the following global mesh editing opera-
tions. They are global in the sense that they can affect the topology of the mesh far
away from where they are applied. See figure 2.3 for an illustration.

• Global Split: This operation splits an edge by inserting a quadrilateral ele-
ment and introducing vertices on the edges in the two adjacent quadrilateral
elements. The introduced vertices are hanging vertices – therefore we recover
an all-quadrilateral mesh by propagating edges from the hanging vertices and
sequentially splitting elements until the split terminates on a boundary.

• Global Cleanup: In some situations, global lines – which represent a sequence
of edges – can be deleted by merging adjacent elements. The global line either
terminates on the boundaries of the mesh or forms a closed loop. We currently
handle the situation where the global line terminates on the boundaries. (For
meshes representing closed surfaces it would be important to consider the case
of closed loops.) This operation results in the deletion of a sequence of vertices
and elements. Vertices are distinguished into geometric and non-geometric



CHAPTER 2. OPTIMIZING THE TOPOLOGY OF TRIANGULAR AND
QUADRILATERAL MESHES USING DEEP REINFORCEMENT LEARNING 9

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

(c)(a) (b)

(d) (e)

Figure 2.2: Configuration (a) and (c) can be obtained from (b) via an edge flip.
Configuration (e) is obtained from (d) via a vertex split, and the operation can be
reversed via an element collapse.

vertices. Geometric vertices are those vertices which are integral in defining
the geometry – these vertices cannot be deleted. The conditions under which we
can perform this cleanup operation are (a) the end-points are on the boundary,
are non-geometric, and have degree 3, and (b) all interior vertices are non-
geometric and have degree 4. The cleanup operation is a powerful operation
since it simplifies the problem and brings irregular vertices closer together. This
strategy is particularly relevant for block decomposition of polygonal shapes.

2.3 Mesh Representation and Operations

The half-edge data structure

We employ the doubly-connected edge list (DCEL), also known as the half-edge
data-structure, to represent our meshes. The advantage of the DCEL is that (a)
it enables efficient implementations of the mesh editing operations described in 2.2,
and (b) we utilize fundamental DCEL operations to represent the local topology in
a given mesh region which is important to determine the appropriate action to be
applied. The DCEL can be used to represent any planar, manifold mesh and as such
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Figure 2.3: Performing a global split on the edge between vertices 2 and 5 in the
initial mesh (b) produces the mesh in (a). Alternatively, the sequence of edges
between vertices 4 – 5 – 6 in the initial mesh (b) can be deleted by merging the
neighboring elements, resulting in configuration (c).

allows our method to work on all such meshes. Extensions to the DCEL have been
developed for non-manifold meshes and 3D volumetric meshes [21, 24].

Briefly, the DCEL exploits the fact that each mesh edge is shared by exactly two
mesh elements (except on the boundary). The DCEL represents each mesh edge as a
pair of oriented half-edges pointing in opposite directions. Each half-edge contains a
pointer to the counter-clockwise next half edge in the same element, and a pointer to
the twin half-edge in the adjacent element. Each element contains a pointer to one
of its half-edges (chosen arbitrarily) which induces an ordering on the half-edges in
an element. Elements can be ordered by their global index in the mesh – this induces
a global ordering on half-edges in the mesh. Each half-edge may be associated with
a unique vertex. For triangles, we associate each half-edge with its opposite vertex.
For quadrilaterals, we associate each half-edge with the vertex at its origin. The
exact choice of the association does not matter as long as it is consistent. See fig.
2.4 for an illustration. Further details about the DCEL can be found in a standard
resource on computational geometry, for example [44].
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Figure 2.4: Representing two triangular elements using the DCEL. The half-edges
in each element are shown as red arrows. Each half-edge contains a pointer to the
counter-clockwise next half-edge in the same element e.g. in triangle T2, half-edge
2’s next pointer points to half-edge 3. Half-edges in the interior of the mesh have
a twin pointer to the half-edge in the adjacent element e.g. the twin of half-edge 1
in triangle T2 is half-edge 2 in triangle T1. We additionally associate each half-edge
with a unique vertex in the element. For triangles we associate the vertex opposite
a given half-edge e.g. half-edge 1 in triangle T2 is associated with vertex 4. For
quadrilaterals we associate the vertex at the origin of the half-edge.

Algorithmic complexity and parametrization of mesh editing
operations

All of the local editing operations defined in 2.2 for triangles and quadrilaterals can
be executed using the DCEL in constant time (assuming an upper bound on the
maximum degree of a vertex). This is a powerful advantage offered by the DCEL
compared to other mesh representations. For instance, when flipping a particular
half-edge it is important to know which are the two neighboring elements across that
edge – this is readily available in the DCEL.

The global operations defined for quadrilateral meshes in 2.2 requires connectivity
editing operations that can propagate through several elements of the mesh before
terminating. The algorithm for these operations scales linearly with the size of
the mesh. In particular we disallow situations where global splits may result in
the formation of loops or that do not terminate in a fixed number of iterations
proportional to the size of the mesh. For the cleanup, we observe that every half-
edge either lies on a cleanup path or does not. Performing a cleanup on a path does
not affect the ability to cleanup other paths. Therefore all cleanups possible in a
mesh can be performed by visiting every half-edge exactly once.
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Our framework optimizes a policy to perform sequences of mesh editing operations
to achieve a given objective. All operations other than the global-cleanup are valid
operations that can be learned by the policy. Whenever a global-cleanup is valid,
it is always performed. We choose to do this because the cleanup simplifies the
problem size and brings irregular vertices together making it easier to improve the
connectivity of the mesh. A cleanup only deletes regular vertices according to our
heuristic and never introduces any new irregular vertices in the mesh. Further, the
cleanup is very useful in performing block decompositions of polygons.

We parametrize all the mesh editing operations in terms of half-edges. In a given
mesh, specifying a particular half-edge and a particular type of edit determines an
operation on the mesh. We have 3 operations per half-edge in the case of triangular
meshes – flip, split, and collapse. Further, we have 5 operations per half-edge in
the case of quadrilateral meshes – right-flip, left-flip, split, collapse, and global-split.
There is some redundancy in this representation of actions on the mesh. For instance,
flipping a half-edge and its twin are equivalent operations. We choose to retain this
redundancy because (a) it fits in well with our half-edge framework, (b) the size of
the state representation is larger only by a constant factor, and (c) it exposes the
symmetries in the half-edge representation and may be seen as data augmentation
in our state representation leading to more robust learning. Further, some actions –
like the quadrilateral split – are not equivalent when performed on a half-edge and
its twin.

2.4 Formulation as a Deep Reinforcement

Learning Problem

Constructing the reward function

Clearly, a mesh with all regular vertices will have a score s = 0. Under the assumption
of the heuristic described sec. in 2.2, all the topological edit operations described in
sec. 2.2 are zero-sum leaving the quantity s∗ = |

∑
i ∆i| invariant for a given mesh.

This does not hold true if we change the heuristic for the desired degree of newly
introduced vertices from what we described in sec. 2.2. If a mesh contains irregular
vertices all of the same sign then its global score eq. 2.1 cannot be improved. s∗

provides a lower bound on the score s,

s∗ =

∣∣∣∣∣
Nv∑
i

∆i

∣∣∣∣∣ ≤
Nv∑
i

|∆i| = s (2.3)
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We call s∗ the optimum score. It is not clear if a score s∗ can always be attained
for a given mesh, however it serves as a useful measure of performance. The goal of
our reinforcement learning framework is to learn sequences of actions that minimize
s for a given mesh. In particular, consider a mesh Mt with score st at some time t.
We now perform a mesh editing operation at on it to obtain mesh Mt+1 with score
st+1. Our agent is trained with reward rt,

rt = st − st+1 (2.4)

An agent starting with an initial mesh M1 transformed through a sequence of
n operations a1, a2, . . . an collects reward r1, r2, . . . rn. We consider the discounted
return from state Mt as,

Gt =
n∑

k=t

γk−trk (2.5)

with discount factor γ. (We use γ = 1 in all of our experiments.) Observe that the
maximum possible return from this state is G∗ = st − s∗. Thus, we consider the
normalized return Gt as the advantage function to train our reinforcement learning
agent,

Gt =
Gt

st − s∗
(2.6)

The return eq. 2.5 collected on meshes of different sizes will be different simply
because larger meshes tend to have more irregularities. By normalizing the return in
eq. 2.6, we ensure that actions are appropriately weighted during policy optimization.
The mesh environment terminates when the mesh score st = s∗ or when a given
number of mesh editing steps have been taken. We choose the maximum number of
steps to be proportional to the number of mesh elements in the initial mesh.

While our current experiments are based on the objective described above, one
could consider several modifications. Depending on the application, irregularities
on the boundary may be more or less desirable than irregularities in the interior
of the domain. The objective function can capture this difference in preference by
weighting the contribution of boundary vertices and interior vertices differently when
computing the score s. We could also consider improvement in element quality in the
objective function. However, this would require a consideration of geometry along
with topology and is reserved for future work.
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Convolution operation on the DCEL data-structure

All of the actions, apart from the global-cleanup, affect the topology of the mesh lo-
cally. In order to determine if an action produces desirable outcomes in a particular
neighborhood of the mesh, we need to understand the topology of this neighbor-
hood. We require a representation of the local topology around each half-edge in
order to select a suitable operation. In the language of reinforcement learning, this
representation of the local topology is the state of a half-edge. The connectivity in-
formation in the immediate neighborhood of a half-edge is most relevant to determine
the appropriate action to take in this neighborhood. We present here a convolution
operation on the DCEL data-structure that encodes topological information around
every half-edge. Indeed, this operation may be interpreted as a convolution on the
graph induced by the half-edge connectivity. Iterative application of this convolution
encodes topological information in a growing field-of-view around every half-edge.
Further, this convolution operations can be efficiently implemented on modern GPU
hardware.

Determining the appropriate action to take on a given half edge requires us to
inspect the degree and irregularity of vertices in a neighborhood around the half-
edge. Since the meshes we consider are unstructured, it is not immediately obvious
which vertices to consider and in what order to consider them in. Our key obser-
vation is that the fundamental DCEL operations can be leveraged to construct a
state representation for each half-edge that has a specific ordering. Our convolution
operation requires two fundamental pieces of information both of which are easily
available from the DCEL. For each half-edge we need to know the indices of (a) all
the cyclic-next half-edges from the given element, and (b) the twin half-edges from
the neighboring element. (a) is easily achieved by using the next operation repeat-
edly – 3 for triangles and 4 for quadrilaterals. (b) is fundamentally part of the DCEL
data-structure.

As described in sec. 2.3, there is a natural global ordering for all the half-edges
in the mesh. Half-edges from the same element appear sequentially in this global
ordering. If the half-edges are stored in this order, the cycle operation can be imple-
mented efficiently as a sequence of matrix reshape operations which are provided by
most array based programming languages. Consider a mesh with Nh half-edges with
the state of each half-edge represented by an Nf dimensional vector. This data when
stored in sequential order can be represented by a matrix x ∈ RNf×Nh . Algorithm
1 describes the cycle operation applied to this state matrix for triangular meshes.
The extension to quadrilateral meshes or other polygonal meshes is straightforward.
(We assume that n-dimensional arrays are stored in column-major order. We adopt
a syntax that closely follows the Julia/MATLAB Programming Language.)
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Algorithm 1 Cycle operation on triangular meshes

Input x ∈ RNf×Nh

Output y ∈ R3Nf×Nh

x ← reshape(x, Nf, 3, :)

x1 ← reshape(x, 3Nf, 1, :)

x2 ← reshape(x[:, [2, 3, 1], :], 3Nf, 1, :)

x3 ← reshape(x[:, [3, 1, 2], :], 3Nf, 1, :)

y ← concatenate x1, x2, and x3 along the second dimension (i.e.

columns)

y ← reshape(y, 3Nf, :)

Information from twin half-edges is easily obtained by selecting the appropriate
columns from the feature matrix. We use a learnable vector as the twin feature for
edges on the boundary. This vector is part of the agent’s parameter space and may be
used by the agent to represent a useful signal indicating the boundary of the geometry.
The same vector is used as the twin feature of all half-edges on the boundary. Our
basic convolution operation involves cycling the current feature matrix, obtaining
the features from the twin half-edges, and concatenating all of the features together.
The resultant matrix is processed by a linear layer, followed by normalization and a
non-linear activation function. We use LeakyReLU as our activation function. We
refer to this operation as a DCEL convolution block. Under the operation of each
convolution block, every half-edge receives information from all the half-edges within
the same element and the twin half-edge from the adjacent element. After repeated
application of such blocks, the final feature matrix will contain an encoding of the
local topology in a field-of-view around every half-edge. The size of this field of view
grows linearly with the number of convolution blocks. We use five convolution blocks
in all of our experiments.

The initial feature matrix fed to the model is x0 ∈ R2×Nh . Recall from sec. 2.3
that each half-edge is associated with a vertex. The initial feature matrix consists of
the degree and irregularity of the associated vertices for every half-edge. This initial
feature matrix is projected to a high dimensional embedding space using a linear
layer on which the convolution described above is applied. The final layer projects
the features into an Na×Nh matrix where Na is the number of actions per half-edge.

Action selection by the agent

The size of meshes can vary as the agent manipulates the mesh. The total number
of actions available to the agent varies with the size of the mesh. To ensure that
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Figure 2.5: Repeated application of the convolution operation produces an increasing
field of view around every half-edge. For triangles, we associate every half-edge with
the vertex opposite it in the same triangle (fig. a). A cycle operation gathers
information from the remaining vertices in the element (fig. b). Repeated application
of twin and cycle produces the ordered list of vertices in fig. (c) and (d).

the agent can generalize across different mesh sizes, we found it important that our
policy is represented by a fixed sized vector representing the probabilities of selecting
various actions.

To do this, we generate a list of vertices which we call the template around each
half-edge (see fig. 2.5.) The template can be constructed using operations similar
to the convolution described in sec. 2.4. Initially, every half-edge has the index of
the vertex it is associated with. After a cycle operation, every half-edge receives
the indices of the vertices that are cyclic next. After a twin operation, every half-
edge receives vertex indices from neighboring elements. Notice that there is some
repetition in indices which can be avoided by selecting appropriate rows of the index
matrix after a cycle or twin operation. These operations are repeatedly applied to
grow the size of the template. We use dummy vertices if the template goes outside
the boundary of the mesh. We then compute the score eq. 2.1 restricted to each
template. This is a measure of the local irregularity around every half-edge. The
irregularity of dummy vertices is set to zero ensuring that they do not contribute to
the score of the template. Action selection is then restricted to the half-edges in the
template with the highest local score with ties broken randomly. Thus we consider
an Na×Nl subset of the output feature matrix from sec. 2.4 where Nl is the number
of half-edges in the template. This matrix is flattened and passed through a softmax
layer to obtain a probability distribution over actions in the template. We sample
from this distribution to take a step into a new mesh state. Figure 2.6 shows an
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Figure 2.6: Illustrating the action selection process on meshes. Half-edge features
consisting of the degree and irregularity of the associated vertex are first projected
to an embedding space. Convolution on the DCEL data-structure is performed on
these embeddings. Local templates are constructed around all half-edges to obtain a
local measure of mesh irregularity. Action selection is restricted to the local template
with the highest measure of irregularity. The final feature matrix is flattened and
passed through a softmax layer to obtain action probabilities (i.e. a policy). This
distribution is sampled to determine the action to take.

illustration of the action-selection process for a given mesh.
In the current implementation, convolution is performed on the entire mesh. Sub-

sequently, the local irregularity measure is used to restrict action selection to the local
template. While this works fine for our small examples, it would be computationally
wasteful on larger meshes since convolution is performed on many half-edges that
may not be included in the final template. In future implementations we will first
choose the local template and only perform convolutions on this subset of half-edges.

The main purpose of constructing the template is to obtain a local measure of the
irregularity score which enables fast selection of candidate regions. This ensures that
action selection is restricted to regions with a high potential for reward. Further,
we are able to consider a fixed size action space restricted to this candidate region,
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enabling the agent to generalize across mesh sizes. Alternate strategies may be
adopted for candidate selection instead. For example, using breadth-first-search to
find the K-nearest neighbors of a half-edge in the graph induced by the half-edge
connectivity. The score eq. 2.1 restricted to this K-neighborhood can be used as a
measure of the local irregularity in the mesh.

Training the agent in self-play

The initial states for self-play are randomly generated polygonal shapes. We ran-
domize the degree of polygon (i.e. number of sides of the polygon) between set
bounds. We perform Delaunay refinement meshing of this shape and use that as
the input to the triangular mesh agent. For the quadrilateral agent, we perform the
Catmull-Clark splits on the triangles to get an all quad initial mesh.

The agent is allowed to interact with the mesh and perform operations on it for
a finite number of steps or until the agent achieves the optimum score s∗ whichever
comes first. Because the size of the mesh environment can be variable, the value or
expected reward that an agent can receive from a given mesh environment is vari-
able and cannot be inferred purely from the local representation of state that we
employ. This makes it challenging to use value function based algorithms such as
Deep Q-Learning [45] or Soft Actor-Critic [28]. Therefore, we train our agent us-
ing an actor-only version of the Proximal Policy Optimization (PPO) [60] algorithm
without a critic (i.e. value function) network. PPO is one of the most widely used
deep-reinforcement learning algorithms. It falls within the family of policy-gradient
algorithms [67] with additional constraints that prevent large changes in the policy
distribution during training. This ensures training stability and uniform policy im-
provement over the course of training. We use eq/ 2.6 as the advantage function
in the PPO algorithm. We add an entropy regularization to the loss function to
avoid local minima and balance exploration with exploitation. Full details of the
hyperparameters used are provided in table 2.1.

The agents were trained for approximately 24 hours on a single Nvidia GTX
2080TI GPU. As the learning curves in figs. 2.7a and 2.10a show, the agent reaches
its optimal performance fairly quickly after which performance plateaus implying that
the full 24 hours was not necessary to train the model to a good level of performance.
The inference cost of each step of the agent is on the order of a few milliseconds and
is hardware dependent. Note that we did not optimize for model throughput.
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Hyperparameter Value
PPO ϵ parameter 0.05

Minibatch size 128
Epochs per PPO iteration 5

Trajectories sampled per PPO iteration 200
Number of PPO iterations 2000

Weight of entropy loss 0.001
Learning rate 10−4

Discount factor γ 1
Number of DCEL convolution blocks 5
DCEL convolution hidden layer size 128

Table 2.1: Hyperparameter settings used to train the agent

2.5 Results

Triangular meshes

The triangular mesh agent was trained on random shapes consisting of 10 to 30
sided polygons. The initial mesh was a Delaunay refinement mesh generated by
the Triangle package [61]. Figure 2.7 shows the learning curves of our agent over
training history, and the performance of the trained model over 100 rollouts. The
average normalized single-shot performance over 100 meshes was about 0.81 (σ =
0.11). However, since the learned policy is stochastic, a simple way to improve the
performance is to run the policy k times from the same initial state and pick the
best mesh. Using k = 10 samples per mesh and averaging over 100 random meshes,
the performance improved to 0.86 (σ = 0.08).

Table 2.2 demonstrates the generalization capability of the learned policy. By
using a fixed sized local template, the same agent can be evaluated on meshes of
various sizes with good results. We do observe some reduction in model performance
on larger meshes. Irregularities tend to be separated by greater distances on larger
meshes, requiring longer sequences of operations to effectively remove them. We
illustrate an example of the trained agent’s performance on a 40-sided polygon in
fig. 2.9. While the agent is able to eliminate some irregularities that are near each
other, the final mesh still contains quite a few irregularities that are separated by
large distances. We need to bring irregularities near each other in order to regularize
them. This requires a complex sequence of moves that our agent is unable to learn.
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Figure 2.7: (a) Performance of the triangle mesh agent over the training history. Solid
line represents the average normalized return over 100 meshes evaluated periodically
during training. Shaded region represents the 1-standard deviation envelope. (b)
Performance of the trained agent over 100 rollouts. The agent incrementally improves
mesh quality up to a certain number of steps. Notice that returns do not increase
monotonically, indicating that a greedy strategy may not be effective for this problem.

Further, since our state-representation relies on a local template, when irregularities
are separated by large distances, our agent is unable to detect them through the
local state representation.

We note that the normalized performance of the agent in the quadrilateral mesh
environment is significantly better (see sec. 2.5.) Our experiments indicate that the
use of global mesh editing operations such as the global-split and global-cleanup are
instrumental in achieving this performance. The global cleanup, in particular, is
effective at coarsening the mesh without introducing new irregularities. The cleanup
operation brings irregularities closer to each other making it easier to combine them
and regularize them. Defining such a clean-up operation for triangles is non-trivial
and remains to be addressed through future work.

Quadrilateral meshes

The quadrilateral mesh agent was trained on random shapes consisting of 10 to 30
sided polygons. Figure 2.10a shows the average normalized returns over training for
the quadrilateral mesh agent. We observe that the agent quickly learns operations
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Polygon degree Average Standard deviation
3 - 10 0.83 0.19
10 - 20 0.87 0.08
20 - 30 0.83 0.10
30 - 40 0.78 0.08
40 - 50 0.75 0.07

Table 2.2: Evaluating the triangle mesh agent on various sized random polygons. The
agent was trained purely on 10 - 30 sided polygons but is able to generalize to other
polygon sizes with minor deterioration in performance. The agent was evaluated
by picking the best of 10 rollouts per geometry, with the statistics computed over
100 randomly generated shapes. The results demonstrate the effectiveness of using a
fixed-sized local template which enables better generalization to different mesh sizes.
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Figure 2.8: Example rollout of the triangular mesh agent on a 20-sided polygon.
Irregular vertices are marked in color, with the current score and optimum score
shown at the top right for each figure. (a) is the initial Delaunay refinement mesh
(b) is at an intermediate stage and (c) is the final mesh after 27 operations.
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Figure 2.9: Example rollout of the triangular mesh agent on a 40-sided random
polygonal shape. (a) is the initial mesh, (b) is an intermediate state, and (c) is
the mesh with the lowest score during policy rollout. Notice that the agent is able
to improve the irregularity score of the mesh. However, the final mesh contains
irregular nodes that are separated by several mesh elements. These irregularities
require complex sequences of moves to bring them together and regularize them.
Further, the agent has a limited field of view controlled by the size of the local
template. Irregularities outside the local template will not be seen by the agent.

that significantly improves the connectivity of the mesh to nearly optimal. Perfor-
mance was assessed periodically during training by evaluating the model on 100 ran-
domly generated meshes. Figure 2.10b shows the evaluation of the best performing
model on 100 trajectories. We observe that performance depends on the maximum
number of steps given to the agent up to a certain point. The average normalized
single-shot performance over 100 meshes was about 0.95 (σ = 0.05.). Using k = 10
samples per mesh and averaging over 100 random meshes, the performance improved
to 0.992 (σ = 0.02).

Since our state representation is a fixed-sized local template around a half-edge
of interest, our model generalizes well to polygons that were not part of the training
dataset. Table 2.3 shows the performance of a model trained on 10 - 20 sided polygons
that is able to generalize to larger sized polygonal shapes. We do observe some drop
in the performance of the agent when mesh sizes are increased. This is consistent with
our observations for triangular meshes. Irregularities are often separated by several
mesh elements in larger meshes, requiring longer range sequences of operations to
regularize them. The complexity of these operations, coupled with the local nature
of our state representation likely causes the deterioration in the agent’s performance.
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Figure 2.10: (a) Performance of the quadrilateral mesh agent over the training his-
tory. Solid line represents the average normalized returns evaluated over 100 meshes.
Shaded region represents the 1-standard deviation envelope. The curve demonstrates
that the agent is able to achieve good performance quite rapidly, and the learning
remains stable over many training iterations. (b) Evaluating the trained model over
multiple rollouts. Solid line represents the average performance of 100 rollouts. The
graph demonstrates that increasing the maximum number of operations available to
the agent has a big impact on performance initially, but only up to a certain point.
Returns do not increase monotonically, highlighting that a greedy strategy may not
be effective in this setting.

Figures 2.11 and 2.12 show some example rollouts on various polygon sizes. Note
that the “optimal” mesh produced by the agent in fig. 2.12c contains an irregular
vertex with degree 2 on the bottom boundary. This mesh is considered optimal ac-
cording to our objective function eq. 2.1 since its score is equal to the optimal score
s∗ for this configuration. However, there are many applications wherein a configura-
tion such as fig. 2.12d is preferred, with the irregularity moved to the interior of the
domain. This latter configuration is achieved via a post-processing step by applying
an edit similar to the global split. Observe that both of these configurations have
exactly the same objective score and are thus considered equivalent by our metric.
If irregular vertices on the boundary are not preferred, they may be fixed by post-
processing steps. Alternatively, the objective function may be modified by using a
higher weight on irregularities on the boundary. This can encourage the agent to
learn to move irregularities away from the boundary into the interior of the domain.
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Polygon degree Average Standard deviation
10 - 20 0.98 0.03
20 - 30 0.97 0.06
30 - 40 0.94 0.14
40 - 50 0.91 0.13

Table 2.3: Evaluating the quadrilateral mesh agent on various sized random polygons.
The agent was trained purely on 10 - 20 sided polygons, but is able to generalize
to larger polygonal shapes with minor deterioration in performance. The agent
was evaluated by picking the best of 10 rollouts per geometry, with the statistics
computed over 100 randomly generated polygonal shapes. Using a fixed-sized local
template enables stronger generalization to different sized meshes.

Generalization to new geometries

Figures 2.13 and 2.14 show zero-shot transfer to never before seen geometries like L-
shape, star-shape, etc. The agent is able to handle geometries with re-entrant corners
and notches which were not explicitly part of the training space. Further, our model,
which was trained exclusively on genus-0 geometries with no interior holes is able to
generalize zero-shot to genus-1 shape consisting of a square hole in a circular shape.

We highlight the use of our approach in block decomposition of complex shapes
into coarse quadrilateral elements. The global cleanup operation is particularly ef-
fective for this application as it is effective at coarsening the geometry without in-
troducing new irregularities, and bringing existing irregularities closer to each other
which makes it simpler to regularize them.

2.6 Conclusion

We presented here a method that learns to improve the connectivity of triangular
and quadrilateral meshes through self-play reinforcement learning without any hu-
man input. A key contribution of this work is a parameterized method to generate
a representation of the local topology in mesh neighborhoods. This enables appro-
priate selection of standard topological mesh editing operations which result in the
reduction of irregular vertices in the mesh. Our method is built on the DCEL data-
structure which allows the same framework to work on any planar 2D mesh with the
discussion in this paper restricted to triangular and quadrilateral meshes.

When optimizing for connectivity, it is recommended to work with the coarsest
possible mesh that captures the details of the geometry being considered. Optimal
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Figure 2.11: Example rollout for a 10-sided polygon. Irregular vertices are marked in
color. The mesh score and optimal score are shown at the top right for each figure.
(a) is the initial mesh after Delaunay triangulation and catmull-clark splits, (b) is at
an intermediate stage, and (c) is the final mesh after 18 operations.

strategies to regularize meshes consist of sequences of operations that combine irreg-
ularities together. It is easier to regularize coarser meshes because irregularities are
relatively closer to each other on these meshes. Irregularities often become isolated
on finer meshes, and require longer sequences of complex operations to regularize
them. Both triangles and quadrilateral meshes can be globally refined without in-
troducing irregular vertices. Some applications, like numerical simulation, demand
finer meshes for the sake of simulation accuracy. Thus, once the connectivity of a
coarse mesh has been optimized, it can be easily refined to the desired resolution
while maintaining its regularity.

A major advantage of artificial intelligence is its ability to discover heuristics that
are too laborious and cumbersome for humans to identify, formulate, and prescribe.
There are several areas in mesh generation where the automatic discovery of such
heuristics can significantly aid engineers in their work. We hope that this paper
demonstrates one such use-case.

2.7 Future Work

There are several exciting directions of future research that we highlight here,

• Incorporating value function: Most deep reinforcement learning methods
benefit from having a value function as this can help speed-up training. Our
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Figure 2.12: The same agent as before is able to optimize a 20-sided polygonal shape
using 40 operations. (a) initial mesh, (b) intermediate mesh, (c) final mesh produced
by the agent, (d) degenerate vertices on the boundary can be post-processed using
an operation similar to the global split. Note that meshes (c) and (d) have the same
score as measured by eq. 2.1 thus our agent does not prefer one over the other. If the
application demands that there be no degenerate vertices, these irregularities can be
eliminated through a final post-processing step.
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current formulation makes it challenging to estimate state value because we
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Figure 2.13: The triangular mesh agent demonstrates zero-shot transfer on geome-
tries that were not seen during training, including geometries with re-entrant corners
like the star shape and the single and double-notch domains. First column is the
initial mesh, second column is the intermediate mesh as the agent optimizes connec-
tivity, and the third column is the final mesh after optimization. Since our model
is based purely on connectivity, we can directly transfer the model onto geometries
with holes even though such geometries were never seen during training. Notice that
in several of the examples including the L-domain, single-notch, and the square hole
in the circle, the model achieves the optimal score and the remaining irregularities
cannot be eliminated as they are intrinsic to the geometry.

employ a local representation of state that does not provide sufficient infor-
mation to estimate global value. Addressing this challenge is the focus of our
current work.

• Policy improvement with tree search: our learned policy is stochastic
and may be combined with e.g. Monte Carlo Tree Search (MCTS) [16] to
efficiently search for optimal meshes for a specific geometry. The performance
improvements that we observe from our naive best-of-k method in sec. 2.5 and
2.5 indicates that MCTS could be effective at improving the performance of
our trained model. Such an approach would be similar to the AlphaZero [63]
system.

• Optimizing for element quality: to achieve this, our model would need to
additionally receive geometric information (e.g. vertex coordinates) as input.
This can be easily achieved by including the coordinates of vertices as part of
the input features to our model (see sec. 2.4). We expect that the coordinates
need to be normalized e.g. affine transform half-edges (and all vertices in its
template) to a normalized coordinate system (e.g. [0, 1].)
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Figure 2.14: The quadrilateral mesh agent demonstrates zero-shot transfer on ge-
ometries that were not seen during training, including geometries with re-entrant
corners like the star shape and the single and double-notch domains. First column
is the initial mesh, second column is the intermediate mesh as the agent optimizes
connectivity, and the third column is the final mesh after optimization. Since our
model is based purely on connectivity, we can directly transfer the model onto ge-
ometries with holes even though such geometries were never seen during training.
We are particularly interested in coarse meshes representing block decompositions
of more complex shapes. The cleanup operation is particularly useful in achieving
coarse meshes. This is most evident in the single notch and double notch example in
row 3 and 4. Notice that the star-shaped domain and the circular mesh with a square
hole contain intrinsic irregularity that cannot be improved upon with our prescribed
operations and heuristic.

• Extension to 3D: We expect that our method can leverage the equivalent of
the half-edge data-structure in 3D [21] to learn topological mesh editing opera-
tions on tetrahedral and hexahedral meshes. Determining optimal sequences of
operations in 3D is highly challenging, and a self-learning method would have
significant use.

We anticipate that extension to 3D applications can have significant utility and
will likely attract further research interest. We discuss here some challenges that we
foresee and possible methods to address these challenges.

• A suitable action space needs to be clearly defined for 3D mesh types. It is
preferable that these actions are local in nature to minimize computational cost.
Prior work defining actions on tetrahedral meshes [62, 34, 26] and hexahedral
meshes [39, 69] will be useful to consider in this regard.
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• Our framework parameterizes mesh editing operations in terms of geometric
primitives. For 2D, our geometric primitive was the half-edge. Selecting a
half-edge and an associated edit operation unambiguously identifies an edit
operation on a mesh. A similar parametrization needs to be developed for 3D
meshes to adopt our framework. We anticipate that both half-edges and half-
faces would be required to parameterize mesh editing operations in 3D. For
example, the popular 2-3 face swap operation in tetrahedral meshing can be
parameterized by selecting a half-face and prescribing the swap operation on
it.

• We require an extension of the convolution operation on the 3D mesh data-
structures. In 3D, there is a connectivity structure on half-faces along with
half-edges [21]. The convolution operation needs to operate on both of these
connectivities.

• Selecting a candidate region in which to evaluate the reinforcement learning
agent will be equally important in 3D applications due to the large variations
in the number of elements. We anticipate that an objective score similar to
eq. 2.1 can provide a simple way of evaluating regions with the potential for
significant quality improvement.

• In 2D, the enclosed angle at a boundary vertex provides a simple method of
identifying the desired degree. Specifying the desired connectivity, particularly
on boundaries, is essential to obtaining a well-defined method in 3D.
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Chapter 3

Optimizing the topology and
geometry of general polygonal
meshes using deep reinforcement
learning

We present a reinforcement learning (RL) agent that is able to generate meshes of 2D
shapes. Our mesh environment supports arbitrary 2D polygonal element types, and
a unified action space that is independent of element type. This enables our agent to
learn to mesh with arbitrary polygonal elements in a completely self-supervised way.
We demonstrate the inclusion of various objective measures based on the regularity
of faces, vertices, and induced angles in the optimization worflow.

3.1 Introduction

In the previous chapter, we discussed a methodology to improve the connectivity of
triangular and quadrilateral meshes. We framed the problem as a sequential decision
making process, constructed a state representation of meshes, and trained a neural
network to automatically learn move sequences to optimize a given objective function
which is a measure of mesh regularity.
There are three key areas where we can improve upon the previous method,

• The method relies on an initial mesh generation algorithm and as such is a
mesh improvement method. Further, we empirically observed that our RL
agents from Chapter 2 performed better on coarse meshes. Our intuition is that
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irregularities are separated by smaller distances on coarser meshes, therefore
requiring fewer operations to regularize.

• The method requires that meshes are homogeneous with a single element type.
This constrains the action space to be specialized towards a specific element
type e.g. triangular or quadrilateral elements. Specifying a new element type
would require the specification of an entirely new action space. This also means
that the agent can only perform operations that will result in a topologically
valid mesh at each step. This rules out exploring invalid intermediate states
that may result in valid final states with better objective score.

• The state representation and objective function was only concerned with mesh
connectivity and not with geometric quantities of interest such as induced an-
gles, element quality, etc.

In this chapter, we will explore the possibility of loosening the above constraints.
Firstly, we design a method whose input is any user provided 2D geometric shape
thereby removing the dependency on an existing mesh generation algorithm. The
user provided input shape is typically the coarsest geometric representation, which
aligns well with our model’s performance regime. Secondly, we allow our meshes to
have heterogeneous element types and a unified common action space that can be
utilized to generate meshes of any type. An agent for a new element type can be
trained by changing a single input parameter. Finally, we demonstrate the inclusion
of geometric quantities in the optimization workflow by including the the regularity
of induced angles into the objective function.

There has been significant interest in leveraging machine learning (ML) methods
to generate meshes from boundary representations. Early efforts in this area include
[79] who adopted an element extraction approach. In [48, 49], the authors frame
element extraction as a reinforcement learning (RL) problem and use mature solu-
tion algorithms such as Soft-Actor Critic (SAC). At each step, they build a finite
dimensional state representation around a reference point on the current geometric
boundary. The agent then chooses one of three primitive element extraction opera-
tions and executes it. DiPrete et al. [20] leverage a similar local state representation
but instead train their agent to learn optimal axis-aligned cuts to decompose 3D
planar axis-aligned shapes. A key challenge when working with unstructured data
structures like meshes is to develop a finite dimensional state representation. While
not a mesh generation method, Lim et al. [42] present a novel local state repre-
sentation on triangular meshes by constructing a spiral template of vertices around
a reference vertex. Papagiannopoulos et al. [50] adopt a supervised learning ap-
proach. They train 3 different neural networks to predict the number, location, and
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connectivity of vertices given a 2D contour. The neural networks are trained based
on ground-truth data generated from a Constrained Delaunay Triangulation of 2D
contours. Rakatosaona et al. [55] developed a differentiable triangulation system
by leveraging Weighted Delaunay Triangulation. The triangulation is differentiable
with respect to the vertex positions and weights allowing for optimizing e.g. mesh
density and edge alignment.

While the above aim to generate triangulations, ML methods are sometimes used
to adapt a mesh or generate input for a traditional meshing algorithm. Some of the
earliest work on combining (ML) with mesh generation [4] is concerned with adapting
a mesh based on error estimation on an initial coarse mesh. Adaptation can be made
in general with respect to a nodal probability distribution function. Tingfan et al.
[70] use neural networks to quickly estimate the solution field on a moving mesh
thereby allowing for the mesh to adapt to the simulation. Other methods such as
[31, 80] aim to train machine learning models to predict desired mesh densities but
rely on traditional meshers to fulfill the meshing task. Rakatosaona et al. [55] tackle
the problem of recovering a 3D surface mesh from a point cloud that was sampled
from a surface. They train machine learning models to identify and map local patches
of the point cloud to a 2D domain using logarithmic maps. They utilize Delaunay
triangulation in the parametric domain and map the result back to the 3D surface
while constraining neighboring patches to produce watertight manifold meshes. Chen
et al. [13] train neural network models to learn valid mappings from a parametric
reference domain to the physical domain thereby allowing to fit a reference mesh to
a given geometry. In [19], a neural network is trained to infer direction fields based
on human generated quadrilateral meshes. These direction fields are used as input
to a quadrangulation algorithm [11] to produce the final mesh. Deng et al. [18] train
neural network models to generate a 3D surface and associated Conjugate Direction
Field (CDF) given a human sketch. The 3D surface and CDF are used to generate
the final quadrilateral mesh.

The present work is distinguished from prior approaches in several key ways,

• We consider a highly general action space that encompasses the necessary oper-
ations for several different element types. We demonstrate results on triangles
and quadrilaterals as a showcase, though other element types are trivially pos-
sible.

• We provide an efficient, parametrizable, local state-representation based on
the Doubly Connected Edge List (DCEL) data-structure. Our representation
is applicable to arbitrary, unstructured, heterogeneous 2D meshes. We describe
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the key local geometric and topological features that are necessary in our state
representation.

• We illustrate a novel convolution operation on the state-representation above
that encodes the geometry and topology from a user-defined field-of-view in a
neighborhood of the mesh.

• We provide open-source software implementations of our mesh environments,
training pipelines, and automated hyperparameter optimization workflow to
provide a baseline for future work.

3.2 Problem Statement

We are concerned with decomposing a given two-dimensional shape into polygonal
elements. We refer to any decomposition of the geometry as a mesh – the input is
also, trivially, a mesh. Our meshes can contain heterogeneous element types con-
sisting of polygons of arbitrary degree. The user is expected to provide the input
geometry along with the degree (i.e. number of faces) of the polygon that the in-
put mesh is to be decomposed into. We frame the problem as a sequential decision
making process where we utilize simple mesh editing operations to perform the de-
composition. Additionally, we design the method to minimize irregular vertices and
improve element quality as measured by a prescribed objective function.

Input geometry

We support the representation of 2D geometries by defining their boundary repre-
sentation as a sequence of straight edges. The geometry is represented by a set of
vertices and a set of closed faces. Each face is expected to be a polygon of arbitrary
degree. We define a face by specifying the vertices it is comprised of in counter-
clockwise order. This representation also supports geometries with holes (see fig. 3.1
for some example geometries.)

Topological editing operations

Since we are dealing with very general geometric representations, we aim to design
an action space that is suitably general. This ensures that an appropriate mesh
decomposition of a given input geometry can be achieved through the composition
of the available elementary actions.
We support 4 basic topological edit operations consisting of:
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Figure 3.1: Example geometric representations. Geometries are represented as sets
of closed faces. A face is defined as a closed loop of vertices in counter-clockwise
order. (a) a geometry with a single face, (b) a geometry with multiple faces each of
which has a different polygonal degree, (c) a geometry with a hole.

• Edge insertion – an edge can be inserted between two distinct vertices in a
face, thereby splitting a face into two new faces.

• Edge deletion – an interior edge that is shared by two faces can be deleted,
thereby merging the two faces. An edge on the boundary cannot be deleted.
An edge between the same face (e.g. the edge 1-2 in fig. 3.1c) cannot be
deleted.

• Vertex insertion – a new vertex may be inserted on any edge.

• Vertex deletion – a degree-2 vertex may be deleted thereby merging the two
edges incident on that vertex. The input may optionally contain a set of vertices
that are not allowed to be deleted – for example a vertex that is intrinsic to
defining the geometry.

Faces and vertices are constrained to have degree at least 2. Operations that
result in the violation of this bound are disallowed. The topological edit operations
are illustrated through example in fig. 3.2.

Objective function

Consider a mesh with Nf faces and Nv vertices. Let fi be the degree of face i and
vj be the degree of vertex j. The degree of a face is the number of edges in the face
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Figure 3.2: Illustration of topological edit operations: (a) initial polygon which
transforms to (b) after an edge insertion between vertices 0-3. A new vertex is
inserted on this edge to produce (c) from which we produce (d) with an edge insert
between vertices 6-4. The edge between 6-3 is deleted to give (e). Finally, vertex 6
is deleted to produce (f).

(i.e. its polygonal degree). The degree of a vertex is the number of edges incident
on that vertex. Let f ∗ be the desired polygon degree of the mesh elements that the
geometry is to be decomposed into. Further, let v∗j be the desired degree of vertex
j. Notice that we take the desired face degree f ∗ to be constant for the entire mesh
whereas we allow the desired vertex degree to be different for each vertex. We define
the face irregularity as ∆f

i = fi−f ∗ and the vertex irregularity as ∆v
j = vj−v∗j . The

face score sf and vertex score sv are then respectively,
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sf =

Nf∑
i=1

|fi − f ∗| (3.1)

sv =
Nv∑
j=1

|vj − v∗j | (3.2)

A face score sf = 0 implies that all the elements in the mesh have polygon degree
equal to f ∗ which is the element type that we want to decompose the geometry into.
A vertex score sv = 0 implies that all vertices in the mesh are regular (i.e. they
have degree equal to their corresponding desired degree) – this is often desirable in
applications such as block decomposition and computer graphics rendering. While we
would ideally aim to generate meshes with sf = sv = 0, this ideal score cannot always
be achieved. Therefore, we frame this as an optimization problem instead where we
aim to minimize the objective scores thereby creating meshes with minimum face
and vertex irregularity.

The face score and vertex score are discrete in nature. However, it is common
in the meshing literature to optimize for other quantities of interest such as element
quality which are commonly continuous in nature. There are a variety of element
quality metrics that are designed for specific element types such as triangles and
quadrilaterals. Since we are dealing with general polygons, we consider a simple
quality metric based on the induced angles in the mesh. If the desired face degree is
f ∗, the desired angle θ∗ is taken to be the induced angle in a regular polygon with
degree f ∗. (Recall that a regular polygon has all angles equal.) The ideal angle, in
degrees, is computed as,

θ∗ =
f ∗ − 2

f ∗ × 180◦ (3.3)

e.g. θ∗ = 90◦ for quadrilaterals (f ∗ = 4) and θ∗ = 60◦ for triangles (f ∗ = 3).
The angle irregularity is then defined as ∆θ

k = (θk−θ∗)/θ∗. If there are Na angles
in the mesh, the angle score sθ is defined as,

sθ =
Na∑
k=1

∣∣∣∣θk − θ∗

θ∗

∣∣∣∣ (3.4)

While sf and sv depend only on the degree of faces and vertices and not on
the location (i.e. coordinates) of vertices, sθ depends on the coordinates since this
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determines the induced angles in the mesh. When including sθ as part of the objective
during optimization, we typically need to smooth the mesh after performing a mesh
edit operation to update the coordinates of the vertices. A simple choice is to use
Laplace smoothing. More sophisticated smoothers based on element quality may
also be used.

For the optimization procedure, we consider a weighted sum of the different scores
as the final objective score,

s = wfsf + wvsv + wθsθ (3.5)

with the weights wf , wv, and wθ suitably chosen depending on the end-user applica-
tion.

Heuristics to determine desired degree

Our framework allows the desired degree of all vertices to be specified as part of the
input. However, for the sake of simplicity, we adopt the following heuristics. The
face desired degree f ∗ is expected to be a part of the user input. A regular f ∗-sided
polygon has as interior angle given by eq. 3.3 e.g. θ∗ = 90◦ for quadrilateral elements.
We set the desired degree of vertices such that the average included angle at each
vertex is equal to θ∗ when the vertex is regular. The desired degree of vertices is
then,

v∗j =

{
360/θ∗ interior vertex

max (⌊θ/θ∗⌉+ 1, 2) boundary vertex
(3.6)

where ⌊·⌉ is the round to nearest integer operator and θ is the included angle of the
input geometry at a particular boundary vertex.

Figure 3.3 shows a sequence of mesh editing operations applied to a simple L-
shaped input geometry with the desired face degree f ∗ = 4. The corresponding
desired angle is θ∗ = 90◦.

Duality of meshes for face and vertex score

Meshes have a dual property wherein the dual of a mesh can be constructed by
introducing a vertex for each face and edges for every pair of adjacent faces. (See fig.
3.4 for an example.) Duality transforms faces to vertices and vertices to faces. The
dual of a regular mesh is a suitably regular mesh with a possibly different polygonal
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Figure 3.3: Sequence of mesh editing operations and the associated score changes for
a simple L-shaped input geometry with f ∗ = 4.

element. For example, the primal mesh in fig. 3.4 (shown in black) is a regular
triangular mesh of a hexagon. All faces are regular with degree 3 and all vertices
are regular according to the heuristic eq. 3.6. The dual mesh (shown in red) is a
regular mesh with hexagonal elements. According to our heuristic described earlier,
the desired face degree of the dual mesh is equal to the desired interior vertex degree
of the primal. (In the case of triangles, the desired vertex degree in the interior is
6; hence the desired face degree of the dual is 6 resulting in hexagons.) The desired
vertex degrees and desired angle of the dual can then be computed as before.

Efficient updates to objective after actions

The topological edit operations described in sec. 3.2 are local. Each operation
potentially changes the face degree and vertex degrees of only a few faces/vertices in
the mesh. Although eqs. 3.1 and 3.2 are defined as a sum over all the faces/vertices
in the mesh, since a given operation is local in nature, the score can be updated
efficiently by only considering the few faces/vertices involved in the operation.

Figure 3.5 illustrates the change in face degree and vertex degree upon edge
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Figure 3.4: A primal mesh (black) and its corresponding dual (red). The dual is
constructed by transforming faces in the primal mesh to vertices in the dual mesh,
and vertices in the primal mesh to faces in the dual mesh. Edges are added between
vertices in the dual mesh for every pair of adjacent faces in the primal mesh.

insertion. We see that edge insertion results in the creation of two new faces each of
whose degrees can be inferred from the degree of the original face and the number
of vertices between the two vertices participating in the edge insertion. Consider a
face with degree f . We insert a new edge between a vertex j and a vertex j + k
which is k steps ahead in counter-clockwise order. This results in two new faces
whose degrees are k + 1 and f − k + 1. Further, only the vertex degrees of the
vertices participating in the edge insertion see their degree incremented by one. The
face degree and vertex degree of the remaining faces/vertices in the mesh remain the
same after edge insertion. Thus, the scores sf and sv may be updated efficiently and
need not be recomputed globally.

Deleting an edge can be seen as the reverse of the above process. The two faces
adjacent to the edge under question are merged after the delete. If the two adjacent
faces have degrees f1 and f2, the degree of the new face after the delete operation
will be f1 + f2 − 2. The vertex degree of the two vertices at the end-points of the
deleted edge is decremented by one. The degrees of the remaining faces and vertices
in the mesh remain the same.

Inserting a vertex on an edge increases the degree of the faces adjacent to the edge
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Figure 3.5: An edge is inserted between two vertices that are k steps apart in a
face whose degree is initially f . This results in two new faces whose degrees are
respectively k + 1 and f − k + 1. Further, the vertices labelled 0 and k see their
respective degrees increase by one. The degrees of the remaining faces and vertices
in the mesh do not change.

by 1. (If the edge is on a boundary, there is only one face adjacent to it. If it is in the
interior, there are two faces adjacent to it.) The newly introduced vertex always has
degree 2. The remaining faces and vertices in the mesh remain unaffected. Deleting
a vertex reduces the degree of the faces adjacent to the edge by 1. Additionally, the
contribution of the deleted vertex to the score sv can be updated.

Based on the above discussion, we conclude that the discrete scores sf and sv can
be updated efficiently in constant time after each mesh edit operation. In contrast,
the continuous angle score sθ cannot by updated in a similar way. As described in the
section on Objective Function, the mesh typically needs to be smoothed after per-
forming an edit operation to update the coordinates of vertices. This will impact the
induced angles in the mesh and therefore the score sθ. Clearly, performing a global
smoothing of the mesh will incur high cost and scale with the size of the mesh. Alter-
natively, it is likely that smoothing only needs to be performed in the neighborhood
where a topological edit was performed. A local smoother, whose action is restricted
to a small neighborhood around the vertices involved in a topological edit operation,
will be more computational efficient in this situation. The details of such a local
smoother are beyond the scope of this dissertation.
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Figure 3.6: Polygonal meshes can be represented by the doubly-connected edge list
(DCEL). Edges are represented as a pair of oriented half-edges shown as red arrows.
(Boundary half-edges are shown in gray.) Half-edges are associated to their cyclic
next and previous half-edges e.g. half-edge 2 is next of half-edge 1 and previous of
half-edge 3. Half-edges are associated to the vertices at their source and target e.g.
vertex 3 is the source of half-edge 5 and the target of half-edge 4. Half-edges are
associated to the unique face that they belong to e.g. half-edges 4-5-6-7 belong to
face 1.

3.3 Mesh Data Structures

Representing a mixed-element polygonal mesh

We represent a given polygonal mesh using the doubly-connected edge list (DCEL)
also known as the half-edge data-structure. Briefly, the DCEL exploits the fact that
each edge in a mesh is shared by exactly two faces (except on the boundary). The
DCEL represents each edge in the mesh by a pair of oriented half-edges pointing in
opposite directions. Every half-edge contains a pointer to the cyclic next half-edge in
the same face and to its twin half-edge in the neighboring face. Half-edges belonging
to a given face form a loop under the next operation.
Our half-edge data-type has six attributes:

• next – The cyclic next half-edge in the same face.

• previous – The cyclic previous half-edge in the same face.
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• twin – In the interior of the geometry, this points to the half-edge in the adjacent
face that is associated with the same edge. On the boundary of the geometry,
this points to a boundary half-edge.

• source – The vertex at the origin of the half-edge.

• target – The vertex at the destination of the half-edge.

• face – The face that the half-edge belongs to.

See fig. 3.6 for an illustration of the above associations. The twin of half-edges on
the boundary are defined as boundary half-edges which do not have an associated
face – however, the next, previous, source, and target operations are well defined for
these boundary half-edges. In the rest of this work, half-edge will always refer to an
interior half-edge. Boundary half-edges will always be explicitly qualified.

The half-edge attributes enable efficient queries such as determining the vertices
at the end-points of a given half-edge. To facilitate efficient queries in the opposite
direction – i.e. given a face find all the half-edges associated with it – we construct an
underlying graph data-structure. The nodes of this graph are the half-edges, vertices,
and faces. We add an undirected edge from every half-edge to its associated vertices
and face. This further enables efficient querying of the degrees of vertices and faces
in the mesh. Further, there is a one-to-one correspondence between half-edges and
angles in the mesh – e.g. every half-edge can be associated with the angle induced
between itself and its previous half-edge. Therefore, the angle score eq. 3.4 can
be computed by iterating over half-edges and summing up the irregularities of their
associated angles.

The DCEL representation of polygonal meshes makes it possible to efficiently
check in O(1) time if a particular topological edit operation described in sec. 3.2 can
be performed on a given mesh. All of the operations described in sec. 3.2 can be
implemented efficiently using the DCEL representation of polygonal meshes. In par-
ticular, the complexity of the edge-insertion and edge-deletion operations are O(f)
where f is the degree of the face in which the edge is to be inserted or deleted.
The complexity of vertex insertion and deletion is O(1). Further, the DCEL repre-
sentation contains all the information required to efficiently update sf and sv after
performing a topological edit operation.

Parameterizing mesh edit operations

We parameterize all the mesh edit operations described in sec. 3.2 in terms of half-
edges.
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• Edge insertion - given a half-edge h and an integer k, insert an edge between the
source of half-edge h and the target of the half-edge that is k next steps ahead
of h. Specifying edge insertion in terms of half-edges automatically determines
the face in which the edge is to be inserted.

• Edge deletion - given a half-edge h, delete it (and its twin) and merge the
neighboring faces.

• Vertex insertion - given a half-edge h, insert a new vertex v and additional
half-edges as necessary. We set v as the new target vertex of h.

• Vertex deletion - given a half-edge h, delete the vertex at its source.

We emphasize that an operation is only performed so long as it meets the constraints
described in sec. 3.2. In particular, for edge insertion, we require that 0 ≤ k < f − 1
where f is the degree of the associated face. This ensures that the newly created
face has degree at least 2. These constraints may be modified according to target
applications.

3.4 Formulation as a Deep Reinforcement

Learning Problem

Recall that we have set up an optimization problem wherein the goal is to minimize
a given objective function such as eq. 3.5 given an input geometry and f ∗ using a
sequence of elementary operations described in sec. 3.2. We view this as a Markov
Decision Process (MDP) where the state is the mesh at a given point in the edit
procedure, and the actions are the edit operations described in sec. 3.2. Performing
an action results in a state transition to a new mesh. In this section we describe the
details of the reinforcement learning (RL) formulation of our problem.

Reward function

The face score sf (eq. 3.1), vertex score sv (eq. 3.2), and angle score sθ (eq. 3.4)
provide a measure of the total irregularity in a polygonal mesh. We wish to determine
a finite sequence of topological edit operations that minimize a weighted sum of sf ,
sv, and sθ (eq. 3.5). After every topological edit operation is executed, the scores
are updated. We take the reward to be equal to the difference between the scores
before and after an operation is performed normalized by the respective initial score:
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rf (t) =
sf (t)− sf (t− 1)

s0f

rv(t) =
sv(t)− sv(t− 1)

s0v
(3.7)

rθ(t) =
sθ(t)− sθ(t− 1)

s0θ

where the corresponding normalizing factor is taken to be s0 = max(s(0), 1) to avoid
divide by zero errors (it is possible that the initial mesh is already optimal.) The
time step t is simply a counter for the topological edit operations – we increment t
by one after every action. The overall reward for a particular time-step is then,

r(t) = wfrf (t) + wvrv(t) + wθrθ(t) (3.8)

The weights wf , wv, and wθ are user parameters that represent the relative pref-
erence between face, vertex, and angle irregularities and is application dependent.
We take wf + wv + wθ = 1 without loss of generality. The discounted cumulative
reward (i.e. the discounted return) is computed as,

G(T ) =
T∑
t=1

γT−tr(t) (3.9)

with discount factor 0 < γ <= 1. Since s0f , s0v, and s0θ represent the maximum
possible contribution to the reward due to improvement in face, vertex, and angle
regularity, the cumulative return G(T ) is upper bounded i.e. G(T ) ≤ 1. Indeed, the
size of the initial mesh could be significantly different, and may have higher or lower
potential for reward purely due to its size. Scaling rewards by the initial irregularity
measure ensures that cumulative returns are properly weighted and independent of
problem size.

Local State Representation

Our meshes are dynamic data-structures that transform as edit operations are per-
formed on them. As such, their overall size can in principle be unconstrained. How-
ever, an important observation is that in the vast majority of cases, determining
the appropriate edit operation to perform in a particular region of a mesh largely
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depends on the local topology around the region of interest. This motivates the
development of a local state representation by leveraging the operations available
through the DCEL data-structure. This has the added benefit that the size of the
state representation may be fixed instead of scaling with the size of the mesh. Addi-
tionally, action selection can be restricted to the fixed set of actions available within
the neighborhood around the region of interest.

K-nearest neighbor template construction

Given a half-edge h∗, we use breadth-first-search (BFS) to determine the K-nearest
neighbor (KNN) half-edges centered around h∗ using the fundamental DCEL oper-
ations. During BFS, the DCEL operations are always executed in the order next,
previous, and twin starting from h∗ – this is only for reproducibility and not essential
to our approach. The connectivity associated with these K half-edges represents the
local topology around h∗. The KNN algorithm is outlined in alg. 2.

Algorithm 2 K-nearest neighbor half-edges.

KNN(h∗, k)
queue ← queue initialized with h∗

neighbors ← empty list
count ← 0

while queue is not empty and count < k do
h← remove half-edge from head of queue
add h to neighbors

Increment count
if count == k then
break

end if
Add next(h) to queue if it is not visited
Add previous(h) to queue if it is not visited
Add twin(h) to queue if it is not visited

end while
return neighbors

To determine h∗ we compute a score restricted to each half-edge which is the sum
of the irregularities of its associated face, source vertex, and the induced angle at
its source. h∗ is then taken to be the half-edge with the maximum such score with
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Figure 3.7: Illustrating the template construction centered around half-edge 0. With
K = 10, the template would consist of the half-edges [0, 1, 5, 8, 2, 4, 9, 7, 3, 10].

ties broken randomly. In our experiments, we determined h∗ after each time-step by
iterating over all half-edges in the mesh. Future implementations may use a priority
queue to efficiently select h∗ at each time step, where the priority value is the half-
edge restricted score described above. The locality of the topological edit operations
ensures that the priorities of only a few half-edges needs to be updated at every time
step.

The KNN algorithm initialized from h∗ produces a list of K half-edges which we
refer to as the K-template centered at h∗. We also produce a reverse index using
a hash table that maps half-edges to their index in the K-template. We use this
reverse index to generate arrays containing the index in the template list of the
next, previous, and twin half-edge for each half-edge in the template. There are two
situations where we may not have a valid index. (1) the requested half-edge exists
in the mesh but is outside the K-neighborhood or (2) the requested half-edge is a
boundary half-edge. We use special indices – e.g. -1 and -2 – to denote these two
situations.
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Template Half-edge 0 1 5 8 2 4 9 7 3 10
Index 0 1 2 3 4 5 6 7 8 9

Template Half-edge 0 1 5 8 2 4 9 7 3 10
next Index 1 4 0 6 8 2 -1 3 5 -1
previous Index 2 0 5 7 1 8 3 -1 4 -1
twin Index 3 -2 -2 0 9 -2 -2 -2 -2 4

Table 3.1: Illustrating the template construction process for the example geometry
shown in figure 3.7. Note that “next Index” refers to the index in the template list
of the cyclic next half-edge and similarly for previous and twin. We use the special
index -1 to denote a half-edge that exists in the geometry but is outside the template
and the index -2 to denote a half-edge that is outside the geometry (i.e. a boundary
half-edge).

Half-edge features

We identify the following as the relevant topological and geometric features associated
with each half-edge (see fig. 3.8 for an illustration):

• The degree of its associated face

• The degree of its source vertex

• The desired degree of its source vertex

• The length of the half-edge

• The induced angle at its source

Topological features include vertex degree, vertex desired degree, and face degree.
We do not include the face desired degree and the desired angle as half-edge features
since we take these to be constant over the entire mesh. Geometric features include
length and angle. Geometric features only need to be included if the objective score
includes a component dependent on geometry such as sθ.

We use the above information to construct a feature vector for each half-edge.
Notice that while f ∗ and v∗j are usually bounded and relatively small, fi and vj can
be unbounded in principle. Thus we threshold the face and vertex degrees before
including it in the feature vector as min(fi, fmax) and min(vj, vmax). This thresholding
is essential for the generalization performance of our model. Intuitively, when the
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Figure 3.8: Relevant topological and geometric features associated with each half-
edge. Topological features include the vertex degree, vertex desired degree, and face
degree. Geometric features include length and angle.

face degree or the vertex degree is large enough, the optimal edit is likely going
to be the same regardless of the exact value of the degree. The local state of the
K-template may now be represented by,

• F ∈ RK×5 – half-edge feature matrix composed of the feature vectors of the
corresponding half-edges in the template.

• N ∈ ZK – index vector containing the index of the next half-edge for each
half-edge in the template.

• P ∈ ZK – index vector containing the index of the previous half-edge for each
half-edge in the template.

• T ∈ ZK – index vector containing the index of the twin half-edge for each
half-edge in the template.

Note that the indices in N,P, T are the local template indices of the half-edges (see
fig. 3.7 and table 3.1 for an illustrative example.)

DCEL convolution operation

We design a neural network whose fundamental operations is a convolution on the
half-edge feature matrix utilizing the connectivity information in the N,P, T index
vectors. Recall that the index vectors contain special indices to handle two bound-
ary cases as described in sec. 3.4. Therefore, we first augment the half-edge feature
matrix by appending two learnable vectors to the end of the feature matrix F that
correspond to the two boundary cases. This acts as an effective signal to the model
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Figure 3.9: Illustration of the DCEL convolution operation. The input feature matrix
is first augmented by appending two learnable vectors at the end. The augmented
matrix F̄ undergoes the convolution operation described in eq. 3.10 to produce the
output. LN is layer normalization and σ is a non-linear activation function. Note
that the index vectors N,P, T are only used to facilitate the convolution. LN and σ
are only applied to the feature matrix.

regarding the geometric- and template- boundaries of the local template neighbor-
hood. The special indices used in template construction are updated to point to
the two learnable vectors. (In a language that uses cyclic indexing – e.g. Python –
we do not need to update the special indices since -1 and -2 point to the last and
second-to-last element in an array. Therefore, the learnable vectors will be indexed
correctly if they are appended to the end of the feature matrix.)

Suppose F is the input to the DCEL convolution, we denote the augmented
feature matrix by F̄ . The DCEL convolution operation can be written as,

conv(F ) = σ(norm(AF̄ + BF̄ [N ] + CF̄ [P ] + DF̄ [T ])) (3.10)

Where norm represents layer normalization, σ is a non-linear activation function,
and A,B,C, and D are learnable matrices. We illustrate the above operation in fig.
3.9.

The basic unit of our neural network architecture consists of two convolution
operations followed by a skip (i.e. residual) connection. Residual connections are
widely used in modern neural network architectures to handle the problem of van-
ishing gradients [30]. We refer to this trainable unit as a DCEL residual block. (See
fig. 3.10 for an illustration.) Suppose Fl−1 are the output features of a particular
block, the output of the next block is obtained as

Fl = conv(conv(Fl−1)) + Fl−1 (3.11)
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Figure 3.10: Illustration of a DCEL residual block which consists of two DCEL
convolution operations followed by a skip connection.

Our feature extractor consists of a stack of L residual blocks. The output of the
feature extractor is an encoding of the local geometry and topology around each half-
edge in the K-template. Notice that the encoding contains geometric and topological
information from a local neighborhood whose size grows linearly with the number
of convolution operations. The “field-of-view” can at most be of size K since the
template does not contain any information outside of this neighborhood. We point
out that because we adopt a local state representation, our problem is more precisely
categorized as a Partially Observable Markov Decision Process (POMDP).

The feature matrix to the first residual block is obtained by projecting the half-
edge feature matrix F to a high dimensional embedding space F0 ∈ RK×d using a
single linear layer. The embedding dimension d is kept fixed across blocks to facilitate
the skip connection. Thus, the complexity of our neural network is parameterized
by specifying d and L. We use the LeakyReLU activation function for σ.

Actor-critic neural network architecture

The DCEL convolutional neural network described in the previous section is used to
extract high dimensional features FL that encode the local topological state around
each half-edge in the template. This network is shared by the actor and critic. After
feature extraction, the network is split into an actor head and a critic head.

The actor head consists of a simple multi-layer perceptron (MLP) with a single
hidden layer that projects FL to Π ∈ RK×A where A is the number of actions per
half-edge. Π represents the log probability of action selection by the agent. We
mask invalid actions in Π by adding a mask matrix M to it. The entries in M are
0 for valid actions and −∞ for invalid actions. This ensures that, after applying
the softmax function, the probability of selecting an invalid action is zero. The final
matrix Π is flattened into a vector and passed through a softmax layer to obtain
action probabilities i.e. a policy.
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Figure 3.11: Overall architecture of our neural network. The half-edge feature matrix
F is first projected to F0 in a d dimensional embedding space. These features are
processed by L DCEL residual blocks. The final feature matrix FL is shared by
the actor head and critic head which consist of perceptrons with a single hidden
layer. The policy head masks invalid actions with the mask matrix M to get the
action logits which represent the log probability of action selection. The value head
performs an average reduction operation to get a single number representing the
critics estimate of the state value.

The critic network has similar structure, however since we are interested in ob-
taining a single state-value for a given state as a whole and not for each half-edge,
we perform a reduction operation across the template to get a single vector for each
template. This vector is passed through a linear layer to obtain the critic’s estimate
of the state-value. We use the mean across the template dimension as the reduction
operation. The overall architecture is illustrated in fig. 3.11.
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Parameter Symbol Value

Polygon degree range - [6, . . . , 20]

Radius range - [0.2, 1.0]

Local template size K 20

Edge addition steps range k [0, . . . , 4]

Max. steps factor - 2

Face reward weight wf 0.5

Vertex reward weight wv 0.25

Angle reward weight wθ 0.25

Face degree threshold fmax 15

Vertex degree threshold vmax 8

Table 3.2: Parameters used to specify the random polygon environment.

3.5 Training the Agent in Self-play

Reinforcement Learning

Training environment

We trained our policy on randomly generated polygonal shapes of varying sizes for a
given desired face degree f ∗. For each instantiation of the environment, we determine
the initial polygon degree by sampling uniformly from a prescribed range. The vertex
coordinates are determined in polar coordinates – with the radii being uniformly
sampled from a given range and equal angular increments between successive points
in the face-loop. The desired vertex degrees and desired angles on the boundary
of the initial geometry are determined using the heuristics 3.2. The environment is
terminated after a finite number of steps is taken by the agent or if the agent achieves
a score of zero. Table 3.2 collects the parameters used to specify the random polygon
environment.

The initial face score s0f (eq. 3.1) scales linearly with the face degree of the
initial geometry. The scaling of the initial vertex score s0v and angle score s0θ are not
immediately obvious. However, fig. 3.12 illustrates that the scaling of these scores
are also linear for f ∗ ∈ {3, 4, 6}. This observation, combined with the fact that the
reward for any particular action is independent of the size of the mesh motivates



CHAPTER 3. OPTIMIZING THE TOPOLOGY AND GEOMETRY OF
GENERAL POLYGONAL MESHES USING DEEP REINFORCEMENT
LEARNING 55

20 40 60 80 100
Polygon degree

0

50

100

150

200

250

s0 v

f*=3
f*=4
f*=6

(a)

20 40 60 80 100
Polygon degree

0

50

100

150

200

250

s0

f*=3
f*=4
f*=6

(b)

Figure 3.12: Scaling of initial scores with respect to polygon degree for randomly
generated polygons with different desired face degrees. (a) Initial vertex score s0v
(b) Initial angle score s0θ. Scores measured over 50 trials per polygon degree. Solid
line represents the mean and shaded region the 1-standard deviation envelope. Plots
demonstrate that the relationship is effectively linear. For the initial boundary, the
only difference between s0v and s0θ is the rounding operator in eq. 3.6.

us to set the maximum number of steps before terminating the environment to be
proportional to the initial size of the input polygon. (This is reported in table 3.2
as Max. steps factor.) We highlight that the only difference between s0v and s0θ for
such randomly generated shapes is the effect of the rounding operation in eq. 3.6.
Because vertex irregularity and angle irregularity measure similar metrics in slightly
different ways, we weigh the vertex reward and angle reward equally, and weigh their
sum and the face reward equally. This is the motivation for setting the values of
wf , wv, wθ in table 3.2. “Edge addition steps range” in table 3.2 refers to the valid
choices of the parameter k discussed in sec. 3.3 which specifies the distance between
the two vertices participating in an edge insertion.

The environment is implemented as a sub-class of the gym environment from the
Gymnasium library [72]. Gymnasium is widely used in the reinforcement learning
(RL) literature and provides a consistent Application Programming Interface (API)
for RL environments. This allows easy interoperability with existing RL libraries.



CHAPTER 3. OPTIMIZING THE TOPOLOGY AND GEOMETRY OF
GENERAL POLYGONAL MESHES USING DEEP REINFORCEMENT
LEARNING 56

-1

-1
-2-3

-3

-3

-2
-4

-3

-3

-4

-4

-3-1

-1

-3
-3

-1 -3
-1

-3
-2

-2

-2
-3

-3

-3

-1

-1

-1

-1
-1-1

-1

-1

-1

-1
-2

-1

-2
-1

-1

-2

-1

-2

-1

-2
-2

-2

-1
-1

-2

-1

-2

Figure 3.13: Illustrative examples of randomly generated initial polygonal shapes.
Top row is for f ∗ = 3 and bottom row is for f ∗ = 4. Vertices with non-zero vertex
irregularity are marked.

Training algorithm

We train our agent using the Proximal Policy Optimization (PPO) [60] algorithm.
We utilize the PPO implementation available through the stable-baselines3 library
[54]. PPO is one of the most widely used deep-reinforcement learning algorithms. It
falls within the family of policy-gradient algorithms [67] with additional constraints
that prevent large changes in the policy distribution during training. This ensures
training stability and uniform policy improvement over the course of training. Our
neural network architecture illustrated in fig. 3.11 is well designed to fit within the
paradigm of Actor-Critic PPO. We will not review the PPO method here and instead
direct the interested reader to the original article on the subject [60].
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Automatic hyperparameter optimization

As with most machine learning methods, the performance of models is sensitive to
a number of non-trainable parameters (i.e. hyperparameters). This is particularly
true with reinforcement learning algorithms [25]. The first-cut approach to hyperpa-
rameter optimization (HPO) is often hand-tuning based on trial and error, domain
knowledge, and experience. However, this can be time-consuming and ineffective.
An alternative is to utilize grid-search which exhaustively searches the hyperparam-
eter space to determine optimal values. When the design space is large, grid-search
can be computationally expensive. Recently, mature libraries have emerged for au-
tomatic hyperparameter optimization (HPO) e.g. Ray Tune [41] and Optuna [2]. In
this dissertation, we leverage Optuna for automatic HPO.

We use the Tree-structured Parzen Estimator (TPE) algorithm [7]. Briefly, the
TPE algorithm first runs several trials by random sampling from the design space
of hyperparameters. The cumulative return at the end of training is taken as the
objective function for a given trial. The algorithm then splits the trials into two
sets – top-performing trials (typically the top 10-20% best performing trials) and the
remaining trials. The core idea of the TPE algorithm is to draw new samples from
the hyperparameter design space that are likely to be in the top-performing set. The
algorithm achieves this by building a surrogate function that models the likelihood of
a given point in design space belonging to each group. Consider that x is a point in
design space, l(x) is the likelihood of this point producing a model that is in the top
20% and g(x) is the probability of this point producing a model that is in the bottom
80%. (The likelihood functions are constructed using Parzen Window Estimation –
hence the name of the algorithm.) The TPE algorithm selects the next trial point
to be the one that maximizes the expected improvement E(x) = l(x)/g(x).

Table 3.3 describes the various hyperparameters that were included in the design
study, along with the prior sampling ranges. These ranges were determined based
on a combination of literature values (e.g. Schulman et al. [60] use ϵ = 0.20 and
λ = 0.95) and trial-and-error for our specific problem.

Table 3.4 reports the hyperparameters with best average score after running 100
trials of hyperparameter optimization for f ∗ = 4 and f ∗ = 3. Each trial consisted of
sampling a set of hyperparameters according to the TPE strategy and training an
agent for 106 steps.

Table 3.5 lists hyperparameters that were kept fixed over all trials. The discount
rate γ is a measure of the trade-off between immediate reward and future reward. We
set the discount rate γ = 1 since we are concerned with optimizing the final objective
value and are not concerned with short-term reward. The number of environment
steps collected in rollout should be set to collect enough samples from the rollout
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Parameter Symbol
Discrete/
Continuous

Range
Sampling
Domain

Learning rate η continuous [10−6, 10−3] log

Generalized advantage esti-
mator (GAE) coefficient

λ continuous [0.5, 0.999] linear

Entropy loss coefficient ce continuous [10−8, 0.5] log

Value loss coefficient cv continuous [10−8, 0.5] log

PPO clip parameter ϵ continuous [10−2, 0.2] linear

Max. gradient norm - continuous [0.1, 5.0] linear

Orthogonal initialization of
network weights

- discrete
True/
False

-

Number of DCEL residual
blocks

L discrete [2, . . . 10] -

Embedding dimension d discrete
{64, 128,
256, 512,
1024}

-

Table 3.3: List of parameters and their corresponding prior range used in hyperpa-
rameter optimization. We use the same design space for all our experiments.

phase so that the gradient estimates during policy improvement are sufficiently ac-
curate. This value will vary based on the complexity of the environment and we
determined it based on trial-and-error. The batch-size should be sufficiently large
for meaningful gradient estimates but small enough to include some stochasticity in
gradient descent in order to avoid local minima. GPU memory was not a constraint
for our problem, but it may be part of the decision making for environments with
larger K-templates in state-representation.

Analysis of hyperparameter optimization for f ∗ = 4 and f ∗ = 3

The training trajectories of 100 optimization trials are reported in fig. 3.14 for f ∗ = 4
and f ∗ = 3. The trajectories were generated by evaluating models periodically
during training by measuring the average returns from 200 random instances of the
training environment. The trajectories indicate that the vast majority of trials have
converged upon their optimal values with each trajectory corresponding to a different
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Parameter Symbol
Optimized
value f ∗ = 4

Optimized
value f ∗ = 3

Learning rate η 1.3× 10−4 5.9× 10−4

Generalized advantage esti-
mator (GAE) coefficient

λ 0.86 0.86

Entropy loss coefficient ce 2.6× 10−8 4× 10−5

Value loss coefficient cv 0.149 0.05

PPO clip parameter ϵ 0.189 0.15

Max. gradient norm - 1.3 2.55

Orthogonal initialization of
network weights

- False True

Number of DCEL residual
blocks

L 5 3

Embedding dimension d 128 128

Table 3.4: Results of hyperparameter optimization for f ∗ = 4 and f ∗ = 3. Optimal
values were obtained by running hyperparameter optimization over 100 trials. Each
run consisted of training the agent for 1M time-steps.

Parameter Symbol Value

Discount rate γ 1

Number of steps
collected in rollout

- 10,240

Batch size B 512

Table 3.5: Hyperparameters that were taken constant for all trials.
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Figure 3.14: Training trajectories of 100 optimization trials for (a) f ∗ = 4 and (b)
f ∗ = 3. Trajectories are generated by periodically measuring the average return
during training. Returns are averaged across 200 randomly generated environments
for each evaluation step. The training trajectories suggest that most models have
converged upon their optimal values.

choice of hyperparameters. The final objective scores and best score over all trials
is shown in fig. 3.15. The range of converged values demonstrates that choosing the
right hyperparameters can have a significant impact on the final performance of the
model.
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Figure 3.15: Optimization history for (a) f ∗ = 4 and (b) f ∗ = 3. Each point
represents the final objective value of a particular trial. The red line represents the
best objective score seen so far.

While we allow for the optimization of several parameters, a few parameters have
an outsized impact on the objective function. The importance of hyperparameters
may be estimated using the method outlined in Hutter et al. [32]. Briefly, the
method works by fitting a random forest regression model to the logged optimization
data. The random forest model is trained to predict model objective value from a
given hyperparameter configuration. Marginal predictions are then extracted from
this random forest and the importance of hyperparameters is estimated using the
functional Analysis of Variance (fANOVA) method. (The Optuna library provides
functionality to extract this data from the logged optimization data.)

Figure 3.16 shows the relative importance of various hyperparameters involved in
the optimization procedure. The results underscore the fact that a few hyperparam-
eters have an outsized impact on the final objective score. Further, we observe that
the relative importance of hyperparameters depends on the choice of f ∗. For f ∗ = 4
we see that the entropy coefficient ce, the generalized advantage estimation coeffi-
cient λ, and the PPO clip coefficient ϵ are among the most important parameters.
Whereas for f ∗ = 3 the top-3 hyperparameters in terms of importance are ce, neural
network depth L, and neural network embedding dimension d. An important aspect
to keep in mind is that the relative importance of hyperparameters is also influenced
by the range of the corresponding hyperparameter in the search space defined in
table 3.3 and may not remain the same for a different choice of design space.

We can visualize the optimization landscape for the top-3 most important hyper-
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Figure 3.16: Hyperparameter importances for (a) f ∗ = 4 and (b) f ∗ = 3 as measured
by the functional Analysis of Variance (fANOVA) method [32]. The results indicate
that a few parameters have an outsized impact on the final objective function. Fur-
ther, we see that the relative importance of hyperaparameters depends on the choice
of f ∗.

parameters via contour plots of the objective value as a function of the hyperparam-
eters taken pairwise. Figures 3.17 (f ∗ = 4) and 3.18 (f ∗ = 3) show the optimization
landscape for the two element types being assessed in this work. The plots show that
the optimization landscape is highly non-linear with several local minima/maxima.
We also see that the TPE sampling strategy results in non-uniform sampling in the
design space and tries to place more sample points in regions with higher potential
for reward.
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(b) GAE λ vs PPO clip parameter ϵ
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rameter ϵ

Figure 3.17: Optimization landscape of the three most important hyperparameters
for f ∗ = 4 – namely entropy coefficient ce, GAE coefficient λ, PPO clip parameter
ϵ. Note that ce is plotted in the log-domain while λ and ϵ are plotted in the linear
domain. Scatter points represent trial points. We highlight the highly non-linear
optimization landscape and the non-uniform sampling strategy of the TPE algorithm
that aims to explore regions with high objective value more than regions with low
objective value.
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(a) DCEL residual blocks L vs. entropy
coefficient ce
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(b) Embedding dimension d vs. DCEL
residual blocks L
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(c) Embedding dimension d vs entropy
coefficient ce

Figure 3.18: Optimization landscape of the three most important hyperparameters
for f ∗ = 3 – namely entropy coefficient ce, number of DCEL residual blocks L, and
embedding dimension d. Note that ce is plotted in the log-domain while L and
d take on discrete values. Scatter points represent trial points. We highlight the
highly non-linear optimization landscape and the non-uniform sampling strategy of
the TPE algorithm that aims to explore regions with high objective value more than
regions with low objective value.
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Figure 3.19: Training loss history of best-performing agent for f ∗ = 4. Agent was
trained for 107 time-steps.

Fine-tuning best-performing model

The hyperparameters corresponding to the best-performing model configuration dur-
ing hyperparameter optimization is reported in table 3.4. We select these parameters
and train f ∗ specialized agents in self-play for 107 time-steps. Figures 3.19 and 3.20
show the training loss history of various loss components. Figures 3.21 and 3.22
show the performance of the agents during the course of training. We see that the
explained variance is around 0.95 for f ∗ = 4 and 1 for f ∗ = 3. Explained variance
measures the proportion of the variance observed in state value that can be captured
by the value function head and is upper bounded at 1. The relatively high values
of explained variance for both quadrilaterals and triangles suggests that the feature
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Figure 3.20: Training loss history of best-performing agent for f ∗ = 3. Agent was
trained for 107 time-steps.

extractor and value function head are able to capture the underlying dynamics of
the environment. We also note that the clip fraction is initially high as the policy
undergoes rapid change during optimization, but gradually reduces as the model
stabilizes. Finally the average returns measured over the course of training increases
rapidly and slowly stabilizes around 0.7 for f ∗ = 4 and 0.78 for f ∗ = 3.

3.6 Evaluation

Figure 3.23 shows the average best score vs polygon degree for the quadrilateral (f ∗ =
4) and triangle (f ∗ = 3) model. For a given polygon degree, we instantiate 10 random
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Figure 3.21: Model performance as a function of training history for f ∗ = 4. (a)
Ratio of actions whose gradients are clipped according to the PPO clipped objective
function. Initially, the policy undergoes rapid changes resulting in a higher fraction of
actions experience clipping. As training stabilizes, a fewer fraction of actions experi-
ence gradient clipping. (b) The explained variance of the value function head is close
to 1 suggesting that the model is successfully capturing the underlying environment
dynamics. (c) The average returns rapidly increases and then slowly approaches a
value of around 0.7 at 107 steps. Further training may improve the performance.
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(b) Explained variance
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Figure 3.22: Model performance as a function of training history for f ∗ = 3. (a)
Ratio of actions whose gradients are clipped according to the PPO clipped objective
function. Initially, the policy undergoes rapid changes resulting in a higher fraction of
actions experience clipping. As training stabilizes, a fewer fraction of actions experi-
ence gradient clipping. (b) The explained variance of the value function head is close
to 1 suggesting that the model is successfully capturing the underlying environment
dynamics. (c) The average returns rapidly increases and then slowly approaches a
value of around 0.78 at 107 steps.
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Figure 3.23: Average best score vs polygon degree for quadrilateral and triangular
element types. The model was trained on random polygons of degree between 6-20
and evaluated on geometries with degree 6-40. For a given instance of an environ-
ment, the policy is rolled out 10 times from the same initial state and the best score
is selected. We compute the average (solid line) and standard deviation (shaded
region) over 10 random instances for a given polygon degree and repeat for various
values of polygon degree. We observe that the model demonstrates generalization
capability beyond the training regime. The quadrilateral model demonstrates some
deterioration in model performance with increasing polygon degree. The drop in
performance is lesser for the triangular model.

environments. The policy is repeatedly rolled out 10 times for each environment
instance and the best score for each instance is computed. The average across the
10 instances and standard deviation are computed for each polygon degree. While
the model was trained on 6-20 sided polygons, it demonstrates almost similar levels
of performance on polygons up to 40-sided. The quadrilateral model demonstrates
some deterioration in performance. The deterioration is smaller for the triangular
agent.

We believe that the key reason for the generalization capability is our use of a
local state representation that looks at a fixed sized neighborhood. We also use train-
able embeddings to represent geometric and template boundaries – we can see these
embeddings as representing a“belief” about the rest of the state. The generalization
trend relies on the fact that actions are local and only influence the topology in a
small neighborhood of the current template center.

Figures 3.24 and 3.25 show illustrative examples of the result of evaluating the
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policy on a given geometry. The initial geometry is shown on the left and is a
random instantiation of the training environment. The policy is rolled out 10 times
from each initial state. The mesh with the smallest face score with ties broken by
smallest total score is shown on the right. We see that the model is in general capable
of decomposing the given shape into elements of the right type. Further, we achieve
a block mesh with few irregularities and angles that are not very skewed.

The performance of the agent is not optimal, however. For example, in a quadri-
lateral mesh, any edge between vertices that have irregularities +1 and -1 at its
end-points can be regularized using the “global-split” operation discussed in chapter
2. We see several examples of such vertices in fig. 3.24. In the case of triangular
elements in fig. 3.25 we notice that the agent never introduces a new vertex in the
interior. In many cases (e.g. triangulating a hexagon) it is necessary to introduce
interior vertices in order to obtain an optimal mesh. It is possible that the model
has converged to a local minima due to lack of exploration. Further work is required
to overcome this particular challenge.

3.7 Conclusion

In this chapter we presented a reinforcement learning method to generate meshes of
user provided 2D shapes. We discussed in detail how we use the Doubly Connected
Edge List (DCEL) to represent 2D geometries as collections of heterogeneous faces
(elements). We illustrated a unified action space consisting of basic, elementary
operations that can be used to generate a variety of mesh types. We phrased meshing
as an optimization problem and introduced topological and geometric measures to
construct a weighted objective function which was used to generate a reward signal
for our agent.

We demonstrated that our agent can be trained on the meshing task and is
successfully able to decompose random 2D shapes into the required element type.
We showed that the exact same neural network architecture can be trained to produce
triangles or quadrilaterals (or any other face degree) by simply changing the desired
face degree parameter f ∗ from 3 to 4.

We explored automatic Hyperparameter Optimization (HPO) in detail. We
showed the sensitivity of RL model performance to hyperparameter settings by run-
ning ∼100+ experiments in parallel and analyzing the results. While the number
of hyperparameters can be large, typically a few hyperparameters have an outsized
impact on model performance and are worth focusing on. We demonstrated the use
of tools to extract hyperparameter importances from the results of HPO.
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Figure 3.24: Example rollouts of the trained f ∗ = 4 policy for randomly generated
polygonal shapes of different size. The final geometry was selected by running the
policy 10 times from each initial state and picking the mesh with the smallest face
score with ties broken by meshes with smallest total score. Note that in all the cases,
the model consistently generates meshes with optimal face score. Irregular vertices
are marked with their corresponding irregularity.
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Figure 3.25: Example rollouts of the trained f ∗ = 3 policy for randomly generated
polygonal shapes of different size. The final geometry was selected by running the
policy 10 times from each initial state and picking the mesh with the smallest face
score with ties broken by meshes with smallest total score. Note that in all the cases,
the model consistently generates meshes with optimal face score. Irregular vertices
are marked with their corresponding irregularity.
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While the initial results look promising, there are certainly areas for improve-
ment. One particular finding from observing figs. 3.24 and 3.25 is that the agent is
converging upon local minima and not exploring the state space enough. The quadri-
lateral model has not learned the “global-split” operation. This is understandably
challenging since the global-split requires a long-sequence of very specific moves to
regularize the vertices. The triangle model never seems to insert a vertex which can
be trivially shown to be sub-optimal in many scenarios (e.g. triangulating a regular
hexagon.) Both of the above problems seem to do with a lack of exploration and
convergence to local minima. Indeed, the relatively low values of the entropy weight
in table 4.1 supports this view since the entropy loss encourages model exploration.

The exploration-exploitation dilemma is one of the most common challenges in
RL. In our particular context, the following are promising areas of future work. Cur-
riculum learning [6] aims to train the model on progressively challenging problems.
Operations such as the “global-split” are easier to realize on smaller geometries, but
this insight can be carried over to larger geometries. A more sophisticated approach
is Never Give Up [5] wherein a single neural network is used to simultaneously learn
multiple policies with different degrees of exploration/exploitation. They show that
this approach results in transfer from exploratory policies to produce effective ex-
ploitative policies. We hope that our open-source implementation and integration
with libraries such as gymnasium and stable-baselines3 can simplify testing of
different algorithms for future work.

3.8 Software

Our environment API and RL model have been made consistent with major open-
source libraries to allow for ease-of-use and rapid experimentation. The majority of
the code-base is unit-tested with over ∼ 600+ hand-engineered test-cases. Source
code for the models and results reported in this chapter can be found at
https://github.com/ArjunNarayanan/MeshRL.git
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Chapter 4

LinFlo-Net: A two-stage deep
learning method to generate
simulation ready meshes of the
heart

We present a deep learning model to automatically generate computer models of the
human heart from patient imaging data with an emphasis on its capability to gener-
ate thin-walled cardiac structures. Our method works by deforming a template mesh
to fit the cardiac structures to the given image. Compared with prior deep learning
methods that adopted this approach, our framework is designed to minimize mesh
self-penetration, which typically arises when deforming surface meshes separated by
small distances. We achieve this by using a two-stage diffeomorphic deformation
process along with a novel loss function derived from the kinematics of motion that
penalizes surface contact and interpenetration. Our model demonstrates comparable
accuracy with state-of-the-art methods while additionally producing meshes free of
self-intersections. The resultant meshes are readily usable in physics based simula-
tion, minimizing the need for post-processing and cleanup.

4.1 Introduction

Image-based computer modeling is playing an increasing role in understanding the
mechanisms of cardiac disease and personalized care [53]. Broadly, this paradigm
uses medical imaging, such as computed tomography (CT) or magnetic resonance
(MR), to construct an anatomically accurate computer model of the heart in order to
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mathematically model physiological processes and probe functional information [15].
Reconstructing an accurate, personalized computer model of the heart is challenging
because of imaging artifacts, limited resolution and difficultly differentiating between
cardiac and surrounding tissues. Further, generating these models manually can take
on the order of 6-10 hours [82] for an expert human. This is one of the major hurdles
in the adoption of such technologies on a larger scale, motivating the development
of automatic and scalable methods.

Segmentation is the process of identifying structures of interest in an image.
Recent advances in machine learning and computer vision have demonstrated con-
siderable success in the field of medical image segmentation. Numerous methods
have been proposed that can achieve human-level performance on a large variety of
structures of interest for the medical community [75]. However, segmentation of-
ten generates artifacts that are unfit for simulation-based modeling. Recently, we
have developed alternative template based deep-learning methods that are able to
generate simulation-ready computer models of cardiac structures automatically from
images [37, 36]. These methods use machine learning to deform mesh templates to
create a personalized geometry that best matches the image data. However, these
methods do not guarantee a bijective mapping between the template and the de-
formed meshes. Thus, self-intersections and unphysiological distortions are possible,
requiring significant post-processing steps to correct these artefacts.

Notably, prior methods have focused primarily on generating surface models of
the blood pool boundaries since, except for the left ventricular (LV) myocardium,
only blood pools are discerned from clinical imaging (cf. Fig. 4.1). However, many
applications of cardiac modeling require modeling of the cardiac and vascular tissue.
These tissues (with the exception of the LV wall) have modest thickness, and thus
deformation of templates that contain such tissue structures are highly susceptible
to self-intersections.

To address those limitations, we present here a deep learning method to produce
whole-heart meshes with thin-walled structures from medical image (CT or MR)
data. We employ a template-based method to ensure accurate and simulation com-
patible models free of self-intersections. Briefly, we use deep learning to deform a
template mesh using a combination of linear-transformations and diffeomorphic flow
deformations. We present a novel physics-based loss term that penalizes vanishing
volumes thereby preventing self-penetrations when mapping thin walled structures.
The model can be trained on data containing no thickness information and subse-
quently evaluated on a template with thickness. We demonstrate that this approach
is able to successfully deform template meshes in a realistic manner without inter-
penetration. The predictions of our model can be readily used to generate volumetric
grids for computational simulations.
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Myocardium AortaLeft ventricle
blood pool

Figure 4.1: Illustrative examples of CT (top row) and MRI (bottom row) images
of the cardiac region. The segmentation of some cardiac structures of interest are
overlaid on the figures on the right. Since the myocardium is a thick muscular
structure, it is clearly visible in the image. However, the tissue thickness of other
structures like the aorta are not visible in these images, and only the blood pool
within these structures is visible.

4.2 Related Work

Automatically generating 3D meshes from images is a challenging problem that has
attracted considerable interest recently. In Pixel2Mesh [74], the authors deform an
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initial ellipsoidal template mesh to a target shape. Voxel2Mesh [76] extended these
ideas to 3D medical images wherein the resultant mesh was dynamically refined
in areas to capture geometric details. MeshDeformNet [37] and HeartDeformNet
[36] demonstrated state-of-the-art accuracy in whole-heart mesh generation while
preserving anatomical accuracy. However, these methods are not specifically designed
to avoid self-intersections, which hinders their use for physics-based simulations. For
example, standard meshing softwares like TetGen [29] fail to produce volumetric
tetrahedral meshes from surface meshes that contain self-intersections.

To overcome these challenges, there has been interest in incorporating diffeomor-
phic constraints to deep learning algorithms, either explicitly through regularization
losses or implicitly through inherent network designs, to produce deformation fields
that are diffeomorphic. Pak et al. [47] generated 3D volumetric meshes of the aor-
tic valve by training a neural network to predict the displacement field of an initial
template. They proposed a novel distortion energy based on the singular value de-
composition of the deformation gradient that penalizes deformations that are not
diffeomorphic. The NeuralMeshFlow framework [27] used a neural network to pre-
dict the 3-dimensional vector field that could be used to integrate a point cloud (e.g.
the vertices of a mesh) to a target geometry. Under regularity assumptions, this
deformation is diffeomorphic. Similar ideas have been extended to applications in
3D medical imaging. CorticalFlow [38] and CortexODE [43] leveraged diffeomorphic
flow fields for cortical surface reconstruction. UNetFlow [10] used a similar approach
to generate meshes of abdominal structures such as the liver and pancreas. In prac-
tice, the meshes generated by such methods are not strictly intersection free due
to various factors like numerical integration errors, but nevertheless, these methods
typically show a significant reduction in the number of self-intersecting faces.

The method presented herein was inspired by ideas from the approaches described
above. However, our method is unique in several key ways highlighted below:

1. We employ a two-stage deformation process consisting of an initial linear trans-
formation followed by diffeomorphic flow-based deformation to capture finer
details.

2. Along with the clinical image, we provide a representation of the template
mesh’s current position as input to our model. We use an unsigned distance
function as the representation since computer vision models are well suited to
this format. We observed empirically that this significantly improves model
performance.

3. We demonstrate a simple and effective strategy to minimize integration errors
by constraining the magnitude of the flow field, drawing connections to the
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Courant–Friedrichs–Lewy condition in numerical analysis.

4. We propose a physics-based loss function derived from the kinematics of motion
of continua that penalizes flow fields that generate collapsing volumes, thus
preserving structure thickness even when thickness is not visible in the original
image.

4.3 Methods

Neural network architecture

We aim to create a machine learning method that can deform a template heart model
to match with a patient’s image data. There can be significant variability in heart
geometry. Figure 4.2 shows the variation in scale for two hearts in the dataset we will
consider. The differences in scale are due to different field of view between scans and
inter-patient variation in heart-size. We expect such variations to exist in real-world
applications and our model is designed to handle these cases. Namely, our method
first performs a linear transformation (cf. sec. 4.3) via scaling, rotation, and trans-
lation. A linear transformation is well behaved and guaranteed to be diffeomorphic.
Further, it is highly interpretable. Thus, we aim to train our linear deformation mod-
ule to maximally capture large-scale deformations. A subsequent (nonlinear) mesh
deformation module is used to deform the linearly transformed mesh by integrating
the mesh vertices along a learned vector field. This approach was designed with
the requirement that the deformed template has minimal self-intersections. Since
integration errors accumulate over larger deformations, by utilizing the linear trans-
formation module in the first step, we reduce errors and self-intersections. Namely,
the flow module is only required to capture finer details. Indeed, we have verified
that the quality of meshes produced by the flow module alone (without any linear
transformation) is poor.

Linear transformation

A linear transformation is a global operation applied to all mesh vertices. The trans-
formation can be defined by 9 parameters: 3 scaling, 3 rotation, and 3 translation.
We observed empirically that scaling and translation have a bigger impact on ac-
curacy. Rotation only provides a small benefit, but we include it nonetheless since
there is no significant overhead to do so. Our linear transformation module consists
of a 3D convolutional neural network (CNN) encoder and a multi-layer perceptron
(MLP) decoder. The CNN consists of multiple layers of convolution followed by
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Figure 4.2: Two samples from our dataset that demonstrate the variation in scale
across samples. Black wireframe is the template mesh, and red surface is the ground-
truth mesh.

downsampling. The CNN processes a normalized input image of size 1283 (see sec.
4.3 for details on the dataset and normalization protocol) and produces an encod-
ing of dimension 43 with 512 channels. This encoding is flattened and processed by
an MLP with a single hidden layer to produce the 9 parameters defining a linear
transformation. The model is initialized to produce the identity transformation.

The predicted parameters are used to perform a linear transformation on a tem-
plate mesh. We use the center of the image as the origin of the transformation. We
apply the operation in the following order: scale–rotate–translate. We use the same
initial template, and always initialize it at the same location in normalized image
coordinates. The model is trained to minimize the chamfer distance in the L1-norm
between the transformed template and ground truth mesh vertices given by eq. 4.3.
We compute the Chamfer loss for each cardiac structure separately and take its av-
erage. The linear transformation and loss function are implemented in PyTorch3D
[56]. We show a schematic of this module in fig. 4.3.
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Figure 4.3: Workflow describing the training pipeline for the linear transformation
module

Flow deformation

The linear transformation is a global operation and is unable to adjust the template
to the finer features of the target geometry. We instead require a spatially vary-
ing deformation field. While this deformation field can be directly learned, it will
generally not be diffeomorphic. Instead, we can learn a flow vector field that can
be used to integrate the vertices of the linearly transformed template, resulting in a
diffeomophic deformation. The learned vector field is further constrained using the
loss function eq. 4.5 to prevent collapsing volume. A schematic of this module is
shown in fig. 4.4.

We trained a U-Net architecture [58] to produce a dense flow vector field in the
image space. U-Net has emerged as a mature technology particularly in the field of
medical image segmentation. The U-Net model is able to produce an output that is
at the original resolution of the image space. Further, the use of skip connections
between the encoder and decoder arm equip the model with local and global context
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in the image. This makes the U-Net architecture ideally suited to our application
since we wish to predict a dense flow vector field at the same resolution as the input
image. Prior flow based methods [38, 10] have also successfully employed the U-Net
in their model design.

Since the position of the template is no longer fixed but depends on the result of
the linear transformation, the model requires a representation of the template mesh’s
current position. We achieve this by providing an unsigned distance map, d(x), that
encodes the template mesh’s position in the image space,

d(x) = min
y∈T
|x− y|2 (4.1)

where T is the surface of the template mesh and | · |2 is the L2 distance norm. This
distance map is concatenated to the image as a second channel and serves as the
input to the U-Net.

To avoid excessive compute at training time, we construct the distance map
for the initial template ahead of time and simultaneously apply the same learned
linear transformation to the template and the distance map. The distance map
is computed from the center of each voxel to the nearest point on the surface of
the initial template mesh. We use routines available in PyTorch3d to compute the
distance to surface. We empirically observed that the distance map significantly
improves the performance of the model. This approach can be an effective strategy
to improve the performance of any multi-stage mesh deformation process. Namely, a
distance function can effectively encode the location of the template mesh to standard
computer vision models that expect inputs to be represented as dense arrays.

We performed numerical integration using an explicit 4th order Runge-Kutta
scheme. Numerical integration is an approximation to the “true” integral and accu-
mulates error over time. Prior flow-based approaches [38] aim to minimize integration
errors by controlling the time-step size based on the Lipschitz constant of the flow
vector field. However, by doing this, the time-step size of integration is controlled
by the region with the largest Lipschitz constant, possibly resulting in undesirably
small time steps globally. We propose here an alternative strategy to mitigate the
accumulation of integration error. We enforce the condition that a vertex cannot
travel more than a distance of 1 voxel per time step by upper-bounding the L2 norm
of the flow vector field. This condition is similar to the Courant-Friedrichs-Lewy
(CFL) condition in numerical analysis. We refer the reader to a standard resource
on numerical analysis such as [40] for a more detailed discussion on the CFL condi-
tion. If v is the predicted flow vector field before clipping, we compute the clipped
flow vector field vclip as,
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vclip = α
v

max(|v|2, α)
(4.2)

where α is a parameter that is set to approximately 1-voxel spacing. Notice that
vclip has an L2 norm upper-bounded by α. Since the normalized image coordi-
nates is a cube ranging across [0, 1]3 and is discretized into 1283 uniform voxels, the
voxel-spacing in normalized image coordinates is 1/128 ≈ 0.0078. Thus we took
α = 0.0075 < 1/128. By clipping the flow-field, we are able to use a uniform step-
size throughout the training process. We empirically observed that clipping the flow
vector field resulted in a reduction in the number of self-intersecting faces suggest-
ing that this simple strategy can be effective at controlling error due to numerical
integration.
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Figure 4.4: Workflow illustrating the training pipeline for the flow deformation mod-
ule
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Loss functions

The model is trained using a weighted sum of the following losses:

1. Chamfer distance in the L1 norm as defined in eq. 4.3.

2. Normal consistency between template and ground truth meshes.

3. Volume loss as defined in eq. 4.5.

4. Mesh regularization, which includes edge length, normal consistency across
faces, and Laplacian smoothing loss.

Loss terms (1) and (4) are directly available in PyTorch3D [56].

Chamfer distance

The chamfer distance between two point clouds P1 and P2 can be computed as
follows,

chamfer(P1, P2) =
1

P1

∑
x∈P1

min
y∈P2

|x− y|1+

1

P2

∑
y∈P2

min
x∈P1

|x− y|1 (4.3)

Minimizing this loss leads to the model trying to increase the overlap between
the point clouds. This has the effect of improving the accuracy of the model in terms
of overlap with the grounds-truth geometry.

Normal consistency between template and ground truth

The normal consistency loss helps to associate surfaces with the correct orientation.
This is typically achieved by computing the cosine similarity between the normal
vectors from the template mesh with the normal vectors at the closest point in the
ground-truth mesh and vice versa. This loss function is particularly important for
the myocardium which is a cup-like structure. Since its inner and outer surfaces are
separated by a small length scale, incorrectly associating these two surfaces will result
in the two surfaces collapsing into each other. The normal consistency loss helps to
prevent this. Note that the PyTorch3D implementation does not distinguish between
the orientation of the two surfaces i.e. the sign of the normals does not affect the
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loss. This distinction is important for our application. For structures with thickness,
not making this distinction can result in incorrectly associating surfaces together
resulting in the collapse of this thickness. Instead, we use the following form of the
normal consistency loss, which is a slight modification of the loss implemented in
PyTorch3D. Given two point-sets P,Q and a normal function n(·) which gives the
normal at any point, the normal consistency loss LNC is,

LNC(P,Q) =
1

|P |
∑
x∈P

1− n(x)Tn(y)

s.t. y = argminz∈Q|x− z|2 (4.4)

We compute the average of LNC(T,G) and LNC(G, T ) as the final loss where T and
G are respectively the template mesh and the ground truth mesh.

Volume loss

To address the issue of collapsing volumes, we introduce a physics-based loss function
derived from the kinematics of continuous media. Consider a mesh vertex located
at x(t) where t is the time-like parameter of integration. We can take t ∈ [0, 1]
without loss of generality with x(0) being the initial location of the mesh vertex and
x(1) being the location of the vertex after integration along the flow vector field v.
Let V (0) and V (1) represent the volume of a small neighborhood around x in the
initial and final states. Since the flow vector field transforms the entire space, it also
transforms the volume V (0) to V (1). A standard result in continuum mechanics (see
chapter 3 in [1]) relates the rate of change of V to the divergence of the flow vector
field,

dV

dt
= V div(v)

Integrating this quantity from time t = 0 to 1 we get,

Lvol :=
V0

V1

= exp

(
−
∫ 1

0

div(v) dt

)
Suppose the flow vector field v is such that a region with finite initial volume V0

collapses to an infinitesimally small volume V1 (i.e. V1 << V0) then Lvol evaluates
to a large value. We call Lvol the volume loss and demonstrate that including this
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quantity during training helps to prevent surfaces separated by a small distance from
collapsing into each other. Lvol is computed by computing the integral in the above
equation along the trajectory of every mesh vertex for which this loss is applied.
Even though v is taken to be a stationary vector field (i.e. it is not time-dependent),
for a given mesh vertex div(v) varies along its integration trajectory. We compute
div(v) using a central finite-difference scheme in the image space. Subsequently, we
simultaneously integrate the positions and accumulate the above integral for all mesh
vertices to which this loss is applied.

Note that the exponential term in the above equation can cause this loss and
its associated gradients to blow up which could cause instability in training. To
avoid this, we clip the upper bound of the integral point-wise prior to computing the
exponential. The equation below is our final expression for the Volume Loss,

Lvol = exp

(
min

(
3,−

∫ 1

0

div(v) dt

))
(4.5)

This simple strategy resulted in stable training in our experiments. Alternatively,
gradient clipping available in machine learning libraries such as PyTorch may be
directly employed.

Dataset

For training and testing, we use the same dataset as [37]. The training data consists
of data from four public datasets including the multi-modality whole heart segmen-
tation challenge (MMWHS) [82], orCaScore challenge [77], left atrial wall thickness
challenge (SLAWT) [33], and left-atrial segmentation challenge (LASC) [71]. In to-
tal we had 101 CT samples and 47 MR samples in our dataset. We split this into a
training dataset (86 CT, 41 MR) and a validation dataset (15 CT, 6 MR) for hyper-
parameter tuning. The MMWHS challenge further provides a held-out test dataset
consisting of 40 CT and 40 MR samples for which no ground-truth is available. In-
stead, the challenge organizers provide encrypted scripts that can be used to evaluate
predicted segmentations on a variety of accuracy metrics. We use this held-out test
dataset to evaluate the final performance of our models and report the same in the
subsequent section. The input images are available in the NIfTI file format. Other
image formats can be supported so long as the appropriate backend is available to
load these files and convert them into image arrays.

We augment the training dataset with small perturbations including random
scaling, translation, rotation, shear, and local b-spline deformations. We produce
20 random augmentations per image. Figure 4.5 shows typical image samples and
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Figure 4.5: An illustration of samples generated by the data-augmentation process
from a given input image and associated ground-truth segmentation. We generate
these samples by applying small perturbations including random scaling, translation,
rotation, shear, and local b-spline deformations to the input image and segmenta-
tion. Meshes are produced from the generated segmentations via the marching cubes
algorithm.

associated ground-truth surfaces generated by the data-augmentation procedure for
a single input image and segmentation. Subsequently, the dataset is pre-processed
and normalized prior to training following a procedure similar to [35]. The input
images are resampled to a standard dimension of 1283. Further, the voxel intensities
are thresholded and normalized to lie between [−1, 1]. We apply different normal-
ization procedures to CT and MR samples since the Hounsfeld intensity values for
CT images is standardized. For CT samples we threshold voxel intensities to lie
between [−750, 750] and then scale the values to [−1, 1]. We threshold MR voxel
intensities at the 20th percentile of values (lower) and 99th percentile of values (up-
per) and scale the resulting values to [−1, 1]. We apply thresholding to ensure that
the voxel intensities in the range expressed by the cardiac structures of interest are
captured, while largely removing intensity variations due to bones or imaging arte-
facts. Ground-truth meshes were generated using the marching cube algorithm on
the ground-truth segmentations, followed by mesh smoothing.

Since the original MR volumes had a significantly larger field-of-view, we cropped
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Table 4.1: Hyperparameter settings used to train the model

Hyperparameter Value
Batch size 1

Initial learning rate 5× 10−5

Flow norm threshold 0.0075

Loss Function Weight
Chamfer distance 1

Chamfer normal consistency 0.20
Volume loss 0.005
Edge loss 50

Normal consistency loss 1
Laplace smoothing loss 30

the images such that the cardiac structures occupied a similar proportion of the
image space as in the CT data. This was automated in the training data by using
the ground truth segmentations to determine the cropping dimensions. The test data
was manually cropped, however automatic methods to generate a bounding box [51]
may be used in the future to avoid manual cropping. We evaluated our models on
the held-out test dataset of the MMWHS Challenge [82].

4.4 Results

We trained a single model on both CT and MR data using the hyperparameters
listed in table 4.1. This corresponds to model LT-FL-V. For model LT-FL we set
the weight of the volume loss to zero. We used a learning rate scheduler to reduce
the learning rate when the validation loss plateaus for a fixed number of iterations.
The model was trained on a single Nvidia 2080TI GPU for about 24 hours.

Model accuracy

To measure our model’s accuracy, we converted our generated meshes into segmen-
tations. The VTK [59] library provides routines to convert a mesh into an image
mask. We used these routines to obtain an image mask consisting of the region en-
closed by the mesh in the image space. We obtained one mask per cardiac structure
and consider these as the segmentations corresponding to our predicted meshes. We
then evaluated the accuracy of these segmentations using the scripts provided by the
MMWHS challenge organizers. We consider HeartDeformNet [36] as the benchmark
for this problem and compare our accuracy and mesh quality against the results
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reported in that work. Table 4.2 compares accuracy metrics including Dice Score,
Jaccard Index, Average Symmetric Surface Distance (ASSD) and Hausdorff Distance
(HD). Similarly Table 4.3 compares these accuracy metrics for the MR test dataset.
The reported results are the average over the 40 test samples in each dataset with
the standard deviation reported in parantheses.

We observe that the performance of our model is commensurate similar with
HeartDeformNet on average being slightly more accurate. We note that HeartDe-
formNet deforms the mesh over 3 successive stages each of which is a graph convolu-
tional neural network operating on the mesh. We anticipate that by incorporating a
second deformation block, or fine-tuning a pre-trained network, we can substantially
improve our performance.

Mesh quality

Next we compare the quality of the generated meshes in terms of the percentage
self-intersecting faces (SIF). We measure SIF using the PyMesh library [81]. SIF
measures intersections due to surface inter-penetration and intersections due to ele-
ment inversion. The usefulness of our method is clearly seen in Table 4.4 and Table
4.5. These tables report the percentage SIF for each cardiac structure for CT and
MR respectively measured on the meshes generated from the test dataset. Notice
that for CT samples each of the 40 generated meshes for the CT test dataset had zero
self-intersecting faces across all cardiac structures. Similarly, 38 out of 40 generated
meshes for the MR test dataset showed zero self-intersecting faces across all cardiac
structures. Of the two samples that had non-zero SIF, one had 0.85% SIF in the
Aorta and another sample had 0.92% SIF in the pulmonary artery. We note that
our template mesh had a higher resolution compared to the template used by Heart-
DeformNet. Our template mesh consists of 110K triangular faces and the template
used by HeartDeformNet consists of 45K faces. Generally speaking, higher resolution
meshes are more prone to self-intersections due to element collapse. Despite having
a significantly higher number of elements, our model is able to consistently generate
meshes with far fewer self-intersecting faces.

The ability to reliably generate meshes with zero self-intersections is a very useful
property because the presence of even a few self-intersecting faces can cause a mesh
generation software like TetGen [29] to abort. Thus, our model makes significant
progress towards robustly producing simulation-ready meshes that do not require
any post-processing before being usable in a simulation environment.
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Table 4.2: Comparing mean (standard deviation) of accuracy metrics on CT test
data. ↑ (↓) indicates higher (lower) value is better.

Metric Model Epi LA LV RA RV Ao PA WH
Dice (↑) Ours 0.86 (0.04) 0.92 (0.03) 0.91 (0.06) 0.85 (0.08) 0.88 (0.04) 0.89 (0.04) 0.82 (0.09) 0.89 (0.03)

HeartDeformNet 0.88 (0.03) 0.93 (0.03) 0.92 (0.04) 0.89 (0.05) 0.91 (0.03) 0.91 (0.04) 0.85 (0.09) 0.91 (0.02)
Jaccard (↑) Ours 0.76 (0.06) 0.85 (0.05) 0.84 (0.09) 0.75 (0.11) 0.79 (0.07) 0.81 (0.06) 0.70 (0.12) 0.80 (0.04)

HeartDeformNet 0.79 (0.05) 0.86 (0.05) 0.85 (0.06) 0.80 (0.07) 0.83 (0.05) 0.84 (0.06) 0.74 (0.13) 0.83 (0.04)
ASSD (↓) Ours 1.40 (0.36) 1.20 (0.33) 1.16 (0.47) 1.82 (0.72) 1.34 (0.39) 1.13 (0.35) 1.53 (0.75) 1.36 (0.26)

HeartDeformNet 1.38 (0.24) 1.14 (0.38) 1.10 (0.33) 1.63 (0.72) 1.14 (0.27) 0.93 (0.38) 1.20 (0.74) 1.25 (0.24)
HD (↓) Ours 13.74 (2.97) 12.21 (2.20) 12.55 (2.05) 12.52 (4.83) 10.80 (4.74) 5.79 (1.70) 7.84 (3.01) 16.32 (4.00)

HeartDeformNet 14.40 (2.75) 8.18 (3.08) 6.87 (2.51) 12.46 (5.99) 9.55 (2.01) 5.54 (1.91) 8.45 (2.96) 16.63 (4.37)

Table 4.3: Comparing mean (standard deviation) of accuracy metrics on MR test
data. ↑ (↓) indicates higher (lower) value is better.

Matric Model Epi LA LV RA RV Ao PA WH
Dice (↑) Ours 0.76 (0.09) 0.85 (0.05) 0.90 (0.03) 0.86 (0.04) 0.85 (0.09) 0.84 (0.06) 0.69 (0.14) 0.84 (0.05)

HeartDeformNet 0.79 (0.10) 0.86 (0.08) 0.89 (0.06) 0.88 (0.04) 0.87 (0.06) 0.83 (0.07) 0.78 (0.12) 0.86 (0.05)
Jaccard (↑) Ours 0.62 (0.11) 0.74 (0.08) 0.82 (0.05) 0.76 (0.06) 0.74 (0.12) 0.73 (0.08) 0.54 (0.15) 0.73 (0.07)

HeartDeformNet 0.66 (0.11) 0.77 (0.10) 0.81 (0.09) 0.78 (0.06) 0.78 (0.09) 0.72 (0.10) 0.65 (0.14) 0.76 (0.07)
ASSD (↓) Ours 2.22 (1.14) 1.72 (0.67) 1.46 (0.51) 1.79 (0.44) 1.97 (1.36) 1.48 (0.54) 2.37 (0.92) 1.86 (0.69)

HeartDeformNet 2.10 (1.24) 1.57 (0.66) 1.54 (0.77) 1.58 (0.49) 1.56 (0.72) 1.53 (0.66) 1.66 (0.73) 1.66 (0.59)
HD (↓) Ours 16.90 (3.48) 12.76 (3.30) 13.86 (6.23) 11.80 (3.15) 12.99 (9.69) 7.71 (4.72) 10.29 (3.70) 20.59 (8.96)

HeartDeformNet 15.96 (3.33) 10.16 (3.77) 8.97 (6.74) 12.56 (4.51) 12.46 (9.12) 7.39 (3.39) 9.14 (3.43) 18.91 (9.24)

Table 4.4: Comparing mean (max) percentage self-intersecting faces on CT test
dataset

Model Epi LA LV RA RV Ao PA
Ours 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

HeartDeformNet 0 (0) 0 (0) 0 (0) 0.01 (0.25) 0 (0) 0 (0) 0.18 (1.14)

Ablation study of model architecture

We investigated the different elements of our proposed model architecture and com-
pared the accuracy and quality of the generated meshes. We compare the following
model design choices here,

1. LT - A model that only employs the linear transformation.
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Table 4.5: Comparing mean (max) percentage self-intersecting faces on MR test
dataset

Model Epi LA LV RA RV Ao PA
Ours 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.85) 0.023 (0.92)

HeartDeformNet 0.019 (0.32) 0 (0) 0.013 (0.38) 0.03 (0.07) 0.012 (0.31) 0.138 (2.96) 0.625 (4.76)

2. FL - A model that only employs the flow deformation without the linear trans-
formation.

3. LT-FL - A model combining the linear transformation and flow deformation
but trained without the volume loss eq. 4.5.

4. LT-FL-v - The LT-FL model that is trained additionally with the volume loss
eq. 4.5.

To assess the performance of these models, we generated meshes on the held-out
test dataset. Figures 4.6 and 4.7 compare the dice scores of the different models.
Detailed comparison of all accuracy metrics are provided in tables 4.6 and 4.7. Fur-
ther, detailed comparison of mesh quality are provided in tables 4.8 and 4.9. We
observed that combining the linear transformation with the flow deformation sub-
stantially improves the accuracy and quality of the generated meshes in almost all
cases. As expected, the linear transformation introduces zero self-intersections in
all cases, which benefits the LT-FL model as well. Further, the volume loss has
a powerful regularization effect on the generated flow fields, which helps to almost
completely eliminate self-intersections.

Patient specific meshes of left ventricle with tissue thickness

We now showcase an application of our method in generating meshes of cardiac
structures wherein thickness information is not available in the ground truth. Figure
4.8 shows a template mesh of the left-ventricle myocardium that was generated by
combining meshes of the myocardium, aorta, and left atrium. As shown in fig. 4.1,
the thickness of the aorta and left atrium is not visible in the original image and
must be added based on knowledge of cardiac tissue.

It is important to note that since the ground truth surfaces of the aorta and left
atrium do not contain thickness, the vector fields describing the deformation of the
template in a neighborhood around these surfaces point towards these surfaces. In
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Figure 4.6: Comparison of dice score on CT test data for different model choices
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Figure 4.7: Comparison of dice score on MR test data for different model choices

other words, these surfaces act like sinks in the deformation field. The model thus
learns to collapse any wall thicknesses added in the template. This is undesirable for
the following reasons:

1. We will not be able to generate a volumetric mesh of the myocardium from
these collapsed surfaces. Repairing these collapsed surfaces is non-trivial and
requires significant manual effort. Further, the mechanical response of a col-
lapsed surface will vastly over-exaggerate the true deformation of these tissues
when subjected to mechanical load.

2. We require the red surfaces in fig. 4.8 to apply boundary conditions for elec-
tromechanics simulation of the LV. If these surfaces are collapsed, we will not
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Table 4.6: Ablation study – comparing mean (standard deviation) of accuracy met-
rics on CT test data. ↑ (↓) indicates higher (lower) value is better.

Metric Model Epi LA LV RA RV Ao PA WH
Dice (↑) Fl 0.56 (0.12) 0.88 (0.05) 0.73 (0.14) 0.87 (0.06) 0.86 (0.05) 0.83 (0.06) 0.76 (0.10) 0.79 (0.05)

LT 0.58 (0.09) 0.68 (0.07) 0.72 (0.09) 0.67 (0.11) 0.66 (0.08) 0.71 (0.11) 0.61 (0.11) 0.66 (0.06)
LT-Fl 0.86 (0.04) 0.92 (0.03) 0.91 (0.05) 0.87 (0.06) 0.89 (0.04) 0.89 (0.03) 0.81 (0.09) 0.89 (0.02)
LT-Fl-v 0.86 (0.04) 0.92 (0.03) 0.91 (0.06) 0.85 (0.08) 0.88 (0.04) 0.89 (0.04) 0.81 (0.09) 0.89 (0.03)

Jaccard (↑) Fl 0.39 (0.11) 0.79 (0.08) 0.59 (0.16) 0.77 (0.09) 0.76 (0.08) 0.71 (0.08) 0.63 (0.13) 0.66 (0.07)
LT 0.41 (0.09) 0.51 (0.08) 0.57 (0.10) 0.51 (0.12) 0.50 (0.09) 0.56 (0.13) 0.44 (0.11) 0.49 (0.06)

LT-Fl 0.75 (0.06) 0.85 (0.05) 0.84 (0.07) 0.77 (0.09) 0.80 (0.06) 0.80 (0.05) 0.69 (0.12) 0.80 (0.04)
LT-Fl-v 0.76 (0.06) 0.85 (0.05) 0.84 (0.09) 0.75 (0.11) 0.79 (0.07) 0.81 (0.06) 0.69 (0.12) 0.80 (0.04)

ASSD (↓) Fl 1.97 (1.10) 1.54 (0.41) 4.40 (1.85) 1.86 (0.85) 1.75 (0.51) 2.02 (0.84) 2.00 (0.89) 2.24 (0.52)
LT 3.63 (0.97) 4.28 (1.05) 4.01 (1.04) 4.44 (1.21) 4.59 (1.05) 2.94 (1.09) 3.71 (1.23) 4.07 (0.64)

LT-Fl 1.33 (0.38) 1.22 (0.36) 1.16 (0.37) 1.70 (0.69) 1.36 (0.43) 1.17 (0.30) 1.64 (0.77) 1.35 (0.24)
LT-Fl-v 1.43 (0.36) 1.25 (0.33) 1.17 (0.47) 1.82 (0.72) 1.33 (0.39) 1.13 (0.35) 1.55 (0.75) 1.37 (0.26)

HD (↓) Fl 13.90 (9.09) 10.81 (3.13) 12.68 (2.84) 12.01 (5.26) 12.10 (5.11) 10.40 (5.37) 10.61 (4.56) 18.86 (9.09)
LT 16.80 (2.46) 14.75 (3.47) 14.88 (3.37) 17.82 (4.38) 16.71 (3.30) 9.79 (2.75) 12.69 (3.99) 20.34 (3.80)

LT-Fl 12.59 (2.95) 9.79 (3.08) 8.88 (3.08) 11.73 (4.99) 10.65 (4.71) 5.96 (1.82) 8.08 (2.92) 15.86 (4.19)
LT-Fl-v 13.60 (2.97) 12.15 (2.20) 12.30 (2.05) 12.55 (4.83) 11.28 (4.74) 5.74 (1.70) 7.92 (3.01) 16.21 (4.00)

Table 4.7: Ablation study – comparing mean (standard deviation) of accuracy met-
rics on MR test data. ↑ (↓) indicates higher (lower) value is better.

Metric Model Epi LA LV RA RV Ao PA WH
Dice (↑) Fl 0.55 (0.09) 0.81 (0.07) 0.81 (0.08) 0.86 (0.04) 0.82 (0.09) 0.67 (0.18) 0.68 (0.15) 0.77 (0.05)

LT 0.45 (0.12) 0.62 (0.09) 0.69 (0.08) 0.66 (0.10) 0.64 (0.08) 0.62 (0.12) 0.50 (0.13) 0.60 (0.06)
LT-Fl 0.74 (0.09) 0.85 (0.06) 0.89 (0.04) 0.87 (0.04) 0.85 (0.10) 0.83 (0.06) 0.70 (0.14) 0.84 (0.05)
LT-Fl-v 0.76 (0.09) 0.85 (0.05) 0.90 (0.03) 0.86 (0.04) 0.85 (0.09) 0.84 (0.06) 0.69 (0.14) 0.84 (0.05)

Jaccard (↑) Fl 0.38 (0.08) 0.68 (0.10) 0.69 (0.10) 0.76 (0.06) 0.70 (0.12) 0.52 (0.19) 0.53 (0.16) 0.63 (0.07)
LT 0.30 (0.11) 0.45 (0.09) 0.53 (0.09) 0.51 (0.11) 0.48 (0.09) 0.46 (0.12) 0.34 (0.11) 0.43 (0.06)

LT-Fl 0.60 (0.11) 0.74 (0.09) 0.81 (0.06) 0.77 (0.06) 0.74 (0.13) 0.71 (0.08) 0.55 (0.16) 0.73 (0.07)
LT-Fl-v 0.62 (0.11) 0.74 (0.08) 0.81 (0.05) 0.76 (0.06) 0.75 (0.12) 0.72 (0.08) 0.55 (0.15) 0.73 (0.07)

ASSD (↓) Fl 2.89 (1.18) 2.00 (0.94) 3.00 (1.09) 1.89 (0.54) 2.20 (0.86) 3.14 (1.51) 2.46 (1.03) 2.49 (0.69)
LT 5.20 (1.43) 4.47 (1.37) 4.94 (1.55) 4.85 (1.96) 5.20 (1.53) 3.60 (1.25) 4.61 (1.56) 4.97 (0.82)

LT-Fl 2.46 (1.16) 1.70 (0.69) 1.51 (0.60) 1.65 (0.47) 1.92 (1.30) 1.62 (0.48) 2.26 (0.94) 1.88 (0.68)
LT-Fl-v 2.26 (1.14) 1.72 (0.67) 1.48 (0.51) 1.78 (0.44) 1.96 (1.36) 1.52 (0.54) 2.34 (0.92) 1.86 (0.69)

HD (↓) Fl 20.69 (7.37) 11.98 (4.69) 14.05 (6.35) 12.67 (4.20) 15.36 (9.26) 15.14 (6.16) 11.59 (3.95) 23.63 (9.94)
LT 21.23 (5.19) 17.04 (4.26) 20.55 (7.41) 18.65 (6.01) 22.83 (8.65) 12.66 (4.20) 14.94 (3.87) 27.25 (8.00)

LT-Fl 16.91 (4.52) 10.10 (3.53) 10.14 (7.23) 12.48 (4.51) 13.53 (9.82) 8.23 (4.45) 10.89 (4.57) 20.85 (9.29)
LT-Fl-v 16.88 (3.48) 13.04 (3.30) 13.90 (6.23) 11.71 (3.15) 12.71 (9.69) 7.62 (4.72) 10.19 (3.70) 20.57 (8.96)

be able to apply the necessary boundary conditions.

A significant advantage of our method is that it is agnostic to the resolution of
the template mesh and may be applied to any subset of the original template used
for training. This enables us to deploy our model on the new template shown in fig.
4.8 even though this template mesh is different from the whole heart template mesh
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Table 4.8: Ablation study – comparing mean (max) percentage self-intersecting faces
on CT test data

Model Epi LA LV RA RV Ao PA
Fl 0.07 (0.69) 0 (0) 0.007 (0.20) 0 (0) 0.17 (1.67) 0.36 (10.16) 4.97 (18.12)
LT 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

LT-Fl 0.0005 (0.01) 0 (0) 0 (0) 0.014 (0.58) 0 (0) 0.19 (2.64) 0.20 (5.41)
LT-Fl-v 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 4.9: Ablation study – comparing mean (max) percentage self-intersecting faces
on MR test data

Model Epi LA LV RA RV Ao PA
Fl 0.06 (1.58) 0.05 (1.35) 0.004 (0.14) 0.04 (0.49) 0.06 (1.95) 0.06 (1.78) 4.14 (21.8)
LT 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

LT-Fl 0.002 (0.06) 0.009 (0.37) 0 (0) 0.03 (1.12) 0.001 (0.04) 0.69 (4.89) 0.09 (0.82)
LT-Fl-v 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.0008 (0.85) 0.02 (0.92)

used in training our model.
Table 4.10 shows a comparison of SIF % for the LT-FL and LT-FL-v models.

Recall that the only difference between these two models is that the LT-FL-v addi-
tionally uses the volume loss eq. 4.5 during training. The LT-FL-v model on average
reduces the number of SIF by over 90% for CT and 93% for MR compared to LT-FL
with the median improvement being 100% for both modalities. We see that more
than half the samples for CT (50%) and MR (62.5%) have zero SIF. This is clear
evidence of the regularization effect provided by the volume loss and additionally
helps prevent unphysical deformations as shown in fig. 4.12.

An important distinction between LT-FL and LT-FL-v is the kinds of SIFs they
produce. Recall that SIF can result due to surface interpenetration or element in-
version. Element inversion can often be fixed quite easily using standard surface
remeshing techniques. Surface interpenetration is a significantly harder problem to
fix and requires manual intervention or sophisticated contact detection algorithms.
While the volume loss is effective at mitigating both of these types of SIF, it is par-
ticularly effective at mitigating surface interpenetration. Figure 4.9 illustrates a few
test samples in which the LT-FL model collapses the thickness added to the surfaces
of inlets and outlets of the LV resulting in significant surface interpenetration. The
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Added Thickness

Figure 4.8: Template mesh of the left-ventricle myocardium with thickness added to
inlets and outlets

Table 4.10: LV-template mesh quality on CT and MR test data

Modality Metric LT-FL LT-FL-v HeartDeformNet
CT Avg. SIF (%) 0.109 0.003 0.134

Median SIF (%) 0.078 0.002 0.112
Max SIF (%) 0.731 0.013 0.54

% Samples with 0% SIF 0 50 0
MR Avg. SIF (%) 0.138 0.002 0.145

Median SIF (%) 0.080 0 0.086
Max SIF (%) 0.606 0.013 0.885

% Samples with 0% SIF 2.5 62.5 0

LT-FL-v model is able to preserve this thickness. Figure 4.10 highlights the SIF in
one of our test samples. We clearly see the different modalities of SIFs present in
the meshes generated by the two models.

Since the SIF produced by the LT-FL-v model are due to element inversions, we
are able to easily fix these issues in all of the cases using a simple isotropic remeshing
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Collapsed surface

Figure 4.9: LT-FL (right) collapses the inlet/outlet surface. LT-FL-V (left) preserves
the added thickness.

available in MeshLab [14]. We illustrate how remeshing can be used to fix element
collapses in fig. 4.11. This strategy does not work for the meshes generated by
the LT-FL model since the SIFs produced by this model are fundamentally different
and not fixable by just remeshing. Thus, considering remeshing as a simple post-
processing step, we are able to robustly generate simulation ready patient-specific
meshes of the LV in all of our test samples.
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Figure 4.10: LT-FL-V (left) produces SIF primarily due to element collapse. LT-
FL produces SIF due to surface interpenetration and element collapse. SIFs are
highlighted in both images.

4.5 Discussion

We observe that HeartDeformNet [37] produces more accurate meshes when mea-
sured by the similarity metrics in Tables 4.2 and 4.3. However, as Tables 4.4 and
4.5 show, these meshes contain non-zero self-intersections that need to be handled
by post-processing. In contrast, our proposed method demonstrates comparable ac-
curacy while robustly producing meshes with zero self-intersections. The generated
surface meshes can be readily used to produce full 3D volumetric meshes. Note
that HeartDeformNet uses up to 3 mesh deformation blocks using graph convolu-
tional networks. Similar to the results in [38], we anticipate that using a second flow
deformation module in our workflow can help to improve our accuracy.

We demonstrated that our model trained on Whole-Heart mesh generation, may
be deployed on a completely new template mesh of the myocardium along with its
inlets and outlets that was not seen during training. By training our model with the
volume loss eq. 4.5, we are able to generate meshes that maintain the thickness of
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Figure 4.11: SIF due to element collapse (left) can be easily fixed by standard sur-
face remeshing algorithms. Here we demonstrate the result of using the isotropic
remeshing available in MeshLab.

cardiovascular tissue for which no ground-truth data is available. Our model robustly
generates meshes with a very small number of SIF. Further, these SIFs are primarily
due to element inversion/collapse as opposed to surface interpenetration, and may be
easily fixed using standard surface remeshing algorithms. The volume loss is effective
at regularizing unphysical deformations of the template mesh.

For cardiac structures where tissue thickness is not discernible, the model cannot
be trained to match tissue thickness. However, the model is trained to match the
lumen surface (inner boundary of the tissue) to the image data. For such structures,
a tissue thickness can be prescribed in the template, which will deform according to
the flow field that deforms the lumen to the image. While our volume loss constraint
prevents collapse of the tissue thickness, hence preventing surface interpenetration,
it does not directly guarantee a particular tissue thickness value in the final deformed
configuration. Future work may explore further constraints during the deformation
process so that tissue thickness in the final configuration matches a prescribed dis-
tribution.

The kinematics of continua is a mature discipline with a rigorous and rich the-
oretical base. We have seen that deep learning models can be constrained by our
insights from continuum mechanics. The volume loss eq. 4.5 acts as a powerful
physics-based regularization for the neural network. It is a robust metric to deter-
mine if a deformation field is physically realistic. By optimizing for this measure,
our model is encouraged to learn deformations that are physically realistic resulting
in meshes that are more immediately usable. Numerous relations similar to eq. 4.5
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Unphysical deformation

Figure 4.12: Volume loss is effective at regularizing unphysical deformations

can be found in the continuum mechanics literature, e.g. rate of change of lengths,
areas, and normal vectors. For instance, the rate of change of an area element A(t)
with normal vector n due to deformation by a flow vector field v is,

dA

dt
= A(div(v)− nT∇v n) (4.6)

We believe that a loss function based on 4.6 can be used to prevent SIF due to
element collapse as it effectively penalizes collapse modes in the plane of an element.
This approach would be useful in situations where repeated remeshing is undesirable,
e.g. time dependent motion of a mesh.

Template based methods have shown great promise in whole-heart mesh gen-
eration. However, there are some limitations. Firstly, templates enforce a specific
topology onto the mesh. A given template is thus restricted in applicability to a
given class of cardiac morphologies. When the morphology differs significantly e.g.
due to congenital heart defect, we can no longer use the same template mesh. There
are different solution approaches in these cases. We could consider the use of a li-
brary of template meshes depending on the target morphology. Alternatively, we
could consider geometric representations, such as signed distance functions, that are
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able to handle changes in topology. Further, template based methods may not be
effective in generating vascular meshes wherein there can be significant differences
in geometry and topology due to branching and it is likely that a different strategy
is required for vascular mesh generation. Our future work is focused on combining
cardiac and vascular mesh generation to unify these two components into a single
model.

4.6 Software

Source code for LinFlo-Net can be found at:
github.com/ArjunNarayanan/LinFlo-Net
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