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Abstract

Extremely Correlated Limit of the Hubbard Model

by

Edward Perepelitsky

In this work, we describe the simplifications to the Extremely Correlated Fermi Liquid

Theory (ECFL) [3, 6] which occur in the limit of infinite spatial dimensions. In particular,

we show that the single-particle electron Green’s function G(k) (k ≡ (~k, iωk)) can be written

in terms of two momentum-independent self-energies Ψ(iωk) and χ(iωk). Moreover, we

elucidate the nature of the ECFL λ expansion in the limit of infinite dimensions and carry

out this expansion explicitly to O(λ2). Additionally, we demonstrate the vanishing of vertex

corrections to the optical conductivity in general and to each order in λ in the limit of infinite

dimensions. We generalize the ECFL formalism to the infinite-U Anderson impurity model

(AIM) , and demonstrate a Dynamical Mean-Field Theory (DMFT) like mapping between

the ECFL objects of the infinite-dimensional t−J model and the infinite-U AIM, and show

that this mapping holds to each order in λ. We compute the spectral function for the AIM

to O(λ2) and make comparisons with results obtained through Numerical Renormalization

Group (NRG) computations. Finally, we develop a novel formalism for the high-temperature

expansion of dynamical correlation functions in the infinite-U Hubbard model which is more

efficient than any used previously and gives results for an arbitrary number of spin species.

We use it to calculate the single-particle Green’s function G(k) to fourth order in (βt) for

m spin-species on a d-dimensional hypercube.
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Introduction
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The Hubbard model (HM) with the Hamiltonian:

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ − µ

∑

i

ni, (0.1)

has attracted great theoretical interest in condensed matter physics, and is also a fairly

realistic model of strongly correlated materials such as the cuprates. While the small U
t

limit is well described by standard Fermi-Liquid theory[1, 2], the phase diagram of the

Hubbard model for the large and intermediate U
t (strongly correlated) cases, is much less

well understood. This is due to the fact that there are very few exact results for this model.

One of these is the classical result due to Nagaoka[27], that the ground of the infinite-U

Hubbard model, doped with one hole away from half-filling, on the simple cubic or body-

centered cubic lattice is a fully saturated ferromagnet, with all spins pointing in the same

direction. He also shows that this is not the ground state for U < WL, where L is the

number of sites on the lattice, and W is the bandwidth.

In [28], the authors consider the more realistic scenario of a thermodynamic con-

centration of holes δ. For the case of infinite-U , they construct a variational wave function

whose energy is lower than that of the Nagaoka state in two and three dimensions for a

large enough concentration of holes. However, their wave function has higher energy than

the Nagaoka state in one dimension for all values of the doping. This is consistent with

the exact result that the Nagaoka state must be the ground state in one dimensions for all

values of the doping, due to the separation of spin and charge degrees of freedom. Finally,

using their variational approach, they are able to determine the value of U below which the

Nagaoka state becomes unstable for any value of the doping. Thus, in Fig.2 of [28], they

2



are able to map out the parameter-space in the δ − U plane in which the Nagaoka state

becomes unstable, which generally happens for larger values of δ and smaller values of U .

For large but finite U , the low-energy physics of the Hubbard model is described

by the t−J model [29, 30]. This model consists of taking the U → ∞ limit of the Hub-

bard model (the t part of the model) and adding on a nearest neighbor anti-ferromagnetic

coupling term (the J part of the model). It has been argued by Anderson[29] that the t-J

model describes the physics of the cuprates. The δ − T phase diagram of the cuprates is

well described in [31] (see Fig.1 of [31] or Fig.1 of [32]). For δ = 0 (i.e. half-filling) and

very small δ, up to very high temperatures, the cuprates are an anti-Ferromagnet. This

anti-Ferromagnetism can be attributed to the J term in the Hamiltonian.

This anti-Ferromagnetism dies out very fast upon increasing δ, and for δ = .05 at

T = 0, the system enters into the superconducting phase. This phase exists within a super-

conducting dome, which extends between δ = .05 and δ = .28, and has doping-dependent

transition temperature Tc. The highest point of the dome occurs for δ = .15 and has

Tc ≈ 90K. Therefore, this is referred to as optimal doping. For δ < .15, the under-doped

regime, Tc increases with increasing doping, while for δ > .15, the over-doped regime, Tc de-

creases with increasing doping. The superconducting phase can be understood through the

standard BCS-theory for conventional superconductors, describing a condensate of Cooper-

paired electrons with long-lived quasi-particles as excitations. The main difference is that

while conventional superconductors have s-wave pairing between electrons, the cuprates

have d-wave pairing.

In the over-doped regime, raising the temperature above Tc gives rise to the
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strange-metal phase. This is the electron-liquid (normal) phase of the cuprates which con-

tains no broken symmetries. However, it has many properties which distinguish it from the

normal phase of ordinary metals (the Fermi-liquid phase). Amongst these are [30] the linear

temperature dependence of the resistivity, the “Drude-like” tail of the mid-infrared conduc-

tivity, the T-dependent Hall effect, and the anomalous line-shapes of (ARPES) experiments

(the line-shapes have been explained by the Extremely Correlated Fermi Liquid Theory

[3, 6, 7, 13] described below). Upon increasing the doping, δ → 1, there is a crossover

from strange-metal behavior to standard Fermi-liquid behavior. The fact that the Hubbard

model is a Fermi-liquid for small densities even at large values of U is well known (see for

example [34].)

In the under-doped regime, when the temperature is raised above Tc, the super-

conducting phase gives rise to the pseudogap phase. Upon further raising the temperature

in the pseudogap phase to a temperature T ∗, the system transitions from the pseudogap

phase into the strange-metal phase. It has been a point of controversy whether this is a

true phase transition or a crossover between different behaviors. However, there have been

recent experimental studies [33] that give compelling thermodynamic evidence that it is

indeed an actual phase transition. T ∗ decreases monotonically with increasing doping until

it intersects T = 0 at a quantum critical point at around optimal doping.

The pseudogap phase is characterized by a reduction (from the normal phase) in

the imaginary part of the low-frequency dynamic spin susceptibility [31]. This reduction is

characteristic of gapped states such as the BCS superconducting state in which spin-singlet

formation occurs. In the case of the cuprates, this reduction occurs only upon lowering
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the temperature below T ∗ and there is no further reduction upon lowering the temperature

below Tc. Therefore, one natural theory is that the Cooper pairs have already formed in

the pseudogap state when Tc < T < T ∗, but only condense in the superconducting state

T < Tc [31]. However, this is not the only possibility, as any symmetry-breaking phase

would lead lead to an energy-gap and therefore a reduction in the density of states. Some

other suggestions include anti-ferromagnetic order, charge-density waves, and loop-current

electronic order [32].

It is our goal to understand the strange-metal phase of the cuprates, the philosophy

being that a good understanding of the normal phase will lead to an understanding of the

broken-symmetry phases. To do this, we study the liquid phase of the t−J model at all

values of the doping, with the understanding that as δ → 0, it will be a meta-stable phase.

In this model, the Hilbert space is Gutzwiller projected so that only single occupancy is

allowed on each lattice site. The Hamiltonian for this model can be written in terms of the

Hubbard X operators as[15]

H = −
∑

ijσ

tijX
σ0
i X0σ

j − µ

∑

iσ

Xσσ
i +

1

2

∑

ijσ

JijX
σσ
i

+
1

4

∑

ijσ1σ2

Jij{Xσ1σ2
i Xσ2σ1

j −Xσ1σ1
i Xσ2σ2

j }. (0.2)

The operator Xab
i = |a〉〈b| takes the electron at site i from the state |b〉 to the state |a〉,

where |a〉 and |b〉 are one of the three allowed states | ↑〉, | ↓〉, or |−〉. In the over-doped

regime of n ≤ .85, where n is the electron density, the charge fluctuations dominate the

spin fluctuations, and the physics is dominated by the t term in the Hamiltonian [30]. In

addition, mathematically, this term already encapsulates much of the complexity of the
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model. Therefore, we intend to study the t model, obtained by dropping the J term in

Eq. (0.2), and which is identical to the U = ∞ limit of the HM. The Hamiltonian for this

model is given by

H = −
∑

ijσ

tijX
σ0
i X0σ

j − µ
∑

iσ

Xσσ
i . (0.3)

Our object of study is the Green’s function written as

Gσ1σ2(i, f) = −〈TτX
0σ1
i (τi)X

σ20
f (τf )〉, (0.4)

where the angular brackets indicate the usual thermal average. Due to the non-canonical

commutation relations of the X operators, the high frequency limit of the Green’s function

is
1−n

2
iωn

rather than 1
iωn

as in the canonical case. To avoid linear growth of the self-energy

in the high frequency limit[15], the Dyson self-energy must be redefined to the Dyson-Mori

self energy [4] as in:

G(k) = 1− n
2

iωk + µ− ǫk(1− n
2 )− ΣDM (k)

. (0.5)

Just as is the case for ΣD in the finite-U Hubbard model, ΣDM is finite as iω → ∞ in the

t-J model.

Shastry has recently introduced a novel and promising approach for calculating

correlation functions within the t-J model based on Schwinger’s formulation of field theory

[15, 3, 6]. This has culminated in the theory of the Extremely Correlated Fermi Liquid

(ECFL) [3, 6], which preserves the Fermi-surface volume of the ordinary Fermi-liquid, but
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has large corrections to Fermi-liquid behavior due to the Gutzwiller projection . This theory

has been successfully benchmarked against: line shapes from (ARPES) experiments[7, 13],

high-temperature series[12] and the numerical renormalization group (NRG) calculations

for the Anderson impurity model[11]. A recent theoretical benchmarking is the comparison

with DMFT calculations for the large U Hubbard model[9]. In the ECFL theory, the

physical Green’s function G(k) is factored into a canonical auxiliary Green’s function g(k)

and an adaptive spectral µ(k), where k = (~k, iωk).

G(k) = g(k) × µ(k). (0.6)

These two factors are in turn written in terms of two self-energies, Φ(k) and Ψ(k).

g−1(k) = iωk + µ− (1− n/2)ǫk −Φ(k), (0.7)

µ(k) = 1− n

2
+ Ψ(k). (0.8)

Here Φ(k) plays the role of a Dyson self-energy for the canonical Green’s function g(k), and

Ψ(k) is a frequency-dependent correction to µ(k) from its high frequency value of 1− n
2 . Φ

and Ψ are then given in terms of the vertices ( i.e. functional derivatives w.r.t. the source of

the g−1 and µ) as will be described below, leading to a closed set of Schwinger differential

equations (the ECFL equations of motion). These equations are in general intractable

since there is no obvious small parameter, and therefore to enable practical calculations, an

expansion is carried out in a partial projection parameter λ. Here λ interpolates between
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the free Fermi gas and the t-J model. The meaning of λ as a partial projection parameter

is detailed in [6], and may be summarized in the mapping Xσ0
i → f †

iσ(1− λ niσ̄), where fiσ

is a canonical electron operator. Thus at λ = 0 we have canonical electrons, whereas at

λ = 1 we have the fully projected electrons.

The λ expansion is also argued to be a low density expansion[6]. Thus, at low

enough densities of particles, the complete description of the system, including its dynamics

is expected in quantitative terms, with just a few terms in the λ expansion. The theory to

O(λ2) has been evaluated for the t-J model in Ref. ([8]), and higher order calculations

in λ valid up to higher densities could be carried out in principle. Thus, one can envisage

systematically cranking up the density from the dilute limit, until we hit singularities arising

from phase transitions near n ∼ 1 [35]. This represents a possible road map for solving one

of the hard problems of condensed matter physics and is exciting for that reason.

Together Φ and Ψmust perform a delicate balancing act to ensure the simultaneous

satisfaction of three sum rules:

• (a) limiωn→∞ G(k) = 1−n
2

iωn

• (b) The Luttinger-Ward volume of the Fermi-surface must be preserved[59].

• (c)
∑

k G(k) = n
2

The first of these sum rules is enforced by the fact Ψ(k) vanishes and Φ(k) remains finite

in the high-frequency limit. The second one is enforced by requiring that the number

of auxiliary Fermions be equal to the number of physical fermions, i.e. requiring that

∑
k g(k) = n

2 . This gives the auxiliary Green’s function, described by a Fermi-liquid like

self-energy Φ(k), the correct Fermi-surface volume. Furthermore, since Ψ(k) is smooth

8



through the Fermi surface, the auxiliary-Fermions and the physical ones share the same

Fermi-surface,which ensures that the Fermi-surface volume of the physical Green’s function

G(k), is the correct one. Finally, if Ψ(k) were to vanish at all frequencies, the third sum

rule would be violated, as the number of physical electrons would be depleted by a factor

of 1− n
2 . Therefore, the third sum rule requires that Ψ(k) be non-zero at small frequencies,

and add enough weight to the spectral function to bring the number of physical Fermions

up to the correct value.

Another feature of the ECFL formalism is the introduction of a second chemical

potential u0 [6]. This second chemical potential is motivated by the need to satisfy the

shift-invariance of the model. By this we mean that, if one examines Eq. (0.3), it is clear

that any shift of the kind ti,j → ti,j + utδi,j , where ut is any constant, can be absorbed into

the chemical potential µ leaving both the physical Green’s function G(k) and the Dyson-

Mori self-energy ΣDM(k) unchanged. u0 ensures that such a shift can also be absorbed

individually by the two ECFL self-energies Φ(k) and Ψ(k). u0 also serves the role of a

Lagrange multiplier (as does the original chemical potential µ). Together, the two Lagrange

multipliers µ and u0 enable one to satisfy the number sum-rules for both the auxiliary and

the physical Fermions.

A key physical idea that has emerged from the ECFL theory is the particle-hole

asymmetry in the spectral density of the electron Green’s function, and the spectral density

of the Dyson-Mori self-energy, which becomes more pronounced as the density n → 1[3, 4, 5].

This breaks a previous paradigm, in which the Fermi-liquid state was always believed to be

particle-hole symmetric. This asymmetry is fundamentally a consequence of the Gutzwiller
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projection in the extreme correlation limit. Within the ECFL theory, this asymmetry is

generated by Ψ(k), which adds spectral weight at low frequencies in an asymmetric fashion,

leading to a skewing of the density of states towards the occupied states. Another key

idea is that the two self-energies Φ and Ψ are Fermi-liquid like particle-hole symmetric

self-energies [3, 4, 8], which, when combined through the ECFL functional form Eqs. (0.6)

through (0.8), give rise to a Dyson-Mori self-energy with large corrections to Fermi-liquid

behavior of the kind discussed above. These ideas have been corroborated in the work

described here [9, 11, 12], as will be elaborated upon below.

In this thesis, we use the ECFL approach in three different contexts to gain a better

understanding of the ECFL approach and what it reveals about the solution to this model.

These three contexts are the limit of infinite spatial dimensions, the infinite-U Anderson

Impurity Model (AIM), and the high-temperature series.

Considerable progress has been made by considering the HM in the limit of infinite

dimensions [18, 19, 20, 21, 22, 23, 24, 25, 26]. One important result is that the Dyson self

energy, defined by inverting the expression for the electron Green’s function G:

G(k) = 1

iωk + µ− ǫk − ΣD(k)
, (0.9)

becomes momentum independent in this limit [18, 20, 21, 19]. Two other important results

are the self-consistent mapping of the infinite dimensional HM onto the Anderson Impurity

model (AIM), detailed in [23](Dynamical Mean Field Theory), and the vanishing of the

vertex corrections in the optical conductivity[25, 26], so that the two particle response is

obtainable from the single particle Green’s function. The Dynamical Mean Field Theory
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(DMFT) provides a means for doing reliable numerical calculations for the Hubbard model,

at any value of U and has continued to provide new, and interesting results[16, 17].

In [10], we laid the foundation for the study of ECFL in the limit of infinite spatial

dimensions. In this limit, J → 0, and the Hamiltonian for the t−J model Eq. (0.2),

automatically reduces to the one for the infinite-U Hubbard model Eq. (0.3) (see sec. 6A

of Ref. ([9]) for a brief discussion of this). It is not clear a priori, whether or not the

aforementioned results, valid for the infinite dimensional finite-U Hubbard model, carry

over to the infinite dimensional t-J model. The possible conflict arises from the fact that

in the case of the former, the ratio U
d → 0, while in the case of the latter, U

d → ∞. This

question was raised in Ref. ([14]), pointing to the ECFL solution of the infinite dimensional

t-J model as a source of resolution. Using the ECFL equations of motion, we were able to

address this challenging task and to show that the two limits U → ∞ and d → ∞ do in fact

commute. Moreover, we were able to determine the structure of the ECFL objects Φ(k) and

Ψ(k) in the limit of infinite dimensions. We were also able to elucidate the nature of the λ

expansion, derive a DMFT-like mapping between the ECFL solutions of the infinite-U HM

and infinite-U AIM, and demonstrate the vanishing of vertex corrections in the conductivity,

in the large-d limit.

In [9], these results were put to use, in a comparative study between the DMFT

and ECFL solutions of the infinite-dimensional t-J model. This work had several key

findings:

• (a) Both ECFL and DMFT predict particle-hole asymmetry in the spectral density

of the physical Green’s function and the Dyson self-energy.

11



• (b) The rich frequency dependence of the momentum-independent Dyson self-energy

Σ(ω) found through DMFT is reproduced by assuming standard Fermi-liquid forms

(i.e. Ψ′′(ω) ∼ {ω2 + (πkBT )
2}) for each of two momentum-independent ECFL self-

energies, which are then recombined through the ECFL functional form, giving rise

to the exotic features of the Dyson-self energy. Thus, ECFL gives analytical insight

into the exact numerical results provided by DMFT.

• (c) Even the leading order O(λ2) theory of ECFL is able to capture all of the main

features of the exact DMFT spectral function. All of the error introduced in the

truncation of the λ series at second order is reflected in Z, the quasiparticle weight,

which when calculated through ECFL does not decay fast enough with increasing

density as compared with the DMFT result.

It should be emphasized that while DMFT is a numerical technique which becomes exact

in the limit of infinite dimensions, it does not provide sufficient analytical insight into the

results for Σ(ω) which it produces. It is also not easily generalizable to lower dimensions,

where the momentum-dependence of the self-energy becomes important. ECFL, on the

other hand is an analytical theory which can be used in any number of spatial dimensions.

In [11], we generalized the ECFL theory to the infinite-U AIM. This problem, which

describes a single correlated impurity site (with density nd) coupled to a non-interacting

bath, was introduced by Anderson Ref. ([36]) in 1961, and has been a fertile ground where

several fruitful ideas and powerful techniques have been developed, and tested against ex-

periments in Kondo, mixed valency and heavy Fermion systems. These include the renor-

malization group ideas- from the intuitive poor man scaling of Anderson [37, 38], to the
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powerful numerical renormalization group (NRG) of Wilson [39], Krishnamurthy et.al. [40],

and more recent work in [41, 42]. A comprehensive review of the AIM and many popular

techniques used to study it, such as the large N expansion [43, 44], slave particles [45] and

the Bethe ansatz [46] can be found in Ref. ([47]). In the AIM, the Wilson renormalization

group method provides an essentially exact solution of the crossover from weak to strong

coupling, without any intervening singularity in the coupling constant. As emphasized in

[48, 49, 50], the ground state is asymptotically a Fermi liquid at all densities. This im-

plies that as a function of the density nd (at any U), the Fermi liquid ground state evolves

smoothly without encountering any singularity, from the low density limit (the empty or-

bital limit) to the intermediate density limit (the mixed valent regime), and finally through

to the very high density limit (Kondo regime). In view of the non singular evolution in

density, the AIM provides us with an ideal problem to benchmark the basic ECFL ideas

discussed above.

AIM studies of the spectral functions [51, 52, 53, 54] using NRG have become

available in recent years. Therefore, in [11], we were able to conduct a comparative study

between the ECFL and NRG techniques for the flat-band infinite-U AIM. The key findings

of this study were the following:

• (a) The ECFL theory enforces the Friedel sum rule in the AIM model analogously to

the way in which it enforces the Luttinger-Ward volume theorem in the t−J model.

• (b) The Dyson self-energy found through NRG for the flat-band (describing the bath

electrons) AIM is very similar to the Dyson self-energy found through DMFT for the

infinite-dimensional t−J model (which can also be viewed as an AIM with a much
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more complicated band). In the case of the AIM, it is also reproduced by combining

two Fermi-liquid like ECFL self-energies using the ECFL functional form.

• (c) The error introduced by truncating the λ expansion at second order is reflected

in Z, the quasiparticle weight, which is overestimated by ECFL. Since the flat-band

AIM has an exponentially decaying Z (as a function of nd), as opposed to a linearly

decaying one for the infinite-d t−J model, ECFL makes a greater error in the high

density limit for the flat-band AIM as compared to the infinite-d t−J model.

• (d) After rescaling by Z, there is good quantitative agreement between the ECFL and

NRG spectral functions at all values of the density, showing that the O(λ2) ECFL

theory captures the shape of the spectral function, but misses the scale in the high

density limit.

Finally, we also study the Hamiltonian in Eq. (0.3) through the use of high-

temperature series. In this series, all quantities are expanded in powers of
(
t
T

)
, where

T is the temperature, and t is the magnitude of the hopping. In the regime T > t, the

series converges nicely and gives reliable results. To obtain results for the case of T < t,

one must use Padé approximations. One may also use this perturbation series to construct

self-consistent approximations which sum infinite sub-classes of diagrams.

In [12], we used the high-temperature series for the single-particle Green’s function,

obtained by us to eighth order in
(
t
T

)
in [69] to benchmark the ECFL O(λ2) results in

the high-temperature limit. We found good quantitative agreement between the ECFL

results, and the exact results of the series. Furthermore, using the aforementioned skew

of the density of states towards the occupied states, we used a modified first moment of
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the spectral function, which overestimates the contribution of the unoccupied states, as an

estimate of the location of the quasi-particle peak. Since this moment was available to us

from the series for any density, we were able to use it to study the evolution of the Fermi

surface in the limit n → 1, which is not directly accessible to the O(λ2) ECFL theory, for

temperatures down to which the Padé approximations converged.

Finally, in this thesis, we develop a new formalism for the high-temperature series

of the infinite-U HM model. This series has several advantages over those used previously:

• (a) A simple rule for the evaluation of the signature and spin sum of a diagram

• (b) The ability to calculate for an arbitrary number of m spin species without any

additional computational difficulty.

• (c) A novel formula for the restricted lattice sum of a disconnected diagram consisting

of several connected components.

• (d) The ability to go to at least ninth order for the single particle Green’s function

(the previous record is our eighth order result).

• (e) The ability to go to at least tenth order for any dynamic susceptibility (previously

no results have been reported as this calculation has been deemed too hard [68]).

The computations alluded to in the last two points will be reported upon in a future

publication which is currently a work in progress [70].
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Part II

ECFL in the limit of infinite

dimensions
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Chapter 1

Introduction

1.1 Results in the limit of infinite dimensions

We show that in the large d limit, the two self energies Φ(k) and Ψ(k) simplify in

the following way.

Ψ(k) = Ψ(iωk), (1.1)

Φ(k) = χ(iωk) + ǫkΨ(iωk). (1.2)

These in turn show that the Dyson-Mori self energy behaves as

ΣDM (k) = ΣDM(iωk) =
(iωk + µ)Ψ(iωk) + (1− n

2 )χ(iωk)

1− n
2 +Ψ(iωk)

,

(1.3)
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and is therefore local in the limit of infinite dimensions. We show that to each order in the

λ expansion, Ψ(iωk) and χ(iωk) are each a product of an arbitrary number of factors, each

of which take on the form
∑

~p g(~p, iωp)ǫ
m
~p , with m equal to zero or one, and with arbitrarily

complex frequency dependence of the individual factors.

We show that just as in the finite U case[25, 26], the optical conductivity is given

by the expression

σαβ(ω) =
2

iω

∑

~p,iωp

G(~p, iωp)v
α
~p v

β
~p [G(~p, ω + iη + iωp)− G(~p, iη + iωp)], (1.4)

where vα~p is the component of the velocity in the α direction (Eq. (3.18)). We show that

this formula can be applied at each order of the λ expansion.

We show that there is a self consistent mapping between the ECFL theory of the

infinite-dimensional t-J model and the ECFL theory of the infinite-U AIM [11]. This

mapping is similar in spirit to the mapping first discussed by Georges and Kotliar for

the Hubbard model [23], but is made directly in the infinite U limit here. In this mapping,

gi,i[τi, τf ] and µi,i[τi, τf ] of the t-J model are mapped to the objects g[τi, τf ] and µ[τi, τf ] of

the Anderson model, written with the same symbols, but without the spatial or momentum

labels. This mapping is valid under the self-consistency condition

∑

~k

ǫ~kg(k) =
∑

~k

|V~k|2
iωn − ǫ̃~k

g(iωk), (1.5)

where ǫ~k is the dispersion of the lattice in the t-J model, and V~k and ǫ̃~k are the hy-

bridization and dispersion of the bath respectively in the Anderson impurity model. This
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self-consistency condition is shown to be equivalent to the standard self-consistency condi-

tion from DMFT[23, 24]. We also show that the mapping holds to each order in λ under

the same self-consistency condition. We note that this implies that ECFL computations for

the infinite-dimensional t-J model can be done with a DMFT-like self-consistency loop in-

volving ECFL computations for the AIM. However, since the λ expansion provides integral

equations which are relatively straightforward to solve numerically, this is not necessary as

the t-J model equations can be solved directly.

1.2 Outline of the chapter

This chapter is structured as follows. In section 2, some basic facts about lattice

sums in the limit of large dimensions and the ECFL equations of motion as well as the

λ expansion are reviewed. Additionally, the spatial dependence of various standard and

ECFL specific objects in the limit of large dimensions is stated. Finally, we introduce a

class of local functions denoted as class-L functions; these turn out to play a central role

in the ECFL in the limit of large dimensions. In sections 3.1 and 3.2, Eqs. (1.1) and (1.2)

are proven in general and to each order in λ, and the locality of the Dyson-Mori self energy

is shown as a consequence. In section 3.3, Eq. (1.4) is shown to hold in general and to

each order in λ. In section 3.4, the ECFL self-consistent integral equations are derived to

O(λ2) in the large-d limit. Finally, in section 4, the ECFL of the infinite dimensional t-J

model is mapped onto the ECFL of the infinite-U AIM under the self-consistency condition

Eq. (1.5). This is done in general and to each order in λ.
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Chapter 2

Preliminaries

2.1 Spatial dependence of lattice sums in large d dimensions

We take the hopping to nearest neighbor sites on the d-dimensional hypercube.

In this case, it is well known [19] that tij → 1√
2d
t0 with t0 of O(1). We would like to

exploit the smallness of individual tij’s, these can only contribute (after multiplying with

another like object), if one of the indices is summed over the d-neighbors as in the simplest

example
∑

j t
2
ij = t20. Extending this argument further, for a pair of sites (i,m) located at

a (Manhattan metric) distance rim on the hypercube, suppose there are two objects Wi,m

and Vi,m who both have the dependence on rim: Vi,m;Wi,m ∼ O

(
1

(
√
d)

rim

)
. Then it follows

that

Wi,nVn,m ∼ O


 1(√

d
)rim


 . (2.1)
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Here, and in the rest of the paper, bold and repeated indices are summed and/or integrated

over. This relation can be understood by first considering the case that the site n is on one

of the shortest paths between i and m. In this case, rin+rnm = rim proving the relation. If,

n is a certain distance ro off of a shortest path, then rin+ rnm = rim+2ro. This introduces

an extra factor of 1
dro into the lattice sum in Eq. (2.1). However, this factor is exactly

cancelled by the dr0 choices for the site n. In this argument, the number of shortest paths

between i and m is taken to be O(1).

2.2 ECFL Equations of Motion and the λ expansion

The ECFL equations of motion for the finite dimensional t-J model can be found

in Ref. ([6]). There is some freedom in how these equations are written because one may

add terms to them which vanish identically in the exact solution, but play a non-trivial role

when implementing approximations (such as the λ expansion). We denote the version of

these equations with no added terms the minimal theory, and the version containing the

added terms the symmetrized theory (since the added terms make the resulting expressions

symmetric in a certain sense). In Ref. ([6]), the ECFL equations of motion for the sym-

metrized theory are derived, and the added terms required to go from the minimal theory

to the symmetrized theory are singled out. The ECFL equations for the minimal theory,

which are the ones used in this paper and in Ref. ([9]), can therefore be obtained from those

in Ref. ([6]) by dropping these extra terms.

Setting J → 0 (as discussed in section I), we write the minimal theory ECFL
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equations of motion in expanded form.

g−1[i,m] = (µ− ∂τi − Vi) δ[i,m] + t[i,m] (1− λγ[i]) + λt[i, j] ξ∗.g[j,n].Λ∗[n,m; i],

µ[i,m] = (1− λγ[i])δ[i,m] − λt[i, j] ξ∗.g[j,n].U∗[n,m; i],

(2.2)

where Vi ≡ Vi(τi) is the Bosonic Schwinger source function, and we have used the notation

δ[i,m] = δi,mδ(τi − τm) and t[i,m] = ti,mδ(τi − τm). These exact relations give the required

objects g and µ in terms of the vertex functions. Here we also note that the local (in space

and time) Green’s function γ[i], and the vertices Λ[n,m; i] and U [n,m; i], are defined as

γ[i] = µ(k)[n, i+].g(k)[i,n]; Λ[n,m; i] = − δ

δVi
g−1[n,m]; U [n,m; i] =

δ

δVi
µ[n,m], (2.3)

where we have used the notation M
(k)
σ1,σ2 = σ1σ2Mσ̄2,σ̄1 to denote the time reversed ma-

trix M (k) of an arbitrary matrix M . These exact relations give the vertex functions in

terms of the objects g and µ. The vertices defined above (Λ and U) have four spin

indices, those of the object being differentiated and those of the source. For example,

Uσ1σ2
σaσb

[n,m; i] = δ
δVσaσb

i

µσ1σ2 [n,m]. In Eq. (2.2), ξσaσb
= σaσb, and the ∗ indicates that these

spin indices should also be carried over (after being flipped) to the bottom indices of the

vertex, which is also marked with a ∗. The top indices of the vertex are given by the usual

matrix multiplication. An illustrative example is useful here: (ξ∗.g[j,n].U∗[n,m; i])σ1σ2
=

σ1σa gσa,σb
[j,n] δ

δV σ̄1 σ̄a
i

µσb,σ2 [n,m]. Finally, in order to ensure that the shift identities

(Ref. ([6])) are satisfied, the substitution tij → tij +
u0
2 δij is made, where u0 is the second
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chemical potential. For the sake of clarity, this substitution will be ignored in the proofs

given below, although they are easily generalized to account for it. This generalization is

discussed at the end of section 3.1.

The λ expansion is obtained by expanding Eq. (2.2) and Eq. (2.3) iteratively in

the continuity parameter λ. The λ = 0 limit of these equations is the free Fermi gas.

Therefore, a direct expansion in λ will lead to a series in λ in which each term is made up

of the hopping tij and the free Fermi gas Green’s function g0[i, f ]. As is the case in the

Feynman series, this can be reorganized into a skeleton expansion in which only the skeleton

graphs are kept and g0[i, f ] → g[i, f ]. However, one can also obtain the skeleton expansion

directly by expanding Eq. (2.2) and Eq. (2.3) in λ, but treating g[i, f ] as a zeroth order

(i.e. unexpanded) object in the expansion. This expansion is carried out to second order

for the finite-dimensional case in Ref. ([6]). In doing this expansion, one must evaluate the

functional derivative δg
δV . This is done with the help of the following useful formula which

stems from the product rule for functional derivatives.

δg[i,m]

δVr
= g[i,x].Λ[x,y, r].g[y,m]. (2.4)

This is an exact formula and will be used extensively in the arguments given below. Within

the λ expansion, the LHS is evaluated to a certain order in λ by taking the vertex Λ on the

RHS to be of that order in λ.
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2.3 Leading order spatial dependence of various objects

All objects may be expanded in the inverse square root of the number of spatial

dimensions d. The lowest order term in the physical Green’s function G[i, f ] must be at

least O

(
1

(
√
d)

rif

)
. This must be so because it takes at least rif hops to get from the site

i to the site f . Any terms that contribute to G[i, f ] at higher order than O

(
1

(
√
d)

rif

)
are

neglected in the large d limit. In a similar vein, the lowest order term in g[i, f ], g−1[i, f ],

µ[i, f ], Λ[i, f ; r], and U [i, f ; r] must be at least O

(
1

(
√
d)

rif

)
. Furthermore, using the real

space version of Eq. (0.6) and Eq. (2.1), we see that any terms of higher order than this in

g[i, f ] and µ[i, f ] will result in a higher order term in G[i, f ] and may therefore be neglected

as well. Finally, using matrix inversion in the space-time indices, we see that higher order

terms may also be dropped from g−1[i, f ] as these will lead to higher order terms in g[i, f ],

and using Eq. (2.2), higher order terms may be dropped from Λ[i, f ; r], and U [i, f ; r] as

these will lead to higher order terms in g−1[i, f ] and µ[i, f ] respectively. In summary, in all

objects: G[i, f ], g[i, f ], g−1[i, f ], µ[i, f ], Λ[i, f ; r], and U [i, f ; r], terms of higher order than

O

(
1

(
√
d)

rif

)
may be neglected in the large d limit.

We also note that the correlation function Παβ [i, f ] appearing in Eq. (3.19) must

be at least O
(

1
d
rif

)
. This is due to the fact that unlike the creation and destruction

operators which appear in the Green’s function, the current operators appearing in this

correlation function conserve particle number. Hence, one must hop from site i to site f

and back, which takes 2× rif hops. Any terms that contribute to Παβ [i, f ] at higher order

than O
(

1
d
rif

)
are neglected in the large d limit.
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2.4 Class L functions

For the arguments given below, we need to define a class of localized functions,

denoted as class L functions. A class L function Li has three properties.

• (a) Li ∼ O
(

1
d0

)
.

• (b) Li is a function of only one site i, and an arbitrary number of time variables.

Upon turning off the sources, it becomes translationally invariant, but an arbitrary

function of frequencies.

• (c) The V source derivative of Li is also localized:

δ

δVi
Lj = δijL

′
i, (2.5)

with L′
i again a Class-L function.

Our proofs deal with functions that turn out to be of this class. Iterating property (c), the

following equation must hold for any positive integer s.

δ

δVr1

. . .
δ

δVrs

Li = δir1 . . . δirs
δ

δVi(τr1)
. . .

δ

δVi(τrs)
Li.

(2.6)

In the presence of the current source κ ( Eq. (3.21)), class L functions acquire one additional

property (d): Consider a typical contribution to Παβ [i, f ] ( Eq. (3.23)) denoted by Oif

Oif = Wf,x
δ

δκαi
(Lx) Vx,f , (2.7)
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where the functions Vx,f ,Wf,x ∼ O

(
1

(
√
d)

rxf

)
. Then, neglecting terms of higher order than

O
(

1
d
rif

)
in Oif ,

∑
i−f Oif → 0 as A → 0. Again iterating property (c) and using property

(d), the following must hold for any nonnegative integer s:

∑

i−f

(
Wf,x

δ

δκαi

δ

δVx(τr1)
. . .

δ

δVx(τrs)
(Lx) Vx,f

)

A→0

= 0.

(2.8)
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Chapter 3

Limit of Large dimensionality

through the ECFL equations of

motion

3.1 Simplification of the ECFL self energies.

We use notation in which we indicate spatial dependence by subscripts, so that

g[i, j] → gi,j[τi, τj ], and recall that t[i, j] = ti,j δ(τi − τj), δ[i, j] = δi,j δ(τi − τj), and

δ[τi, τj ] = δ(τi − τj) etc. After some inspection of Eq. (2.2) and Eq. (2.3) in the limit of

high dimension, we make an Ansatz - to be proven below - namely

g−1[i,m] = (µ− ∂τi − Vi) δ[i,m] + t[i,m] (1− λγ[i])− λ δi,m χi[τi, τm] + λ ti,m Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ[i]) + λ δi,m Ψi[τi, τm], (3.1)
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where Ψi[τi, τm], χi[τi, τm], and γ[i] are class L functions. We will prove Eq. (3.1) by

assuming that it is true, and then showing that this assumption is consistent with the

equations of motion (Eqs. (2.2) and (2.3)). This argument will consist of a loop which

begins with Eq. (3.1). Then, substituting this equation into Eq. (2.3), we will derive a

certain form for Λ, U , and γ. Finally, substituting these objects into Eq. (2.2), and using

simplifications which occur in the large d limit, we will complete the loop and arrive back

at Eq. (3.1).

Substituting Eq. (3.1) into Eq. (2.3), we find that the vertices and γ[i] have the

following form.

Λ[n,m; i] = δi,nδi,m Ai[τn, τm; τi] + δi,ntn,m Bi[τn, τm; τi],

U [n,m; i] = −δi,nδi,m Bi[τn, τm; τi],

γ[i] =
(
1− λγ(k)[i]

)
g(k)[i, i] + λ Ψ

(k)
i [τj, τi]g

(k)
ii [τi, τj],

(3.2)

where we defined two new functions:

Ai[τn, τm; τi] = δ[τi, τn]δ[τi, τm] 1+ λ
δ

δVi
χi[τn, τm],

Bi[τn, τm; τi] = λ δ[τn, τm]
δ

δVi
γi[τn]− λ

δ

δVi
Ψi[τn, τm].

(3.3)

Here Ai and Bi are class L functions since they inherit this property from Ψi, χi, and

γ[i] by functional differentiation. Substituting Eq. (3.2) into Eq. (2.2) and comparing with
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Eq. (3.1),

χi[τi, τm] = − ti,j ξ
∗. gj,i[τi, τn]. Ai,∗[τn, τm; τi],

Ψi[τi, τm] = ti,j ξ
∗. gj,i[τi, τn]. Bi,∗[τn, τm; τi]. (3.4)

If we can now show that χi, Ψi, and γ[i] as defined in Eq. (3.2) and Eq. (3.4) are Class

L functions, we will have justified our Ansatz and therefore we will have proven all of the

above equations. To do this, we must show that gii[τi, τm] and ti,j gj,i[τi, τm] are Class L

functions. Taking their functional derivatives we obtain:

δ

δVr
ti,j gj,i[τi, τm] = ti,jgj,r[τi, τk] Ar[τk, τl; τr]gr,i[τl, τm]

+ti,jgj,r[τi, τk] Br[τk, τl; τr]tr,lgl,i[τl, τm],

(3.5)

and

δ

δVr
gi,i[τi, τm] = gi,r[τi, τk] Ar[τk, τl; τr]gr,i[τl, τm]

+gi,r[τi, τk] Br[τk, τl; τr]tr,lgl,i[τl, τm].

(3.6)

Using Eq. (2.1), the terms on the RHS of Eq. (3.5) and Eq. (3.6) survive the large d limit

if and only if r = i. Moreover, upon making the substitution r → i, we see that the RHS is

made up of the same objects that appear on the LHS of the equations (as well as the class L

29



functions A and B). Therefore, this argument can be iterated to any number of derivatives

acting on ti,j gj,i[τi, τm] or gi,i[τi, τm] (as required by Eq. (2.6)), which are therefore class L

functions. Thus, we have shown the self-consistency of our ansatz Eq. (3.1).

The above results hold for any value of λ, since the proof was done with λ present

in all of the equations. In the bare expansion, this would imply that they also hold to each

order in λ. However, this line of reasoning is not as straightforward in the skeleton expansion

because each order in the skeleton expansion contains contributions from all orders in the

bare expansion. Nonetheless, the above results do hold to each order in λ in the skeleton

expansion. In proving this, we shall shed more light on the nature of the objects Ψi, χi,

γ[i], Ai, and Bi. In particular, we will show that they satisfy a certain explicit form stated

below in Eq. (3.7). We will do this using an inductive argument, in which we will assume

that they have this form through a certain order in λ, and then substituting this form into

the equations of motion, will show that it must hold for the next order.

We now use the symbol Ri as a proxy for either of the two functions gi,i[τn, τm]

or ti,jgj,i[τn, τm] where the time indices are arbitrary. Inductive hypothesis: Through

nth order in λ, Eq. (3.1) and Eq. (3.2) hold. Through n− 1st order in λ, the objects Ψi, χi,

and γ[i], and through nth order, the objects Ai and Bi, (all denoted below by the generic

object Li) can be written as the following product (multiplied by some delta functions in

time variables):

(Li)
(n) = λn(Ri)

m, (3.7)
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where m is arbitrary. We first examine the base case of zeroth order. In this case,

A
(0)
i [τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B

(0)
i [τn, τm; τi] = 0.

(3.8)

Clearly the hypothesis is satisfied. Now, we prove the inductive step. Explicitly displaying

the order in λ of all objects, the equations for χ, Ψ, and γ (Eqs. (3.4) and (3.2)) become

χ
(n)
i [τi, τm] = − ti,j ξ

∗. gj,i[τi, τn]. A
(n)
i,∗ [τn, τm; τi],

Ψ
(n)
i [τi, τm] = ti,j ξ

∗. gj,i[τi, τn]. B
(n)
i,∗ [τn, τm; τi],

γ(n)[i] = −λ γ(k)(n−1)[i]g(k)[i, i] + λ Ψ
(k)(n−1)
i [τj, τi]g

(k)
ii [τi, τj].

(3.9)

By the inductive hypothesis, χ
(n)
i , Ψ

(n)
i , and γ(n)[i] have the required form. The equations

for A and B (Eq. (3.3)) become

A
(n+1)
i [τn, τm; τi] = λ


∑

r≤n

δ

δVi
χ
(r)
i [τn, τm]




(n)

,

B
(n+1)
i [τn, τm; τi] = λ δ[τn, τm]


∑

r≤n

δ

δVi
γ
(r)
i [τn]




(n)

− λ


∑

r≤n

δ

δVi
Ψ

(r)
i [τn, τm]




(n)

.

(3.10)
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To see that A(n+1) and B(n+1) have the required form we note that for all l ≤ n,

(
δ

δVr
ti,j gj,i[τi, τm]

)(l)

= ti,jgj,r[τi, τk] A
(l)
r [τk, τl; τr]gr,i[τl, τm]

+ti,jgj,r[τi, τk] B
(l)
r [τk, τl; τr]tr,lgl,i[τl, τm], (3.11)

and

(
δ

δVr
gi,i[τi, τm]

)(l)

= gi,r[τi, τk] A
(l)
r [τk, τl; τr]gr,i[τl, τm]

+gi,r[τi, τk] B
(l)
r [τk, τl; τr]tr,lgl,i[τl, τm]. (3.12)

In the limit of large dimensions, r → i. We can therefore (using the inductive hypothesis)

write the RHS of Eq. (3.11) and Eq. (3.12) as λl(Ri)
m. Applying Eq. (3.7) (which has been

shown to hold for χ
(n)
i , Ψ

(n)
i , and γ(n)[i]) to Eq. (3.10), we may write

A
(n+1)
i =

n∑

r=0

λr+1

(
δ

δVi
(Ri)

m

)(n−r)

,

B
(n+1)
i =

n∑

r=0

λr+1

(
δ

δVi
(Ri)

m

)(n−r)

.

(3.13)

Eq. (3.13), in conjunction with Eq. (3.11) and Eq. (3.12), shows that A
(n+1)
i and B

(n+1)
i

have the required form. This completes the proof.

Since ti,j is independent of the source, the substitution ti,j → ti,j +
u0
2 δi,j can be

made directly into all of the above equations. The only problem that could potentially

arise involves Eqs. (3.5) and (3.6), where the large d simplifications are actually used.
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However, one can check that this substitution does not affect the simplifications. Therefore,

this substitution merely adds the term λu0
2 δi,mΨi[τi, τm] − λu0

2 δ[i,m]γ[i] to g−1[i,m], and

everywhere replaces the local function ti,jgj,i[τn, τm] with the local function ti,jgj,i[τn, τm] +

u0
2 gi,i[τn, τm]. This can be seen explicitly in the O(λ2) equations in section 3.4, and does

not change the general structure of the solution.

3.2 The zero source limit

Setting the sources to zero, the system becomes translationally invariant so that

all objects can be written in momentum space. Additionally, γ[i] → n
2 . Then, the above

results can be summed up in the following formulae (in which we set λ = 1):

g−1(k) = iωk + µ− εk(1−
n

2
)− χ(iωk)− εkΨ(iωk),

µ(k) = 1− n

2
+ Ψ(iωk), (3.14)

where Ψ(iωk) and χ(iωk) are the two momentum independent self-energies of the ECFL in

infinite dimensions. In terms of these self-energies, the physical Green’s function is written

as

G(k) = 1− n
2 +Ψ(iωk)

iωk + µ− εk(1− n
2 )− χ(iωk)− εkΨ(iωk)

. (3.15)

33



Comparing with the standard form of the Green’s function in terms of the Dyson-Mori self

energy

G(k) = 1− n
2

iωk + µ− ǫk(1− n
2 )− ΣDM (k)

, (3.16)

we see the momentum independence of the Dyson-Mori self energy ΣDM(k) = ΣDM(iωk),

and

ΣDM(iωk) =
(iωk + µ)Ψ(iωk) + (1− n

2 )χ(iωk)

1− n
2 +Ψ(iωk)

.

(3.17)

3.3 Conductivity in the limit of large dimensions

It is well known that for the finite-U Hubbard model in the limit of large di-

mensions, for zero wave vector, vertex corrections can be neglected in the current current

correlation function [25, 24]. This simple observation allows one to express the optical con-

ductivity in terms of the single particle Green’s function as in Eq. (3.29). We show that this

is also the case for the infinite dimensional t-J model. Moreover, a question of practical

importance for the purpose of calculating the optical conductivity within the framework of

ECFL, is whether or not Eq. (3.29) can be applied at each order in the λ expansion (as is

done in Ref. ([9])). We show that it can be applied and is the correct procedure. First, we

define the relevant objects.
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The Schrödinger picture current operator for site j in the direction α is defined as:

Jα
j = i

∑

kσ

vαk,jX
σ0
k X0σ

j ; vαk,j = tk,j(~Rk − ~Rj)α,

(3.18)

so that v is a velocity. Using the notation Jα[i] = Jα
i (τi); J̃

α[i] = Jα[i]− 〈Jα[i]〉, we define

the correlation function Παβ[i, f ] and its Fourier transform as

Παβ [i, f ] = 〈Tτ J̃
α[i]J̃β [f ]〉;

Παβ(~q, iΩn) =

∫ β

0
d(τi − τf ) e

iΩn(τi−τf )
∑

i−f

e−i~q·(~Ri−~Rf )Παβ[i, f ].

(3.19)

The optical conductivity can be given in terms of this object as

σαβ(ω) =
1

iω − η

[
Παβ(~0, ω + iη) −Παβ(~0, iη)

]
, (3.20)

where η = 0+. We would like to express the object Παβ [i, f ] as a functional derivative of

the Green’s function. To this end, we add a source which couples to the current operator

A → A+
∑

jα

∫ β

0
dτκαj (τ)J

α
j (τ). (3.21)

In terms of the κ source derivative of the Green’s function, and using the definitions vα[i, j] =
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vαi,jδ(τi − τj);κ
α
i = καi (τi), Παβ [i, f ] is given as

Παβ [i, f ] = −i T r

(
δ

δκαi
G[f, j] vβ[j, f+]

)

A→0

, (3.22)

where the trace is over the spin degrees of freedom only. We expand the RHS of this equation

using Eq. (2.4) (which holds equally well for the κ source derivative), finally obtaining an

expression for Παβ [i, f ] in terms of the κ source derivatives of g−1 and µ.

Παβ [i, f ] = i T r

(
g[f,x]

δ

δκαi
g−1[x,y] g[y,k]µ[k, j] vβ[j, f+]

)

A→0

−i T r

(
g[f,k]

δ

δκαi
µ[k, j] vβ[j, f+]

)

A→0

. (3.23)

We now consider how the additional source Eq. (3.21) affects the ECFL equations

of motion (Eq. (2.2) and Eq. (2.3)). The source enters into the equations of motion in the

same way as the Hamiltonian does, via its commutator with the destruction operator, X0σ
i .

Moreover, the source has the same form as the Hamiltonian, with the hopping in the kinetic

energy replaced by the velocity in the current operator. Therefore, the additional source

affects the equations of motion only through the substitution

t[i, f ] → t[i, f ]− i
∑

α

καf vα[i, f ]. (3.24)
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Thus, the new equations of motion can be read off from Eq. (2.2) as

g−1[i,m] = (µ− ∂τi − Vi) δ[i,m] + (t[i,m]− i
∑

α

καm vα[i,m]) (1− λγ[i])

+ λ(t[i, j] − i
∑

α

καj vα[i, j]) ξ∗.g[j,n].Λ∗[n,m; i],

µ[i,m] = (1− λγ[i])δ[i,m] − λ(t[i, j]− i
∑

α

καj vα[i, j]) ξ∗.g[j,n].U∗[n,m; i].

(3.25)

Since there is no source derivative with respect to κ in the equations of motion and vα[i, f ]

is of the same order in 1√
d
as t[i, f ], all of the results derived in section 3.1 continue to hold

after making the substitution in Eq. (3.24). In particular, we showed that g−1[i,m] and

µ[i,m] have the following form (Eq. (3.1)).

g−1[i,m] = (µ− ∂τi − Vi) δ[i,m] − λ δi,m χi[τi, τm]

+(t[i,m]− i
∑

α

καm vα[i,m]) (1− λγ[i])

+λ (ti,m − i
∑

α

καm vαi,m) Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ[i]) + λ δi,m Ψi[τi, τm], (3.26)

where χi, Ψi, and γ[i] have properties (a)-(c) of class L functions (sec.2.4), and are defined

by Eqs. (3.1) through (3.4). We shall now further assume that they also satisfy property

(d) (Eq. (2.8)) and show that this assumption is consistent with their definitions. This, in

turn, will allow us to demonstrate the validity of Eq. (3.29).

Our task is then to show that χi, Ψi, and γ[i], as defined in the last line of

Eq. (3.2) and Eq. (3.4), satisfy Eq. (2.8). By Eq. (3.3), Ai and Bi satisfy Eq. (2.8) since
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they inherit this property from χi, Ψi, and γ[i]. It remains to show that gx,x[τn, τm] and

(tx,j − i
∑

α κ
α
j (τn)v

α
x,j) gj,x[τn, τm] (the time indices are arbitrary) satisfy this equation.

Defining the notation wi,f (τi) ≡ ti,f − i
∑

α κ
α
f (τi) vαi,f , and using (the κ source

derivative version of) Eq. (2.4) as well as Eq. (3.26), we find that

(
δ

δκαi
wx,j(τn) gj,x[τn, τm]

)

A→0

= −iδ[τi, τn]v
α
x,i gi,x[τi, τm]

+itx,jgj,a[τn, τa](1− λγ[a]δ[τa, τi] + λΨa[τa, τi])v
α
a,igi,x[τi, τm]

+λ tx,jgj,a[τn, τa]
δ

δκαi
(γ[a]δ[τa, τb]−Ψa[τa, τb]) ta,bgb,x[τb, τm]

+λ tx,jgj,a[τn, τa]
δ

δκαi
(χa[τa, τb]) ga,x[τb, τm],

(3.27)

where the RHS is also evaluated in the A → 0 limit. We now substitute this into Eq. (2.8)

(with s = 0). The last two terms must vanish by assumption (where a has taken the place

of x). The first term contains two paths from i to f , both via x. Hence, this term must

vanish in the large d limit unless x = i or x = f . The former also vanishes since vαi,i = 0

while the latter must vanish due to the sum over i − f and the odd parity of vαi,f . The

same reasoning applies to the second term except that in this term the x = i case vanishes

by the odd parity of vαi,f . Hence, we have shown that (tx,j − i
∑

α κ
α
j (τn)v

α
x,j) gj,x[τn, τm]

satisfies Eq. (2.8) with s = 0. A completely analogous argument shows that this is also the

case for gx,x[τn, τm]. Using Eq. (3.5) and Eq. (3.6) (in particular the fact that the RHS is

made up of the same objects as the LHS), the above argument can be used to show that

the result holds for any value of s. Thus, we have demonstrated the self-consistency of our
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ansatz (Eq. (2.8)).

Substituting Eq. (3.26) into Eq. (3.23), and using Eq. (2.8), we find that

∑

i−f

Παβ[i, f ] =
∑

i−f

Tr
(
G[f,k]vα[k, i]G[i, j] vβ [j, f+]

)
A→0

.

(3.28)

Substituting this equation into Eq. (3.20), the optical conductivity may be expressed as

σαβ(ω) =
2

iω

∑

~p,iωp

G(~p, iωp)v
α
~p v

β
~p [G(~p, ω + iη + iωp)− G(~p, iη + iωp)], (3.29)

We now want to prove that this result holds to each order in λ. We do this via an

inductive argument, in which we assume that through nth order in λ,
(

δ
δκα

i
Lx

)(n)

A→0
(where

Li can be Ψi, χi, or γ[i]) satisfies a certain explicit form (Eq. (3.30)), and then show that

this form holds for n+1st order. We then plug Eq. (3.26) into
∑

i−f Παβ [i, f ] (Eq. (3.23)),

and use the explicit form of
(

δ
δκα

i
Lx

)(n)

A→0
to simplify the resulting expressions, thereby

proving Eq. (3.28) and Eq. (3.29) to each order in λ.

For the reason given below Eq. (3.25), we are free to use any of the results from

section 3.1, after making the substitution in Eq. (3.24). We define Xi to be a product

of local functions of the type in Eq. (3.7) (i.e. Xi = (Ri)
m) and Yi,f to be a proxy for

either gi,f [τn, τm] or ti,jgj,f [τn, τm] where the time indices are again arbitrary. Inductive

hypothesis: Through nth order in λ, the κ source derivative of the objects Ψi, χi, and γ[i]
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(denoted below by the generic symbol Li) can be written as

(
δ

δκα
i
Lx

)(n)

A→0
= λn XxYx,x1Xx1Yx1,x2Xx2 . . . Xxm−1Yxm−1,xmXxmv

α
xm,i Yi,xm−1Xxm−1 . . . Xx1Yx1,xXx,

(3.30)

where the number m is arbitrary. In the base case of zeroth order, the objects Ψi,

χi, and γ[i] are

Ψ
(0)
i [τi, τm] = 0; γ(0)[i] = g(k)[i, i];

χ
(0)
i [τi, τm] = −(ti,j − i

∑

α

καj (τi)v
α
ij) ξ

∗.gj,i[τi, τi]δ[τi, τm].

(3.31)

We note that
(

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

)(l)

A→0
is given by Eq. (3.27) with the appropriate

objects on the RHS evaluated to the appropriate order in λ. An analogous formula holds

for
(

δ
δκα

i
gx,x[τn, τm]

)(l)

A→0
. Using these formulas with l = 0 shows that the hypothesis is

satisfied for the base case.

We now prove the inductive step. Eq. (3.7) continues to hold with ti,j → wi,j(τn)

(the time index is again arbitrary). Therefore, using the notation R̃i = [Ri]ti,j→wi,j(τn), we

may write

(
δ

δκαi
Lx

)(n+1)

A→0

=

n+1∑

r=0

λr

(
δ

δκαi
(R̃x)

m

)(n+1−r)

A→0

. (3.32)

Substituting the formulas for
(

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

)(l)

A→0
and

(
δ

δκα
i
gx,x[τn, τm]

)(l)

A→0
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(Eq. (3.27)) for l ≤ n + 1 into Eq. (3.32), and using the inductive hypothesis, shows that

(
δ

δκα
i
Ψx

)(n+1)

A→0
,
(

δ
δκα

i
χx

)(n+1)

A→0
, and

(
δ

δκα
i
γ[x]

)(n+1)

A→0
all have the desired form (Eq. (3.30)).

Thus, Eq. (3.30) holds to all orders in λ.

Substituting Eq. (3.26) into
∑

i−f Παβ [i, f ] (Eq. (3.23)), and using Eq. (3.30),

the only non vanishing terms are those which involve a derivative of the explicit factor

(tx,y−i
∑

α κ
α
y vαx,y) from Eq. (3.26). The other terms vanish due to the following reasoning.

Upon substituting Eq. (3.30), in each of these terms there are two paths from i to f , both

of which pass through the point x as well as the points x1 . . .xm−1 in Eq. (3.30). Hence, in

the large d limit, all of these points must be chosen to be either i or f for these terms to be

non vanishing. Then, if we choose xm−1 = i, the term vanishes due to parity, while if we

choose xm−1 = f , the term vanishes due to parity combined with the sum
∑

i−f . Therefore,

after making these simplifications, we find that Eq. (3.28) and consequently Eq. (3.29) hold

to each order in λ.

3.4 O
(
λ2
)
theory in the limit of large dimensions

To obtain self-consistent integral equations to any order in λ for the objects

g−1[i, f ] and µ[i, f ], we expand Eqs. (3.1) through (3.4) iteratively in λ, and set the sources

to zero. Once the sources are set to zero, the system becomes translationally invariant in

both space and time and we may express the equations in momentum/frequency space.

Using the definitions

gloc,m(iωk) ≡
∑

~k

g(k)ǫm~k , (3.33)
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Im1m2m3(iωk) ≡ −
∑

ωp,ωq

gloc,m1(iωq)gloc,m2(iωp)gloc,m3(iωq + iωp − iωk),

(3.34)

the resulting equations to O
(
λ2

)
are:

aG ≡ 1− λ
n

2
+ λ2n

2

4
, (3.35)

g−1(k) = iωk + µ
′ − aG (εk −

u0
2
)− λ

(
ǫ~k −

u0
2

)
Ψ(iωk)− λχ(iωk), (3.36)

µ(iωk) = aG + λΨ(iωk), (3.37)

µ
′ = µ− u0(λ

n

2
− λ2n

2

8
) + λ

∑

p

εpg(p) − aG
u0
2
, (3.38)

Ψ(iωk) = −λu0I000(iωk) + 2λI010(iωk), (3.39)

χ(iωk) = −u0
2
Ψ(iωk)− u0λI001(iωk) + 2λI011(iωk). (3.40)

42



Before solving the equations, one must set λ = 1. The two Lagrange multipliers µ and u0

are determined by the two sum rules:

∑

k

g(k) =
n

2
;

∑

k

G(k) = n

2
. (3.41)

The objects gloc,m(iωk) are given by an appropriate integral over the non-interacting den-

sity of states of a function composed of the two self energies χ(iωk) and Ψ(iωk) and the

energy ǫ (Eq. (3.36)). Therefore, these constitute a self-consistent set of equations for the

two self energies. These equations have been solved numerically and compared to DMFT

calculations in Ref. ([9]).
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Chapter 4

Anderson Model

A word is needed at this point on the notation used, since similar looking symbols

represent quite different objects in the t-J model and the AIM. We use the functions

G({τj}),g({τj}), µ({τj}) or G({iωj}),g({iωj}), µ({iωj}) and the related vertex functions for

the impurity site of the AIM as well, but distinguish them from the t-J model variables

by dropping the spatial or momentum labels. Therefore in an equation such as Eq. (4.26),

the object on the left (right) hand side corresponds to the t-J model (AIM).

4.1 Equations of Motion for Anderson Model

In DMFT[23, 24], the local Green’s function of the infinite-dimensional finite-U

Hubbard model is mapped onto the impurity Green’s function of the finite-U AIM, with

a self-consistently determined set of parameters. Using the ECFL equations of motion for

both models, we show that the same mapping can be made between the infinite-dimensional

t-J model and the infinite-U AIM. Further, we show that this mapping also extends to
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the auxiliary Green’s function g, and the caparison factor µ individually. In this section,

we briefly review the ECFL theory of the AIM[11], and we establish the mapping in the

following section.

Consider the AIM in the limit U → ∞ which has the following Hamiltonian.

H =
∑

σ

ǫdX
σσ +

∑

kσ

ǫ̃knkσ +
∑

kσ

(Vk Xσ0 ckσ + V ∗
k c†kσ X0σ),

(4.1)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity

Green’s function is given by the following expression.

Gσiσf
[τi, τf ] = −〈〈 X0σi(τi) X

σf 0(τf )〉〉. (4.2)

The ECFL solution of the Anderson model is presented in Ref. ([11]). The impurity Green’s

function is factored into the auxiliary Green’s function and the caparison factor.

G[τi, τf ] = g[τi, τj] .µ[τj, τf ]. (4.3)

The equations of motion for g and µ can be written as

(∂τi + ǫd + V(τi))g[τi, τf ] = −δ(τi − τf )− (1− λγ[τi]).∆[τi, τj].g[τj, τf ]

−λ ξ∗∆[τi, τj].g[τj, τx].Λ∗[τx, τy; τi].g[τy, τf ],

(4.4)
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µ[τi, τf ] = δ(τi − τf )(1− λγ[τi]) + λ ξ∗.∆[τi, τj].g[τj, τx].U∗[τx, τf ; τi], (4.5)

where the conduction band enters through the (V independent) function

∆[τi, τf ] = −1
∑

k

|Vk|2(∂τi + ǫ̃k)
−1δ(τi − τf ). (4.6)

We have also made use of the following definitions:

Λ[τn, τm; τi] = − δ

δV(τi)
g−1[τn, τm]; U [τn, τm; τi] =

δ

δV(τi)
µ[τn, τm];

γ[τi] = µ(k)[τn, τ
+
i ].g(k)[τi, τn]. (4.7)

4.2 Mapping of t-J model onto Anderson model in infinite

dimensions

Now let us consider the t-J model in the limit of infinite dimensions. Inverting

Eq. (2.2), the equations of motion for gi,i[τi, τf ] and µi,i[τi, τf ] are

(∂τi − µ+ Vi(τi)) gi,i[τi, τf ] = −δ(τi − τf ) + (1− λγ[i]). ti,j gj,i[τi, τf ]

+λ ti,j ξ
∗.gj,i[τi, τx].Ai,∗[τx, τy; τi].gi,i[τy, τf ]

+ λ ti,j ξ
∗.gj,i[τi, τx].Bi,∗[τx, τy; τi]. ti,y gy,i[τy, τf ],

(4.8)
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µi,i[τi, τf ] = (1− λγ[i])δ(τi − τf ) + λ ti,j ξ
∗.gj,i[τi, τx].Bi,∗[τx, τf ; τi]. (4.9)

By mapping gi,i[τi, τf ] and µi,i[τi, τf ] onto g[τi, τf ] and µ[τi, τf ] of the AIM, we would like

to show that the equations of motion of the AIM (Eqs. (4.4) and (4.5)) and those of the

infinite dimensional t-J model (Eqs. (4.8) and (4.9)) map onto each other. To do this, we

need the analog of the object g−1[τi, τf ] of the AIM in the t-J model. We denote this new

object by g−1
loc,i[τi, τf ] and define it to be the temporal inverse of the local auxiliary Green’s

function.

gi,i[τi, τj].g
−1
loc,i[τj, τf ] = δ(τi − τf ). (4.10)

Note that g−1
loc,i[τi, τf ] 6= g−1

i,i [τi, τf ]. We also define the corresponding vertex.

Λloc,i[τn, τm; τi] = − δ

δVi(τi)
g−1
loc,i[τn, τm]. (4.11)

We now make use of the following identity.

Λloc,i[τx, τy; τi].gi,i[τy, τf ] = Ai[τx, τy; τi].gi,i[τy, τf ] +Bi[τx, τy; τi].ti,y gy,i[τy, τf ].

(4.12)

This identity is easily proven by considering δ
δVi(τi)

gi,i[τx, τf ].

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj]Λloc,i[τj, τy; τi]gi,i[τy, τf ].

(4.13)
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The LHS can also be expressed as

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj].(Ai[τj, τy; τi].gi,i[τy, τf ] +Bi[τj, τy; τi].ti,y gy,i[τy, τf ]).

(4.14)

Left multiplying the above 2 equations by g−1
loc,i, we recover the identity Eq. (4.12). Substi-

tuting this identity into Eq. (4.8), we obtain

(∂τi − µ+ Vi(τi))gi,i[τi, τf ] = −δ(τi − τf ) + (1− λγ[i]). ti,jgj,i[τi, τf ]

+λ ti,j ξ
∗.gj,i[τi, τx].Λloc,i∗[τx, τy; τi].gi,i[τy, τf ].

(4.15)

We are now ready to map the t-J model onto the Anderson model. To do this, we map the

local objects gi,i[τi, τf ] and µi,i[τi, τf ] of the t-J model to the objects g[τi, τf ] and µ[τi, τf ]

of the Anderson model. We also map µ to −ǫd. The following mappings also follow as a

consequence of these.

γ[i] → γ[τi]; Λloc,i[τn, τm; τi] → Λ[τn, τm; τi]; Bi[τn, τm; τi] → −U [τn, τm; τi].

(4.16)

Comparing Eq. (4.15) with Eq. (4.4) and Eq. (4.9) with Eq. (4.5), we see that the equations
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of motion map onto each other if the following constraint is satisfied.

ti,j gj,i[τi, τf ] = −∆[τi, τj].g[τj, τf ]. (4.17)

4.3 Mapping to each order in λ

The O(λ2) equations for the infinite-dimensional t-J model and infinite-U AIM

are solved numerically in Ref. ([9]) and Ref. ([11]) respectively. This can in principle be

done to higher orders in λ as well, and it is therefore interesting to know if the mapping

from the previous section holds to each order in λ. We show that it does, and give a simple

prescription for obtaining the ECFL integral equations for one model from those of the

other one (Eq. (4.21)).

We review the λ expansion for the Anderson model from Ref. ([11]). There,

Eq. (4.4) and Eq. (4.5) are written as

g−1[τi, τf ] = −(∂τi + ǫd + V(τi))δ(τi − τf )− (1− λγ[τi]).∆[τi, τf ]

−λξ∗∆[τi, τj].g[τj, τx].Λ∗[τx, τf ; τi],

(4.18)

µ[τi, τf ] = δ(τi − τf )(1− λγ[τi]) + λξ∗.∆[τi, τj].g[τj, τx].U∗[τx, τf ; τi]. (4.19)

The λ expansion is obtained in the same way as for the t-J model, by iterating the

equations in g−1 and µ and keeping track of explicit powers of λ. The details to O(λ2)
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can be found in Ref. ([11]). To relate this to the λ expansion for the infinite-dimensional

t-J model, recall from Eq. (3.7) that to each order in λ, Ψi, χi, γ[i], Ai, and Bi can be

written as a product of the functions gi,i[τn, τm] and ti,jgj,i[τn, τm]. We can now state our

inductive hypothesis: through nth order in λ, the λ expansion for the Anderson model

has the form

g−1[τi, τm] = −(∂τi + ǫd + V(τi)) δ[τi, τm]− λ χ[τi, τm]

−(1− λγ[τi])∆[τi, τm]− λ Ψ[τi, τj]∆[τj, τm],

µ[τi, τm] = δ[τi, τm](1− λγ[τi]) + λΨ[τi, τm],

Λ[τn, τm; τi] = A[τn, τm; τi]− B[τn, τj; τi]∆[τj, τm],

U [τn, τm; τi] = − B[τn, τm; τi], (4.20)

where through nth order in λ, the objects A[τn, τm; τi] and B[τn, τm; τi], and through n−1st

order in λ, the objects γ[τi], χ[τi, τm], and Ψ[τi, τm], can be obtained from their infinite

dimensional t-J model counterparts via the substitution

gi,i[τn, τm] → g[τn, τm]; µ → −ǫd; ti,jgji[τn, τm] → −∆[τn, τj].g[τj, τm]. (4.21)

We first examine the base case of zeroth order.

A(0)[τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B(0)[τn, τm; τi] = 0.

(4.22)
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Comparing with Eq. (3.8), the hypothesis clearly holds. We now prove the inductive step.

Eq. (4.7) together with Eq. (4.18) through Eq. (4.20) implies the following:

χ(n)[τn, τm] = ξ∗∆[τn, τj].g[τj, τx].A
(n)
∗ [τx, τm; τn],

Ψ(n)[τn, τm] = −ξ∗∆[τn, τj].g[τj, τx].B
(n)
∗ [τx, τm; τn],

A(n+1)[τn, τm; τi] = λ

(
δ

δV(τi)
χ[τn, τm]

)(n)

,

B(n+1)[τn, τm; τi] = λ δ[τn, τm]

(
δ

δV(τi)
γ[τn]

)(n)

− λ

(
δ

δV(τi)
Ψ[τn, τm]

)(n)

,

γ(n)[τi] = −λ γ(k)(n−1)[τi]g
(k)[τi, τi] + λ Ψ(k)(n−1)[τj, τi]g

(k)[τi, τj]. (4.23)

Comparing with Eq. (3.9), we see that χ(n)[τn, τm], Ψ(n)[τn, τm], and γ(n)[τi] have the desired

form. We also note that

(
δ

δV(τr)
g[τi, τm]

)(l)

= g[τi, τx](A
(l)[τx, τy; τr]−B(l)[τx, τj; τr]∆[τj, τy])g[τy, τm].

(4.24)

Comparing this with Eq. (3.5) and Eq. (3.6), we see that by the inductive hypothesis, the

mapping Eq. (4.21) continues to hold through order l ≤ n even after both sides have been

acted on with a functional derivative. Furthermore, in evaluating A(n+1)[τn, τm; τi] and

B(n+1)[τn, τm; τi] using Eq. (4.23), we will at most need to set l = n in Eq. (4.24). Finally,

comparing Eq. (4.23) with Eq. (3.10), we see that A(n+1)[τn, τm; τi] and B(n+1)[τn, τm; τi]

have the desired form. Thus, we have proven our inductive hypothesis.

Setting the sources to zero, and Fourier transforming Eq. (4.20), we may write
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(λ → 1, γ[τi] → nd

2 ≡ n
2 )

g−1(iωk) = iωk − ǫd − (1− n

2
)∆(iωk)− χ(iωk)−∆(iωk)Ψ(iωk),

µ(iωk) = 1− n

2
+ Ψ(iωk). (4.25)

Comparing with Eq. (3.14), it immediately follows that under the mapping Eq. (4.21),

µi,i(iωk) → µ(iωk). Furthermore, multiplying both sides of the equation for g−1(k) by

g(k), summing over ~k, and using the mapping Eq. (4.21), it follows that gi,i(iωk) → g(iωk).

Therefore, the ECFL solution of the infinite dimensional t-J model maps onto the ECFL

solution of the AIM to each order in λ as long as the following self-consistency condition is

satisfied.

∑

~k

ǫ~kg(k) =
∑

~k

|V~k|2
iωn − ǫ̃~k

g(iωk). (4.26)

This mapping and self-consistency condition can be understood by referring back to DMFT.

In DMFT[24], the physical Green’s function Gi,f (iωk) is determined for any separation of

i and f by the local green’s function Gi,i(iωk) or equivalently the local self energy Σ(iωk).

The impurity Green’s function of the Anderson model G(iωk) can be set equal to Gi,i(iωk) as

long as ε̃k and Vk satisfy a self-consistency condition relating them to G(iωk) (See Eqs.(13)

and (15) of Ref. ([24])). In the ECFL mapping, the auxiliary Green’s function gi,f (iωk) is

determined for any separation of i and f by the local auxiliary green’s function gi,i(iωk)

and by the local caparison factor µi,i(iωk), or equivalently by the two local self energies

Ψ(iωk) and χ(iωk). µi,f(iωk) is itself local and related simply to Ψ(iωk). The impurity

52



auxiliary Green’s function of the Anderson model g(iωk) can be set equal to gi,i(iωk) and

the caparison factor of the Anderson model µ(iωk) set equal to µi,i(iωk) as long as ε̃k and

Vk satisfy the self-consistency condition Eq. (4.26). We now show that Eq. (4.26) can be

put into the form of Eqs. (13) and (15) of Ref. ([24]). Using Eq. (3.14) the LHS can be

written as

∑

~k

ǫ~kg(k) =
−1

1− n
2 +Ψ(iωk)

[1− (iωk + µ− χ(iωk))g(iωk)]. (4.27)

Using Eqs. (0.9), (0.5), (3.14), (3.17) and the relation G(iωk) = g(iωk).µ(iωk), the above

equation becomes

ΣD(iωk) +
1

G(iωk)
− (iωk + µ) = −

∑

~k

ǫ~kg(k)
1

g(iωk)
.

(4.28)

Substituting Eq. (4.26) into the RHS of the above equation, we recover Eqs.(13) and (15)

from Ref. ([24]).
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Chapter 5

Conclusion

In this chapter, we provide a detailed analysis of the simplifications arising from

the large dimensionality limit of the t-J model, and have given the first few terms in

the λ series that leads to practically usable results. It is clear that the formal result of a

local Dysonian self energy is already implied by the large d results for the Hubbard model

reviewed in Ref. ([24]), if we take the limit of infinite U ; that is indeed another description

of the model studied here. However it must be kept in mind that the present calculation

starts with the infinite U limit already taken, and thus provides a non trivial check on the

uniqueness of the limit of U → ∞ and d → ∞, i.e. its independence on the order of these

two limits. Also the present work uses the novel ECFL methodology that rests on a different

set of tools from the ones usually used to study the Hubbard model and its large dimensional

limit. We use the Schwinger equations of motion, as opposed to the usual Feynman-Wick

theory, and we have obtained analytical results that do not rely on the Wick’s theorem.

Summarizing, we have considered the ECFL theory for the t-J model (J = 0)
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by establishing the simplifications that arise in the equations of motion in the limit of large

dimensions. The auxiliary Green’s function g(k) and the caparison factor µ(k) can be

written in terms of two local self energies Ψ(iωk) and χ(iωk) as in Eq. (3.14). This insight

into the structural form of the physical Green’s function G(k) has been used in Ref. ([9]), to

benchmark and compare the ECFL and DMFT calculations. The ECFL integral equations

in the large d limit, derived here to O(λ2), have been solved numerically in Ref. ([9]), and

their solution compares favorably with DMFT results. It can be seen explicitly from these

equations that Eq. (3.14) holds to second order in λ, with Ψ(iωk) and χ(iωk) written as

a product of the functions gloc,m(iωk) (Eq. (3.33)) with m = 0 or m = 1. This continues

to hold to each order in λ. We have analyzed the optical conductivity and have shown

that it is given by Eq. (3.29) in general and to each order in λ. We have separately also

studied the ECFL theory of the infinite-U AIM[11], and have shown that there is a mapping

between the ECFL of the infinite dimensional t-J model and the ECFL of the AIM with

a self-consistently determined set of parameters (Eq. (4.26)). This mapping holds to each

order in λ and there is a simple prescription for obtaining the ECFL integral equations for

one model from those of the other (Eq. (4.21)).

In conclusion, this provides a solid foundation for the study of the t-J model, and

in particular for the ECFL formalism, in the limit of infinite dimensions, by providing exact

statements about the k dependence of the self energies, the absence of vertex corrections in

computing the conductivity, and finally in yielding a systematic expansion in the parameter

λ that enables a quantitative comparison with other methods as in Ref. ([9]).
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Part III

ECFL Theory of Anderson

Impurity Model
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Chapter 6

ECFL equations for the Anderson

Impurity Model

6.1 Model and Equations for the Green’s Function

We consider the Anderson impurity model in the limit U → ∞ given by the

following Hamiltonian:

H =
∑

σ

ǫdX
σσ +

∑

kσ

ǫknkσ

+
1√
Ω

∑

kσ

(Vk Xσ0 ckσ + V ∗
k c†kσ X0σ), (6.1)

where Ω is the box volume, and we have set the Fermi energy of the conduction electrons

to zero. Here Xab = |a〉〈b| is the Hubbard projected electron operator with |a〉 describing

the empty orbital, and the two singly occupied states a = 0,±σ. We study the impurity
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Green’s function:

Gσiσf
(τi, τf ) = −〈〈 X0σi(τi) X

σf 0(τf )〉〉, (6.2)

with Tτ the imaginary time ordering symbol, the definition for an arbitrary time dependent

operator Q: 〈〈Q〉〉 = 〈Tr Tτ e−AQ〉/〈Tr Tτ e−A〉, and with the Schwinger source term

A =
∫ β
0 dτ Vσ1σ2(τ) Xσ1σ2(τ), involving a Bosonic time dependent potential V. Often we

abbreviate V(τi) → Vi. As usual this potential is set to zero at the end of the calculation.

In this paper expressions such as G(τi, τf ) and V are understood as 2 × 2 matrices in spin

space. We assume a constant hybridization Vk = V0, and a (flat) band of half-width D with

constant density of states ρ(ǫ) = ρ0 θ(D − |ǫ|) with ρ0 =
1
2D .

Taking the time derivative of Eq. (6.2) we obtain the Schwinger equation of motion

(EOM)

{(∂τi + ǫd)1+ Vi}G(τi, τf ) = −δ(τi − τf )× (1− γ(τi))

− 1√
Ω

[1− γ(τi) +Di] .
∑

k

Vk G(k, τi; τf ), (6.3)

where γ(τi) = G(k)(τ−i , τi) following Ref. ([3]) Eq. (35), or more explicitly in terms of

spin indices as γσiσf
(τi) = σiσfGσ̄f σ̄i

(τi, τ
+
i ), and with σ̄ = −σ. In the following, we

abbreviate γ(τi) → γi. Here we introduced the mixed Green’s function Gσiσf
(k, τi; τf ) =

−〈〈ckσi
(τi)X

σf 0(τf )〉〉, and a functional derivative operator (Di)σiσj
= (σiσj) δ/δV σ̄i σ̄j (τi).

In the ECFL formalism Ref. ([3]), Eq. (6.3) and similar equations are to be understood as

matrix equations in spin space. Following the Schwinger technique, the higher order Green’s
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functions have been expressed in terms of the source functional derivatives of the basic ones;

an example illustrates this: σiσj〈〈X σ̄iσ̄jQ〉〉 = (γi − Di)〈〈Q〉〉. Proceeding further, we take

a time derivative of the mixed Greens function to find

(∂τi + ǫk)G(k, τi; τf ) = − 1√
Ω
V ∗
k G(τi, τf ), (6.4)

so combining with Eq. (6.3) we find the exact EOM for the localized electron Green’s

function:

{(∂τi + ǫd)1+ Vi}G(τi, τf ) = −δ(τi − τf )× (1− γi)

− (1− γi +Di) . ∆(τi − τj). G(τj, τf ), (6.5)

with the convention that the time label in bold letters τj is to be integrated over ∈ [0, β].

The conduction band enters through the usual (V independent) function

∆(τi − τj) = −1

Ω

∑

k

|Vk|2(∂τi + ǫk)
−1δ(τi − τj), (6.6)

with a Fourier transform

∆(iωn) =
1

Ω

∑

k

|Vk|2
iωn − ǫk

= V 2
0

∫
ρ(ǫ) dǫ

iωn − ǫ
. (6.7)
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We will require below its analytic continuation iωn → ω + iη:

∆(ω + iη) = ∆R(ω)− i Γ(ω); (6.8)

Γ(ω) = π V 2
0 ρ(ω); ∆R(ω) =

Γ0

π
log

|ω +D|
|ω −D| .

(6.9)

Here Γ0 = πV 2
0 ρ0. We now use the non-interacting Green’s function

g−1
0 (τi, τf ) = −(∂τi + ǫd + V(τi))δ(τi − τf )− ∆(τi, τf ), (6.10)

and rewrite the fundamental equation of motion Eq. (6.5) as

{g−1
0 (τi, τj) + (γi −Di).∆(τi − τj)}.G(τj, τf ) = (1− γi)δ(τi − τf ). (6.11)

Let us note an important shift invariance of Eq. (6.11) and Eq. (6.10). If we consider a trans-

formation ∆(τ) → ∆(τ)+ut×δ(τ) with an arbitrary ut, it is possible to show that Eq. (6.11)

is unchanged, except for a shift of ǫd by −ut. The added term ut×(γi−Di).G(τi, τf ) vanishes

upon using the Pauli principle and the Gutzwiller projection applicable to operators at the

same time instant. We use this shift invariance below, to introduce a second chemical

potential. In the ECFL theory, we use a product ansatz

G(τi, τf ) = g(τi, τj) . µ(τj, τf ) (6.12)
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where µ(τi, τj) is the caparison factor, and use this in Eq. (6.11). It is useful to intro-

duce two vertex functions Λσ1σ2
σ3σ4

(τn, τm; τi) = − δ
δVσ3σ4

i

g−1
σ1σ2

(τn, τm), and Uσ1σ2
σ3σ4

(τn, τm; τi) =

δ
δVσ3σ4

i

µσ1σ2(τn, τm) as usual, and suppressing the time indices, we note δ
δV .g = g.Λ.g.

We now use the chain rule and Eq. (6.12) to write D.∆.G = D.∆.g.µ = ξ∗.∆.g.Λ∗.g.µ +

ξ∗.∆.g.U∗, with the matrix ξσσ′ = σσ′. The ∗ symbol from Ref. ([3]) is illustrated in com-

ponent form by an example: · · · ξ∗σaσb
· · · δ/δV∗ = · · · σaσb · · · δ/δV σ̄a σ̄b , or in terms of the

vertex functions · · · ξ∗σaσb
· · ·Λσ′σ′′

∗ · · · = · · · σaσb · · ·Λσ′σ′′

σ̄aσ̄b
· · · , with the upper indices of Λ

governed by the rules of the matrix multiplication. Following Ref. ([3]) we define the linear

operator L(i, j) = ξ∗.∆(i, j).g(j, j). δ
δV∗

i
. We can now collect these definitions to rewrite

D.∆.G = ξ∗.∆.g.Λ∗.g.µ + ξ∗.∆.g.U∗ = Φ.g.µ +Ψ, and define the two self-energies:

Φ(i, j) = −L(i, r).g−1(r, j) = ξ∗.∆(i, j).g(j,k).Λ∗(k, j; i);

Ψ(i, j) = L(i, r).µ(r, j) = ξ∗.∆(i, j).g(j,k).U∗(k, j; i).

(6.13)

Summarizing, we may rewrite the exact EOM Eq. (6.11) symbolically:

{g−1
0 + γ.∆ − Φ}.g.µ = (1− γ)δ +Ψ. (6.14)

This equation is split into two parts by requiring g to be canonical:

g−1 = {g−1
0 + γ.∆− Φ}, and µ = (1− γ)δ +Ψ, (6.15)
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bringing it into the standard form in the ECFL theory Ref. ([3]). Using Eq. (6.13), we

note that the formal solutions of Eq. (6.15) are: g−1 = (1 − L)−1.
(
g−1
0 + γ.∆

)
and µ =

(1−L)−1. (1− γ) δ. We introduce the resolvent kernel L using the identity (1−L)−1 = 1+L

where L = (1− L)−1.L. In terms of the resolvent, we see that

Φ = L.(−g−1
0 − γ.∆), and Ψ = −L.γ.δ. (6.16)

Therefore distributing the action of L over the two terms, we can rewrite

Φ = χ+Ψ.∆, (6.17)

with χ = L.(−g−1
0 ). (6.18)

Therefore the self-energy Φ breaks up into two parts, as in Eq. (6.17). Note that in

Eq. (6.16), the expressions γ.∆ and γ.δ involve multiplication at equal times, whereas

in Eq. (6.17), Ψ.∆ implies a convolution in time. The two Green’s functions satisfy the pair

of sum rules

g(τ, τ+) =
nd

2
; G(τ, τ+) = nd

2
, (6.19)

where nd is the number of electrons on the d-orbital nd =
∑

σ〈Xσσ〉.

In the context of the t-J model in Ref. ([6]), the sum rule for g is necessary to

satisfy the Luttinger-Ward theorem. If we use the representation f̂ †
σ(λ) = (1−λf †

σ̄fσ̄)f
†
σ for

the correlated electrons, this constraint is understandable as the constraint on the number of
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“uncorrelated” Fermions 〈f †
σfσ〉, which must agree with the number of physical (correlated)

electrons 〈f̂ †
σ f̂σ〉. Similarly, in the present case, this constraint is needed to fulfill the Friedel

sum rule. We also remark that the self-energy Ψ, unlike its counterpart Φ, is dimensionless,

and thus interpreted as an adaptive spectral weight [6].

6.2 Zero Source Limit

Upon turning off the sources, all objects become functions of only τi− τf and may

therefore be Fourier transformed to Matsubara frequency space. By Fourier transforming

Eq. (6.12), Eq. (6.15) and Eq. (6.17) and using γ → nd

2 we obtain the following expressions

in frequency space:

G(iωn) = g(iωn) . µ(iωn),

µ(iωn) = 1− nd

2
+ Ψ(iωn),

g−1(iωn) = iωn − ǫd −∆(iωn)µ(iωn)− χ(iωn). (6.20)

Alternately this result can be rewritten in terms of the Dyson-Mori self-energy representa-

tion as

G(iωn) =
1− nd

2

iωn − ǫd − (1− nd

2 )∆(iωn)− ΣDM(iωn)
(6.21)
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and

ΣDM (iωn) + ǫd − iωn =

1− nd

2

1− nd

2 +Ψ(iωn)
(χ(iωn) + ǫd − iωn) . (6.22)

The sum rules Eq. (6.19) are:

∑

iωn

G(iωn)e
iωnη =

nd

2
;

∑

iωn

g(iωn)e
iωnη =

nd

2
. (6.23)

These are satisfied at a fixed nd using two Lagrange multipliers, the localized state energy

ǫd and the second chemical potential u0 introduced below in Eq. (6.25). We observe that

the usual Dysonian self-energy ΣAM (iωn) defined through the usual Dyson equation (valid

for finite U) G−1 = iωn − ǫd −∆(iωn)− ΣAM (iωn) in the infinite U limit can be obtained

from

ΣAM (iωn) =
2

2− nd
ΣDM(iωn) +

nd

2− nd
(ǫd − iωn). (6.24)

The unlimited growth with ωn makes this self-energy somewhat inconvenient to deal with,

and therefore motivated the introduction of the Dyson Mori object, which is better behaved

in this regard. After analytic continuation iωn → ω + i0+, the imaginary part of ΣAM is

well behaved and finite as ω → ∞. It is obtained from the NRG method and compared

with the relevant ECFL functions after scaling by 1− nd

2 as in Eq. (6.24). We notice that

the density nd appears explicitly in the expressions for the Green’s functions, and must
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therefore be calculated self-consistently, from Eq. (6.23). This feature is quite natural in

the present approach, since Eq. (6.3) for the Green’s function contains γ and therefore nd

explicitly.

6.3 Introducing λ and u0 into the equations.

Summarizing the work so far: Eq. (6.15), Eq. (6.16) and Eq. (6.17) follow from

Eq. (6.11) upon using the product ansatz Eq. (6.12), and are exact equations. In order to

get concrete results, we proceed by introducing two parameters into the equations. (I) The

parameter λ ∈ [0, 1] multiplies certain terms shown in Eq. (6.25), allowing a density type

expansion, and continuously connects the uncorrelated Fermi system λ = 0 to the extremely

correlated case λ = 1. (II) The second parameter u0 is introduced as shown in Eq. (6.25).

It is the second chemical potential used to enforce the shift identities of the exact equation

Eq. (6.11). Eq. (6.11) now becomes

{g−1
0 + λ(γ −D).(∆ − u0

2
δ)}.G = (1− λγ)δ. (6.25)

As a consequence, in Eq. (6.14) to Eq. (6.18) we set γ → λγ, Ψ → λΨ, and Φ → λΦ, or

χ → λχ. Secondly in Eq. (6.14) to Eq. (6.18) we set ∆(τi, τf ) → ∆(τi, τf ) − u0
2 δ(τi − τf ).

Note that there is no shift of Eq. (6.10) implied in Eq. (6.25).

We write Eq. (6.15) with λ inserted explicitly and the understanding that ∆(τi, τf )
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has been shifted as (Ref. ([55])):

g−1(τi, τf ) = g−1
0 (τi, τf ) + λγ(τi).∆(τi, τf )− λ Φ(τi, τf ),

µ(τi, τf ) = δ(τi − τf )(1 − λγ(τi)) + λ Ψ(τi, τf ), (6.26)

where the two self-energies are given in terms of the vertex functions as

Φ(τi, τf ) = ξ∗.∆(τi, τj).g(τj, τk).Λ∗(τk, τf ; τi)

Ψ(τi, τf ) = ξ∗.∆(τi, τj).g(τj, τk).U∗(τk, τf ; τi). (6.27)

On switching off the sources, these expressions can be spin resolved and expressed as Φ =

∆ g Λ(a) and Ψ = ∆ g U (a), with the same time labels as above, and with the usual spin

decomposition Λ(a) = Λσσ
σ̄σ̄ − Λσσ̄

σσ̄.

λ Expansion

We note that we can obtain the equations of motion for the Anderson model from

the equations of motion for the t−J model by making the following substitutions and

replacing all space-time variables with just time[10].

t[i, f ] → −∆(τi, τf ); εk → ∆(iωk), J → 0, µ → −ǫd. (6.28)

The λ expansion for the Anderson model is therefore analogous to the one for the t-J

model in Ref. ([6]) and the large-d t-J model in Ref. ([10]), and can be obtained from

them by making the substitutions in Eq. (6.28) and changing all frequency momentum four
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vectors to just frequency. For completeness, Appendix A provides a brief derivation (in

time domain) of the following equations. Denoting

aG = 1− λ
nd

2
+ λ2n

2
d

4
, (6.29)

and the frequently occurring object

R = g(iωp)g(iωq)g(iωp + iωq − iωn),

we obtain to O(λ2) the expressions :

G(iωn) = g(iωn)µ(iωn), µ(iωn) = aG + λΨ(iωn), (6.30)

g−1(iωn) = iωn − ǫ′d − (∆(iωn)−
u0
2
)µ(iωn)

−λχ(iωn), (6.31)

χ(iωn) = −λ
∑

p,q

[2∆(iωp)− u0]

×[∆(iωp + iωq − iωn)−
u0
2
]R, (6.32)

Ψ(iωn) = −λ
∑

p,q

[2∆(iωp)− u0]R. (6.33)

The energy ǫ′d is given by collecting the static terms in Φ as

ǫ′d = ǫd + u0(λ
nd

2
− λ2n

2
d

8
) +

u0
2
aG − λ

∑

iωp

∆(iωp)g(iωp). (6.34)
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The shift-theorem is satisfied by all the terms separately- since we have taken care to form

expressions of the type ∆− u0
2 . As discussed in Ref. ([6]), the shift theorems mandate the

introduction of u0, and its availability, in addition to ǫd, enables us to fix the pair of sum

rules Eq. (6.19). As explained, we must set λ → 1 before using these expressions.

Within the O(λ2) theory, the total spectral weight of the Green’s function is aG

rather than the exact value 1 − nd

2 . This is understood as the incomplete projection to

singly occupancy leading to an excess in the total number of states available to the system.

In order to ensure that ΣDM(ω) retain the feature of being finite as ω → ∞, it must be

slightly redefined (to Σ̂DM ) in the O(λ2) theory.

G(ω) =
aG

ω − ǫ′′d − aG∆(ω)− Σ̂DM (ω)
(6.35)

where

ǫ′′d ≡ ǫ′d −
u0
2
aG (6.36)

Using Eq. (6.30) and Eq. (6.31), we can relate Σ̂DM(ω) to χ(ω) and Ψ(ω).

Σ̂DM (ω) + ǫ′d − ω =
aG

aG +Ψ(ω)
(χ(ω) + ǫ′d − ω) (6.37)

Since Ψ(ω),χ(ω) → 0 as ω → ∞, we see explicitly that Σ̂DM (ω) remains finite in this limit.

Just as in the case of ℑm ΣDM (ω), ℑm Σ̂DM(ω) is related to ℑm ΣAM (ω) by a multiplicative

constant (1− nd

2 and aG respectively), and therefore their spectra are identical apart from

this multiplicative constant. Comparing Eq. (6.21) and Eq. (6.35), we see that the latter is
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obtained from the former with the substitutions

ΣDM (ω) → Σ̂DM(ω); ǫd → ǫ′′d; 1−
nd

2
→ aG . (6.38)

Keeping these substitutions in mind, we will now only use ΣDM (ω) from the exact theory,

with the understanding that the same expressions hold for Σ̂DM(ω) in the O(λ2) theory as

long as the substitutions in Eq. (6.38) are made.

6.4 Friedel Sum Rule at T = 0

At T = 0, the Friedel sum rule [56, 57, 58] plays an important role in the AIM,

parallel to that of the Luttinger-Ward volume theorem in Fermi liquids. In Ref. ([58]), the

original form of the Friedel sum rule is written in terms of ησ(ω), the phase shift of the

conduction electron with spin σ at energy ω:

ησ(ω) =
1

2i
log

[
Gσ(ω + i0+)G−1

σ (ω − i0+)
]
, (6.39)

where the logarithm is chosen with a branch cut along the positive real axis, so that 0 ≤

η ≤ π. The Friedel sum rule is then written as :

ησ(ω = 0) =
πnd

2
. (6.40)

This theorem is proven for the AIM at finite U Ref. ([58]), by adapting the argument of

Luttinger and Ward Ref. ([59]), with an implicit assumption of a non-singular evolution in
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U from 0. We assume that the Friedel sum rule also holds in the extreme correlation limit

U → ∞. Using the Dyson Mori representation Eq. (6.21) to compute the phase shift in

Eq. (6.39), we may rewrite this as

nd = 1− 2

π
tan−1

[
ǫd + ℜeΣDM(0)

Γ0(1− nd

2 )

]
, (6.41)

with ǫd + ℜeΣDM (0) > 0, in the physical case of 0 ≤ nd ≤ 1. It is easily seen [61] that this

form is equivalent to the standard statement of the Friedel sum rule(Ref. ([47])):

ρG(0) =
1

πΓ0
sin2(

πnd

2
), (6.42)

Within the approximation of the λ expansion, the Friedel sum rule implies a relationship

between the values of the two self-energies at zero frequency.

nd = 1− 2

π
tan−1

[
ǫ′d − u0

2 µ(0) + χ(0)

Γ0µ(0)

]
, (6.43)

This can be obtained by using the substitutions from Eq. (6.38) in Eq. (6.41), and using

Eqs. (6.37),(6.36), and (6.30).

We can also record a result for the auxiliary density of states ρg(ω = 0), analogous

to Eq. (6.42) here. It follows from Eq. (6.47), with the Fermi liquid type assumption of

vanishing of ρΨ(0) at T = 0, and reads

ρg(0) =
1

πΓ0µ(0)
sin2(

πnd

2
) (6.44)
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We check the validity of the Friedel sum rule within the λ expansion in both the forms

Eq. (6.42) and Eq. (6.43). In doing so, we are thus testing if the strategy of the two ECFL

sum rules Eq. (6.23) enforces the Friedel sum rule, in a situation that is essentially different

from that in finite U theories so that the central result of Luttinger and Ward Ref. ([59]) is

not applicable in any obvious way.

6.5 Computation of Spectral function

In computing the spectral function, we follow the approach taken in Ref. ([6]), in

which the spectral function is calculated for the O(λ2) ECFL theory of the t−J model.

Our calculation is made simpler due to the absence of any spatial degrees of freedom, but

more complicated by the presence of the frequency dependent factor ∆(iωn). We define

the various spectral functions and the relationships between them. These expressions are

analogous to those in sec.III A of Ref. ([6]).

Q(iωn) =

∫ ∞

−∞
dν

ρQ(ν)

iωn − ν
(6.45)

Where Q can stand for any object such as G, g, χ, ΣDM or Ψ. Therefore after analytic

continuation iωn → ω + i0+

ρQ(ω) ≡ −ℑm
π

Q(ω + i0+) and ℜe Q(ω) = H[ρQ](ω),

(6.46)
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where for any real density ρQ(ω) the Hilbert transform is denoted as

H[ρQ](ω) = P
∫∞
−∞ dν

ρQ(ν)
ω−ν . From Eq. (6.33), we find that

ρG(ω) = ρg(ω)[aG + ℜe Ψ(ω)] + ρΨ(ω)ℜe g(ω) (6.47)

With f(ω) = 1
1+eβω and f̄(ω) = 1− f(ω), the two sum rules Eq. (6.23) read

∫ ∞

−∞
f(ω) ρg(ω) dω =

nd

2
,

∫ ∞

−∞
f(ω) ρG(ω) dω =

nd

2
. (6.48)

We also note ρ∆(ω) =
Γ(ω)
π . It is useful to define a mixed (composite) density

ρM (x) = ρg(x)(∆R(x)−
u0
2
) + ρ∆(x)ℜe g(x), (6.49)

so that we can integrate (or sum) the internal frequencies in Eq. (6.33) efficiently (see

Appendix B), and write the two relevant complex self-energies (with ω ≡ ω + i0+) as

Ψ(ω) = −2λ

∫

u,v,w

ρM (u)ρg(v)ρg(w)

ω − u− v + w

×
[
f(u)f(v)f̄(w) + f̄(u)f̄(v)f(w)

]

χ(ω) = −2λ

∫

u,v,w

ρM (u)ρg(v)ρM (w)

ω − u− v + w

×
[
f(u)f(v)f̄(w) + f̄(u)f̄(v)f(w)

]
(6.50)

In these expressions u, v, w are understood to be real variables, and using Eq. (6.46) we can

extract the real and imaginary parts of Ψ and χ in terms of the spectral functions.
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nd ρG,ECFL(0) ǫd,ECFL ǫd,NRG zECFL zNRG

0.35 8.69 + 1.8
%

-0.003 -0.003 0.753 0.697

0.441 13.0 + 1.1
%

-0.010 -0.009 0.661 0.567

0.536 17.7 +
0.73%

-0.015 -0.015 0.559 0.416

0.6 20.8 + 0.41
%

-0.019 -0.018 0.489 0.312

0.7 25.3 +
0.62%

-0.024 -0.024 0.388 0.169

0.777 28.1 +
0.26%

-0.031 -0.029 0.314 0.081

0.834 29.7 + 0.20
%

-0.037 -0.035 0.265 0.035

Table 6.1: The bare impurity level ǫd as well as the quasiparticle weight z are displayed
for the ECFL and the NRG calculations for all values of the density. Additionally, the
theoretical value for the Friedel sum rule as well as the ECFL deviation from it are displayed.
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Chapter 7

Results

The following explicit results were obtained after setting λ = 1 in the equations

noted above. We calculated the spectral functions ρG , ρΣ , ρχ , and ρΨ using the values

D = 1, Γ0 = 0.01, and T = 0. The zero temperature limit is easily achieved in the ECFL

theory by setting all of the Fermi functions to step functions. We expect that the spectral

function calculated within the ECFL O(λ2) theory will be accurate through a density of

approximately nd = 0.6, or perhaps at best nd ∼ 0.7. As discussed in [3, 6], this is the

main limitation of the low order λ results, the theory begins to have substantial corrections

as we increase nd towards unity. The source of this error estimate is the high frequency

behaviour within the λ expansion of the Green’s function Eq. (6.33) G ∼ aG
iω , this deviates

from the known exact behaviour G ∼ 1−nd/2
iω . The error grows with increasing density, but

we expect to have reasonable results even at nd = 0.7.

In Table (I), we show the results for the spectral function at zero energy in terms

of the percentage deviation from the Friedel sum rule Eq. (6.42), demonstrating that the
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ECFL satisfies the Friedel sum rule to a high degree of accuracy. We specify the occupation

number nd and show the values of the energy level ǫd and quasiparticle weight z calculated

within the ECFL and NRG calculations. The values of ǫd are in good agreement between

the two calculations, while there is a discrepancy in z which becomes more pronounced

at higher densities. While the error in the scale of z as nd → 1 is expected from the

low order in λ aspect of the theory, we should keep in mind that the shape of the spectral

function, and also the imaginary part of the self energy is another matter altogether. We

display below these objects after scaling the frequency with z, this captures the shape of

the spectra, and isolates the discrepancy to a single number, namely the magnitude of z.

The admittedly non trivial problem of the magnitude of z must await a more satisfactory

resolution involving the treatment of higher order terms in λ.

In Fig. (7.1) we display the spectral functions at the indicated densities- indicat-

ing a smooth evolution with density. The Kondo or Abrikosov-Suhl resonance at positive

frequencies becomes sharper as we increase density and moves closer to ω = 0. If the

raw ECFL and NRG spectral functions are compared (as in right panel of Fig. (7.2) for

nd = 0.536), one finds that the peak in the ECFL spectral function is too broad. This

over-broadening becomes worse at larger densities and better at lower densities. However,

it can be understood well in terms of the elevated value of z for ECFL at higher densities.

Hence, before doing the comparison, as in Fig. (7.1), we first rescale the ω axis for both the

ECFL and NRG spectral functions by the appropriate z (as in the left panel of Fig. (7.2)

for nd = 0.536 and in Fig. (7.1) for the other densities). They are then found to be in good

agreement up to surprisingly high values of nd, suggesting that the ECFL theory captures
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Figure 7.1: The spectral density for the physical Green’s function versus ω
Γ0z

for densities
of nd = 0.35, 0.441, 0.6, 0.7, 0.777, 0.834. The red curve is the ECFL calculation, while the
blue curve is the NRG calculation.

the shape (but not the scale) of the spectral functions and their asymmetry in a very natural

fashion. We also found good agreement with the NRG spectral functions in Ref. ([54]).

The ECFL spectral function ρG is constructed out of the two spectral functions ρχ and ρΨ

that are shown at various densities in Fig. (7.3) and Fig. (7.4), exhibiting Fermi liquid type

quadratic frequency dependence at low ω.

In Fig. (7.5) we present the density evolution of the spectral function for the Dyson

Mori self-energy (see Eq. (6.22)). This exhibits a remarkable similarity to the analogous

spectral density for the t-J model in the limit of high dimensions Ref. ([9]) and the Hubbard

model at large U Ref. ([16]).
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Figure 7.2: The spectral density for the physical Green’s function for the density of nd =
0.536. For the plot on the left, both the ECFL and NRG curves are plotted versus ω

Γ0z
.

Since ECFL has a larger z value, the absolute scale of the ω axis differs for the two curves.
For the plot on the right, both ECFL and NRG are plotted versus ω

Γ0
and hence the ECFL

peak is too wide.
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Figure 7.3: The spectral function for χ for densities of nd =
0.834, 0.777, 0.7, 0.6, 0.536, 0.441, 0.35.
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Figure 7.4: The spectral function for Ψ for densities of nd =
0.834, 0.777, 0.7, 0.6, 0.536, 0.441, 0.35.
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Figure 7.5: The spectral function for the Dyson-Mori self-energy for densities of nd =
0.874, 0.777, 0.7, 0.6, 0.536, 0.441, 0.35. The curvature of the quadratic minimum becomes
larger with increasing density.
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Chapter 8

Conclusion

In this chapter we have applied the ECFL formalism at the simplest level, using the

O(λ2) equations, to the Anderson impurity model with U → ∞ . In this formalism, the two

self-energies of the ECFL theory Ψ and χ are calculated using a skeleton expansion in the

auxiliary Green’s function g. This is analogous to the skeleton expansion for the Dyson self-

energy Σ, in standard Feynman-Dyson perturbation theory applicable to the case of finite

U . These two self-energies determine g as well as the physical G, leading to a self-consistent

solution. We obtained the equations to second order and solved them numerically at T = 0.

We found that at low enough ω, the ECFL self-energies have symmetric spectra of the type

predicted by Fermi-Liquid theory (see Fig. (7.3) and Fig. (7.4)). Combining them through

the ECFL functional form Eq. (6.22) generates a non-trivial self-energy with an asymmetric

spectrum displayed in Fig. (7.5). It therefore appears that functional form Eq. (6.22) has

the potential to generate realistic and non trivial spectral densities, starting with rather

simple components. The availability of convenient and natural analytical expressions is
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seen to provide a distinct advantage of the ECFL formalism. Formally exact techniques

such as the NRG involve steps that are not not automatically endowed with these, but

rather rely on analytic continuation or other equivalent techniques.

The physical spectral function for the impurity site is obtained from the above

pair of ECFL self energies, and displays a Kondo or Abrikosov-Suhl resonance. This feature

becomes more narrow and the spectrum becomes more skewed towards the occupied side

of the peak with increasing density. However, the computed quasiparticle z in the present

calculation is considerably larger than the exact value z ∝ e−1/2(1−nd), as nd → 1 Ref. ([60])

, i.e. into the Kondo regime. This large z makes it impossible for the O(λ2) version of ECFL

presented here, to address the Kondo regime nd → 1. It results in the the masking of a

small (and broad) peak at ω ∼ ǫd, found in our NRG spectral functions, as we approach

the Kondo limit. Both real and imaginary parts of the computed ΣDM(ω) are larger than

their NRG counterparts in that regime, thereby precluding a peak.

To place this result in context, we observe that the same level of approximation of

ECFL, applied to the lattice problem of the d → ∞, U → ∞ Hubbard model in Ref. ([9])

(see Fig (12)), does show a lower Hubbard band peak in the spectral function. This difference

presumably arises from the robust value of z ∼ (1 − n) in the lattice model, arising from

Gutzwiller physics, it is much larger than the exponentially small value z ∝ e−1/2(1−nd) in

the AIM. Therefore the fractional error made by the O(λ2) ECFL calculation is smaller in

the lattice model compared to the AIM.

The location of the peak is set by ǫd +ΣDM (0) (Eq. (6.21)). Using Eq. (6.41), we

can see that this quantity must decrease with increasing density. This is consistent with
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the expectation that the location of the peak will approach ω = 0 as nd → 1. This can also

be understood from the need to have more spectral weight when ω ≤ 0, to yield a higher

value of nd. We found that the ECFL spectrum satisfies the Friedel sum rule (Eq. (6.42))

to a high degree of accuracy, and that ECFL yields values of ǫd in good agreement with the

NRG values at all densities (See Table (I).)

As mentioned above the ECFL calculation to O(λ2) overestimates the value of

the quasiparticle weight z as compared with the NRG and the exact asymptotic result z ∝

e−1/2(1−nd) as nd → 1 Ref. ([60]), the difference becoming more significant with increasing

density. This also leads to an over broadening of the peak in the ECFL spectrum at higher

densities. This is consistent with the fact that the λ expansion of the ECFL is a low-density

expansion and the current calculation has only been carried out to O(λ2). Nevertheless,

after rescaling the ω axis for both the ECFL and NRG spectra by their respective values of

z, we find good quantitative agreement between the two as in Fig. (7.1). In Fig. (7.2) we

illustrate the comparison between scaled and unscaled spectral functions at a typical density.

We find similarly good agreement with the NRG calculation from Ref. ([54]). This implies

that the ECFL theory has the correct shape of the spectra built into it quite naturally.

Finally we note that the computed spectral functions exhibit a remarkable simi-

larity to the analogous spectral density for the t-J model in the limit of high dimensions

Ref. ([9]) and the Hubbard model at large U Ref. ([16]).
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Chapter 9

Appendix A: Calculating the

self-energies in the O(λ2) theory

The calculation follows the procedure given in Ref. ([6]). A few comments are pro-

vided to make the connections explicit- the zeroeth order vertices are common to Ref. ([6])

Eqs. (B3, B14), and the first order U is common to Eq. (B15). The first order vertex [Λ]1

can be found parallel to Eq-(B23- B28) from differentiating

[g−1(i, f)]1 = ∆(i, f).g(k)(i, i) + δ(i, f)∆(i,a).g(k)(a, f), (9.1)

as

[Λ(a)(i,m; j)]1 = −2∆(i,m).g(i, j).g(j, i)

−2δ(i,m)∆(i,k).g(k, j).g(j, i). (9.2)
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Here the bold labels are integrated over. From this we construct the time domain self-

energies

Ψ(i, f) = −2λ∆(i,k).g(k, f).g(i, f).g(f, i), (9.3)

and

Φ(i, f) = −δ(i, f)∆(ik).g(ki)

−2λ∆(ij).g(jk).∆(kf).g(ki).g(ik)

−2λ∆(ij).g(jf).∆(fk).g(ki).g(if). (9.4)

After shifting ∆(i, f) → ∆(i, f) − u0
2 δ(i, f) and Fourier transforming these we obtain

Eq. (6.33) and Eq. (6.34). These expressions for the self-energies are correct to O(λ) and

lead to expression for g−1 and µ which are correct to O(λ2). χ can be extracted from Φ as

indicated in the text.

84



Chapter 10

Appendix B: Frequency

summations

An efficient method to perform the frequency sums is to work with the time domain

formulas Eq. (9.3) and Eq. (9.4) until the final step where Fourier transforms are taken.

We note the representation for the Green’s function

g(τ) =

∫

x
ρg(x)e

−τx
[
θ(−τ)f(x)− θ(τ)f̄(x)

]
, (10.1)

so that we can easily compound any pair that arises by dropping the cross products

θ(τ)θ(−τ) and using θ(τ)2 = θ(τ). An example illustrates this procedure:

g(τ)g(−τ) = −
∫

x,y
ρg(x)ρg(y)e

−τ(x−y) ×

[
θ(−τ)f(x)f̄(y) + θ(τ)f̄(x)f(y)

]
. (10.2)
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We also need to deal with the convolution of pairs of functions.

X(τ) =

∫ β

−β
dτ̄ g(τ̄ )

[
∆(τ − τ̄)− u0

2
δ(τ − τ̄)

]

=

∫

x
ρM (x)e−τx

[
θ(−τ)f(x)− θ(τ)f̄(x)

]
, (10.3)

where the density ρM (x) is defined in Eq. (6.49). This equation in turn is easiest to prove

by transforming into a product in the Matsubara frequency space, simplifying using partial

fractions, and then transforming back to time domain. We next note that Eq. (9.3) and

Eq. (9.4) imply

Ψ(τ) = −2λ X(τ)g(τ)g(−τ),

χ(τ) = −2λ X(τ)X(−τ)g(τ), (10.4)

so that taking Fourier transforms is simplest if first multiply out as in Eq. (10.2), leading

to Eq. (6.50).
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Part IV

High-temperature expansion for

dynamic correlation functions
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Chapter 11

Introduction

11.1 Previous work

An important tool in the study of the Hamiltonian in Eq. (0.3) is the high tem-

perature expansion. In this expansion, various static and dynamic quantities such as the

thermodynamic potential, the electron Green’s function, and the (time-dependent) density-

density and spin-spin correlation functions are expanded in the parameter βt, where β is the

inverse temperature. Some recent examples of the use of the high temperature expansion

can be found in Refs. [12] and [67], in which it is used synergistically with ECFL and DMFT

respectively. In Ref. [12], the high-temperature expansion for the electron Green’s function

in the infinite-U Hubbard model is used to benchmark ECFL calculations. Furthermore,

combined with insight gained from the asymmetric shape of the ECFL spectral function,

it is used to study the evolution of the Fermi surface in the limit n → 1. In [67], the high

temperature expansion and DMFT are used to study the thermodynamic properties of the

Hubbard Model and its implications for cold atomic gases in optical lattices.
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In the 1970’s and 1980’s, Plischke[65], Kubo and Tada[66] extended the methods

of Betts et. al.[64] (for the XY model) to the study the thermodynamic and ferromagnetic

properties of the infinite-U Hubbard model, through the calculation of the high temperature

expansion of the thermodynamic potential and static correlation functions. Although series

expansions usually seek to remove disconnected diagrams using the linked-cluster theorem

[62, 63], their approach contains disconnected diagrams and relies on the use of restricted

lattice sums, in which distinct vertices of a diagram represent distinct sites on the lattice.

In 1991, Metzner formulated the linked-cluster expansion around the atomic limit of the

Hubbard model[21], in which the lattice sums are unrestricted, and disconnected diagrams

are explicitly eliminated from the formalism. Metzner’s expansion applies to both static and

dynamic quantities, such as the single particle Green’s function, and higher order dynamic

correlation functions. In spite of this, there have not been many numerical results for the

high-temperature series for dynamic correlation functions. Some notable exceptions are

presented in Refs. [69] and [68], in which the Green’s function is calculated to 8th order for

the infinite-U Hubbard model, and 5th order for the finite-U Hubbard model respectively,

using the Metzner (or similar) formalism.

11.2 Results

In this chapter, we extend the method of Kubo et. al. to the calculation of

dynamic correlation functions for the infinite-U Hubbard model. We introduce an

improvement in the evaluation of the spin sum and signature of a diagram, which permits

us to make this evaluation with greater ease and for an arbitrary number of spin species m.
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We also introduce a novel approach for dealing with the problem of disconnected diagrams,

this is the main achievement of our work. Although this problem has been addressed in

various ways in the context of high-temperature expansions of the Ising and Heisenberg

models[63], and the methods adapted to the infinite-U Hubbard model by Kubo et. al., our

approach is distinct from those taken previously. It has the advantage that it can be easily

generalized to the case of dynamic correlation functions, as we do here. In our approach,

first the connected diagrams are evaluated. Their contribution feeds into a temporal part

and a spatial part, the latter consisting of the lattice sum of the diagram. Then, an arbitrary

number of the connected diagrams are chosen to create a “generalized connected diagram”.

The temporal contribution of this generalized connected diagram consists of the product of

the temporal contributions of the constituent diagrams, and its spatial contribution consists

of the lattice sum of all the ways that one can partially or fully overlap these constituent

diagrams on the lattice. The linked cluster theorem is then proved to be valid with respect

to the generalized connected components. Our method is computationally more efficient

than any used previously, and we are therefore able to calculate the Green’s function to

fourth order in βt by hand. Taking the m → ∞ limit, we obtain expressions for the

Dyson-Mori self-energy valid in the limit of infinite spin species, which may be interesting

in the context of slave boson techniques [44, 71, 72]. Numerical high order calculations for

both the Green’s function and the time-dependent density-density and spin-spin correlation

functions shall be presented in a separate paper[70].
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11.3 Outline of the chapter

In sections 12.1 and 12.2, we develop diagrammatic rules for the partition func-

tion, and give examples of their use. In section 12.3 we discuss the linked-cluster theorem

with respect to “generalized connected components”. In sections 12.4 and 12.5 we derive

a formula for the restricted lattice sum of a disconnected diagram with n of the origi-

nal components and use this formula to prove the aforementioned linked-cluster theorem.

We are thus able to write the thermodynamic potential as a sum of the contributions of

the generalized connected components. In sections 13.1 and 13.2, we extend the methods

developed for the thermodynamic potential to derive diagrammatic rules for the Green’s

function. In particular, the linked-theorem is used to show that the partition function in

the denominator of the Green’s function cancels the disconnected diagrams consisting of

several generalized connected components in the numerator. Hence, the Green’s function is

written as a sum of generalized connected components. In section 13.3, we give results for

the Green’s function to 4th order in βt for m spin species on a d-dimensional hypercube.

In section 13.4, we give the 4th order results for the Dyson-Mori self-energy in the limit of

infinite spin species i.e. m → ∞. Finally, in section 13.5, we extend the formalism to the

calculation of time-dependent density-density and spin-spin correlation functions.
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Chapter 12

Expansion for the thermodynamic

potential

12.1 Diagrams for the partition function

The partition function and thermodynamic potential are defined as

Z = Tr(e−βĤ); Ω = −T lnZ. (12.1)

We write the Hamiltonian as

Ĥ = T̂ − µN̂, (12.2)
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where T̂ is the kinetic energy operator, and N̂ is the number operator. Comparison with

Eq. (0.3) shows that

T̂ = −
∑

ijσ

tijX
σ0
i X0σ

j ; N̂ =
∑

iσ

Xσσ
i . (12.3)

The partition function (Eq. (12.1)) is then written as

Z = Tr(eβµN̂e−βT̂ ), (12.4)

where we have used the fact that the kinetic energy operator commutes with the number

operator. Expanding e−βT̂ , we obtain

Z

Z0
=

∞∑

n=0

βn

n!

∑

j1j′1...jnj
′
n

σ1...σn

tj1j′1 . . . tjnj′n〈X
σ10
j′1

X0σ1
j1

. . . Xσn0
j′n

X0σn

jn
〉0, (12.5)

where we have used the definitions

Z0 ≡ Tr(eβµN̂ ); 〈Ô〉0 ≡ Tr(eβµN̂ Ô)

Z0
. (12.6)

The creation and destruction operators in the expectation value in Eq. (12.5) will distribute

amongst the various sites of the lattice with the following restrictions. For a given site,

creation and destruction must alternate. There must be an even number acting on each

site. In addition, X
σp0
j′p

and X
0σp

jp
operate on neighboring sites. Within the expectation

value, the operators must be permuted from their current order so that all operators acting

on a given site are next to each other. The sign of the diagram is determined by whether
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the necessary permutation is even or odd. Once this permutation is done, the expectation

value factors into a product of single site expectation values for each of the sites being acted

on. Suppose there are p operators acting on a given site. Then, the expectation value for

this site must have one of the 2 following forms:

〈Xσ10X0σ2Xσ30X0σ4 . . . Xσp−10X0σp〉0 =
ρ

m
δσpσ1δσp−1σp−2 . . . δσ3σ2 , (12.7)

or

〈X0σ1Xσ20X0σ3Xσ40 . . . X0σp−1Xσp0〉0 = (1− ρ)δσpσp−1δσp−2σp−3 . . . δσ2σ1 , (12.8)

where ρ ≡ meβµ

1+meβµ . This observation allows us to write down the rules for calculating the

nth order contribution to Z
Z0

:

1 Using lines labeled by σi starting from σn and going down to σ1, draw all topologically

distinct diagrams, such that each line emerges from one vertex and enters into another

one. Each vertex can be one of 2 types, a filled circle
⊗

or an empty one ©. Every

time a line is drawn, it can be attached to two existing vertices, or one may create

new vertices for it to attach to. Multiple lines can go into the same vertex. However,

the following rules must be satisfied at each step i : n → 1 of the diagram process.

[a] For a filled circle with an odd number of lines attached to it, there must be

one more coming out than going in. The opposite is true for an empty circle, one

more going in than coming out.

[b] For an empty or filled circle with an even number of lines, as many must go
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out as come in.

[c] In the final diagram, all circles must have an even number of lines.

2 Insert a factor of ρ
m for each filled circle, and 1− ρ for each empty circle.

3 Each vertex is a distinct site on the lattice with lines connecting nearest neighbors.

Compute the multiplicity of each diagram over the entire lattice (with the restriction

that vertices are distinct sites and their relative positions are as indicated by the lines

of the graph). Insert a factor of tn.

4 Insert a factor of βn

n! .

5 Determine the spin sum and the sign of the diagram as follows. At each site, pair the

lines in the following way. For a full site with p lines,

σxp

σxp−1

σx2

σx1

x1 < x2 . . . < xp−1 < xp

the pairings are (x1, xp)(x2, x3) . . . (xp−2, xp−1). For an empty site with p lines,

σxpσxp−1

σx2

σx1

x1 < x2 < . . . < xp−1 < xp

the pairings are (x1, x2)(x3, x4) . . . (xp−1, xp).
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Split the diagram into loops in the following way. Find the filled site with the line

labeled by σn coming out of it. Find the line that this line is paired to on this site,

and follow it to a neighboring site. Find the line that this new line is paired to on

that site, and follow that line to a neighboring site, etc. Do this until you complete

a loop. Now, find the highest remaining spin, call it σq, which will also come out of

a full site. Repeat the above process to get another loop. Make loops until you run

out of lines. Let l be the number of loops, and x be the number of full sites in the

diagram. Insert a factor of ml(−1)x−l.

12.2 Derivation of sign and spin sum rule

Rules 1-4 follow from the expression for Z
Z0

by inspection. We now derive rule

5. We will first show why it works for some examples and then prove that it works for all

diagrams. The examples will also illustrate the other rules.

12.2.1 Examples

Consider the following example from fourth order.

σ4

σ3

σ2

σ1

( ρ
m)2(1− ρ)t4L(2d)(2d − 1)β

4

24m
2

The original ordering of operators in the expectation value is

〈Xσ10
j′1

X0σ1
j1

Xσ20
j′2

X0σ2
j2

Xσ30
j′3

X0σ3
j3

Xσ40
j′4

X0σ4
j4

〉0. Let us label the diagram by writing the indices

of the operators acting on a given site above the site.
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σ4

σ3

σ2

σ1

( ρ
m )2(1− ρ)t4L(2d)(2d − 1)β

4

24m
2

3′4 12′34′ 1′2

Let us now determine the sign of the diagram. This is the number of transpositions it takes

to get between the following 2 orderings: 3’412’34’1’2 and 1’12’23’34’4. We can move a

number past 2 numbers without changing the sign. We can also move a pair of numbers

anywhere we want without changing the sign. Let us pair the numbers as indicated in rule

5 above: (3’,4)(1,2’)(3,4’)(1’,2). Let us now move the (3,4’) pair inside the (3’,4) pair to

obtain (3’34’4)(1,2’)(1’,2). Let us now move the (1,2’) pair inside the (1’,2) pair to obtain

(3’34’4)(1’12’2). Now we can move x’x pairs to get the desired order 1’12’23’34’4. Hence,

the sign of the diagram is (+). Now we determine the contribution from the spin sum. For

empty sites, we must first create a particle. For filled sites, we must first destroy a particle.

Hence, recalling Eqs. (12.7) and (12.8), we see that the pairings in rule 5 correspond to

the Kronecker deltas in these formulas. In addition, x’ and x share the same spin label σx.

Hence, in our expression (3’34’4)(1’12’2), all numbers within a given parenthesis share the

same spin. Hence, the spin sum is m2.

Alternatively, if we go back to the diagram and make loops by the process indicated

in step 5 of the rules, we will see that the first loop corresponds to (3’34’4), while the second

one corresponds to (1’12’2). Since there are 2 full sites in the diagram and 2 loops, rule

5 says that the sign and spin sum give a factor of (−1)2−2m2 = + m2, which is exactly

what we found. Using the other rules as well, the contribution of the diagram can be found

and is written next to the diagram. We have assumed that the lattice is a d-dimensional
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hypercube. Let us consider another example.

σ4

σ2

σ3

σ1

−( ρ
m)2(1− ρ)2t4L(2d)(2d − 2)β

4

24m

1′4 24′

2′313′

The initial ordering is 1’424’2’313’. Again, pair the numbers according to rule 5:

(1’,4)(2,4’)(2’,3)(1,3’). Move the (1,3’) pair into (1’,4) pair to obtain: (1’13’4)(2,4’)(2’,3).

Now move the (2’,3) pair inside the loop to obtain: (1’13’2’34)(2,4’). Now we need a

transposition to get 3 to the right of 3’. This gives a (-) sign. We obtain: -(1’13’32’4)(2,4’).

Now put (2,4’) into the loop to obtain: -(1’1’3’32’24’4) = -(1’1’2’23’34’4). The reason that

we got an overall (-) sign for this diagram was because the (2’,3) pair was in the “wrong”

order with the primed number to the left of the unprimed one instead of the other way

around. Both (1,3’) and (2,4’) were in the “right” order and hence generated no (-) sign.

The wrong order came about because (2’,3) was on a full site rather than an empty site.

The full site pair (1’,4) did not generate a (-) sign because it started the loop. Hence,

full sites generate (-) signs except when they start loops. This is the reason for the factor

(−1)x−l in rule 5. Since we put everything into one parenthesis this time, the spin sum

gives a factor of m.

Alternatively, using step 5 of the rules we would break the diagram into one loop.

In addition, it has 2 full sites. So the factor from the sign and the spin sum should be

(−1)2−1m1 = − m as we have already found. Using the other rules as well, the contribution
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of the diagram can be found and is written next to the diagram.

The only case we have yet to consider is when full sites have multiple pairs on

them. Let us consider a full site which has the numbers x′1x2x
′
3x4 . . . x

′
p−1xp on it. In

this case, the pairings should be made according to rule 5: (x′1, xp)(x2, x
′
3) . . . (xp−2, x

′
p−1).

Making the pairings in this way does not generate a (-) sign because xp has to move past

a certain number of pairs to get to the right of x′1. We see that only the (x′1, xp) pair is in

the “wrong” order while the other pairs are in the “right” order. Hence, only this pair has

the potential to generate a (-) sign and will do so unless it is used to start a loop. Let us

consider a concrete example from sixth order which illustrates this.

σ6

σ4

σ5

σ3 σ2

σ1

3′6 46′

1′24′535′ 12′

( ρ
m)2(1− ρ)3t6L(2d)(2d − 2)2 β6

6! (−1)m

The initial ordering is 3’646’12’1’24’535’. Now we pair the numbers:

(3’,6)(4,6’)(1,2’)(1’,5)(2,4’)(3,5’), and perform the necessary steps to bring them into the
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desired order.

(3′, 6)(4, 6′)(1, 2′)(1′, 5)(2, 4′)(3, 5′) = (3′35′6)(4, 6′)(1, 2′)(1′, 5)(2, 4′)

= (3′35′1′56)(4, 6′)(1, 2′)(2, 4′) = −(3′35′51′6)(4, 6′)(1, 2′)(2, 4′)

= −(3′35′51′12′6)(4, 6′)(2, 4′) = −(3′35′51′12′24′6)(4, 6′)

= −(3′35′51′12′24′46′6) = −(1′12′23′34′45′56′6). (12.9)

Note that the full site on the bottom right corner of the square generated a (-) sign from

its “wrong” pair (1’,5), which was not used to start a loop. The “wrong” pair (3’,6) on the

full site at the top left corner of the square was used to start a loop, and hence did not

generate a (-) sign. Therefore, the overall sign of the diagram is (-). All of the pairs were

put into one parenthesis, and hence the spin sum gave a factor of m.

Alternatively, we could use rule 5 according to which we find that the diagram has 1

loop. We also see that it has 2 full sites. Hence, the sign and spin sum give the contribution

(−1)2−1(m)1 = −m, which matches our previous result. The total contribution of the

diagram is again written next to the diagram.

12.2.2 Proof of the general case

We can now write down a rigorous proof for rule 5 for an nth order diagram. For

a given vertex, we indicate an incoming line with a prime, and an outgoing line with no

prime. In the notation of rule 5, empty sites have the pairs (x1, x
′
2)(x3, x

′
4) . . . (xp−1, x

′
p)

on them, while full sites have the pairs (x′1, xp)(x2, x
′
3) . . . (xp−2, x

′
p−1) on them. The loop

starts with the pair (x′, n) on a full site. This corresponds to the (x′1, xp) pair on this site.
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The next pair in this loop is either (x, y′) or (y′, x), where the latter can only correspond to

the (x′1, xp) pair on a full site. The loop now becomes ±(x′xy′n) where (x, y′) yields + and

(y′, x) yields −. This process continues until we come across n′ at which point we complete

the first loop.

Suppose that the first loop has not exhausted all of the lines in the diagram. Of

the lines not used in the first loop, find the one with the highest spin label, σq. We now

show that q must occur in a pair of the form (u′, q), corresponding to the (x′1, xp) pair on

a full site. The number q must be on some vertex. Remove the pairs that were used in the

first loop from this vertex. q must be the biggest number of those still left on this vertex.

However, we see that this could only occur if xp = q for a full site in the original diagram.

The pair (u′, q) will start the second loop, which will be formed in exactly the

same way as the first loop. We repeat the same reasoning to show that all of the loops are

started by pairs of the form (x′1, xp) on full sites. Those (x′1, xp) pairs on full sites which

do not start loops will generate (-) signs. This means that of the x full sites, x− l generate

(−) signs. Hence, the overall sign of the diagram is (−1)x−l. Furthermore, the lines in a

loop must share the same spin, independent of the other loops. Hence, the spin sum is ml.

Thus, the overall factor from the sign and spin sum is (−1)x−lml as stated in rule 5.

12.3 Loss and recovery of the linked cluster theorem

In the case of Feynman diagrams or the Meyer cluster expansion of the classical gas,

disconnected diagrams arise in the expression for the partition function, but are eliminated

from the thermodynamic potential upon taking the log of the partition function. This so-
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called “linked cluster theorem” [62, 63] is a consequence of two properties of the disconnected

diagrams. a) The contribution of a disconnected diagram is the product of the contributions

of the connected components from which it is formed. b) The combinatorial factors involved

in permuting the labels work out in just the right way for the cancellation to occur. In the

case of the expansion at hand, property b) continues to hold. However, property a) breaks

down due to the restricted lattice sum in which the distinct vertices of the diagram represent

distinct sites on the lattice. This is illustrated below by the simplest disconnected diagrams

in the calculation of Z
Z0

, which appear in 4th order.

σ4

σ3

σ2

σ1

ρ2(1− ρ)2 β4

24 t
4L(2d)[2dL − 4(2d − 1)− 2]

σ4

σ2

σ3

σ1

σ4

σ1

σ3

σ2

Applying the rules for Z
Z0

, we see that they all have an identical contribution which

is written above the diagrams. The permutation of line labels leads to
(4
2

)
1
2! = 3 diagrams.
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There are 4 lines, 2 of which must be chosen for the connected component on the left.

However, since the 2 components are identical, exchanging all of the labels between them

does not lead to a new labeling.

The lattice sum for each of these disconnected diagrams is (2dL)[2dL−4(2d−1)−2].

This lattice sum comes about because the vertices are restricted to being distinct sites on

the lattice. For a second, let us suppose that this is not the case, and that the lattice

sum is unrestricted. The lattice sum would then simply be (2dL)2. In this case, the

total contribution from the three disconnected diagrams would be ( Z
Z0

)
(4)
disconnected = ρ2(1−

ρ)2 β4

8 t4(2dL)2. We relate this contribution to the contribution of the only second order

diagram, from which these disconnected diagram are formed.

σ2

σ1

ρ(1− ρ)β
2

2 t
2L(2d)

We find that ( Z
Z0

)
(4)
disconnected =

[( Z
Z0

)(2)]2

2! . This is exactly the factor we need for the linked-

cluster theorem to work.

Let us return to the actual situation, in which the vertices are in fact restricted

to being distinct sites on the lattice. In this case, the lattice sum of each diagram is

(2dL)[2dL − 4(2d − 1) − 2]. This lattice sum contains a term proportional to L and one

proportional to L2. However, we have just shown that the one proportional to L2 is cancelled

upon taking the log of the partition function, leaving only the one proportional to L. We

expect this to be the case since the thermodynamic potential is an extensive quantity.
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Therefore, we see that the linked cluster theorem may yet be possible, but with

a generalized definition of the “connected components” which go into making a diagram.

These generalized connected components will involve overlappings of the original connected

components. A disconnected diagram for the partition function involving a number of these

generalized connected components will in fact now satisfy both properties a) and b), nec-

essary for the linked cluster theorem to work. Taking the log of the partition function will

eliminate all disconnected diagrams leaving only the generalized connected components.

This will also provide a rigorous proof for the observation just made, that the thermody-

namic potential corresponds to the term proportional to L in the partition function. The

proof of the linked cluster theorem in terms of generalized connected components will hinge

upon a formula for the restricted lattice sum of a disconnected diagram with n of the original

components, which we shall now derive.

12.4 Formula for the restricted lattice sum of disconnected

diagrams

12.4.1 Restricted lattice sum of disconnected diagrams with 3 compo-

nents

The simplest instance of a disconnected diagram is one of the 4th order discon-

nected diagrams considered above. One of the connected components can be placed any-

where on the lattice, hence the factor (2dL). The other component can be placed anywhere

on the lattice such that none of its sites overlap any of the sites of the first one. The number
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of ways it can overlap the first one with just one site is 4(2d − 1). The number of ways it

can overlap it with both sites is 2. Hence the factor [2dL− 4(2d− 1)− 2]. The lattice sum

is thus (2dL)[2dL − 4(2d − 1)− 2].

In the case where there are more than two disconnected components, it will be

difficult to calculate the lattice sum by adding on one component at a time, because for

the third one, its options depend on how far apart the first two are on the lattice. Hence,

we need a systematic way of calculating the lattice sums. Consider a disconnected diagram

with 2 components.

LS[A dc B] = LS[AB]− LS[(A ∩B)]. (12.10)

Here, LS[A dc B] indicates the lattice sum of A disconnected from B, and is what we are

trying to calculate for a disconnected diagram. LS[AB] indicates the lattice sum where

A and B ignore each other, and can each be placed anywhere on the lattice. Hence,

LS[AB] = LS[A]LS[B]. LS[(A ∩ B)] indicates the lattice sum where A and B somehow

overlap. We generalize this notation. LS[D1 dc D2 dc . . . dc Dn] indicates the lattice sum

of the components D1 . . . Dn in which they are not allowed to overlap each other in any

way, and is the object that we need a systematic way of calculating. LS[D1D2 . . . Dn] =

LS[D1]LS[D2] . . . LS[Dn]. Finally, LS[(D1∩D2∩ . . .∩Dn)] indicates the lattice sum of the

components D1 . . . Dn in which they must overlap to form one connected component, but

no two of the D1 . . . Dn are required to overlap each other.
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Consider a disconnected diagram with 3 components.

LS[A dc B dc C] = LS[ABC]− LS[(A ∩B ∩ C)]− LS[(A ∩B) dc C]

−LS[(A ∩ C) dc B]− LS[(B ∩C) dc A]. (12.11)

Here, LS[(A∩B) dc C] indicates the lattice sum where A and B overlap to form a connected

component, which is then not allowed to overlap the component C. This formula states

that to obtain the lattice sum of A, B, and C not overlapping in any way, we take the

lattice sum of them ignoring each other, and subtract the lattice sums of all of the possible

ways in which they can overlap (either overlapping to form one connected component or

two, which are then not allowed to overlap each other). According to the formula for two

components, we have

LS[(A ∩B) dc C] = LS[(A ∩B)C]− LS[((A ∩B) ∩ C)]. (12.12)

Here, LS[((A ∩ B) ∩ C)] indicates the lattice sum in which first A and B must overlap to

form a connected component, and then the resulting connected component must overlap C.

This is not the same as the term LS[(A ∩ B ∩ C)] in which A, B, and C must overlap to

form a connected component, but may do so without A overlapping B. In general, we use

the notation (D1 ∩D2 ∩ . . . ∩ Dn) to indicate that first D1 . . . Dn must overlap to form a
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connected component. Combining Eq. (12.11) with Eq. (12.12), we see that

LS[A dc B dc C] = LS[ABC]− LS[(A ∩B ∩ C)]− LS[(A ∩B)C] + LS[((A ∩B) ∩ C)]

−LS[(A ∩C)B] + LS[((A ∩ C) ∩B)]− LS[(B ∩ C)A] + LS[((B ∩ C) ∩A)]. (12.13)

12.4.2 Restricted lattice sum of disconnected diagrams with n compo-

nents

Consider a disconnected diagram with n components D1 . . . Dn. The object we

wish to calculate is LS[D1 dc D2 dc . . . dc Dn]. We think of each term in Eq. (12.13)

as coming from a particular “configuration”. For example, the term LS[((B ∩ C) ∩ A)]

comes from the configuration ((B ∩C)∩A). We call D1D2 . . . Dn the initial configuration.

LS[D1 dc D2 dc . . . dc Dn] is a sum of terms, which are generated by the following set of

rules:

1 Starting from the initial configuration, arbitrarily group the components D1 . . . Dn.

Enclose each group with a parenthesis and place intersection symbols between the

members of a single group. For a component not grouped with any of the other ones

we imagine that there is a parenthesis around it but we do not draw it in.

2 Identify the outer parentheses. These are the parentheses not enclosed in any

other parenthesis. Arbitrarily group the outer parentheses. Enclose each group with

a parenthesis and place intersection symbols between the members of a single group.

3 We denote each time you group objects as a step. Take anywhere from 0 to n − 1

steps, each time grouping the outer parentheses, to get from the initial configu-
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ration to the final configuration associated with this sequence of steps. The final

configuration will have p ≤ n outer parentheses. Each outer parenthesis represents

an overlapping of some subset of the components present in the initial configura-

tion. Let us number the outer parentheses by the index i, and denote

the overlapping of components represented by each outer parenthesis as

wi. Let s denote the number of steps taken. Then, the contribution of this se-

quence of steps to LS[D1 dc D2 dc . . . dc Dn] is given by (−1)sLS[w1w2 . . . wp] =

(−1)sLS[w1]LS[w2] . . . LS[wp].

4 LS[D1 dc D2 dc . . . dc Dn] is given by the sum of all terms generated by a distinct

sequence of steps.

We illustrate these rules with a couple of examples from the case n = 3 (Eq. (12.13)).

Consider the configuration (A∩B)C. It is reached from the initial configuration by group-

ing A and B in the first step. Hence, s = 1, w1 = (A ∩B), and w2 = C. The contribution

of this sequence of steps is therefore (−1)1LS[(A ∩ B)C] = −LS[A ∩ B]LS[C]. Consider

the configuration ((A ∩ B) ∩ C). It is reached from the initial configuration by grouping

A and B in the first step. The second step consists of grouping (A ∩ B) with C. Hence,

s = 2, and w1 = ((A ∩ B) ∩ C). The contribution of this sequence of steps is therefore

(−1)2LS[((A ∩B) ∩ C)] = LS[((A ∩B) ∩C)].

For n ≤ 3 components, each final configuration must be reached by a unique

sequence of steps starting from the initial configuration. However, this is not the case for

n ≥ 4. For n = 4, consider the configuration (D1 ∩D2)(D3 ∩D4). There are three distinct

sequences of steps to get from the initial configuration to this configuration. One sequence
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involves only one step in which D1 and D2 are grouped together and D3 and D4 are grouped

together. Another sequence involves two steps. In the first step, D1 and D2 are grouped

together, while in the second one D3 and D4 are grouped together. The third sequence also

involves two steps. In the first step, D3 and D4 are grouped together, while in the second

one D1 and D2 are grouped together. Since all of these sequences end in the same final

configuration, their contribution differs only in the number of steps it takes to get from the

initial configuration to this final configuration. The first sequence involves only one step

and hence has a contribution of −LS[(D1 ∩D2)]LS[(D3 ∩D4)]. The other two sequences

each involve 2 steps and hence each have a contribution of LS[(D1 ∩ D2)]LS[(D3 ∩ D4)].

Hence, the overall contribution of this configuration is −LS[(D1 ∩ D2)]LS[(D3 ∩ D4)] +

2LS[(D1 ∩D2)]LS[(D3 ∩D4)] = LS[(D1 ∩D2)]LS[(D3 ∩D4)].

12.4.3 Classification of configurations

We now want to isolate a particular final configuration, and add all of the con-

tributions from the distinct sequences of steps which lead to this final configuration from

the initial configuration. This will give us the contribution of this final configuration. If

we can do this for any final configuration, then instead of adding contributions from se-

quences of steps to determine LS[D1 dc D2 dc . . . dc Dn], we can add contributions from

final configurations. Let us denote an arbitrary final configuration by κ. Suppose κ has

p outer parentheses. Then each distinct sequence of steps leading to κ will have the con-

tribution ±LS[w1]LS[w2] . . . LS[wp], where the choice of plus or minus depends on how

many steps there are in that sequence. Hence, the overall contribution from κ will be
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CκLS[w1]LS[w2] . . . LS[wp] where Cκ =
∑

sequences
(−1)s(sequence), where the sum is over all

sequences leading to κ from the initial configuration. We want to find Cκ for all κ. To this

end, we classify the different κ into types that will share the same value of Cκ.

First, we classify the parentheses appearing in the various configurations. A type

0 parenthesis is the invisible parenthesis enclosing any one of the n components present in

the initial configuration. A type 1 parenthesis is a parenthesis which encloses only type 0

parentheses. A type 2 parenthesis encloses at least 1 type 1 parenthesis and zero or more

parentheses of lower type. A type 3 parenthesis encloses at least 1 type 2 parenthesis and

zero or more parentheses of lower type. A type k parenthesis encloses at least 1 type k − 1

parenthesis and zero or more parentheses of lower type. We give some examples to illustrate

the different types of parentheses. In the following examples, the very outer parenthesis is

of the specified type. Type 1 parenthesis: (D1∩D2). Type 2 parenthesis: ((D1∩D2)∩D3).

Type 3 parenthesis: (((D1 ∩D2) ∩D3) ∩ (D4 ∩D5)).

We are now in a position to classify all of the final configurations. A type

m(i1,i2,...,im) configuration is a configuration which has i1 type 1 parentheses, i2 type 2

parantheses, . . . im type m parentheses. Every possible final configuration falls into one of

these types. We shall see that all final configurations of a given type have equal Cκ. For a

configuration κ of type m(i1,i2,...,im), we shall denote Cκ by Cm(i1,i2,...,im)
. The following are

examples of different types of configurations. 1(1): (D1∩D2)D3D4, 1(2): (D1∩D2)(D3∩D4),

2(1,1): ((D1 ∩D2) ∩ D3 ∩ D4), 2(2,1): ((D1 ∩ D2) ∩ (D3 ∩ D4)), 2(1,2): not possible, 2(2,2):

((D1 ∩D2) ∩D3)((D4 ∩D5) ∩D6), 3(1,1,1): (((D1 ∩D2) ∩D3) ∩D4), etc.
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12.4.4 Calculation of C1(i1)

We now calculate Cm(i1,i2,...,im)
for a few simple cases before stating and proving

the general result. We start with C0. This is just the initial configuration, reached by

making 0 steps.

C0 = 1. (12.14)

Consider one of the type 1(1) configurations. The only sequence of steps by which one can

get to this configuration is to form the single type 1 parenthesis on the first step.

C1(1) = −1. (12.15)

Consider one of the type 1(2) configurations. As already discussed, there are 3 distinct

sequences of steps by which this configuration can be reached. One consists of forming both

type 1 parentheses in one step from the initial configuration, while the other two consist

of forming one of the type 1 parentheses as the first step and forming the other one as the

second step.

C1(2) = −1 + 2× 1 = 1. (12.16)

The way in which we shall calculate C1(3) illustrates the way in which we shall

calculate Cm(i1,i2,...,im)
for all m. Consider a particular type 1(3) configuration. In all of the

sequences of steps which lead to this configuration, the configuration reached right before
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the last step in the sequence must be either of type 0, 1(1), or 1(2). Hence, we have the

following formula for C1(3) .

C1(3) = C0(−1) + (# of type 1(1)configs. 1 step away from type 1(3)config.)C1(1)(−1)

+(# of type 1(2)configs. 1 step away from type 1(3)config.)C1(2)(−1). (12.17)

Thus, our strategy in calculating Cm(i1,i2,...,im)
is to calculate these coefficients in the cor-

rect order, so that by the time we are calculating the coefficient for a particular type of

configuration, we have already calculated the coefficients for all configurations that are

within one step of it. This makes the initially daunting task of calculating Cm(i1,i2,...,im)

very manageable.

Returning to our calculation of C1(3) , a type 1(3) configuration can be reached in

one step from the initial configuration by forming all three of the type 1 parentheses in this

single step. It can be reached in one step from
(3
1

)
= 3 distinct type 1(1) configurations,

one for each of the type 1 parentheses that define the 1(3) configuration. This is done by

forming the other two type 1 parentheses in that step. It can be reached in one step from

(3
2

)
= 3 distinct type 1(2) configurations, one for each choice of 2 of the type 1 parentheses

that define it. This is done by forming the other type 1 parenthesis in that step. Therefore,

C1(3) = C0(−1) + 3C1(1)(−1) + 3C1(2)(−1) = 1(−1) + 3(−1)(−1) + 3(1)(−1) = −1.

(12.18)
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Similarly, we can calculate C1(4) .

C1(4) = −1 +

(
4

1

)
(−1)(−1) +

(
4

2

)
(1)(−1) +

(
4

3

)
(−1)(−1) = −1 + 4− 6 + 4 = 1.

(12.19)

We can now calculate C1(i1)
.

C1(i1)
= −1 +

(
i1
1

)
−

(
i1
2

)
+

(
i1
3

)
− . . . + (−1)i1

(
i1

i1 − 1

)
= (−1)i1 . (12.20)

12.4.5 Calculation of Cm(i1,i2,...,im)
for all m

We are now ready to state and prove the general formula for Cm(i1,i2,...,im)

Cm(i1,i2,...,im)
= (−1)i1+i2+...+im . (12.21)

We prove this formula by induction. Before stating the inductive hypothesis, we or-

der the coefficients Cm(i1,i2,...,im)
. To compare the coefficients Cm(i1,i2,...,im)

and Ck(j1,j2,...,jk)
,

find the leftmost entry where they differ, where from left to right the entries arem, i1, . . . , im

and k, j1, . . . , jk. The one that has the bigger number in this entry is greater according to

this ordering. We write the coefficients in order from least to greatest:

C0, C1(1) , C1(2) , . . . , C2(1,1) , C2(2,1) , C2(2,2) , C2(3,1) , C2(3,2) , C2(3,3) , . . . , C3(1,1,1) , . . . , Cn−1(1,1,1,...,1) .

Inductive hypothesis: Cm(i1,i2,...,im)
= (−1)i1+i2+...+im holds for all coefficients less than

or equal to the rth coefficient in the above sequence of coefficients. We have already proven

113



the base case, so we now prove the inductive step.

Suppose that the r + 1st coefficient is Cm(i1,i2,...,im)
. The inductive hypothesis

implies that

Ck(j1,j2,...,jk)
= (−1)j1+j2+...+jk if all of the inequalities k ≤ m, j1 ≤ i1, j2 ≤ i2, . . . , jk ≤ ik

are satisfied, except for the case where all of the inequalities are equalities. We now split

the i1 type 1 parentheses into 2 sets, α and β. In the α set, we put those type 1 parentheses

which are enclosed by other (higher type) parentheses. We put the rest into the set β. We

do the same for the type 2 parentheses, type 3 parentheses, . . . type m − 1 parentheses.

All of the type m parentheses are put into the set β since they can’t be enclosed by other

parentheses. Consider the configurations from which the type m(i1,i2,...,im) configuration in

question can be reached in one step. Any such configuration must have all of the parentheses

in the set α, since these are enclosed by higher type parentheses, but we can only make

one more step. In addition to these, it can have anywhere from zero to all but one of the

parentheses from the set β, since any number of them can be formed in 1 step. Let x be

the number of parentheses in the set α, and y be the number of parentheses in the set β.

Then,

x+ y = i1 + i2 + . . .+ im. (12.22)

Consider a configuration κ with all x of the parentheses from the set α and 0 ≤ z ≤ y − 1

of the parentheses from the set β. Then, by the inductive hypothesis, Cκ = (−1)x+z .

Since one more step is required to reach the type m(i1,i2,...,im) configuration in question, the

contribution of κ to Cm(i1,i2,...,im)
is Cκ(−1) = (−1)x+z+1. There are

(y
z

)
such configurations
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since we have to choose z out of y parentheses from the set β. Therefore,

Cm(i1,i2,...,im)
=

(
y

0

)
(−1)x+1 +

(
y

1

)
(−1)x+2 +

(
y

2

)
(−1)x+3

+

(
y

3

)
(−1)x+4 + . . . +

(
y

y − 1

)
(−1)x+y

= (−1)x
[
−1 +

(
y

1

)
−

(
y

2

)
+

(
y

3

)
− . . . + (−1)y

(
y

y − 1

)]

= (−1)x(−1)y = (−1)x+y = (−1)i1+i2+...+im . (12.23)

Thus we have proven the claim and shown that Cm(i1,i2,...,im)
= (−1)i1+i2+...+im .

We now have the following expression for the lattice sum of a disconnected diagram

with components D1,D2, . . . Dn.

LS[D1 dc D2 dc . . . dc Dn] =
∑

κ

(−1)i1+i2+...+imLS[w1]LS[w2] . . . LS[wp]. (12.24)

Here, the sum is over the configurations κ that one can make from the components

D1,D2, . . . Dn. Each configuration κ has p outer parentheses, i1 type 1 parentheses, . . . im

type m parentheses. LS[wi] represents the lattice sum of the overlapping of components

inside the ith outer parenthesis.

12.5 Calculation of the thermodynamic potential

12.5.1 Partition function as a sum over configurations

We return to our calculation of Z
Z0

via the diagrammatic rules presented in section

12.1. Let zD denote the contribution to Z
Z0

of a connected diagram D. Let z(D1...Dp) denote
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the contribution to Z
Z0

of a disconnected diagram with components D1,D2, . . . Dp. Let us

recall that such a disconnected diagram will have a certain multiplicity which we denote by

η(D1...Dp). Suppose the componentsD1,D2, . . . Dp are of orders n1, n2, . . . np in t respectively.

Then, the whole diagram is of order n in t, where n = n1+n2+ . . .+np. In addition, out of

the p components D1,D2, . . . Dp, let us suppose that k ≤ p are distinct, with degeneracies

g1, g2, . . . , gk, where g1 + g2 + . . . + gk = p. Then, we find that

η(D1...Dp) =
n!

n1!n2! . . . np!

1

g1!g2! . . . gk!
. (12.25)

This factor comes about because we must distribute n labelled lines among p components

with ni lines going to component Di, but exchanging all of the lines of two identical compo-

nents does not give a new distribution of lines. Now, instead of drawing η(D1...Dp) diagrams

with different distributions of lines, we draw only one such diagram with contribution

η(D1...Dp)z(D1...Dp) =
n!

n1!n2! . . . np!

1

g1!g2! . . . gk!

βn

n!
zB(D1...Dp)LS[D1 dc D2 dc . . . dc Dp].

(12.26)

Here, zB(D1...Dp) indicates that we have dropped the factors βn

n! and

LS[D1 dc D2 dc . . . dc Dp] from z(D1...Dp). Now, let l denote the number of loops and x

denote the number of full sites in the disconnected diagram with components D1,D2, . . . Dp.

Let li denote the number of loops and xi denote the number of full sites in the component
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Di. Then, we have that

tnml(−1)x−l = tn1ml1(−1)x1−l1tn2ml2(−1)x2−l2 . . . tnpmlp(−1)xp−lp ,

zB(D1...Dp) = zBD1zBD2 . . . zBDp . (12.27)

Therefore,

η(D1...Dp)z(D1...Dp) =
1

g1!g2! . . . gk!
znLD1znLD2 . . . znLDpLS[D1 dc D2 dc . . . dc Dp]. (12.28)

Here, znLD indicates that we have dropped the lattice sum from zD . The partition function

can now be expressed as

Z

Z0
= 1 +

∞∑

p=1

∑

(D1...Dp)

1

g1!g2! . . . gk!
znLD1znLD2 . . . znLDpLS[D1 dc D2 dc . . . dc Dp].(12.29)

Here, the sum over (D1 . . . Dp) includes only one term for each set of connected components

since the multiplicity from the different distributions of lines has already been taken into

account. Plugging in our expression for LS[D1 dc D2 dc . . . dc Dp] from Eq. (12.24), we

obtain

Z

Z0
= 1 +

∞∑

p=1

∑

(D1...Dp)

1

g1!g2! . . . gk!
znLD1znLD2 . . . znLDp

×
∑

κ

(−1)i1+i2+...+imLS[w1]LS[w2] . . . LS[wq].

(12.30)

Here, the sum over κ runs over all configurations that arise from the components (D1 . . . Dp).
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However, a given configuration κ can only come from a unique set of components (D1 . . . Dp).

Hence, we can sum over all possible κ directly, where in each term of the sum, by specifying

κ, we automatically specify the (D1 . . . Dp) that it came from.

Z

Z0
= 1 +

∑

κ

1

g1!g2! . . . gk!
znLD1znLD2 . . . znLDp(−1)i1+i2+...+imLS[w1]LS[w2] . . . LS[wq].

(12.31)

12.5.2 Linked cluster theorem w.r.t. generalized connected components

For each configuration κ, we relabel the components (D1 . . . Dp) according to which

ones are contained in wi. Those in w1 are now labeled (Dw11Dw12 . . . Dw1r1) . . . those in wq

are now labeled (Dwq1Dwq2 . . . Dwqrq), where r1 is the number of components in w1, etc. We

also count the number of different types of parentheses in the wj . We denote the highest

type of parenthesis (which is the outer parenthesis) in a given wj by mwj
. We denote the

number of type 1 parentheses in wj by i1(wj), . . . the number of type mwj
parentheses in

wj by imwj
(wj). Note that imwj

(wj) = 1, unless wj = Di (i.e. mwj
= 0 ), in which case

imwj
(wj) ≡ 0. Then, we have that

i1 + i2 + . . .+ im = i1(w1) + . . .+ imw1
(w1) + . . .+ i1(wq) + . . .+ imwq

(wq). (12.32)

We also make the following definition. For a particular w,

zw ≡ znLDw1znLDw2 . . . znLDwrw
(−1)i1(w)+i2(w)+...+imw (w)LS[w]. (12.33)

118



Eq. (12.31) now becomes

Z

Z0
= 1 +

∑

κ

1

g1!g2! . . . gk!
zw1zw2 . . . zwq . (12.34)

In a given configuration κ, all of the p components that go into making κ are given

the distinct labels D1 . . . Dp, regardless of whether they are identical or not. However, there

are distinct configurations which would be identical if we gave identical components the

same label. As an example, consider configurations with three components which are all

identical, but given the labels D1,D2,D3. Then, the configuration ((D1 ∩ D2) ∩ D3) is

distinct from the configuration ((D1 ∩ D3) ∩ D2). However, if all 3 components had the

same label, the 2 configurations would be the same. All such configurations clearly have

equal contributions to Z
Z0

. We therefore only consider configurations κ∗, in which identical

components are given identical labels.

∑

κ

Z(κ) =
∑

κ∗

H(κ∗)Z(κ∗). (12.35)

Here, H(κ∗) is equal to the number of configurations κ which collapse into κ∗ once identical

components are given the same label.

Consider an arbitrary configuration κ. It consists of w1, w2, . . . wq. Transform it to

a κ∗ by giving identical components the same label. Then κ∗ consists of w∗
1, w

∗
2, . . . w

∗
q , where

wj is transformed to w∗
j in the process of transforming κ to κ∗. After the transformation,

there may be some degeneracy among the w∗
j . Suppose there are u distinct w∗:w∗

1, w
∗
2, . . . w

∗
u

119



with degeneracies s1, s2, . . . , su respectively. Then,

H(κ∗) =
g1!g2! . . . gk!

s1!s2! . . . su![γ(w∗
1)]

s1 [γ(w∗
2)]

s2 . . . [γ(w∗
u)]

su
, (12.36)

where γ(w∗
j ) is the symmetry factor of w∗

j . By this we mean that if we momentarily give

distinct labels to the identical components in w∗
j , it is the number of ways to permute

labels amongst identical components and return to the same labeling. For example, if

w∗
j = ((D1 ∩ D1) ∩ (D1 ∩ D1)), then γ(w∗

j ) = 8. If w∗
j = ((D1 ∩ D1) ∩ (D2 ∩ D2)), then

γ(w∗
j ) = 4. Plugging the expression for H(κ∗) into Eq. (12.34), we obtain

Z

Z0
= 1 +

∑

κ∗

[zw∗
1
]s1 [zw∗

2
]s2 . . . [zw∗

u
]su

s1!s2! . . . su![γ(w
∗
1)]

s1 [γ(w∗
2)]

s2 . . . [γ(w∗
u)]

su
. (12.37)

An arbitrary κ∗ has an arbitrary number (from 0 to ∞) of each of the different possible

w∗, except there has to be at least 1 w∗ of some kind for κ∗ to exist. However, the term

in which there are zero of all of the possible w∗ is 1 and is therefore accounted for in the

expression for Z
Z0

. Therefore,

Z

Z0
= exp

[
∑

w∗

zw∗

γ(w∗)

]
, (12.38)

ln

(
Z

Z0

)
=

∑

w∗

zw∗

γ(w∗)
. (12.39)

We see that the w∗ are the “generalized components” alluded to in section 12.3.
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12.5.3 Diagrammatic rules for calculating the thermodynamic potential

We now have the following set of rules for the nth order contribution to ln( Z
Z0

):

1 Choose p ≥ 1 connected diagrams (not necessarily distinct) whose orders add up to

n. If p = 1, the overall diagram is connected and evaluated according to the rules for

Z
Z0

.

2 If p > 1, the overall diagram is disconnected. The p connected diagrams are now

components in this disconnected diagram.

3 Denote the contribution of a connected diagram D to Z
Z0

by zD. If one removes the

lattice sum factor from zD, denote this by znLD. Multiply together the factors znLD

from the individual components.

4 Create all distinct w∗ from the components by forming i1(w
∗) type 1 parenthe-

ses, . . . , imw∗ (w
∗) = 1 type mw∗ parentheses. There is only one outer parenthe-

sis in each w∗ which encloses all p components. The contribution of each w∗ is

(−1)
i1(w

∗)+...+imw∗ (w∗)
LS[w∗]

γ(w∗) , where γ(w∗) is the symmetry factor of w∗ as explained

below Eq. (12.36), and LS[w∗] is the lattice sum of the overlapping of components

represented by w∗. Sum the contributions over all w∗.

5 Multiply the factor from 4 by the factor from 3.

In addition to proving the above rules, the derivation shows that ln Z
Z0

is indeed

the term in Z
Z0

proportional to L. From Eq. (12.33), we see that zw∗ is proportional to L.

Therefore, the term proportional to L on the RHS of Eq. (12.37) corresponds to si = 1 for

some i and sj = 0 for j 6= i. Comparing this with Eq. (12.39), we see that it is equal to
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ln Z
Z0

. Therefore, an alternative to the above set of rules for ln Z
Z0

is to use the rules for

Z
Z0

from section 12.1, but to keep only the term proportional to L in the lattice sum of a

disconnected diagram.
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Chapter 13

Expansion for time dependent

correlation functions

13.1 Diagrams for the numerator of the Green’s function

The Green’s function is defined as

Gjj′σ(τ) = −〈X0σ
j (τ)Xσ0

j′ 〉, (13.1)

where

〈O〉 = Tr(e−βHO)

Z
, (13.2)
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and the time dependence is given by the Heisenberg representation. Furthermore, 0 ≤ τ ≤

β, where β is the inverse temperature. From Eq. (13.1), the Green’s function is written as

Gjj′σ(τ) = −
Tr(e−βHX0σ

j (τ)Xσ0
j′ )

Z
. (13.3)

Plugging in Eq. (12.2),

Gjj′σ(τ) = −
eµτ 〈e(τ−β)T̂X0σ

j e−τT̂Xσ0
j′ 〉0

Z
Z0

. (13.4)

Finally, expanding the exponentials, we obtain

Gjj′σ(τ)(
Z
Z0

) = −eµτ
∞∑

a=0b=0

(β−τ)a

a!
τb

b!

∑
j1j′1...jnj

′
n

σ1...σn

tj1j′1 . . . tjnj′n〈X
σ10
j′1

X0σ1
j1

. . . Xσa0
j′a

X0σa

ja
X0σ

j X
σa+10
j′a+1

X
0σa+1

ja+1
. . . Xσn0

j′n
X0σn

jn
Xσ0

j′ 〉0,

(13.5)

where n = a+ b. This leads to the following rules for calculating the nth order contribution

to Gjj′σ(τ)(
Z
Z0

):

1 Choose 0 ≤ a ≤ n. Set b = n− a. Draw the diagram as you would for Z
Z0

, except for

the following changes. Begin drawing the diagram with a line labeled by σn.6 going

into an empty site labeled by j′. The line does not come out of any site, it only goes

into j′. In addition to this, after drawing the line labeled by σa+1, and before drawing

the line labeled by σa, draw a line labeled by σa.5 going out of a site labeled j. The

line does not go into any site, it only comes out of j. j and j′ may label the same site.

2 Insert a factor of −eµτ

a!b! (β − τ)aτ b.
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3 Insert a factor of ρ
m for each filled circle, and (1− ρ) for each empty circle.

4 Compute the multiplicity of the diagram, keeping in mind that j and j′ are fixed sites

on the lattice. Insert a factor of tn.

5 Pair the lines at each site in the same way as for Z
Z0

, including the σn.6 and σa.5 lines.

Now, find the line which is paired with the σn.6 line on the site j′. Follow the same

process as for Z
Z0

until you reach the σa.5 line. This completes the loop started by

the σn.6 line. Find the line with the highest remaining spin label, and continue to the

break the diagram into loops just as for Z
Z0

. Let l be the number of loops. Let x be

the number of full sites in the diagram. Insert a factor of (−1)x+1−lml−1.

13.1.1 Proof of the rules for the numerator of the Green’s function

The rules for calculating

Gjj′σ(τ)(
Z
Z0

) are modified from those for calculating Z
Z0

by introducing the external line

σn.6 on the site j′ to account for Xσ0
j′ , and the external line σa.5 on the site j to account

for X0σ
j . We now state the proof of rule 5 for Gjj′σ(τ)(

Z
Z0

), which is similar to the proof of

rule 5 for Z
Z0

, given in section 12.2.2.

The order of the numbers in the expectation value in Eq. (13.5) is 1′12′2 . . . a′aa.5(a+

1)′(a+1) . . . n′nn′
.6. This is equivalent to the order 1′12′2 . . . a′a(a+1)′(a+1) . . . n′na.5n′

.6,

since a.5 has to be moved past a certain number of pairs to get to the left of n′
.6. The first

loop is started by the pair (x, n′
.6) on an empty site. This corresponds to the (xp−1, x

′
p)

pair on this site. The next pair in this loop is either (y, x′) or (x′, y), where the latter can

only correspond to the (x′1, xp) pair on a full site. The loop now becomes ±(x′xyn′
.6) where
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(y, x′) gives + and (x′, y) gives −. This process continues until we come across a.5, at which

point we complete the first loop.

The subsequent loops are made in the same way as for Z
Z0

. We make the same

arguments to show that each subsequent loop is started by the (x′1, xp) pair on a full site.

However, in the case of Gjj′σ(τ)(
Z
Z0

), this does not apply to the first loop. Therefore, only

l − 1 full sites don’t contribute a minus sign, and the sign of the diagram is (−1)x−(l−1) =

(−1)x−l+1.

For the spin sum we note that σn.6 = σa.5 = σ. Thus, the spin of the first loop

is fixed to be σ. Hence, this loop does not give a factor of m. Therefore, the spin sum is

ml−1. The overall factor from the sign and spin sum is (−1)x−l+1ml−1 as stated in rule 5.

13.2 Calculation of the Green’s function

13.2.1 Numerator of the Green’s function as a sum over configurations

To proceed further with our calculation of the Green’s function, we need to address

the issue of disconnected diagrams in Gjj′σ(τ)(
Z
Z0

). In a disconnected diagram, there will

be one component, which we denote by DG, which will contain the external lines. The

other components will be the same as those in the diagrams for Z
Z0

. Let GDG
be the

contribution of DG as calculated by the rules for Gjj′σ(τ)(
Z
Z0

). Let G(DGD1...Dp) be the

contribution of a disconnected diagram with components DGD1 . . . Dp as calculated by

these rules. Consider a disconnected diagram of order n, with 0 ≤ a ≤ n, comprised of

components DGD1 . . . Dp, where DG is of order c, and D1 . . . Dp are of orders n1 . . . np

respectively. Let f ≡ n1 + n2 + . . . + np. Then, f = n − c. In general, DG has α lines
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numbered lower than σa.5, and δ ≡ c− α lines numbered higher than σa.5(excluding σn.6).

Additionally, there could be some degeneracy among the components D1 . . . Dp. Assume

that out of these, k are distinct, with degeneracy g1 . . . gk. Then, the number of different

ways to distribute lines among the components DGD1 . . . Dp is:

ηa(DGD1...Dp) =

(
a

α

)(
b

δ

)
f !

n1! . . . np!

1

g1! . . . gk!
. (13.6)

Hence, for a given choice of a, the components DGD1 . . . Dp

make the following contribution to Gjj′σ(τ)(
Z
Z0

):

ηa(DGD1...Dp)G(DGD1...Dp) =

(
a

α

)(
b

δ

)
f !

n1! . . . np!

1

g1! . . . gk!

(−eµτ )

a!b!
(β − τ)aτ b

×GB(DGD1...Dp)LS[DG dc D1 dc . . . dc Dp], (13.7)

where GB(DGD1...Dp) is G(DGD1...Dp) without the factors

(−eµτ )
a!b! (β − τ)aτ b and LS[DG dc D1 dc . . . dc Dp]. However, there are multiple values of

0 ≤ a ≤ n for which a disconnected diagram can have the components DGD1 . . . Dp. The

values of a are restricted by the values of α and δ for the given DG. In particular, α ≤ a

and δ ≤ n− a. Therefore, we have

α ≤ a ≤ n− δ. (13.8)
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Hence, the total contribution of the components DGD1 . . . Dp to Gjj′σ(τ)(
Z
Z0

) is:

η(DGD1...Dp)G(DGD1...Dp) =

n−δ∑

a=α

1

α!(a − α)!

1

δ!(b− δ)!

f !

n1! . . . np!

1

g1! . . . gk!

×(−eµτ )(β − τ)a−ατ b−δ(β − τ)ατ δ

×GB(DGD1...Dp)LS[DG dc D1dc . . . dc Dp].

(13.9)

We also have the following equalities:

GB(DGD1...Dp) = GBDG
zB(D1...Dp), (13.10)

GnLDG
=

(−eµτ )

α!δ!
(β − τ)ατ δGBDG

. (13.11)

Furthermore, using the definitions of b, δ, and f , one can show that

n−δ∑

a=α

1

(a− α)!

1

(b− δ)!
(β − τ)a−ατ b−δ =

f∑

a=0

1

a!

1

(f − a)!
(β − τ)aτ f−a =

βf

f !
. (13.12)

Hence, Eq. (13.9) simplifies to:

η(DGD1...Dp)G(DGD1...Dp) =
1

g1! . . . gk!
GnLDG

znLD1 . . . znLDpLS[DG dc D1 dc . . . dc Dp].

(13.13)

128



Therefore,

Gjj′σ(τ)

(
Z

Z0

)
=

∑

DG

∞∑

p=0

∑

(D1...Dp)

1

g1! . . . gk!
GnLDG

znLD1 . . . znLDp

LS[DG dc D1 dc . . . dc Dp]. (13.14)

LS[DG dc D1 dc . . . dc Dp] is evaluated in terms of configurations in the same way as

LS[D1 dc . . . dc Dp] from
Z
Z0

was, except that now in each κ, there will be one w which

contains DG. We shall denote it by wG. The other w will be the same as those found in

the calculation of Z
Z0

. Thus, we obtain

Gjj′σ(τ)

(
Z

Z0

)
=

∑

DG

∞∑

p=0

∑

(D1...Dp)

1

g1! . . . gk!
GnLDG

znLD1 . . . znLDp

×
∑

κ

(−1)i1+...+imLS[wG]LS[w1] . . . LS[wq]. (13.15)

A given κ can only come from a unique (DGD1 . . . Dp). Therefore,

Gjj′σ(τ)

(
Z

Z0

)
=

∑

κ

1

g1! . . . gk!
GnLDG

znLD1 . . . znLDp(−1)i1+...+im

×LS[wG]LS[w1] . . . LS[wq]. (13.16)

13.2.2 Cancellation of the denominator of the Green’s function

We define

GwG
≡ GnLDG(wG)znLDwG1znLDwG2 . . . znLDwGrwG

(−1)i1(wG)+i2(wG)+...+imwG
(wG)LS[wG].

(13.17)

129



Then, Eq. (13.16) simplifies to

Gjj′σ(τ)

(
Z

Z0

)
=

∑

κ

1

g1! . . . gk!
GwG

zw1 . . . zwq . (13.18)

Just as in the case of Z
Z0

, we perform the transformation κ → κ∗ by giving identical com-

ponents identical labels. In the process, wG → w∗
G and wj → w∗

j . After the transformation,

there may be some degeneracy in the w∗
1 . . . w

∗
q . Suppose there are u distinct w∗

j : w
∗
1 . . . w

∗
u

with degeneracies s1 . . . su respectively. There can only be one w∗
G because there is only one

DG in any diagram. Therefore, the multiplicity factor for the number of configurations κ

which correspond to a single κ∗ is

H(κ∗) =
g1!g2! . . . gk!

s1!s2! . . . su![γ(w∗
1)]

s1 [γ(w∗
2)]

s2 . . . [γ(w∗
u)]

suγ(w∗
G)

, (13.19)

and Eq. (13.18) becomes

Gjj′σ(τ)

(
Z

Z0

)
=

∑

κ∗

Gw∗
G
[zw∗

1
]s1 [zw∗

2
]s2 . . . [zw∗

u
]su

s1!s2! . . . su![γ(w∗
1)]

s1 [γ(w∗
2)]

s2 . . . [γ(w∗
u)]

suγ(w∗
G)

. (13.20)

An arbitrary κ∗ has one of the w∗
G and an arbitrary number from 0 to ∞ of each of the w∗.

Therefore,

Gjj′σ(τ)

(
Z

Z0

)
=

∑

w∗
G

Gw∗
G

γ(w∗
G)

exp

[
∑

w∗

zw∗

γ(w∗)

]
. (13.21)
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Recalling that Z
Z0

= exp[
∑
w∗

zw∗

γ(w∗) ], we have that

Gjj′σ(τ) =
∑

w∗
G

Gw∗
G

γ(w∗
G)

. (13.22)

13.2.3 Diagrammatic rules for the calculation of the Green’s function

This leads to the following set of rules for the nth order contribution to Gjj′σ(τ):

1 Choose one connected diagram from Gjj′σ(τ)(
Z
Z0

) and p ≥ 0 connected diagrams (not

necessarily distinct) from Z
Z0

. The orders of the p+ 1 diagrams must add up to n. If

p = 0, then the overall diagram is connected and must be evaluated according to the

rules for Gjj′σ(τ)(
Z
Z0

).

2 If p > 0, the overall diagram is disconnected. The p+ 1 connected diagrams are now

components in this disconnected diagram.

3 Denote the contribution of a connected diagram DG to Gjj′σ(τ)(
Z
Z0

) by GDG
. If one

removes the lattice sum factor fromGDG
, denote this byGnLDG

. MultiplyGnLDG
from

the component DG together with znLD1 . . . znLDp from the p components D1 . . . Dp.

4 Create all distinct w∗ from the components by forming i1(w
∗) type 1 parenthe-

ses, . . . , imw∗ (w
∗) = 1 type mw∗ parentheses. There is only one outer parenthesis

in each w∗ which encloses all p + 1 components. The contribution of each w∗ is

(−1)
i1(w

∗)+...+imw∗ (w∗)
LS[w∗]

γ(w∗) , where γ(w∗) is the symmetry factor of w∗, and LS[w∗]

is the lattice sum of the overlapping of components represented by w∗. Sum the

contributions over all w∗.
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5 Multiply the factor from 4 by the factor from 3.

In addition to proving the above rules, the derivation shows that Gjj′σ(τ) is indeed

the term in Gjj′σ(τ)(
Z
Z0

) independent to L. From Eq. (12.33), we see that zw∗ is proportional

to L. Therefore, the term independent L on the RHS of Eq. (13.20) corresponds to si = 0

for all i. Comparing this with Eq. (13.22), we see that it is equal to Gjj′σ(τ). Therefore,

an alternative to the above set of rules for Gjj′σ(τ) is to use the rules for Gjj′σ(τ)(
Z
Z0

) from

section 13.1, but to keep only the term independent of L in the lattice sum of a disconnected

diagram.

13.3 Examples and results for the Green’s function

13.3.1 Examples from 0th to 2nd order

We now show some examples of diagrams for Gjj′σ(τ), with the contribution writ-

ten next to the diagram. In zeroth order, there is only one diagram:

σ0.6

σ0.5

a = 0 −eµτ (1− ρ)δjj′j′ = j

In first order, there are 2 diagrams:
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σ1.6

σ1

σ0.5

a = 0 j′ j −eµττ(1− ρ)2tjj′

σ1.6

σ1

σ1.5

a = 1 j′ j eµτ (β − τ) ρ
m
(1− ρ)tjj′

In second order, one can have a disconnected diagram:

σ2.6

σ0.5

σ2

σ1

j′ = ja = 0 −eµτ

2 τ 2(1− ρ)2ρδjj′(−2 · 2d)t2
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13.3.2 Green’s function to fourth order in βt

We have used the above rules to calculate the Green’s function to 4th order in t

on a hypercube in d dimensions with m spin species:

G(0)
σ (~k, ωk) =

m(−ρ) +m+ ρ

mz
,

G(1)
σ (~k, ωk) =

ǫk(m(−ρ) +m+ ρ)2

m2z2
,

G(2)
σ (~k, ωk) =

2d(m− 1)t2ρ(m(ρ− 2)− ρ)(m(ρ− 1)− ρ)

m3z3
− 2d(m− 1)t2β(ρ− 1)ρ

mz2

−d(m− 1)t2β2(ρ− 1)ρ(2ρ− 1)

mz
+

ǫ2k(m(−ρ) +m+ ρ)3

m3z3
,

G(3)
σ (~k, ωk) = −(4d− 1)(m− 1)t2ρǫk(m(ρ− 2)− ρ)(m(−ρ) +m+ ρ)2

m4z4

+
2(2d− 1)(m − 1)t2β(ρ− 1)ρǫk(m(ρ− 1)− ρ)

m2z3

+
(m− 1)t2β2(ρ− 1)ρǫk((d(4ρ − 2)− ρ)(m(ρ − 1)− ρ)− ρ)

m2z2
+

ǫ3k(m(−ρ) +m+ ρ)4

m4z4
,

G(4)
σ (~k, ωk) = −2(3d− 1)(m− 1)t2ρǫ2k(m(ρ− 2)− ρ)(m(−ρ) +m+ ρ)3

m5z5

−2(3d− 2)(m − 1)t2β(ρ− 1)ρǫ2k(m(−ρ) +m+ ρ)2

m3z4

−(m− 1)t2β2(ρ− 1)ρǫ2k(m(ρ− 1)− ρ)((d(6ρ − 3)− 2ρ)(m(ρ − 1)− ρ)− 2ρ)

m3z3

+
2d(m− 1)t4β(ρ− 1)ρ

(
−4dm2 + 2(3d − 2)(m− 1)2ρ2 +mρ(−6d(m− 3) + 5m− 11)

)

m3z4

+
d(m−1)t4β2(ρ−1)ρ(−4dm2+4(3d−1)(m−1)2ρ3−2(m−1)ρ2(3d(5m−1)−4m+2)+mρ(2d(9m−7)−3m+5))

m3z3

−d(m−1)t4β3(ρ−1)ρ(m2(d(26ρ2−28ρ+6)+2(5−4ρ)ρ−3)+8(d−1)m(ρ−1)ρ+2(d−1)ρ2)
3m3z2

−d(m−1)t4β4(ρ−1)ρ(m2(2d(ρ(ρ(52ρ−81)+34)−3)−2ρ(ρ(16ρ−27)+13)+3)+16(d−1)m(ρ−1)ρ(2ρ−1)+2(d−1)ρ2 (4ρ−3))
12m3z

+
2d(m−1)t4ρ(m(ρ−1)−ρ)(10(1−2d)m3+2m2ρ(d(8m−2)−6m+3)−(m−1)3ρ3+4(m−1)2mρ2)

m5z5

+
ǫ4k(m(−ρ) +m+ ρ)5

m5z5
. (13.23)
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z ≡ iωk + µ. (13.24)

In the case where m = 1, this should reduce to the answer for a single species free Fermi

gas. We can see that this is indeed the case as all the terms but the free propagator vanish.

When we set m = 2 and d = 2, we recover the expressions obtained from the Metzner

expansion [69]. Using the formula

n− 1 = Gjjσ(τ = 0), (13.25)

we can convert to expressions where n is the independent parameter and hence t-independent.
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G(0)
σ (~k, ωk) =

m(−n) +m+ n

mz
,

G(1)
σ (~k, ωk) =

ǫk(m(−n) +m+ n)2

m2z2
,

G(2)
σ (~k, ωk) =

2d(m− 1)nt2(m(n − 2)− n)(m(n − 1)− n)

m3z3

−dt2β(m(n − 1) + n)

mz2
+

ǫ2k(m(−n) +m+ n)3

m3z3
,

G(3)
σ (~k, ωk) = −(4d− 1)(m − 1)nt2ǫk(m(n− 2)− n)(m(−n) +m+ n)2

m4z4

−2t2βǫk(m(n− 1)− n)(d(m− (m+ 1)n) + (m− 1)(n − 1)n)

m2z3

+
ǫ3k(m(−n) +m+ n)4

m4z4
− (m− 1)2(n− 1)2n2t2β2ǫk

m2z2
,

G(4)
σ (~k, ωk) =

2(3d− 1)(m− 1)nt2ǫ2k(m(n− 2)− n)(m(n− 1)− n)3

m5z5

+
t2βǫ2k(m(−n) +m+ n)2(4(m− 1)(n − 1)n − 3d(m(n − 1) + n))

m3z4

+
2d(m−1)nt4β(d(m2(n−1)(9n−10)+3mn(2n−3)−3n2)+(1−n)n(4(m−1)2n+(11−5m)m))

m3z4

+
dt4β2(dm(m2+2(m−1)2n3−2((m−4)m+1)n2−m(m+3)n)+(1−m)(n−1)n2(4(m−1)2n2−4(m−1)(2m−1)n+m(3m−5)))

m3z3

+
dt4β3(−2(m+1)n3((d−7)m2+10(d−1)m+d−1)+m2n(−8d(m+2)+17m+25)+2mn2 (d(5m(m+4)+11)+(−2m−1)(7m+11))−3m3)

12m3z2

+
2d(m−1)nt4(m(n−1)−n)(10(1−2d)m3+2m2n(d(8m−2)−6m+3)−(m−1)3n3+4(m−1)2mn2)

m5z5

+
ǫ4k(m(−n) +m+ n)5

m5z5
+

2(m− 1)2(n− 1)2n2t2β2ǫ2k(m(n− 1)− n)

m3z3
. (13.26)

z ≡ iωk + µ(0). (13.27)

ρ(µ(0)) ≡ n. (13.28)
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13.4 The infinite spin species limit.

It is interesting to see how the above expressions simplify in the limit of infinite

spin species, i.e. as m → ∞. In this case, the Green’s function may be written in the form

G(k) =
1− n

z − (1− n)ǫk − ΣDM (k)
, (13.29)

where ΣDM(k) is the Dyson-Mori self energy [4], which has a finite value as iωk → ∞. The

high frequency limit of the Green’s function is therefore limiωk→∞G(k) = 1−n
iωk

, as can be

seen explicitly from the anti-commutation relations of the Hubbard X operators:

〈{X0σ
i ,Xσ0

j }〉 = δij〈X00
i +Xσσ

i 〉 = δij〈1−
∑

σ′ 6=σ

Xσ′σ′

i 〉 = δij [1− (m− 1)
n

m
]. (13.30)

Taking the m → ∞ limit of the above equation gives the high frequency coefficient 1 − n,

while m = 2 gives the usual coefficient of 1 − n
2 [15]. Using Eq. (13.26), we derive a high

temperature expansion for ΣDM(k) in the m → ∞ limit:

Σ
(0)
DM(~k, ωk) = 0,

Σ
(1)
DM(~k, ωk) = 0,

Σ
(2)
DM(~k, ωk) = dt2β − 2d(n − 2)nt2

z
,

Σ
(3)
DM(~k, ωk) = (n− 1)n2t2β2ǫk −

(n− 2)(n − 1)nt2ǫk
z2

+
2(n− 1)nt2βǫk

z
,

Σ
(4)
DM(~k, ωk) =

dn2t4β2(−2d+ 4(n − 2)n+ 3)

z
− 2d(2d − 1)n(n((n − 4)n+ 12) − 10)t4

z3

−2dnt4β(d(7n − 6) + (5− 4n)n)

z2
+

1

12
dt4β3(2n(d(n − 4)− 7n+ 7)− 3). (13.31)
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The connection between this high temperature expansion for the Dyson-Mori self-energy

in the m → ∞ limit and slave boson techniques [44, 71, 72] is an interesting direction for

further study.

13.5 Time-dependent density-density and spin-spin correla-

tion functions

13.5.1 The density-density correlation function

The density-density correlation function is defined to be

Πjj′(τ) = 〈ñj(τ)ñj′〉 =
Tr(e−βH ñj(τ)ñj′)

Z
, (13.32)

where

ñj(τ) ≡ nj(τ)− 〈nj〉; nj ≡
∑

σ

Xσσ
j . (13.33)

Expanding the exponentials in the density matrix and the time dependence of the number

operator, we obtain

(Πjj′(τ) + n2)( Z
Z0

) =
∞∑

a=0b=0

(β−τ)a

a!
τb

b!

∑
j1j′1...jnj

′
n

σ1...σn

tj1j′1 . . . tjnj′n〈X
σ10
j′1

X0σ1
j1

. . . Xσa0
j′a

X0σa

ja
njX

σa+10
j′a+1

X
0σa+1

ja+1
. . . Xσn0

j′n
X0σn

jn
nj′〉0,

(13.34)

where n = a + b. We shall now state the rules for calculating the nth order contribution

to Πjj′(τ). The proof of these rules runs along the same lines as the ones given for the
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thermodynamic potential and the Green’s function. We will not give the full proof, but

will merely point out a few key points particular to this case. First, we give the rules for

drawing the diagrams DΠ, and evaluating their contributions ΠDΠ
. The rules for Πjj′(τ)

will be given in terms of these diagrams and the partition function diagrams Di. Rules for

drawing and evaluating the nth order diagram DΠ:

1 If n > 0, draw the diagram DΠ in the same way as you would a connected diagram

for Z
Z0

. Mark a site on this diagram to distinguish it from the other sites. If n = 0,

the only diagram is a single full site whose contribution is ρ. The single full site is

then the site marked.

2 Insert a factor of ρ
m for each filled circle, and 1 − ρ for each empty circle. Insert a

factor of tn.

3 Define the time τa.5 for 0 ≤ a ≤ n to lie between τa and τa+1 (recall also that higher

numbers correspond to “earlier” times when drawing the diagram). Then, insert a

factor of
n∑

a=0

(β−τ)a

a!
τb

b! f(τa.5), where b = n − a, f(τa.5) = 1 if the site marked in rule

1 is full at time τa.5, and f(τa.5) = 0 otherwise. The site being full at a certain time

means that either the last line on this site before this time entered the site, or it is a

filled vertex whose earliest line occurs after this time.

4 The sign and spin sum of the diagram are determined in the same way as for Z
Z0

.

The nth order contribution to Πjj′(τ) is split into 2 pieces, Π
(n)
jj′ (τ) = Π

(n)
jj′,a(τ) + Π

(n)
jj′,b(τ).

Rules for calculating Π
(n)
jj′,a(τ):

1 Choose one diagram DΠ, and p ≥ 0 connected diagrams (not necessarily distinct)
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from Z
Z0

. The orders of the p+1 diagrams must add up to n. The p+1 diagrams are

now components in this diagram.

2 Multiply the contribution ΠDΠ
from DΠ with the contributions znLD1 . . . znLDp from

the p components D1 . . . Dp.

3 Fix any full site in the diagram DΠ to be j′ on the lattice. Fix the marked site in the

diagram DΠ (from rule 1 of the rules for DΠ) to be j on the lattice. Create all distinct

w∗ from the components by forming i1(w
∗) type 1 parentheses, . . . , imw∗ (w

∗) = 1 type

mw∗ parentheses. There is only one outer parenthesis in each w∗ which encloses all

p + 1 components. The contribution of each w∗ is (−1)
i1(w

∗)+...+imw∗ (w∗)
LS[w∗]

γ(w∗) , where

γ(w∗) is the symmetry factor of w∗, and LS[w∗] is the lattice sum of the overlapping

of components represented by w∗. Note that in calculating γ(w∗), DΠ should not

be considered identical to any of the D1 . . . Dp. Sum the contributions over all w∗.

4 Multiply the factor from 3 with the factor from 2.

Rules for calculating Π
(n)
jj′,b(τ):

1 Choose one diagram DΠ, one connected diagram from Z
Z0

(or the single full site with

contribution ρ) denoted by D̃, and p ≥ 0 connected diagrams (not necessarily distinct)

from Z
Z0

. The orders of the p+2 diagrams must add up to n. The p+2 diagrams are

now components in this diagram.

2 Multiply the contribution ΠDΠ
from DΠ with the contribution znLD̃ from D̃, and the

contributions znLD1 . . . znLDp from the p components D1 . . . Dp.
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3 Fix any full site in the diagram D̃ to be j′ on the lattice. Fix the marked site in the

diagram DΠ to be j on the lattice. Create all distinct w∗ from the components by

forming i1(w
∗) type 1 parentheses, . . . , imw∗ (w

∗) = 1 type mw∗ parentheses. There is

only one outer parenthesis in each w∗ which encloses all p+ 2 components. The con-

tribution of each w∗ is (−1)
i1(w

∗)+...+imw∗ (w∗)
LS[w∗]

γ(w∗) , where γ(w∗) is the symmetry factor

of w∗, and LS[w∗] is the lattice sum of the overlapping of components represented by

w∗. Note that in calculating γ(w∗), neither DΠ nor D̃ should be considered identical

to any of the D1 . . . Dp. Sum the contributions over all w∗.

4 Multiply the factor from 3 with the factor from 2.

The following observations went into deriving these rules.

a Number operators commute with all other operators (on different sites), and accom-

modate all spin species with equal coefficient. Therefore, they don’t affect the sign or

spin sum of a diagram.

b Since the number operators don’t create or destroy particles, nj and nj′ don’t have to

occur in the same connected component. When they do appear in the same connected

component, this is the component DΠ. When they appear in different connected

components, nj appears in DΠ while nj′ appears in D̃.

c For the density-density correlation function, DΠ plays the same role as DG plays in

the Green’s function. For Πjj′,a(τ), the combinatorial factors involved in distributing

lines work out exactly as they do in Eq. (13.6). For Πjj′,b(τ), the presence of D̃

does not complicate matters since the operator nj′ occurs to the right of all other
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operators in the expectation value in Eq. (13.34). Hence, any combination of lines

in the disconnected diagram can go into making D̃, as is the case for the diagrams

D1 . . . Dp (but in contrast to DΠ). Therefore, D̃ of order ñ gets the usual factor of

βñ

ñ! .

d Below Eq. (12.31), we explain that the different components originally present in the

diagram go into making the various “generalized components” w. In the case when

both DΠ and D̃ are present, they can either both go into making the same w or go into

different w’s. The former is accounted for by Πjj′,b(τ), while the latter is cancelled by

(−)n2.

13.5.2 The spin-spin correlation function

The spin-spin correlation function is defined to be

Πs
jj′(τ) = 〈s̃zj (τ)s̃zj′〉, (13.35)

where

s̃zj (τ) ≡ szj(τ)− 〈szj 〉; szj ≡
∑

σ

s(σ)Xσσ
j . (13.36)

By s(σ) we mean the spin corresponding to σ. For example, for spin-half particles, s(±1) =

±1
2 . We note that for spin l particles (m = 2l + 1):

∑

σ

s(σ) = 0;
∑

σ

s2(σ) =
1

3
l(l + 1)m. (13.37)
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The first of these two equations tells us that szj and szj′ must occur in the same “loop” of the

diagram. Therefore, the rules for the spin-spin correlation function can be obtained from

those for the density-density correlation function by making the following simple changes.

1 Πs
jj′,b(τ) = 0

2 In the calculation of DΠs , mark any site j and a full site j′ (see rule 1 for DΠ for

comparison). This is in contrast to DΠ in which the choice of j′ did not affect the

evaluation of DΠ (or occurred in D̃ rather than DΠ), and hence only came when

calculating the lattice sum in rule 3 for Πjj′,a(τ) or Πjj′,b(τ).

3 Rule 3 for the contribution of DΠs is modified from that of DΠ, so that there are now

additional requirements for f(τa.5) = 1. In the case that the last line on the site j

before the time τa.5 enters j, this line must be in the same loop as the earliest line on

the site marked j′. In the case that the site j is full and its earliest line occurs after

the time τa.5, then this line must be in the same loop as the earliest line on the site

marked j′. Otherwise, f(τa.5) = 0.

4 Insert a factor of 1
3 l(l + 1) = 1

12 (m
2 − 1) into the contribution of the diagram DΠs .

We note that the above rules imply that there will only be even order contributions to the

density-density and spin-spin correlation functions, since this is the case for the partition

function. This was expected, since the number operator and spin operator conserve particle

number.
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Chapter 14

Conclusion

In conclusion, we have developed a high-temperature series for the thermodynamic

potential, the Green’s function, and the time-dependent density-density and spin-spin corre-

lation functions in the infinite-U Hubbard model. The nth order contribution in βt is given

in terms of diagrams consisting of n lines connecting vertices that can either be empty or

full, corresponding to unoccupied and occupied sites on the lattice. The signature and spin

sum of the diagram are evaluated with the help of a simple rule that increases the efficiency

of computation, and enables results to be obtained for any number of spin species with

no additional difficulty. The contribution of a diagram factors into a temporal part and a

spatial part. The computation proceeds in two stages. In the first stage, the temporal part

is evaluated for all of the connected diagrams. In the second stage, an arbitrary number

of connected diagrams are combined into a “generalized connected diagram”. Its tempo-

ral part is the product of the temporal parts of its constituent connected diagrams, while

its spatial part is the lattice sum corresponding to overlapping its constituent connected

144



diagrams on the lattice. The linked cluster theorem is proved, enabling one to express

the thermodynamic potential and the dynamical correlation functions as a sum over the

generalized connected diagrams.

This is an especially efficient way of doing the calculation because the temporal

part of each constituent connected diagram, which is by far the most time-consuming part

of the calculation, is evaluated only once. The rest of the complexity is taken care of by

calculating lattice sums of overlappings of constituent connected diagrams. This should be

contrasted with the Metzner approach [21], in which a “generalized connected diagram”

(referred to in [21] as a connected diagram) is broken into constituent connected diagrams

through the use of cumulants. The temporal contributions of the constituent connected

diagrams are then evaluated and multiplied together every time a generalized connected

diagram is broken up. Therefore, the temporal contribution of a given constituent connected

diagram is evaluated many times. What is gained by this is extreme simplicity in evaluating

lattice sums. However, although complex, the lattice sum part of our calculation takes

very little computation time, and even in high order calculations, can be done for a few

minutes on a computer [70]. This is the essential reason why our method constitutes an

improvement over those employed previously for the Green’s function, and especially for

the time-dependent density-density and spin-spin correlation functions. We have used our

method to calculate the Green’s function to fourth order in βt valid for m spin species

on a d-dimensional hypercube. Taking the m → ∞ limit, we obtained expressions for the

Dyson-Mori self-energy to fourth order in βt, valid for the case of an infinite number of spin

species. This may have interesting connections to slave Boson techniques [44, 71, 72] used
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for the study of this model.
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[54] T. A. Costi, J. Kroha, and P. Wölfle, Phys. Rev. B 53, 1850 (1996). We thank the

authors for providing us with the digital versions of their results.

[55] In the notation of Ref. ([3]) Eq. (58), this corresponds to writing Y1(τi, τf ) =

−γ(τi). ∆(τi, τf ).

[56] J. Friedel, Can. Jour. Phys. 54, 1190 (1956)

[57] J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1961).

[58] D. C. Langreth, Phys. Rev. 150, 516 (1966).

[59] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

[60] J. W. Rasul and A. C. Hewson, J. Phys. C: Solid State Phys. 17, 3337 (1984).

151



[61] To recover Eq. (6.42), we may use Eq. (6.21) and the Fermi liquid assumption of

ℑm ΣDM (0) = 0 so that ρG(0) = 1
π

Γ0(1−nd
2
)2

Γ2
0(1−

nd
2
)2+(ǫd+ℜeΣDM (0))2

, and combine with

Eq. (6.41).

[62] P. Nozières, Theory of Interacting Fermi Systems (W. A. Benjamin, Amsterdam, 1964).

[63] Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Aca-

demic, London, 1974), Vol. 3.

[64] Exact high temperature series expansions for the XY model, Canadian Journal of

Physics, 48, 1566 (1970).

[65] M. Plischke, J. Stat. Phys. 11, 159 (1974).

[66] K. Kubo and M. Tada, Progr. Theor. Phys. 69, 1345 (1983); 71, 479 (1984).

[67] Lorenzo De Leo, Jean-Sbastien Bernier, Corinna Kollath, Antoine Georges, and Vito

W. Scarola, Phys. Rev. A 83, 023606 (2011).

[68] Stephane Pairault, David Senechal, A.-M. S. Tremblay, Eur. Phys. J. B 16, 85 (2000).

[69] “Linked-Cluster Expansion of the Greens function of the infinite-U Hubbard Model”,

E. Khatami, E. Perepelitsky, M. Rigol, and B. S. Shastry, arXiv:1310.8029 (2013).

[70] “A study of the phase transitions of the infinite-U Hubbard Model”, E. Khatami, E.

Perepelitsky, M. Rigol, and B. S. Shastry, to be published (2014).

[71] P. Coleman, Phys. Rev. B 28, 5255 (1983).

[72] G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).

152



[73] Diagrams in the paper created through the use of “JaxoDraw”, D. Binosi, L. Theußl,

Computer Physics Communications, Volume 161, Issues 1-2, 1 August 2004, Pages

76-86

153


	List of Figures
	Abstract
	Dedication
	I Introduction
	II ECFL in the limit of infinite dimensions
	Introduction
	Results in the limit of infinite dimensions
	Outline of the chapter

	Preliminaries
	Spatial dependence of lattice sums in large d dimensions
	ECFL Equations of Motion and the  expansion
	Leading order spatial dependence of various objects
	Class L functions

	Limit of Large dimensionality through the ECFL equations of motion
	Simplification of the ECFL self energies.
	The zero source limit
	Conductivity in the limit of large dimensions
	 O(2) theory in the limit of large dimensions

	Anderson Model 
	Equations of Motion for Anderson Model
	Mapping of  t-J  model onto Anderson model in infinite dimensions
	Mapping to each order in 

	Conclusion

	III ECFL Theory of Anderson Impurity Model 
	ECFL equations for the Anderson Impurity Model
	Model and Equations for the Green's Function
	Zero Source Limit 
	Introducing  and u0 into the equations.
	Friedel Sum Rule at T=0
	Computation of Spectral function 

	Results
	Conclusion
	Appendix A: Calculating the self-energies in the O(2) theory  
	Appendix B: Frequency summations 

	IV High-temperature expansion for dynamic correlation functions
	Introduction
	Previous work
	Results
	Outline of the chapter

	 Expansion for the thermodynamic potential 
	Diagrams for the partition function
	Derivation of sign and spin sum rule
	Examples
	Proof of the general case 

	Loss and recovery of the linked cluster theorem 
	Formula for the restricted lattice sum of disconnected diagrams 
	Restricted lattice sum of disconnected diagrams with 3 components
	Restricted lattice sum of disconnected diagrams with n components
	Classification of configurations
	Calculation of C1(i1)
	Calculation of Cm(i1,i2,…,im) for all m

	Calculation of the thermodynamic potential
	Partition function as a sum over configurations
	Linked cluster theorem w.r.t. generalized connected components
	Diagrammatic rules for calculating the thermodynamic potential


	Expansion for time dependent correlation functions
	Diagrams for the numerator of the Green's function 
	Proof of the rules for the numerator of the Green's function

	 Calculation of the Green's function
	Numerator of the Green's function as a sum over configurations 
	Cancellation of the denominator of the Green's function
	Diagrammatic rules for the calculation of the Green's function

	Examples and results for the Green's function 
	Examples from 0th to 2nd order
	Green's function to fourth order in t 

	The infinite spin species limit. 
	Time-dependent density-density and spin-spin correlation functions 
	The density-density correlation function
	The spin-spin correlation function


	Conclusion
	Bibliography




