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Abstract

Graphs are pervasive in different fields unveiling complex relationships between data. Two major 

graph-based learning tasks are topology identification and inference of signals over graphs. 

Among the possible models to explain data interdependencies, structural equation models (SEMs) 

accommodate a gamut of applications involving topology identification. Obtaining conventional 

SEMs though requires measurements across nodes. On the other hand, typical signal inference 

approaches ‘blindly trust’ a given nominal topology. In practice however, signal or topology 

perturbations may be present in both tasks, due to model mismatch, outliers, outages or adversarial 

behavior. To cope with such perturbations, this work introduces a regularized total least-squares 

(TLS) approach and iterative algorithms with convergence guarantees to solve both tasks. Further 

generalizations are also considered relying on structured and/or weighted TLS when extra prior 

information on the perturbation is available. Analyses with simulated and real data corroborate the 

effectiveness of the novel TLS-based approaches.
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I. INTRODUCTION

Graphs play a pivotal role in the analysis of complex systems. In applications such as in 

biological, financial or social sciences, data-driven graphs are adopted to model (un)directed 

data dependencies. In physical multiagent systems, graphs are introduced to represent 

physical or engineered links between vertices of e.g. vehicular, power or communication 

networks, and they are crucial in tasks such as devising resource allocation strategies or 

imputing missing data. However, perturbations on links or vertices can be present in both 

data-induced and physical networks and may compromise the performance of graph-based 

learning tasks. In a gene regulatory network, for instance, the inferred topology may be 

imprecise due to e.g., model mismatch or noise in the data; while in a communication 

network, graph perturbations may arise due to link or node outages.

Recently, the vulnerability of networked systems to failures, anomalies, or model mismatch 

has received increasing interest [6], [15], [37], [30], [12], [13], [20]. In the context of 

statistical analysis of network data, error propagation in network characteristics (e.g. count 

of subgraphs) has been studied in [6] and [15]. In order to account for topological 

perturbation, probabilistic or uncertain graphs have been considered for clustering [37], 

graph filtering [30], and consensus [57]. Other works developed tools based on small 

perturbation analysis of the Laplacian matrix [56] to handle graph perturbations for robust 

resource allocation [12], graph signal inference [13], and tracking of time-varying graph 

signals [20]. Signal and graph perturbations via total least squares were first analyzed in our 

previous work [14], where only preliminary results on synthetic data were studied. 

Differently from [14], we develop in addition an alternative algorithm for the topology 

identification and theoretical result for the case of signal recovery.

The present work deals with signal and graph perturbations for the tasks of topology 

identification and graph signal inference based on total least-squares (TLS). TLS is the 

generalization of least-squares (LS) tailored to account for error mismatch (a.k.a. noise) 

present in both the input and the output matrices [54]. TLS and its regularized variants 

emerge in several applications including system identification [51], information retrieval 

[31], forecasting of financial data and reconstruction of medical images [41], Building upon 

TLS, weighted TLS [4], structured TLS [17], and sparse TLS [58] have also been introduced 

to incorporate different prior information.

Structural equation models (SEMs) [35] have been widely adopted in diverse fields for 

network topology identification [5], [11], [24], [25], [43], [45], mostly relying on 

measurements available across nodes. Topology identification (ID) with partially observed 

nodal processes has also been studied recently [29], [48]. Leveraging piecewise stationarity, 

SEMs-based topology inference was pursued in [48] when only (partial) statistics of nodal 

measurements are given, while a joint inference algorithm was developed in [29] to identify 

the topology as well as interpolate graph signals based on partial observations of the nodal 

signals. However, neither of them accounts for signal perturbations. Topology identification 

approaches that rely on Graphical LASSO and its generalizations have also been developed 

[23], [34], along with graphical model selection based methods for stationary [33], and non-

stationary processes [36], [47]; see also [24], [42]. Different from these approaches, the 
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methods here do not rely on any probabilistic assumptions for the network model, further 

account for perturbations in the topology or the nodal observations. In contrast, approaches 

identifying dynamic network topologies based on vector autoregressive models [10], [50], 

do not take into account signal perturbations, but only consider additive noise.

Whether adopting parametric [3], [19], [44] or non-parametric approaches [27], [28], [49], 

most existing works on graph signal reconstruction assume that the graph topologies are 

known exactly. However, they do not consider that the nominal graph topologies may be 

inaccurate. Expectation-maximization approaches [18] are used in graphical models to infer 

iteratively the graph parameters and the missing signals [32], [39], but rely on probabilistic 

assumptions for nodal signals, which is not the case in the present approach.

The present work relies on TLS and SEMs to cope with two intertwined graph learning 

tasks, namely:

T1. Topology identification (ID) based on perturbed nodal signal observations; and,

T2. Graph signal inference given partial nodal observations and perturbed topologies.

An example of (T1) would be topology identification of a gene regulatory network from 

inaccurate data, due to possible errors occurring during the data collection process. As for 

task (T2), possible deviations from the nominal topology due to break down links need to be 

taken into account while inferring unknown nodal signals in wireless networks.

The novelties here can be summarized in two directions.

C1. The task of graph topology identification in the presence of signal perturbations is 

formulated for the first time as a total least-squares problem. Two algorithms with 

complementary strengths are developed: the first algorithm attains an ε-optimal solution, 

while the second one can afford a sub-optimal yet computationally efficient solution.

C2. Different from existing methods which deal with signal recovery over a known graph, a 

novel signal recovery approach is introduced here for graphs with perturbed topologies. 

Efficient algorithms are then developed to infer the signals, and identifiability of the model 

is analyzed.

The rest of the paper is organized as follows: Sec. II introduces the context and the TLS 

formulation with its weighted and structured variants. The topology ID problem (T1) is 

investigated in Sec. III, while the graph signal inference task (T2) is addressed in Section IV. 

In Sec. V, synthetic and real data tests are carried out to illustrate the merits of the proposed 

TLS-based approaches. Finally, concluding remarks and future directions are outlined in 

Sec. VI.

Notation.

Bold lower (upper) case fonts denote column vectors, e.g., a (matrix A), while operators (·)⊺, 

vec(·), and ⊗ stand for transposition, column-wise matrix vectorization, and Kronecker 

product, respectively. The K × K identity matrix is denoted by IK, and si stands for the i-th 
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canonical vector; while diag(·), and bdiag(·) correspondingly represent a diagonal matrix and 

a block diagonal matrix of its arguments. Finally, the ℓ1, ℓ2, and Frobenius norms will be 

denoted by ||·||1, ||·||2, and ||·||F, respectively.

II. PRELIMINARIES

The present section reviews linear SEMs and TLS, along with structured and weighted TLS 

variants.

A. Structural Equation Models

Consider a directed network of N nodes, whose topology is captured by the adjacency 

matrix A ∈ ℝN × N with entries aij ≔ [A]ij, and aij ≠ 0 if a directed edge from node j to node 

i is present. Suppose the network represents a complex system, where yit is the measurement 

at node i at instant t. The output measurement yit in SEMs depends on its singlehop neighbor 

measurements, and an exogenous input signal xit, that is

yit = ∑
j ≠ i

aijyjt + biixit, t = 1, … , T (1)

where bii > 0 weighs the exogenous input. Concatenating nodal measurements in vectors 

yt≔[y1t, … , yNt]⊺, and xt≔[x1t, … , xNt]⊺ per slot t, the matrix-vector version of (1) can be 

compactly written as yt = Ayt + Bxt, t = 1, … , T, where aii = 0 and B ≔ diag(b11, … , bNN).

Collecting inputs and outputs1 across T slots, N × T matrices X ≔ [x1, … , xT] and Y ≔ [y1, 

… , yT] can be formed, to obtain the linear matrix model

Y = AY + BX . (2)

Existing works treat perturbations as additive observation noise to arrive at the SEM, Y = 

AY + BX + V, where V ∈ ℝN × T  is the error matrix. Generally, these works aim to estimate 

A (and possibly B), when measurements Y and X are given, using least-squares (LS) or 

regularized LS [7], [11]. On the other hand, when A, BX (e.g. obtained by historical data) 

and a subset of entries of Y are given, it is also possible to interpolate the unobserved nodal 

signals [29]. Since existing approaches do not consider possible errors in A or Y, we are 

motivated to adopt TLS methods to cope with graph signal and topology perturbations that 

can be possibly present in SEMs. In particular, if Y is corrupted by noise, the observed data 

can be written as Z = Y + E, and the model is then given by Z − E = A(Z − E) + BX. Using 

TLS, we wish to infer A. On the other hand, given a perturbed A and partial noisy nodal 

observations (subset of noise-corrupted Y), we aim at recovering the graph signal using a 

TLS-based approach. Before introducing the formulation of these two tasks, we outline 

basic TLS notions, and its weighed and structured variants in the following subsection.

1Causes-effect per node do not have to happen instantaneously, since causes {yjt, xit} can occur at the beginning and effect yit at the 
end of slot t.
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B. Weighted and structured TLS

TLS considers the perturbed linear system of equations F = (H + P)Θ − Σ, where 

F ∈ ℝM × T  denotes the output matrix with M < T, H ∈ ℝM × N the input (or regression) 

matrix, Θ ∈ ℝN × T  an unknown matrix of parameters, while Σ ∈ ℝM × T  and P ∈ ℝM × N

capture the error matrices. Different from classical LS where P = 0, TLS treats 

symmetrically the input and the output in the sense that both H and F may have errors due to 

model mismatch, noise, or outliers. Hence, TLS solves the following problem

min
Θ, P , Σ

∥ [P , Σ] ∥ F
2

(3a)

s . to F = (H + P )Θ − Σ . (3b)

The structured variants of TLS rely on exploiting the structure of input and output matrices, 

as well as noise statistics, to achieve improved estimation performance. The structure of a 

matrix in the TLS context is defined as follows [41], [58].

Definition 1. Given a parameter vector ω ∈ ℝnω, the M × (N + T) data matrix [H, F](ω) has 

a structure S(ω) characterized by ω, if and only if there is a mapping such that 

ω ∈ ℝnω [H, F ](ω) ≔ S(ω) ∈ ℝM × (N + T ).

Note that Definition 1 reduces to the trivial case when ω ≔ vec([H, F]) with dimension M(N
+T), which corresponds to the unstructured case. However, when ω provides a parsimonious 

representation of the data matrix with nω ≪ M(N+T), we can take advantage of the matrices’ 

structure [41]. By introducing the parameter vector ω and the noise parameter vector 

ν ∈ ℝnω, such that S(ω + ν) ≔ [H + P, F + Σ](ω + ν), the Frobenius norm ∥ [P , Σ] ∥ F
2

becomes ∥ ν ∥ 2
2. The weighted TLS is obtained if prior knowledge about the ν is 

incorporated by weighting the norm ∥ ν ∥ 2
2 through the nω × nω positive definite matrix W. 

Hence, the structured and weighted TLS (SWTLS) cost is expressed as ν⊺Wν. Clearly, 

when W = I, the SWTLS boils down to a structured-only form. Here, we will adapt the 

SWTLS approach to recover the graph signal of interest. Specifically, Definition 1 will be 

used to capture the nonzero patterns of A in (1) and (2), when we know a priori that the 

perturbations occur only on nominal edges. The weight matrix on the other hand, will be 

employed to incorporate possible prior information about link failure probabilities and the 

variance of observation error variances (see Sec. IV-A).

III. TOPOLOGY ID WITH SIGNAL PERTURBATIONS

Outliers and defects in the measuring process lead to perturbed nodal signals. Such 

perturbation may affect the topology ID performance. Let us rewrite the observation matrix 

Y in (2) as Z − E, where E is a perturbation matrix. Given Z and BX, the aim is to find the 

adjacency matrix A from the “measurement-perturbed” SEM

Z − E = A(Z − E) + BX . (4)
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The presence of the perturbation that appears in both sides justifies a formulation inspired by 

TLS method recalled in (3), with the difference that in our model the perturbation of the 

input and output matrix is exactly the same, i.e. E ∈ ℝN × T . In most real-world networks, 

such as social, transportation, and biological networks, the nodes exhibit a few 

interconnections and the corresponding adjacency matrix is sparse [5], [26]. Thus, 

accounting for the latter through a sparsity-promoting regularization term, we formulate a 

regularized TLS-based approach for “measurement-perturbed” SEM (4) (TLS-SEM) given 

by

{A, E} = arg min
A, E

∥ E ∥ F
2 + λ ∥ A ∥ 1 (5a)

s . to Z = A(Z − E) + BX + E (5b)

aii = 0, i = 1, … , N (5c)

where λ > 0 is the regularization parameter, and constraint (5c) enforces the absence of self-

loops in A. Clearly, the optimization problem in (5) is nonconvex. The ensuing subsections 

will develop two solvers with complementary merits.

A. Bisection-based ε-optimal algorithm

In this subsection, we will first recast (5) into a fractional form that can be solved using a 

bisection-based (BB) iteration, which is convergent to an ε-optimal solution in a finite 

number of iterations, even though (5) is nonconvex [8]. The following lemma shows how to 

reformulate (5) in a fractional form.

Lemma 1. With Φ ≔ Z − BX, and φi
⊺ denoting its i-th row, the TLS problem in (5) is 

equivalent to the fractional problem

A = arg min
{a−i}i = 1

N
∑
i = 1

N
[ ∥ φi − (Z−i)⊺a−i ∥ 2

2

1 + N ∥ a−i ∥ 2
2 + λ ∥ a−i ∥ 1] (6)

where a−i
⊺  is the i-th row of A without the i-th entry, and Z−i the (N − 1) × T submatrix of Z 

after removing its i-th row.

Proof. Clearly, (5) can be rewritten as

arg min
{ai, ϵi}i = 1

N
∑
i = 1

N
( 1
N ∥ [E⊺, Nϵi] ∥ F

2 + λ ∥ ai ∥ 1) (7a)

s . to zi = (Z⊺ − E⊺)ai + biixi + ϵi, ∀i (7b)
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aii = 0, ∀i (7c)

where ai
⊺, zi

⊺, xi
⊺, ϵi

⊺ are the i-th rows of A, Z, X, E, respectively, and bii is the i-th diagonal 

entry of B. Thus, the constraint (7b) becomes

φi = (Z⊺ − E⊺)ai + ϵi . (8)

Next, with vi ≔ vec([E⊺, Nϵi]), we have ∥ [E⊺, Nϵi] ∥ F
2 = ∥ vi ∥ 2

2; and upon defining 

G(ai) ≔ ([ − ai
⊺, 1

N ] ⊗ IT ), constraint (7b) is re-expressed as

φi = Z⊺ai = G(ai)vi, ∀i . (9)

Note that, with A fixed, (7) becomes minvi ∥ vi ∥ 2
2 subject to (9), which admits a closed-form 

solution

vi = G⊺(ai)[G(ai)G⊺(ai)]
−1(φi − Z⊺ai)

= ( ∥ ai ∥ 2
2 + 1

N )
−1

G⊺(ai)(φi − Z⊺ai)
(10)

where the second equality holds because 

G(ai)G⊺(ai) = ([ − ai
⊺, 1

N ] ⊗ IT )([ − ai
⊺, 1

N ]
⊺

⊗ IT ) = ( ∥ ai ∥ 2
2 + 1

N )IT . Substituting (10) into 

(7a), and incorporating the constraint (7c), yields (6). □

The fractional problem (6) is separable across rows of A as

a−i = arg min
a−i

∥ φi − (Z−i)⊺a−i ∥ 2
2

1 + N ∥ a−i ∥ 2
2 + λ ∥ a−i ∥ 1 (11)

which can be viewed as a Lagrangian function. Considering the solution a−i for a given 

multiplier λ > 0 and letting μ ≔ ∥ a−i ∥ 1, (11) is equivalent to

a−i = arg min
a−i ∈ χ(μ)

f(a−i)

f(a−i) ≔ ∥ φi − (Z−i)⊺a−i ∥ 2
2

1 + N ∥ a−i ∥ 2
2

(12)

where χ(μ) ≔ {a−i ∈ ℝ(N − 1) : ∥ a−i ∥ 1 ≤ μ} and the relationship between μ and λ is data 

dependent.

The fractional problem (6) remains nonconvex, and will be solved using an iterative solver. 

The solver consists of an outer loop based on bisection [21], and an inner loop using the 

branch-and-bound method [2]. In the i-th iteration, the outer loop confines the minimum cost 

in (12) between a lower and an upper bound. These bounds are obtained through the inner 

Ceci et al. Page 7

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iteration, where a surrogate quadratic function is minimized. The surrogate quadratic 

function has non-fractional form, whose optimization is more convenient than directly 

optimizing f (a−i). Specifically, with q denoting a given upper bound of the cost in (12), we 

have

0 ≤ q∗ ≔ min
a−i ∈ χ(μ)

f(a−i) ≤ q . (13)

Then, we define

g∗(q) ≔ min
a−i ∈ χ(μ)

g(a−i, q) (14)

with g(a−i, q) ≔ ∥ φi − (Z−i)⊺a−i ∥ 2
2 − q(1 + N ∥ a−i ∥ 2

2). Due to (13) and (14), it holds that

g∗(q) ≤ 0 . (15)

Let q* belong to a known interval ℐi ≔ [li, ui] after the i-th outer iteration. Such an interval 

decreases at every step of the outer loop, and li, ui are chosen depending on the sign of g(a−i, 

q) (cf. Alg. 1). In particular, suppose that g*(q) is obtained at the middle point of ℐi, namely 

qm = (ui + li)/2. The sign of g(qm) indicates whether (13) holds or not. If g(qm) > 0, then we 

deduce from (13) that q* > qm > li, and q∗ ∈ ℐi + 1 ≔ [qm, ui]. On the other hand, g(qm) < 0 

implies q∗ ∈ ℐi + 1 ≔ [li, qm]. In both cases, the interval at iteration i + 1 shrinks through 

bisection.

Note that, the Hessian of g(a−i,q) is H ≔ 2(Z−i(Z−i)⊺ − qNI), and since qN is positive, H is 

not guaranteed to be positive or negative definite. Thus g(a−i, q) is an indefinite quadratic.

The inner loop employs a branch-and-bound algorithm to find a feasible and δ-optimal 

solution aδ, i
∗  of (14), such that g∗(q) ≤ g(aδ, i

∗ , q) ≤ g∗(q) + δ, where δ denotes a specified 

margin. The branch-and-bound scheme, summarized in Alg. 2, searches for the upper and 

lower bounds of the function

gbox(a−i) = min
a−i ∈ χ(μ), aL ≤ a−i ≤ aU

g(a−i, q)
(16)
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Algorithm 1

Bisection-based (BB) scheme

where the constraint aL ≤ a−i ≤ aU represents a box that shrinks as iterations progress. The 

upper bound U of gbox(a−i) can be obtained by a sub-optimal yet efficient solver for (16), see 

e.g., [9], [55]. While the lower bound L of gbox(a−i) can be found by minimizing its convex 

approximation
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gL(a−i, q) = g(a−i, q) + (a−i − aL)⊺D(a−i − aU) (17)

where D is a diagonal positive semi-definite matrix chosen to ensure the convexity of gL (a

−i, q), as the solution of the following semi-definite program

min
D

(aU − aL)⊺D(aU − aL) (18a)

s . to H + 2D ⪰ 0 (18b)

where (18b) assures (18) to be convex. At each iteration of the inner loop, the initial box 

constraint of (16) is split depending on how U − L compares with the preselected δ. This 

splitting process leads to a smaller U and a tighter L. The detailed inner loop is listed in Alg. 

2.

In summary, Alg. 2 is called by Alg. 1 to find the δ-optimal solution and evaluate the sign of 

g*(q). However, since aδ, i
∗  is δ-optimal, meaning g∗(q) > g(aδ, i

∗ , q) − δ, if g(aδ, i
∗ , q) > δ, we set 

the lower bound li+1 to qm; otherwise, if 0 < g(aδ, i
∗ , q) < δ we set li+1 = qm − δ. As far as 

convergence is concerned, the following can be established.

Proposition 1. After at most ln(
∥ φi ∥ 2

2

ε − 2δ ) ∕ ln(2)  iterations, with ε > 2δ, an ε-optimal 

solution aε, i∗  to (13) is reached, satisfying

aε, i∗ ∈ χ(μ), and q∗ ≤ f(aε, i∗ ) ≤ q∗ + ε, i = 1, … , N . (19)

Proof. See [58]. □

This proposition quantifies the number of outer iterations needed by Algorithm 1 to achieve 

the ε-optimal solution.
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Algorithm 2

Branch-and-Bound scheme
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B. Alternating descent algorithm

The bisection-based solver developed in the previous subsection can approach the global 

optimum of the fractional TLS, but it is computationally demanding. This prompts the 

efficient alternative we introduce next with guaranteed convergence at least to a stationary 

point. We reformulate (5), substituting (5b) into (5a), and we add ∥ E ∥ F
2  to the cost 

function to constraint the error norm to be small, obtaining

{A, E} = arg min
A, E

∥ E ∥ F
2 + ∥ Z − A(Z − E) − BX ∥ F

2 + λ ∥ A ∥ 1 (20a)

s . to aii = 0, i = 1, … , N . (20b)

Note that the minimization of (20) does not guarantee that (5b) is still satisfied. Problem (20) 

is convex with respect to (wrt) each block (matrix) variable A and E. This motivates an 

alternating descent iteration to find a sub-optimal yet efficient solution. At iteration k + 1, 

given A[k], the error matrix can be estimated as

E[k + 1] = arg min
E

∥ Z − A[k](Z − E) − BX ∥ F
2 + ∥ E ∥ F

2
(21)

which admits the closed-form solution

E[k + 1] = (A⊺[k]A[k] + IN)
−1

A⊺[k](A[k]Z + BX − Z) . (22)

Likewise, given E[k + 1], the adjacency matrix is updated as

A[k + 1] = arg min
A

∥ Z − A(Z − E[k + 1]) − BX ∥ F
2 + λ ∥ A ∥ 1 (23)

which is strongly convex and can be solved via proximal gradient iterations reaching the 

global optimum. The derivation of the algorithm is omitted here, see [5] for details.

As far as computations, the operation in (22) incurs complexity O(N2T), when N ≤ T, while 

in the worst case the minimum of (23) can be reached in O(1/ε) iterations; or, O(1 ∕ ε)
using fast iterative shrinkage-thresholding algorithms, where ε is the precision of the 

solution, and each row of A can be updated in parallel; see [5]. Specifically, the proximal 

gradient algorithms entail matrix-vector multiplication and soft thresholding operations per 

row of A. If the number of iterations needed for the proximal gradient algorithm to converge 

is relatively smaller than N (as we observed in our numerical tests), these operations are 

negligible when compared to O(N2T) of (22).

In addition, if B is also unknown, it can be treated as a variable and estimated along with the 

rest. In this case, problem (20) is still per-block convex, and B can be readily found as in [5]. 

Under regularity conditions the alternating minimization method is guaranteed to converge 

at least to a stationary point, as asserted in the following proposition.
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Proposition 2. The iterates in (22) and (23) converge monotonically at least to a stationary 
point of problem (20).

Proof. See [53]. □

C. Topology ID with sparse signal perturbations

So far we have seen perturbations affecting all nodal measurements. In a number of settings, 

however, only a small subset of nodes can be influenced. For instance, in a heterogeneous 

network, some devices, e.g. sensors, may be less reliable than others. In this case, sparsity of 

the signal perturbations is well motivated. Introducing a sparse regularizer yields the sparse 

TLS (sparseTLS) SEM

{A, E} = arg min
A, E

∥ Z − A(Z − E) − BX ∥ F
2 + λE ∥ E ∥ 1 + λA ∥ A ∥ 1 (24a)

s . to aii = 0, i = 1, … , N (24b)

where λA > 0 and λE > 0 are sparsity promoting scalars.

In certain applications such as sensor networks, we may even know which nodes are the 

more sensitive or vulnerable, which prompts us to leverage additional structure, namely the 

nonzero pattern of the error matrix. Hence, we write E as

E = ∑
e = 1

NE
υe(ne ⋅ te⊺) (25)

where υ ≔ [υ1, … , υNE]⊺ is the collection of the nonzero values of vec(E⊺); the N × 1 

vector ne has all zero entries except one that equals unity in the node affected by the e-th 

error value; and, te is the T × 1 vector of all zeros except one that equals unity in the 

observation instant of the e-th error value. The structured error (s)TLS-SEM is then 

formulated as

{A,υ} = arg min
A,υ

∥ Z − A(Z − ∑
e = 1

NE
υe(ne ⋅ te⊺)) − BX ∥

F

2

+ λE ∥ υ ∥ 2
2 + λA ∥ A ∥ 1

s . to aii = 0,
∀i

(26)

where λE > 0 and λA > 0. The sTLS-SEM problem is still per-block convex, but can be 

solved by alternating minimization, as in the previous subsection.

IV. SIGNAL INFERENCE WITH TOPOLOGY PERTURBATIONS

Besides topology ID, another problem that oftentimes arises in graph-related applications is 

graph signal inference. in many cases, signals over all the nodes may not be available, due 

to, e.g., energy-saving or privacy reasons. Hence, it is necessary to reconstruct the signal 

over the unobserved nodes, given the graph topologies. However, such topologies may be 
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perturbed, due to, e.g., link outages, in communication or power networks. This motivates 

the goal of this section to recover Y, given a possibly perturbed adjacency matrix and the 

signal observed over a subset of nodes, indexed by St at each instant t. The observation 

model can then be written as

ψt = DSt(yt + εt), t = 1, … , T (27)

where DSt ≔ diag(d11
(t), … , dNN

(t) ), and dii
(t) = 1 if i ∈ St, and zero otherwise; εt ∈ ℝN denotes 

the observation error; and, ψt ∈ ℝN represents the observation at time t, with ∣ St ∣ ≔ M < N
nonzero entries. For simplicity in exposition, M is considered fixed over time, but it can be 

generalized as time-varying.

With A0 denoting the given nominal adjacency matrix, and Δ ∈ ℝN × N the topology 

perturbation matrix, the linear SEM in (2) becomes

Y = (A0 − Δ)Y + BX (28)

where A0 − Δ is the perturbed adjacency matrix. As in the previous section, we consider BX 
given, e.g. acquired from historical data or BX = 0 when X is not present, since the focus of 

the present section is to identify Δ and {yt}t = 1
T . Resorting to TLS to account for topology 

perturbations, the topology perturbation aware TLS-SEM can be written as (cf. (27) and 

(28))

{Δ, Y) = arg min
Δ, Y

λ1 ∥ Δ ∥ 1 + λ2 ∑
t = 1

T
∥ ψt − DStyt ∥ 2

2

+ ∥ Y − (A0 − Δ)Y − BX ∥ F
2

(29a)

s . to [Δ]ii = 0, i = 1, … , N (29b)

where the ℓ1-norm promotes sparsity of the perturbed links. in addition to sparsity, it has 

been shown that the elastic net regularizer [59] leads to improved recovery when the 

network weights are highly correlated [52]. Motivated by this, the elastic norm regularized 

TLS (elTLS) approach to signal recovery yields

{Δ, Y) = arg min
Δ, Y

∑
t = 1

T
∥ ψt − DStyt ∥ 2

2 + λ1Δ ∥ Δ ∥ 1 + λ2Δ ∥ Δ ∥ F
2 + λY ∥ Y − (A0 − Δ)Y − BX ∥ F

2

s . to [Δ]ii = 0, i = 1, … ,
N

(30)

where λ1Δ > 0, λ2Δ > 0, and λY > 0.

The costs in (29) and (30) are both per-block convex, and can be solved iteratively via 

alternating minimization with guaranteed convergence to at least a stationary point, as 

argued in Proposition 2.

Ceci et al. Page 14

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Structured and weighted TLS under topology perturbations

In this subsection, we exploit the structure of the nominal adjacency matrix along with prior 

information on the perturbations. The goal here is to formulate a structured and weighted 

TLS problem (cf. Sec. II-B) for the signal inference task under topology perturbations. 

Denoting with L the number of links of the nominal graph and ω ≔ [ω1, … , ωL]⊺ the vector 

collecting the nonzero edge weights, the nominal adjacency matrix can be represented as (cf. 

Definition 1)

A0 = S(ω) ≔ ∑
l = 1

L
ωl(sulsvl

⊺ ) (31)

where (ul, vl) are the incident nodes of link l, and si the N × 1 i-th canonical vector. The 

structure S(ω) accounts for the L nonzero entries of A0. Assuming that perturbations occur 

only on the existing links, it will also allow us to reduce the number of unknown 

perturbations from N2 to L.

According to Sec. II-B and (31), we will parameterize A0 using ω, and correspondingly Δ 
via ν ≔ [ν1, … , νL]⊺, whose nonzero entries represent a failure or error in the edge weight. 

Thus, the perturbed adjacency matrix is given by

A0 − Δ = S(ω − ν) ≔ ∑
l = 1

L
(ωl − νl)(sulsvl

⊺ ) . (32)

In some cases, extra information such as the link failure probabilities {πl}l = 1
L  and the 

observation noise variance {σi2}i = 1
N  can be available across nodes. Such prior information 

can be collected after observing the network over time and recording the occurrence of 

failures, as well as the statistics of the measurement errors.

Let WA ≔ diag(r(π1)…r(πL)) denote the topology reliability weight matrix, where r(πl) is a 

known function of πl, e.g. r(πl) = πl
−1, and likewise WΨ ≔ [diag(σ1

2…σN
2 )]−1

 for the 

measurement errors. In order to use an SWTLS cost (cf. Sec. II-B), we replace the first two 

terms in (29a) with the weighted ℓ1-norm of the topology error vector ||WAν||1, and the sum 

of the weighted ℓ2-norm of the observation errors ∑t = 1
T ∥ ψt − DStyt ∥ WΨ

2  Combining with 

(32), the regularized SWTLS-based SEMs can be written as

{ν, Y} = arg min
ν, Y

λ1 ∥ WAν ∥ 1 + λ2 ∑
t = 1

T
∥ ψt − DStyt ∥ WΨ

2

+ ∥ Y − ∑
l = 1

L
(ωl − νl)(sulsvl

⊺ )Y − BX ∥
F

2 (33)

which can be solved via alternating minimization. Given ν[k] from iteration k, and exploiting 

the separability across columns of Y, the graph signal at k + 1 is reconstructed per slot t as
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yt[k + 1] = arg min
yt

λ2 ∥ ψt − DStyt ∥ WΨ
2

+ ∥ yt − ∑
l = 1

L
(ωl − ν l[k])yvl, tsul − Bxt ∥

2

2 (34)

where svl
⊺ yt = yvl, t because svl is a canonical vector.

The minimization in (34) leads to the closed-form update

yt[k + 1] = (C⊺[k]C[k] + λ2DSt
⊺ WΨDSt)

−1(C⊺[k]Bxt + λ2DSt
⊺ WΨψt), t = 1,

… , T
(35)

with C[k] ≔ (IN − ∑l = 1
L (ωl − ν l[k])sulsvl

⊺ ).

Given Y[k + 1] = [y1[k + 1], … , yT [k + 1]], we can exploit in (33) the separability across rows 

of Y. Let Ln denote the number of neighbors of node n, and ωn ≔ [ω1
(n), … , ωLn

(n)]⊺ and 

νn ≔ [ν1
(n), … , νLn

(n)]⊺ the vectors collecting edge and error weights in the neighborhood of n. 

Similarly, let the diagonal matrix WA
n  be the n-th block of the block diagonal matrix WA. 

With γn
⊺ and xn

⊺ representing the n-th row of Y and X, respectively, νn[k + 1] can be updated 

as

νn[k + 1] = arg min
νn

λ1 ∥ WA
n νn ∥ 1

+ ∥ γn[k + 1] − (Yn[k + 1])⊺(ωn − νn) − bnnxn ∥ 2
2 (36)

where Yn is a submatrix of Y formed by the rows corresponding to the neighboring nodes of 

n in the nominal topology. Sub-problem (36) is again convex, but not differentiable, which 

suggests an iterative proximal gradient solver.

The complexity of (35) is O(N3), and estimation can be parallelized across yt for t = 1, … , 

T. In the worst case, the minimum of (36) can be reached in O(1/ε) iterations, or O(1 ∕ ε)
using fast iterative shrinkage-thresholding algorithms [5], where ε is the precision of the 

solution. In addition, all {νn} can be computed in parallel. Such proximal gradient solvers 

entail matrix-vector multiplication and soft thresholding operations, the complexity of which 

can be negligible relative to O(N3), when {Ln} are much smaller than N.

B. Identifiability of topology perturbations

In this subsection, we investigate conditions that ensure uniqueness in identifying the 

perturbation vector ν in the noise-free2 structured topology perturbation model in Sec. IV-A 

2Absence of noise (ϵt ≡ 0 ∀t) is typically assumed in identifiability studies, in order to isolate (non) uniqueness issues from estimation 
errors.
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(cf. (28) and (32)). To this end, consider the n-th row of the N × T matrix Y in (28), which 

can be expressed as

yn
⊺ = (an

⊺ − δn
⊺)Y + bnnxn

⊺ (37)

with an
⊺ and δn

⊺ likewise denoting the nth rows of A0 and Δ, respectively. With Ln being the 

number of neighbors of node n, we define the 1 × Ln vector ωn
⊺ formed after removing the 

zero entries of an
⊺ per node n; and similarly the 1 × Ln vector νn

⊺ after removing the 

corresponding entries of δn
⊺. Using these definitions, (37) can be simplified to

yn
⊺ = (ωn

⊺ − νn
⊺)Yn + bnnxn

⊺ (38)

where Yn is an Ln × T submatrix obtained after removing the rows of Y corresponding to the 

zero entries of an
⊺.

To take into account the number of samples Tn per node n, we further introduce the Tn × T 
matrix Dn obtained after removing the all-zero rows of the T × T diagonal matrix 

diag{dnn
(1) … dnn

(T )}, where dnn
(t) = 1 if node is sampled at slot t, and dnn

(t) = 0 otherwise. 

Multiplying Dn from the right with a matrix, selects Tn (out of T) rows corresponding to the 

time-slot indices that node n is sampled. We rely on Dn to form the Tn × 1 vector ϕn ≔ Dnyn, 

which after employing the transposed version of (38) can be expressed as

ϕn = Dn[Yn
⊺(ωn − νn) + bnnxn] . (39)

Motivated by the fact that e.g., adversaries can compromise only a few links per node n, it is 

reasonable to explore identifiability conditions when the sought perturbation vector νn is 

sparse with pn (< Ln) nonzero entries.

Arguing by contradiction to establish that νn can be uniquely identified from (39), we will 

suppose that there exists another Ln × 1 vector ξn ≠ νn with pn nonzero entries satisfying 

ϕn = Dn[Yn
⊺(ωn − ξn) + bnnxn]. Subtracting the latter from (39), yields

0 = DnYn
⊺(νn − ξn) . (40)

Clearly, the difference νn − ξn of the two pn-sparse vectors νn and ξn, has at most 2pn 
nonzero entries; and with pmax ≔ maxn=1,…,N pn, we have that the differences {νn−ξn} 

across all nodes can have at most 2pmax nonzero entries.

To proceed with specifying identifiability conditions of our sparse vector differences, we 

will need the following definition of the Kruskal rank of a matrix.

Definition 2 [38]. The Kruskal rank of a matrix M, denoted as kr(M), is defined as the 
maximum number ρ such that any combination of ρ columns of M constitutes a full-rank 
submatrix.
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Since the 2pmax nonzero entries of νn − ξn can occur in any subset of this vector difference, 

we deduce that having kr(DnYn
⊺) ≥ 2pmax, guarantees that any 2pmax columns of DnYn

⊺

submatrix will be full rank. Under this condition, we find from (40) that νn = ξn, which 

leads to contradiction. Summarizing, we have established the following result.

Proposition 3. If kr(DnYn
⊺) ≥ 2maxnpn, the pn-sparse perturbation vector νn is identifiable 

from (39), for n = 1, … , N.

Intuitively, Proposition 3 asserts that sparsity in the perturbation renders the bound on the 

Kruskal rank easier to satisfy, and thus ensure identifiability. As a word of caution, it is 

worth mentioning that finding the Kruskal rank of a matrix is combinatorially complex in its 

dimensions [38]. In addition, this condition may be impossible to check because matrix 

DnYn
⊺ is not always observed in practice.

V. NUMERICAL TESTS

In this section, we present several synthetic and real data tests for the novel TLS-based 

algorithms, both for topology ID under signal perturbations, and graph signal inference 

under topology perturbations. The regularization parameters are selected by grid search 

cross-validation for all the algorithms.

A. Synthetic tests for topology ID under signal perturbations

1) Bisection-based versus alternating descent iterations: For this test, the 

adjacency matrix A(0) is simulated as a 6 × 6 matrix of binary 0-1 entries with 2 nonzero 

entries per row, and Z = Y + E, with [E]ij ∼ N(0, 10−2), while the observation Y = (IN − 

A(0))−1BX, with B = IN and [X]ij ∼ U[0, 1.5]. Alg. 1 is tested with μ = 5, aL = 0, and aU = 1.

Fig. 1 shows the performance reached by the alternating descent (AD) iterations in (22) and 

(23), the conventional least-squares (LS) SEM [5], [11], and the BB iterations (Subsection 

III-A), all in terms of MSEA = ∑ij (aij − aij)2 ∕ N2, for different values of ε. The ε-optimal 

BB solver improves as ε decreases, while the solutions of the AD and LS-SEM schemes do 

not depend on ε, and hence are constant ∀ε. For ε < 10−2, both perturbation-aware methods 

outperform the LS-SEM method. Note that the BB method slightly outperforms the AD one. 

However, the BB algorithm is computationally demanding.

Fig. 2 depicts the runtime of the three competing algorithms in seconds,3 when ε = 10−3, 

and for N = 4, 6, and 9. The figure demonstrates that the AD method is computationally 

more efficient than the BB scheme. For this reason, the following tests will include only the 

AD iteration, which will be henceforth abbreviated as TLS-SEM.

2) Topology ID under signal perturbations: Here, we test the performance of the 

AD solver (20) for simulated data, and compare it with LS-SEM. We generated a Kronecker 

graph with N = 64 as in [40], and B = IN was assumed given. We generated random matrices 

3This experiment was run on a machine with i5-6200U @2.30 GHz CPU, and 8GB of RAM.
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with uniformly distributed entries [X]it ∼ U = [0, 1.5], and Gaussian distributed entries 

[E]it ∼ N(0, σE2 ). Matrices Y and Z were then constructed according to (2) and (4), with T = 

120, while λ was selected via cross-validation. Fig. 3 shows the MSEA performance of LS-

SEM and TLS-SEM for different SNR(dB) ≔ 10 log10( ∥ y‒ ∥ 2
2 ∕ (NσE2 )) and y‒ = 1

T ∑t = 1
T yt. It 

can be observed that TLS-SEM outperforms LS-SEM. Fig. 4 shows the performance versus 

different number of samples T, with fixed σE = 0.2. Evidently, TLS-SEM outperforms LS-

SEM even when the number of observations is small.

3) Sparse signal perturbation: In this experiment, we tested the performance of 

sparse TLS in (24) and (26). We generated an adjacency matrix as a Kronecker graph of size 

64 × 64 with binary entries. Entries of X were generated as uniform i.i.d. random variables, 

that is [X]ij ∼ U[0, 1.5], and B = IN. Furthermore, we set Z = Y − E, where Y = (IN − A)
−1BX, and the sparse E was generated such that E has zero entries on N0 = N − 8 selected 

rows, while the nonzero entries were drawn from a uniform distribution over [0, 0.3].

Fig. 5 shows the performance of LS-SEM, TLS-SEM in (20), sparseTLS in (24) and sTLS-

SEM in (26), in terms of MSEA for different T. The TLS-SEM methods outperform LS-

SEM, and the performance gain increases as more data samples are collected. Results of this 

subsection were averaged over 100 realizations of X and E.

B. Real data tests for topology ID with signal perturbations

In this subsection, we present experiments on gene expression data to identify the underlying 

gene regulatory network. The data were collected from RNA sequencing of cell samples 

derived from 69 unrelated Nigerian individuals, extensively genotyped by the International 

HapMap project [22]. From the 929 identified genes, expression levels and the genotypes of 

the expression quantitative trait loci (eQTLs) of 39 immune-related genes were selected and 

normalized; see [11] and [46] for further details. Genotypes of eQTLs were adopted as 

known exogenous inputs X, and gene expression levels were treated as the endogenous 

variables Y. The underlying network as well as the matrix B, were inferred by adopting 

TLS-SEM, sparseTLS, and LS-SEM methods.

Fig. 6 depicts the fitting loss divided by the norm of the data Z, as 

∥ Z − AZ − BX ∥ F
2 ∕ ∥ Z ∥ F

2  for LS-SEM, and ∥ Z − A(Z − E) − BX ∥ F
2 ∕ ∥ Z ∥ F

2  for TLS-

SEM. For all values of λA, i.e. the regularization parameter promoting the adjacency 

sparsity, TLS-SEM and sparseTLS-SEM outperform the LS-SEM, which implies that the 

inferred matrix A fits the model better when the signal perturbations are taken into account. 

When λA reaches very large values, all approaches perform similarly since the 

regularization term λA||A||1 prevails on all the other terms of the cost functions and A
becomes an all zero matrix. Furthermore, Fig. 7 illustrates the performance in terms of 

fitting error ∥ Y − AY − BX ∥ F
2 , with Y = Z − E for TLS-SEM and sparseTLS, and Y = Z 

for LS-SEM across values of λA. Again, TLS-SEM and sparseTLS-SEM outperform LS-

SEM.
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C. Signal inference under topology perturbations

We further tested the performance of the TLS algorithms in Sec. IV, and compared them 

with the conventional LS-SEM based signal recovery algorithm that does not account for 

topology perturbations. In this setting, the topology is perturbed and the goal is to identify Y 

from a subset of observations. A Kronecker graph with N = 27 is generated as before. With 

T = 50 and B = IN, the entries are again randomly drawn as [X]ij ∼ U[0, 3] and εit ∼ N(0, σi2). 

Furthermore, we model the perturbation Δ as Bernoulli (πl × [A]ij, with l ≔ (vi, vj), which 

means that perturbations occur when one or more weighted links fail. In particular, π1 = π2 

=0.9, and πl ∈ [0.001, 0.02], l = 3, … , L, and we choose r(πl) = 1
πl

. Matrices Y and Ψ are 

then constructed according to (28) and (27), while λ1 and λ2 are selected via cross 

validation. Fig. 8 depicts the performance of LS-SEM, TLS-SEM, structured TLS under 

topology perturbations (STLS-SEM), and SWTLS-SEM in terms of normalized mean-

square error

NMSE = ∥ Y − Y ∥ F
2

∥ Y ∥ F
2 . (41)

The results are obtained by averaging over 1000 Monte Carlo realizations of X, E, Δ, and 

DS. Fig. 8 shows the performance as a function of the number of sampled nodes M. Clearly, 

estimation performance improves as extra prior information is accounted for.

Figure 9 depicts the runtime (in seconds) of the topology perturbation aware TLS-SEM and 

SWTLS-SEM versus N, with M = [(2/3)N]. Each A is generated as Kronecker graph 

adjacency matrix of size N. As expected, the runtime increases with the number of nodes. 

However, the proposed TLS-SEM and SWTLS-SEM solvers are amenable to parallel 

implementation that would considerably reduce the runtime.

D. Real tests for signal inference with topology perturbations

Finally, we test the proposed elTLS-based method in (30) to infer the signal given a subset 

of noisy observations and a perturbed graph topology.

The real data consists of path delay measurements on the Internet2 backbone [1]. The 

network has 9 nodes and 26 directed links. The delays are available for N = 70 paths per 

minute. Set {ynt} contains a subset of delays in milliseconds per path n and minute slot t. 
The known topologies are obtained based on the following three possible models.

M1. Here the paths connect origin-destination nodes by a series of links described by the 

path-link routing matrix Π ∈ {0, 1}N×26, whose (n, l) entry is Πn,l = 1 if path n traverses link 

l, and 0 otherwise. A graph is constructed with each vertex corresponding to one of these 

paths, and with the time-invariant adjacency matrix A ∈ ℝN × N given by

An, n′ =
∑l = 1

26 Πn, lΠn′, l

∑l = 1
26 Πn, l + ∑l = 1

26 Πn′, l − ∑l = 1
26 Πn, lΠn′, l

(42)

Ceci et al. Page 20

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for n, n′ = 1, … , N and n ≠ n′. The edge weight model in (42) assigns greater weights to 

edges connecting vertices whose associated paths share more links. This is reasonable 

because paths with common links usually experience similar delays [16].

M2. For the second topology, a training phase is introduced based on a subset of the signal 

observations, collected in the matrix Ytrain, to estimate the adjacency as the solution of

min
A

∥ Ytrain − AYtrain ∥ F
2

s . to aii = 0, i = 1, … , N
(43)

where Ytrain ∈ ℝN × Ttrain with Ttrain = 20.

M3. The third topology is found as in (43), but the signals used for training are contaminated 

by noise, that is, Y‒ train ≔ Ytrain + Ξ, with [Ξ]ij ∼ N(0, σξ2); while σξ2 is chosen such that 10 

log10 ( ∥ y‒train ∥ F
2 ∕ (Nσξ2)) = − 8 dB, where y‒train ∈ ℝN is the average of the columns of 

Ytrain. Solving problem (43) with Y‒ train instead of Ytrain gives rise to an alternative topology 

with an inherent model mismatch. The observation error in (27) is generated using 

εt ∼ N(0, σε2I), ∀t.

Fig. 10 illustrates the NMSE versus the number of sampled nodes M when the topology is 

obtained from M1. It shows that the novel perturbation-aware elTLS-SEM outperforms the 

LS-SEM signal recovery approach by accounting for the possible model mismatch.

Figs. 11 and 12 illustrate the NMSE versus number of observations T with adjacency 

matrices obtained via M2 and M3, respectively. Once again, perturbation-aware elTLS-SEM 

outperforms LS-SEM signal recovery method. The performance gain of elTLS-SEM in Fig. 

11 is less evident than that in Figures 10 and 12 because the adjacency matrix is obtained 

exactly following the SEM. Results are averaged over 100 realizations.

VI. CONCLUSIONS AND RESEARCH OUTLOOK

This contribution dealt with two challenging tasks over graphs, namely topology ID under 

signal perturbations, and signal inference under topology perturbation. To address the 

associated challenges, a spectrum of approaches based on total least-squares and structural 

equation models were developed. In addition, structured and weighted variants of TLS-SEM 

were introduced to flexibly account for extra prior information. Numerical tests on both 

synthetic and real data demonstrated the efficacy of the proposed algorithms.

Future research directions include distributed implementation of TLS-SEM to accommodate 

large-scale graphs, as well as generalizations of perturbed SEMs to account for nonlinear 

and dynamic inter-dependencies.
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Figure 1: 
MSEA across ε, obtained by the ε-optimal algorithm. This result is compared with the LS-

SEM, and with the AD (TLS-SEM) iteration.
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Figure 2: 
Runtime in seconds.
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Figure 3: 
MSEA versus SNR.
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Figure 4: 
MSEA versus T.
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Figure 5: 
MSEA as a function of T.
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Figure 6: 
Loss function vs. λA for Gene regulatory network.
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Figure 7: 
Fitting norm vs. λA for Gene regulatory network.
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Figure 8: 
NMSE versus M.
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Figure 9: 
Runtime in seconds versus N.
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Figure 10: 
NMSE versus M, with A obtained via M1 and T = 100.
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Figure 11: 
NMSE versus T, with A obtained via M2, SNR= 30 dB.
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Figure 12: 
NMSE versus T, with A obtained M3 and M = 50.
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