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Abstract

Statistical and Computational Methods for Analyzing High-Throughput Genomic Data
by
Jingyi Li

Doctor of Philosophy in Biostatistics
and the Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley
Professor Peter J. Bickel, Chair

In the burgeoning field of genomics, high-throughput technologies (e.g. microarrays,
next-generation sequencing and label-free mass spectrometry) have enabled biologists to
perform global analysis on thousands of genes, mRNAs and proteins simultaneously. Ex-
tracting useful information from enormous amounts of high-throughput genomic data is an
increasingly pressing challenge to statistical and computational science. In this thesis, I will
address three problems in which statistical and computational methods were used to analyze
high-throughput genomic data to answer important biological questions.

The first part of this thesis focuses on addressing an important question in genomics:
how to identify and quantify mRNA products of gene transcription (i.e., isoforms) from next-
generation mRNA sequencing (RNA-Seq) data? We developed a statistical method called
Sparse Linear modeling of RNA-Seq data for Isoform Discovery and abundance Estimation
(SLIDE) that employs probabilistic modeling and L; sparse estimation to answer this ques-
tion. SLIDE takes exon boundaries and RNA-Seq data as input to discern the set of mRNA
isoforms that are most likely to present in an RNA-Seq sample. It is based on a linear model
with a design matrix that models the sampling probability of RNA-Seq reads from different
mRNA isoforms. To tackle the model unidentifiability issue, SLIDE uses a modified Lasso
procedure for parameter estimation. Compared with existing deterministic isoform assembly
algorithms, SLIDE considers the stochastic aspects of RNA-Seq reads in exons from different
isoforms and thus has increased power in detecting more novel isoforms. Another advantage
of SLIDE is its flexibility of incorporating other transcriptomic data into its model to further
increase isoform discovery accuracy. SLIDE can also work downstream of other RNA-Seq
assembly algorithms to integrate newly discovered genes and exons. Besides isoform discov-
ery, SLIDE sequentially uses the same linear model to estimate the abundance of discovered
isoforms. Simulation and real data studies show that SLIDE performs as well as or better
than major competitors in both isoform discovery and abundance estimation.

The second part of this thesis demonstrates the power of simple statistical analysis in
correcting biases of system-wide protein abundance estimates and in understanding the rela-



tionship between gene transcription and protein abundances. We found that proteome-wide
surveys have significantly underestimated protein abundances, which differ greatly from pre-
viously published individual measurements. We corrected proteome-wide protein abundance
estimates by using individual measurements of 61 housekeeping proteins, and then found that
our corrected protein abundance estimates show a higher correlation and a stronger linear
relationship with mRNA abundances than do the uncorrected protein data. To estimate the
degree to which mRNA expression levels determine protein levels, it is critical to measure the
error in protein and mRNA abundance data and to consider all genes, not only those whose
protein expression is readily detected. This is a fact that previous proteome-widely surveys
ignored. We took two independent approaches to re-estimate the percentage that mRNA
levels explain in the variance of protein abundances. While the percentages estimated from
the two approaches vary on different sets of genes, all suggest that previous protein-wide
surveys have significantly underestimated the importance of transcription.

In the third and final part, I will introduce a modENCODE (the Model Organism
ENCyclopedia Of DNA Elements) project in which we compared developmental stages, tis-
sues and cells (or cell lines) of Drosophila melanogaster and Caenorhabditis elegans, two
well-studied model organisms in developmental biology. To understand the similarity of
gene expression patterns throughout their developmental time courses is an interesting and
important question in comparative genomics and evolutionary biology. The availability of
modENCODE RNA-Seq data for different developmental stages, tissues and cells of the
two organisms enables a transcriptome-wide comparison study to address this question. We
undertook a comparison of their developmental time courses and tissues/cells, seeking com-
monalities in orthologous gene expression. Our approach centers on using stage/tissue/cell-
associated orthologous genes to link the two organisms. For every stage/tissue/cell in each
organism, its associated genes are selected as the genes capturing specific transcriptional
activities: genes highly expressed in that stage/tissue/cell but lowly expressed in a few other
stages/tissues/cells. We aligned a pair of D. melanogaster and C. elegans stages/tissues/cells
by a hypergeometric test, where the test statistic is the number of orthologous gene pairs
associated with both stages/tissues/cells. The test is against the null hypothesis that the
two stages/tissues/cells have independent sets of associated genes. We first carried out the
alignment approach on pairs of stages/tissues/cells within D. melanogaster and C. elegans
respectively, and the alignment results are consistent with previous findings, supporting the
validity of this approach. When comparing fly with worm, we unexpectedly observed two
parallel collinear alignment patterns between their developmental timecourses and several
interesting alignments between their tissues and cells. Our results are the first findings re-
garding a comprehensive comparison between D. melanogaster and C. elegans time courses,
tissues and cells.
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Chapter 1

Introduction

In the last two decades, high-throughput technologies such as SAGE [1] and DNA microarrays
[2] have revolutionized molecular biology, genomics and medicine by enabling biologists to
perform global analysis on the expression of tens of thousands of genes simultaneously. The
more recently emerged next-generation sequencing (NGS) technologies, which have lower
cost, higher accuracy and less restrictions, further opens up the possibility of a wide variety
of large-scale genomic research and is transforming genomic science into personal genomics
[3]. SAGE, microarray and NGS are different generations of high-throughput genomic data.
In a broader sense, high-throughput genomic data can also refer to data produced by high-
throughput transcriptomic technologies (e.g. Deep-RACE [4]) and large-scale proteomic
technologies (e.g. label-free mass spectrometry [5]). How to extract useful information
from enormous amounts of high-throughput genomic data in various types is an increasingly
pressing challenge to statistical and computational science. Interdisciplinary fields such
as biostatistics, statistical genomics, bioinformatics, and computational biology continue
to evolve to face such a challenge and to answer biological questions arising from high-
throughput genomic data.

1.1 Examples of High-Throughput Genomic Data

First, we introduce two important types of high-throughput genomic data related to the
studies to be addressed in this thesis.

1.1.1 RNA-Seq

In the burgeoning field of genomics, one of the most attractive research topic is to utilize
next generation RNA sequencing (RNA-Seq data) for transcriptomic analysis. The RNA-
Seq technology aims to capture RNA content of a biological sample by indirectly sequencing
cDNAs reversely transcribed from extracted RNAs [6]. Advantages of RNA-Seq compared to
previous microarray methods include its deep coverage, base-level resolution and no reliance
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Figure 1.1: Data generation steps of a typical RNA-Seq assay.

on prior probe design or existing RNA transcript annotations. Hence, RNA-Seq is a key
milestone in understanding the complex landscape and dynamics of eukaryotic transcrip-
tomes. RNA-Seq can be used to simultaneously identify novel genes/transcripts, alternative
splicing events, and rare genetic variants in a biological sample.

The sketch of a typical RNA-Seq assay is shown in Figure 1.1, which is derived from
a review article on next-generation transcriptome assembly [7]. The first step is to extract
RNAs (light blue) that are to be sequenced, followed by the second step of fragmenting
extracted RNAs into short fragments. In the third step, the fragments will be reversely
transcribed into cDNAs (yellow), which will then be ligated with sequencing adaptors in the
fourth step. In the fifth step, PCR will be used to amplify the ligated cNDA fragments to
ensure they have enough concentration. The sixth step is fragment size selection. In the
final step, NGS is applied to sequence the ends of the retained cDNA fragments. The two
ends of a single cDNA fragment will be treated as unrelated reads if single-end sequencing
protocol is used; on the other hand, paired-end sequencing will keep the pairing relationship
of the two ends. RNA-Seq read length varies from 25 base pairs (bp) to 400 bp, depending
on different platforms and protocols.

RNA-Seq data (i.e., reads) represent quantities of short sequences in existing RNA tran-
scripts, and therefore can be used to discover and quantify RNA transcripts in a biological
sample.



1.1.2 Label-Free Mass Spectrometry

System-wide quantification of protein abundance in a biological sample has been a long-
lasting problem in proteomics and biochemistry. Mass-spectrometry-based techniques have
made phenomenal impact on protein identification and quantification. However, to date,
identification and quantification of all the proteins in a biological sample remains an unmet
technical challenge [5]. Nevertheless, label-free mass-spectrometry quantification strategies
provide a practical way of whole proteome quantification, at a sacrifice of accuracy though.
Label-free mass spectrometry has a simple workflow that skips traditional mass-spectrometry
steps including protein/peptide labeling and purification/fractionation [5]. Despite its re-
duced accuracy in protein quantification compared to traditional labeling mass-spectrometry
methods, label-free mass-spectrometry provides valuable resources for understanding system-
wide translation and studying differential protein expression between biological samples.

1.2 Example Questions to be Addressed by Statistical
Analysis on High-Throughput Genomic Data

Next, we discuss several important biological questions that require using statistical and
computational methods to analyze high-throughput genomic data.

Questions in the genomics field can be summarized around the central dogma. In the
DNA state, questions include transcription factor binding sites and intensities, DNA methy-
lation, histone modification, etc. In the RNA state, questions can be asked about mRNA
isoforms (i.e., different mRNA transcripts arising from the same gene), alternative splicing,
gene expression, etc. In the protein state, the most straightforward question is system-wide
protein quantification. More questions can be asked about the transition processes between
the three states, i.e., transcription (connecting DNA and RNA states) and translation (con-
necting RNA and protein states).

For example, we have used statistical analysis to determine the quantitative relation-
ship between transcription factor binding and downstream gene expression, and found that
the relationship is both discrete and continuous: transcription factor binding below a cer-
tain threshold does not trigger specific gene expression, while the binding intensity beyond
that threshold has a strong correlation with known biological and transcriptional regulatory
specificities [8, 9].

In this thesis, we will address three important questions, where the first and the third
questions are related to the RNA state and the second question is about transcription and
translation.



1.2.1 Discovery and Quantification of RN A Isoforms from
RNA-Seq Data

Unlike previous technologies such as microarrays, RNA-Seq provides novel splice junction
information in addition to gene expression, thus facilitating assembling full-length mRNA
isoforms (mRNA molecules transcribed from the same gene but having different sequences)
(i.e., “isoform discovery”) and quantifying isoform expressions (i.e., “isoform abundance
estimation”). Before the invention of RNA-Seq, mRNA isoforms have been discovered on a
gene to gene basis and recorded in annotations (databases of reported genes and their mRNA
isoforms). Previous methods for isoform discovery and abundance estimation from RNA-
Seq data can be divided into two categories: “annotation-based” and “annotation-free”. The
former takes existing annotations to define genes and isoforms; the latter uses no annotation
information but directly assembles mRNA isoforms from RNA-Seq data. Methods in either
category have their drawbacks, because existing annotations are incomplete and RNA-Seq
data contain various noise and biases.

In Chapter 2, we developed a method entitled “SLIDE” (Sparse Linear modeling of RNA-
Seq data for Isoform Discovery and abundance Estimation), which defines a new category—
“annotation-aided” methods. SLIDE is an annotation-aided method that lies in the mid-
dle of the annotation usage spectrum—from completely ignoring to totally depending on
annotations—and combines benefits from both ends [10]. SLIDE has the advantage of uti-
lizing both literature and data information to find potential novel isoforms (compared to
annotation-based methods) without being biased by RNA-Seq data noise in defining gene
and exon boundaries (compared to annotation-free methods). If supplemented with de novo
genome assemblies from other RNA-Seq software packages, SLIDE can also discover isoforms
involving novel genes/exons.

1.2.2 System-wide Protein Quantification and the Importance of
Transcription in Determining Protein Abundance

Label-free mass spectrometry methods have recently been developed to determine the abso-
lute number of protein molecules per cell for thousands of genes. Because the methods are
known to have lower accuracy than previous labeling mass spectrometry and other smaller-
scale quantification methods, it is necessary to ask whether the system-wide protein abun-
dance estimates by label-free quantification are accurate. Another question is to estimate the
importance of transcription in determining protein levels given the system-wide estimates of
mRNA and protein abundances.

In Chapter 3, we found that the published proteome-wide surveys have significantly un-
derestimated protein abundances. Aiming to use statistics to correct the bias in those protein
abundance estimates, we re-analyzed the system-wide protein mass spectrometry data in
Schwanhausser et al [11] against previous individual protein abundance measurements, and
corrected the system-wide data by fitting a two-part spline model. After our correction, we
observed significantly improved correlation between protein abundance estimates and mRNA



levels. We also found that transcription contributes a higher percentage to the variance of
protein levels than Schwanhausser et al estimated, and transcription contributes more than
translation does to the variance of protein levels, in contrast to what Schwanhausser et al
claimed. Our results [12] raised a caution about systems biology modeling without proper
data scaling or thorough accounting for experimental errors.

1.2.3 Comparison of Biological Samples from Different Species
by Gene Expression

Given system-wide gene expression estimates from high-throughput genomic data (e.g. RNA-
Seq), can we compare two biological samples from different species in terms of their tran-
scriptional similarity?

In Chapter 4, we addressed this question in the context of two model organisms, D.
melanogaster and C. elegans. The production of modENCODE [13, 14, 15] RNA-Seq data
at different developmental stages, tissues and cells (or cell lines) of D. melanogaster (fly) and
C. elegans (worm) enables a transcriptome-wide comparison study to understand the evo-
lutionary conservation of developmental biology of the two model organisms. Our approach
centers on using orthologous genes to link the two organisms, and employing system-wide
gene expression estimates to find sample-associated genes to represent characteristic tran-
scriptional events in every sample. A hypothesis testing approach similar to hypergeometric
testing is developed to compare different samples in terms of overlap (for samples from the
same species) or orthology (for samples from different species) in their associated genes.
Interesting comparison results were found between developmental stages, tissues and cells
within and between the two species. Our results are the first findings regarding a compre-
hensive comparison of various developmental stages, tissues and cells of D. melanogaster and
C. elegans. The results and the comparison approach will make a valuable contribution to
developmental biology and comparative genomics.



Chapter 2

Sparse Linear Modeling of
Next-Generation mRNA Sequencing

(RNA-Seq) Data for Isoform
Discovery and Abundance Estimation

2.1 Introduction

The recently developed next-generation mRNA sequencing (RNA-Seq) assay, with deep cov-
erage and base level resolution, has provided a view of eukaryotic transcriptomes of un-
precedented detail and clarity. Unlike microarrays, RNA-Seq data have novel splice junction
information in addition to gene expression, thus facilitating whole-transcriptome assembly
and mRNA isoform quantification. RNA-Seq data includes both single-end and paired-end
reads, where a single-end read is a sequenced end of a ¢cDNA fragment from an mRNA
transcript, and a paired-end read is a mate pair corresponding to both ends of a cDNA
fragment.

In the mRNA isoform discovery field, one of the most widely used software packages
is Cufflinks [16]. It builds a set of genes and exons solely from RNA-Seq data first, and
subsequently uses a deterministic approach to find a minimal set of isoforms that can explain
all the cDNA fragments indicated by paired-end reads. Cufflinks mainly uses qualitative
exon expression and junction information in its isoform discovery, lacking a quantitative
consideration of RNA-Seq data. Although Cufflinks gives very useful results, we note that
the isoforms it discovers based on de novo assembled genes and exons can be heavily biased by
different types of RNA-Seq data noise [17, 18, 19, 20]. Two recently published modENCODE
(Model Organism Encyclopedia of DNA Elements) [13] consortium papers [14, 15] also raise
concerns about relying solely on RNA-Seq reads in isoform discovery and have suggested
using manual annotations to scrutinize the results.

In the mRNA isoform quantification field, the question is to estimate the abundance of



isoforms in a given set. Available abundance estimation methods include direct computa-
tion [21, 22] and model-based approaches. Many model-based studies [16, 23, 24, 25, 26]
have used maximum-likelihood approaches to estimate isoform abundance. There are also
efforts on formulating the abundance estimation problem as a linear model [27], where the
independent and dependent variables are isoform expression levels and categorized RNA-Seq
read counts, respectively. In particular, binary values have been used in the design matrix to
relate categorized reads to different isoforms, but that design matrix misses the quantitative
relationship between read quantities and isoform abundance.

In this study, we propose a statistical method called “Sparse Linear modeling of RNA-
Seq data for Isoform Discovery and abundance Estimation” (SLIDE) that uses RNA-Seq
data to discover mRNA isoforms given an extant annotation of gene and exon boundaries,
and to estimate the abundance of the discovered or other specified mRNA isoforms. The
extant annotation can come from annotation databases [e.g., Ensembl [28] or UCSC Genome
Browser [29]], can be supplemented by other transcriptomic data such as RACE or CAGE
(18, 19), or can even be inferred from RNA-seq de novo assembly algorithms [16, 30]. SLIDE
is based on a linear model with a nonbinary design matrix modeling the sampling probability
of RNA-Seq reads from mRNA isoforms. When modeling the design matrix, we considered
the effects of GC content, cDNA fragment lengths, and read starting positions. This linear
model, coupled with the carefully defined design matrix, gives SLIDE a stochastic property
of making use of exon expression quantitatively in isoform discovery. The SLIDE model can
also be easily extended to incorporate other transcriptomic data [e.g., RACE [31], CAGE [32],
and EST [33]] with RNA-Seq to achieve more comprehensive results. The SLIDE software
package is available at https://sites.google.com/site/jingyijli/SLIDE.zip.

2.2 Results

2.2.1 Linear Modeling for RNA-Seq Data

SLIDE is designed as a tool for discovering mRNA isoforms and estimating isoform abun-
dance from RNA-Seq reads, on top of known information about gene and exon boundaries.
For isoform discovery, SLIDE considers all the possible isoforms by enumerating exons of
every gene. For example, a gene of n nonoverlapping exons has 2" — 1 possible isoforms, each
composed of a subset of the n exons. However, because of the possible occurrence of alter-
native splicing within exons, isoforms of the same gene may have partially overlapping but
different exons. Hence, for ease of enumeration, we define a subexon as a transcribed region
between adjacent splicing sites in any annotated mRNA isoforms (Figure 2.1A). With this
definition, every gene has a set of nonoverlapping subexons, from which we can enumerate
all the possible isoforms including annotated ones.

We formulate the task of discovering isoforms for a given gene as a sparse estimation
problem where the sparseness applies to the isoforms expected from RNA-Seq data. Because
exon expression levels and the existence of possible exon-exon junctions are the key for



I[soform 1  =o—--------- ——— - - - E—

A Isoform 2 —----eeeee —— - -« R - - -~~~ S
[soform 3 eo— — —
Subexons e —— e e ——

£, E E; E, Es Eg E,
o, L,
B i '
i i —
51 e1 52 ez

Figure 2.1: Definition of subexons and notations. (A) Subexons are defined as transcribed
regions between adjacent alternative splicing sites. (B) A two-exon mRNA transcript. s,
e1, So, and ey, genomic positions associated with a paired-end read. r, the read end length;
L, and Lo, the exon lengths.

isoform discovery and they can be inferred from the starting and ending positions of RNA-
Seq reads mapped to a reference genome, we are motivated to transform RNA-Seq reads into
a summary that captures the key information. For a paired-end read, we exact four genomic
locations sy, eq, $o, and e, where s; and e; are the starting and ending positions of its 5’ end,
and s, and es are the starting and ending positions of its 3’ end (Figure 2.1B). Note that a
paired-end read uniquely corresponds to a cDNA fragment with both ends sequenced, that
is, s; and ey are the starting and ending positions of the fragment, respectively. We next
categorize paired-end reads into paired-end bins defined as four-dimensional vectors: Bin
(1,7, k, 1) contains reads whose sq, e, so and ey are in subexons i, j, k and [ respectively (see
Subsection 2.4.1 for more detail). For single-end reads, we can similarly categorize them into
two-dimensional single-end bins. The so-defined bin counts provide all the exon expression
and junction information.

SLIDE is built upon a linear model whose design matrix F models conditional proba-
bilities of observing reads in different bins given an isoform. For paired-end data, modeling
F requires distributional assumptions on the two ends (i.e., s1,e2) of a cDNA fragment in
an mRNA transcript, or equivalently on the fragments 5" end (i.e., s1) and its length (i.e.,
ey — s1). For sp, uniform distribution assumptions have been widely used. However, after
considering the high correlation observed between sequencing read coverage and genome GC
content [17], we assume the density of s; is uniform within subexons and proportional to the
GC content between subexons. We specify the distribution of the fragment length, e; — sy,
by assuming e, to follow a Poisson point process given s; fixed. Consequently, e; — s1 is
modeled as truncated Exponential after taking into account the size selection step in RNA-
Seq protocols (see Subsection 2.4.2 for more detail). Another widely used fragment length
distribution is Normal distribution [16], which is also implemented in SLIDE and compared



with truncated Exponential (see Appendix A.1.1).
We then use a linear model as approximation to the observed bin proportions,

K
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k=1

where b; is the observed proportion of reads in the jth bin, Fj; = Pr(jth bin | kth isoform)
(i.e., the conditional probability of observing paired-end reads in the jth bin given that they
are from the kth isoform), pj is the proportion of the kth isoform to be estimated, and ¢;
is the error term with mean 0. Besides, J and K are the numbers of bins and isoforms,
respectively (see Subsection 2.4.1 for more detail). This is the core linear model used in
SLIDE for both isoform discovery and abundance estimation of discovered isoforms. For
isoform discovery, usually K > J, so the model is unidentifiable. But based on biological
knowledge, we expect the model to be sparse and achieve sparse estimation by a modified
Lasso [34] method (see Subsection 2.4.3 for more detail). For abundance estimation, only
the proportions of discovered isoforms are parameters in the linear model, and their number
is often far less than K, so there is no identifiability issue anymore. SLIDE then does the
parameter estimation by nonnegative least squares. Compared with maximum-likelihood
approaches used by other abundance estimation methods, SLIDE has the computational
advantage of fitting a linear model as an intrinsic element.

2.2.2 Simulation Results

A simulation study is used to assess the accuracy of SLIDE on isoform discovery and abun-
dance estimation. We simulated reads from genes and true mRNA isoforms extracted from
D. melanogaster annotation (September 2010) of UCSC Genome Browser [29]. For illustra-
tion purposes, we focus on the 3,421 genes on chr3R. Based on our defined subexons, those
genes consist of 34.2% with 1-2 subexons, 57.6% with 3-10 subexons, and 8.2% with more
than 10 subexons. Because the estimation for genes with 1-2 subexons is trivial due to their
small numbers of possible isoforms, and genes with more than 10 subexons only constitute
a small proportion and their estimation is computationally costly, we applied SLIDE to the
subset of 3-10 subexons, 1,972 genes in total. We generated 500 x 50 (runs) paired-end reads
for each gene from annotated isoforms of randomly defined proportions, and then we applied
SLIDE to the simulated reads for isoform discovery and abundance estimation.

The isoform discovery results of all 50 runs are in Figure 2.2A. We divided genes into
groups by their numbers of subexons n (n = 3,---,10). For each gene, SLIDE returns
a vector of estimated proportions of all its possible isofoms. We define isoforms whose
estimated proportions exceed threshold 0.1 as discovered isoforms and evaluate them by the
UCSC annotation. (Note that other thresholds 0.05 and 0.2 return similar results.) For
each gene, the precision rate is defined as TP/(T P + F'P), and the recall rate is TP/(TP +
FN), where TP is the number of true positives (discovered isoforms that are also in the
annotation), F'P is the number of false positives (discovered isoforms that are not in the



10

A B C
Q] Q| Q|
~ | n=3 — | o SLIDE — | o SLIDE
e n=4 A * Cufflinks + Cufflinks
o len= @ " @
31 n=5 » p ST S
* n=6 *
n=7 el 5 [8] @
© | n= © 9] ©
= olen=8 = o 6* = o 164
3 e n=9 J’ 3 a* 3
oo~ - R o <« 7 o <« !
54 n=10 ,:.n"""‘ s1 9 S @
© | et SHE o |
o o o o
| o | Qo |
© T T T © T T T © T T T
0.80 0.90 1.00 0.0 0.4 0.8 0.0 0.4 0.8
Precision Precision Precision

Figure 2.2: Isoform discovery results. (A) Precision and recall rates of SLIDE on 50 simulated
datasets, with different colors for groups of genes with n subexons (n = 3,--- ,10) and every
point representing the average precision and recall rates of every group on one dataset. (B)
Precision and recall rates of SLIDE (using annotated genes/exons) and Cufflinks on dataset
1 (Table 2.1). Numbers, group indices of genes (i.e., numbers of subexons); squares/stars,
SLIDE/Cufflinks results. (C) Precision and recall rates of SLIDE (using Cufflinks assembled
genes/exons) and Cufflinks on dataset 1.

annotation), and F'N is the number of false negatives (undiscovered isoforms that are in
the annotation and have every exon observed). For each group of m-subexon genes, we
calculated their average precision and recall rates as presented in Figure 2.2A. The results
show that SLIDE maintains high precision rates (> 80%) and good recall rates (> 60%)
in all groups of genes. In particular, for genes with three and four subexons, the precision
and recall rates are greater than 98% and 92%, respectively. As n increases, the precision
and recall rates decrease, and the variance between different simulation runs increases. This
observation is reasonable because with the increase of n, the number of possible isoforms
increases exponentially, as does the difficulty of isoform discovery.

To illustrate the abundance estimation accuracy of SLIDE, we applied it to 317 multi-
isoform genes on chr3R in the UCSC annotation (798 isoforms in total), with the same
simulated paired-end reads. From reads of each simulation run, SLIDE estimates the 798
isoform proportions normalized by each gene. We calculated the Pearson correlation between
the estimates and the true isoform proportions used in the simulation, and we found that
the correlation coefficients of the 50 runs range from 0.92 to 0.95. We also illustrate the
abundance estimation accuracy of SLIDE by a scatter plot of the median estimated isoform
proportions over the 50 runs vs. true isoform proportions in Figure 2.3A (R = 0.99).

This simulation study shows satisfactory performance of SLIDE in isoform discovery
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Figure 2.3: Abundance estimation results. (A) p vs. median(p) of 798 isoforms on 50
simulated datasets. p, true isoform proportion; median(p), median of the 50 estimated
isoform proportions. (B) SLIDE vs. SIIER estimates of the 798 isoforms on dataset 1
(Table 2.1). (C) SLIDE vs. Cufflinks estimates of the 798 isoforms on dataset 1.

and abundance estimation. Further simulation studies with lowly expressed genes are in
Appendix A.2.1.

2.2.3 mRNA Isoform Discovery on modENCODE Data

The main feature of SLIDE is discovery of mRNA isoforms from RNA-Seq data. Four
modENCODE [13] D. melanogaster RNA-Seq datasets (Table 2.1) are used in the real data
analysis. Again, for illustration purposes, we focus on the 1,972 genes with 3-10 subexons
on chr3R of D. melanogaster. To avoid the effects of high false positive and negative rates
of RNA-Seq data in lowly expressed genes [35], we applied SLIDE to genes with RPKM
(number of reads per kilobase per million of mapped reads) [22] greater than 1.

We compare SLIDE with Cufflinks (version 0.9.3) in terms of their isoform discovery
precision and recall rates, evaluated by the UCSC annotation in a similar way to the sim-
ulation study (see Appendix A.3.1). We note that SLIDE and Cufflinks target the isoform
discovery problem from two different aspects. SLIDE discovers isoforms from given gene and
exon structures, whereas Cufflinks contructs isoforms from its de novo assembled genes and
exons. Hence, we carried out the comparison in two ways: (i) SLIDE with input genes and
exons from the UCSC annotation vs. Cufflinks; (ii) SLIDE with input genes and exons as-
sembled by Cufflinks vs. Cufflinks. The former is to evaluate the overall performance of the
two methods under their default settings, whereas the latter is to specifically compare their
isoform construction performance given the same set of genes and exons. The comparison
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Sequence Read Archive

Dataset Type Sample Read length Total number of reads  (http://www.ncbi.nlm.nih.gov/sra) numbers

1 paired-end ML-DmBG3-¢2 37 bp 25,094,224 SRX003838, SRX003839

2 paired-end Kcl67 37 bp 18,602,220 SRX003836, SRX003837

3 paired-end Kcl67 76 bp 20,118,748 SRR070261, SRR070269, SRR111873

4 paired-end and  embryo 16-17h 76 bp 23,388,810 and SRR023600, SRR035402, SRR023720, SRR023715,
single-end 27,913,445 SRR023751, SRR023707, SRR023826

Table 2.1: modENCODE datasets used in the analysis

results on dataset 1 (Table 2.1) are summarized in Figure 2.2B and C. (See Appendix A.3.1
for results on other datasets.)

Figure 2.2B, corresponding to the first comparison, shows that SLIDE with input genes
and exons from the annotation has significantly higher precision and recall rates than Cuf-
flinks. In the second comparison, with de novo genes and exons assembled by Cufflinks,
SLIDE has better precision and recall rates than Cufflinks has for genes with three and
four subexons, and for the rest of genes, the two methods have similar performance (Fig-
ure 2.2C). We observe that the overall precision and recall rates in Figure 2.2C are worse
than those of SLIDE in Figure 2.2B. These results remind us of the concerns voiced by
other researchers about constructing isoforms based on de novo genes and exons built solely
from RNA-Seq data [14, 15]. We speculate that results of the second comparison are not
enough to illustrate the isoform construction performance of SLIDE and Cufflinks, because
the similarly low precision and recall rates observed in Figure 2.2C might have been domi-
nated by the disagreement between the de novo assembled genes/exons and the annotation.
Hence, we performed an additional comparison on a smaller set of 246 genes whose de novo
exons assembled by Cufflinks agree with the annotation. This comparison provides a direct
evaluation on the isoform construction performance of SLIDE and Cufflinks. We found that
isoforms discovered by SLIDE have an average precision rate of 93% and a recall rate of
96%, both higher than the average precision rate (89%) and recall rate (94%) of isoforms
found by Cufflinks. This result demonstrates that SLIDE has higher accurracy than Cuf-
flinks has in isoform construction from a given set of genes and exons. For more details, see
Appendix A.3.1.

By a detailed inspection of the isoforms discovered by Cufflinks, we find that many dis-
covered isoforms are fragments of annotated isoforms in public databases. This is mainly due
to the difficulty in de novo construction of gene boundaries. Cufflinks also has troubles in
detecting lowly expressed genes de novo. By contrast, SLIDE can discover correct isoforms
even with a small number of reads, based on existing gene boundary information. For in-
stance, when applied to dataset 1, SLIDE has discovered isoforms in 1,084 genes (RPKM >
1) out of the total 1,972 genes, whereas Cufflinks has only found isoforms in 801 genes. These
observations confirm again the importance of having correct gene boundaries in isoform dis-
covery. Another advantage of SLIDE is the usage of a stochastic approach to simultaneously
detect isoforms with alternative starts/ends [e.g., (1,2,3,4) and (2,3,4)], where Cufflinks will
only discover the longest one (1). However, when there are significant RNA-Seq data bi-
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ases in 5" and 3’ ends of mRNA transcripts, the deterministic approach of Cufflinks may be
more robust. In the future, with the continuing development of sequencing technology and
promising improvement in RNA-Seq signal-to-noise ratios, we would expect the stochastic
approach of SLIDE to be preferred.

There are other isoform discovery methods that use sparse estimation but with different
methodology [27, 36]. A numerical comparison between SLIDE and IsoLasso [27] shows that
SLIDE has higher accuracy in isoform discovery. For detailed comparison information, please
see Appendix A.3.2.

2.2.4 mRNA Isoform Abundance Estimation on modENCODE
Data

Another feature of SLIDE is to estimate the abundance of mRNA isoforms discovered or
other specified (e.g., annotated) from an RNA-Seq sample. Because of the lack of ground
truth of isoform abundance in datasets 1-4 (Table 2.1), to evaluate the abundance estimation
performance of SLIDE, we compare its estimates to those of two popular methods: statistical
inferences for isoform expression in RNA-Seq (SIIER) [24] and Cufflinks [16]. Note that
SLIDE returns estimates of mRNA isoform proportions that are equivalent and convertible
to the common abundance measure, isoform RPKMs [22] used in SITER.

In the comparison between SLIDE and SITER, both methods estimate the isoform abun-
dance of the 317 chr3R genes with multiple isoforms in the UCSC annotation. In dataset
1, after removing 25 genes with high expression variance among exons (see Appendix A.4),
we obtain a scatter plot of the two sets of estimates in Figure 2.3B (R = 0.88). A similar
comparison is carried out between SLIDE and Cufflinks, and the results are in Figure 2.3C
(R = 0.85). The results show that SLIDE obtains estimates similar to those of SITER and
Cufflinks. For more discussions on the results, see Appendix A.4.

2.2.5 Miscellaneous Effects on Isoform Discovery

Using datasets 1-4 (Table 2.1), we study the following critical issues affecting isoform dis-
covery from RNA-Seq data.

1. GC content variation. To study the usefulness of considering GC content variation
in isoform discovery, we additionally implemented another version of F, assuming the
cDNA fragment starting position s; as uniform across all subexons. Note that our
default F' assumes the density of s; as uniform within subexons but proportional to
GC content between subexons, as motivated by observed high correlation between read
coverage and GC content variation (2, 4) (see Appendix A.6). Isoform discovery results
on dataset 1 by SLIDE based on the two version of F are compared in Table 2.2. Recall
rates are similar in both results, but precision rates are improved with the consideration
of GC content. These results indicate that GC content can provide SLIDE with useful
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n 3 4 ) 6 7 8 9 10
without GC precision 093 090 087 080 0.83 0.75 0.71 0.49
recall 091 089 083 0.77 0.71 0.68 0.61 0.36
with GC precision 094 092 090 0.82 087 0.79 0.74 0.56
recall 091 089 084 0.78 0.71 0.67 0.60 0.38

Table 2.2: Comparison of isoform discovery results by SLIDE with two versions of F

information in modeling F, and thus support various attempts of using GC content
information to correct RNA-Seq data noise [18, 19].

. Read/fragment length effects. To explore the effects of RNA-Seq read lengths on isoform
discovery, we applied SLIDE to datasets 2 and 3. The two datasets are generated from
the same Kc167 sample of similar sequencing depth but with different read lengths:
37 bp (dataset 2) vs. 76 bp (dataset 3). We compare the isoform discovery results on
both datasets in Figure 2.4A. The precision and recall rates for genes with 3-9 subexons
are surprisingly higher with the 37-bp data than the 76-bp data. This result contra-
dicts our expectation that RNA-Seq data with longer read length would provide more
information on exon junctions that are crucial to isoform discovery. Trying to find a
plausible explanation, we checked the empirical distribution of cDNA fragment lengths
in single-exon genes for both data, and found the distribution close to N(166,26?) and
N(127,13?) for the 37-bp and 76-bp data, respectively. The fact that the 37-bp data
contain a greater number of long fragments is a result of different experimental proto-
cols, and is likely to be a reason for the observed unexpected comparison results. A
simulation study with different read and fragment lengths reveals that the fragment
length distribution has larger effects than the read length has on isoform discovery,
and to some extent confirms our real data observation (see Appendix A.5).

. Paired-end vs. single-end RNA-Seq data. Compared with single-end RNA-Seq data,
the more recent paired-end data provides more information on exon junctions and thus
is expected to return isoform discovery results with higher precision rates. But if both
single-end and paired-end data are available for the same RNA-Seq sample, the former
can possibly complement the latter by providing more exon expression information,
helping capture lowly expressed exons in rare isoforms, and thus resulting in isoform
discovery results with higher recall rates. Because SLIDE has the flexibility of inputting
both single-end and paired-end RNA-Seq data (see Subsection 2.4.2 for more detail),
we tested these hypotheses by applying it to dataset 4, which has both single-end and
paired-end data from the same sample and of similar numbers of reads (Table 2.1).
We specifically compare the results of SLIDE on (i) paired-end data, (ii) single-end
data, and (iii) both paired-end and single-end data in Figure 2.4B. From the figure,
we observe that using paired-end data alone has the highest precision rates for all the
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Figure 2.4: Miscellaneous effects. (A) Precision and recall rates of SLIDE on 37 bp and 76 bp
paired-end RNA-Seq data (datasets 2-3). (B) Precision and recall rates of SLIDE on dataset
4 with paired-end data only (squares), single-end data only (stars), and both (diamonds).

genes, whereas using both data has the best recall rates. These results confirm our
intuitive hypotheses that paired-end data alone gives more precise information than
single-end data does in isoform discovery; however, single-end data does provide extra
exon expression information as well as noise when it is used in addition to paired-end
data, hence resulting in higher recall rates and lower precision rates.

2.3 Discussion

We have proposed a sparse linear model approach (SLIDE) capable of discovering mRNA
isoforms of given genes and estimating the abundance of discovered or other specified iso-
forms from RNA-Seq data. Compared to existing approaches [16, 24|, SLIDE (i) discovers
isoforms from all possible ones based on known gene and exon boundaries (e.g., from the
UCSC annotation), (ii) uses a stochastic approach with a quantitatively modeled design
matrix F (i.e., conditional probabilities of observing RNA-Seq reads from mRNA isoforms)
in isoform discovery, (iii) uses the same linear model subsequently for abundance estimation
on discovered or other specified isoforms, and (iv) can be used as a downstream isoform
discovery tool of de novo gene and exon assembly algorithms. Other widely used isoform
discovery methods [16, 30] find isoforms based on their own de novo genes and exons solely
assembled from RNA-Seq reads, and thus their discovered isoforms are highly dependent on
the accuracy of de novo assembly. SLIDE can avoid possible de novo assembly errors [17] by
using known gene and exon boundaries; it can also integrate de novo assemblies with known
ones to prevent the risk of missing isoforms involving novel exons. SLIDE will also benefit
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from ongoing efforts of improving D. melanogaster transcriptome annotations [13].

We have also explored various factors that may affect the performance of SLIDE on
isoform discovery. Our results suggest that (i) the consideration of GC content variation in
modeling F can improve the precision, (ii) the cDNA fragment size selection protocol and
the resulting cDNA fragment lengths have larger effects than read lengths have on both the
precision and recall, and (iii) paired-end RNA-Seq data provides more accurate information
than single-end data does in isoform discovery, but the addition of single-end data would
help with the discovery of rare isoforms.

As demonstrated by the isoform discovery and abundance estimation results, SLIDE
shows great promise as a tool for handling the two tasks sequentially with a shared linear
model. The modeled design matrix F is also shown to be a good quantitative representation
of sampling RNA-Seq reads from mRNA isoforms, in contrast to the binary representation
used in other isoform discovery methods [16, 23, 27, 30]. We still lack the information to
model irregular systematic RNA-Seq biases, such as low read coverage in transcript ends
and significant read coverage variation unexplained by GC content. But we expect SLIDE
to have increased power when such modeling becomes possible with the standardization
of RNA-Seq protocols and the improvement of technology. Finally, SLIDE can be easily
extended to incorporate mRNA isoform information from EST [33], CAGE [32], and RACE
[31] data in addition to RNA-Seq data to refine its linear model and obtain more accurate
isoform discovery results.

2.4 Methods

2.4.1 Linear Model Formulation and Identifiability Issue

In the linear modeling of paired-end RNA-Seq data, we first categorize reads into paired-end
bins. For an n-subexon gene, possible paired-end bins are {(7, 7, k,1),1 <i < j < k <1 <n},

whose total number is m, = n + 3(;) Lin>2) + 3(73‘) Lin>3) + ( )1(n>4 Then RNA-Seq data is
transformed into bin counts (i.e., number of reads in each bin), which are further normalized
as bin proportions b. Second, we enumerate all the possible isoforms of an n-subexon gene
as Iy,---,I,n_1, and denote p as the isoform proportions to be estimated. Third, we relate
unknown p to observed b by a design matrix F, where Fj;, = Pr(jth bin | kth 1soforrn) (i.e.,
the conditional probability of observing reads in the jth bin given that the reads are from
the kth isoform). (See Subsection 2.4.2 for the modeling of F'). Then, we write the following
linear model:

an—1
b—z Dk + €, j=1,---.m, or b=Fp-+e, (2.2)
where € = (€1,--- ,€,) is the random noise whose components are independent and have

mean 0.
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We note that the linear model (Equation 2.2) becomes unidentifiable when m, < 2™ —1
or equivalently n > 9. The model may also be unidentifiable when n < 9 due to possible
collinearity of F. To solve this identifiability issue, we reduced the number of parameters
dim(p) by adding a preselection procedure on isoforms. Also, given observed false zero bin
counts of certain junction reads, we applied a preselection procedure on observations, too
(see Appendix A.1.3). We write the postselection linear model as

K
ijZijpk+€ja j=1,---,J (2.3)
k=1

We note that the unidentifiability issue still exists in many genes even after the preselec-
tion procedures, so sparse estimation is necessary (see Appendix A.1.3).

For single-end data and the combination of both single and paired-end data, we can
derive a similar linear model (see Appendix A.1.2).

2.4.2 Modeling of Conditional Probability Matrix

Modeling of the conditional probability matrix F = (Fj;,), 1 < j < J, 1 <k < K is a
key part in the estimation of p (Equation 2.3). In paired-end RNA-Seq data, a mate pair
represents ends of a cDNA fragment reversely transcribed from an mRNA transcript. In this
sense, Fj, is the conditional probability that cDNA fragments with ends in the jth bin are
reversely transcribed from mRNA transcripts in the kth isoform. With this interpretation,
we model F with the following three assumptions.

1. The density of a cDNA fragment’s starting position (or the density of s; in Figure 2.1),
denoted by f, is uniform within subexons but proportional to GC content between
subexons in an mRNA transcript.

2. The ¢cDNA fragment length (¢ = ey — s; in Figure 2.1) distribution is modeled as
truncated Exponential with density denoted by g. This modeling choice is based on
empirical observations and Poisson point process approximations (see Appendix A.1.1).
SLIDE can also easily take other reasonable fragment length distributions.

3. Starting positions and fragment lengths are assumed to be independent.

In a two-subexon gene example (Figure 2.1), suppose that the two subexons have bound-
aries [a1,b1] and [ag, bs]. Then, reads in bin j = (1,1,2,2) have s; € [a1,b; — r + 1] and

€3 € [ag+7—1,by). For k = (1,2), we calculate Fy = [ f(s1) (fb2_51 g(0) df) ds;.

ay as+r—1—sq
For single-end data and the combination of both single and paired-end data, F can be
similarly calculated (see Appendix A.1.2).
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n 3 4 5 6 7 8 9 10
Datasets 1-2 (37 bp) 03 03 03 04 04 04 04 05
Datasets 3-4 (76 bp) 02 02 02 04 03 04 03 03
Simulation data (37 bp) 0.3 0.3 0.3 04 04 04 04 05
16 candidate As: 10-¢, 1074, 1073, 0.01, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 2.3: \(™ selection results for different datasets

2.4.3 mRNA Isoform Discovery

In isoform discovery, we expect sparse parameter estimation from the linear model (Equa-
tion 2.3), because the number of mRNA isoforms for most D. melanogaster genes is below
four [29] and far less than the number of possible isoforms K. L; penalization approach is
widely used for sparse estimation and has applications in high-dimensional and potentially
sparse biological data [37]. We also observe that annotated isoforms often contain a large
proportion of subexons, and thus expect isoform candidates with more subexons to be more
likely true. Hence, we add an L; penalty term in the objective function below to limit the
number of discovered isoforms as well as to favor the “longer isoforms”:

J K
5 — ' b —F.p)>+ A\ [Px] t.oppe>0 2.4
b argmme(] PP HAY S st pr >0, (2.4)

=1 k=1 K

where ny, is the number of subexons in the kth isoform and F; is the jth row of F. With ny,
in the penalty term, p, would thus be favored if ny is large. We note that this is a variant
of Lasso, a regularization regression method for cases in which the number of parameters to
be estimated exceeds the number of observations and most of the parameters are expected
to be zeros [34]. The difference between our penalty term and the one in standard Lasso is
that the latter only aims to limit the number of discovered isoforms without favoring longer
ones. Discussions about choosing L over L, regularization and using different likelihoods in
the linear model are in Appendix A.

The selection of the regularization parameter A (Equation 2.4) is by a stability criterion
that aims to return the most stable results over different runs of estimation [38]. Because
low signal-to-noise ratios in lowly expressed genes may significantly bias the A selection and
genes of the same number of subexons have similar dim(p) and dim(b) in Equation 2.4, we
group genes by their numbers of subexons n and select an optimal A for each group from 16
candidate values (\;)1%; (see Table 2.3). The selection procedure is described in Appendix A,
and the chosen A\(™ values for datasets 1-4 and the simulation data are in Table 2.3.

R package “penalized” [39] is used in the implementation.
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2.4.4 mRNA Isoform Abundance Estimation

The SLIDE linear model (Equation 2.3) can also be used for abundance estimation of dis-
covered or other specified (e.g., annotated) isoform proportions. Because the number of
discovered or annotated isoforms is smaller than the number of bin proportions, the linear
model is identifiable. Thus, we use nonnegative least squares without a penalty term to
estimate the isoform proportions. R package “NNLS” is used in the implementation [40].

2.5 Acknowledgements

I would like to thank Dr. Ci-Ren Jiang, Dr. James B. Brown, Dr. Haiyan Huang and Dr.
Peter J. Bickel as co-authors of this work. We would like to thank Qunhua Li and Nathan
Boley for their insightful comments during discussions. This work is supported in part by
Grants HG004695, HG005639, and EY019094 from the National Institutes of Health.



20

Chapter 3

Statistical Analysis for Correcting
System-Wide Protein Abundance
Estimates and Re-Determining
Transcriptional Importance in
Mammals

3.1 Introduction

The protein products of genes are expressed at very different levels from each other in a
mammalian cell. Thousands of genes are not detectably expressed. Of those that are, their
proteins are present at levels that differ by five orders of magnitude. Cytoplasmic actin, for
example, is expressed at 1.5 x 10® molecules per cell [41], whereas some transcription factors
are expressed at only 4 x 10® molecules per cell [42]. There are four major steps that deter-
mine differences in protein expression: differences in the rates at which genes are transcribed,
mRNAs are degraded, proteins are translated, and proteins are degraded (Figure 3.1). The
combined effect of transcription and mRNA degradation together determines mRNA abun-
dances (Figure 3.1). The joint effect of protein translation and protein degradation controls
the relative differences between mRNA and protein concentrations (Figure 3.1).

Transcription has long been regarded as a dominant step and is controlled by sequence
specific transcription factors that differentially interact with cis-regulatory DNA regions. It
has increasingly been realized, however, that the rates of the other three steps vary signif-
icantly between genes as well [11, 43, 44, 45, 46, 47, 48]. MicroRNAs, for example, differ-
entially interact with mRNAs of different genes to alter rates of mRNA degradation and
protein translation [49, 50, 51, 52, 53].

To quantify the relative importance of each of the four steps, label free mass spectrometry
methods have been developed that can measure the absolute number of protein molecules
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Figure 3.1: The steps regulating protein expression. The steady state abundances of proteins
and mRNAs are each determined by their relative rates of production (i.e. transcription or
translation) and their rates of degradation.

per cell for thousands of genes [11, 54, 55, 56, 5, 57|. By comparing these data to mRNA
abundance data, the relative importance of transcription and mRNA degradation versus
protein translation and protein degradation can be determined [11, 56, 57] (Figure 3.1). By
measuring mRNA degradation and protein degradation rates as well, the rates of transcrip-
tion and translation can be additionally infered [11]. Using this approach to study mouse
NIH3T3 fibroblasts, Schwanhausser et al. concluded that mRNA levels explain ~40% of
the variability in protein levels and that the cellular abundance of proteins is predominantly
controlled at the level of translation [11]. They suggested that transcription is the second
largest determinant and that the degradation of mRNAs and proteins play a significant but
lesser role.

Our initial reading of the Schwanhausser et al. paper [11], however, suggested that
their protein abundance estimates are much lower than established values for individual
proteins from the literature. In attempting to characterize the reason for this discrepancy,
we also came to suspect that additional sources of experimental error had not been taken into
account. Below we describe our re-analysis of this paper and also discuss the relationship
between our conclusions and those of Schwanhausser et al. and other system wide studies.

3.2 Results and Discussion

3.2.1 A Non-Linear Underestimation of Protein Abundances

We first noticed that published abundances of 53 mammalian housekeeping proteins [41,
42, 58, 59, 60, 61, 62, 63, 64, 65], 33 of which were derived by SILAC mass spectrometry
and 17 by western blot, are on average 16 fold higher than those from Schwanhausser et
al.’s label free mass spectrometry data (Dataset S3.1). Once we brought this discrepancy to
the authors’ attention, they upwardly revised their abundance estimates (see Corrigendum
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Figure 3.2: A non-linear bias in protein abundance estimates and its correction. (A) The
y axis shows the ratios of 61 individually derived protein abundance estimates divided by
the abundance estimates from Schwanhausser et al.’s second whole proteome dataset. The
x axis shows Schwanhausser et al.’s second whole proteome abundance estimates. The red
line indicates the locally weighted line of best fit (Lowess parameter f = 1.0), and the
vertical dotted grey lines show the locations of the 1st quartile, median and 3rd quartile of
the abundance distribution of the 5,028 proteins detected in the whole proteome analysis.
(B) The same as panel A except that the whole proteome estimates of Schwanhausser et al.
have been corrected using a two-part linear model and the abundances from the 61 individual
protein measurements.

[11]). In addition, they provided western blot or Selected Reaction Monitoring (SRM) mass
spectrometry measurements for eight polypeptides in NIH3T3 cells. We find, however, that
Schwanhausser et al.’s second whole proteome abundances are still lower than the individual
measurements for proteins expressed below 106 molecules per cell, with the lowest abundance
proteins showing the largest discrepancy (Figure 3.2A; Dataset S3.1).

Western blot and SILAC mass spectrometry measurements show the same discrepancy
versus the label free whole proteome data (Dataset S3.1). For example, for proteins expressed
below 1 million molecules per cell, the 26 SILAC measurements are a median of 2.95 fold
higher than Schwanhausser et al’s second estimates, and the 19 western blot measurements
are 3.10 fold higher. This suggests that the discrepancy is not due to error in the individual
measurements as a similar bias in two independent methods is unlikely.

Of the 61 individual measurements of protein abundance available to us, 15 were made
in NIH3T3 cells and 42 were made in HeLa cells. The discrepancy between the second
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whole proteome abundances and these individual measurements is not due to differences
in expression levels between Hela and NIH3T3 cells for the following reasons. One, it is
unlikely that such a difference would only occur for lower abundance proteins. Two, five of
the individual measurements for lower abundance proteins (Orc2, Orc4, HDAC3, NFkB1,
and NFkB2) were made in NIH3T3 cells and are on average 3.7 fold higher than the second
whole proteome estimates in this same cell line (Dataset S3.1). Three, later in the paper we
show that collectively all of the 61 individual proteins measured have on average the same
relationship in expression values versus all other cellular proteins in both NIH3T3 and HeLa
cells. In addition, as further evidence we note that Schwanhausser et al.’s second estimates
for RNA polymerase II and general transcription factors such as TFIIB and TFIIE are only
1.6 fold higher than those in yeast [66] and are 7.1 times less than those in HeLa cells [64].
Yeast cells have 1/40th the volume, 1/200th the amount of DNA and 1/4 the number of
genes of NIH3T3 and HeLa cells [67]. Two fold reductions in the concentrations of a single
general transcription factor have, in some cases, phenotypic consequence [68, 69, 70, 71].
Thus, it is unlikely that a rapidly dividing mammalian cell could function with much larger
reductions in the amounts of all of these essential regulators to levels close to those found in
yeast.

3.2.2 Correcting the Non-Linear Bias

Schwanhausser et al. calibrated protein abundances by mixing known amounts of protein
standards with a crude protein extract from NIH3T3 cells and then measuring several thou-
sand proteins in the mixture by label free mass spectrometry. The 20 “spiked in” protein
standards detected, however, were present at the equivalent > 8.0 x 10° molecules per cell,
a level that represents only the most highly expressed 11% of the proteins detected (Fig-
ure 3.3A) (M. Selbach, personal communication [11]). To convert mass spectrometry signals
to protein abundances, Schwanhausser et al. assumed that a linear relationship defined using
these 20 “spiked in” standards holds true for proteins at all abundances (Figure 3.3A). The
discrepancy between the resulting estimates and individual protein measurements, however,
suggests that this assumption is not valid. We therefore employed the 61 individual protein
measurements from the literature as they span a much wider abundance range. In a plot of
these data vs Schwanhausser et al.’s second whole proteome estimates, we found that a two-
part linear regression gave a statistically better fit over a single regression (Figure 3.3B and
C) (p-value = 0.002). We then used this two-part regression to derive new abundance esti-
mates for all 5,028 proteins in Schwanhausser et al.’s dataset (Dataset S3.1). As Figure 3.2B
shows, the correction removes the non-linear bias.

In our rescaled data, the median abundance protein is present at 170,000 molecules per
cell (Figure 3.2B), considerably higher than Schwanhausser et al.’s original estimate of 16,000
molecules per cell and significantly above their second estimate of 50,000 molecules per cell.
For low abundance proteins the effect is larger. In our corrected data, the median sequence
specific transcription factor is present at 71,000 molecules per cell versus Schwanhausser
et al.’s estimates of first 3,500 then 9,300 molecules per cell (Dataset S3.1). Our correction
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Figure 3.3: Calibrating absolute protein abundances. (A) The relationship between iBAC
mass spectrometry signal (z axis) and the amounts of the 20 “spiked in” protein standards
(y axis) used by Schwanhausser et al. to calibrate their whole proteome abundances (data
kindly provided by Matthias Selbach, Dataset S3.2). The line of best fit is shown (red).
(B) The relationship between individually derived estimates for 61 housekeeping proteins (y
axis) and Schwanhausser et al.’s second whole proteome estimates (x axis). The two part
line of best fit used to correct the second whole proteome estimates is shown (solid red line)
as is the single linear regression (dashed red line). (C) The fit of different regression models
for the data in panel B. The y axis shows the leave-one-out cross validation root mean square
error for each model. The x axis shows the protein abundance used to separate the data for
two part linear regressions. The red curve shows the optimum change point for a two part
linear model is at an abundance of ~106 molecules per cell. The dashed red horizontal line
shows the root mean square error for the single linear regression.

reduces the range of detected abundances by ~50 fold (unlogged) compared to Schwanhausser
et al.’s second estimates (Dataset S3.1) and the variance in protein levels from 0.97 to 0.36.

3.2.3 Corrected Protein Abundances Show an Increased
Correlation with mRNA Abundances

As an independent check on the accuracy of our corrected abundances, we compared them to
Schwanhausser et al.’s RNA-Seq mRNA expression data. Our corrected protein abundances
correlate more highly with mRNA abundances than do Schwanhausser et al.’s second whole
proteome estimates (compare Figure 3.4A and B). The increase in correlation coefficient is
statistically highly significant (p-value < 1072?) (see Section 3.4), arguing that our non-linear
correction to the whole proteome abundances has increased the accuracy of these estimates.
The most dramatic change is that the scatter about the line of best fit is reduced and shows
a stronger linear relationship. The 50% prediction band shows that prior to correction the
half of proteins whose abundances are best predicted by mRNA levels are expressed over
an 11 fold range (unlogged), but after correction they are expressed over a narrower, 4 fold
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Figure 3.4: Protein abundance estimates versus mRNA abundances. (A) The relationship
between Schwanhausser et al.’s second protein abundance estimates vs mRNA levels for
4,212 genes in NIH3T3 cells. The linear regression of the data is shown in red, the 50%
prediction band by dashed green lines, and the 95% prediction band by dashed blue lines.
(B) The relationship between our corrected estimates of protein abundance vs mRNA levels.
The linear regression and prediction bands are labeled as in panel A.

range (Figure 3.4A and B). The correction reduces the width of the 95% prediction band
even further, by 18 fold.

For our corrected data, the median number of proteins translated per mRNA is 9,800
compared to Schwanhausser et al.’s original estimate of 900 and their second estimate of
2,800. In yeast, the ratio of protein molecules translated per mRNA is 4,200 - 5,600 [72, 73].
Given that mammalian cells have a higher protein copy number than yeast [67], it is not
unreasonable that the ratio in mammalian cells would be the higher.

3.2.4 Estimating the Impact of Molecule Specific Measurement
Error

In addition to the above general error in scaling protein abundances, there are additional
sources of experimental error that differently affect data for each protein and mRNA. As a
result of these molecule specific measurement errors, the coefficient of determination between
measured mRNA and measured protein levels—i.e. R? shown in Figure 3.4B—is lower than
the actual value between true protein and true mRNA levels. With an accurate estimate of
the errors, it is possible to calculate the increased correlation expected between true protein
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and true mRNA abundances. Because the variance in the residuals in Figure 3.4B (i.e.
the displacement along the y axis of data points about the line of best fit) is composed of
both experimental error and the genuine differences in the rates of translation and protein
degradation between genes, once the experimental error has been estimated, it is also possible
to infer the combined true effects of translation and protein degradation.

There are two classes of molecule specific experimental error: stochastic and systematic.
Stochastic error, or imprecision, is the variation between replica experiments and is esti-
mated from this variation. Systematic error, or inaccuracy, is the reproducible under or over
estimation of each data point, and is estimated by comparing the results obtained with the
assay being used to those from gold standard measurements obtained with the most accurate
method available.

Schwanhausser et al. limited their estimation of experimental error to stochastic errors.
Because our correction of the whole proteome abundances reduces the total variance in
measured protein expression levels, we first reestimated the proportion of the variance in the
residuals in Figure 3.4B that is due to stochastic measurement error using replica datasets
(see Section 3.4). We find that 7% results from stochastic protein error and 0.8% from
stochastic mRNA error.

Schwanhausser et al., however, also noted a significant variance between their whole
genome RNA-Seq data and NanoString measurements for 79 genes (R? = 0.79 in Figure S8A
in Schwanhausser et al. [11]), though they did not take this into account subsequently. RNA-
Seq is well known to suffer reproducible several fold biases in the number of DNA sequence
reads obtained for different GC content genomic regions [74, 75]. In contrast, NanoString
gives an accurate measure of nucleic acid abundance as correlation coefficients of R? = (.99
are obtained when NanoString data are compared to known concentrations of nucleic acid
standards [76]. Thus, it is reasonable to consider NanoString as a gold standard that can
be used to assess the systematic error in the RNA-seq data by assuming that the variance
between the two methods is due mostly to systematic error in RNA-seq. The variance
in Schwanhausser et al.’s NanoString/RNA-Seq comparison is equivalent to 23.3% of the
variation in the residuals in Figure 3.4B, 29 fold larger than the stochastic component of
mRNA error [74, 75].

It is also important to assess the systematic error in the whole proteome abundances
as label free mass spectrometry includes such biases [5, 73, 77]. In principle the “spiked
in” protein standards in Schwanhausser et al.’s calibration experiment (i.e. the data in
Figure 3.3A) should provide gold standard data. In practice, however, the variance in this
experiment is significantly higher than that observed between the whole proteome estimates
and other abundance data that is known to contain significant error (M. Selbach personal
communication). For example, the variance in Schwanhausser et al’s calibration experiment
would contribute 1.4 fold more to the variance in the residuals in Figure 3.4B than the
variance between the corrected whole proteome estimates and the 61 individual protein
measurements would. Since no other suitable gold standard is available, we are thus unable
to estimate the systematic protein error.

Taking the stochastic protein error as a minimum estimate of protein error and the
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variance from the NanoString/RNA-Seq comparison as an estimate of all RNA errors, it can
be shown that true mRNA levels explain at least 56% of true protein levels, and by extension
protein degradation and translation combined explain no more than 44% (see Section 3.4).

3.2.5 Estimating the Impact of Non-Transcribed Genes

The above estimates, though, only consider the 4,212 genes for which both mRNA and
protein abundance data are available. There are many thousands of other genes that are
either not detectably transcribed or are more weakly transcribed than these 4,212 genes,
and as a result produce little or no protein [78, 79]. To derive a genome wide assessment,
therefore, we simulated the true levels of protein expected for an extensive mouse polyA+
mRNA-Seq dataset [78] (see Section 3.4).

Our simulations take into account the trimodal distribution of mRNA expression averaged
over a population of animal cells of a single cell type (Figure 3.5) [78, 79]. The 4,212 genes
detected by Schwanhausser et al. belong to so-called Highly Expressed (HE) genes, which
comprise the most abundant mode and which are expressed above one molecule of mRNA per
cell (Figure 3.5). Low Expressed (LE) genes comprise a second mode that are not expressed
in the majority of cells butas shown by single molecule fluorescent in situ hybridizationare
present at one to several molecules per cell in a small percent of cells. Not Expressed (NE)
genes are not detectably expressed in any cells in the population. LE genes tend to be closer
to HE genes on the chromosome than are NE genes, and it has been suggested that this
proximity may allow escape from repressive chromatin structures in a few cells, explaining
the stochastic bursts of rare transcription observed [78, 79].

To account for variation in the expression of individual genes between cells, which all
LE genes at a minimum must suffer, our model assumes that the general distribution of
mRNA and protein expression levels does not vary from cell to cell even when the expression
of individual genes does. For genes in cells that do not express mRNA, an arbitrary, low
background level of mRNA expression was chosen because it is not possible to represent zero
on a log scale. Conservative values were chosen that are just below the lowest abundances
detected in the RNA-Seq dataset. The mRNA expression of each LE gene was divided into
a component representing expression of one mRNA molecule in some cells and a second
component representing mRNA expression at the arbitrarily defined background level for
the remaining cells. This yields 8,763 NE and LE gene equivalents that are not expressed
and 12,546 LE and HE gene equivalents that are expressed.

Protein levels for the 12,546 expressed gene equivalents were then simulated using the
estimate for the combined variance in translation and protein degradation rates derived
previously from the data for 4,212 genes. The 8,763 gene equivalents that express no mRNA
are assumed to also express no protein, and thus all such gene equivalents were assigned the
same arbitrary, low protein expression value to capture the expectation that there should be
no variance in protein expression between them.

For those genes for which Schwanhausser et al. were able to measure both mRNA and
protein abundances (i.e. for that particular subset of all HE genes), our model suggests that
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Figure 3.5: The trimodal distribution of mRNA expression levels in animal cells. The black
curve shows the frequency distribution for 15,325 genes that give detectable polyA+ mRNA
expression in mouse Th2 cells. The two major modes detected for these genes are Highly
Expressed (HE) genes centered at 10 molecules of mRNA per cell and Low Expressed (LE)
genes centered at 0.1 molecules per cell [76, 77]. The relative frequency of the remaining
5,984 Not Expressed (NE) genes is represented by the area of the circle [76, 77]. The grey
curve shows the expression frequency distribution in Th2 cells of the 3,841 genes expessed
above 1 molecule per cell that are from the set of the 4,212 genes whose mRNA and protein
abundances were detected by Schwanhausser et al. All data has been scaled as described in
Section 3.4 and Figure 3.11.
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Figure 3.6: Model for true protein abundances versus true mRNA abundances for all 21,309
mouse protein coding genes in Th2 cells. The plots show the result of a typical simulation.
The model simulates mRNA and protein expression in each cell of the population by dividing
each LE gene into a component expressed at one molecule per cell and a second component
expressed at the background level. In addition, the model assumes that genes that are not
expressed in a given cell all expresses the identical arbitrary low level of mRNA and protein
(arrowed). Results for the 12,546 HE and LE gene equivalents expressed above one molecule
per cell (black) and for the 8,763 LE and NE gene equivalents expressed at the background
level (blue) are shown. The theoretical R? value for all data is 0.96, and for expressed and
non-expressed genes separately are 0.66 and 1.0 respectively.

true mRNA levels predict 56% of true protein abundances, the same result obtained for the
4,212 genes in NIH3T3 cells. This indicates that our simulation is quite reasonable. For all
21,309 genes, the R? value obtained from the model is 0.96 (Figure 3.6; Table 3.1). We do
not believe, however, that the relationship between protein abundance and mRNA across
all genes can be summarized by a single R? value. The simplest argument is that R? is a
measure of prediction. The higher the proportion of variance of expressed protein explained
by mRNA variance the easier it is to predict expression of a single gene given its mRNA. But
predicting a non-expressed gene from its mRNA is trivial. To lump such genes together with
expressed genes where prediction is harder seems uninformative and misleading. Instead,
we feel it is more appropriate to consider the relationships for expressed and non-expressed
genes separately. For the 8,763 gene equivalents that are not expressed, our model suggests
that true mRNA levels predict 100% of true protein abundances, and for the 12,546 that are
expressed that true mRNA levels predict 65% of true protein abundances.

The higher correlation among the 12,546 expressed gene equivalents compared to that
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Table 3.1: The contribution of different steps in gene expression to the variance in protein
abundances between genes

variance in Percent contribution to variance in true protein levels

true protein RNA Protein

levels (log;o)* mRNA Transcription degradation Translation degradation
Schwanhausser 2nd data o o ;
4,212 detected genes® 0.97 40% 34% 6% 55% 5%
Measured error strategy o o o7 o 0
4,212 detected genes® 0.34 56% 38% 18% 30% 14%
Measured error strategy . .
12,546 detected genest 0.43 65% 51% 14% 24% 11%
8,763 non-expressed genes® 0 100% NA NA NA NA
Measured error strategy 0.66 75% 66% 9% 18% 7%
4,212 detected genes’ ’ ¢ ¢ ¢ ¢ 0
Measured error strategy 0.90 82% 5% 7% 13% 5%

12,546 detected genes?

°In this column, the value given for Schwanhausser et al.s 2nd data is the variance in their
measured protein abundances; the remaining values are our estimate for the variance in true protein
levels for different scenarios.

bEstimates from Schwanhausser et al. based on the 4,212 genes for which NIH3T3 cell protein
and mRNA abundance data are available.

¢Our estimates for same the 4,212 genes studied by Schwanhausser et al. after correcting the
overall scaling of the NTH3T3 cell protein abundance data and taking molecule specific stochastic
and systematic experimental error into account.

d0ur estimates for the model shown in Figure 3.6 for the 12,546 expressed HE and LE gene
equivalents in mouse Th2 cells. Protein expression values were modeled using the variance in
protein degradation rates measured by Schwanhausser et al and the variance in translation rates
estimated in the row above.

€Our estimates for the model shown in Figure 3.6 for the 8,763 non-expressed NE and LE gene
equivalents in mouse Th2 cells.

fOur estimates for same the 4,212 genes studied by Schwanhausser et al. derived using mea-
sured translation rates from Ingolia et al.

90ur estimates for the 12,546 expressed HE and LE gene equivalents in mouse Th2 cells using
protein abundances modeled from the measured variance in translation rates of Ingolia et al and
the measured variance in protein degradation rates determined by Schwanhausser et al.
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for the 4,212 genes for which data is available (R* = 0.65 vs 0.56) is due to the fact that
the latter set is biased towards more highly expressed genes (Figure 3.5). The addition
of many low protein and mRNA expression values will increase the correlation given the
assumptions we have made because the variance in protein expression levels increases while
the variance in translation and protein turnover rates does not (Table 3.1, column 2). The
only circumstance in which consideration of genes expressed at lower levels would not lead
to an increase in R? would be if the variation in their translation and protein degradation
rates were larger than that for the 4,212 detected genes.

3.2.6 Estimating the Relative Importance of Transcription,
mRNA Degradation, Translation and Protein Degradation

In addition to determining protein and mRNA abundances, Schwanhausser et al. also di-
rectly measured mRNA and protein degradation rates and calculated the percentage that
each contributed to the variance in protein abundances. Using this information, it is pos-
sible to determine the relative importance of transcription, RNA degradation, translation
and protein degradation for different scenarios (see Table 3.1 and Section 3.4). For the
12,546 expressed genes, transcription explains ~52% of the variance in true protein levels,
RNA degradation explains ~14%, translation ~24%, and protein degradation ~10% (Ta-
ble 3.1). For the 8,763 non-expressed genes, we assume that the absence of transcription
is overwhelmingly the reason for the absence of protein expression. Clearly these estimates
are tentative and depend on the particular assumptions we have made. We believe, though,
that they will prove more accurate than Schwanhausser et al.’s suggestion that translation
is the predominant determinant of protein expression and that mRNA levels explain around
40% of the variability in protein levelsl (Table 3.1).

3.2.7 Direct Measurements of Translation Rates Support Our
Analysis

Direct measurements of system wide translation rates by Ingolia et al. using ribosome pro-
filing [43] provide independent evidence that translation rates vary less than Schwanhausser
et al. suggest. For 95% of the genes whose mRNA was detected, measured translation rates
vary only nine fold in mouse embryonic stem cells (Figure 3.7). In contrast, Schwanhausser
et al. inferred that for 95% of detected genes’ translation rates vary 110 fold (Figure 3.7).
Similarly, the variance in translation rates measured by Ingolia et al. is 4.6 fold less than
the variance in rates inferred indirectly by Schwanhausser et al. in their model.

Having direct measurements of the variance in translation rates opens up a second strat-
egy to estimate the relative importance of each step in gene expression (Section 3.4). In
our first strategy, protein degradation rates and errors in protein and mRNA abundances
were determined from direct experimental data; and the variance in true protein levels ex-
plained by translation was inferred as that part of the variance in the residuals in Figure 3.4B
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Figure 3.7: Measured versus inferred translation rates. The relative density of ribosomes
per mRNA for each gene directly measured by Ingolia et al. [43] (grey lines) compared to
the translation rates for each gene inferred by Schwanhausser et al. [11] (black lines). The
distribution of values from Ingolia was scaled proportionally to have the same median as
that of the Schwanhausser et al. values, and the gene frequencies of the two distributions
were normalized to have the same total. The locations of the 2.5 and 97.5 percentiles of each
distribution are shown as dashed lines.

that is not explained by the three experimentally measured terms. In our second strategy,
translation rates, protein degradation rates and mRNA errors are determined from direct
experimental data; and the variance in measured protein levels explained by protein error
is inferred as that part of the variance in the residuals in Figure 3.4A that is not explained
by the sum of variances of the three experimentally measured components (see Section 3.4).
This secondmeasured translationstrategy is thus independent of our rescaling of Schwan-
hausser et al.’s second protein abundance estimates and of our estimate of stochastic protein
measurement error.

According to our second strategy, the variance in true protein levels is 67% of the variance
in Schwanhausser et al.’s measured abundances; mRNA levels contribute 76% to the vari-
ance in protein expression; transcription 67%; RNA degradation 9%; translation 17%; and
protein degradation 7% (Table 3.1). If we model protein expression levels for the 12,546 ex-
pressed genes using these variances in translation and protein degradation rates, even higher
contributions for mRNA levels (82%) and transcription (75%) are predicted (Table 3.1).

Despite the significant differences in the underlying data and assumption used, our two
strategies broadly agree (Table 3.1). Both suggest that the variance in Schwanhausser et al.’s
second protein abundance estimates is too high. Both suggest that translation contributes
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less to protein levels and that transcription contributes more that Schwanhausser et al.
claimed. In effect, Ingolia et al.’s measured rates of translation provide independent support
for our rescaling of Schwanhausser et al.’s protein abundances and our estimates of stochastic
protein error, and visa versa.

Our second strategy, though, does estimate that mRNA levels and transcription explain
a higher percent of protein expression than the first (Table 3.1), but this is not entirely
unexpected. In our first strategy, we were not able to take account of systematic, molecule
specific errors in protein abundances because appropriate control measurements were not
available. Thus, this first strategy could well have underestimated error. In contrast, the
second approach estimates all types of protein abundance errors in a single term and thus
has the potential to be the more accurate if the error in the ribosome profiling and protein
degradation data is not too large. The different results obtained by our two strategies may
in addition result, though, because that data that is unique to each approach are subject to
variability and are from a different cell line.

Ingolia et al. also showed that translation rates change only several fold upon differen-
tiation of embryonic stems cells and, with the exception of the translation machinery, the
change affects all expressed genes to a similar degree [43]. Other system wide studies, includ-
ing a separate analysis by Schwanhausser et al, also suggest that the differential regulation
of translation may be limited to modest changes at a subset of genes [11, 48, 52, 53|. This
work seems consistent with our analysis and suggests that translation may be used chiefly
for fine tuning protein expression levels.

3.2.8 Implication for Other System-Wide Studies

Two other system wide estimates of protein abundance in mammalian cells are, like Schwan-
hausser et al.’s, lower than ours. These two reports suggest that the median abundance
protein detected is present at 8,000 [54] or 9,700 [55] molecules per cell vs our estimate
of 170,000 molecules per cell. Since these lower estimates provide less than 1/10th of the
number of histones needed to cover the diploid genome with nucleosomes and are lower than
published estimates for a wide array of other housekeeping proteins, it is unlikely that they
are accurate.

After completion of the remainder of this manuscript, Wisniewski et al. published protein
abundance estimates for HeLa cells that are generally higher than ours and spread over a
broader range [80] (Figure 3.8A). These new estimates are also 240% higher on average than
the set of individual protein measurements from the literature (Dataset S3, Figure 3.8B).
Since over 80% of these individual measurements were made for proteins in HeLa cells,
Wisniewski et al.’s estimates must be incorrectly scaled. Using our two part linear regression
strategy, we therefore corrected Wisniewski et al.’s whole proteome data (see Section 3.4 and
Figure 3.9; Dataset S3), bringing the average variation between the whole proteome estimates
and individual protein measurements to within 6% of each other (Figure 3.8B; Dataset S3).
Interestingly, the correction dramatically increases the similarity between the distributions
of protein abundances in HeLa and NIH3T3 cells for all orthologous proteins (Figure 3.8A).
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Figure 3.8: Comparison of corrected and uncorrected whole proteome abundance estimates.
(A) The distributions of protein abundance estimates for 4,680 orthologous proteins in
NIH3T3 cells (black lines) or HeLa cells (red lines). The values from Schwanhausser et
al.s second estimates and Wisniewski et al.’s estimates are shown as dashed lines. The val-
ues for our corrected abundance estimates are shown as solid lines. (B) The ratios of HeLa
cell whole proteome abundance estimates divided by individual measurements from the lit-
erature for 66 proteins. Results for the original data from Wisniewski et al. (dashed line)
and after these values have been corrected (solid line) are plotted. The green dashed vertical
line indicates a ratio of 1.

This establishes the important point, mentioned at the beginning of Section 3.2, that in
aggregate the 604 housekeeping proteins show a similar relationship to the expression values
of all other cellular proteins in both cell lines, and thus the discrepancies with the uncorrected
whole proteome data are not due to differences in expression levels in HeLa versus NIH3T3
cells. The correction also increases the correlation between HeLa cell protein and HeLa
mRNA abundances to a statistically significant extent (p-value = 6 x 1072°) and reduces the
50% and 95% confidence bounds for this relationship by 1.7 fold and 4.6 fold respectively.
Wisniewski et al. scaled their protein abundances using the total cellular protein content
and the sum of the mass spectrometry signals for all detected polypeptides. They assumed
that mass spectrometry signals are proportional to protein abundance. In contrast, our
scaling strategy makes no such assumption and instead uses many individual measurements
of housekeeping proteins to estimate a multipart (spline) function. The increased correlations
obtained with individual protein measurements and with mRNA abundances for two cell lines
suggests that our scalings are the more accurate.

Other estimates for the contribution of mRNA levels in determining protein expression
in mammals are lower than ours, suggesting that mRNA levels contribute 10%-40% [56, 57].
In comparison, we estimate that mRNA abundance explains 56% - 76% for a set of 4,212
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Figure 3.9: Calibrating absolute protein abundances in HeLa cells. (A) The relationship
between individually derived estimates for 66 housekeeping proteins (y axis) and Wisniewski
et al.s whole proteome estimates from HeLa cells (z axis) (Dataset S3.3). The two part line
of best fit used to correct the whole proteome estimates is shown (solid red line) as is the
single linear regression (dashed red line). (B) The fit of different regression models for the
data in panel A. The y axis shows the leave-one-out cross validation root mean square error
for each model. The z axis shows the protein abundance used to separate the data for two
part linear regressions. The red curve shows the optimum change point for a two part linear
model is at an abundance of ~106.8 molecules per cell. The dashed red horizontal line shows
the root mean square error for the single linear regression.
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detected proteins, 65% - 82% for all expressed genes and 100% for those genes that are
not expressed (Table 3.1). The other groups’ studies did not include genes whose protein
expression was not detected, and neither took systematic experimental errors into account or
made use of direct measures of translation rates. For this reason, we suspect their analyses
all underestimate transcriptional importance.

3.3 Conclusions

Quantitative whole proteome analyses can offer profound insights into the control of gene
expression and provide baseline parameters for much of systems biology. It is critical, though,
to first ensure that these data are correctly scaled, that experimental measurement errors
are accounted for as thoroughly as possible, that all genes are considered, and that direct
measurements of each step are made. Additional measurements and controls will be needed
to derive a more assured system wide understanding of protein and mRNA abundances and
the relative importance of each of the four steps in gene expression.

3.4 Materials and Methods

3.4.1 Correcting Protein Abundances

For NIH3T3 cells, all credible individual protein abundance measurements available to us
for housekeeping proteins (a total of 61 proteins, Dataset S3.1) were log,, transformed along
with the corresponding estimates from Schwanhausser et al.’s second whole proteome dataset.
Model selection of different regressive models by leave-one-out cross-validation was used to fit
the training data [81]. This showed that a plausible two-part linear regression with a change
point at 10° molecules per cell (line < 1x 10 ... slope = 0.56, intercept = 2.64; line > 1x 10°
...slope = 1.06, intercept = —0.41) fit the data far better than by accident (likelihood ratio
test bootstrap p-value = 0.00243; Figure 3.3B and C). The resulting two-part linear model
was used to correct all 5,028 protein abundance estimates (Figure 3.2B, Dataset S3.1).

The null hypothesis that the correlation coefficient of the uncorrected Schwanhausser et
al. protein abundance estimates vs mRNA estimates (R; = 0.626) is equal to that of our
corrected protein estimates vs mRNA estimates (Ry = 0.642) was tested using the method for
comparing dependent correlation coefficients [82], given that the uncorrected and corrected
protein abundance estimates and the mRNA estimates can be assumed to have a multivariate
Gaussian distribution. The resulting two-sided p-value < 1072 shows that R» is statistically
significantly larger than R;.

To correct protein abundance estimates for HeLa cells [80], the same strategy used for
NIH3T3 cells was employed. A two-part linear regression with a change point at 106.8
molecules per cell fit the data far better than by accident (likelihood ratio test bootstrap
p-value = 0.001) (Figure 3.9). The resulting two-part linear model was used to correct all
HeLa cell protein abundance estimates (Figure 3.8; Dataset S3). The correlation of HeLa cell
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Figure 3.10: The relationship between true and measured protein and mRNA levels.

protein abundance estimates with mRNA abundances was determined using the mean values
of replica HeLa cell RNA-Seq datasets from the ENCODE consortium [83] (GEO Accession
ID “GSM765402”). The hypothesis that our corrected protein abundances correlate more
highly with these HeLa mRNA abundances than the uncorrected estimates was tested as
above, resulting in a two sided p-value of 6 x 1072,

3.4.2 The Contribution of mRNA to Protein Levels in NITH3T3
Cells: Measured Error Strategy

The variance term in a linear model between measured protein abundance (M P) (response)
and measured mRNA levels (M R) (predictor) is decomposed in a standard way (ANOVA
[81]) into three components (Figure 3.10). These components of the variance in the residuals
represent mRNA measurement error (eg), protein measurement error (ep), and the variance
in a linear model between true protein abundance (T'P) and true mRNA levels (T'R) that
results from the centered genuine differences in the rates of protein degradation and trans-
lation (PDT). The measured protein abundances considered in this case are our rescaled
estimates.
Statistically, we can write three linear models from Figure 3.10.

TR = bRMR+CR + eg, (31)
TP =bTR+c+ PDT,
MP:TP+CP+€p,

where TR, M R, TP, M P are abundance values on a log;, scale; we assume the three sources
of variation (eg, ep and PDT) are independent random variables with mean 0; the amount
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of protein degradation and translation (PDT') is assumed to be independent of true mRNA
levels (T'R) on the basis of partial evidence: the variance in the residuals in Figure 3.4B is
similar for different mRNA abundances; the reversal of the causal relationship between TR
and M R in model (3.1) requires another assumption that T'R and M R have an approximately
joint Gaussian distribution; and finally we assume the slope of TP in model (3.3) can be
taken to be 1 because the ratios between the 61 protein published abundance measurements
and our corrected estimates are close to 1 (Figure 3.2B). Combining (3.1)-(3.3), we write the
linear model between measured protein abundance and measured mRNA levels as

MP =bbrMR+ bcg +c+ cp+beg + PDT + ep. (34)
Based on model (3.4)

1. We first estimated var(begr + PDT + ep) as 62, and bbg as l;all from fitting the above
model with the 8,424 corrected mass spec and RNA-Seq data points pooled from the
two replicates (Dataset S3.1). By independence, we have

var(beg + PDT + ep) = b*var(eg) + var(PDT) + var(ep).

2. We next estimated var(eg) as 6% and by as by from fitting model (3.1) with the
77 NanoString (“T'R”) vs RNA-Seq (“M R”) data points, after removing two outliers
(Dataset S2).

3. We could not estimate var(ep) from directly fitting model (3.3), as TP data is not
available. As a surrogate, we estimated var(ep) as 6% from the following linear model
that quantifies the stochastic error in mass spec replicate data:

where M P;; is the corrected mass spec data for the ith protein in the jth replicate
in Schwanhausser et al., and M P; is the average of our corrected protein data for the
ith protein, i = 1,...,4,212 (Dataset S3.1). Please note that 6% is potentially an
underestimate of the protein error as we only consider the stochastic error, not the
systematic error.

4. From the estimates 6%, by, 6% and 6% above, we estimate var(PDT) as

b

~2 A2 all ~2 ~2

Oppr = 0qu —\ 7 | OR —Op-
br

Hence, we have successfully decomposed the variance estimate 62, i.e. the estimated
variance of residuals between measured protein levels and measured mRNA levels, into 3
components:
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e 5%: RNA error (23.3% of 62,)
e §%: protein error (7% of 62,)
e 0%y protein degradation and translation (69.6% of 62;)

From the diagram and the above calculation, we also derived the percentage of variability
in the unobserved true protein levels explained by the unobserved true mRNA levels.

52 22 52
9up —9p — 9PpDT
) — = 55.9%,
Oup —0p

where 63,5 is the variance of the corrected measured protein levels.

We separately estimated the stochastic mRNA error from the replicate RNA-Seq mea-
surements of the 4,212 genes (Dataset S3.1). The stochastic mRNA error contributes 0.8%
of 62,.

3.4.3 The Contribution of mRINA to Protein Levels for All
Mouse Genes

To estimate gene expression levels for all genes we employed a deep RNA-Seq dataset that
detected polyA+ mRNA for 15,325 protein coding genes in mouse Th2 cells [78]. To place
these abundance estimates on the same scale as those of Schwanhausser et al’s data, the
3,841 mRNAs expressed above 1 RPKM (reads per kilobase of exon per million mapped
reads) in common between the two datasets were identified. The Th2 cell data were then
scaled to have the same median and variance for these common genes (Figure 3.11).

To model protein abundances, we first divided each LE gene expressed at less than one
molecule of mRNA per cell into two: a fraction of a gene expressed at 1 molecule per cell
with a weight w and a fraction of a gene that is not expressed in any cells with a weight
1 —w. The 4,024 LE genes were thus decomposed into 1,245 gene equivalents expressed at 1
molecules per cell and 2,779 gene equivalents that are not expressed. Combining these with
the 11,301 HE genes and 5,984 NE genes, we obtained 12,546 HE and LE expressed gene
equivalents and 8,763 NE and LE non-expressed gene equivalents. For the measured error
strategy, we then simulated the expected levels of protein expressed and true mRNA levels
from the 12,546 expressed gene equivalents using bg, ég, 6%, b, ¢ and 62, estimated from
our correction to Schwanhausser et al.’s NIH3T3 cell data, see Subsection 3.4.2. The values
used to simulate protein levels for the measured translation strategy are described in the
next section. For the 8,763 non-expressed gene equivalents, we assigned them true mRNA
expression levels of —3.0 (log,,) and expected protein expression levels of 2.1 (log;,) based on
Equation (3.2) estimated previously. Given the weights of the non-expressed and expressed
gene equivalents, the weighted coefficient of determination (R?) was calculated between the
simulated expected protein expression levels and true mRNA expression levels for all genes
(Figure 3.6). In addition, because we do not view R? as an appropriate measure for predicting
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Figure 3.11: Scaling Hebenstreit et al.’s mRNA abundances. The distribution of mRNA
abundnaces from three datasets are shown. The 3,841 mRNAs expressed above 1 RPKM
in the Hebenstreit et al. RNA-Seq data that are in common with mRNAs detected by
Schwanhausser et al were identified (dashed red line). These abundances were then scaled
to have the same median and variance as Schwanhausser et al.’s data (solid red line). This
scaling was in addition applied to all other genes in the Hebenstreit et al. data and the
resulting values used in the simulation shown in Figure 3.6 and in the mRNA expression
distribution shown in Figure 3.5.

protein variance for the expressed and non-expressed genes combined (see Section 3.2) we

also calculated the R? values for the expressed and non-expressed gene equivalents separately
(Figure 3.6; Table 3.1).

3.4.4 The Contributions of Transcription, Translation and
Protein and mRNA Degradation: Measured Error Strategy

To determine the relative contributions of measured RNA degradation (RD) and measured
protein degradation (PD) to the variance in true protein expression (7'P), we estimated their
variances, var(RD) and var(PD). We took Schwanhausser et al.’s calculated percentages
for the contribution of RD and PD to explain the variance of their uncorrected mass whole
proteome abundances [11] (6.4% for RD and 4.9% PD, Matthias Selbach personal commu-
nication). Since the variance of the 8,424 uncorrected mass spec data points from the two
replicates is 0.97, we thus calculated var(RD) and var(PD) as 0.062 and 0.048 respectively.
The relative contributions of var(RD) and var(PD) to var(TP) (estimated as 63,p — 65)
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was calculated for several scenarios (Table 3.1). For the same scenarios, we also determined

the contribution of transcription to var(T P) as UGT(TRZ:(“;E;;“Q D) ' where var(TR) was esti-
mated as 63, p — 6% — 6% 7, and the contribution of translation as mr(TP)_”azgf?,;;m(tme PD)

(Table 3.1).

3.4.5 The Contributions of Each Step of Gene Expression to
Protein Levels: Measured Translation Strategy

We calculated the relative contributions of each of the four steps in gene expression by an
independent, second approach that does not rely either on our rescaling of Schwanhausser et
al.’s protein abundance estimates or on our estimate of stochastic protein errors. Instead, our
second approach infers true protein abundance based on Ingolia et al.’s direct measurements
of translation rates and on our estimate of RNA measurement error. The measured protein
abundances considered are thus Schwanhausser et al.’s second estimates, not our rescaled
estimates. A central assumption is that since the variance in Ingolia et al.’s measured
translation rates is 4.6 fold less than the variance in the rates of translation inferred by
Schwanhausser et al., then the contribution of translation to the variance in true protein
levels is 4.6 fold lower than the value provided by Schwanhausser et al.

The variance term in a linear model between measured protein abundance (M P) and
measured mRNA levels (M R) was decomposed as before (Figure 3.10) except that the vari-
ance in the linear model between true protein abundance (7T'P) and true mRNA levels (T'R)
that results from the variance in the rates of protein degradation (PD) and protein transla-
tion (PT') were considered separately as cPD and dPT respectively. Similar to our measured
error strategy, we can write three linear models using the same assumptions.

TR = bRMR+CR+€R, (36)
TP =bTR+ cPD + dPT + f, (3.7)
MP:TP+CP+€p, (38)

Thus, we can write the linear model between measured protein abundance (M P) and
measured mRNA levels (M R) for the measured translation strategy as

MP =bbrgMR + bcg + f + cp + ber + ¢PD + dPT + ep. (3.9)
Based on this revised model (3.9)

1. We first estimated var(beg + cPD + dPT + ep) as 62, and bby as bay from fitting the
above model with the 8,424 corrected mass spec and RNA-Seq data points pooled from
the two replicates (Dataset S3.1). By independence, we have

var(beg + cPD + dPT + ep) = b*var(er) + var(cPD) + var(dPT) + var(ep).
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The estimates of var(eg) and br are the same as those derived previously by our
measured error strategy. Thus, we can estimate b = by /bg.

. We used the estimate of var(cPD) from Schwanhausser et al., i.e., 0.97 x 5% = 0.0475.

From Schwanhausser et al’s results, we have var(dPT) = d*var(PT) estimated as
0.97 x 55% = 0.54. From Schwanhausser et al.’s estimates for each gene (Dataset S3.1,
second tab, column AG) var(PT) has estimate 0.29. Hence, the estimate of d? is 1.86.
From Ingolia et al, we have a separate, directly measured estimate of var(PT') as 0.06.
Using this value to replace that of Schwanhausser et al., we obtained a new estimate
of var(dPT) = d*var(PT) as 1.86 x 0.06 = 0.11.

; ~2 A2 ) ~2 ~2 ~2 :
. Now we can estimate var(ep) as 6p = 05, — b6y — 6.pp — Oapp Where 62p,, is an

estimate of var(cPD) and 635, an estimate of var(dPT).

. Given Schwanhausser et al.’s second 8,424 uncorrected mass spec data, we can also

estimate var(TP) as 62, = 63,p — 0%, where 63,5 is an estimate of var(MP).

Given the estimates 625, and 6357 and Schwanhausser et al.’s estimate of the contribu-
tion of the variance in RNA degradation (defined as 67p), we can decompose 67p as:

variance explained by PD: 62, /6%,
variance explained by PT: 63../0%p
. . 62 62
variance explained by T'R: 1 — -2 — —4PL
9Tp orp

- - L5252
variance explained by RD: 6;rp/07p

. . . 52 52 62
variance explained by transcription: 1 — —¢£2 — —4pT — —93D
9tp 9tp otp

Finally, we also determined the expected contributions of each step in gene expression
for all 12,546 expressed gene equivalents in mouse Th2 cells. The same procedure described
earlier was used except that protein expression levels were simulated using values of Z)R, CR,
5%, b, ¢, 625 and 625, from the measured translation strategy.
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Chapter 4

Comparison of D. melanogaster and

C. elegans Developmental Stages,

Tissues and Cells by modENCODE
RNA-Seq data

4.1 Introduction

Drosophila melanogaster and Caenorhabditis elegans, two mostly intensively studied organ-
isms, serve as model systems for studying molecular, cellular and developmental processes
common to higher eukaryotes. Because of their importance and modest genome sizes, D.
melanogaster and C. elegans were among the first organisms with genomes sequenced [84,
85]. The availability of genome sequences and the subsequent microarray technology has en-
abled molecular studies of D. melanogaster and C. elegans development on a genome-wide
scale. Temporal gene expression patterns have been studied in each organism, suggesting
that gene expression changes accompany morphological changes in development [86, 87, 88,
89, 90]. D. melanogaster and C. elegans are morphologically different and evolutionarily
distant organisms, and their developmental life cycles have obvious differences (Figure 4.1A
and B): 1) D. melanogaster has males and females of equal proportions, while wild-type C.
elegans has 99.5% hermaphrodites and only 0.05% males, ii) C. elegans has an alternative
developmental path—dauer-interrupted development, a state of developmental arrest that
does not exist in the life cycle of D. melanogaster. Although conservation in embryonic devel-
opment in animal species has become a unifying concept since von Baer’s observations in the
19th-century [91], little is known about the conservation in post-embryonic development. As
a start, comparing genome-wide gene expression patterns throughout developmental stages
of D. melanogaster and C. elegans may help identify unknown conservation in their devel-
opmental biology, thus shedding lights on understanding the development of higher species
including humans.
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Figure 4.1: Life cycles and modENCODE RNA-Seq datasets of D. melanogaster and C.
elegans. Life cycles of (A) D. melanogaster (reprinted with permission from FlyMove by C.
Kldmbt) and (B) C. elegans (reprinted with permission from Wormatlas by D.H. Hall and
Z. Altun). modENCODE RNA-Seq datasets of different (C) D. melanogaster developmental

stages, (D) C. elegans developmental stages, (E) D. melanogaster tissues and cell lines, and
(F) C. elegans tissues and cells.
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Tissue and cell differentiation is another important topic that has been widely studied
in D. melanogaster and C. elegans for years. Groundbreaking findings include the reversion
of germ cells into stem cells in D. melanogaster ovaries [92] and the identification of several
genes that regulate cell differentiation in D. melanogaster or C. elegans [93, 94, 95, 96]. To
increment the understanding of the molecular basis of tissue/cell differentiation in general,
it is necessary to understand the similarity/dissimilarity of different tissues/cells within one
species and between different species in the transcriptomic level. Given the considerable
biological knowledge on tissue/cell differentiation in D. melanogaster and C. elegans, the
two model organisms serve as good purpose for carrying out a transcriptomic comparison of
tissues and cells provided with data availability.

The Model Organism Encyclopedia Of DNA Elements (modENCODE) project aims to
identify functional elements in D. melanogaster and C. elegans genomes and has produced
abundant high-throughput RNA sequencing (RNA-Seq) data from different developmental
stages, tissues and cells (or cell lines) of the two organisms [53, 54]. The modENCODE
RNA-Seq data constitute a good resource for studying genome-wide expression patterns
across stages and tissues/cells in the two organisms.

Here we employed the modENCODE RNA-Seq data to compare the developmental
stages, tissues and cells of D. melanogaster (fly) and C. elegans (worm) in terms of genome-
wide protein-coding gene expression. First, within each species, we attempted to align
developmental stages, tissues and cells by checking the similarity of their associated genes
(i.e., genes highly expressed in one stage/tissue/cell but not always highly expressed in all
stages/tissues/cells). The within-species alignment results agree with existing knowledge
and previously findings, and thus justify the validity of our alignment approach. Next, we
aligned developmental stages, tissues and cells between fly and worm by using orthologous
genes to link the two species and checking the orthology in stage/tissue/cell-associated genes.
Our results provide—for the first time to our knowledge—a comprehensive map between D.
melanogaster and C. elegans developmental stages, tissues and cells, indicating that some
conservation exists in the development and tissue/cell differentiation of the two model or-
ganisms.

4.2 Results

4.2.1 Identification of Associated Genes for D. melanogaster
and C. elegans Stages / Tissues and Cells (or Cell Lines)

Our goal is to find correspondence, if any, between the developmental stages, tissues and
cells (or cell lines) of D. melanogaster and C. elegans in terms of genome-wide gene ex-
pression at the transcriptional level. For every developmental stage, we considered its gene
expression characteristics as encoded in “stage-associated genes”: the genes highly expressed
at that stage but not always highly expressed across all stages. For every tissue and cell
(or cell line), we similarly defined “tissue/cell-associated genes” as the genes highly ex-
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Table 4.1: Summary of D. melanogaster and C. elegans genes

# D. melanogaster # C. elegans # 4
protein-coding genes® protein-coding genes® orthologous gene pairs
with worm with fly
all orthologs all orthologs
13,781 5,467 20,389 5,739 11,403

*from modENCODE prediction of fly-worm orthologs (http://compbio.mit.edu/modencode/
orthologs/modencode-orths-2012-01-30/ensembl-v65/modencode .merged.orth.txt.gz)

bgenome assembly: BDGP 5.64 [97] (Ensembl assembly 66 [98])

cgenome assembly: WS 220 [99] (Ensembl assembly 66)

pressed in a particular tissue or cell but not always highly expressed in all tissues and
cells. These stage/tissue/cell-associated genes capture signature changes specific to each
stage/tissue/cell, which are crucial for understanding gene expression dynamics in develop-
ment and differentiation. Hence, such genes constitute a basis for aligning the stages, tissues
and cells within D. melanogaster or C. elegans. For between-species alignment, since genes
of the two organisms are not directly comparable by using synteny, we focused on their
orthologous genes—genes in different species but originated from a single gene of their last
common ancestor—and restricted ourselves to the stage/tissue/cell-associated genes having
orthologs in the other species.

In this study, we used D. melanogaster and C. elegans gene annotations from Ensembl [98]
and orthologous genes from modENCODE (Table 4.1 and Dataset S4.1). Cufflinks was used
to estimate gene expression at different developmental stages or in different tissues/cells (or
cell lines) from modENCODE RNA-Seq data (Figure 4.1C-F; Dataset S4.2). The expression
estimates are in FPKM (fragments per kilobase of transcript per million mapped reads)
units. To identify stage-associated genes, we first normalized every gene’s expression profile
into z-scores (FPKMs with the mean FPKM over all stages subtracted and then divided
by the standard deviation over all stages); then we defined a stage’s associated-genes as
those with z-scores greater than 1.5 and FPKMs greater than 1 at that stage. Henceforth,
those selected stage-associated genes would have a relatively high expression level at that
particular stage with respect to a few other stages in the time course and also an absolute
expression level above a certain threshold at that stage. We similarly defined tissue/cell-
associated genes as the genes with z-scores (FPKMs with the mean FPKM over all tissues
and cells subtracted and then divided by the standard deviation over all tissues and cells)
greater than 1.5 and FPKM greater than 1 in that particular tissue/cell. Figure 2 provides
a summary of the numbers of stage-associated and tissue/cell-associated genes for all the D.
melanogaster and C. elegans developmental stages and tissues/cells. The numbers of genes
associated with every stage or tissue/cell range from ~300 to ~4,500, where the stages and
tissues/cells with higher transcriptional activities, such as early embryonic stages and genital


http://compbio.mit.edu/modencode/orthologs/modencode-orths-2012-01-30/ensembl-v65/modencode.merged.orth.txt.gz
http://compbio.mit.edu/modencode/orthologs/modencode-orths-2012-01-30/ensembl-v65/modencode.merged.orth.txt.gz
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glands, have larger numbers of associated genes (Figure 4.21). After we restrict ourselves to
the number of stage/tissue/cell-associated genes with orthologs for the purpose of betwee-
species alignments, the numbers are greatly reduced and now range from ~100 to ~1,600,
but their trends across different stages and tissues have not changed much (Figure 4.2II).
Most of the stage-associated genes are associated with 2-4 stages. This phenomenon agrees
with a biological fact that gene expression levels change continuously during development

[100].

4.2.2 Strategy for Aligning D. melanogaster and C. elegans
Stages, Tissues and Cells (or Cell Lines)

Since the so-defined stage- or tissue/cell-associated genes represent transcriptional events
specific to a stage or a tissue/cell, we can align different stages or tissues/cells by the simi-
larity of their associated genes. For stage alignment, we compared any two stages by checking
the dependence of their associated genes (i.e., the number of shared associated genes if the
two stages are of the same species, or the number of associated genes in orthologous pairs if
the two stages are of different species). If two stages exhibit significantly strong dependence
by a hypergeometric test (see Section 4.4), we called them an “aligned” stage-pair, which
can be interpreted as two stages with similar specific gene expression changes.

We used the same strategy to align tissues/cells (or cell lines), and to further align stages
to tissues/cells. If a tissue/cell exhibits significant dependence with another tissue/cell or a
stage in terms of their associated genes by a hypergeometric test (see Section 4.4), we called
them “aligned”.

4.2.3 Alignment of Developmental Stages, Tissues and Cell Lines
within D. melanogaster

We first applied this strategy to aligning developmental stages, tissues and cell lines within D.
melanogaster, aiming to use the existing extensive knowledge on fly development to justify
the validity of our alignment strategy. Our main findings include i) alignment between
adjacent developmental stages and ii) alignment of early embryonic stages, female adult
stages, ovary tissues, and cell lines. Both results are supported by known biological facts
and previous reports.

In the alignment of developmental stages within D. melanogaster (Figure 4.3A), first, we
expectedly observed that adjacent stages were aligned to each other, a reasonable finding as
gene expressions change continuously over time during the development [100].

Second, we found that the earliest embryonic stage (i.e., embryo 0-2 hours) was aligned
with female adult stages (i.e., female adult 5-30 days) that bear oocytes, agreeing with
previous findings [101]. To determine whether this alignment was a result of maternal gene
expression, we compared three gene categories (maternal genes, maternal /zygotic genes and
zygotic genes) defined in Lott et al. to the developmental stages. Lott et al. used strain-
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Figure 4.2: Distribution of numbers of stage/tissue/cell-associated genes across different
developmental stages, tissues and cells of D. melanogaster and C. elegans. (I) Number
of associated genes (A) across all D. melanogaster developmental stages, (B) across all C.
elegans developmental stages, (C) across all D. melanogaster tissues and cell lines, (D) across
all C. elegans tissues and cells. (II) Number of associated genes that have orthologs in the
other species (A) across all D. melanogaster developmental stages, (B) across all C. elegans
developmental stages, (C) across all D. melanogaster tissues and cell lines, (D) across all C.
elegans tissues and cells.



50

specific time series of D. melanogaster gene expression at eight embryonic time points to
classify 9,003 genes into three categories: 5,598 maternal genes, 2,210 zygotic genes, and
1,195 maternal /zygotic genes [102]. We used hypergeometric test to test the overlap of the
genes in each category and the genes associated with each developmental stage. Figure
3B shows that the maternal and maternal/zygotic genes have significant overlap with the
genes associated with early embryonic stages or female adult stages. This result indicates
that the observed alignment between fly early embryonic stages and female adult stages
is attributable to the expression of maternal and maternal /zygotic genes. Additionally, we
observed moderate alignment between fly middle embryonic stages (i.e., embryo 10-16 hours)
and larva stages (i.e., L1, L.2), and alignment between late embryonic stages (embryo 14-18
hours) and pupa stages (prepupae + 2-3 days) (Figure 4.3A), which are both confirmed
by previous findings [86]. These reasonable stage alignment results within D. melanogaster
justify the validity of our approach as a first check.

In the alignment of tissues and cell lines within D. melanogaster (Figur 4.3C), we observed
a clear separation of cell lines and tissues after hierarchical clustering (see Section 4.4).
A remarkable feature of Figure 4.3C is that the cell lines originated from different tissue
sources show a stronger alignment with each other than with the tissues except for ovaries.
The observed alignment between ovaries and cell lines is supported by previously reported
similarity of cell lines and early embryos [101] and our stage alignment of early embryos and
female adults. Figure 4.3C also shows that the head tissues of different fly adults (mated
male, mated female and virgin female adults + 1, 4 and 20 days) are aligned with each other,
and so are the digestive system tissues of mixed adults at different time points (adults + 1,
4 and 20 days). Such results reveal unexpected stability of gene transcription in the same
type of adult tissues across different sex and ages.

In the alignment of D. melanogaster tissues/cells to developmental stages (Figure 4.3D),
we first observed a clear alignment of the two ovary tissues to early embryonic and female
adult stages, which again confirms that maternal genes highly expressed in oocytes are
the cause of the alignment we observed between early embryonic and female adult stages
(Figure 4.3A). We also found interesting alignment patterns between all the cell lines and
early embryonic stages, and between some cell lines and female adult stages. These results
are again consistent with our previous alignment results and other reports [101].

4.2.4 Alignment of Developmental Stages, Tissues and Cells
within C. elegans

We next applied the same alignment strategy to aligning developmental stages, tissues and
cells within C. elegans, in order to further check the validity of our alignment approach before
using it to align stages or tissues/cells between D. melanogaster and C. elegans. Important
findings include i) alignment of early embryonic stages, adult stages, 4-cell embryo tissues,
and adult gonad tissues, ii) alignment of tissues/cells from similar organs, and iii) alignment
of tissues/cells and their inherent developmental stages.
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Figure 4.3: Alignment results of different developmental stages, tissues and cell lines within
D. melanogaster. (A) Stage alignment result. (B) Alignment between three gene categories
(maternal, maternal/zygotic, and zygotic) defined by [18] and developmental stages. (C)
Tissue/cell line alignment result. (D) Alignment between stages and tissues/cell lines. Hi-
erarchical clustering was applied to order the tissues/cell lines in C and D. Tissues from

similar organs are marked with the same color.
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In the alignment of developmental stages within C. elegans (Figure 4.4A), we observed
three interesting alignment patterns: i) alignment of adjacent stages in the timecourse, ii)
alignment of early embryonic stages (i.e., early embryo 0-120 minutes) and adult stages (i.e.
young adult and adult spe-9), and iii) alignment of dauer stages (i.e., dauer entry daf-2,
dauer daf-2, and dauer exit daf-2) and larva stages (i.e., L1 and L1 lin-35). Similar to
the stage alignment within D. melanogaster, the observed alignment of adjacent C. elegans
stages is again a reasonable discovery and supports the validity of our approach. As C.
elegans are ~99.5% hermaphrodites that produce all their sperms in the L4 stage and then
switch over to producing oocytes [103], the observed alignment of early embryos and adults is
attributable to maternal gene expression in worm oocytes. Dauer stages constitute a special
developmental path of C. elegans, and their alignment with larva stages is consistent with the
temporal proximity between dauer and larva stages in the C. elegans life cycle (Figure 4.1B).

In the alignment of tissues and cells within C. elegans (Figure 4.4B), we found a strong
correlation between the alignment and tissue/cell origins after hierarchical clustering on
the alignment result: cells extracted from Ll-stage worms (all cells) are aligned together;
embryonic tissues/cells are aligned with each other. We also observed that 4-cell embryos
are aligned with adult gonad tissues. This indicates that the reason of alignment between
early embryonic and adult stages is the gene expression in gonad tissues.

In the alignment between developmental stages and tissues/cells within C. elegans (Fig-
ure 4.4C), we observed three interesting alignment patterns: i) alignment between embryonic
tissues/cells and early embryonic stages, ii) alignment between 4-cell embryos/adult gonad
tissues and early embryonic/adult stages, and iii) alignment between cells extracted from
L1-stage worms (all cells and neurons) and late embryonic to larva developmental stages.
These patterns show a strong correlation between the tissues/cells and their inherent devel-
opmental stages, a phenomenon not observed in the stages vs. tissues/cell lines alignment
within D. melanogaster.

4.2.5 Mapping of Developmental Stages, Tissues, and Cells (or
Cell Lines) between D. melanogaster and C. elegans

After verifying the reasonableness of our stage/tissue/cell alignment results within D. melanogaster
and C. elegans respectively, we applied our alignment strategy to aligning developmental
stages and tissues/cells (or cell lines) between the two species.

As the very first attempt to study the correspondence between the life cycles of D.
melanogaster and C. elegans, we aligned their developmental stages on the basis of shared
orthologs in their stage-associated genes. Figure 4.5A shows an interesting and surprising
stage alignment result. First, a collinear alignment pattern is observed between fly early
embryos through larvae and worm early embryos through larvae. Second, we found another
collinear alignment pattern including: fly L1 larvae — worm middle embryos, fly prepupae —
worm late embryos, and fly female adults — worm adults. The two parallel collinear patterns
indicate a division of the fly life cycle into two parts: the first part (from fly early embryos to
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D. melanogaster and C. elegans. (A) Alignment between D. melanogaster and C. elegans
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sum of alignment scores of the stage-pairs they pass through, to represent the two parallel
collinear stage alignment patterns. (B) Alignment between D. melanogaster tissues/cell
lines and C. elegans tissues/cells. (C) Alignment between D. melanogaster developmental
stages and C. elegans tissues/cells. (D) Alignment between D. melanogaster tissues/cell
lines and C. elegans developmental stages. Hierarchical clustering is applied to order the
D. melanogaster tissues/cell lines and C. elegans tissues/cells in B, C and D. Tissues and
cells with similar origins are marked with the same color. (E) A cartoon summary of main
alignment results in A.
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larvae) is aligned with the worm life cycle except for the worm adult stages, and the second
part (from fly prepupae to adults) is aligned with the worm life cycle except for the worm
early embryonic stages (Figure 4.5E). Some worm stages, including middle embryos (early
embryos + 240 minutes, i.e. “EE_50_240"), late embryos (early embryos + 480-720 minutes,
i.e. “EE_50.480"-“EE_50-720"), and L4 male larvae (i.e., “L4male”), are each aligned with
two blocks of fly stages (“A”, “B” and “C” in Figure 4.6A), denoted as early alignment
(alignment between worm stages and the block of earlier fly stages) and “late alignment”
(alignment between worm stages and the block of later fly stages).

To figure out the reasons for such two-to-one fly-worm stage alignments, we asked two
questions: a) given a worm stage, are its aligned two blocks of fly stages aligned with each
other in the stage alignment within D. melanogaster? b) are the early alignment and late
alignment due to the same set of fly and worm genes? To answer question a), we compared the
three stripes of fly stages (“A”, “B” and “C” in Figure 4.6A) with the stage alignment result
within D. melanogaster (Figure 4.3A). The two fly blocks in stripe “A” (middle embryos
and L1 larvae) are moderately aligned within D. melanogaster (Figure 4.3A), and so are
the two fly blocks in stripe “B” (middle to late embryos and pupae). However, there is no
clear alignment between the two fly blocks in stripe “C” (late embryos to prepuape and male
adults). Hence, the off-diagonal stage alignments in Figure 4.3A cannot sufficiently explain
all the two-to-one fly-worm stage alignments in Figure 4.6A, and the answer to question
a) is no. To answer question b), we classified the fly and worm stage-associated genes by
their involvement in the early and late alignments. For example, suppose that we have a
worm stage W aligned with two fly stages F'E (the earlier stage) and F'L (the later stage),
i.e., the early alignment is W — F'E, and the late alignment is W — FL. Also suppose
that W has stage-associated genes wy, wy, ws, wy; F'E has stage associated genes fi, fo,
fa; FL has stage associated genes fi, f3, f5. Orthologous gene pairs between worm and
fly are wy — f1, wo — fo, w3 — f3, and wy — fy/f5. Hence, the ortholog pairs that lead to
the early alignment is wy — fi, we — fo, and w4y — f4; the ortholog pairs that lead to the
late alignment is wy — f1, ws — f3, and wy — f5. This simple example demonstrates that
we can classify gene ortholog pairs involved in any two-to-one fly-worm stage alignment into
four categories: i) ortholog pairs where both worm and fly genes are only involved in early
alignment (e.g. wy — f2), ii) ortholog pairs where both worm and fly genes are only involved
in “late alignment” (e.g. w3 — f3), iii) ortholog pairs that lead to both early alignment and
late alignment (e.g. w; — f1), and iv) ortholog pairs where the same worm gene but different
fly genes are involved in “early alignment” and “late alignment” (e.g. ws — f1/f5). We did
this classification for each of the stripes “A”, “B” and “C” in Figure 4.6A and summarized
the results in Figure 4.6C, which shows that orthologs in all the four categories contribute to
the observed two-to-one fly-worm stage alignments. Hence, the answer to question b) is also
no. This again confirms that within-fly stage alignments lead by the fly genes in category iii)
is not the only reason for these two-to-one fly-worm stage alignments, and the contribution of
category iii) decreases from stripe “A” to “C”. Figure 4.6C also shows that the contribution
of category iv), i.e. many-to-one fly-worm orthologs, increases from stripe “A” to “C”. Fly
genes in category iv) would not lead to within-fly stage alignment, and their roles in these
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Figure 4.6: Interpretation of the observed two-to-one fly-worm stage alignment patterns.
(A) Alignment between D. melanogaster and C. elegans developmental stages by using all
ortholog pairs. The red, green and cyan boxes marked the three main two-to-one fly-worm
alignment stripes. (B) Alignment between D. melanogaster and C. elegans developmental
stages by using only one-to-one ortholog pairs. The red, green and cyan boxes are in same
positions as the corresponding boxes in (A). (C) Classification of ortholog-pairs based on
their involvement in the “early alignment” (the lower block of fly stages) and late alignment
(the upper block of fly stages) in each stripe (“A”, “B” or “C”) in (A).
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two-to-one fly-worm stage alignments indicate that different fly orthologs of the same worm
gene are highly expressed at different time points in the fly development, implying some type
of redundancy in gene orthology. To further check the roles of orthologs in category iv) that
lead to these two-to-one fly-worm stage alignments, we re-aligned the fly and worm stages
by restricting ourselves to only one-to-one fly-worm orthologs, and the results are shown
in Figure 4.6B. By comparing Figures 4.6A and B, we can see that the stage alignment
patterns are generally the same but with slight differences. Stripe “C” becomes negligible
in Figure 4.6B, because its early and late alignments in Figure 4.6A are largely attributable
to the orthologs in category iv), which are removed in Figure 4.6B. On the contrary, stripes
“A” and “B” become strengthened in Figure 4.6B, implying that their alignments are mostly
lead to by one-to-one fly-worm orthologs and the orthologs in category iv) do not play a key
role.

In addition to the two parallel collinear patterns, we also observed alignment between
fly early embryos and worm adults, and between fly female adults and worm early embryos
(Figure 4.5A). These results, coupled with the alignment between fly female adults and worm
adults, indicate strong orthology between maternal genes in the two species.

To summarize, the fly-worm stage alignment results (Figure 4.5A and E and Figure 4.6)
are the first findings showing the similarity of worm and fly developmental timecourses in
terms of system-wide orthologous gene expression. An unexpected pattern of two parallel
collinear alignments is revealed, which is symbolic to a twice repetition of the worm life cycle
in the fly early and late life cycle. Both within-fly stage alignment and the many-to-one fly-
worm orthologs play important roles in leading to the two parallel collinear patterns.

In order to understand the similarity of tissues/cells and developmental stages between
the two species, we used the same between-species alignment approach to align i) worm
tisuses/cells with fly stages (Figure 4.5C) and ii) fly tissues/cells with worm stages (Fig-
ure 4.5D). Figure 4.5C shows that worm 4-cell embryos and adult gonad tissues are aligned
with fly early embryonic and female adult stages. Figure 4.5D shows that fly gonad tissues
(ovaries and testes) and several cell lines are aligned well with worm early embryonic and
adult stages. These two findings are again results of maternal gene expression, implying
again strong orthology between maternal genes in both species.

Finally, we attempted to align tissues and cells (or cell lines) between fly and worm.
The alignment result in Figure 4.5B shows two interesting patterns. First, most worm
neuron tissues are aligned with fly heads (in adults) and CNS tissues (in larvae and pupae),
indicating strong orthology of genes with neural functions in both species. Second, worm
4-cell embryos and adult gonad tissues have a clear alignment with fly cell lines and adult
gonad tissues (ovaries and testes). This is again a proof of strong orthology of maternal
genes in both species.
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4.3 Discussion

We developed a hypothesis testing approach to align developmental stages, tissues and cells
(or cell lines) within and between D. melanogaster and C. elegans, on the basis of their
transcriptome-wide protein-coding gene expression. Our approach centers on i) using or-
thologous genes to link the two species and ii) identifying stage/tissue/cell-associated genes
to represent specific transcriptional events for developmental stages, tissues and cells. Our
approach differs from a more intuitive approach, that is, to calculate the correlation coeffi-
cient (Pearson or Spearman) of gene expression levels in two samples (stages, tissues or cells),
which has been widely used in microarray and RNA-Seq analyses. We first tried the corre-
lation approach but found that neither Pearson nor Spearman correlation is a good measure
for aligning developmental stages within D. melanogaster or C. elegans (Figure 4.7). Pear-
son correlation is not robust to outliers and depends highly on the gene expression estimates
(in FPKM units). Spearman correlation is a better measure than Pearson correlation as it
is more robust to outliers. However, due to housekeeping genes that are constantly highly
expressed across all developmental stages, Spearman correlation still does not lead to clear
alignment patterns in neither species. Unlike the correlation approaches, our approach does
not use all genes but focuses on small subsets of genes that capture specific transcriptional
events in different developmental stages. Genes whose expression levels have little variance
across different stages are thought to contain little information on stage alignment and are
thus excluded in our approach. Hence, our approach can provide more clearcut alignment
results compared to the correlation approaches. Also, our approach is based on the selected
subsets of genes, not their absolute expression levels, and is thus more robust to biases and
errors in gene expression estimates.

We first applied our approach to aligning developmental stages within D. melanogaster
and C. elegans as a sanity check. Quite reasonably, stages temporally adjacent to each
other are aligned to each other in both species. Another reasonable finding is the alignment
of early embryos with female adults in fly and with adults in worm, which is a result of
maternal gene expression in oocytes. Other unexpected findings, including the alignment
of fly middle embryos and larvae and the alignment of fly late embryos and pupae, are
supported by previous findings.

After passing the sanity check, we next applied our approach to aligning tissues and cells
(or cell lines) within D. melanogaster and C. elegans. Interesting and reasonable findings
include i) alignment of cell lines and ovary tissues in fly, ii) alignment of tissues from the
same organ in fly, iii) alignment of early embryonic tissues and gonad tissues in worm, and iv)
alignment of tissues from similar developmental stages in worm. We also aligned tissues/cells
with developmental stages within each species, and found that early embryonic and adult
gonad tissues are aligned with early embryonic and adult (female adult in fly) stages in both
species. These reasonable results further justify the validity of our approach.

Given the above within-species alignment results, we finally used our approach to align
developmental stages between D. melanogaster and C. elegans. Surprisingly, our result
revealed two parallel alignment patterns between the timecourses of the two species. Both
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Figure 4.7: Intuitive correlation approaches of aligning developmental stages within D.
melanogaster and C. elegans. (A) Alignment by calculating a Pearson correlation of all
protein-coding gene expression levels for every pair of D. melanogaster stages. (B) Align-
ment by calculating a Pearson correlation of all protein-coding gene expression levels for
every pair of C. elegans stages. (C) Alignment by calculating a Spearman correlation of all
protein-coding gene expression levels for every pair of D. melanogaster stages. (D) Align-
ment by calculating a Spearman correlation of all protein-coding gene expression levels for
every pair of C. elegans stages.
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alignment patterns cover most of the worm timecourse but correspond to differnet parts of
the fly timecourse. This result can be interestingly interpreted as a recapitulation of the
worm life cycle twice in the fly life cycle. In our investigation for a possible explanation, we
found that the two parallel alignment patterns have some connections with the alignments
between non-adjacent stages within fly. But that is not the only cause for the parallel
patterns. We found that gene expression of many-to-one fly-worm orthologs also partially
lead to such patterns. This implies the possibility of more redundancy in developmental
gene functions in fly than in worm.

At last, we aligned tissues/cells to developmental stages and tissues/cells to tissue/cells
between the two species. Interesting findings include i) alignment of worm early embryonic
and adult gonad tissues to fly early embryonic and female adult stages, ii) alignment of fly
ovary tissues to worm early embryonic and adult stages, iii) alignment of fly cell lines and
gonad tissues to worm early embryos and gonad tissues, and iv) alignment of fly head and
CNS tissues with worm neuron cells.

This study provides the first comprehensive transciptome-level comparison of multiple de-
velopmental stages, tissues and cells between D. melanogaster and C. elegans, and it revealed
a few previously unknown connections (i.e., alignments) between developmental stages and
tissues/cells both within and between the two species. The next step is to conduct a func-
tional study to better understand the underlying molecular biology mechanisms that lead
to these observed alignments. One big obstacle arises from inconsistencies in gene ontology
(GO) [104] and the discrepancy between the GO vocabulary annotated for the two species
[105], making the comparative functional study a difficult task. We have some preliminary
results on aligning fly and worm developmental stages by using GO instead of orthology
to link the two species, i.e., two stages whose associated genes have high dependence in
their corresponding GO terms will be aligned. Figure 4.8 shows that the within-species
alignments by GO terms are similar but much noisier versions of our results in Figure 3A
and Figure 4.4A. However, the between-species alignment by GO terms (Figure 4.8C) only
contains scarce signals, because of the dissimilarity of GO vocabulary for the two species.
Bearing the above issues in mind, we provide a complete list of associated genes for fly and
worm developmental stages, tissues and cells (Dataset S4.3 and Dataset S4.4) as a resource
for future functional study. Since splicing regulation is key step in transcription and plays
significant roles in an organisms development and cell/tissue differentiation [106, 107], it is
also important to consider splicing regulation in refining the alignment results of different
stages, tissues and cells.
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C. elegans stages

Figure 4.8: Preliminary stage alignment results based on Gene Ontology (GO) [104]. (A)
Stage alignment within D. melanogaster. (B) Stage alignment within C. elegans stages. (C)
Stage alignment between D. melanogaster and C. elegans. For every pair of stages (both
within-species and between-species), a hypergeometric test was used to test the dependence
of GO terms of their stage-associated genes. Leaf Biological Process (BP) GO terms were
used in this analysis.
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4.4 Materials and Methods

4.4.1 Estimating Gene Expression in Developmental Stages and
Tissues/Cells

Cufflinks [16] (version 1.3.0, supplied with reference annotation, i.e. using “-G” option)
was used to estimate the expression of 13,781 D. melanogaster protein-coding genes in 30
developmental stages, 29 tissues and 19 cell lines, and the expression 20,389 C. elegans
protein-coding genes in 35 developmental stages and 18 tissues/cells. Gene annotations are
from Ensembl assembly 66 [98] (i.e., BDGP 5.64 for D. melanogaster [97] and WS 220 for
C. elegans [99]). All the gene expression estimates returned by Cufflinks are in FPKM
(fragments per kilobase of transcript per million mapped reads) units. Hence, every fly and
worm gene has one FPKM value per developmental stage/tissue/cell.

4.4.2 Identification of Stage/Tissue/Cell-Associated Genes

We use the identification of stage-associated genes for fly stages as an example. For every fly

gene, suppose its expression estimates (in FPKM units) in the 30 developmental stages are
— & 30

e1,...,e3. We normalize them as zy,..., 23, where z; = “==, i =1,...,30, & = % D€

and s = \/ 21—9 Zf’gl(ei — €)2. Note that e; represents the absolute expression level of the gene
in stage 7, and z; represents the relative expression level of the gene in stage 7 as compared to
other stages. For every fly stage, we would like to select the fly genes that have high relative
expression and absolute expression distinguishable from background noise at that stage. The
selection threshold is used in this manuscript is z; > 1.5 and e; > 1. If a gene satisfies this
threshold, it will be selected as an associated gene of stage i. Based on our experience with
gene expression estimates by Cufflinks, e; > 1 is a reasonable cutoff to distinguish real gene
expression signal from background noise. We tried two other thresholds on the relative gene
expression: z; > 1.2 and z; > 1.8, and found the alignment results very robust to the three
thresholds, suggesting that z; > 1.5 is a reasonable threshold.

For worm developmental stages, we used the same method and threshold to select their
stage-associated genes. For fly tissues/cell lines (and also worm tissues/cells), we treated
them like developmental stages in selecting their tissue/cell-associated genes. Hence, for
every fly /worm stage/tissue/cell, a subset of protein-coding genes that are highly expressed
but not always highly expressed in other stages/tissues/cells are selected as its associated
genes.

4.4.3 Hypergeometic Testing in Stage/Tissue/Cell-Alignment
within a Species

Given two stages, or a stage and a tissue/cell, or two tissues/cells of the same species (i.e., D.
melanogaster or C. elegans), we aligned them by testing the dependence of their associated
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genes, say, gene sets A and B. We regarded all the protein-coding genes of the species as
the population, and regarded associated-gene sets A and B as two samples drawn from the
population. The null hypothesis to be tested against is that A and B are two independent
samples from the population; the alternative hypothesis is that A and B are dependent
samples. This becomes a standard hypergeometric test, and the test statistic is number of
genes shared by A and B. The larger the test statistics is, the more likely the null hypothesis
will be rejected. The p-value of the test statistic is calculated as

P () (5 (514)

D S A

where n is the total number of protein-coding genes, and |A|, | B| and |AN B| are the number
of genes in gene sets A, B and AN B. Hence, for any two stages, or a stage and a tissue/cell,
or two tissues/cells, the p-value indicates the extent of their dependence, in other words, the
strength of their alignment. Due to the multiple testing issue, we corrected the p-value by
Bonferroni correction:

Bonferroni corrected p-value = p-value x (number of alignments).

In the alignment of the 30 developmental stages within fly, the number of alignments is
30 x 30 = 900. We then defined the alignment score as

alignment score = — log,,(Bonferroni corrected p-value),

and summarized the alignment scores of all pairwise alignments into a matrix. If rows or
columns of the matrix correspond to developmental stages, they will be ordered by the tem-
poral order; otherwise, if rows or columns correspond to tissues/cells, they will be grouped
by hierarchical clustering on the matrix. The ordered matrix will then be presented by a
heatmap (e.g. Figure 4.3A-D and Figure 4.4A-C) to illustrate alignment patterns.

4.4.4 Hypergeometic Testing in Stage/Tissue/Cell-Alignment
between Two Species

Given two stages, or a stage and a tissue/cell, or two tissues/cells from two different species
(i.e., D. melanogaster and C. elegans), we aligned them by testing the dependence of or-
thologs in their associated genes, say, fly gene set F' and worm gene set W. We restricted
both F' and W to the associated genes that have orthologs in the other species. We regarded
the 11,403 ortholog pairs between the two species (Table 4.2) as the population, represented
by a two-column array of 11,403 rows:
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ortholog
pair type # fly genes # worm genes # pairs
(fly-worm)
1-1 3,131 3,131 3,131
1-2 310 620 620
|-many 1-3 79 237 237
1-4 37 148 148
1->5 53 465 465
2-1 618 309 618
many-1 3-1 234 78 234
4-1 76 19 76
>5-1 262 32 262
2-2 132 132 264
many-many 2->3 76 154 308
>3-2 136 60 272
>3->3 323 354 4,768
total 5,467 5,739 11,403

Table 4.2: Summary of D. melanogaster and C. elegans orthologs®

from  modENCODE prediction of fly-worm orthologs (http://compbio.mit.edu/modencode/
orthologs/modencode-orths-2012-01-30/ensembl-v65/modencode.merged.orth.txt.gz)

fly gene worm gene
S - wy
Jita03  — W11,403

where f; and w; are the fly and worm genes in the ¢th ortholog pair. Please note that
there exist repetitive genes in {fi,..., firas} and {wy,..., w1403} due to the existence
of 1-to-many, many-to-1 and many-to-many ortholog pairs. Since F' and W contain no
repetitive genes, we define F' = {f; : fi € F,i=1,...,11,403} and W' = {w; : w; € W,i =
1,...,11,403} as alternative versions of F' and W with repetitive genes. We then regarded
F" as a sample from {f1,..., fi1403} (i.e. the fly gene part of the population) and W’ as a
sample from {wy,..., w1403} (i.e. the worm gene part of the population). Because of the
one-to-one correspondence between {fi,..., firus} and {wi, ..., w1403}, we can consider
F’" and W' as two samples from the same population.

The null hypothesis to be tested against is that F” and W' are independent samples from
the population; the alternative hypothesis is that F’ and W' are dependent samples. This
becomes a hypergeometric test setting, and the test statistic is the number of ortholog pairs
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existing between F’ and W', defined as T'. The larger the test statistics is, the more likely
the null hypothesis will be rejected. The p-value of the test statistic is calculated as

min(|F'|,|W’|) (11,;103) (1‘1];4,(‘)51) (11]114(;?;|—_|f'|)
b= Z (11,403) (11,403) ’

i=T i) U

where |F’| and |W’| are the number of genes (including repetitive ones) in gene sets F” and
W’. Hence, for any two stages, or a stage and a tissue/cell, or two tissues/cells from two
different species, the p-value indicates the extent of their dependence, in other words, the
strength of their alignment. Then similar to the alignment within a species, we addressed the
multiple testing issue by correcting the p-values by Bonferroni correction and subsequently
calculated alignment scores as — log;,(Bonferroni corrected p-value). The alignment result is
also summarized in a matrix, where hierarchical clustering is applied to order the tissues/cells
as rows or columns, and finally represented by a heatmap (Figure 4.5A-D) [108, 109].

4.5 Acknowledgements

This work was supported by NIH/NHGRI U01 HG004271 to Dr. Susan Celniker and
NIH/NHGRI RC2 HG005639 to Dr. Manolis Kellis. I would like to thank Dr. Haiyan
Huang, Dr. Peter J. Bickel and Dr. Steven E. Brenner as the co-authors of this work. We
thank Dr. Susan E. Celniker, Dr. Robert Waterston, Dr. Mark B. Gerstein, Dr. Roger
Hoskins and Dr. LaDeana Hillier for their insightful comments. We would also like to thank
the modENCODE consortium for their data and support.



66

Chapter 5

Conclusions

5.1 Summary

In this thesis, we investigated three important biological questions by applying statistical
and computational approaches to analyzing high-throughput genomic data.

In Chapter 2, we developed a statistical software package “SLIDE” (Sparse Linear mod-
eling of RNA-Seq data for Isoform Discovery and abundance Estimation) for discovering
and quantifying mRNA isoforms from next-generation RNA-Seq data. Unlike other isoform
discovery methods (e.g. Cufflinks [16] and Scripture [30]) that use deterministic graphical
models, we considered the stochastic nature of RNA-Seq data and formulated the isoform
discovery and abundance estimation problem using a linear regression framework, where
observations are RNA-Seq read counts (numbers of short sequences generated from mRNA
molecules) and parameters are unknown isoform abundances. The design matrix models
stochastic relationships between reads and isoforms: probabilities of reads coming from dif-
ferent possible isoforms. For statistical inference, SLIDE takes a two-step approach: it first
discovers isoforms from sparse estimates of the linear model by L; regularized regression; it
then estimates the abundance of discovered isoforms from the reduced linear model by non-
negative least squares. This linear regression framework is flexible to account for biases in
RNA-Seq data (e.g. GC-content bias [17, 19]) and to incorporate other transcriptomic data
resources (e.g. EST [33], CAGE [32], and RACE [31]). By simulation and real data analysis,
we demonstrated SLIDE as a useful tool for discovering and quantifying mRNA isoforms
from RNA-Seq data and showed its better performance compared to major competitors in
the isoform discovery field.

In Chapter 3, we corrected system-wide protein abundance estimates by using previously
reported individual protein abundance measurements,and found that the median protein
abundance in mammalian tissue culture cells increased from 8,000 - 16,000 molecules per
cell (estimated by system-wide label free quantification) to 170,000 molecules per cell, a
more reasonable number expected from literatures. We then used the corrected protein
abundance estimates to re-determine the contribution of transcription to the variance of
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protein abundances. System-wide surveys suggest that differences in mRNA expression
between genes explain only 10-40% of the differences in protein levels. We found, however,
that mRNA levels explained a higher percentage of the variance in protein levels, by using
our corrected protein abundance estimate and taking direct measurements of experimental
error into account. We estimated that mRNA levels explain at least 56% of the differences in
protein abundance for the 4,212 genes detected by Schwanhausser et al [11]. By in addition
modeling all genes’ expression, we show that under reasonable assumptions mRNA levels can
explain at least 65% of protein levels for genes that are expressed and 100% for genes that
are not expressed. Separately, we employ a second strategy to determine the contribution of
mRNA levels to protein expression. This shows that the variance in translation rates directly
measured by Ingolia et al. [43] is 4.6 fold less than the variance inferred by Schwanhausser
et al. and that based on this mRNA levels are expected to explain ~ 75% of the variance
in protein levels for the 4,212 detected genes and ~ 82% for all expressed genes. While the
magnitude of our differently derived estimates vary, all suggest that the previous studies
have significantly underestimated the importance of transcription.

In Chapter 4, we undertook a comparison of the developmental stages, tissues and
cells of two model organisms, seeking commonalities in orthologous genes transcription.
Our approach centers on using orthologous genes to link the two organisms, and finding
stage/tissue/cell-associated genes to represent transcription in every developmental stage,
tissue and cell. For every stage/tissue/cell in each organism, stage/tissue/cell-associated
genes are selected as those highly expressed in that sample (i.e., a stage, or a tissue, or a
cell) but not always highly expressed in all the other samples. We tested the dependence of
a pair of fly and worm samples (in terms of orthologous gene expression) by using an overlap
statistic, which is the number of orthologous gene pairs in their associated genes. Samples
that exhibit statistically significant dependence are called “aligned”. This alignment strat-
egy was first applied to pairwise stages/tissue/cells within fly and worm respectively, and
the within-species alignment results are expected and reasonable based on previous reports
and biological knowledge, thus supporting the validity of our approach. Our next alignment
results of stages/tissue/cells between fly and worm are the first findings regarding a com-
prehensive comparison of multiple biological samples in the two model organisms. Our most
important discovery is the two parallel alignment patterns between fly and worm develop-
mental timecourses. This result implies that there may exist conservation in post-embryonic
development even between evolutionarily-distant species. We suggest, in addition, that in
comparing related biological samples, using subsets of genes that capture transcriptional
characteristics of the samples is a more effective approach than widely-used correlation-
based approaches, because the genes with constantly high or low expression levels in all the
samples contain no useful information for the comparison.
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5.2 Future Directions

In this section, two future directions will be proposed as possible extensions of the works
described in this thesis, with the goal to further address important problems in the interdis-
ciplinary field of statistics and genomics.

5.2.1 Joint Modeling of Multiple RNA-Seq Samples for Isoform
Discovery and Abundance Estimation

Given the availability of multiple biological/technical replicate RNA-Seq data produced by
the ENCODE [83] and modENCODE [13] consortia, it becomes necessary to extend our
SLIDE method (Chapter 2) to a newer version that can achieve better accuracy by using
replicate data.

SLIDE was originally designed to discover and quantify mRNA isoforms from a single
RNA-Seq dataset. In the case where multiple biological or technical replicate RNA-Seq data
from the same sample exist, the simplest and most common way of handling the replicates
is to pool their reads together into one dataset and subsequently input the so-called “pooled
data” into any downstream algorithms. Another common way of using replicates is to process
each replicate separately with a chosen algorithm and then combine the outputs of differ-
ent replicates into one final output. Either of the above two ways has its advantages and
drawbacks. The former way, say “pooling method”, combines RNA-Seq reads from different
replicates into a pooled dataset, which is expected to have less non-systematic noise and
bias than an individual replicate has, if all replicates are correctly produced under similar
experimental conditions. However, if one or more replicates are much noisier than the rest
of replicates, or if a small number of replicates were produced under a different condition
that experimenters were unaware of, this pooled dataset may be biased by those “outlier”
replicates, whose noise may mask useful information in the majority of replicates with bio-
logical interest. The latter way, say “individual method”, treats replicates as independent
datasets, and thus “outlier” replicates would not interfere with the majority of replicates.
However, individual outputs may be biased by their own non-systematic noise, and thus it
is not an easy task to combine those outputs into a more biologically meaningful output.

After realizing the disadvantages of the above two common methods, we are motivated
to find a better way of using replicates in the SLIDE method. Here we propose a possible
way of extending SLIDE for multiple replicate RNA-Seq data.

We increase the dimensionality of observations (b;)7_; and parameters (p;)j_, in Equation

[blja"' (m+1)j Z jkP1k;> Z jkP(m+1)k [€1j,"'7€(m+1)j] J=1-

(5.1)
where m is the total number of replicates, b;; is the observed proportion of reads in the jth
bin in the ith replicate, Fj; is the conditional probability same as in Equation (2.1), pi is
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the proportion of the kth isoform in the ¢th replicate, and ¢;; is the error term with mean 0.
The (m+ 1)th replicate is the “pooled data”. A simple and common way of pooling multiple
RNA-Seq replicates into one dataset is to calculate the pooled bin proportions as

1 ,
b(m—|—1)j = Ezbij’ ] = 1,...,J. (52)

In the hope of using individual replicates to help reduce possible biases in the pooled
data, we can jointly estimate the isoform proportions in Equation (5.1) as

m+1 J m+l K ‘ |
[151,...,f)m+1]—arg min (ZZ i — Fipi)? + Ay ZZ Dik

P1, sPm+1
mE i=1 j=1 i=1 k=1

m K
23S b —piu) el pzo 653)

i=1 k=1
where pq, - -+, P, are isoform proportion estimates from Replicate 1,---  m, and p,, 1 are
isoform proportion estimates from the pooled data. The estimate of our interest is p,, 1. By
adding the second penalty term to the objective function, we intend to have the estimates
from the pooled data similar to the majority of replicates, and dissimilar to the outlier
replicates. That is, we expect the estimates p,,+1 from Equation (5.3) to be more robust to
“outlier” replicates and thus more accurate than estimates from the “pooling method” and
the “individual method”.

5.2.2 Further Studies on modENCODE Timecourse Data

In our current work on the comparison of D. melanogaster and C. elegans developmental
stages (Chapter 4), we did not use the temporal information of stages. We would like to
further develop statistical methods for timecourse alignment, by regarding gene expression
profiles as functional data with different time scales. The goal is to find a partial alignment
between timecourses of different species, and to identify important stages that contribute
most to the alignment. This study will have a broad interest beyond the comparison of two
model organisms, as it may be applied to aligning two relevant groups of functional data
with different x-axis scales.

Another question of biological interest is to incorporate alternative splicing information
into aligning different D. melanogaster and C. elegans stage/tissue/cell samples. It will be
interesting and important to study whether alternative splicing patterns in the two species
have similar dynamics throughout their development, and whether our observed alignment
patterns in Chapter 4 remain the same after considering alternative splicing. New statistical
methods are needed to address such issues.
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5.3 Discussion

With the rapid development of high-throughput genomic technologies, many previously un-
solved or controversial biological questions can now be answered or addressed from a new
perspective. To answer or address these questions, statistical methods and analysis are nec-
essary tools. In this thesis, we described three interesting examples that demonstrate the
power of combining statistics and high-throughput genomic data to study important ques-
tions in the genomics field. Given the enormous amount of high-throughput genomic data
and a large number of existing and new biological questions, we believe that applying statis-
tics to analyzing high-throughput genomic data is an attractive topic and will become an
increasingly prominent direction in interdisciplinary research.
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Appendix A

Supplementary Material for “Sparse
Linear Modeling of Next-Generation
mRNA Sequencing (RNNA-Seq) Data
for Isoform Discovery and Abundance
Estimation”

A.1 Linear Modeling of RNA-Seq data

Linear modeling of paired-end RNA-Seq data has been discussed in Section 2.4. The main
points include (i) the definition of paired-end bins to summarize the key information in RNA-
Seq data for isoform discovery, (ii) the enumeration of all possible isoforms from defined
subexons, (iii) the modeling of conditional probabilities of observing reads in different bins
given an isoform, and (iv) the construction of a linear model to estimate isoform proportions
from observed bin counts.

Below we present more details about modeling the fragment length distribution in F and
construction of linear model for single-end data.

A.1.1 The Fragment Length Distribution

Modeling the cDNA fragment length distribution is a key part in constructing the design
matrix FF of the linear model. Truncated Exponential is a reasonable candidate for the
distribution, based on a Poisson point process assumption on a fragment’s 3’ end with the
5" end fixed and a size selection step in RNA-Seq protocols. Another widely used candidate
in existing RNA-Seq tools is Normal distribution [16]. To evaluate the two distributions, we
compared them with empirical distributions of cDNA fragment lengths in paired-end RNA-
Seq data. However, actual fragment lengths are unknown in genes exhibiting alternative
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splicing events, thus posing difficulties in obtaining the empirical distributions. To tackle
this problem, a conservative solution is to calculate an empirical length distribution of cDNA
fragments with both ends in the same suberon where no alternative splicing occurs. The
good side of this solution is that the fragment lengths used in the calculation are actual,
but the downside is that some long fragments across exons are not considered. Another
solution is to calculate an empirical length distribution based on cDNA fragments in genes
with no alternative splicing events in the UCSC Drosophila melanogaster (September 2010)
annotation [29]. This solution has the advantage of observing all sorts of fragment lengths,
but its disadvantage is that wrong fragment lengths may be used if the annotation is incom-
plete. We employed both solutions to calculate the empirical distributions from dataset 1
(Table 2.1), and plotted them against either truncated Exponential or Normal distribution in
Q-Q plots (Figure A.1). Parameters in the truncated Exponential and Normal distributions
are chosen in such a way that both distributions have the same mean and variance as in the
empirical distribution. Q-Q plots in Figure A.1 show that both truncated Exponential and
Normal distributions are reasonable approximations of the fragment length distribution.

A.1.2 Linear Modeling of Single-End RNA-Seq Data

For single-end RNA-Seq data, we can derive a similar linear model to the one used for
paired-end data (Equation 2.3). First, we enumerate possible isoforms in the same way as
for the paired-end data, and categorize reads into single-end bins, defined as two-dimensional
vectors indicating subexon indices of the reads. For example, single-end bin (i, j) contains
reads whose 5" and 3’ ends are in subexon i and j, respectively. A single-end bin count
is defined as the number of reads in that bin. Bin counts of every gene are normalized as
bin proportions, denoted by b. Second, we construct a linear model to estimate isoform
proportions p from observed single-end bin proportions, with a design matrix F as the
conditional probabilities of observing reads in different single-end bins given an isoform.
The modeling and calculation of the conditional probabilities for single-end data are similar
to those for paired-end data in the main paper. We consider a single-end bin as equivalent
to a combination of multiple paired-end bins. For example, in a two-subexon gene, reads in
single-end bin (1,1) correspond to paired-end reads in bins (1,1,1,1), (1,1,1,2), and (1,1,2,2).
So the conditional probability of observing reads in single-end bin (1,1) given an isoform
equals to the sum of conditional probabilities of observing reads in each of the three paired-
end bins given the same isoform. In general, we calculate the conditional probability of
observing reads in single-end bin j given isoform k as Zresj F},, where §; is the set of
paired-end bins corresponding to the single-end bin j, and F), is the conditional probability
for paired-end data whose calculation has been described in details in the main paper. Last,
we write a linear model in the same formula as in Equation 2.3.

For combined paired-end and single-end data, we can simply construct a linear model
by catenating the observation vectors and combining the design matrices by rows in the
linear models for paired-end and single-end data, respectively. Hence, the linear model used
in SLIDE (Sparse Linear modeling of RNA-Seq data for Isoform Discovery and abundance
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Figure A.1: Q-Q plots of modeled vs. empirical fragment length distribution on dataset 1
(Table 2.1). Note that only the fragment lengths between the 5% and 95% percentiles of
the empirical distribution are used to construct the Q-Q plots, because extremely long or
short fragments may be results of mapping errors. (A) Q-Q plot of truncated Exponential
distribution vs. empirical length distribution of cDNA fragments within single-exon genes.
(B) Q-Q plot of Normal distribution vs. empirical length distribution of cDNA fragments
within single-exon genes. (C) Q-Q plot of truncated Exponential distribution vs. empirical
length distribution of cDNA fragments within single-isoform genes. (D) Q-Q plot of Normal
distribution vs. empirical length distribution of cDNA fragments within single-isoform genes.
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No. of Total no. of No. of genes with unidentifiability issue No. of genes with unidentifiability issue
subexons genes before the preselection procedures after the preselection procedures

3 295 204 (69.2%) 1(0.3%)

4 237 228 (96.2%) 198 (83.5%)

5 165 165 (100%) 155 (93.9%)

6 142 142 (100%) 137 (96.5%)

7 82 82(100%) 80 (97.6%)

8 72 72 (100%) 70 (97.2%)

9 56 56 (100%) 55 (98.2%)

10 35 35 (100%) 35 (100%)

Table A.1: Number of genes with unidentifiability issues before and after preselection pro-
cedures

Estimation) can accommodate for different types of RNA-Seq data: paired-end, single-end,
or both.

A.1.3 Identifiability and Pre-Selection Procedures

To avoid the unidentifiability issue due to collinearity in the linear model (Equation 2.2),
we applied a preselection procedure: Only isoforms whose all subexon junctions have been
observed are selected as candidates; for genes with more than two subexons, single-subexon
isoforms are excluded from the candidates because of their rare existence. With this pro-
cedure, the number of parameters for an n-subexon gene can be reduced from 2" — 1 to a
significantly smaller number.

About the observations, there are frequently false zero counts of junction-end bins. We
define junction-end bins as bins that include paired-end reads with at least one end across
exon junctions [e.g., junction-end bins (1,1,1,2) and (1,2,2,2) include paired-end reads with
one end covering the junction between subexons 1 and 2, whereas bin (1,1,2,2) is not a
junction-end bin]. When bin (1,1,2,2) has positive counts, the expected counts of bins
(1,1,1,2) and (1,2,2,2) should be positive, too; however, due to the difficulty of mapping
junction reads, junction-end bins (1,1,1,2) and (1,2,2,2) are often observed with false zero
counts. Thus, we exclude false zero junction-end bin proportions from the observations.

As an illustration of the effects of such preselection procedures, we calculate the numbers
of genes with unidentifiability issues in their linear models (i.e., rank(F) < K in Equa-
tion 2.1) before and after the preselection procedures for every group of n-subexon genes
(n = 3,...,10). The numbers are summarized in Table A.1, which shows that the prese-
lection procedures have effectively overcome the unidentifiability issue for genes with three
subexons and alleviated the problem for a few genes with more subexons. However, the per-
centage of genes with unidentifiablity issues remains high after the preselection procedure
for genes with more than three subexons; we see that the sparse estimation in SLIDE is still
necessary.
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A.1.4 L; vs. Ly Regularization

In sparse estimation, L; penalty in Lasso is linear and ensures convexity of the objective
function (Equation 2.4). It also has the convexity property in logistic and Poisson regressions.
Lasso does variable selection and shrinkage, thus permitting isoform discovery in SLIDE. Lg
penalty is also a possible choice for sparse estimation. It was reported that Ly penalty can
lead to a sparser model when the number of variables (e.g., the number of isoform candidates)
is far larger than the number of relevant variables (e.g., the number of existing isoforms),
whereas L; penalty in Lasso has to use a large A to screen out spurious variables and
causes biases in retained variables [34, 110]. However, Ly regularization is computationally
disadvantageous because it makes the optimization problem nonconvex, and it has been
shown that L; is a good surrogate for Ly in many cases. In computational biology, L
regularization is shown to be a good approach for high-dimensional and potentially sparse
data [38]. In our case, SLIDE does isoform discovery and abundance estimation in two steps,
so the biased estimates of isoforms in the discovery step would not affect the subsequent
abundance estimation step as long as true isoform estimates are not shrunk to zeros by
Lasso. This is different from IsoLasso and NSMAP, which use one-step sparse estimation
for simultaneous isoform discovery and abundance estimation [27, 36]. Moreover, in our
estimation, the existence of ny (the number of exons in the kth isoform) in the penalty term
would reduce the difference between L, and L, regularization. Therefore, L; regularization
is a reasonable choice for our sparse estimation.

A.1.5 Selection of the Regularization Parameter in Sparse
Estimation

The selection of the regularization parameter A (Equation 2.4) is by a stability criterion that
aims to return the most stable results over different runs of estimation [37]. Because genes of
the same number of subexons have similar dim(p) and dim(b) in Equation 2.4 of the main
paper, we decided to group genes by their numbers of subexons n and select an optimal A
for each group from 16 candidate values ();)}¢; (see Table 2.3). This grouping is particularly
advantageous for selecting A for lowly expressed genes, whose signal-to-noise ratios are low.
Highly expressed gene signals can counteract the noise in the lowly expressed genes of the
same group.

Suppose that there are m(™ genes with n subexons, n = 3,--- ,10. The selection proce-

dures following the stability criterion are as follows.

1. For the rth gene with n subexons, r = 1,--- ,m™, use A = \;,, i = 1,---,16 in
Equation 2.4 to estimate p for 50 runs. In each run, use randomly sampled one half

of the reads in the gene as input into SLIDE. Define ¢;., as the proportion of runs in
Ef:l Qirk
K I(px>0 1IN some runs)’

which pg > 0. Define g;, =

- (n)
2. Calculate the average of G, over the m(™ genes as §; = ﬁ S Gire
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Figure A.2: Precision and recall rates of SLIDE on simulated data with different read cover-
ages. (A) Read coverage is 10 reads per kilobase. (B) Read coverage is 50 reads per kilobase.
(C) Read coverage is 100 reads per kilobase.

3. Choose \(™ as A\, where i* = arg max; g;.

The selected \™ for datasets 1-4 (Table 2.1) and the simulation data are in Table 2.3.

A.2 More Simulation Studies

A.2.1 Simulation Studies with Different Read Coverages

To study the isoform discovery accuracy of SLIDE in lowly expressed genes, we did a simula-
tion study with three different read coverages: (i) 10 reads per kilobase of an annotated gene,
(ii) 50 reads per kilobase of an annotated gene, and (iii) 100 reads per kilobase of an anno-
tated gene. The simulated reads are paired-end with 37-bp length in each end. Precision and
recall rates of SLIDE using the simulated data are summarized in Figure A.2, which shows
that SLIDE has improved isoform discovery accuracy as the read coverage increases, as we
expected. The improvement is significant when the read coverage increases from 10 reads
per kilobase to 50 reads per kilobase, and the improvement becomes less significant when
the read coverage increases further to 100 reads per kilobase. Given that many paired-end
RNA-Seq data have more than 10 million reads, 10 reads per kilobase would correspond to
less than 1 RPKM (number of reads per kilobase per million of mapped reads) in those data.
We note that a gene with such low read coverage and multiple exons is not likely to have
all its exon junctions covered by reads, thus posing great difficulties on isoform discovery.
As illustrated by this simulation study, SLIDE is robust to changes in gene expression levels
when read coverage is beyond a certain threshold, and SLIDE has higher precision and recall
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rates and lower estimation variance as read coverage increases. When gene expression is too
low (e.g., 10 reads per kilobase), some exons or exon junctions would not be observed and
the dimensionality of observations in the core linear model would be reduced, thus resulting
in incorrect estimation results by SLIDE. At the read coverage of 10 reads per kilobase,
we have tried other likelihoods (multinomial and Poisson) to model the responses (i.e., bin
counts) in the linear model of SLIDE, but the precision and recall rates are similarly low (see
Subsection A.2.2). [Please note that our Poisson regression has a similar objective function
as the maximum-likelihood approach used in NSMAP [36] has in the optimization, except
for differences in the design matrix and penalty term.] This missing data problem associated
with lowly expressed genes is not unique to SLIDE, because to accurately recover missing
reads from observed data remains a big challenge for current RNA-Seq isoform discovery and
quantification methods. Because of data noise and biases introduced at many experimental
steps of the current RNA-Seq protocol, it would be difficult to recover missing exons or
junctions by statistical models.

A.2.2 Simulation Studies with Different Likelihoods in the Core
Linear Model

To explore the effects of using different likelihoods in the generalized linear model of SLIDE
(Equation 2.3), we tried three different likelihoods: Normal (the default), multinomial (lo-
gistic regression) and Poisson in the sparse estimation with simulated data. Reads were
simulated under two read coverages, 10 and 100 reads per kilobase. Simulation settings are
the same as described in the main paper. The results in Figure A.3 illustrate that in gen-
eral, the three different likelihoods do not give very different results in both read coverages.
Looking more closely, we find that using Normal likelihood at read coverage 10 reads per kb
gives slightly higher precision and recall rates for genes with 3-4 subexons, and using Logis-
tic regression at read coverage 100 reads per kb gives lower precision rates for genes with
3-5 exons. In our SLIDE model, it is naturally to assume that the expected bin counts are
linear in isoform quantities and to use an identity link function (Normal likelihood). These
exploration results confirm that Normal likelihood is a reasonable choice.

A.2.3 Effects of Isoform Similarity and Missing Annotations on
Isoform Discovery

Similarity between different isoforms of the same gene would pose difficulties on isoform
discovery. There are some cases where the isoform deconvolution is not identifiable because
of the similarity between true isoforms [111, 112]. For example, when some isoforms are
fragments of others in the true isoform set, there would usually be more than one possible
set of isoforms that can explain the observed exon expression levels and exon junctions.

In situations that annotations have missing but truly expressed isoforms, there are two
different cases. First, when missing isoforms have exons not included in annotated isoforms,
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Figure A.3: Precision and recall rates of SLIDE using different likelihoods in simulation
with two different read coverages. (A) Normal likelihood, (B) Poisson likelihood, and (C)
multinomial likelihood (logistic regression) with read coverage 10 reads per kb. (D) Normal
likelihood, (E) Poisson likelihood, and (F) multinomial likelihood (logistic regression) with
read coverage 100 reads per kb.
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although SLIDE is not designed to recover missing exons from data, it can solve this issue
by using de novo exons assembled by other softwares [e.g., Cufflinks [16], Scripture [31]].
Second, when all the exons in missing isoforms are included in annotated isoforms, SLIDE
can discover the missing isoforms with high accuracy, especially if every missing isoform has
more than one unique splice junctions. In the difficult case where some missing isoforms are
fragments of annotated isoforms and the isoform deconvolution is not identifiable, SLIDE
would discover a set of longest isoforms with the highest probability among all the possible
sets of isoforms. For example, we suppose that a three-exon gene has exon RPKMs 10, 20,
and 10, respectively, and junction reads are observed between exons 1-2, and exons 2-3. In
terms of the isoform deconvolution, there would be two possible sets of isoforms: (i) isoform
(1,2,3) with RPKM 10 and isoform (2) with RPKM 10; or (ii) isoform (1,2) with RPKM
10 and isoform (2,3) with RPKM 10. In this case, SLIDE would favor the latter (set ii),
which has a smaller penalty term. We design SLIDE to favor longer isoforms in the sparse
estimation, by weighting each isoform abundance estimate with the inverse of its number
of exons. This is based on our observations that most annotated isoforms contain many
instead of few exons. In real data study, there are commonly observed 5" and 3’ end biases
in RNA-Seq data, that is, in our example above, even if the true isoform is (1,2,3), RNA-Seq
read coverage in exons 1 and 3 is very likely to be lower than the read coverage in exon
2. To counteract the end biases in real RNA-Seq data, we allow SLIDE to favor isoforms
with more exons in the sparse estimation. Therefore, SLIDE would find the longest isoform
containing all the three exons unless the read coverage difference between exons 1 and 3 and
exon 2 is significantly high.

We did simulation studies in the following three cases to illustrate the performance of
SLIDE when annotations have missing isoforms but contain all the exons. In gene RholL,
there are four exons with lengths 379, 172, 286, and 204, respectively. The only annotated
isoform is (1,2,3,4) that contains all four exons. In each of the following cases, we did 50
simulation runs with 500 paired-end 37-bp reads simulated in each run.

Case 1. Suppose that isoform (1,3,4) is missing in the annotation and its expression
level is the same as that of isoform (1,2,3,4). We note that (1,3,4) contains a novel junction
between exons 1 and 3 that is not in the annotated isoform (1,2,3,4). For all 50 runs, SLIDE
correctly discovered both isoforms.

Case 2. Suppose that isoform (2,3,4) is missing in the annotation and its expression level
is the same as that of isoform (1,2,3,4). We note that (2,3,4) is a fragment of the annotated
isoform (1,2,3,4). For 49 out of the 50 runs, SLIDE correctly discovered both isoforms.

Case 3. Suppose that both isoforms (1,3,4) and (2,3,4) are missing in the annotation and
both of their expression levels are the same as that of isoform (1,2,3,4). SLIDE correctly
discovered all three isoforms in 18 runs. It missed isoform (2,3,4) in 18 runs, missed isoform
(1,3,4) in 8 runs, and missed both in 6 runs.

From the results, we can see that it is more difficult to discover missing isoforms that
are fragments of annotated isoforms, because SLIDE has to tackle end biases in real data.
Nevertheless, these simulation results show that SLIDE has satisfactory performance in cases
where annotations have missing isoforms.
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A.3 More about mRNA Isoform Discovery on
modENCODE Data

A.3.1 More about the Comparison between SLIDE and Cufflinks

In the main paper, we carried out three comparisons between SLIDE and Cufflinks from
different perspectives. First, we compare the two methods in their default settings, where
SLIDE uses genes and exons from UCSC annotations and Cufflinks uses its de novo assembled
genes and exons (Figure 2.2B). In the evaluation step, we compare discovered isoforms by
each method with isoforms in UCSC annotations. We call a discovered isoform and an
annotated isoform matched if they have the same number of exons and all of their exons
overlap. Thus, our evaluation scheme is not sensitive to exon boundaries as long as de novo
assembled exons are in the same loci as annotated exons. We agree that this comparison is
not fair for Cufflinks, but the results still reveal two main problems of the Cufflinks results:
(i) Cufflinks splits a gene into multiple parts when few junction reads are observed between
certain exons; (ii) Cufflinks merges two genes on opposite strands if they overlap because
the read strand information is not properly considered. SLIDE does not have those two
problems because it uses annotated gene boundaries that are mostly accurate. In the second
comparison, we applied both methods to de novo assembled genes and exons by Cufflinks
(i.e., to compare the isoform assembly performance of SLIDE and Cufflinks given the same
set of genes and exons) (Figure 2.2C). The comparison results show that SLIDE and Cufflinks
have similar precision and recall rates, which are, however, much lower than the precision
and recall rates SLIDE had when using annotated genes and exons. We were concerned that
the precision and recall rates in the second comparison might have been dominated by the
de novo gene boundaries and exon loci that are different from the annotation. Therefore, we
performed a third comparison between SLIDE and Cufflinks with only the genes whose de
novo assembled exons agree with annotated exons in their loci. We found that the precision
and recall rates of SLIDE are higher than those of Cufflinks. Therefore, we concluded that
the isoform discovery performance of SLIDE is better than, or at least comparable to, that
of Cufflinks.

The comparison results in the main paper are based on dataset 1 (Table 2.1). We did
the same set of comparisons on datasets 2-4 (Table 2.1), and the results are summarized
in Figures A.4 and A.5 (results on dataset 1 are in Figure 2.2B and C). From Figures A .4
and A.5, we observe that the comparison results on datasets 2-4 are consistent with the
results on dataset 1.

A.3.2 Comparison between SLIDE and IsoLasso/NSMAP

Here, we compare SLIDE with two other isoform discovery methods with lasso-type sparse
estimation: IsoLasso [27] and NSMAP [36].

SLIDE is different from IsoLasso [27] in three aspects. (i) IsoLasso enumerates isoforms
based on a connectivity graph used by Scripture (10). This deterministic approach finds the



A B C
Q] Q| Q|
— | o SLIDE — | o SLIDE — | o SLIDE
* Cufflinks 2] * Cufflinks * Cufflinks @
o0} [e0] [0}
o . ﬁq o 9 o 3"
& 4 [8
_ © | é& _ © | 6§* _ © | 6§* ﬁ
5 © 8 = o > = o i
(&) (&) (&)
T < c < & c < 8
N A A
o o o
o | o | (=3
© T T T © T T T © T T T
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
Precision Precision Precision

81

Figure A.4: Comparison of isoform discovery results by SLIDE (using genes and exons from
the UCSC annotation) and Cufflinks. (A) Precision and recall rates of SLIDE and Cufflinks
on dataset 2. The numbers in the figure are the group indices of genes (i.e., numbers of
subexons). The squares and stars represent SLIDE and Cufflinks results, respectively. (B)
Precision and recall rates of SLIDE and Cufflinks on dataset 3. The numbers, squares, and
stars have the same meaning as in A. (C) Precision and recall rates of SLIDE and Cufflinks
on dataset 4. The numbers, squares, and stars have the same meaning as in A.

longest paths indicated by connected paired-end reads and would not consider isoforms with
alternative starts/ends (i.e., one isoform is a fragment of the other) as isoform candidates.
(ii) IsoLasso uses a binary design matrix to relate reads to isoforms. It does not fully capture
the quantitative relationship between read counts and isoform abundance. In contrast, our
design matix uses conditional probabilities to relate read counts to isoform abundance, and
is flexible in terms of incorporating different types of biological information into the mod-
eling (e.g., using GC content to adjust nonuniform read coverage). (iii) IsoLasso performs
isoform discovery and abundance estimation simultaneously with Lasso, a sparse estimation
method. However, the penalization term in Lasso would introduce biases to the abundance
estimates. To fix this issue, SLIDE uses a two-step approach that first discovers isoforms
by sparse estimation and subsequently estimates the abundance of the discovered isoforms
by nonnegative least squares that gives less biased estimates than Lasso does. (iv) Unlike
IsoLasso, SLIDE favors isoforms with more exons in its sparse estimation. This is because
we observe that RNA-Seq data noise often leads the linear model to fit with multiple isforms
each with a small numbers of exons, contradicting with annotations. To counteract such data
noise, we give less penalty to isoforms with more exons in the sparse estimation. In addition,
IsoLasso builds isoform candidates from de novo exons directly assembled by mapped reads,
without taking annotated gene and exon information into account.
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Figure A.5: Comparison of isoform discovery results by SLIDE (using de novo genes and
exons assembled by Cufflinks) and Cufflinks. (A) Precision and recall rates of SLIDE and
Cufflinks on dataset 2. The numbers in the figure are the group indices of genes (i.e., numbers
of subexons). The squares and stars represent SLIDE and Cufflinks results, respectively. (B)
Precision and recall rates of SLIDE and Cufflinks on dataset 3. The numbers, squares, and
stars have the same meaning as in A. (C) Precision and recall rates of SLIDE and Cufflinks
on dataset 4. The numbers, squares, and stars have the same meaning as in A.

We conducted three numerical comparisons between SLIDE and IsoLasso on isoform dis-
covery based on the same data used in the comparison between SLIDE and Cufflinks. In
the first comparison, we evaluated both methods in their default settings, where SLIDE
builds isoforms from exons in UCSC annotations and IsoLasso finds isoforms from its de
novo assembled exons. The discovered isoforms by either method are evaluated by UCSC
annotations, where a discovered isoform is called to match an annotated isoform if they have
the same number of exons and all of their exons overlap. Thus, this evaluation scheme is not
sensitive to exon boundaries as long as a discovered isoform has exons in the same loci as
exons of an annotated isoform. Precision and recall rates are calculated as described in the
main paper. The comparison results in Figure A.6A show that SLIDE has better precision
and recall rates than IsoLasso does. These results are similar to the first comparison results
between SLIDE and Cufflinks in the main paper. The main reason is that both IsoLasso
and Cufflinks find isoforms for de novo assembled genes, whose boundaries are sensitive to
RNA-Seq data noise, especially to biases of junction read counts. These results suggest the
importance of scrutinizing de novo assembled genes and exons with available annotations
before performing isoform discovery; however, because SLIDE and IsoLasso do not start from
the same set of genes and exons, this comparison is not a fair evaluation of their isoform as-
sembly performance. Thus, we performed a second comparison based on isoforms discovered
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Figure A.6: Comparison of isoform discovery results by SLIDE and IsoLasso. (A) Preci-
sion and recall rates of SLIDE (using annotated genes/exons) and IsoLasso on dataset 1
(Table 2.1). The numbers in the figure are the group indices of genes (i.e., numbers of
subexons). The squares and stars represent SLIDE and Cufflinks results, respectively. (B)
Precision and recall rates of SLIDE (using IsoLasso assembled genes/exons) and IsoLasso on
dataset 1 (Table 2.1). The numbers, squares, and stars have the same meaning as in A.

by either method from de novo genes and exons assembled by IsoLasso. Figure A.6B shows
that SLIDE still has better precision rates than IsoLasso has for most genes. To further
exclude the effects of disagreement between annotated and de novo assembled exons, we
carried out a third comparison of the two methods using only the de novo assembled exons
that agree with the annotation. We found that SLIDE has an average precision rate 0.85
and recall rate 0.91, whereas IsoLasso has an average precision rate 0.79 and recall rate 0.91.
This again shows that SLIDE has higher precision than IsoLasso has in isoform assembly
from the same set of de novo exons.

NSMAP is a Bayesian model-based method that estimates the abundance of isoform can-
didates as MAP (maximum a posteriori) estimates [36]. It is an extension of the maximum-
likelihood abundance estimation method “statistical inferences for isoform expression in
RNA-Seq” (SIIER) [24], in the sense of expanding parameters of interest from the abun-
dance of annotated isoforms to that of all isoform candidates. NSMAP uses a Laplace prior
to introduce sparseness and then discovers isoforms based on MAP estimates of the abun-
dance of isoform candidates. NSMAP is similar to IsoLasso in four aspects. (i) Both methods
use deterministic approaches to construct isoform candidates. NSMAP uses the minimal set
of isoforms that can explain all junction reads, and it would miss isoforms with alternative
starts/ends (i.e., one isoform is a fragment of the other) in its isoform candidate set. (ii)
NSMAP is equivalent to IsoLasso in the optimization step. In the original Lasso paper, it
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was suggested that Lasso estimates can be interpreted as posterior mode estimates when
the regression parameters have independent and identical Laplace priors [34]. Unlike SLIDE,
both NSMAP and IsoLasso do not favor isoforms with more exons in their sparse estimation,
but they only keep the longest isoforms in their candidate sets. (iii) Both methods perform
isoform discovery and abundance estimation simultaneously with sparse estimation. (iv)
Both methods build isoforms from de novo assembled genes and exons. NSMAP constructs
genes and exons de novo from read alignment output of Tophat. Therefore, the differences
between SLIDE and NSMAP in methodology would be similar to those between SLIDE and
IsoLasso. We tried to conduct numerical comparison between SLIDE and NSMAP. How-
ever, a code bug in the NSMAP package (Version 0.1.0) prohibited us from using it, and our
attempts at contacting the authors were not successful.

A.4 More about mRNA Isoform Abundance
Estimation on modENCODE Data

To evaluate the isoform abundance estimation accuracy of SLIDE without knowing the
ground truth of isoform quantities in datasets 1-4 (Table 2.1), we compare SLIDE to two
widely used methods: statistical inferences for isoform expression in RNA-Seq (SIIER) [24]
and Cufflinks [16]. All three methods are used to estimate the isoform proportions of 317
chr3R genes with multiple isoforms in the UCSC annotation, and the total number of isoforms
is 798. On dataset 1 (Table 2.1), the SLIDE and SIIER estimates have a correlation R = 0.75,
and there are 25 genes with significantly inconsistent estimates between the two methods;
i.e., ﬁSLIDE < 0.1 and ﬁg[[ER > 0.5 or ﬁSLIDE > (0.5 and ﬁSIIER < 0.1. By detailed manual
inspection, we find that among the 25 genes there are 20 genes whose SLIDE estimates
agree better with the paired-end bin counts. For example, gene CG9801 has five subexons
with RPKMs 8.25, 5.57, 0, 3.92, and 3.16, respectively, and observed junctions between
subexons 1-2, 2-4, and 4-5 in dataset 1. There are three isoforms (1,2), (1,2,5), and (1,2,4,5)
of CGY9801 in the annotation. SLIDE estimates their proportions as 0.76, 0, and 0.24,
respectively, whereas SIIERs estimates are 0, 0.55, and 0.45, respectively. Because there is
no observed junction between subexons 2 and 5 and the expression levels of subexons 1 and
2 are higher than those of subexons 4 and 5, the SLIDE estimates seem more consistent with
the data. The rest of the 25 genes include one gene whose SIIER estimates agree better
with the paired-end bin counts, and four genes with ambiguous bin counts that cannot
differentiate the two sets of estimates. An example of the ambiguous cases is gene D1 with
five subexons. In dataset 1, the RPKMs of the five subexons are 327.79, 326.01, 16.6, 6.23,
and 0, respectively, and there are observed junction reads between subexons 1-2, 2-3, and
3-4. SLIDE estimates the proportions of annotated isoforms (1,2,3,4) and (1,2,3) as 0.02
and 0.98, respectively, whereas SIIER returns estimates 1 and 0, respectively. Based on the
annotation, we would expect subexons 1, 2, and 3 to have similar expression levels; however,
the observed expression in subexon 3 is significantly lower than that of subexons 1 and 2. So
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the data seriously contradicts with the annotation. Hence, both SLIDE and SITER cannot
reasonably fit the data based on the annotation. After removing those 25 genes, we have a
correlation R = 0.88 between the SLIDE and SITER estimates.

In the comparison between SLIDE and Cufflinks, the correlation between their estimates
on the proportions of the 798 isoforms is R = 0.67 on dataset 1. Similarly, we find 35 genes
with significantly inconsistent estimates between SLIDE and Cufflinks, psripg < 0.1 and
DPouffiinks > 0.5 or psripe > 0.5 and Peygfiinks < 0.1. Again by detailed manual inspection,
we observe that 30 of them have SLIDE estimates that agree better with the paired-end bin
counts, 3 have CufHlinks estimates that agree with the bin counts, and 2 have ambiguous bin
counts such that both estimates are reasonable. After removing those 35 genes, we have a
correlation R = 0.85 between the SLIDE and Cufflinks estimates.

A.5 More about the Exploration of Read/Fragment
Length Effect

In the exploration of whether different read lengths would affect the isoform discovery re-
sults of SLIDE, we applied SLIDE to datasets 2 and 3 (Table 2.1), which are from the same
Kc167 sample, with similar sequencing depth, but of read lengths 37 and 76 bp, respectively.
Surprisingly, the precision and recall rates on the 37-bp data are higher than those on the
76-bp data. In the search for a possible explanation, we observed that the cDNA frag-
ments in single-exon genes have different fragment length distributions in the two datasets:
N(166,26%) and N(127,132) for the 37-bp and 76-bp data, respectively.

To explore whether the read length or the fragment length has larger effects on the
isoform discovery, we did a simulation study with two different read lengths (37 and 76 bp)
and three different fragment length ranges (50-100 bp, 100-150 bp, and 150-200 bp). In each
of the 50 simulation runs, 500 paired-end RNA-Seq reads are generated in each setting for
each read length and each fragment length range. We applied SLIDE to the simulated data
and summarized the precision and recall rates of each setting in Figure A.7. The figure
illustrates that the increase in fragment lengths from 50-100 bp to 100-150 bp significantly
improves the precision and recall rates of isoform discovery. Changes in fragment lengths
from 100-150 bp to 150-200 bp also improve the precision and recall rates by increasing their
means to some extent and decreasing the width of their confidence intervals. Compared to
the fragment length changes, read length changes from 37 bp to 76 bp have smaller effects
on the isoform discovery results.

A.6 Read Coverage vs. GC Content

It has been reported by several groups that read coverage has a strong correlation with GC
content in high-throughput DNA sequencing data [110, 17]. As high-throughput sequencing
technologies (e.g., DNA sequencing, RNA-Seq, ChIP-Seq, etc.) have similar characteristics
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Figure A.7: Simulation study of read/fragment length effects on isoform discovery. (A)
Precision and recall rates of SLIDE on simulated paired-end RNA-Seq data with fragment
lengths in the range of 50-100 bp and two different read lengths (37 bp vs. 76 bp). 95%
confidence intervals of precision and recall rates are shown as error bars parallel to the z and
y axes, respectively. (B) Precision and recall rates of SLIDE on simulated paired-end RNA-
Seq data with fragment lengths in the range of 100150 bp and two different read lengths (37
bp vs. 76 bp). The confidence intervals are shown in the same way as in A. (C) Precision
and recall rates of SLIDE on simulated paired-end RNA-Seq data with fragment lengths in
the range of 150-200 bp and two different read lengths (37 bp vs. 76 bp). The confidence
intervals are shown in the same way as in A.

in the se- quencing step, many researchers believe that a strong correlation between read cov-
erage and GC content also exists in RNA-Seq data [18, 19]. However, unlike DNA sequencing
data, RNA-Seq read coverage varies in different transcribed regions and is mainly determined
by expression levels and alternative splicing patterns of the regions [113]. It would be diffi-
cult to compare read coverage across subexons, which may occur in different transcripts and
thus have different expression levels. To check the validity of using GC content correction
in our SLIDE model, we study the relationship between RNA-Seq read coverage and GC
content within subexons, using RNA-Seq reads on chr3R in dataset 1 (see Table 2.1). We
use three different window sizes: 10 bp, 30 bp, and 50 bp. For every subexon, we calculate
the correlation coefficient of its windowed average read coverage vs. GC content. Then,
we calculate the percentage of subexons giving positive correlations among all the subexons
with more than n windows (n = 3,10,...,100), and find that the percentage increases as n
increases. This trend is observed with all the three window sizes. The percentages for 10-bp
windows are summarized in Table A.2. A histogram of the correlations in subexons with
more than 100 windows is in Figure A.8. Because we expect that correlations calculated in
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Figure A.8: A histogram of correlations between windowed read coverage and GC content
in subexons containing more than 100 windows of 10-bp size.

n 3 10 20 40 60 80 100
Percentage 77.3% 78.6% 83.0% 87.9% 90.1% 91.0% 91.3%
Mean(R) 0.171  0.174 0.193 0.219 0.227 0.232 0.229

Table A.2: Percentages of subexons (> n 10-bp windows) with positive correlation (R)
between read coverage and GC content

subexons with more windows can better represent the relationship between read coverage
and GC content, we conclude that there is a positive correlation between read coverage and
GC content.

A.7 Some Other Detail about the Analysis

e In the simulation study of the main paper, we simulated reads from the 1,972 genes
of 3-10 subexons (defined in Figure 2.1) on chr3R from D. melanogaster annotation
(September 2010) of UCSC Genome Browser [29]. For each gene, reads are gener-
ated from the annotated isoforms, whose proportions p; are randomly sampled from
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{0,0.1,---,0.9,1} subject to the constraint that ), pr = 1. For every gene, we simu-
late 500 reads in each run, with 50 runs in total.

In the sparse estimation, we selected an optimal A for each group of genes with n
subexons (n = 3,---,10) by a stability criterion [37]. However, there are a small
number of genes where zero isoforms were identified under the selected \. For those
genes, we reselected a gene-specific A. In more details, we replace the previous A by
A* = max(A — 0.1, A\/2) until non-trivial results were obtained.

For isoform discovery, SLIDE uses sparse linear model estimation to find isoforms. We
note that the linear model for paired-end data (Equation 2.3) is identifiable; i.e. FTF is
invertible [111], for a few genes with 3-10 subexons of D. melanogaster (Table A.1). In
those cases, we additionally attempted to use nonnegative least squares (NNLS), whose
estimation results should be less biased than those of L; penalized estimation. However,
compared to the penalized estimation results in the main paper, we found that the
NNLS results include a lot of short isoforms as truncated fragments of isoforms in the
UCSC annotation. In the example of gene jumu, whose three subexons have RPKMs
20.86, 42.62, and 25.97, respectively, there are observed junctions between subexons
1-2 and 2-3. NNLS discovered isoforms (1,2), (2,3), and (1,2,3) for jumu, whereas
SLIDE only found the longest isoform (1,2,3), which agrees with the annotation. The
possible reason of NNLS finding short isoforms is that RNA-Seq data have unexpected
read coverage variation among exons in the same transcript [17, 18, 19].
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