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Abstract

We introduce Multi-Trait Analysis of GWAS (MTAG), a method for joint analysis of summary 

statistics from GWASs of different traits, possibly from overlapping samples. We apply MTAG to 

summary statistics for depressive symptoms (Neff = 354,862), neuroticism (N = 168,105), and 

subjective well-being (N = 388,538). Compared to 32, 9, and 13 genome-wide significant loci in 

the single-trait GWASs (most of which are themselves novel), MTAG increases the number of loci 

to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more 

informative bioinformatics analyses and increase variance explained by polygenic scores by 

approximately 25%, matching theoretical expectations.

INTRODUCTION

The standard approach in genetic-association studies is to analyze a single trait. Such studies 

do not exploit information contained in summary statistics from genome-wide association 

studies (GWASs) of related traits. In this paper, we develop a method, Multi-Trait Analysis 

of GWAS (MTAG), which enables joint analysis of multiple traits, thus boosting statistical 

power to detect genetic associations for each trait.

Compared to the many existing multi-trait methods,1–5 MTAG has a unique combination of 

four features that make it potentially useful in many settings. First, it can be applied to 

GWAS summary statistics (without access to individual-level data) from an arbitrary number 

of traits. Second, the summary statistics need not come from independent discovery samples: 

MTAG uses bivariate linkage disequilibrium (LD) score regression6 to account for (possibly 

unknown) sample overlap between the GWAS results for different traits. Third, MTAG 

generates trait-specific effect estimates for each single-nucleotide polymorphism (SNP). 

Finally, even when applied to many traits, MTAG is computationally quick because every 

step has a closed-form solution.

The MTAG estimator is a generalization of inverse-variance-weighted meta-analysis that 

takes summary statistics from single-trait GWASs and outputs trait-specific association 

statistics. The resulting P values can be used like P values from a single-trait GWAS, e.g., to 

prioritize SNPs for subsequent analyses such as biological annotation or to construct 

polygenic scores.

The key assumption of MTAG is that all SNPs share the same variance-covariance matrix of 

effect sizes across traits. This assumption is strong and is violated in many circumstances, 

most intuitively in scenarios where some SNPs influence only a subset of the traits. Even if 

this assumption is not satisfied, however, we show analytically that MTAG is a consistent 
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estimator and that its effect estimates always have a lower genome-wide mean squared error 

than the corresponding single-trait GWAS estimates. Hence, polygenic scores constructed 

from MTAG results are expected to outperform GWAS-based predictors very generally.

The main potential problem arises for SNPs that are truly null for one trait but non-null for 

another trait. For such SNPs, MTAG’s effect-size estimates for the first trait are biased away 

from zero, leading to an increased rate of false positives (and inflated type I error rate). We 

derive an analytic formula for the resulting false discovery rate (FDR), given any specified 

mixture-normal distribution of effect sizes (including multivariate spike-and-slab 

distributions), and we illustrate how the formula can be used to probe the credibility of 

MTAG-identified loci.

To demonstrate the utility of MTAG empirically, we analyze three traits: depressive 

symptoms (DEP, Neff = 354,862), neuroticism (NEUR, N = 168,105), and subjective well-

being (SWB, N = 388,538). Prior GWASs of each of these traits have identified only a 

handful of loci.7–11 Because of the high genetic correlations between the three traits—in our 

data, roughly 0.7 in absolute value between each pair—some papers have conducted cross-

trait analyses to replicate findings for one of the traits11 or joint meta-analysis to identify 

new loci.5 We apply MTAG to these traits because we expected the gains in power would be 

substantial, violations of MTAG’s assumptions would be limited, and the substantive results 

would be of interest.

Finally, we compare MTAG to the three existing multi-trait methods we are aware of that 

can be applied to GWAS summary statistics from an arbitrary number of traits with 

unknown sample overlap.12,13 We find that MTAG has greater power across a wide range of 

simulation scenarios and in two separate applications to real data.

RESULTS

Overview of MTAG

The key idea underlying MTAG is that when GWAS estimates from different traits are 

correlated, the effect estimates for each trait can be improved by appropriately incorporating 

information contained in the GWAS estimates for the other traits.

Correlation between GWAS estimates can arise for two reasons. First, the traits may be 

genetically correlated, in which case the true effects of the SNPs are correlated across traits. 

Second, the estimation error of the SNPs’ effects may be correlated across traits. Such 

correlation will occur if (a) the phenotypic correlations are non-zero and there is sample 

overlap across traits, or if (b) biases in the SNP-effect estimates (e.g., population 

stratification or cryptic relatedness) have correlated effects across traits. MTAG boosts 

statistical power by incorporating information about these two sources of correlation.

MTAG Framework

In the framework that follows, all traits and genotypes are standardized to have mean zero 

and variance one. For SNP j, we denote the vector of marginal (i.e., not controlling for other 

SNPs), true effects on each of the T traits by . We treat these true effects as random effects 
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with  and . If the true effects are correlated across traits, then the off-

diagonal elements of Ω are non-zero. MTAG’s key assumption is that Ω is homogeneous 

across SNPs, i.e., it does not depend on j.

We denote the vector of GWAS estimates of SNP j’s effects on the traits by . We assume 

that the GWAS estimates are unbiased, , and we denote the variance-

covariance matrix of their estimation error by . The off-diagonal elements 

of  are non-zero whenever the estimation errors are correlated.

MTAG is the efficient generalized method of moments (GMM) estimator based on the 

moment condition

where  is a vector equal to the  column of Ω and  is a scalar equal to the  diagonal 

element of Ω. This equality is a necessary condition derived from the best linear prediction 

of the vector of GWAS estimates, , from the SNP’s true effect on a single trait, .

The MTAG estimator is a weighted sum of the GWAS estimates:

(1)

It is a consistent and asymptotically normal estimator for  (s).

There are several useful special cases of MTAG (Online Methods). When all estimates are 

for the same trait (implying  and ), equation (1) simplifies to: 

. When the GWAS estimates are obtained from non-overlapping 

samples (i.e.,  is diagonal), this formula specializes to the well-known formula for 

inverse-variance-weighted meta-analysis. When the genetic correlations across all traits are 

zero and there is no sample overlap (i.e., both Ω and  are diagonal), the MTAG estimates 

are identical to the GWAS estimates. This equivalence is intuitive, since it corresponds 

exactly to the case of no correlation between the GWAS estimates that can be leveraged.
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To make equation (1) operational, we use consistent estimates of  and Ω, described next 

(Supplementary Note).

Estimation of —In standard meta-analysis, the diagonal elements of  would be 

constructed using the squared standard errors from the GWAS results, and the off-diagonal 

elements of  would be set to zero. In MTAG, however, we want to allow the estimation 

error to include bias (in addition to sampling variation) and to be correlated across the 

GWAS estimates.

Therefore, MTAG proceeds by running linkage disequilibrium (LD) score regressions14 on 

the GWAS results and using the estimated intercepts to construct the diagonal elements of 

. Next, bivariate LD score regressions6 are run using each pair of GWAS results, and the 

estimated intercepts are used to construct the off-diagonal elements of . Under the 

assumptions of LD score regression (including that the LD reference sample and GWAS 

samples are all drawn from the same population), the resulting matrix  captures all 

relevant sources of estimation error, including not only sampling variation but also 

population stratification, unknown sample overlap, and cryptic relatedness. Because the LD-

score-intercept adjustment is already built into the MTAG estimates, MTAG-generated 

association results do not require further adjustment for these biases.

Estimation of —We estimate  by method of moments using the moment condition

with  substituted in place of . This is the step that relies on the homogeneous-Ω 
assumption: the assumption justifies using all SNPs when estimating .

Summary—The MTAG results for SNP j are obtained in three steps: (i) estimate the 

variance-covariance matrix of the GWAS estimation error, , by using a sequence of LD 

score regressions, (ii) estimate the variance-covariance matrix of the SNP effects, , using 

method of moments, and (iii) for each SNP, substitute these estimates into equation (1). We 

have made available for download a Python command line tool that runs our MTAG 

estimation procedure (see URLs). Because each of the above steps has a closed-form 

solution, genome-wide analyses using the MTAG software run quickly (Online Methods).

Theoretical Analysis of MTAG’s Performance

This section briefly discusses three analytic formulas we have derived regarding the 

expected performance of MTAG for each trait: its mean squared error (MSE) across SNPs, 
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its statistical power to detect a true single-SNP association, and its false discovery rate 

(FDR) (Online Methods). All the formulas hold for an arbitrary number of traits. 

Supplementary Note contains illustrative calculations.

The MSE formula is very general: it holds under any distribution of effect sizes, including 

distributions that violate the homogeneous-Ω assumption. The formula implies that for each 

trait, the MTAG estimates always have a lower genome-wide MSE than corresponding 

GWAS estimates. That in turn suggests that polygenic predictors constructed from MTAG 

results are likely to outperform GWAS-based predictors very generally.

The power and FDR formulas (in contrast to the fully general MSE formula) assume that the 

true effect sizes  are drawn from some known mean-zero mixture of multivariate normal 

distributions. This class of distributions includes multivariate spike-and-slab distributions 

and other fat-tailed distributions that may be relevant in applications of MTAG.

Potential Biases in MTAG’s Test Statistics

The derivation of MTAG relies on three important assumptions: (1)  is homogeneous 

across SNPs, (2) sampling variation in  and  can be ignored, and (3) the off-diagonal 

elements of  (estimated by bivariate LD score regression) accurately capture sample 

overlap. In light of each assumption, here we probe when and to what extent MTAG’s test 

statistics for individual-SNP associations may be biased.

Homogeneous-  assumption—If the homogeneous-Ω assumption is violated, then 

there are different types of SNPs with different Ω’s. Because MTAG combines the GWAS 

estimates using the genome-wide (i.e., across-SNP) variance-covariance matrix, in general 

the MTAG estimates will be biased in finite samples. For a type of SNP that is null for one 

trait but non-null for other traits, the effect estimate on the first trait will be biased away 

from zero. For that reason, the FDR will be inflated.

Replication is the best way to assess the credibility of individual-SNP associations. In 

addition, their credibility can be probed using the FDR formula, computed under plausible 

assumptions about genetic architecture. In our application below, we calculate what we call 

maxFDR, which is an upper bound for the FDR under certain assumptions (Online 

Methods). In particular, we assume that the effect-size distribution is a multivariate spike-

and-slab distribution in which at least 10% of SNPs are non-null for each trait. Illustrative 

calculations indicate that a trait’s maxFDR can become high when the GWAS for the trait is 

low powered while the GWAS for another trait is higher powered (Supplementary Note).

Sampling variation in  and  ignored—To assess the magnitude of the finite-

sample bias in MTAG’s standard errors from ignoring sampling variation in  and , we 

simulate GWAS summary statistics for up to  traits and apply MTAG using  and 

(as in any real-data application of MTAG). We then calculate the inflation of the mean -
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statistic, defined relative to what the mean -statistic would be if the true values Ω and 

were used. Figures 1a and 1b plots the inflation as a function of T, where each GWAS has 

mean -statistic of 1.1, 1.4, or 2.0. The effect-size correlation between every pair of traits is 

(Figure 1a) or  (Figure 1b); we set the correlation in estimation error between every 

pair of traits to  in these simulations. The figure shows that inflation increases roughly 

linearly in the number of traits. The bias is larger when the GWASs are lower powered and 

when  is smaller. Our application to DEP, NEUR, and SWB (discussed below) 

corresponds roughly to a mean -statistic of 1.4 with  in Figure 1b. In that setting, 

inflation is negligible. Even when inflation is largest—the low-powered GWAS with 

in Figure 1a—it is only 3%.

These simulations suggest that in most realistic applications of MTAG, the bias from 

ignoring sampling variation in  and  is negligibly small. A possible exception, not 

discussed so far, arises if MTAG is used for GWAS meta-analysis across a large number of 

cohorts (in which case T is large). MTAG may be valuable for that purpose because (i) it 

accounts for sample overlap and cryptic relatedness across cohorts and (ii) different cohorts 

often have phenotypic data from different measures, which may be imperfectly genetically 

correlated and have different heritabilities. For such applications, to reduce bias in the 

MTAG standard errors, we recommend imposing reasonable parameter restrictions on the 

and  matrices (e.g., assuming that within groups of cohorts that analyzed identical 

phenotype measures, the heritability is equal and all pairwise genetic correlations are one).

 accurately captures sample overlap—MTAG relies on bivariate LD score 

regression (and by extension its assumptions) to estimate the correlation in GWAS 

estimation error due to sample overlap. To gauge MTAG’s performance, we simulate an 

extreme case of sample overlap using real data from the UK Biobank (UKB). We run three 

GWASs of height, each using two-thirds of the data, with 50% overlap between each pair of 

GWAS samples. Then we run MTAG on the three GWASs. Figure 2a is a scatterplot of the 

resulting MTAG z-statistics against the z-statistics from a single GWAS run on the entire 

UKB sample. Figure 2b is the scatterplot from an analogous analysis of DEP in UKB. The 

regression slope and R2 are both essentially one for both phenotypes, indicating that MTAG 

generates the correct z-statistics in these cases. The results are similar when we repeat this 

analysis using four other phenotypes (Online Methods).

GWAS Summary Statistics for Depression, Neuroticism, and Subjective Well-Being

For our empirical application of MTAG, we build on a recent study by the Social Science 

Genetic Association Consortium (SSGAC) of three traits that have been found to be highly 

polygenic and strongly genetically related: depressive symptoms (DEP), neuroticism 

(NEUR), and subjective well-being (SWB). In these analyses, we combine data from the 

largest previously published studies7–9,11 with new genome-wide analyses from the genetic 
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testing company 23andMe, Inc., and the first release of the UK Biobank (UKB) data. As 

depicted in Figure 3, there is substantial overlap between the estimation samples for the 

three traits. For additional details, see Online Methods and Supplementary Note.

MTAG Results

We applied MTAG to the summary statistics from the three single-trait analyses described 

above. To enable a fair comparison between the MTAG and GWAS results, we restrict all 

analyses to a common set of SNPs (see Online Methods for details and recommended filters 

for MTAG).

Figure 4 shows side-by-side Manhattan plots from the GWAS and MTAG analyses for each 

trait. Approximately independent genome-wide significant SNPs, hereafter “lead SNPs,” 

were defined by clumping with an R2 threshold of 0.1 (Online Methods). From GWAS to 

MTAG, the number of lead SNPs increases from 32 to 64 for DEP, from 9 to 37 for NEUR, 

and from 13 to 49 for SWB.

For the MTAG hits, we calculate the maxFDR assuming that at least 10% of SNPs are non-

null for each trait (our estimates of the actual percentage non-null are 59-65% across the 

three traits; Online Methods). The maxFDR is 0.0014 for DEP, 0.0080 for NEUR, and 

0.0044 for SWB. This calculation suggests that the hits are unlikely to be an artifact of the 

homogeneous-Ω assumption.

For each trait, we assess the gain in average power from MTAG relative to the GWAS results 

by the increase in the mean -statistic. We use this increase to calculate how much larger 

the GWAS sample size would have to be to attain an equivalent increase in expected 

(Online Methods). We find that the MTAG analysis of DEP, NEUR, and SWB yielded gains 

equivalent to augmenting the original samples sizes by 27%, 55%, and 55%. The resulting 

GWAS-equivalent sample sizes are thus 449,649 for DEP, 260,897 for NEUR, and 600,834 

for SWB.

Replication of MTAG-identified Loci

To test the lead SNPs for replication, we use the Health and Retirement Study (HRS) and the 

National Longitudinal Study of Adolescent to Adult Health (Add Health), which both 

contain high-quality measures of DEP, NEUR, and SWB. Because HRS was included in the 

SSGAC discovery sample for SWB, we re-ran the GWAS and MTAG analyses for SWB 

after omitting it. Although our replication samples are too small for well-powered 

replication analyses of single-SNP associations, we are well powered to test the SNPs 

jointly. For the set of MTAG-identified lead SNPs for each trait, we regressed the effect sizes 

in HRS and in Add Health on the MTAG effect sizes, after correcting the MTAG effect-size 

estimates for the winner’s curse (Supplementary Note). The regression slope for each 

replication cohort was then meta-analyzed. If the SNP effect sizes taken altogether replicate, 

then we expect a slope of one. The regression slopes are 0.88 (s.e. = 0.22) for DEP, 0.76 (s.e. 

= 0.21) for NEUR, and 0.99 (s.e. = 0.33) for SWB (Figure 5). In all cases, the slope is 

statistically significantly greater than zero (one-sided , , and 

, respectively) but not statistically distinguishable from one.
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Polygenic Prediction

We next compare the predictive power of polygenic scores constructed from GWAS versus 

MTAG association statistics. We again use the HRS and Add Health as our prediction 

samples (and we obtain the SNP effect estimates for SWB from the analyses that omit HRS 

from the discovery sample).

We measure the predictive power of each polygenic score by its incremental , defined as 

the increase in coefficient of determination ( ) as we move from a regression of the trait 

only on a set of controls (year of birth, year of birth squared, sex, their interactions, and 10 

principal components of the genetic data) to a regression that additionally includes the 

polygenic score as an independent variable.

Figure 6 and Table 1 summarize the results from our pooled analysis of Add Health and 

HRS. The GWAS-based polygenic scores have incremental ’s of 1.00% for DEP, 1.27% 

for NEUR, and 1.20% for SWB. The corresponding MTAG-based polygenic scores all have 

greater predictive power: 1.17% for DEP, 1.65% for NEUR, and 1.57% for SWB. The 

proportional improvement in incremental  is in the range 17-30% for each trait, with 95% 

confidence intervals that do not overlap zero. The absolute levels of predictive power are 

clearly too small to be of clinical utility, but the improvements in  are close to those we 

would expect theoretically based on the observed increases in mean -statistics (Online 

Methods). Polygenic scores based on trait-specific MTAG results have greater predictive 

power than scores based on MTAG results for the other traits (Figures 6c and 6d), consistent 

with the theoretical result that MTAG results can be interpreted as trait-specific estimates.

Biological Annotation

For a final comparison, we analyze both the GWAS and MTAG results using the 

bioinformatics tool DEPICT15. We present the prioritized genes, enriched gene sets, and 

enriched tissues identified by DEPICT at the standard FDR threshold of 5%.

Table 1 summarizes the results. In the GWAS-based analysis, very little enrichment is 

apparent. For DEP, 3 genes are identified, but no gene sets and only 10 tissues. For NEUR 

and SWB, no genes, gene sets, or tissues are identified. In contrast, the MTAG-based 

analysis is more informative. The strongest results are again for DEP, now with 72 genes, 

347 gene sets, and 22 tissues. For NEUR, there are 51 genes, 1 gene set, and 21 tissues, and 

for SWB, zero genes, 7 gene sets, and 12 tissues.

For brevity, we discuss the specific results only for DEP; the results for NEUR and SWB are 

similar but more limited. For the tissues tested by DEPICT, Figure 7a plots the P values 

based on both the GWAS and MTAG results. As expected, nearly all of the enrichment of 

signal is found in the nervous system. To facilitate interpretation of the enriched gene sets, 

we used a standard procedure16 to group the 347 gene sets into ‘clusters’ defined by degree 

of gene overlap. Many of the resulting 46 clusters, shown in Figure 7b, implicate 

communication between neurons (‘synapse,’ ‘synapse assembly,’ ‘regulation of synaptic 

transmission,’ ‘regulation of postsynaptic membrane potential’). This evidence is consistent 

with that from the DEPICT-prioritized genes, many of which encode proteins that are 
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involved in synaptic communication. For example, PCLO, BSN, SNAP25, and CACNA1E 
all encode important parts of the machinery that releases neurotransmitter from the signaling 

neuron.17

The results contain some intriguing findings. For example, while hypotheses regarding 

major depression and related traits have tended to focus on monoamine neurotransmitters, 

our results as a whole point much more strongly to glutamatergic neurotransmission. 

Moreover, the particular glutamate-receptor genes prioritized by DEPICT (GRIK3, GRM1, 

GRM5, and GRM8) suggest the importance of processes involving communication between 

neurons on an intermediate timescale,18,19 such as learning and memory. Such processes are 

also implicated by many of the enriched gene sets, which relate to altered reactions to stress 

and novelty in mice (e.g., ‘decreased exploration in a new environment,’ ‘increased anxiety-

related response,’ ‘behavioral fear response’).

Comparison to Other Multi-Trait Methods

We compared MTAG to three multi-trait methods that can be applied to an arbitrary number 

of GWAS summary with unknown overlap12,13 (Supplementary Note). Unlike MTAG, these 

methods do not provide trait-specific SNP effect estimates but instead test whether the SNP 

is associated with none of the traits. We generate a (conservative) MTAG-based test of the 

same null hypothesis by using the minimum of the trait-specific MTAG P values, 

Bonferroni-adjusted for the number of traits. In two-trait simulations, we find that MTAG 

has greater power when the correlation in true effect sizes or GWAS estimation error is non-

zero, especially when the traits’ GWASs are higher powered. In real-data applications to (i) 

DEP, NEUR, and SWB, and (ii) six anthropometric traits, MTAG identifies more loci. We 

test the anthropometric loci in GIANT consortium results and find that the loci identified by 

MTAG and missed by the other methods replicated at a higher rate than the loci identified by 

one of the other methods and missed by MTAG.

DISCUSSION

We have introduced MTAG, a method for conducting meta-analysis of GWAS summary 

statistics for different traits which is robust to sample overlap. Both our theoretical and 

empirical results confirm that MTAG can increase the statistical power to identify trait-
specific genetic associations. In our empirical application to DEP, NEUR, and SWB, we 

found that relative to the separate GWASs for the traits, MTAG led to substantial 

improvements in number of loci identified, predictive power of polygenic scores, and 

informativeness of a bioinformatics analysis. Table 1 summarizes the gains from MTAG 

across these analyses.

Because large-scale GWAS summary statistics are accessible for an ever-increasing number 

of traits and tools are now available for using summary statistics to easily identify clusters of 

genetically correlated traits,20 there will be many sets of traits to which MTAG could be 

applied. Which potential applications will be most fruitful? Our theoretical results indicate 

that, relative to the single-trait GWASs, MTAG will improve polygenic prediction quite 

generally. For identifying individual loci, MTAG will yield the greatest gains in statistical 

power and little inflation of the FDR for traits with high genetic correlation. We caution, 
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however, that the FDR can become substantial if MTAG is applied to a large number of low-

powered GWASs or to GWASs that differ a great deal in power—conditions that do not 

apply to our empirical application here. In all applications of MTAG, we recommend 

conducting FDR calculations and, of course, conducting replication analyses if possible.

CODE AVAILABILITY

MTAG software available at: https://github.com/omeed-maghzian/mtag.

URLs

Social Science Genetic Association Consortium (SSGAC) website: http://

www.thessgac.org/#!data/kuzq8.

ONLINE METHODS

This article is accompanied by a Supplementary Note with further details.

Theory

There are T traits, which may be binary or quantitative. We standardize each trait and the 

genotype for each single-nucleotide polymorphism (SNP) j so that they all have mean zero 

and variance one. The length-T vector of marginal (i.e., not controlling for other SNPs), true 

effects of SNP j on each of the traits is denoted . We assume that these are random effects 

with mean  and variance-covariance matrix Ω that is the same across j. The mean is zero 

because we treat the choice of reference allele as arbitrary. We make the common 

assumption14,21,22 that the ’s are identically distributed across j. The assumption implies 

that the expected amount of phenotypic variance explained is equal for each SNP, regardless 

of SNP characteristics such as allele frequency.

The length-T vector of GWAS estimates is denoted , which is equal to the true effect 

vector plus estimation error, . The estimation error is the sum of sampling variation 

and biases (such as population stratification or technical artifacts). With any standard GWAS 

estimator (such as OLS or logistic regression), sampling variation is uncorrelated with . 

We assume that the biases are also uncorrelated with . The variance-covariance matrix of 

, denoted , may differ across SNPs j due to differences in the SNPs’ sample sizes per 

trait and the SNPs’ sample overlap between traits, although we only account for the former 

in our estimation of .

MTAG is a generalized method of moments (GMM) estimator. To obtain the key moment 

conditions we will use, we consider the best linear prediction of the GWAS estimate for trait 

s, , from the SNP’s true effect on trait t, . We use a first-order condition of this best 

linear prediction as the moment condition for trait s: , where  is the 
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 element of Ω. There are T such moment conditions for , giving us the 

vector of moment conditions:

(1)

where  is a vector equal to the  column of Ω. Although  is a random effect, we aim to 

estimate its (unknown) realized value. The efficient GMM estimator for  based on the 

vector of moment conditions in equation (1) solves

(2)

where  is the efficient weight matrix. 

Intuitively, the GMM estimator chooses the value of  that minimizes a weighted sum of 

the squared deviations from the moment conditions, with deviations weighted more heavily 

if they are estimated more precisely. In the s, we show that the solution to the minimization 

problem in equation (2) is:

Standard asymptotic properties of GMM relate to . In the s, we show that for fixed 

number of traits T, as the sample size for the GWAS of any trait t becomes large, the MTAG 

estimator  is consistent and asymptotically normal.

The sampling variance of the estimator is

For each trait t, the standard error of the estimate is the square root of this quantity. As is 

standard, we obtain a P value using the fact that in large samples,  divided by its 

standard error follows a standard normal distribution under the null hypothesis.

Because of the homogeneous-Ω assumption, the above formulas for the MTAG estimator 

and its standard error effectively use the variance-covariance matrix of true SNP effects 

across all SNPs, Ω, to calculate the MTAG estimate for each SNP. If in fact there are 
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different types of SNPs characterized by different variance-covariance matrices, then the 

MTAG estimator remains consistent but could be made more efficient if it took into account 

the different types of SNPs. In addition, the standard error formula is conservative on 

average across SNPs, which reduces MTAG’s statistical power to identify truly associated 

SNPs. Most importantly, the MTAG estimator is in general biased in finite samples, and it is 

biased away from zero for SNPs that are truly null, which causes the false positive rate to be 

inflated.

For each SNP j, given , the matrix Ω is estimated using the method of moments (see the 

Supplementary Note for discussion of the relationship to GMM). For each  entry of Ω, 

, we use the moment condition  This moment condition is 

derived from observing that 

. The 

estimator simply replaces the population expectation with the sample mean:

where M is the number of SNPs in the analysis. Intuitively, the 

estimated covariance in true genetic effects between trait t and trait s is equal to the 

covariance in their observed GWAS coefficients minus the covariance in GWAS coefficients 

that is due to correlated estimation error.

For expositional simplicity, our derivations above and in Supplementary Note are 

parameterized in terms of the parameter vector . We note, however, that the input to the 

MTAG software is the standard output from meta-analysis software: z-statistics and sample 

sizes. Because MTAG is applied to z-statistics, the GWAS summary statistics do not need to 

have been estimated using traits and genotypes that were standardized.

Special Cases

There are three special cases of MTAG that may often be relevant in practice and for which 

the estimation procedure is made faster and more efficient. The MTAG software offers the 

option to specialize the analysis for these cases.

No sample overlap across traits—In this case, the off-diagonal elements of  can be 

set equal to zero, so LD score regression needs to be run only T rather than 

times. Note that this version of MTAG does not take into account correlation in estimation 

error across traits that is due to bias. For this reason, LD score regression should be run on 

the MTAG results, and the resulting MTAG standard errors should be inflated by the square 

root of the estimated intercept.

Perfect genetic correlation but different heritabilities—This case arises when the 

“traits” are different measures of the same trait, some with more measurement error than 
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others, or when the variance in the trait due to non-genetic factors differs. Here the Ω matrix 

has only T rather than  unique parameters to be estimated.

Perfect genetic correlation and equal heritabilities—This special case corresponds 

to the “traits” being (the same measure of) a single trait; in other words, applying MTAG 

instead of inverse-variance-weighted meta-analysis to T GWAS results. Doing so can be 

useful if there is sample overlap in the GWAS results. In this case, as noted in the main text, 

MTAG specializes to  for all t, and it is no longer necessary to estimate 

Ω.

MTAG’s Genome-Wide Mean Squared Error (MSE)

The genome-wide MSE of the MTAG estimates is simply equal to their sampling variance 

(given above):

where the first equality follows because both the true effects  and the MTAG estimates 

 are mean zero. Illustrative calculations of this formula in a two-trait setting are 

shown in Supplementary Figure 1. This formula for the MSE holds very generally; in 

particular, it does not require assuming that Ω is homogeneous across SNPs (because the 

genome-wide MSE is a property regarding the mean across all the SNPs included in the 

analysis). In the formula, Ω is (re-)defined as the genome-wide (i.e., across-SNP) variance-

covariance matrix of the SNPs’ true effects on the traits. By simulation, we verify that the 

MSE formula is a good approximation when using estimates of Ω and  (Supplementary 

Table 1).

In Supplementary Note, we show that the MSE of the MTAG estimates are always weakly 

smaller than the MSE of the corresponding single-trait GWAS estimates, which equals 

. Intuitively, this result holds because the MTAG 

estimates have smaller variance than the GWAS estimates and both are unbiased on average 

across all SNPs; the MTAG estimates are unbiased on average (despite being biased for 

particular SNPs when the homogeneous-Ω assumption is violated) because both the true 

effects  and the MTAG estimates  are mean zero across SNPs.

MTAG’s Power and False Discovery Rate (FDR) When Effect Sizes Are Mixture-Normal 
Distributed

Suppose that the vector of SNP j’s effects on the traits  is drawn from a mixture of mean-

zero multivariate normal distributions. The distribution of component  is 
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, and its mixture weight is denoted , where . In this case, the z-

statistic associated with the MTAG estimate  is a mixture distribution with 

component distributions

To define power and FDR, let D denote the set of components such that a SNP is null for 

trait t (i.e., the tth element of  is drawn from a degenerate distribution with all mass on 0). 

Power for trait t can be calculated as

where  is the z-statistic associated with genome-wide significance. The FDR for trait t can 

be calculated as

As with the MSE formula, we verify in simulations that these formulas are good 

approximations when using estimates of Ω and  (Supplementary Table 1).

Maximum FDR (MaxFDR) When Effect Sizes Are Multivariate Spike-and-Slab Distributed

Starting with the mixture-normal setup in the derivation of power and the FDR, we assume 

that there are  components, corresponding to all possible combinations of the SNP 

being null for some subset of traits and non-null for the others. Let  denote the variance-

covariance matrix of true effect sizes for the component in which the SNP is non-null for all 

the traits. We assume that the variance-covariance matrix of true effect sizes for any 

component c, denoted , is equal to  but with the rows and columns zeroed out that 

correspond to null traits in component c. Given our estimate of Ω, for any vector of mixing 

weights , we construct an estimate of : we set the  entry of 

equal to , where  is the set of components in which the SNP is non-

null for both traits t and s. We call the mixing weights p feasible if the resulting matrix 

is positive semi-definite. We maximize the FDR (given by the formula above) over all 

feasible mixing weights p. Given that the FDR may not be a unimodal function of p, we 
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maximize using a grid search. Since p has  elements, it may be computationally infeasible 

to perform a fine grid search when T is larger than three or four traits. Illustrative 

calculations of maxFDR in a two-trait setting are shown in Supplementary Figure 2.

Evaluation of MTAG’s Robustness to Sample Overlap

Using the same procedure described in the main text (and in further detail in the 

Supplementary Note), we also tested the robustness of MTAG to sample overlap using four 

other traits available in the UK Biobank: body mass index, educational attainment, 

neuroticism, and subjective well-being. The results are qualitatively the same as those based 

on height (Supplementary Figure 3).

Simulations

To speed computations, instead of simulating data and then estimating effect sizes, we 

directly generated effect-size estimates by adding multivariate-normally-distributed noise to 

the simulated effect sizes. The variance of the noise for each trait was determined by the 

assumed GWAS expected -statistics, and the covariance of the noise between the traits 

was determined by the assumed GWAS expected -statistics and correlation of GWAS 

estimation error across traits.

In our simulations, we cannot estimate  using LD score regressions because we directly 

simulate effect sizes rather than data. Nonetheless, we would like to use a matrix for 

that contains the same amount of sampling variance that would have been present if we had 

simulated data and then ran LD score regressions. To accomplish this, in each replication we 

directly generated  by adding noise to the true value of . The variance of the noise 

was calibrated against the LD-score-regression intercept standard errors for the GWAS 

results of DEP, NEUR, and SWB that we estimate in our empirical application but scaled to 

be larger or smaller when the simulated GWAS had more power (Supplementary Note).

GWAS Meta-analyses of DEP, NEUR, and SWB

Details on the cohorts, phenotype measures, genotyping, quality-control filters, and 

association models are provided in Supplementary Note and Supplementary Table 2 to 5. As 

shown in Figure 3, there is substantial overlap in samples across the three GWAS meta-

analyses.

All analyses were based on autosomal SNPs from cohorts with genotypes imputed against 

the 1000 Genomes reference panel. The input files in each meta-analysis were subject to a 

uniform set of quality-control and diagnostic procedures. These are described in the previous 

SSGAC study11 and Supplementary Note.

As expected under polygenicity23, we observe inflation of the median test statistic in each 

GWAS (λGC,DEP = 1.36, λGC,NEUR = 1.24, λGC,SWB = 1.28; Supplementary Figure 4, 

Supplementary Table 6). The intercept estimates from LD score regression are all below 

1.02, however, suggesting that nearly all of the observed inflation is due to polygenic 
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signal14 (Supplementary Figure 5). When we report GWAS results, as in the SSGAC study11 

we account for the potential bias due to this small amount of stratification by inflating the 

standard errors of our GWAS estimates by the square root of the LD score regression 

intercept.

Manhattan plots from each of the GWAS meta-analyses are shown in Supplementary Figures 

6a, b, and c. Our NEUR meta-analysis was based on the same cohort-level data as the 

SSGAC study11 and unsurprisingly yielded substantively identical results: 10 lead SNPs. 

Consistent with what studies have reported for other complex traits, the increased discovery 

samples for DEP and SWB relative to the SSGAC study increased the number of lead SNPs: 

from 2 to 32 for DEP (Neff = 149,707 to 354,862) and from 3 to 13 for SWB (N = 298,420 

to 388,538). Applying bivariate LD score regression6 to the GWAS results, we estimate the 

genetic correlations to be 0.72 (s.e. = 0.026) between DEP and NEUR, −0.67 (s.e. = 0.027) 

between NEUR and SWB, and −0.69 (s.e. = 0.024) between DEP and SWB (Supplementary 

Table 7). The intercepts from each of these regressions are found in Supplementary Table 8. 

Lead SNPs with a P value less than 10−5 from the GWAS for each trait are listed in 

Supplementary Table 9.

Clumping Algorithm

We applied the same clumping algorithm to the GWAS and MTAG results to identify each 

set of “lead SNPs.” Our clumping algorithm is the same as in the previous SSGAC study.11 

First, the SNP with the smallest P value was identified in the meta-analysis results. This SNP 

was designated the index SNP of clump 1. Second, we identified all SNPs on the same 

chromosome whose LD with the index SNP exceeds R2 = 0.1 and assigned them to clump 1. 

To generate the second clump, we removed the SNPs in clump 1 and then iterated the 

process to identify further index SNPs and their corresponding clumps until no SNPs 

remain.

MTAG SNP Filters

Since the derivation of MTAG relies on some assumptions regarding features of the 

distributions of the effect sizes and estimation error, its performance may be sensitive to 

violations of those assumptions. To reduce the risk of extreme violations, when we apply 

MTAG, we impose three additional SNP filters beyond the standard filters used in a GWAS.

First, we restrict the set of SNPs to those with a minor allele frequency greater than 1%. This 

filter is motivated by the homogeneous-Ω assumption and by the assumption that each SNP 

explains the same amount of phenotypic variation in expectation. Rare variants may follow a 

different effect-size distribution both in terms of the variance and covariance of their effect 

sizes, which could bias the MTAG estimates.

Second, for each trait, we restrict variation in SNP sample sizes by calculating the 90th 

percentile of the SNP sample-size distribution and removing SNPs with a sample size 

smaller than 75% of this value. This filter is similar to, though slightly more strict than, the 

sample-size filter recommended for LD Score regression.14 If a SNP’s effect is estimated in 

a relatively small subset of the sample, then the sample overlap across traits will likely be 
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different for that SNP than for other SNPs in the sample. In that case, the covariance of the 

estimation error across traits as estimated by LD score regression may not be a good 

approximation to the covariance of the estimation error for that particular SNP.

Third, we drop SNPs in genomic regions containing SNPs that are outliers with respect to 

their effect-size estimates. Because the effect sizes of these SNPs appear to have a different 

variance-covariance matrix than the rest of the genome, including these regions would likely 

lead to the biases and inefficiencies that can occur when the homogeneous-Ω assumption is 

violated. In our empirical application, in the GWAS of NEUR, the effect sizes of SNPs in a 

region of chromosome 8 that tag an inversion polymorphism have been found to be strongly 

inflated relative to the effects estimated for SNPs in all other regions of the genome.10,11 

Therefore, we omit SNPs in chromosome 8 between base-pair positions 7,962,590 and 

11,962,591 (Supplementary Table 10).

GWAS-Equivalent Sample Size for MTAG

The increase in the mean -statistic for each trait from the GWAS results to the MTAG 

results can be used to calculate a “GWAS-equivalent sample size” for MTAG. Under the 

assumptions of LD score regression,14 the expected -statistic for some SNP with LD score 

 is

where  is the sample size for SNP j;  is the SNP heritability of the trait; M is the number 

of SNPs for which we define the SNP heritability; and a is the variance due to biases (e.g., 

due to population stratification). Note that  scales linearly with  as long as 

M and  are held constant in the additional samples.24–26 Since the individuals included in 

all GWASs are of European ancestry, M and  are indeed expected to be approximately 

constant.24–26 Thus, we can use the mean -statistic from the GWAS and the MTAG results 

to calculate how much larger the GWAS sample size would have to be to give a mean -

statistic equal to that attained by MTAG:

where  is the mean -statistic in the GWAS results and  is the mean -statistic 

in the MTAG results. Put another way, conducting MTAG gives the same power (as 

measured by mean -statistic) as conducting GWAS in sample size that is larger by a factor 

of .
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For DEP, going from GWAS to MTAG, the mean -statistic increases from 1.44 to 1.60, 

implying an increase in the GWAS-equivalent sample size by a factor of

Thus, the MTAG analysis has statistical power equivalent to a GWAS of DEP conducted in 

 individuals. For NEUR, the mean -statistic rises from 1.284 to 

1.557, implying a GWAS-equivalent sample size for MTAG that is 96% larger than the 

GWAS sample size: the effective sample size is  individuals. For 

SWB, the mean -statistics rises from 1.308 to 1.570, implying a GWAS-equivalent sample 

size 85% larger than the GWAS:  individuals (Supplementary 

Table 11).

MTAG Results

The estimated matrices  and  are found in Supplementary Tables 12 and 13, 

respectively. Quantile-quantile plots corresponding to both the GWAS and MTAG results 

show an increase in power for each trait (Supplementary Figure 7). Lead SNPs with a P 
value less than 10−5 from the MTAG analysis for each trait are listed in Supplementary Table 

14.

Replication Results

To test for sample overlap, we estimated the LD score regression intercept between the 

GWAS summary statistics for each discovery and each replication sample (Supplementary 

Table 15). The replication results are in Figure 5 and Supplementary Table 16.

Polygenic Prediction

We used the Health and Retirement Study27 (HRS) and the National Longitudinal Study of 

Adolescent to Adult Health (Add Health) as our prediction cohorts. We applied the same 

SNP filters as in the main MTAG analyses. Additionally, we restricted the set of SNPs used 

to construct the scores to HapMap3 SNPs for comparability across the two prediction 

cohorts. We calculated the SNP weights using the software package LDpred, assuming a 

fraction of causal SNPs equal to 1. The scores were constructed in PLINK using genotype 

probabilities obtained from 1000 Genomes imputation.

Bootstrapped confidence intervals were calculated by drawing, with replacement, a sample 

of equal size to the prediction sample, and then calculating the incremental  for the 

GWAS-based polygenic score, the MTAG-based polygenic score, and the difference 

between them. Our pooled results were obtained as a sample-size-weighted sum of HRS and 

Add Health results. As the bounds of the 95%-confidence intervals, we use the 2.5th- and 

97.5th-percentile values of the incremental ’s across 1000 bootstrap draws. Incremental R2 

estimates and their confidence intervals for the prediction analyses are in Supplementary 

Tables 17 to 20 and Supplementary Figure 8.
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Expected Increase in Polygenic-Score Predictive Power from MTAG

The phenotypic value of a trait in individual i, denoted , can be decomposed into the sum 

of the additive genetic variance component and a residual:

We denote the GWAS- and MTAG-based polygenic scores for the trait by  and 

, respectively. Note that GWAS and MTAG produce consistent estimates of the SNP 

effect sizes, and LDpred22 produces a consistent estimate of the additive genetic variance 

component. Therefore, each polygenic score  is approximately equal 

to  plus estimation error:

By the central limit theorem, the estimation error is approximately normally distributed,

The variance  is inversely proportional to the sample size as long as the effective number 

of chromosome segments, , is the same in every GWAS sample in the analysis.24–26 As in 

the calculation of the GWAS-equivalent sample size, where we assume that  is the same 

in every GWAS sample and in the prediction sample, the expected predictive power of a 

polygenic score is

where  is the SNP heritability of the trait.28–30 (Note that if  were to differ greatly 

across samples, then it would be important to take this into account when calculating the 

expected predictive power.24,25)

Using the GWAS results, we obtain an estimate of  using LD score regression14 and an 

estimate of  from the predictive power of the GWAS-based polygenic score. Plugging 

these estimates into the above formula, we solve for an estimate of . We then multiply 

this value by  (which we showed previously is equal to the ratio of the GWAS 

sample size to the MTAG’s GWAS-equivalent sample size) to obtain an estimate of . 

Substituting this back into the above formula along with our estimate of  gives us the 

expected predictive power of the MTAG-based PGS.

Results of this calculation are found in Panel C of Supplementary Table 17. For DEP, 

NEUR, and SWB, respectively, we anticipated increases in predictive power of 0.21, 0.56, 
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and 0.39 percentage points. All three anticipated increases are within their respective 

estimated confidence intervals: [0.04, 0.31], [0.16, 0.61], and [0.12, 0.65]. Overall, the 

observed gains in predictive power relative to conventional GWAS-based polygenic scores 

are thus consistent with theoretical expectations.

Biological Annotation

Detailed results from DEPICT for each trait are found in Supplementary Tables 21-29. 

Figure 7, Supplementary Figure 9, and Supplementary Figure 10 compare the GWAS- and 

MTAG-based tissue enrichment estimates for DEP, NEUR, and SWB, respectively. The 

complete set of results from DEPICT are summarized in Supplementary Table 30.

Comparative Analyses

We conducted analyses comparing MTAG to other multi-trait methods that can be applied in 

the specific setting for which MTAG was developed (Supplementary Note, Supplementary 

Figures 11-13, Supplementary Table 31).

ACCESSION CODES

Summary statistics can be found at www.thessgac.org/data. For analyses that include data 

from 23andMe, only up to 10,000 SNPs can be reported. The GWAS of NEUR does not 

include data from 23andMe, so full summary statistics are available. For the GWAS of DEP 

and SWB and for the MTAG of NEUR and SWB, clumped results for SNPs with P < 10−5 

are provided. For the MTAG of DEP, clumped results for SNPs with  are 

provided; this P value threshold was chosen such that the total number of SNPs across the 

analyses that include data from 23andMe is equal to 10,000.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Bias in standard errors from ignoring sampling variation in  and 

The y-axis is the percent increase in  of the MTAG test statistics from using 

estimated values of  and Ω rather than the true values. Each line corresponds to results 

from applying MTAG to identically powered single-trait GWASs of T traits. For every pair 

of traits, the correlation in true effect sizes is (a) , (b) . Complete results for the 

full set of simulation scenarios can be found in Supplementary Note.
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Fig. 2. Evaluation of MTAG’s standard errors when there is sample overlap
The x-axis is a SNP’s z-statistic from a baseline GWAS conducted in UK Biobank. The y-

axis is a SNP’s z-statistic from applying MTAG to three GWASs of each trait conducted on 

equally sized subsamples of the baseline sample, in which every pair of samples has 50% 

overlap. (a) Height. (b) Depressive symptoms. The figure illustrates near-perfect alignment. 

See Supplementary Note for details and results from analogous analyses on additional 

phenotypes.

Turley et al. Page 25

Nat Genet. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Cohorts included in GWAS meta-analyses for DEP, NEUR, and SWB
In UKB, the sample overlap in the summary statistics across the traits is known, whereas in 

23andMe, the sample overlap in the summary statistics is unknown. MTAG accounts for 

both sources of overlap. SSGAC results,20 GPC results,19 GERA results,18 and 23andMe 

results for DEP21 all come from previously published work. The data from 23andMe for 

SWB are newly analyzed data for this paper. Data from the UKB for all three traits has been 

previously published,20 although we re-analyze it in this paper with slightly different 

protocols.  is used instead of N when the cohort has case-control data (Supplementary 

Note). The sample size listed for each cohort corresponds to the maximum sample size 

across all SNPs available for that cohort. The total sample size for each trait corresponds to 

the maximum sample size among the SNPs available after applying MTAG filters. For 

details, see Supplementary Note.
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Fig. 4. Manhattan plots of GWAS and MTAG results
(a) DEP, (b) NEUR, (c) SWB. The left and right plots display the GWAS and MTAG results, 

respectively, for a fixed set of SNPs. The x-axis is chromosomal position, and the y-axis is 

the significance on a − scale. The upper dashed line marks the threshold for genome-

wide significance ( ), and the lower line marks the threshold for nominal 

significance ( ). Each approximately independent genome-wide significant 

association (“lead SNP”) is marked by ×. The mean -statistic across all SNPs included in 

the analysis is displayed in the top left corner of each plot.

Turley et al. Page 27

Nat Genet. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Regression-based test of replicability of MTAG-identified loci
For each trait and in each of two independent replication cohorts (HRS and Add Health, 

combined N = 12,641), we regressed the estimated effect sizes of the MTAG-identified loci 

on their winner’s-curse-adjusted MTAG effect sizes. The intercept is constrained to zero in 

these regressions. The plotted regression coefficients are the sample-size-weighted means 

across the replication cohorts, with 95% intervals. See Supplementary Note for details and 

cohort-level results.
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Fig. 6. Predictive power of GWAS- and MTAG-based polygenic scores

Incremental  is the increase in  from a linear regression of the trait on the polygenic 

score and covariates, relative to a linear regression of the trait on only covariates. The plotted 

incremental ’s (and differences in incremental ’s) are the sample-size-weighted means 

across the replication cohorts (HRS and Add Health, combined N = 12,641), with 95% 

intervals. See Supplementary Note for details and cohort-level results. (a) Incremental  of 

MTAG-based and GWAS-based polygenic scores. (b) Incremental  of polygenic scores 

constructed from the MTAG results for the predicted trait (“own-trait score”) or MTAG 
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results for each of the other traits (“other-trait score”). The x-axis indicates the trait being 

predicted, and the bar color indicates which trait’s polygenic score is used. (c) Difference in 

incremental  between the GWAS- and the MTAG-based PGS. Red dots indicate the 

theoretically predicted gains in prediction accuracy (Online Methods). (d) Difference in 

incremental  between own-trait scores and the mean of the incremental ’s from the 

other-trait scores.
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Fig. 7. Biological annotation for DEP using the bioinformatics tool DEPICT
(a) Results of the tissue-enrichment analysis based on the GWAS and MTAG results. The x-

axis lists the tissues tested for enrichment, grouped by the location of the tissue. The y-axis 

is statistical significance on a −  scale. The horizontal dashed line corresponds to a false 

discovery rate of 0.05, which is the threshold used to identify prioritized tissues. (b) Gene-

set clusters as defined by the Affinity Propagation algorithm23 over the gene sets from the 

MTAG results. The algorithm names clusters after an exemplary member of the gene set. 

The color of the point signifies the P value of the most significant gene set in the cluster. The 
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line thickness between the gene-set clusters corresponds to the correlation between the 

named gene sets for each pair of clusters.
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