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Abstract
The intestinal absorption process of vitamin B2 (riboflavin, RF) is carrier-mediated, and all

three known human RF transporters, i.e., hRFVT-1, -2, and -3 (products of the SLC52A1, 2
& 3 genes, respectively) are expressed in the gut. We have previously shown that the

intestinal RF uptake process is adaptively regulated by substrate level, but little is known

about the molecular mechanism(s) involved. Using human intestinal epithelial NCM460

cells maintained under RF deficient and over-supplemented (OS) conditions, we now show

that the induction in RF uptake in RF deficiency is associated with an increase in expression

of the hRFVT-2 & -3 (but not hRFVT-1) at the protein and mRNA levels. Focusing on

hRFVT-3, the predominant transporter in the intestine, we also observed an increase in the

level of expression of its hnRNA and activity of its promoter in the RF deficiency state. An

increase in the level of expression of the nuclear factor Sp1 (which is important for activity of

the SLC52A3 promoter) was observed in RF deficiency, while mutating the Sp1/GC site in

the SLC52A3 promoter drastically decreased the level of induction in SLC52A3 promoter

activity in RF deficiency. We also observed specific epigenetic changes in the SLC52A3
promoter in RF deficiency. Finally, an increase in hRFVT-3 protein expression at the cell

surface was observed in RF deficiency. Results of these investigations show, for the first

time, that transcriptional and post-transcriptional mechanisms are involved in the adaptive

regulation of intestinal RF uptake by the prevailing substrate level.

Introduction
Riboflavin (RF) a member of the family of water-soluble vitamins, is indispensable for normal
human health due to its essentiality for cellular metabolism, proliferation, growth and survival.
In its coenzyme forms, i. e., flavin mononucleotide (FMN) and flavin adenine dinucleotide
(FAD), the vitamin plays key metabolic roles in biological oxidation-reduction reactions
involving carbohydrate, lipid, amino acid, and certain vitamins (vitamin B6 and folate) [1]. A
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role for RF in protein folding in the endoplasmic reticulum has also been identified [2]. More
recent studies have identified anti-oxidant [3–5] and anti-inflammatory [6] properties for RF
as well as a role in normal immune function [7, 8], and in the maintenance of normal intestinal
homeostasis [9]. Thus, disturbance in normal RF homeostasis is expected to lead to negative
health consequences, which include degenerative changes in the nervous system, anemia, cata-
ract and growth retardation [10, 11]. RF deficiency/suboptimal levels occur in a variety of con-
ditions that include chronic alcoholism [12, 13], inflammatory bowel disease [14, 15], inborn
errors of RF metabolism [infantile Brown-Vialetto Van Laere (BVVL) and Fazio Londe syn-
dromes; autosomal recessive disorders caused by mutations in hRFVT-2 & -3] [16–19], and
diabetes mellitus [20]. In contrast to the negative effects of RF deficiency, optimizing RF body
homeostasis is effective in the treatment of patients with BVVL [16–19], and those with RF-
responsive multiple acyl-CoA dehydrogenase deficiency [21, 22]; it also appears to have the
potential to protect vital tissues from ischemia-induced oxidative injury [23].

Humans and other mammals (which lack the ability to synthesize RF endogenously) obtain
the vitamin from exogenous sources via intestinal absorption. Previous studies have shown
that the small intestinal and colonic RF uptake process is specific and carrier-mediated, and
that all the three recently cloned RF transporters (RFVT-1, -2 & -3; products of the SLC52A1,
SLC52A2 & SLC52A3 genes, respectively) are expressed in the human gut, with expression of
RFVT-3 being the predominant [11, 24–28]. Other studies [26] have utilized live cell confocal
imaging to show that the expression of RFVT-3 is restricted to the apical membrane domain of
polarized intestinal epithelial cells, while that of RFVT-1 is mainly at the basolateral membrane
domain (BLM); expression of hRFVT-2 was mostly in intracellular vesicular structures with
some at the BLM [26]. An important role for RFVT-3 in intestinal RF absorption process has
also been shown in studies utilizing gene-specific silencing approach (siRNA) [26].

Previous studies from our laboratory have shown that the intestinal RF uptake process is
adaptively-regulated by the prevailing vitamin level [29–31]. Utilizing rats fed RF deficient and
over-supplemented (OS) diets as well as human intestinal epithelial (Caco-2 and NCM460)
cells maintained under RF deficient and OS conditions, a significant induction in intestinal RF
uptake was observed in deficiency while suppression was observed upon OS [29–31]. Similar
adaptive regulation in RF uptake by human renal and retinal pigment epithelial cells in RF defi-
ciency was seen [32, 33], suggesting a global nature of this adaptive response. Little is known
about the molecular mechanism(s) involved in mediating this adaptive response in intestinal
RF uptake process. Taking advantage of the recent availability of appropriate molecular tools,
we investigated this issue in this study. Our results show, for the first time, that the adaptive
regulation in intestinal RF uptake process by substrate level is mediated at both the transcrip-
tional and post-transcriptional levels.

Materials and Methods

Materials
Human-derived intestinal epithelial NCM460 cells were obtained from INCELL (San Antonio,
TX). [3H]-RF (specific activity: 21.2 Ci/mmol, radiochemical purity:> 98%) was purchased
fromMoravek Biochemicals (Brea, CA). Anti-hRFVT-1 polyclonal antibodies obtained from
Abnova (Walnut, CA). Anti-Sp1, anti-hRFVT-2, anti-hRFVT-3 and anti-β-actin monoclonal
antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-rabbit
IRDye-800 and anti-mouse IRDye-680 antibodies were purchased from LI-COR Bioscience
(Lincoln, NE). All cell culture supplies, transfection and molecular biology reagents were
obtained from commercial vendors.
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Cell culture and RF uptake assay
For regular maintenance, the NCM460 cells were grown in F-12/Ham medium (Life Technolo-
gies Inc., MD) supplemented with 20% FBS, glutamine (0.29 g/l), penicillin (100,000 U/l), and
streptomycin (10 mg/l). To examine the effect of extracellular RF level on [3H]-RF uptake, pro-
tein and RNA expressions, Firefly Luciferase mRNA expression, and histone modification, the
cells were grown for 14 days in custom-made RF deficient (~0μMRF) and RF over-supple-
mented (OS; 100μM RF) DMEM (Life Technologies Inc.,) with 2.5% dialysed FBS (Hyclone)
growth media were changed every 3 days. For [3H]-RF uptake, NCM460 cells were grown in
regular 12 well plates and cells were incubated in Krebs-Ringer (K-R) buffer as described before
[26, 34]. Protein content in the samples was determined in parallel wells using a Bio-Rad DC

protein assay kit (Bio-Rad, CA).

Western blot analysis
Cell lysates were isolated from RF deficient and OS NCM460 cells and separated in NuPAGE
4–12% Bis-Tris gradient minigels (Invitrogen), transferred onto immobilon polyvinylidene
difluoride membrane (PVDF) (Fisher Scientific). The anti-hRFVT-1, -2, -3, Sp1 and anti-β-actin
antibodies were used as primary antibodies. The secondary antibodies used were anti-rabbit
IRDye-800 and anti-mouse IRDye-680 (both at 1:30,000 dilutions). The specific immunoreactive
bands were detected using the Odyssey infrared imaging system (LI-COR Bioscience, Lincoln,
NE) and their densities were quantified using the LI-COR software.

Semi-quantitative RT-PCR analysis
One microgram of total RNA isolated from NCM460 cells was treated with DNase I and
reverse transcription was performed using iScript cDNA synthesis kit (Bio-Rad, CA). The
hRFVT-1, -2, -3 and β -actin mRNA expression levels were determined by PCR amplification
using Taq DNA polymerase enzyme (Clontech, CA), and gene specific primers (Table 1). The
PCR conditions were used as previously described [34, 35], and data was normalized relative to
β-actin expression in the same sample.

Heterogeneous nuclear RNA (hnRNA), SLC52A3 promoter construct
transfection and quantitative Real-time PCR (RT-qPCR) analysis
Total RNA isolated from NCM460 cells maintained under RF deficient and OS conditions for
14 days were used to perform RT-qPCR with SLC52A3 gene specific hnRNA primers that
anneals to sequences in the intron [36, 37]. RNA samples were treated with DNAse I and
reverse transcribed (Bio-Rad, CA). RT-qPCR was performed using the SLC52A3 gene specific
hnRNA primers (Table 1). In parallel, a negative control without cDNA template was run with
every PCR reaction to establish specificity. The human Sp1 and β-actin mRNA expression lev-
els were determined by RT-qPCR amplification using gene specific primers for human Sp1
(Table 1). The RT-qPCR was performed as described previously [26, 35] and data normalized
to β-actin were calculated using a relative relationship method [38].

The wild-type and mutated SLC52A3minimal (-199/+8) promoter constructs were generated
and characterized previously [39]. NCM460 cells maintained in RF deficient and OS media for 7
days and then seeded into 12 well plates and cells were co-transfected with 3 μg/well of SLC52A3–
199/+8 or mutated promoter constructs along with 100 ng of the Renilla transfection control plas-
mid Renilla luciferase-thymidine kinase (pRL-TK) (Promega) using Lipofectamine 2000 reagent
(Life Technologies). After transfection, cells were maintained in respective growth medium for
additional 7 days before RNA was isolated. The qRT-PCR was performed using respective
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cDNAs, Firefly Luciferase and Renilla Luciferase gene specific primers (Table 1). We examined
promoter activity by determining the Firefly Luciferase mRNA expression levels which were nor-
malized relative to the Renilla Luciferase mRNA expression in NCM460 cells maintained in RF
deficiency and OS conditions. This was due to interference of the RF color (yellow) with the
Luminometer reading.

Chromatin immunoprecipitation (ChIP) assay and RT-qPCR
ChIP analysis was performed using the simple ChIP enzymatic chromatin IP kit (Cell Signal-
ing, Inc.,) as per the manufacturer's instructions [40]. Briefly, NCM460 cells (4 × 106 cells)
grown for 14 days in RF deficient and OS media were washed with PBS. Proteins and DNA
were then cross-linked with a final concentration of 1% formaldehyde at room temperature
(RT) for 10 min. The reaction was stopped by the addition of glycine stop solution (10x) and
incubated for 5 min at RT. After washing cells with ice-cold PBS, 2 ml of ice-cold PBS contain-
ing protease inhibitor cocktail was added, cells were scraped and centrifuged at 1500 rpm for
5 min at 4°C. The cells were then resuspended in 1 ml ice-cold buffer A containing DTT and
PIC and incubated on ice for 10 min, and the nuclei were prepared as per the manufacturer
instructions. Following that, the chromatin was digested with micrococcal nuclease, sonicated
to shear DNA into fragments, and the samples were clarified by centrifugation at 10,000 rpm
for 10 min at 4°C. The supernatant containing the cross-linked chromatin preparation was
incubated for overnight with 1–2 μg of the specific antibody [H3, H3K4me3, H3K27me3 and
IgG (Millipore)]. After incubation, samples were subjected to DNA purification following
manufacturer’s protocol. Finally, the purified DNA was analyzed by RT-qPCR using SLC52A3
minimal promoter (-199/+8) specific primers (Table 1). The PCR conditions used were dena-
turation at 95°C for 5 min, followed by 30 cycles of denaturation at 95°C for 30 s, annealing at
58°C for 15 s, and extension at 72°C for 15 s. The qPCR data was normalized to percent input
and represented as percent enrichment relative to H3 and compared to control as described
before [41]. No amplified product was detected in IgG negative control.

Cell surface biotinylation
NCM460 cells maintained for 14 days in RF deficient and OS media were biotinylated using an
EZ-Link Sulfo-NHS-Biotinylation Kit (Thermo Fisher Scientific Inc., Rockford, IL) and then

Table 1. Combination of primers used to amplify coding of the respective genes by real-time and semi-quantitative PCR.

Gene Name Forward and Reverse Primers (5’-3’)

Semi-quantitative RT-qPCR primers

hRFVT-1 AAAAGACCTTCCAGAGGGTTG;AGCACCTGTACCACCTGGAT

hRFVT-2 CCCTGGTCCAGACCCTA;ACACCCATGGCCAGGA

hRFVT-3 CCTTTCCGAAGTGCCCATC;AGAAGGTGGTGAGGTAGTAGG

β-actin AGCCAGACCGTCTCCTTGTA;TAGAGAGGGCCCACCACAC

Real-time PCR primers

Human Sp1 CCATACCCCTTAACCCCG;GAATTTTCACTAATGTTTCCCACC

β-actin AGCCAGACCGTCTCCTTGTA; TAGAGAGGGCCCACCACAC

Firefly luciferase CTCACTGAGACTACATCAGC; TCCAGATCCACAACCTTCGC

Renilla luciferase GGAATTATAATGCTTATCTACGTGC; CTTGCGAAAAATGAAGACCTTTTAC

hnRNA primers

SLC52A3 TCTCAGCACTTGGCTTTATC; CTCCCATGCGTATGTATGTA

β-actin TTCCTGGGTGAGTGGAG; GGACTCCATGCCTGAGAG

ChIP assay and RT-qPCR

SLC52A3 GGGTTCGCTCAGTGAAGGTA;CACAACGGACACACTCCTGCT

doi:10.1371/journal.pone.0131698.t001
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lysed. In order to isolate biotinylated proteins, an equal amount of total soluble protein from
NCM460 cells maintained in RF deficient or OS media was then incubated with avidin-conju-
gated agarose. The agarose-avidin beads were washed three times following manufacturer’s
protocol and the bound biotinylated protein eluted by heating with DTT at 95°C. The eluted
protein samples were subjected to western blot analysis in a NuPAGE 4–12% Bis-Tris gradient
minigel (Invitrogen). For normalization, an equal protein concentration of total NCM460 cell
lysate was loaded simultaneously and the level of surface expression of hRFVT-3 was deter-
mined using hRFVT-3 specific primary antibodies. After washing with PBST the blots were
probed with IRDye 800 labeled goat-anti rabbit (1:30,000) secondary antibody. Specific bands
for hRFVT-3 were detected and quantified as described previously.

Data presentation and statistical analysis
RF uptake data represented in this paper are the result of at least three separate experiments
and are expressed as mean ± SE in fmol/mg protein/5 min. Western blot, PCR, promoter, his-
tone modifications, and biotinylation assays all were performed on at least three or more sepa-
rate occasions. Data were analyzed by the Student's t-test with statistical significance set at
P< 0.05.

Results

Effect of RF deficiency and OS on molecular parameters of RF uptake
by human intestinal epithelial NCM460 cells
In these studies, we first confirmed that maintaining intestinal NCM460 cells in a RF deficient
medium leads to a significantly (P< 0.01) higher RF uptake compared to OS conditions
(2,308 ± 399 and 445 ± 39 fmol/mg protein/5 min for RF deficient and OS conditions, respec-
tively). We then determined the effect of RF deficient and OS on the expression of the hRFVT-
1, -2 & -3 proteins. Results of the western blot analysis showed a significantly higher level of
expression of hRFVT-2 (P< 0.01) and hRFVT-3 (P< 0.03) proteins (with no change in the
level of the hRFVT-1 protein) in cells maintained under RF deficient compared to OS condi-
tion (Fig 1).

In other studies, we examined the effect of maintaining NCM460 cells under RF deficient
and OS conditions on the expression of hRFVT-1, -2 and -3 mRNAs, with the results showing
a significantly (P< 0.01 for both) higher level of expression of hRFVT-2 and -3 mRNA (with
no change in the level of the hRFVT-1 mRNA) in cells maintained under RF deficient com-
pared to OS condition (Fig 2).

Effect of extracellular RF levels on transcriptional activity of the
SLC52A3 gene
The studies described earlier showing induction of the hRFVT-2 and -3 mRNA suggest that
the adaptive regulation of RF uptake by extracellular vitamin level in NCM460 cells may be in
part mediated via transcriptional mechanism(s) of the respective gene. To test this possibility,
we focused on the SLC52A3 gene (which encodes the predominant RF transporter (hRFVT-3)
in the intestine; [26]), and examined the possible effect of RF deficiency and OS on level of
expression of its heterogeneous nuclear RNA (hnRNA; hnRNA is the first product of gene
transcription and its level of expression reflects transcriptional activity of the particular gene
[36, 37]). The results showed a significantly (P< 0.01) higher level of expression of the
SLC52A3 hnRNA in cells grown under RF deficient compared to OS conditions (Fig 3A).
These findings suggest that the adaptive regulation of RF uptake by extracellular substrate level
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Fig 1. Effect of growing NCM460 cells in RF deficient and OSmedia on the level of expression of the hRFVT-1, -2 and -3 protein.Cell lysate (60 μg)
from NCM460 cells maintained (14 days) in RF deficient and OS conditions were electrophoretically separated as described in “Methods”. Blots were
incubated with anti- hRFVT-1 (A), -2 (B) and -3 (C) specific antibodies along with β-actin antibodies (top). Bottom, densitometric values. Data are mean ± SE
of 3–4 experiments performed on separately isolated samples.* P < 0.01, ** P < 0.03.

doi:10.1371/journal.pone.0131698.g001

Fig 2. Effect of growing NCM460 cells in RF deficient and OSmedia on the level of expression of hRFVT-1, -2 and -3 mRNA. RNA was isolated from
RF deficient and OSmedia grown NCM460 cells and cDNA was synthesized and used for semi-quantitative RT-PCR as described in “Methods”. A
representative gel image (top) and hRFVT-1 (A), -2 (B), and -3 (C) mRNA expression levels in densitometric values (bottom). Data are mean ± SE of 5–8
experiments performed on separately isolated samples.* P < 0.01.

doi:10.1371/journal.pone.0131698.g002
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in NCM460 cells is mediated (at least in part) via an increase in the transcriptional activity of
the SLC52A3 gene. To confirm this suggestion, we examined the effect of RF deficiency and
OS on activity of the SLC52A3 promoter (-199/+8) that we have recently cloned and character-
ized [39]. The results showed significantly (P< 0.01) higher SLC52A3 promoter activity in
NCM460 cells maintained under RF deficient compared to OS condition (Fig 3B). Since the
nuclear factor Sp1 plays an important role in driving the activity of the SLC52A3 promoter
[39], we also examined the effect of RF deficiency and OS on the level of expression of this fac-
tor in NCM460 cells. The results showed a significant (P< 0.01) induction in Sp1 expression
at both the protein and mRNA level in cells maintained under RF deficient compared to OS
conditions (Fig 4A & 4B). To further investigate the role of Sp1 in mediating the induction in
SLC52A3 promoter activity in RF deficiency, we examined the effect of mutating the Sp1/GC
cis-element located at position -74/-71 (using TSS as +1) (known to mediate the Sp1 effect on
SLC52A3 promoter activity in intestinal cells [39]). The results showed that mutating this Sp1/
GC site leads to a significant (P< 0.05) reduction in the level of induction in SLC52A3 pro-
moter activity under RF deficient condition (no change in the level of induction in SLC52A3
promoter activity in RF deficiency was seen when another putative cis-element site, i.e., KLF
located at -43/-40 of the SLC52A3 promoter, that is known to have no role in SLC52A3 pro-
moter activity was mutated; [39]) (Fig 4C).

Since promoter activity of a given gene could also be modulated by epigenetic mechanisms
(e. g., DNA methylation, histone modification), we also tested whether the induction in
SLC52A3 promoter activity in RF deficiency associated with epigenetic changes. We focused
on histone modifications since they play important role in gene activation/silencing [42] [also,
subjecting the SLC52A3 promoter (-199/+8) to Methprimer program [43] did not show puta-
tive CpG islands]. Thus, we examined and compared changes in H3 trimethylation of lysine
4 [H3K4me3; a mark of activation (euchromatin)] and in H3 trimethylation of lysine 27
[H3K27me3; a marker of repression (heterochromatin)] in cells maintained in RF deficient

Fig 3. Effect of growing NCM460 cells in RF deficient and OSmedia on level of expression of the
hRFVT-3 (SLC52A3) hnRNA and on activity of the SLC52A3 promoter. (A) RT-qPCR for SLC52A3 in the
RF deficient and OS conditions were performed using gene specific hnRNA primers for SLC52A3 and β-actin
as described in “Methods”. Data were normalized to human β-actin. Data represents the mean ± SE of seven
separate sets of experiments. *P < 0.01. (B) Determination of the SLC52A3 promoter activity was performed
as described in “Methods”. Data are mean ± SE of four independent experiments. * P < 0.01.

doi:10.1371/journal.pone.0131698.g003
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and OS conditions. We used ChIP assay utilizing specific antibodies for the H3 modifications
followed by RT-qPCR of SLC52A3 promoter. The results showed that while there was no sig-
nificant changes in the level of the euchromatin mark (H3K4me3), a significant (P< 0.02)
decrease in the activity of the heterochromatin mark (H3K27me3) was observed in cells main-
tained in RF deficient compared to OS conditions (Fig 5). This raised the possibility that the
induction in SLC52A3 promoter activity observed in RF deficiency may also involve epigenetic
mechanism.

Effect of extracellular substrate level on cell surface expression of the
hRFVT-3 in human intestinal epithelial cells
It has been well established that regulation of a membrane transport event could also involve
changes in the level of expression of the transport protein at the cell surface [44–46]. To test
whether this also occurs in the case of the adaptive regulation of intestinal RF uptake process
by substrate levels, we performed a cell surface biotinylation assay on cells maintained in RF
deficient and OS media. The results showed a significantly (P< 0.01) higher level of expression
of the hRFVT-3 protein at the cell surface of NCM460 cells maintained under RF deficient
compared to those maintained under the OS condition (Fig 6).

Discussion
Previous studies from our laboratory have shown that the intestinal RF uptake process (and in
other cell types) is adaptively regulated by the prevailing extracellular vitamin level [29–33],
but nothing is known about the cellular and molecular mechanism(s) involved in this

Fig 4. Effect of growing NCM460 cells in RF deficient and OSmedia on Sp1 protein andmRNA expression levels and effect of mutating Sp1/GC
box on induction in activity of the SLC52A3 promoter in RF deficiency. (A) Western blot analysis was performed using equal amounts (60 μg) of total
protein from the cell lysates as described in “Methods”. Blot was probed with the anti-Sp1 polyclonal antibodies. Data represents mean ± SE of four
independent sets of experiment are expressed in densitometric values and normalized to the amount of β-actin. Inset is the image of a representative gel.
*P < 0.01. (B) The RT-qPCRwas performed as described in “Methods” using human Sp1 primers. Data were normalized relative to the human β-actin. Data
represents the mean ± SE of five independent sets of experiment *P < 0.01. (C) Activity of the mutated SLC52A3 promoter assayed as described in
“Methods”. Data are mean ± SE of three independent experiments **P < 0.05.

doi:10.1371/journal.pone.0131698.g004
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regulation. With the recent availability of molecular and cellular tools, we addressed this issue
in this investigation using as a model the human intestinal epithelial NCM460 cells maintained
under RF deficient and OS conditions. First, we confirmed the previous findings that RF uptake
is significantly higher in cells maintained under RF deficient compared to OS conditions, and
extended the study to show that this induction in uptake under the deficient condition is asso-
ciated with a significant increase in the level of expression of the hRFVT-2 and -3 protein and
mRNA (no change in the level of expression of hRFVT-1 was observed). The increase in level
of expression of hRFVT-2 and -3 mRNA suggests possible involvement of transcriptional regu-
latory mechanism(s) affecting the respective genes. Focusing on the predominant and most
active RF transport system in the intestine, i.e., hRFVT-3 [26], we tested this possibility by
determining the level of expression of the SLC52A3 hnRNA in cells maintained under RF defi-
cient and OS conditions. The results showed a significantly higher level of hnRNA expression
in cells maintained in the former compared to the latter condition confirming the above stated
suggestion. Additional support for this suggestion came from the finding of a higher SLC52A3
promoter activity in cells maintained under RF deficient compared to OS condition. Since pre-
vious studies from our laboratory [39] have established an important role for the nuclear factor
Sp1 in driving the activity of the SLC52A3 promoter, we also tested the effect of RF deficient
and OS conditions on level of expression of this factor. The results showed a significantly
higher level of expression of Sp1 protein and mRNA in cells maintained in RF deficient com-
pared to those maintained in OS medium. To further examine the role of Sp1 in mediating the
adaptive response in SLC52A3 promoter activity by extracellular RF level, we examined the
effect of mutating the Sp1 site in the SLC52A3 promoter on level of induction in promoter
activity in RF deficiency. The results showed a marked attenuation in the level of induction in
SLC52A3 promoter activity in RF deficiency, further indicating a role for Sp1 in the adaptive
regulatory effect.

As mentioned earlier, epigenetic mechanisms also affect gene transcriptional activity, and
thus, we also searched for epigenetic alterations in the SLC52A3 promoter as a function of
extracellular RF level. We focused on histone modifications since it plays important role in

Fig 5. RT-qPCR analysis of H3K4me3 and H3K27me3 in immunoprecipitated DNA fragments on
SLC52A3 promoter of NCM460 cells maintained in RF deficient and OSmedia. RT-qPCR data showing
the ratio of H3K4me3 (A) or H3K27me3 (B) relative to total H3 levels in NCM460 cells maintained under RF
deficient and OSmedia for 14 days. Data are normalized to total input DNA and expressed as mean ± SE of
three independent samples. *P < 0.02.

doi:10.1371/journal.pone.0131698.g005
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regulating transcription (and also because we did not identify putative CpG islands in the
cloned the SLC52A3 promoter). The results showed a significantly higher level of the activity of
the heterochromatin H3K27me3 (a marker for repression) in cells maintained in RF OS com-
pared to deficient condition, suggesting possible involvement of epigenetic mechanisms in the
adaptive regulation of SLC52A3 promoter activity by RF levels.

Our investigations have also uncovered a mechanism that may contribute to the induction
in RF uptake in RF deficiency via an induction in the level of expression of the hRFVT-3 pro-
tein at the cell surface. Regulation of a membrane transport event by such a mechanism is not
uncommon and has been observed in case of other substrates and cell types [44–46]. In sum-
mary, our investigations show that the adaptive regulation in intestinal RF uptake process is
mediated via both transcriptional and post-transcriptional mechanism(s).
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doi:10.1371/journal.pone.0131698.g006
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