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ABSTRACT OF THE DISSERTATION 

 

 

Development of Computer Aided Drug Design Algorithms and Application to the APOBEC3 
Family of Proteins 

 

by 

 

Jeffrey Robert Rothfeld Wagner 

Doctor of Philosophy in Chemistry 

 

University of California, San Diego, 2018 

 

Professor Rommie E. Amaro, Chair 

 

 The development of molecular dynamics (MD) simulations builds off the maturing field 

of structural biology to provide new insight into the mechanisms of disease on an atomic level. 

However, there are few established methods that use the results of MD to aid the development of 

novel therapies. This thesis begins by discussing the creation of “POVME 3.0”, a novel method 

to generate drug design-relevant insights from MD simulations. POVME 3.0 takes as input a MD 



 xiv

simulation of a binding pocket of interest, and returns a summary of how the pocket shape 

changes over time. We then discuss the application of POVME 3.0 and other analysis techniques 

to the APOBEC3 family of proteins. APOBEC3 proteins are newly discovered drivers of 

mutation in some tumors, and their inhibition could contribute to cancer treatments. This work 

studies how physics-based simulations can shed light on the substrate recognition mechanisms of 

APOBEC3B. Understanding these mechanisms can aid in the discovery of new functional 

binding sites and modes of therapy. Next, algorithms to detect allostery from protein sequence 

data are discussed. These algorithms provide a unique data stream that can synergize with 

physics-based methods to strengthen our understanding of protein function and help develop 

therapeutic modulators. Finally, we discuss CELPP, a community-driven analysis of computer-

aided drug design algorithms, which aims to improve the quality of predictive models in drug 

design. 



 1

Chapter 1 : Computer-Aided Drug Design Algorithms 

This dissertation is a documentation of efforts to use computer modeling of proteins and 

other biological macromolecules to address therapeutically relevant questions. Subsequent 

chapters will go into detail about the methods used and the results obtained in individual studies. 

This chapter is intended to help the reader gain an understanding of the context of the work. 

While modern algorithms can effectively address problems in some areas of engineering 

and science, the complexity of biology has hindered the creation of methods to directly address 

medical questions.1-6 Fields of science and engineering where computer modeling is effectively 

applied have a few common characteristics. First, the systems being modeled are often 

homogenous, for example a solid volume element of constant composition in a finite element 

model of a machine. Second, the underlying physics are well behaved on the scale of the 

elements, for example equations of heat transfer. Finally, the number of real-world 

measurements of the system is at least proportional to the number of parameters in the model, 

such that the unknown model parameters can be calibrated to match real-world results.  

Biological macromolecules differ from these well-defined simulation subjects in that the 

component pieces (molecules) are highly heterogeneous, the underlying physics (quantum 

mechanics) are configuration-dependent and expensive to compute accurately, and the number of 

model parameters is far greater than the available real-world data. Successful use of computation 

in drug discovery therefore requires clever strategies to work around these shortcomings.  

To address the first and second problems, scientists have worked to discretize the 

elements of a molecular simulation into readily-computable units. In theory, quantum chemical 

calculations allow scientists to model each atom accurately. In practice, the cost of quantum 

mechanical computations is prohibitive. A popular strategy is to work from the bottom up, by 
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fitting rapidly-computable molecular energy functions to energies derived from quantum 

chemistry calculations. This approach led to the development of the molecular “force fields”, 

which were a fundamental breakthrough that enabled successful use of molecular dynamics 

simulations. The reasoning behind force fields is that one cannot avoid the variety of atomic 

behavior in different geometric and charge configurations, but study can yield general patterns 

that, to a degree, are able to model the behavior of atoms correctly. These general patterns 

provide the parameters that feed into modern molecular mechanics force fields. The development 

of these force fields is a great undertaking, and while commonly used parameters such as those 

for amino acids and solvents have enjoyed heavy investment in their development, small 

molecule force fields must use a limited number of calculations to cover a large area of chemical 

space and, as a result, are considerably less accurate.7-18 

The third problem, that of having more unknown model parameters than real-world 

measurements, continues to plague computational modeling of biological macromolecules. One 

example of this discrepancy is the comparison of a physics-based model of a protein to 

experiments on its biochemical activity. To measure the effect of a change in a protein requires 

significant material investment. Even when performed, the experiments that measure 

biochemical activity are sensitive to factors such as temperature, solvent composition, pH, 

biological cofactors, and other sources of error. Therefore, it is hard to “recreate” the same 

system in a computer model as in the real world. Because there are so many interacting variables, 

it is infeasible to measure the effects of changes in all of them, and therefore it is difficult to 

figure out which model parameters are responsible for resulting inaccuracies. The net effect of 

this problem is that physics-based protein model parameters are hard to estimate or calibrate, 

even given a large amount of real-world data.19, 20 The result is that it is currently not feasible to 
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compute most real-world biochemical values from computer simulations. Strategies to get 

around this problem include relative comparison of two systems, for example predicting whether 

a mutation will increase or decrease protein activity rather than the predicting exact numerical 

difference it would cause, or the reporting of qualitative results from simulations, which 

experimentalists and domain experts can interpret in the appropriate context. 

The author’s opinion is that the most efficient way to improve the field of in-silico 

biochemical simulations is to improve the quality of force fields, develop new analysis 

techniques for the results of these models that make them more relevant to the real world, and 

incorporate new data streams to allow for a more favorable ratio of unknown model parameters 

to real-world data. The projects chosen by the author during graduate study intersect these areas, 

and the following chapters will discuss them in greater depth. 

Chapter 2 of the thesis discusses the development and application of POVME3.0.21-23 

POVME is a program that measures the shape of a protein binding pocket through the course of 

a molecular dynamics simulation. Version 3.0 is notable as it incorporates high-level methods 

such as clustering and principal component analysis to the analysis of binding pocket shapes. 

Clustering is particularly useful in translating the large number of protein conformations that 

result from a molecular dynamics simulation into a few representative inputs for an ensemble 

docking procedure. In the context of accuracy, one strength of this approach is that ensemble 

docking can test its input structures for their ability to reproduce real-world data. In that way, the 

uncertainty introduced in MD by force fields inaccuracies can be corrected by pruning 

potentially insignificant binding site conformations from the dataset. This is a highly valuable 

capability, as there are a few ways to compare simulation with experiment, and this procedure 
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connects the two using a type of data (small molecule binding) that is highly relevant to 

developing therapeutics. 

Chapter 3 of this thesis discusses the application of MD simulations and other forms of 

structural bioinformatics to the study of APOBEC3B (A3B), a DNA-altering enzyme. A growing 

body of evidence links A3B to the progression of breast cancer tumors, therefore it is a valuable 

target for study and potentially a point of application for therapy. This work puts forward a 

potential structure of the wild-type A3B, which was generated by reverting mutations made by 

experimentalists to crystallize the protein for X-ray diffraction. MD simulations of this wild-type 

model were run with and without the substrate DNA, and with a modified DNA strand where the 

base in the active site is instead RNA. Comparison of these simulations to each other and to 

previous published biochemical work on the APOBEC family yields potential insights into the 

mechanism of substrate recognition. In the context of this thesis, this work is notable for showing 

the complexity of applying computer models to what is, in real life, a highly complex 

phenomenon (cancer). It also forces a reconsideration of the meaning of “correct” in the context 

of real-world application. While aspects of the model may be quantitatively incorrect, it is 

possible that a qualitative phenomenon seen in the simulation could lead to the discovery of a 

true determinant of protein function. In doing so, a model that is not entirely accurate may 

increase the odds of a breakthrough when combined with traditional wet-lab experiments. 

Chapter 4 is a partial reprint of a review written on methods to discover allostery using 

computer modeling of proteins.24 Allostery is a concept in protein dynamics in which an event at 

one location in the protein structure can affect behavior far away. Allostery has been a rising 

topic in drug development, as there are many advantages to developing a molecule that bind at a 

alternate site in a protein structure. The full review discusses a variety of methods that use 
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physical and geometric modeling to make predictions of allosteric sites. However, the work was 

largely collaborative, and the author felt that it would be most valuable to highlight their own 

contributions to the manuscript. Therefore, chapter 4 discusses the algorithms that use protein 

sequence data to predict allosteric sites in proteins, as well as their implementations. This work is 

particularly interesting in the context of this dissertation as it deviates from physics-based 

modeling and highlights the potential synergies of using multiple forms of real-world data to 

make predictions. As stated above, it is difficult to find real-world measurements that can 

correlate directly to physics-based models, and so the introduction of a data stream based on the 

sequence and evolution of protein structures adds a unique and valuable angle to therapeutic 

modeling efforts. 

 This dissertation concludes with the discussion of the upcoming Continuous Evaluation 

of Protein Ligand Pose Prediction (CELPP) Challenge. CELPP is a highly ambitious project to 

benchmark docking algorithms. It fills a critical gap in the field of computer aided drug design 

by rigorously measuring the accuracy of protein-ligand pose prediction methods. These methods 

have been traditionally hard to benchmark due to dataset bias, fundamentally different 

approaches to the problem, and the large number of model parameters that researchers must 

consider when undertaking prediction efforts. CELPP is a literal application of the framework of 

modeling described at the beginning of this chapter, in that it aims to enumerate the model 

parameters involved in ligand pose prediction, and search for optimal performance within the 

space of possible algorithms and options. As there is no single definition of a docking workflow, 

CELPP is configured to facilitate community participation, and it is made to integrate seamlessly 

with servers run by outside groups which generate predictions. Further, the standardization 

required by such a large-scale benchmark encourages the automation of workflows which 
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previously required human internvention. Beyond providing a constant system to benchmark, 

removing the human element from the pose prediction process enables the scaling of best-in-

class pose prediction workflows to a wider variety of diseases and therapeutic areas. 
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Chapter 2 : POVME 3.0: Software for Mapping Binding Pocket Flexibility 

 
Jeffrey R. Wagner1, Jesper Sørensen1, Nathan Hensley1, Celia Wong1, Clare Zhu1, Taylor 
Perison1, and Rommie E. Amaro1,2 
 
 
1 – Department of Chemistry and Biochemistry; University of California, San Diego 
2 – National Biomedical Computation Resource; University of California, San Diego 
 

Abstract 

We present a substantial update to the open-source POVME binding pocket analysis software. 

New capabilities of POVME 3.0 include a flexible chemical coloring scheme for feature 

identification, post-analysis tools for comparing large ensembles of pockets (e.g., from molecular 

dynamics simulations), and the introduction of scripts and methods that facilitate binding pocket 

comparison and analysis. We envision the use of this software for visualization of binding pocket 

dynamics, selection of representative structures for ensemble docking, and incorporation of 

molecular dynamics results into ligand design efforts. 
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Introduction  

Shape complementarity between a ligand and a binding pocket is a central concept in 

rational drug design. For this reason, many early structure-guided drug design efforts focused on 

developing tools to determine which molecules fit into a given binding cavity.25 While these 

techniques gained widespread appeal, scientists have since realized that protein-ligand binding is 

not so much a question of rigid fit as it is question of complementarity between the energetic 

landscapes of the protein, ligand, and solvent. 

Improvements in structure-guided virtual screening have attempted to close the gap 

between rigid docking methods and flexible thermodynamic reality. One of the more difficult 

steps in this effort is the handling of molecular flexibility.26 While algorithms have been 

developed to efficiently sample a small molecule ligand’s conformational landscape,27 7 14 9 13 12 

28 29 proteins are considerably more complex and proper handling of their flexibility is a more 

challenging question. 30 26 31 32 

 The “ensemble docking” method is used to bridge the gap between the available rigid 

docking techniques and existing models of protein flexibility. 33 34 35 This technique allows 

researchers to integrate the results of another powerful tool in biophysics research - molecular 

dynamics (MD) simulations - into drug design work. MD simulations can provide hundreds of 

thousands of snapshots of a protein’s conformation through the course of thermal motion. While 

it is currently computationally intractable to perform docking on these hundreds of thousands of 

structures, is it possible to do so for tens of structures. In the ensemble docking method, a large 

set of protein structures is filtered to a smaller representative set, which is selected to preserve 

the full range of observed conformational diversity.36 Performing docking on each member of 
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this smaller representative set is therefore feasible, and should ideally yield the same information 

as docking to every single snapshot of the protein from the simulation.  

The process by which a representative set is selected remains an open question.35 34 37 

Inherent in the process of representative selection is the concept of finding meaningful 

differences between the binding sites in different structures, and ensuring that all of these 

differences are represented in the reduced set of structures. If done correctly, this categorization 

of differences should also be useful in itself. Viewing a human-interpretable summary of the 

major areas and types of variation in a binding pocket would make researchers more efficient 

and effective in answering a range of scientific questions. For example, a visual summary of 

binding pocket differences around a promising ligand can inform drug designers about new 

directions of scaffold functionalization. Further, establishing the characteristics of a target 

binding pocket that distinguish it from other, similar pockets can enable ligand design with high 

specificity and fewer off-target effects. As computational methods become more powerful, 

finding correlations between the binding site shape and distant functional regions of a target 

protein can enable the design of allosteric ligands.  

Previous research has been done on the topic of pocket-studying algorithms.37 38 In 

discussing the context of this work, it is important to draw a distinction between “pocket 

analysis” and “pocket detection”. POVME is a pocket analysis tool. Pocket analysis is the 

process of characterizing the shape and flexibility of a cavity in detail. Pocket detection is the 

process of finding druggable cavities on a protein structure where small molecule ligands might 

bind. Though these processes seem similar, each is best suited to different mathematical 

representations. For example, a pocket detection algorithm might rely largely on comparison of a 

user’s query pocket to a set of known druggable pockets. Such a comparison algorithm would 
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favor easily-rotatable (or even rotation-invariant) representations of binding pockets to 

accurately perform comparisons independent of reference frame. However, pocket analysis 

algorithms must preserve fine detail and be able to analyze thousands of frames quickly. The 

generalizations required to create a rotation-invariant representation of a pocket lead to a 

significant loss of detail and may incur a high computational cost. Therefore, while compatibility 

between the tools should be a consideration for creating scientific workflows, one single tool is 

unlikely to be best for both pocket detection and analysis.  Readers interested in pocket 

representation styles are directed to a separate publication.39  

The conformational flexibility of a binding pocket can be investigated by studying the 

differences between many related structures, from sources such as molecular dynamics 

snapshots, crystallography under different conditions, and homologous protein structures. 

Previous work has been done to investigate the different approaches that can be used to generate 

meaningful protein conformations for pocket analysis.40 However, there is not a single standard 

for the definition of a region of space as a “binding pocket”. Furthermore, it is possible that 

given the range of reasons for studying a binding pocket and the geometric diversity of cavities 

where drugs bind, a single standard may not even be appropriate. For example, rules which work 

for deep pockets may not work well for shallow pockets,41 and parameters aimed at predicting 

small molecule druggability may be unsuitable for finding peptide binding sites.  

Different pocket analysis programs represent binding pockets in different ways - the two 

most popular representation types are voxel/grid-based and alpha sphere-based. Although both 

are suitable for visualizing pocket shape, POVME employs a voxel/grid-based pocket 

representation, as we have found this to better enable pocket comparison. An in-depth discussion 
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of the advantages of grid-based shape methods is available in the publication of another pocket-

analysis tool, TRAPP.42 

 A major disagreement in the field of pocket definition arises from the variety of methods 

that different programs use to define the boundary of a pocket. While most programs are 

consistent in how they represent the buried portions of cavities (stopping pocket definition at 

protein atoms and excluding channels too narrow to host a ligand), existing methods diverge in 

the logic used to define a boundary at the surface-exposed end of a pocket. This is a long-studied 

issue in pocket definition, and is sometimes referred to as a “can of worms” problem.43 Some 

algorithms terminate the pocket when new points are no longer adjacent to a ligand or pocket-

lining residue atom.42 Others draw numerous vectors out from each possible pocket voxel in 

different directions and may require a certain fraction of these vectors to intersect a protein atom 

within a cutoff distance.44 45 46 Another option, employed in POVME22 and other programs 47 48 

is to “gift wrap” the protein with a convex mesh and exclude all voxels outside the mesh from 

being defined as part of the pocket. 

These differences make it difficult to establish a meaningful definition of “volume” and 

hinder the rigorous comparison of pocket shapes. The example workflows bundled with POVME 

3.0 show best practices for different situations, including the disabling of the convex hull 

algorithm when performing analysis for quantitative comparison.  

Various tools have been developed for the analysis of binding pockets, including 

fpocket49 22 50, TRAPP42 40, PocketAnalyzer(PCA)46, trj_cavity45, Epock51, and Volsite.44 As the 

use of integrative modeling and data science continues to grow in biomedical research, it is 

necessary to develop a tool for analysis of binding pocket shapes that is both suitable for 

immediate visualization, and also able to interface with more complex data analysis tools. We 
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build off of previous developments in this field to create a package that combines precision in 

pocket analysis with the ability to integrate results into larger data workflows. 

In this paper, we present POcket Volume MEasurer (POVME)21 3.0 as a tool for analysis 

of flexible protein cavities. Version 3.0 contains many additional capabilities, including: post-

processing tools to perform clustering and principal component analysis; a chemical coloring 

scheme for defining pocket features; python classes for custom analyses of pocket shape output; 

pre-built workflows for a variety of tasks; and easy installation using the pypi package index. 

 

Methods 

All of the functionality available in POVME2.0 has been maintained, and readers 

interested in a detailed description are directed to that paper.22 The new features in POVME3.0 

are detailed in this section. 

 

Ligand-based pocket definition 

POVME relies on a user-defined inclusion region to define the boundary of the pocket of 

interest, similar to the Maximum Encompassing Region in Epock.51 Based on feedback for 

POVME 2.0, we learned that users frequently found the existing region-definition methods to be 

unwieldy. For this reason, we added three new features for pocket definition, including defining 

the pocket based on the 1) residue name of a ligand present in the trajectory, 2) a saved POVME 

shape file (a 3xN numpy array of grid points), and 3) 3D cylinders (in addition to the previously 

implemented boxes and spheres). The ligand-based pocket definition is likely to be the most 

popular option, especially for defining appropriate inclusion regions to analyze tight pockets. 

When given the DefinePocketByLigand keyword and a ligand residue name, POVME will pre-
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process the trajectory, map each ligand atom in each frame to its nearest grid point, and define 

those grid points as the seed region for all frames. It will then grow this seed region 3 Angstroms 

out in each direction, and define that superset of points as the inclusion region.  

 

Convex hull options 

The ConvexHullExclusion keyword can be set to 4 options: “each”, “none”, “first”, or 

“max”. The first two options were available in an earlier version of POVME. “none” will forego 

the convex hull exclusion process altogether, as was standard behavior for the original POVME.  

“each” will calculate a convex hull for each frame of a trajectory, as was standard behavior for 

POVME 2.0. It is worth noting that the “each” setting is not advised if the final goal of POVME 

analysis will include quantitative analysis such as clustering or PCA, as the outer boundary of the 

pocket may shift each frame, and the magnitude of this shift can dwarf motions inside of the 

pocket. The other two options are new additions and apply the same convex hull to each frame. 

“first” applies the convex hull from the first frame in the trajectory, and “max” applies a convex 

hull drawn around all frames in the trajectory superimposed on each other. 

 

Coloring 

A chemical coloring scheme has been implemented to characterize portions of the pocket 

that can host favorable interactions with small molecule ligands. The coloring scheme is based 

on the BINANA binding site description algorithm,52 but has not been validated for a 

quantitative purpose as it is applied in POVME and so is primarily suited for visualization. 

Currently, this coloring scheme depicts hydrogen bond donors, hydrogen bond acceptors, 

aromatic stacking, hydrophobicity, and hydrophilicity. The colors are output as separate POVME 
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maps with variable intensity assigned to each grid point. POVME provides time-averaged color 

maps after analysis of an entire trajectory. 

Because the colors are defined by continuous functions but are only defined at discrete 

points, the total contribution of each feature (for example, a single O-H donor group, or a single 

aromatic ring) may vary depending on how the intensity of the 3D function falls on the fixed 

cartesian grid. For this reason, the total contribution of each feature to the grid is normalized, so 

that the summed value of the feature’s contributions to the color grid is equal to 1. Further, in 

order to ensure that buried points are not assigned color magnitudes, only points that are defined 

as part of the pocket in a frame (or are within a skin distance of the surface) will receive these 

color values. 

The magnitude of the hydrogen bond donor color is defined as a gaussian in spherical 

coordinates, with a center beyond the hydrogen atom as measured along O-H or N-H axis. The 

magnitude of the hydrogen bond acceptor color is defined as a gaussian in Cartesian coordinates, 

emanating from the center of all O atoms. The aromatic color is defined in a cylinder above and 

below aromatic rings, with uniform magnitude along the radius (dropping to 0 at an outer radial 

cutoff) and with magnitude defined by a gaussian along the height of the cylinder. The 

magnitude of the hydrophobic color is defined as a gaussian around all C atoms, and the 

hydrophilic is a gaussian around each N, O, and S.  

The pocket coloring scheme is extensible to python programmers, and the POVME 

package contains the “featureMap” class which enables coloring based on a number of shapes at 

user-defined atom motifs. 
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Adjacency and surface 

Two boundary-defining colors are also defined as “adjacency” and “surface”. Adjacency 

represents a thick layer of binding pocket volume near the surface of the protein, and may be of 

interest in measuring buriedness of voxels. Surface represents a thin layer of volume on top of 

the protein surface lining the binding pocket, and is used in surface area calculation.  

 

File conventions 

POVME3.0 requires a pre-aligned trajectory in PDB format. POVME 3.0 outputs 3 file 

types: pdb, dx, and npy. The first two are chosen for ease of visualization. Boolean grid data, for 

example individual pocket volumes and regions where color maps exceed a threshold magnitude, 

are output in Protein Data Bank “pdb” format. Non-boolean grid data are output in Data Explorer 

“dx” format, which is compatible with a variety of visualization programs including VMD and 

PyMol. Examples of such data include the average pocket shape of many frames, or color maps 

in full detail. Every single-frame .pdb and .dx file output from POVME 3.0 also has a .npy 

equivalent. The NumPy file format was selected for its efficiency, interconvertibility with other 

file types, and compatibility with major data analysis packages. Efforts to involve POVME in 

more elaborate integrative modeling efforts should work directly with these npy files.  

 

Clustering 

POVME 3.0 offers scripts to perform pocket shape-based clustering and examples to 

exhibit their use. Pocket shape clustering is handled in two steps. First, a pairwise binding pocket 

similarity matrix is generated for all binding pocket structures in the ensemble. Second, this 
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similarity matrix is clustered and useful depictions of the clusters and their differences are 

created. 

The similarity matrix is calculated using the Tanimoto overlap score of each pair of 

pockets. As the grid points in POVME are defined in the same Cartesian reference frame for 

each pocket, the Tanimoto score is calculated by counting how many pocket points each pair of 

pockets has in common, divided by the number of points in either. Therefore, the Tanimoto score 

of a pair of frames can be at maximum 1 (the two pockets are identical) or at minimum 0 (the 

two pockets share no volume in common). Alternatively, the similarity matrix can be calculated 

using the Tversky similarity metric, in which the overlap term is the same but the denominator is 

the volume of one frame instead of the union of both.  

In the clustering step, users may select to use SciPy’s hierarchical or k-means libraries.53 

54 By default, hierarchical clustering is performed, based on SciPy’s average linkage 

implementation. The desired number of clusters can be input manually, otherwise cluster.py will 

compute the Kelley penalty55 to determine a reasonable number. For each cluster, cluster.py 

extracts the representative structure (the pdb structure corresponding to the cluster member with 

the maximum summed overlap score with all of the others) and generates two dx files depicting 

1) the cluster’s average pocket shape and 2) the difference between this cluster’s average and the 

entire ensemble’s average. VMD scripts are produced to load these volume maps and overlay 

them on the representative structure for each cluster. Figures are also created to show cluster 

membership as a function of frame number and to create a “kinetic network” diagram of the 

clusters, linked by the number of transitions the ensemble took between them. 
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PCA 

Principal component analysis (PCA) is a common tool in data science that has recently 

been applied to pocket shape analysis.46 42 PCA of pocket shapes can serve a variety of purposes. 

First, it can act as a way to define meaningful subpockets. As subpockets can come in a variety 

of shapes and sizes, it is difficult to select a single method or heuristic to define them. However, 

it is possible to find mutually correlated groups of voxels that join or leave the pocket together. 

These mutually correlated groups are often physically contiguous and represent entire 

subpockets available for ligands. Second, it is possible to find multiple subpockets present in the 

same eigenvector, with coefficients that indicate positive or negative correlation with one 

another. Information such as negatively correlated subpockets may be valuable in ligand design, 

as it would indicate two areas of the binding pocket that are unfavorable for a ligand to occupy 

simultaneously. Third, PCA allows researchers to define meaningful axes by which structures 

can be compared quantitatively, which may be useful in selecting structures and rationalizing 

differences between families of structures.  

PCA in POVME is performed by constructing a matrix of pocket points M, in which 

rows correspond to the different structures in the ensemble, and columns correspond to 

individual grid points. For each position i,j in the matrix, M(i,j)=1 if grid point j (for example 

(10,-7,5)) is defined as part of the pocket in structure i of the ensemble. Otherwise M(i,j)=0. 

Mean normalization, but not feature scaling, is performed on the columns of this matrix. After 

eigenvalue decomposition of this matrix, each eigenvector is mapped back to a density map 

defined at each point on the grid and saved as a dx file. These dx files can be visualized by a 

number of programs, and the workflow outputs a VMD56 script to load them all simultaneously 

and prepare a default visualization.  This default visualization loads each eigenvector as a 
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different object and displays regions in green and red to denote positive and negative coefficients 

respectively.  

 

Common workflows 

The POVME 3.0 download contains example workflows that users can adapt to their own 

data, including combined multiple-trajectory analysis, clustering, and principal component 

analysis. 

 

Pypi distribution 

POVME is now available on the Python Package Index 

(https://pypi.python.org/pypi/povme). This improvement streamlines the installation and 

updating process. The POVME source code is also now version controlled on GitHub 

(https://github.com/POVME/POVME), which makes it easier to download, modify, and manage 

bug reports and feature requests. 

 

HSP90 MD simulations 

Twenty 250-ns molecular dynamics simulations were run beginning from different 

HSP90 crystal structures in the Protein Data Bank (PDB).57 These PDB codes were selected on 

the basis of ligand diversity, structure resolution, and pocket characteristics. The final 20 PDB 

codes selected are 1BYQ,58 1UYF,59 1UYI,59 1UYL,59 2VCI,60 2WI7,61 2XHR,62 2YEJ,63 

3B26,64 3D0B,65 3HEK,66 3K98,67 3K99,67 3RKZ,68 3RLR,69 4CWN,70 4FCR,71 4LWE,72 

4R3M,73 4W7T.74 Active site ligands were parameterized using GAFF,15 with charges derived 

using Gaussian75 and the RED server.76 77 78 All crystal waters and ligand counterions were 
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preserved. Sodium ions were added to balance the system charge. Schrodinger protein 

preparation was used to model missing loops, replace unresolved sidechains, and assign protons 

at pH 7. The full commandline instruction passed to Schrodinger’s prepwizard is provided in the 

SI. The twenty systems were prepared for simulation using LEaP from the AMBERTOOLS 

package.27 The FF99SB force field was used for simulation.10 27The tleap solvatebox command 

was used to add a TIP4P water box with 10A padding.  

The AMBER MD input scripts are provided in the Supporting Information. 

 

Results and Discussion 

Coloring scheme 

The coloring process is performed by default when POVME 3.0 is run. Figure 2.1 shows 

two examples of the coloring process. As no appropriate weighting scheme has been determined, 

the clustering and PCA workflows do not consider the color data (only the pocket shape). 

However, due to their qualitative utility, the color files are provided as pdb, dx, and npy files for 

visualization and custom user analysis. 
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Figure 2.1 : POVME coloring scheme.  

Black mesh shows occupancy, blue shows hydrogen bond donor regions, red shows hydrogen 
bond acceptor, and orange shows pi-stacking. A) The POVME coloring scheme applied at 0.1 
Angstrom grid resolution to a single arginine residue from a protein structure. B) The POVME 
coloring scheme applied to a binding pocket at 0.75 Angstrom resolution, with occupancy not 
shown. 

 

Validation of pocket similarity metric 

We anticipate that researchers will use POVME to guide ligand design based on pocket 

geometry. Therefore, one of our major scientific objectives is to ensure that the similarity score 

that POVME reports when comparing binding pockets is related to the similarity of the ligands 

which fit in those pockets. In other words, if POVME analysis indicates that two pockets are 

similar, they should bind similar ligands. Conversely, if POVME determines that two pockets are 

dissimilar, they should bind dissimilar ligands. Establishing such a correlation would provide 
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evidence that POVME’s selection of “diverse” pockets from an ensemble of protein structures 

will enable discovery of diverse ligands. 

As a simple study of POVME’s pocket similarity metric (Tanimoto scoring), we attempt 

to use it to distinguish between the same protein crystallized and simulated with 20 different 

ligands. Each simulation was run for 250 ns, and frames were extracted every 1 ns. To determine 

the similarities between pockets, POVME was run on each trajectory, and the results were used 

to make three 20x20 similarity matrices. These matrices show the POVME similarity of the 

pockets from the first frame of each simulation (Figure 2.2A), the POVME similarity of the 

pockets from the last frame of each simulation (Figure 2.2B), and the average POVME similarity 

of all 250 frames taken from each simulation (Figure 2.2C). In order to compare pocket 

similarity to ligand similarity, it is necessary to compute a ligand similarity matrix. RDKit 

FingerprintMol objects were generated for each ligand, and the default RDKit similarity metric 

(Tanimoto) was used to compute a 20x20 ligand similarity matrix (Figure 2.2d).  
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Figure 2.2: Tanimoto similarity matrices  

Tanimoto similarity matrices of A) initial simulation pocket shapes (following equilibration), B) 
final simulation pocket shapes (after 250 ns MD), C) average similarity of all pocket shapes 
throughout simulation, and D) RDKit chemical fingerprint Tanimoto score. Kendall Tau 
analyses of the matrices are shown above the brackets. 

 
To compare the information contained in each similarity matrix, the Kendall rank 

correlation coefficient79 is employed, which indicates the similarity between two sets of ranked 

objects. In this case, the ranked objects are pairs of nonidentical HSP90-ligand systems, each 

denoted by a pair of PDB codes, and they are ranked by their Tanimoto scores. For example, in 

the ligand similarity matrix (Figure 2.2D), the bright red (1UYI,1UYF) hotspot has the highest 

nonidentical similarity value (See figure 2.5 for ligand structures). The (1UYI,1UYF) pair 

therefore has rank 1. The rest of the PDB code pairs are ranked in order of decreasing ligand 

similarity to create the ordered ligand similarity list. The 1UYL simulation does not have a 

ligand, therefore it has a similarity score of 0 to all other ligands.  

This process is repeated on each pocket similarity matrix to generate the three ordered 

pocket similarity lists. The Kendall rank correlation coefficient indicates how similar each pair of 
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orderings is, with a maximum possible value of 1 (indicating identical ordering) and a minimum 

value of -1 (indicating completely opposite ordering). A Kendall Tau of 0 indicates random 

ordering. Comparing the average simulation Tanimoto similarity matrix (Figure 2.2C) to the 

ligand similarity matrix (Figure 2.2B) yields a Kendall Tau value of 0.266, with a p of 4.90 x 10-

8, indicating moderate agreement with high confidence. Comparisons of only the first and last 

frame indicate weaker agreement between the rankings; analysis of the last frames of each 

simulation yields a Kendall Tau of only 0.173, and analysis of the first frames yields a Kendall 

Tau of 0.062.  

 

The correlation between pocket shape similarity and ligand similarity suggests that using 

POVME to pick diverse pocket shapes will enable discovery of diverse ligands. To efficiently 

pick diverse structures, clustering analysis is performed on the complete 5000 x 5000 Tanimoto 

similarity matrix. 

 

Clustering analysis 

The clustering workflow was run on frames taken from the HSP90 trajectories at 1 ns 

intervals, for a total of 5,000 structures (250 snapshots per simulation x 20 simulations). The 

workflow is capable of choosing a number of clusters automatically using the Kelley penalty 

method.55 However, this number is somewhat arbitrary, and in a project-driven analysis the 

number of clusters would be better determined by the computational resources available for 

ensemble docking. As an example, this study sets it to return 15 clusters for ease of visualization, 

to show how 20 simulations can be reduced. The 15 clusters are numbered 0 to 14, in order of 

decreasing size. These clusters represent frequently visited pocket shapes (Figure 2.3A). Each 
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frame that is analyzed is assigned to a single cluster. Scientists using POVME to select diverse 

structures for ensemble docking will be primarily interested in the frames identified as cluster 

representatives by this step.  

As ligand kinetics are increasingly recognized to play an important role in drug efficacy 

(exemplified by recent interest in slow-koff ligands)80, understanding the kinetics of ligand-

binding pockets also becomes a valuable topic of study. POVME clustering offers a way to 

discretize pocket conformations, and scientists can study pocket kinetics by observing how the 

systems transition between clusters. While the clustering process analyzes the trajectories 

together (as one large concatenated trajectory), the results of clustering can be mapped back over 

the different systems, and the time evolution of the simulations through the clusters can be 

studied (Figure 2.3B and C).  

In the HSP90 data, we observe that the low-numbered (and therefore larger) clusters 

contain frames from multiple simulations, while clusters numbered 10 and above are all 

populated by a few outlier frames from individual simulations (complete data in Figure 2.6). 

Further, it is observed that the simulations of HSP90 bound to highly similar ligands, 1UYI and 

1UYF, are the two largest occupants of cluster 1, but that only 1UYF makes excursions to cluster 

9, which exhibits the opening of a side channel. An apo crystal structure uploaded as part of the 

same publication, 1UYL, starts in the most populated cluster, 0, but quickly transitions to cluster 

5, which features a collapsed binding region and is populated exclusively by the apo simulation. 

The ligand from the 4R3M crystal structure, while sharing limited structural similarity with the 

1UYF and 1UYI ligands, populates in small parts clusters 1 and 2, but is found the majority of 

the time in conformations bordering cluster 6. This cluster represents a higher-volume binding 

pocket with a unique deep subpocket open (Figure 2.3A). While this paper does not go in-depth 
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on the SAR linking ligand chemotype to pocket conformation, it demonstrates that POVME 

enables the analysis of ligand-induced changes in protein dynamics. 

 

 
 
 
Figure 2.3 : POVME clustering of 20 HSP90-ligand complexes using cluster.py  

A) 3D depictions of selected clusters. The representative protein structure for each cluster is 
shown as a transparent orange cartoon. The average shape for all analyzed frames is shown as a 
black mesh, with solid shapes (green and red) showing how each cluster is more open or closed 
than this average. B) “Kinetic network” depiction of the combined dynamics of the 20 HSP90 
trajectories. Black numbers indicate cluster index (0-14). Red circles indicate the number of 
frames assigned to each cluster. Edges indicate the number of transitions observed between 
clusters in the MD trajectories (light blue dashes = 1 or 2, dark blue dashes = 3 to 5, solid black 
line = greater than 5). Clusters are arranged in 2D according to a force-based layout, in which 
each pair of clusters is pulled together by a force proportional to the number of observed 
transitions. C) Kinetic network depiction of individual trajectories. These network diagrams have 
the same 2D cluster locations, but only show cluster populations and transitions from individual 
trajectories. The corresponding ligand is shown below each diagram. 1UYL is the only apo 
structure, and is the only simulation that visits cluster 5.  
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Principal Component Analysis 

Principal Component Analysis was performed on the 20 HSP90 trajectories. Figure 2.7 

shows that the pocket dynamics are complex with regard to subpockets - the first 10 principal 

components describe only about 30% of the pocket dynamics. However, reviewing the most 

significant principal components can be informative, as they explain major areas of pocket 

variation and how they relate to ligand structure.  PC1 shows a change in pocket shape 

corresponding to the interruption of a binding site-adjacent helix (Figure 4A). This change opens 

a subpocket below the helix. PC2 corresponds to a complete loss of the same helix, and the 

inward bulging of secondary structure on the far side of the pocket (Figure 2.4B). 

 
 

 
Figure 2.4 : POVME principal component analysis of 20 HSP90-ligand simulations.  

PCs were derived from analysis of 250 ns of MD of each system. Bright green and red regions 
are spatial depictions of each principal component in pocket space - A structure with a high PC 
value would have the green areas included in the pocket and the red areas closed off. Protein 
structures are snapshots from simulations corresponding to the high and low values in each PC. 
A) PC1, showing the final frame of the highest (3D0B, green) and lowest (3K99, red) valued 
systems. B) PC2, showing the final frame of the highest (3RLR, green) and lowest (4R3M, red) 
valued systems.  
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Conclusions 

We present POVME 3.0, a substantial update to the POVME package that performs 

pocket selection for ensemble docking and provides outputs suitable for quantitative analysis. A 

number of new features have been added, including a chemical coloring scheme for binding 

pockets, the option to define pocket regions based on the position of a ligand molecule, and 

detailed manual pocket definition options. Further, post-processing workflows have been 

provided to perform the principal component and clustering analysis shown in this paper. 

Finally, POVME 3.0 has been redesigned for distribution on PyPI, simplifying its installation 

and use. 

Great strides in molecular modeling are currently being made, thanks largely to the 

continued development of open-source software and the standardization of data formats. 

POVME 3.0 aims to make the field of drug design more open to machine learning techniques by 

providing a tool that connects MD simulations, pocket shapes, and ligand binding. The 

workflows for pocket clustering and PCA are initial examples of how POVME 3.0 can interface 

with statistical learning methods. Pocket shape data will become more valuable when it is 

combined with other forms of information to, for example, study allostery and correlate pocket 

shape to ligand structure. 

 

 

Supplemental Information 

User Notes and Best Practices 

Effect of structure alignment on pocket analysis 
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In the course of performing this work, we determined that robust alignment of the protein pocket 

is a prerequisite for successful POVME analysis. Many trajectory-handling programs such as VMD can 

perform RMSD alignments, and most default to alignments based on the entire protein (e.g., all alpha 

carbons). However, some proteins undergo significant domain motion, so care should be taken to perform 

the alignment such that the binding pocket remains in the same location in Cartesian space. This may 

require performing an alignment of only the domain containing the binding pocket, or restricting the 

alignment to a set of pocket-lining residues. During the development and testing of POVME 3.0, 

inappropriate alignment of the protein trajectory/ensemble was a common problem. Misalignment is 

usually noticed during clustering and PCA, and is represented by difference regions that line surfaces on 

opposite sides of the binding pocket. In these cases, one entire face of the pocket is seen to lose volume 

over its surface, and the opposite face is seen to gain it. This type of change is likely an artifact, adding 

noise to the interpretation of pocket dynamics. As a solution, we investigated the possibility of providing 

tools for alignment of pocket shapes, but POVME’s voxel-based representation was found to be poorly 

suited for this task. 

We advise against interpretation of scalar volume values 

The value that POVME provides for pocket volume is simply the sum of the volumes of the voxels 

comprising the pocket. Because heuristics are used to define the outer boundary of the pocket, the 

numerical value of the pocket volume is difficult to meaningfully compare between programs, or even 

significantly different pockets analyzed by the same program. Users should take caution when comparing 

the POVME-provided volumes to anything except highly similar pockets. Without knowing how users 

plan to interpret or compare volume numbers we cannot ensure that they are fit for a specific purpose. 

Instead, we encourage users to compare pockets in 3D. POVME provides directly visualizable outputs as 

well as Python functions for performing mathematical operations on sets of pocket shapes. Given the 

frame-by-frame output files provided by POVME, users with Python knowledge can load the sets of 

pockets as lists of points, then use POVME functions to compute their difference and output it as a pdb or 

dx file for visualization.  
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Inclusion and seed regions must be identically defined for successful post-analysis 

As the clustering and PCA processes consider variation in pocket shape, it is important that the volume 

eligible to be part of the pocket is consistently defined for all frames being studied. In other words, post-

processing requires that the inclusion and seed regions be identically defined for all of the trajectories 

being analyzed. The provided workflows take care of this step automatically, by taking as input a user-

defined inclusion and seed region. However, when running POVME analysis separately on multiple 

trajectories with the intent of combining their results in post-analysis, it is essential that their inclusion 

and seed regions be the same.  

Post-processing analysis will not work if the pockets being analyzed have different boundaries. 

The outer boundary of the pocket is defined both by the edge of the inclusion region, and if the 

“ConvexHullExclusion” keyword is used, by the convex hull of the protein. When comparing pocket 

volumes within the same trajectory, users should ensure that the boundary of the pocket is consistently 

defined. Recalculating a different convex hull for each frame of a trajectory adds noise to quantitative 

analysis, as the convex hull definition is sensitive to movements of surface residues. Because many 

pockets widen as they approach the surface of the protein, small changes in how the outer boundary is 

defined can lead to large numbers of points being added to or removed from the pocket. During 

quantitative analysis, this large number of variable points will outweigh the smaller changes 

corresponding to pocket dynamics and shape change inside the cavity.  

To instruct POVME to use a single definition of this outer boundary, users should ensure that the 

ConvexHullExclusion option is set to a keyword other than “each”. The default keyword, “none”, is 

recommended. While this choice may lead to a large number of points being defined outside of the 

pocket, POVME’s clustering and PCA scripts focus on differences in pocket shape, thus points that lie 

outside of the protein and are never removed from the pocket do not affect the results of the analysis. 

On the inner barrier of a pocket, users should be mindful of another potential source of noise. 

When a pocket of interest is near another cavity, the protein atoms will sometimes rearrange during MD 

to join the two. When this joining occurs, the pocket region defined by POVME can become much larger, 



 30

thereby adding noise to post-processing. Two options to avoid this situation are: 1) If a ligand is present, 

use the “DefinePocketByLigand” keyword to define the pocket as the area immediately around the ligand, 

or 2) carefully define inclusion and seed regions so that the unwanted cavity is not included in the 

analysis. 

 

 

 

 

 
Figure 2.5 : All HSP90 ligands simulated in this work 
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Figure 2.6 : POVME cluster assignments for all frames from HSP90 trajectories.  
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Figure 2.7 : “Kinetic network” depiction of the 20 HSP90 trajectories.  

Black numbers indicate cluster index (0-14). Red circles indicate the number of frames assigned to each 
cluster. Edges indicate the number of transitions observed between clusters in the MD trajectories (light 
blue dashes = 1 or 2, dark blue dashes = 3 to 5, solid black line = greater than 5). Clusters are arranged in 
2D according to a force-based layout, in which each pair of clusters is pulled together by a force 
proportional to the number of observed transitions.  
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Figure 2.8 : Explained variance plot of Principal Component Analysis of HSP90 trajectories. 
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Figure 2.9 : Evenly-sampled HSP90 frames are overlaid on Principal Components 1 and 2.  

Each simulation is indicated by a figure of its bound ligand with an arrow pointing to the centroid of its 
frames in PC space.  
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Figure 2.10 : Evenly-sampled HSP90 frames are overlaid on Principal Components 1 and 2, shown as a 
contour plot. 
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Figure 2.11 : Evenly-sampled HSP90 frames are overlaid on Principal Components 3 and 4.  

Each simulation is indicated by a figure of its bound ligand with an arrow pointing to the centroid of its 
frames in PC space.  
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Figure 2.12 : Evenly-sampled HSP90 frames are overlaid on Principal Components 3 and 4, shown as a 
contour plot.  

 
 
 

$SCHRODINGER/utilities/prepwizard -keepfarwat -disulfides -fillsidechains -fillloops -mse -

metal_binding -samplewater -propka_pH 7 -label_pkas $PDBID $PDBID_prepped.pdb -

reference_pdbid 1BYQ -LOCAL  
An example prep command using Schrodinger Protein Prep Wizard 
 

AMBER Input Scripts 

S01-Min01-Proton.in 
Minimization 01 - Proton 
 &cntrl 
   imin = 1,            ! Minimization (Yes) 
   ntmin = 1,           ! Minimization Method (Steepest descent/Conjugate gradient) 
   maxcyc = 2000,       ! Maximum number of minimization cycles (2000 cycles) 
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   ncyc = 1000,         ! Cycle of switch from steepest descent to conjugate gradient (at 

cycle 1000) 
   cut = 10,            ! Non-bonding Cut-off (10 A) 
   ntb = 1,             ! Periodic Conditions (Yes) 
   ntr = 1,             ! Harmonic constraints in Cartesian space (Yes) 
   restraint_wt = 10.0  ! Positional restraints weight ( 10 kcal/mol-A^2) 
   restraintmask = "!@H=",  ! Restrained atoms (Not protons) 
 / 
 
 

S02-Min02-Solvent.in 
Minimization 02 - Solvent 
 &cntrl 
   imin = 1,                ! Minimization (Yes) 
   ntmin = 1,               ! Minimization Method (Steepest descent/Conjugate gradient) 
   maxcyc = 2000,           ! Maximum number of minimization cycles (2000 cycles) 
   ncyc = 1000,             ! Cycle of switch from steepest descent to conjugate gradient (at 

cycle 1000) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntb = 1,                 ! Periodic Conditions (Yes) 
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 10.0,     ! Positional restraints weight ( 10 kcal/mol-A^2) 
   restraintmask = ":1-213 & :adp",      ! Restrained atoms (protein and ligand) 
 / 
 

S03-Min03-Focused.in 
Minimization 03 - Focused 
 &cntrl 
   imin = 1,                ! Minimization (Yes) 
   ntmin = 1,               ! Minimization Method (Steepest descent/Conjugate gradient) 
   maxcyc = 2000,           ! Maximum number of minimization cycles (2000 cycles) 
   ncyc = 1000,             ! Cycle of switch from steepest descent to conjugate gradient (at 

cycle 1000) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntb = 1,                 ! Periodic Conditions (Yes) 
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 10.0,     ! Positional restraints weight ( 10 kcal/mol-A^2) 
   restraintmask = ":1-213",       ! Restrained atoms (protein) 
 / 
 
 

S04-Min04-Sidechains.in 
Minimization 04 - Sidechains and Solvent 
 &cntrl 
   imin = 1,                ! Minimization (Yes) 
   ntmin = 1,               ! Minimization Method (Steepest descent/Conjugate gradient) 
   maxcyc = 2000,           ! Maximum number of minimization cycles (2000 cycles) 
   ncyc = 1000,             ! Cycle of switch from steepest descent to conjugate gradient (at 

cycle 1000) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntb = 1,                 ! Periodic Conditions (Yes) 
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 10.0,     ! Positional restraints weight ( 10 kcal/mol-A^2) 
   restraintmask = ":1-213@CA,N,C,O",     ! Restrained atoms (protein backbone) 
 / 
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S05-Min05-All.in 
Minimization 05 - All Atoms 
 &cntrl 
   imin = 1,                ! Minimization (Yes) 
   ntmin = 1,               ! Minimization Method (Steepest descent/Conjugate gradient) 
   maxcyc = 5000,           ! Maximum number of minimization cycles (5000 cycles) 
   ncyc = 1000,             ! Cycle of switch from steepest descent to conjugate gradient (at 

cycle 1000) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntb = 1,                 ! Periodic Conditions (Yes) 
 / 
 
 
 

S06-Eql01-Heating-NTV.in 
Restrained Heating 250 ps NVT MD  
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 0,               ! Restart the Simulation? (No) 
   ntx = 1,                 ! Read in only initial coordinates (ASCII) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb = 1,                 ! PBC (Constant Volume) 
   ntt = 3,                 ! Temperature scaling (Langevin dynamics) 
   gamma_ln = 1.0,          ! Collision frequency (1 ps^-1) 
   tempi = 0.0,             ! Initial temperature (O K, velocities assigned according to 
forces)    
   temp0 = 100.0,           ! Reference temperature (100 K) 
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 5.0,      ! Positional restraints weight ( 5 kcal/mol-A^2) 
   restraintmask = ":1-213@CA,N,C,O",      ! Restrained atoms (protein backbone) 
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 25000,          ! Simulation length (25000 steps or 50 ps) 
   ntpr = 1000,             ! Energy save interval (every 1000 steps or 2 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps or 10 ps) 
   ntwr = 25000,            ! Restart file only at end of run. 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
   nmropt = 1,              ! Turn on NMR restraints - so we can control temp increase (see 

below). 
 / 
 &wt type = 'TEMP0',        ! Variable Conditions Type (Temp)  
   istep1 = 0,              ! Start Change Step (0)  
   istep2 = 25000,          ! Last Change Step (25000 steps or 50 ps) 
   imult = 0                ! Interplation (Linear (Default)) 
   value1 = 0.0,            ! Start State (0 K) 
   value2 = 100.0 /         ! End State (100 K) 
 &wt type='END' / 
 

S07-Eql02-Heating-NTP.in 
Restrained Heating 250 ps NVT MD  
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 1,               ! Restart the Simulation? (Yes) 
   ntx = 5,                 ! Read coordinates, velocities, and box 
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   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb = 2,                 ! PBC (Constant Pressure) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   barostat = 1,            ! Berendsen Barostat used for equilibration  
   pres0 = 1.0,             ! Reference Pressure (1 bar) 
   taup = 5.0,              ! Pressure relaxation time (5 ps) 
   ntt = 3,                 ! Temperature scaling (Langevin dynamics) 
   gamma_ln = 1.0,          ! Collision frequency (1 ps^-1) 
   tempi = 100.0,           ! Initial temperature  
   temp0 = 300.0,           ! Reference temperature (300 K) 
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 5.0,      ! Positional restraints weight ( 5 kcal/mol-A^2) 
   restraintmask = ":1-213@CA,N,C,O",     ! Restrained atoms (protein backbone) 
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 100000,         ! Simulation length (100000 steps or 200 ps) 
   ntpr = 1000,             ! Energy save interval (every 1000 steps or 2 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps or 10 ps) 
   ntwr = 100000,           ! Restart file only at end of run. 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
   nmropt = 1,              ! Turn on NMR restraints - so we can control temp increase (see 

below). 
 / 
 &wt type = 'TEMP0',        ! Variable Conditions Type (Temp)  
   istep1 = 0,              ! Start Change Step (0)  
   istep2 = 75000,          ! Last Change Step (75000 steps or 150 ps) 
   imult = 0                ! Interplation (Linear (Default)) 
   value1 = 100.0,          ! Start State (100 K) 
   value2 = 300.0 /         ! End State (300 K) 
 &wt type='END' / 
 

S08-Eql03-EqlOnlyStage01.in 
Restrained Equilibration Stage 1 250 ps NPT MD 
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 1,               ! Restart the Simulation? (Yes) 
   ntx = 5,                 ! Read coordinates, velocities, and box 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb = 2,                 ! PBC (Constant Pressure) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   barostat = 1,            ! Berendsen Barostat used for equilibration  
   pres0 = 1.0,             ! Reference Pressure (1 bar) 
   taup = 5.0,              ! Pressure relaxation time (2 ps) 
   ntt = 3,                 ! Temperature scaling (Langevin thermostat) - Gives real dynamics 
   gamma_ln = 5.0,          ! Collision frequency (5 ps^-1) 
   temp0 = 300.0,           ! Reference temperature (300 K)  
   ntr = 1,                 ! Harmonic constraints in Cartesian space (On) 
   restraint_wt = 5.0,      ! Positional restraints weight ( 5 kcal/mol-A^2) 
   restraintmask = ":1-213@CA,N,C,O",     ! Restrained atoms (protein backbone)  
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 125000,         ! Simulation length (125000 steps or 250 ps) 
   ntpr = 1000,             ! Energy save interval (every 1000 steps of 2 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps of 10 ps) 
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   ntwr = 125000,           ! Restart file only at end of run. 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
 / 
 

S09-Eql04-EqlOnlyStage02.in 
Unrestrained Equilibration Stage 2 500 ps NPT MD 
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 1,               ! Restart the Simulation? (Yes) 
   ntx = 5,                 ! Read coordinates, velocities, and box 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb = 2,                 ! PBC (Constant Pressure) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   barostat = 2,            ! Monte Carlo Barostat - Optimal for GPU runs 
   mcbarint = 1000,         ! Steps between volume changes for the barostat 
   pres0 = 1.0,             ! Reference Pressure (1 bar) 
   taup = 2.0,              ! Pressure relaxation time (2 ps) 
   ntt = 3,                 ! Temperature scaling (Langevin thermostat) - Gives real dynamics 
   gamma_ln = 5.0,          ! Collision frequency (5 ps^-1) 
   temp0 = 300.0,           ! Reference temperature (300 K)  
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 250000,         ! Simulation length (250000 steps or 250 ps) 
   ntpr = 5000,             ! Energy save interval (every 5000 steps of 10 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps of 10 ps) 
   ntwr = 250000,           ! Restart file only at end of run. 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
 / 
 

S10-Pro01-MD_10ns.in 
10 ns NTP MD 
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 1,               ! Restart the Simulation? (Yes) 
   ntx = 5,                 ! Read coordinates, velocities (ASCII) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb=2,                   ! PBC (Constant Pressure) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   barostat = 2,            ! Monte Carlo Barostat - Optimal for GPU runs 
   mcbarint = 1000,         ! Steps between volume changes for the barostat 
   pres0 = 1.0,             ! Reference Pressure (1 bar) 
   taup = 2.0,              ! Pressure relaxation time (2 ps) 
   ntt = 3,                 ! Temperature scaling (Langevin thermostat) - Gives real dynamics 
   gamma_ln = 5.0,          ! Collision frequency (5 ps^-1) 
   temp0 = 300.0,           ! Reference temperature (300 K)  
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 5000000,        ! Simulation length (5000000 steps or 10 ns) 
   ntpr = 5000,             ! Energy save interval (every 5000 steps or 10 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps or 10 ps)  
   ntwr = 5000,             ! Restart file save interval (every 5000 steps or 10 ps) 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
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   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
 / 
 

S10-Pro01-MD_50ns.in 
50 ns NTP MD 
 &cntrl 
   ig = -1,                 ! Pseudo-random number generator (random seed based on time) 
   irest = 1,               ! Restart the Simulation? (Yes) 
   ntx = 5,                 ! Read coordinates, velocities (ASCII) 
   cut = 10,                ! Non-bonding Cut-off (10 A) 
   ntc = 2,                 ! SHAKE bond length constraints (constrain bonds with H) 
   ntf = 2,                 ! SHAKE force evaluation (omit bonds with H) 
                            ! Note: SHAKE set for TIP-type waters (e.g. TIP3P) 
   ntb=2,                   ! PBC (Constant Pressure) 
   ntp = 1,                 ! Constant Pressure MD (Isotropic position scaling) 
   barostat = 2,            ! Monte Carlo Barostat - Optimal for GPU runs 
   mcbarint = 1000,         ! Steps between volume changes for the barostat 
   pres0 = 1.0,             ! Reference Pressure (1 bar) 
   taup = 2.0,              ! Pressure relaxation time (2 ps) 
   ntt = 3,                 ! Temperature scaling (Langevin thermostat) - Gives real dynamics 
   gamma_ln = 5.0,          ! Collision frequency (5 ps^-1) 
   temp0 = 300.0,           ! Reference temperature (300 K)  
   dt = 0.002,              ! Simulation time-step (0.002 ps or 2 fs)  
   nstlim = 25000000,       ! Simulation length (25000000 steps or 50 ns) 
   ntpr = 5000,             ! Energy save interval (every 5000 steps or 10 ps) 
   ntwx = 5000,             ! Coordinate/trajectory save interval (every 5000 steps or 10 ps)  
   ntwr = 5000,             ! Restart file save interval (every 5000 steps or 10 ps) 
   iwrap = 1,               ! Coordinates to be "wrapped" into primary box (on) 
   ioutfm = 1,              ! Trajectory file format (Binary NetCDF) 
 / 
 
Scripts used for MD simulation 
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Chapter 3 : Architecture and Dynamics of the ssDNA complex of wild-type APOBEC3B C-

terminal domain 

 
Jeffrey Wagner, Ozlem Demir, Rommie Amaro 

 

Introduction 

The APOBEC3 (A3) family of cytidine deaminases is a recently-discovered endogenous 

source of mutation in cancer81. Recent studies have linked cancer progression and recurrence to 

A3 expression levels. Many A3 protein have been found to show substrate sequence preferences, 

and analysis of some cancer genomes has shown an enrichment of A3 mutation signatures. 

Recently, efforts have begun to discover therapies for DNA damage caused by the A3 proteins 

that are responsible for the family’s role in cancer. Evidence suggests that APOBEC3B (A3B) is 

the most important A3 family member in driving tumor progression. 

Each A3 protein consists of either one or two deaminase domains. These domains share a 

common fold and a minimum sequence identity of 30%. Despite this high homology, in A3 

proteins with two deaminase domains previous work has found that only the C-terminal domain 

(ctd) is catalytically active. Only single A3 domains have been solved through X-ray 

crystallography. Therefore, it is not known how the dual-domain A3 domains interface, or how 

the catalytically inactive N-terminal domain (ntd) affects protein function. 

Interestingly, the substrate preferences of A3 proteins can be exchanged through the 

transfer of certain loops82. This discovery established the role of loops 1, 3, and 7 in the process 

of DNA substrate recognition. Initial crystal structures of A3 deaminase domains show these 

loops being adjacent to the binding site. Subsequent crystallization of A3 proteins in complex 

with optimized substrate sequences showed residues on loops 1 and 7 binding to oligonucleotide 
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substrates. Previous experimental studies have explored the binding of cytidine deaminases to 

chemically modified oligonucleotides, such as those with a ribose-cytidine (rC) base at the target 

site, as well as other modifications to the oligonucleotide backbone and base83. These studies 

have concluded that A3B prefers DNA substrates, but can bind and catalyze other substrates with 

significantly lower activity. DNA and RNA differ in structure by one oxygen (should be 

hydroxyl group), but this difference has the effect of changing the preference for the backbone 

sugar ring pucker. It is suspected that this is a contributing factor for A3 proteins’ preference for 

DNA over RNA, but the exact mechanism is not known. 

One powerful technique to understand the biophysics of proteins and biological 

interactions is molecular dynamics (MD) computer simulations. These simulations model 

proteins starting in an initial configuration, and undergoing motion according to the laws of 

physics at physiologic temperature. With increases in computing power and the scope of 

computable questions, MD simulations have begun to find valuable synergies with traditional 

biochemistry, and can explain mechanisms underlying observations or propose new routes of 

experimentation. With recent developments, MD simulations have become capable of simulating 

not just proteins, but also numerous solvents, ions, nucleotides, and have general rules to 

parameterize small molecules. 

In this work, we use molecular dynamics simulations to explore A3Bctd conformational 

dynamics and oligonucleotide recognition. We find that an analysis of these simulations reveals 

the importance of base-specific hydrogen bonds, pocket shape, and backbone sugar 

conformational preference in A3B substrate recognition. This correlation suggests that further 

observations from these models can be used to accelerate study of A3 proteins, and may 

generalize to other protein-oligonucleotide. Our findings regarding the biophysics of A3B 
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advances our understanding of a major driver of mutation in cancer, and does so in a way that is 

directly applicable to drug design.  

Methods 

Simulations of A3B were parameterized using the AMBER FF14SB forcefield for 

protein atoms, and FF99BSC0 and FF99BSC0_chi0L3 force field for DNA and RNA atom, 

respectively. The starting coordinates for oligonucleotide-bound simulations were based on PDB 

entry 5TD5, and the apo simulation was started with coordinates taken from 5CQI and a separate 

one from 5TD5 by deleting the nucleotides.  In each system, mutations were reverted to wild-

type and missing residues were modeled using the Schrodinger PRIME software suite. 

Simulations were embedded in a TIP3P water box generated by LEaP from the AmberTools 

suite with a buffer distance of 10 A, with Na and Cl ions added to neutralize charge and attain a 

solvent concentration of 0.2M. Solvent in the crystal structure other than waters were removed. 

Crystal waters were left in place, and protonation states and hydrogen coordinates were assigned 

by VMD PropKa. The catalytic zinc ion and the zinc-chelating residues in the active site were 

modeled according to the Cationic Dummy Atom Model 84. The catalytic Zinc was also modeled 

bound to a OH- ion, in order to model the pre-catalysis substrate recognition dynamics of A3B.  

Four A3Bctd systems were simulated: A DNA-bound system based on coordinates from 

5TD5 with nucleotide sequence TTCATG, a hybrid oligonucleotide-bound system based on 

coordinates from 5TD5 with nucleotide sequence TTrCATG (where rC indicates a 

ribonucleotide cytidine), an apo simulation based on coordinates from 5TD5, and an apo 

simulation based on coordinates from 5CQI. Each system underwent minimization in its 

forcefield, followed by gradual heating and equilibration with decreasing restraints. AMBER 

input scripts for each step are provided in the Supplemental Materials. Each apo system was 
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simulated in triplicate and each oligonucleotide-bound system was simulated quintuplicate, 

differing in temperature initialization seed, and each replicate underwent 1 �� of unrestrained 

MD simulation in an NPT ensemble at 310 K. 

Analysis of hydrogen bonds was performed using the MDTraj Python package85, and 

visualized using Python’s Matplotlib86. The existence of hydrogen bonds was defined by Baker-

Hubbard criteria87. The hydrogen bond analysis was performed at increments of X ns in the 

trajectories. Only hydrogen bonds that appear in at least 15% of simulation snapshots are shown. 

Pocket volumes were studied using POVME3.021-23, and visualized using Visual 

Molecular Dynamics56. The pocket region was defined by a set of inclusion spheres which cover 

the observed DNA-binding region. This region is defined as running between loops 1 and 7, 

down into the zinc-containing active site pocket, and out between loops 1 and 3. Because 

quantitative comparison of the pockets was performed, the POVME convex hull exclusion 

option was not used, per suggested POVME3.0 best practices23. All trajectories were aligned by 

their backbone atoms to the starting structure of the DNA-bound A3B MD simulation (after 

equilibration). 
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Figure 3.1: Inclusion Regions used for POVME analysis 

Visualization of A3 dimer interfaces was performed using open-source PyMOL. The 

structures considered in this analysis were 5CQD88, 5CQK88, 5CQI88, 5CQH88, 4XXO89, 2M6590, 

3VM891, 3VOW91, 3WUS92, 4J4J93, 4IOU94, 5HX495, 5HX595, 2MZZ96, 5K8197, 5K8297, 

5K8397, 2JYW98, 3E1U99, 2KBO100, 2KEM101, 3IQS99, 3IR2102, 3V4K103, 3V4J103, 4ROV104, and 

4ROW104. Interface surface area was calculated using the EPPIC webserver105. Interfaces were 

filtered to only show those with more than 500 A^2 of surface area106. Structures which have a 

greater number of monomers in their asymmetric unit can show the same interface multiple 

times, and this is counteracted by only labeling each interface once. 

Results and Discussion 
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Figure 3.2 : Binding site-adjacent residues.  

 

Differences between dC and rC target nucleotide simulations.  

The simulations containing the ribose-C (rC) nucleotide at the target position displayed 

major differences from those containing the deoxyribose-C (dC). In the dC simulations, both the 

protein residues of the binding site and the -1, +1 and target cytidine nucleotides remained in the 

same position (RMSD < 2.2) throughout the simulations. However, in the rC simulations, the 

RMSDs of the same residues were much higher, as shown in Figure 3.1. This change indicates a 

shift in hybrid DNA binding pose, characterized by a binding site rearrangement. The 
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simulations show that one of the the driving events in this shift was a change in the sugar pucker 

of the rC nucleotide (Figure 3.3). 
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Figure 3.3 : RMSD of target C in A3B-DNA and A3B-hybrid DNA simulations(left). Sugar pucker of the 
target C, measured in both A3B-dC and A3B-rC simulations. In rC replicate 2, the RNA transitions from 
a  C2’ endo to a C3’ endo conformation(right) 
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The rC shift also manifests as a change in binding site shape. Notably, the change in 

sugar pucker shifts the hybrid DNA away from its starting position and toward loop 1 and away 

from loop 3. The regions of pocket shape which are enriched in the hybrid DNA simulation are 

shown in red in Figure 3.4.  

 

Figure 3.4 : Major regions of pocket shape difference observed between pure DNA (green) and hybrid 
DNA (red) simulations. 
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The shifted conformation can also be characterized by movements in the binding pocket 

residues, and changes in the network of hydrogen bonds made between the protein and target rC. 

Binding pocket residues which moved are shown in Figure 3.4.  

After the shift, the 2’ O of the target rC forms a hydrogen bond with Thr214’s sidechain. 

In non-shifted simulations, the Thr214 sidechain maintains a hydrogen bond to the 4’ O of the 

target rC. This shift correlates with a breaking of all major protein-base hydrogen bonds in the 

other nucleotides in the chain, except that between Ser282 and the hydrolyzed amine on the rC. 

In all rC simulations, the initial hydrogen bond between the target C’s H41 and a Zinc-chelating 

residue, Glu255, is broken partway through each simulation. A table of all common hydrogen 

bonds between base and protein atoms is shown in Figure 3.5, and a complete bitmap is provided 

in the Supplemental Information. 

Experiments on A3A have shown that Asp131, homologous to A3B’s Asp314, confers 

the preference for T at the -1 position of the oligonucleotide107. Both the crystal structures of 

A3B and our simulations show hydrogen bonds consistently formed between the H3 atom of the 

T -1 base. Interestingly, the hybrid simulation post-ring flip has broken this hydrogen bond, and 

replaced it with Asp316. In this portion of the simulation, the -1 T of the oligonucleotide makes a 

base hydrogen bond to the sidechain oxygen of Asp316. Asp316 has been shown to be essential 

for A3B antiviral function, and is therefore likely involved in DNA binding108. Given that this 

shift only appears in the hybrid DNA simulation, it is possible that the perturbation caused by the 

target C’s DNA-to-RNA mutation aided the simulation in leaving its initial energy well and 

exploring intermediate binding poses. It is also possible that Asp316 contributes by an indirect 

electrostatic mechanism when it is not directly involved in forming hydrogen bonds for substrate 

recognition. 
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While hydrogen bonding can therefore offer an explanation for the target C and T -1 base 

specificity, the simulations do not reveal specific sidechain-base hydrogen bonding for other 

nucleotides. The data implies, however, that shape-based recognition may take place. In our 

simulations, the positively charged sidechains of loop 1 residues contact the negatively charged 

phosphate backbone of the oligonucleotide. These positively charged loop 1 residues are known 

to be key for activity in A3A and A3Gctd, as A3A H29 and A3G H216(homologous to A3B 

R212) could be mutated to Arg while maintaining residual activity109, 110. However, when A3G 

H216 is mutated to Ala, it loses activity98, 110. While these backbone contacts appear to be 

charge-driven and are not specific to one nucleotide sequence, the base atoms of the nucleotide 

make consistent hydrogen bonds with the loop 1 backbone, in what may be a shape-driven 

recognition process.  
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Hydrogen Bond TTCATG sim TTrCATG pre ring flip TTrCATG post ring flip 

A +1 N3 - Arg212 sidechain guanidinium 21% 17% 42% 

Target C O2’ - Thr214 OH N/A 3% 94% 

Target C O2’H - His253 NE2 N/A 18% 0% 

Target C O3’ - Asn240 HD21 22% 42% 0% 

Target C O4’ - Thr214 OH 89% 74% 0% 

Target C O2 - Ala254 backbone NH 95% 76% 0% 

Target C H42 - Ser282 backbone C=O 96% 85% 93% 

Target C H41 - Glu255 sidechain O 85% 35% 0% 

T -1 H3 - Asp314 sidechain O 94% 86% 0% 

T -1 H3 - Asp316 sidechain O 0% 0% 96% 

T -1 O2 - Tyr 315 backbone NH 51% 59% 0% 

Figure 3.5 : Protein-nucleobase hydrogen bonds which differ significantly between DNA and DNA-rC 
simulations.  

 

After the shift of the hybrid DNA, the target cytosine is too far from the catalytic Zinc to 

perform deamination, and the catalytic residues are distorted from their crystal geometry. This 

new binding mode may be an intermediate conformation in normal DNA binding, however it 

was only observed in the rC simulation. Further simulation of all systems might eventually show 

the same shift, or complete oligonucleotide dissociation. 

The oligonucleotide interaction surface for pure DNA and DNA-rC simulations are 

shown in Figure 3.6. Notably, the hybrid oligonucleotide explores more of the protein surface 

than the pure DNA oligonucleotide. While the target rC in the hybrid simulation remains flipped 

toward the protein, the surrounding nucleotides deviate from their positions in the pure DNA 

simulation. In the DNA-rC simulation, the flexible loop 3 maintains contact with the  +2 and +3 
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residues of the oligonucleotide, whereas the -1 and 2 residues are no longer tightly held in the 

binding cleft.  

 

 

Figure 3.6 : Oligonucleotide interaction surface differences between pure DNA (left) and hybrid 
DNA/RNA (right) simulations.  

The frequency of contact with the oligonucleotide atoms is shown for each protein atom on a color scale 
from blue (no contact) to red (frequent contact). The hybrid DNA/RNA simulation shows a less stable 
binding pose, in which a larger binding surface is explored, but some core binding residues are not 
consistently contacted.  

Shifting patterns of loop-loop contacts  

Figure 3.6 shows a summary of loop-loop contacts between the regions of A3B 

responsible for substrate recognition. The simulations show different patterns of loop-loop 

contacts, which may offer clues about substrate recognition mechanisms. Loops 1, 3, and 7 have 

been identified as being primarily responsible for substrate recognition, and our data indicate that 

their interaction patterns are heavily affected by the presence of nucleotides.  

The apo simulations show extensive loop 1 - loop 3 interactions, specifically Arg212 and 

Gln213 to Asn240, Glu231, Ala242, and Lys243. These contacts are made less frequently in the 
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DNA-bound and hybrid post-ring flip simulations. This is to be expected, as the substrate passes 

directly between loops 1 and 3. The fact that the non-ring flipped rC simulations show an 

intermediate extent of loop1-3 contacts might be indicative of the poor fit of the modified 

substrate. 

The apo simulations also show the most loop 1 - loop 7 contacts. This observation 

matches expectations, as the substrate oligonucleotide passes directly between these loops. 

Arg311 in loop 7 makes contact with most residues in the first half of loop 1, from Asn203 to 

Arg210. The apo simulation is the only in which Tyr313 contacts loop 1, primarily via Arg211, 

but also sometimes through the flanking Arg210 and 212.  Both the apo and rC post-ring flip 

simulations show frequent contacts between Tyr315 on loop 7 and Pro206 to Arg210 on loop 1. 

Generally, the large number and frequency of contacts in the apo and hybrid post-ring flip 

simulations indicate a more closed binding site, again implying that the post-ring flip simulation 

may have captured an intermediate-bound state of the complex. 

Both the DNA and hybrid DNA-bound simulations show significantly fewer loop 

contacts, commensurate with their high number of loop-substrate interactions.  
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Figure 3.7 : Shifting patterns of loop-loop contacts in A3B simulations.  

Blue indicates infrequent contacts, and dark red indicates contacts 25% of the time or more. Contacts are 
defined as a closest heavy atom distance of 4 Angstroms. 
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Analysis of crystal structures to discover oligomerization interfaces of A3 domains 

Previous work has shown that interaction between A3 domains is an important 

phenomenon. Evidence for this interaction has been seen both in the activity differences of dual-

domain APOBEC3s when expressed as full-length versus as the catalytic domain alone, and in 

the in-vitro oligomerization of wild type A3 domains which also frequently leads to activity 

differences. While no full-length A3 crystal structures have yet been solved, the packing of 

single-domain structures may offer hints to the basis of these observed oligomerizations. Figure 

3.8 shows the frequently-observed crystal packing arrangements of A3 domains, which gives rise 

to two clusters of interfaces.  

 

 

Figure 3.8 : Analysis of crystal structures to discover A3 domain oligomerization interface.  

A3 crystal structures were analyzed to find crystal interfaces with at least 500 A2 surface area. Each 
interface is shown according to the position of the other domain as a cylinder, with the yellow end at the 
center of mass of the domain and the blue end indicating the position of the catalytic Zn. The analysis 
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shows clusters of interfaces at the N and C terminals of the reference domain (shown as blue and red 
cartoon/highlighting, respectively). 
 

Comparative structural biology of APOBEC enzymes 

Due to the high degree of homology between APOBEC3 enzymes, we expect that 

structural and functional insights from one family member may have implications for others. To 

this end, we have developed a Python package to explore structural and biochemical data within 

the APOBEC3 family. This package contains all APOBEC3 domains, pre-aligned to each other. 

It also enables annotation of structures, which can be visualized in Pymol as an overlay on 

crystal structures or homology models. This package not only shows annotations on the structure 

that they belong to, but can also identify the homologous residues that the annotations apply to 

on other APOBEC3 domains Figure 3.9 shows an example of two such aligned APOBEC3 

domains and with an annotation of Asp314 in A3B and the homologous residue in A3G. 

 

Figure 3.9 : Structural and functional annotation of APOBEC3B (green) and APOBEC3G (purple), with 
the important A3B substrate recognition residue Asp314 and its homologue in A3G annotated. 
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Conclusions 

APOBEC3B is a recently-discovered source of mutation in cancer, and understanding the 

underlying biophysics of its activity has significant medical and scientific value. In this work, we 

revert crystal structures obtained using mutagenesis to the wild type sequence, and investigate 

the resulting protein dynamics using MD simulations. These simulations provide insight into 

potential mechanisms of substrate recognition and binding. Further, they show significant 

differences resulting from the presence of a substrate oligonucleotide. 

Given the strong homology between A3 domains, it is likely that the understanding of 

one A3 protein can contribute knowledge to the study of others. To this end, we provide an 

analysis of crystal packing interfaces that might be useful toward to investigation of 

oligomerization and A3 domain interaction. We also provide a tool to easily compare A3 domain 

structures and the biochemistry of their sequence regions.  
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Additional Information 

 

Figure 3.10 : Full bitmaps  of hydrogen bonds (threshold = 15% of frames) for A3A and A3B simulations 
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Abstract 

Allosteric drug development holds promise for delivering medicines that are more 

selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric 

binding sites and lead compounds has been mostly serendipitous, through high-throughput 

screening. Over the last decade, structural data has become readily available for larger protein 

systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common 

allosteric drug targets. In parallel, improved simulation methods now provide better atomistic 

understanding of the protein dynamics and cooperative motions that are critical to allosteric 

mechanisms. As a result of these advances, the field of predictive allosteric drug development is 

now on the cusp of a new era of rational structure-based computational methods. Here, we 

review algorithms that predict allosteric sites based on sequence data and molecular dynamics 

simulations, describe tools that assess the druggability of these pockets, and discuss how Markov 

state models and topology analyses provide insight into the relationship between protein 

dynamics and allosteric drug binding. In each section, we first provide an overview of the 

various method classes before describing relevant algorithms and software packages. 
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Review Motivation and Organization 

To date, most allosteric drugs have been discovered through high-throughput screening. 

But growing databases of biomolecular structure and sequence data, in conjunction with 

increases in computing power and improvements in predictive algorithms, are enabling the 

rational de novo design of allosteric drugs. Given the large number of published algorithms for 

predicting allosteric mechanisms, it can be difficult to select the most appropriate method for a 

given target. This review serves as an introduction for those who wish to use computational 

techniques to develop allosteric drugs. 

After a broad overview of allosteric drug discovery, this review is divided into three 

sections. First, we discuss bioinformatics and molecular-dynamics methods to identify 

allosterically important sequence positions. Second, we summarize the computational methods to 

predict druggable pockets at these functionally relevant sites. Finally, we describe how Markov 

state models and topological analyses can tie these single sequence sites to global protein 

function and dynamics. 

Introduction 

Allosteric drugs offer a number of advantages that make them desirable as drug 

candidates. Allosteric effectors, by definition, alter protein activity by binding to a site distinct 

from the orthosteric pocket. Because allosteric sites are typically less evolutionarily conserved, 

allosteric drugs can be highly selective, even among other members of the same protein 

family.111-118 In some cases, allosteric sites are so unique among proteins that an effector is said 

to have “absolute subtype specificity."112, 113, 119, 120 
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Allosteric modulators may  have spatiotemporal specificity. For example, they can 

be  active only in the presence of the endogenous ligand, thus restricting their effect  to certain 

tissues at certain times,112-114, 119, 121 which may slow desensitization.120, 122 

Allosteric effectors are generally saturable, meaning that they have a maximal effect that 

does not necessarily correspond to complete inhibition or activation.112, 114-116, 118, 120, 121 This 

saturability enables safer dosing. For example, if the maximal effect is an 80% reduction in 

signaling, overdosing will not fully eliminate an essential signal.111, 112, 114 

Other advantages can include noncompetitive inhibition (ie drug activity cannot 

be ”overwhelmed" by high concentrations of the endogenous ligand) and pathway- or substrate-

specific modulation, which reduces unwanted activity by specifically targeting a single protein 

function.112, 114, 120 For example, if a protein is involved in multiple pathways, an allosteric 

effector may impact the activity of each pathway differently depending on the systems-biology 

context. If a protein acts on multiple substrates, the impact on activity may depend on the 

biological context. 

Despite many potential advantages of allosteric therapeutics, it has been challenging to 

identify predictive approaches to discovering allosteric drugs. In recent decades, the 

pharmaceutical industry has favored more traditional targets for three primary reasons: the 

relative ease of assay development around orthosteric sites; access to high-throughput, high-

resolution X-ray crystallography; and advances in ligand- and receptor-based computational 

methods to optimize ligand-binding affinity at a substrate-competitive site. This structure-based 

approach is thought to significantly reduce the time and cost of hit-to-lead and lead-to-drug 

development by reducing the number of compounds that need be synthesized.3, 123 Work by 
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Doman et al. comparing computer-aided drug discovery (CADD) and high-throughput screening 

(HTS) reported that the two methods had hit rates of 35% and 0.021%, respectively.124 

In contrast, allosteric drugs are uniquely challenging from a rational drug-design 

perspective. Because experimental assays typically measure orthosteric function rather than 

ligand binding at the allosteric site, efficient development of allosteric drugs requires that the 

complex structure-activity relationships (SARs) governing both binding affinity and allosteric 

activity be considered simultaneously.115, 120, 125 Further, allosteric sites are less likely to be 

evolutionarily conserved. While this enables increased subtype specificity, it also increases the 

chances of evolved resistance115, 119, 120 and can complicate testing in evolutionarily distant 

animal models.120 

Additionally, allosteric effectors are particularly susceptible to "mode switching," where 

relatively minor chemical changes can drastically affect ligand efficacy.120, 125 Structurally 

similar drug metabolites, therefore, may have varying and unpredictable distributions and 

allosteric effects.120, 125 Optimizing allosteric modes of action requires methods that are very 

different than those used in orthosteric drug discovery.115 

Multifunctional allosteric proteins are particularly challenging. While drug designers may 

desire to target a single protein function, an allosteric effector may also alter other functions, 

hindering a full mechanistic understanding of the pharmacology.120 Also, the benefits of 

spatiotemporal specificity are lost if the distribution of the endogenous ligand changes with 

progression of the disease state.120 Finally, assessment of the limited number of known allosteric 

pockets indicates that they are generally shallow115 and present flat SAR.120 These structural 

features similarly challenge existing rational drug-discovery paradigms and the general practice 

of developing selective compounds by optimizing affinity. 
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Despite these challenges, allosteric drug discovery  has  gained momentum recently due 

to a number of developments.120 First, several allosteric drugs across a broad range of 

pharmacological target classes have been rationally designed,126-132 encouraging pursuit of 

others, as evidenced by the number of allosteric drugs currently in clinical trials.133 The recent 

elucidation of new membrane protein crystal structures for GPCRs134, 135 and ion channels136, 137 

have assisted in the structure-based  design approach to these successes. Finally, advances in our 

understanding of allosteric mechanisms have supported development of additional rational 

design strategies (see below). 

Our understanding of allosteric mechanisms has advanced considerably since the initial 

conception of Monod, Wyman, and Changeux.138 Modern models of allostery consider 

conformational ensembles.115, 118, 119, 139-152 This revised view supports newly established and 

emerging computational advances that comprehensively map conformational landscapes and 

predict communication between allosteric and orthosteric sites. For example, the physical 

mechanisms of allostery generally alter the entropic and enthalpic factors that define the 

conformational landscape and, therefore, govern protein function.115, 118, 119 The observed 

correlation between allosteric modulation and protein structural dynamics is varied: Major 

conformational rearrangements occur in some cases, as compared with subtle shifts in 

conformational populations in others.114-116, 119, 120, 144, 146, 153 An excellent metaphor for these 

phenomena are Kornev and Taylor’s classification of "domino" versus "violin" models of 

allosteric signal transduction.154. Further, allosteric signals are transmitted through a range of 

structural motifs, from rigid core regions to flexible linkers.155 Allostery may occur through 

essential residues along a single allosteric path156 or through many weak pathways connecting 

one site to another, acting in concert.157 As such, it is not surprising that many of the allostery-
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prediction methods discussed in this review (some of which do not use structure/geometry 

information at all) in practice may identify non-contiguous groups of residues as being 

allosterically linked. Such predictions should not immediately be assumed to be wrong but rather 

may indicate a non-"domino" model of allostery. 

Recent work has also revealed that protein allostery is not merely a transition between 

two discrete protein conformations, as initially thought, but rather a shift in the equilibrium 

populations of many conformations, induced by effector binding.140, 144, 147, 150, 151, 158, 159 It is 

becoming increasingly clear that the kinetics of these transitions define the mechanisms of 

allostery.147, 158 Empowered with these new understandings and advances in molecular 

simulation (in terms of speed of calculation and improved methodologies), the era of allosteric 

drug discovery is now on the cusp of radical advancement. 
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Figure 4.1 Orthosteric and Allosteric Sites.  
The allosteric protein fructose 1,6-bisphosphatase, shown for illustration. Orthosteric and allosteric 
pockets (yellow and red, respectively) are bound to an endogenous ligand and an allosteric effector, 
respectively. Note that the allosteric site is distant from the orthosteric site such that there is no overlap 
between the bound poses of the allosteric and orthosteric ligands. Despite the distance between them, the 
allosteric effector measurably modifies the enzymatic activity at the orthosteric site. Illustration derived 
from PDB IDs 2Y5K160 and 3IFC.161} 

 

Emerging Rational Design Principles 

So-called tried-and-true "design principles" are still being developed. However, a few 

general principles have begun to emerge. For example, many argue that it is insufficient to 

design a ligand that merely binds to an allosteric site; rather, the effector must make contact with 

certain key binding-pocket atoms to have the desired effect.115, 120 These key atoms can often be 

identified through mutagenesis experiments and crystallographic studies of other allosteric 

ligands. 
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A promising set of design principles is encapsulated in the "allo-network" strategy, a 

rational approach that adopts two simultaneous but orthogonal approaches to ligand design.116 

On the protein-structure level, the primary focus is to target a single protein function or an 

interaction with a single partner. On the signaling-pathway level, the ”allo-network" strategy 

suggests targeting less-connected upstream proteins instead of the more direct, though potentially 

highly connected, signaling proteins themselves. When applied to early-stage design, the allo-

network method is predicted to increase the likelihood that a given allosteric effector will 

proceed through the drug-approval process.116, 122, 162 

Examples of recently discovered allosteric drugs 

Several published examples for recently approved allosteric drugs serve to illustrate the 

current state-of-the art for emerging allosteric drug design principles.  They also represent the 

significant advances that have been made to utilize structure-based methods for challenging 

druggable sites such as protein-protein interfaces and for membrane proteins such as ion 

channels. The available details of the discovery and optimization of these compounds do not 

include the methods discussed in this review, however they highlight where these predictive 

techniques could contribute to the allosteric design process. 

In 2011, Gilmartin et al. of GlaxoSmithKline reported the discovery of a 

pharmacokinetically-optimized allosteric MEK inhibitor, GSK1120212.163 The first generation 

inhibitor was discovered by high throughput screening 164 and the subsequent ternary crystal 

structure showed the allosteric pocket to be adjacent to the orthosteric ATP-bound site.165 By 

2012 there were fourteen allosteric MEK1/2 inhibitors in clinical trials,166 because it was 

recognized that an inhibitor developed for this allosteric pocket afforded two very unique 

opportunities to avoid adverse clinical effects; the high doses required to compete against 1mM 
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cellular ATP concentrations and inhibition of closely related ATP-binding sites in other kinases. 

The unique efficacy properties of GSK1120212 highlight both the opportunity and challenge of 

allosteric drug design.  Gilmartin et al. report that although some other MEK allosteric drugs 

demonstrate inhibition of the ERK1/2 pathway in vitro, this has not translated into efficacy in 

patients.163 GSK1120212  has since been approved in the U.S. under the name Trametinib for 

treatment of metastatic melanoma caused by the V600E mutation. 

In 2012, Saalau-Bethell et al. of Astex reported the discovery of allosteric inhibitors for 

the HCV NS3 protein 126. These inhibitors produce an allosteric effect by binding at an 

interdomain interface and stabilizing a pre-existing autoinhibited state of the protein. The 

original discovery of the allosteric site was accomplished using a fragment-based HTS 

technique, followed by optimization using X-ray crystallography and structure-based SAR. The 

authors discuss their experience with a few confounding factors in the allosteric design process, 

namely the need to use the full-length protein in their screening construct to observe the exerted 

allosteric effect, and the subsequent directed evolution study of resistance mutations that could 

occur at the allosteric site.  

Hackos et al. of Genentech published on the discovery of positive allosteric modulators 

(PAMs) for GluN2A-containing NMDA receptors in 2016 167. PAMs are allosteric ligands which 

increase the effect of the endogenous signalling molecule and do not cause a change in its 

absence. The allosteric site in this case was at a protein-protein interface, and was discovered 

using HTS. Subsequent medicinal chemistry efforts then optimized the early hit molecule. The 

authors note that the validation of this allosteric site was reinforced by its similarity to an 

analogous allosteric site in AMPA receptors, but that the NMDA receptor site has elements of 

asymmetry that the AMPA receptor site did not. In comparing two similar compounds, GNE-
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6901 and GNE-8324, the authors make comments that indicate evidence of mode switching or a 

shallow SAR landscape, and they further characterize the details of the allosteric mechanism 

using mutagenesis experiments.  

In summary these examples demonstrate allosteric drug discovery can be successful at 

protein sites often considered to be undruggable. It is apparent that these successes can be further 

built upon through computational methods that allow for rational rather than serendipitous HTS 

discovery of new allosteric binding sites and a deeper understanding of allosteric mechanisms 

that overcome design challenges such as mode switching. 

 

Protein-Sequence Analysis Methods 

Introduction 

Protein-sequence analysis is a useful tool to detect and characterize allosteric pathways 

and pockets. Here, we classify sequence-based methods into two groups: 1) “single site" 

methods, which produce a list of individual functional sequence positions; and 2) “coupled site" 

methods, which produce a list of groups comprised of two or more sequence positions that 

appear to be functionally linked based on their coevolution. 

All sequence-based analysis methods share some challenges. These challenges include 

how to: select and aggregate clean, relevant sequences as input; interpret the output; and 

integrate sequence-analysis results with other forms of data. Determining the biological meaning 

of a strong signal is also problematic. While many analysis methods identify evolutionarily 

important residues, the specific biological role of these residues cannot be inferred without 

additional knowledge. For example, it is difficult to determine, based on sequence alone, whether 
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an evolutionarily significant residue plays an allosteric role, or whether its role is related to 

another essential process (eg substrate binding, maintaining protein structure, etc.).168, 169 Indeed, 

it is likely that a given residue serves multiple purposes simultaneously. 

Input sequence selection and alignment also present challenges. Most techniques require 

many sequences to establish statistical significance. To obtain the required number of sequences, 

researchers often lower the stringency of their search parameters, resulting in alignments that 

contain sequences with lower similarity or incomplete coverage of the original query. While 

some analysis methods manage to detect meaningful coevolution over a wide range of multiple 

sequence alignment (MSA) conservation and noise levels, others are more susceptible to messy 

data.170, 171 For a more complete discussion of these topics and how they affect coevolution 

analysis methods, readers are directed to an excellent recent review by Juan et al.172 

Single-Site Evolutionary Analysis Methods 

By our definition, single-site evolutionary analysis methods return a list of predicted 

functional sequence positions but do not suggest specific linkages between sites. Once a 

researcher has constructed an MSA, the conservation or phylogenetic relevance of each column 

can be used to infer the evolutionary importance of each sequence position. This importance is 

sometimes a hallmark of thermodynamically critical residues that participate in allostery. Though 

single-site methods only return a list of single high-scoring sequence positions, the inner 

workings of some single-site methods are based on the aggregate or correlated behaviors of 

multiple sequence positions (eg to determine baseline residue probabilities within a multiple-

sequence alignment or construct a phylogenetic tree). 

Single-site methods for detecting allostery are advantageous because they lack much of 

the noise often associated with correlation analysis. These analyses are also appealing because of 
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their simplicity: There are usually fewer parameters to set, and the results can be visualized 

directly by highlighting key residues on a 3D protein structure. 

Single-Position Entropy  

Shannon entropy, one of the simplest nontrivial sequence-analysis metrics,173 was used 

widely in early works to identify conserved sequence positions for drug-design or mutagenesis 

experiments.174 Similar in form to thermodynamic entropy from statistical mechanics, Shannon 

entropy measures the population diversity of residues at a single MSA position. It is also central 

to mutual information (MI), a popular coupled-pair metric. The MI of two sequence positions is 

defined as the sum of the individual position entropies, minus the entropy of the positions 

considered jointly. While we not cover the mathematical details of these methods here, interested 

readers are directed to previous articles on these topics.171, 175 

Shannon entropy does not consider amino acid similarity (eg in the Shannon-entropy 

framework, a leucine-to-isoleucine mutation is considered mathematically equivalent to a 

leucine-to-arginine mutation). Other entropy measures, such as the relative Shannon entropy 

(also called the Kullback-Leibler Divergence (KLD)176 and the von Neumann entropy,5, 177 

attempt to overcome this limitation and, as a result, may be more useful in the search for 

allosteric sites. Relative Shannon entropy/KLD accounts for some measure of the protein’s 

chemical environment by considering each mutation with respect to the background amino-acid 

frequencies calculated from the MSA. This analysis may be particularly useful when searching 

for allosteric sites in proteins that reside in membranes or other noncytosolic compartments, 

where background residue probabilities or mutational preferences may be biased due to different 

biochemical contexts. In contrast, von Neumann entropy, a concept borrowed from quantum 

statistical mechanics, is calculated using amino-acid similarity matrices. Identifying an optimal 
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amino-acid similarity metric is nontrivial and may well depend on the nature of the system (eg in 

a well-packed protein, residue size may be a sensitive metric, whereas surface-site comparison 

may require the user to prioritize charge). In a recent publication describing these types of 

entropy, Johansson and Toh explored how the two metrics can be mixed to detect enzyme active 

sites with maximum sensitivity.171 

Zhang et al. constructed a variety of new analysis methods in 2008 by combining 

Shannon or von Neumann entropy, phylogenetic tree structure, and a novel gap-treatment 

approach.177 In benchmarking their method, they compared their results to Evolutionary Trace 

and ConSurf (discussed in greater detail below). Two of their hybrid approaches outperformed 

all other techniques in detecting significant residues across a variety of proteins: the Improved 

Zoom method, which incorporates a tree breakdown of subalignments, and the Physiochemical 

Similarity Zoom method, which extends the Improved Zoom method with von Neumann entropy 

and tree-branch-size normalization. 

Evolutionary Trace.  

Lichtarge, Bourne, and Cohen pioneered the evolutionary trace (ET) method. The approach has 

become quite popular, largely because the algorithm is intuitive and its results are readily 

visualizable.178 ET aligns a number of sequences and constructs a phylogenetic tree, then 

monitors the conservation of sequence positions at major tree branching points. By slicing the 

tree at different similarity cutoffs, the algorithm extracts the cluster-defining sequence positions. 

The evolutionary significance of these sequence positions is implied by their conservation in the 

sequences beyond the next branch. In their first paper,178 the authors demonstrated that ET can 

detect functionally important sites in SH2, SH3, and DNA-binding domains. Work has since 

been published on ET validation, parameter optimization, and best-use practices.179 
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In a method often referred to as "Difference-ET," the user runs ET on two related proteins and 

considers differences in the high-ranking residues and their scores. The sequence positions with 

strongly varying scores may suggest specificity determinants or differences in allosteric and/or 

orthosteric mechanisms. Notably, Difference-ET has been used in the study of GPCR 

specificity.179-181 

To better account for varying rates of evolution in different subtrees and correlated 

mutations, in 2004 Mihalek et al. developed real-valued ET.182 This method incorporates entropy 

information into the standard ET framework. This work also introduces the zoom ET method 

(not related to Improved Zoom, above), which adds higher weight to sequences that are more 

similar to the protein of interest. In the introductory work, they used real-valued and zoom ET to 

detect the functional residues in a kinase domain, then compared the performance of both 

methods to regular (integer-valued) ET and entropy. Given unpruned sequence data sets, the 

real-valued ET and zoom ET methods outperformed the others by a significant margin. In 

contrast, integer-valued ET prevailed in most respects when pruned data was available. An 

automated web server is available to perform real-valued ET calculations, generate reports, and 

visualize results at http://mammoth.bcm.tmc.edu/ETserver.html.183 

H2r(s).  

In 2008, Merkl et al. introduced a method called H2r that serves as a segue between 

single-site and coupled-site approaches.184 H2r generates a mutual-information matrix for an 

MSA, then discards all but the strongest detected coupled pairs. For each sequence position k, 

the method returns conn(k), the number of top-ranked pairs that include k. Initial work proved 

that H2r can successfully detect functionally significant residues across a range of proteins. More 

recently, H2rs, an improved version of H2r, has been released.185 This method modifies the 
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original by using von Neumann instead of Shannon entropy and performing more detailed 

checks for statistical significance. H2rs is available as a web server and a stand-alone application 

at http://www-bioinf.uni-regensburg.de/. 

Coupled-Site Evolutionary Analysis Methods 

Second-order sequence analysis detects residue pairs that mutate in concert more 

frequently than would be expected given random genetic events. Coevolving residue pairs are 

assumed to be functionally linked, often because they serve essential roles in allostery or 

structural integrity. 

The immediate output of second-order allostery analysis is a list of residue pairs with 

associated correlation strengths. Combining these individual pairwise correlations into a single 

picture of the entire protein is a separate task. On the most basic level, the strongest correlations 

that include a residue or site of interest can suggest thermodynamic coupling to other sites, 

possibly related to allostery. More complex analyses use hierarchical clustering or principal 

component analysis to analyze these linkages and uncover strongly linked networks of 

coevolving residues. 

Basic Coupled-Site Analyses.  

Several simple yet reliable residue-coupling analyses have maintained a presence in the 

literature over the past decades. These basic approaches are advantageous because they are easier 

to understand and have been shown to score consistently well in a wide range of tests. However, 

they may fail to detect correlations in more complex cases.186, 187 Though more complex methods 

exist, many of these basic methods still appear as analysis options in coevolution-detection 

software packages and web servers. In this review, we focus on a few that are still widely used. 
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Mutual Information.  

Mutual Information (MI) is one of the most straightforward and long-lived coupling 

metrics. The MI between two sequence positions is defined as the sum of the Shannon entropies 

of both positions, minus their joint entropy. Due to its simplicity and favorable mathematical 

properties, MI analysis is the basis for a number of more complex coevolution methods. 

However, MI does present certain shortcomings. For example, uncorrelated pairs of high-entropy 

sequence positions are likely to have a higher MI than uncorrelated pairs of low-entropy 

positions.188, 189 To compensate for this and other shortcomings, various software packages have 

implemented a number of mathematical corrections to MI.190-194 Further, methods to estimate 

baseline values for correlation (e.g., resampling or sequence shuffling) can improve MI 

analysis.189, 195, 196 

Another relatively direct coevolution metric, the McLachlan-Based Substitution 

Correlation (McBASC),197 looks for similar patterns of variation in the columns of an MSA, 

weighting for residue similarity using the McLachlan scoring matrix.198 Analogous methods can 

be constructed using different substitution matrices, but McBASC continues to be a popular 

choice in the literature.170, 189, 199 

In 2002, Kass and Horovitz200 analyzed the GroEL complex using a chi-squared test to 

detect significant residue coevolution in an MSA. The analysis suggested intra- and inter-chain 

contact pairs and has continued to appear in the literature under the name “Observed Minus 

Expected Squared” (OMES).170, 186, 187, 189, 201 



 80

Statistical Coupling Analysis.  

The Statistical Coupling Analysis (SCA) method developed by Lockless and 

Ranganathan is perhaps the most widely used sequence-based method for allostery prediction.202 

SCA draws an analogy to statistical physics by calculating a "coupling energy" between each 

sequence-position pair. The original SCA method computes a conservation value for each 

sequence position i in an MSA, applies one of several types of perturbation to another position j 

(depending on the SCA version,203) and finally recalculates the conservation at position i for the 

sequences that satisfy the perturbation. By calculating the change in individual and joint 

conservation over a variety of perturbations, SCA establishes a "coupling energy" that indicates 

the evolutionary coupling of positions i and j. 

The output of the SCA method is an N x N matrix of coupling energies, where N is the 

number of sequence positions in the alignment. In early work, the researchers manually 

identified strongly coupled residue pairs that included one functional member (per experiment). 

More recent versions of SCA have grouped this matrix into meaningful clusters of coevolving 

residues using hierarchical or spectral clustering.204 

Refinements of SCA have achieved improved statistical properties by resampling the 

original distribution.205 In a 2011 paper, SCA was effectively used to engineer a light-sensitive 

LOV2 domain onto the surface of DHFR at a location that SCA had identified as energetically 

linked to the enzyme active site. Some variants of the resulting protein chimera were found to 

have acquired light-dependent activity.206 

Further work has used SCA to design artificial WW domains.207, 208 In 2011, an SCA 

analysis of antigen 85C from Mycobacterium tuberculosis suggested new sites that potentially 
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could be exploited in drug design.209 A number of projects have also demonstrated how SCA can 

be used to target mutations that affect protein function.210-216 

Inspired by earlier work on the Sequence Correlation Entropy (SCE) method,217 Dima 

and Thirumalai published an SCA variant in 2006.218 This variant controls for specific protein 

composition by calculating the background probability that a given amino acid will be present at 

a random sequence position. This probability is determined by considering only the sequences 

being analyzed, as opposed to all sequences in the SWISS-PROT database.219, 220 Further, they 

borrowed a coupled two-way clustering procedure from gene-sequence analysis to define the 

sectors.221 In validating this method, the authors analyzed the PDZ, GPCR, and lectin families of 

proteins and were able to quantitatively predict functional residues, which were in agreement 

with experimental findings. 

Explicit Likelihood of Subset Co-variation.  

As mentioned above, SCA is a "perturbation-based" method in which correlation is established 

by excluding certain sequences from an MSA and monitoring how entropies change. Another 

popular perturbation-based method was published in 2003 by Dekker et al.222 This method, 

Explicit Likelihood of Subset Co-variation (ELSC), relies on similar principles but returns 

correlation scores in the form of probabilities rather than statistical energies. ELSC was shown to 

be superior to SCA in contact prediction when tested on a range of protein families. It has since 

been implemented on web servers223, 224 and has been a popular benchmark method in the 

literature.186, 187, 199, 201 
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Direct Coupling Analysis.  

In 2009, Weigt et al. proposed a mutual-information-based method called Direct 

Coupling Analysis (DCA) that disentangles directly interacting residues from large networks of 

indirectly coupled sequence positions.225 While this method is typically used in structure 

prediction to identify spatially adjacent sequence positions, it may find application in the study 

of short-range allosteric interactions. A more efficient implementation of the DCA method, 

known as "mean field" (as opposed to the original "message-passing" implementation) was 

published in 2011.226 Both introductory papers show that DCA is a robust predictor of both intra- 

and inter-protein contacts and that it can hint at the existence of unobserved protein 

conformations. Related work has shown that DCA can be used in conjunction with structural 

models to generate predictive models of protein complexes,227-229 determine the sequence 

positions that contribute to protein-interaction specificity,230 and describe the conformational 

ensembles of proteins in crystallographic or near-crystallographic states.231 A web server and 

software package are available to perform DCA analysis at http://dca.rice.edu/portal/dca/home. 

PSICOV.  

PSICOV is another popular contact-detection method that may find productive use in the 

study of allostery.232 Mathematically, PSICOV relies on an estimated inverse of the MSA 

covariance matrix, which acts as a matrix of correlations between all sequence-position pairs that 

inherently controls for the variations in all other positions. PSICOV was successful at predicting 

contacting protein residues based on MSA data. The code has been published online at 

http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/. 

Recurrence Quantification Analysis.  
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Recurrence Quantification Analysis (RQA), another second-order sequence-analysis 

technique, is best used when much is already known about the mechanism under investigation 

(eg physiochemical amino-acid properties such as charge or hydrophobicity are known to drive 

the allostery). RQA itself is a general method in nonlinear dynamics233: In the context of protein 

sequences, it considers a scalar-value vector that represents some property of a given sequence. 

In introductory work by Zbilut et al.,234 the method was used to properly classify 56 TEM-1 beta-

lactamase mutants with impaired function based on their hydrophobicity profiles. Further RQA 

work used hydrophobicity scores to classify proteins as allosteric or nonallosteric,235 study p53 

mutants,236 and reveal interaction partners in viral-envelope proteins.237 

In 2005, Colafranceschi et al. investigated the effect of choosing different 

physicochemical amino-acid descriptors and changing the numerical parameters of the RQA 

algorithm.238 More recently, a comparison method based on RQA measurements, known as 

cross-RQA, effectively detected protein allostery.239 Interested readers are directed to a review 

by Zbilut-Webber, which provides examples of RQA applied to a range of computational 

biology problems.240 

Comparative Analyses.  

Some work has been done to competitively benchmark the performance of these methods. In 

2004, Fodor and Aldritch compared OMES, MI, SCA, and McBASC in a variety of tests. In 

short, the study found that performance is largely dependent on the way that different methods 

determine background residue probabilities and handle positional conservation.170 A follow-up 

study investigated how effectively coevolution analysis finds thermodynamically linked residue 

pairs.169 In general, spatially contiguous linked pairs were detected, but long-range couplings did 

not agree with experiments. 
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In 2010, Brown and Brown introduced a new pair-scoring method, called Z-scored-

product Normalized Mutual Information (ZNMI), and compared it to the accuracy and 

reproducibility of MI, two versions of SCA, OMES, and ELSC.187 The authors presented a 

thorough meta-analysis of method performance and the impact of input-parameter selection. 

Though none of the tools tested was particularly powerful, ZNMI was the most robust prediction 

tool. Brown and Brown also found that the use of multiple subalignments produced more 

accurate and reproducible results. 

A comparative analysis of SCA and DCA revealed that the top 35 "sectons" found via 

spectral clustering of the DCA matrix corresponded to pairs, triplets, and quadruplets of spatially 

contiguous residues.241 In contrast, a similar analysis of the SCA matrix produced spatially 

adjacent clusters of many residues each. These different results validate the stated goals of each 

method: DCA aims to find contacting pairs, whereas SCA aims to find potentially distant groups 

that are thermodynamically linked in a certain function. 

In 2014, Pele et al. investigated seven coevolution analysis methods to find the hallmark 

covarying pairs in GPCR alignments.186 They considered three variants of MI, McLachlan Based 

Substitution Correlation, SCA, ELSC, and OMES. OMES and ELSC were the most robust 

methods for finding the residues responsible for subfamily divergence. Their article also 

included an insightful discussion of the methods. 

Mao et al. published a comparative analysis in 2015.242 Their study tests OMES, two 

variants of MI, SCA, PSICOV, and DI, and finds that PSICOV and DI are best at identifying 

contacting residues. OMES and MIp excel at removing false positives from the lists of predicted 

contacts. While the authors focused on detecting inter- and intramolecular contacts, their analysis 

also provided useful insights to guide the productive use of each method. For example, all 
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methods benefit from repeatedly shuffling the MSA and rerunning the analyses in order to 

provide a baseline and remove false positives. Finally, the authors found that the consensus of DI 

and PSICOV provides a more robust prediction of contacting residues than any single prediction 

method alone. The software used to perform this analysis is available through the ProDy Evol 

program http://prody.csb.pitt.edu/evol/}.243 

In the course of introducing new types of MI analysis (dbZPX2, dgbZPX2, and nbZPX2) 

and evaluating the effectiveness of MSA simulation (a topic beyond the scope of this paper), 

Ackerman et al. in 2012 compared many different coevolution analyses in their ability to predict 

contacting residue pairs.201 These comparisons found that the "new" methods (the ZPX2 family, 

DCA, and log(R) (not discussed here)), were significantly superior to the "old" methods (OMES, 

McBASC, ELSC, and SCA). 

Web Servers.  

Several web servers perform and visualize sequence analyses. Given a PDB code, 

Contact Map WebViewer (CMWeb)224 automatically constructs an MSA and visualizes a variety 

of coevolution analyses: mutual information, SCA, ELSC, OMES, and an early method 

presented by Gobel et al.244 The same server can also compare the results of these methods to 

user-uploaded data (eg results the user obtained using some other type of analysis). The CMWeb 

server can be accessed at http://cmweb.enzim.hu/. 

The Coevolution Analysis of Protein Residues server hosted by the Gerstein Lab223 

http://coevolution.gersteinlab.org/coevolution/ can perform a large number of the coupled-site 

analyses presented in this review, including SCA, ELSC, MI, and McBASC-type methods 
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employing different scoring matrices. The server can also validate the results of these methods in 

predicting residue distances in a crystal structure. 

MISTIC (Mutual Information Server to Infer Coevolution) is an automated web server 

that accepts user-submitted MSAs or collects them from PFAM.188 MISTIC uses a corrected 

form of MI to infer coevolving pairs and offers several analysis methods that combine structure 

and coevolution.193 It can be accessed at http://mistic.leloir.org.ar/. 

CAPS (Coevolution Analysis using Protein Sequences) is a unique algorithm that 

combines phylogenetic, 3D, and MSA data to predict coupled sequence positions.245, 246 Versions 

1 and 2 are hosted on web servers at http://bioinf.gen.tcd.ie/caps/ and http://caps.tcd.ie/, 

respectively.  

The Interprotein-COrrelated Mutations Server (I-COMS, http://i-

coms.leloir.org.ar/index.php} focuses on detecting contacts at protein-protein interfaces, though 

it can also return intra-chain correlations.247 The server automatically builds alignments; 

performs MI, DCA, or PSICOV analysis; generates visualizations of the results; and allows users 

to download data taken from various points in the data-collection and analysis workflow. 

In 2012, Jeong and Kim published a study describing a close MI variant.248 They 

employed an automated workflow to control for various types of noise in sequence alignments, 

using the MSA sequence profile to establish prior knowledge about the protein. While the 

authors only studied a few MI variants, they stressed that their profile-based method could be 

extended to more complex analysis techniques. Their approach, Correlated Mutation Analysis 

Tool (CMAT), is available on a web server at http://binfolab12.kaist.ac.kr/cmat/. 
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Access to ConSurf, a single-site detection method similar to ET, is available at 

http://consurf.tau.ac.il/.249-254 

Software.  

The ProDy Python package, referred to above, can compute a variety of coevolution 

metrics.242, 255, 256 In 2014, Skjaerven et al.257 released the latest version of the powerful Bio3D R 

package for protein structure and sequence analysis.258 While it focuses on structural analysis, 

the package can compute Shannon entropy and offers useful functions to create and manipulate 

sequence alignments. Also in 2014, Li et al.259 published the CorMut software package for R, 

which computes MI, a metric called the “Jaccard index.”260 and the conditional selection 

pressure metric Ka/Ks.261 
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Figure 4.2: Selected coevolution web servers/software packages and their capabilities 
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Conclusions 

Over the past decade, advances in computing power and predictive algorithms coupled 

with the increased availability of structural and biochemical data have revealed new 

opportunities for rational design of allosteric drugs. The emergence of novel computational 

approaches to describe and predict allosteric phenomena across a range of scales, from the 

coordinated atomic movements in a single receptor molecule to complex allosteric signaling 

networks, is ushering in a new era wherein computational methods can be used to prospectively 

predict, discover, and characterize allosteric sites and effector molecules. Within the context of a 

drug-discovery program, such approaches hold the potential for developing drugs with increased 

specificity and selectivity, as well as the ability to gain new and more comprehensive 

understanding of old targets. For example, the convergence of advances in (i) theoretical MSM-

based frameworks and MSM building software, (ii) community MD codes that can achieve >100 

ns/day sampling for realistic sized systems on single gaming/commodity GPU processors, and 

(iii) pocket and druggable site-detection algorithms now make it possible for researchers even in 

industrial settings, with fast-paced timelines and stringent quality standards, to apply these 

approaches to drug targets already in their arsenals. The application of these methods to kinases 

and GPCRs seems particularly worthwhile, given the existence of assays and structural data, and 

the challenges faced by existing drug candidates in the clinic. 
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Chapter 5 : Continuous Evaluation of Ligand Pose Prediction (CELPP) Challenge: A Tool to 

Evaluate and Improve Protein-Ligand Docking Methods 

 

 

Introduction 

Determining a therapeutic ligand’s pose inside of a protein binding site can greatly 

accelerate rational drug design efforts4, 262. While it is possible to determine a bound ligand pose 

using experimental structure-determination methods like X-ray crystallography, the process is 

difficult and time-consuming. To accelerate drug discovery efforts, “docking” algorithms have 

been developed, which predict how ligands bind to proteins6, 263-267. These algorithms have 

enjoyed years of public and commercial development, both in the form of optimization and 

invention of novel approaches. Currently, many drug design efforts take advantage of docking 

algorithms. However, there is a lack of standardization, or well-understood “best practices” for 

how to most effectively select and use algorithms for specific types of problems268-271. 

Previous efforts to benchmark biomolecular structure prediction algorithms have been 

well received. These efforts succeeded by achieving a high throughput of test cases, formalizing 

common approaches using automated workflows, and engaging with the scientific community to 

define goals and disseminate results272. Notable previous efforts include CSAR273-277, CASP278-

280, GPCRDOCK281-283, and CAMEO284. 

The Drug Design Data Resource (D3R; drugdesigndata.org) is a NIH funded resource 

aimed at providing benchmark datasets and blinded challenges to assist in the evaluation and 

improvement of computer-aided drug design (CADD) algorithms16, 285-287. Previous blinded 

challenges hosted by D3R have enjoyed broad community participation, but are difficult to scale 
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up due to their reliance on donations of structural datasets from private groups and the necessary 

curation of donated data. The results of these competitions are often hard to draw conclusions 

from, as the leading participants in D3R Grand Challenges report using a variety of algorithms 

and diverse strategies 286, 287. While the D3R Grand Challenge activities will continue, a new 

challenge format has been sought that more rigorously documents the methods used for 

predictions and increases the number of predictions made.  

To further the mission of D3R, we introduce Continuous Evaluation of Ligand Pose 

Prediction (CELPP), a rolling, weekly challenge for automated pose predicting tools. CELPP is 

based on the Protein Data Bank (PDB) weekly release of forthcoming structures, and may be 

summarized as follows. By processing the weekly Protein Data Bank report of upcoming 

structures, we identify ~40 soon-to-be-released protein ligand complexes as “targets”, that are 

suitable for benchmarking pose prediction algorithms. For each target, D3R suggests docking to 

homologous, already-released “candidate” structures that are suitable for cross-docking. Files 

containing information about the targets and the candidate structures are sent to CELPP 

participants, who have a set amount of time to predict how the ligand binds. The participants 

submit their predictions to a D3R server before the release of the new protein-ligand crystal 

structures, and D3R evaluates the correctness of each prediction. These performance statistics 

will be visualized and published for further analysis. 

CELPP challenge participants implement their computational docking workflow on their 

own server. To lower the barrier to challenge entry, D3R provides CELPPade. CELPPade is a 

Python framework for participant servers that receives the weekly D3R challenge package, 

applies the contestant’s prediction workflow, and uploads the predictions back to D3R for 

evaluation.  
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It is useful to define two separate concepts in this work -- “pose prediction” and “affinity 

prediction”265. CELPP focuses on pose prediction -- that is, taking a ligand which is known to 

bind to a protein, and computationally predicting its 3D placement and conformation in the 

binding pocket. CELPP does not focus on affinity prediction, which is defined as the process of 

determining how strongly a given ligand binds to a protein. Though conceptually overlapping, 

we do not assume that an algorithm which is ideal for one task is also well suited for the other. 

Each task is performed under different resource constraints. For example, an algorithm which 

accurately predicts binding poses but requires one day to run is practical for most pose prediction 

cases. However, the same algorithm would not be feasible for screening hundreds of thousands 

of ligands in a screening campaign, and would not necessarily be able to compare different 

molecules on the basis of affinity. For this and other reasons, we treat pose prediction as an 

independent problem from affinity prediction. 

Further, it is useful to discuss the “scope” of CELPP based on how problems are 

encountered in real-world applications. CADD scientists are likely to use pose prediction 

algorithms after a ligand is experimentally found to bind to a protein of interest. The ligand at 

that point is known by its 2D structure, and in many cases the protein (especially those of known 

therapeutic interest) will have had its 3D structure solved and deposited in the Protein Data 

Bank. These 3D structures may be bound to a similar ligand, a dissimilar ligand, or no ligand at 

all. Using these pre-existing structures to predict the binding pose of a new ligand is referred to 

as “cross docking”265, 288, 289 To account for these cases, the candidate structures selected by D3R 

for the CELPP challenge are selected to represent diverse amounts of prior information.  

This challenge scope defines a set of common tasks that CELPP participants must 

perform. Protein structures from the Protein Data Bank often require processing before they can 
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be used for pose prediction290, 291. This processing can be in the form of resolving ambiguously 

assigned electron density, removing or retaining solvent molecules, accounting for crystallization 

artifacts, and numerous other areas. Similarly, the process of using a 2D ligand structure to 

ultimately determine a 3D binding pose requires exploring many possible conformations and 

protonation states, among other issues28, 290, 292. In CELPP, we refer to these steps as 

“preparation”, and encourage participants to explore and optimize different approaches to these 

problems. After appropriate molecule preparation, a docking algorithm can be run to predict the 

ligand pose inside of the binding site.  

Ultimately, the goal of CELPP is to accelerate the development of CADD algorithms by 

identifying strengths and shortcomings of modern techniques. Due to the large number of targets 

per week, we expect to achieve a greater level of statistical significance than the D3R Grand 

Challenges. Further, it will be possible to identify preparation and docking algorithms that are 

best-suited to different classes of problems, such as cytosolic vs. membrane proteins, or flexible 

vs. rigid ligand docking267. Given a large number of targets and participants, we hope also to 

deconvolute the contributions of each step in these approaches.  

 

Results 

D3R-side implementation  

Target and candidate selection 

D3R hosts the weekly CELPP challenge by scanning the Protein Data Bank (PDB)57, 293, 

294 pre-release announcements and applying filters to identify a subset of the entries as targets 

for the challenge. Targets are 3D protein-ligand structures which are in the final stages of 

processing at the PDB but do not yet have their 3D coordinates released. At the time of the 
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challenge the only public data available about a target is its sequence and the 2D structure of the 

bound ligand. For each target, up to 5 already-released structures of the same protein, called 

candidates, are identified from the PDB as being suitable for cross-docking (Figure 5.1). This 

process mimics a popular strategy that participants in previous D3R challenges used to select 

structures for pose prediction. 

 

Suitable target sequences: 

● Have only one unique protein sequence (to exclude hetero-oligomers) 

● Have only one ligand (excluding metals, solvents, and other non-druglike molecules) 

● Has at least one candidate structure (defined below) 

 

Suitable candidate structures for a target: 

● Have >95% sequence identity with the target sequence 

● Have >90% sequence coverage with the target sequence 

● Have only one unique protein sequence (to exclude hetero-oligomers) 

● Are determined via X-ray crystallography 

 

To simulate a variety of realistic pose prediction scenarios, up to five structures are selected 

from the set of suitable candidates for the CELPP challenge, as follows: 

● LMCSS: The candidate structure with the largest maximal common substructure to 

the target ligand is selected. The center of mass of the ligand in this structure is used to 

suggest the binding pocket for all predictions. In the case that two candidate structures tie 

for the largest maximal common substructure, the highest-resolution candidate is used. 
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● SMCSS: The candidate structure with the smallest maximal common substructure to 

the target ligand is selected. In the case that two candidate structures tie for the smallest 

maximal common substructure, the highest-resolution candidate is used. 

● hiTanimoto: The candidate structure with the highest ligand Tanimoto score to the 

query ligand is selected. In the case that two candidate structures tie for the smallest 

maximal common substructure, the highest-resolution candidate is used. 

● hiResHolo: The candidate structure with the highest crystallographic resolution and 

any druglike ligand is selected. 

● hiResApo: The candidate structure with the highest crystallographic resolution and no 

druglike ligand is selected 
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Figure 5.1 : CELPP Challenge Package Generation Scheme.  

CELPP downloads the publicly-available PDB pre-release information, and then processes the new 
entries to assemble the weekly challenge package. 

 

Challenge data package 

The final set of valid targets and their respective candidates comprise the CELPP weekly 

“challenge data” package. The challenge data package is uploaded to a public Box.com folder 

roughly each Sunday morning around midnight U.S. Pacific time. For each target, the challenge 

data package contains: 
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● A text file containing relevant information about the ligand, crystallization conditions, 

and selected candidate structures 

● SMILES, InChI, and 2D MOL files of the target ligand 

● PDB structures of the candidate proteins, pre-aligned to a reference 

● PDB structure of the LMCSS ligand 

● The suggested binding pocket center (center of mass of the LMCSS ligand) 

 

D3R provides a script, getchallengedata.py, that downloads the active CELPP week’s 

challenge data package. 

 

Prediction submissions 

CELPP participants upload their pose prediction results to a private submission folder 

provided by D3R. This upload must be completed before 3 PM U.S. Pacific time on Tuesday to 

be considered valid for scoring. 

 

For each candidate, a valid submission consists of: 

● A receptor structure, in PDB format 

● A ligand structure, in MOL format 

 

Strict adherence to these file formats is required, and any deviation from the official format 

may result in improper scoring and disqualification of the submitted prediction. 
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D3R provides a script, packdockingresults.py, that accepts a formatted directory of docking 

results, and then compresses it into a tar file and uploads it to a participant’s private submission 

folder. 

Evaluation of predictions 

Evaluation of submissions begins after the close of the submission window. Due to 

potential complexities of crystallographic data, such as ambiguous ligand chain assignments and 

multiple monomers with different ligand poses in the asymmetric unit, automated evaluation of 

docked poses is somewhat involved. A prediction is given the lowest RMSD that can be 

achieved by aligning to each crystal chain. Each prediction is evaluated according to Scheme 1. 

 
RMSD_list = [] 
For crystal_chain in crystal_structure: 
    predicted_complex = merge(predicted_chain, predicted_ligand) 
    Align predicted_complex to crystal_chain 
    aligned_predicted_protein, aligned_predicted_ligand = 
split(predicted_complex) 
    For heavy_atom_mapping in atom_symmetries(crystal_ligand, 
predicted_ligand): 
        RMSD_list.append(this_mapping_RMSD) 
Return min(RMSD_list) 

 
Scheme 1: Ligand pose evaluation 
 

Currently, only RMSD is evaluated. However, other metrics such as protein-ligand 

interaction fingerprint, internal RMSD, and Real Space Correlation Coefficient (RSCC) may be 

implemented in the future. 

Target labels 

Targets in CELPP can present many complicating factors, such as closed binding sites or 

the inclusion of structural waters. While D3R does not know about complicating factors when 

the challenge package is generated, it is possible to identify these cases when the structures are 

released to the public at the end of the week. As some prediction methods will be able to 

correctly solve these challenging cases, it is important that these cases are identified when 
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reporting performance. For that reason D3R plans to “label” these more challenging targets and 

put them in separate scoring pools. These labels are expected to include: ligands bound at 

homodimer interfaces, ligands bound in cryptic pockets, ligands which interact with cofactors, 

and ligands bound at a location other than where D3R suggested.  

Participating in CELPP 

Enrollment 

D3R has linked registration instructions for CELPP on the main website 

(drugdesigndata.org). Registration will provide participants with upload/download credentials for 

CELPP submissions.  

Prediction schedule 

Participants in CELPP should make a workflow that is able to process up to 100 targets in 

the 63-hour submission window. Figure 5.2 shows the standard weekly schedule for CELPP. 

This requirement means that the workflow should be able to process 100 ligand preparation 

tasks, 400-500 protein preparation tasks, and 400-500 docking tasks in 63 hours. Participants in 

CELPP may choose to submit results for only a subset of the targets. There are no restrictions on 

hardware or parallelization, however D3R requests that workflows should run independent of 

human intervention. In the future, D3R may request that participants submit workflows in the 

form of scripts or machine images. 
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Figure 5.2 : The CELPP week.  

The CELPP week begins with the publication of PDB pre-release data on Friday evening. Challenge data 
preparation runs Friday evening and Saturday, and the upcoming week’s challenge package is uploaded 
by the beginning of Sunday. Submissions are then accepted until Tuesday at 3:01 pm. Evaluation of the 
predictions begins on Tuesday evening. 

 
 
Prediction workflows 

To reduce the burden on participants, D3R provides two forms of assistance in creating 

pose prediction workflows.  

The first form of assistance is the “CELPPade” Python package. CELPPade is a 

workflow template which contains empty Python functions that iterate over a challengedata 

package to perform user-specified protein preparation, ligand preparation, and docking. This 

blank workflow enables participants to run Python or shell commands, and each step is a Python 

function with set input and output file names. Figure 5.3 shows the files and functions that are 

exposed by CELPPade to enable creation of a modular pose prediction workflow. 
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Figure 5.3 : Customization options of CELPPade workflow template.  

Vertical arrows indicate functions, rectangles indicate files passed between workflow steps, and clouds 
represent internet-accessible folders. The large grey box indicates the steps that are run on the 
participant’s computer. Different colors indicate script files for different steps of pose prediction. 

 
The second form of assistance is a functioning workflow that runs Chimera DockPrep on 

both the protein and ligand, and then AutoDock Vina for pose prediction. This workflow is built 
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using the CELPPade template and provides examples of running shell commands within Python. 

Care was taken to ensure that this workflow uses code which is free for use by academic labs, 

and can run on any computer with Python, Chimera, RDKit, OpenBabel, and Autodock Vina 

installed. Download and installation instructions for this workflow are provided on the CELPP 

website. 

Participants are not required to use the CELPPade template -- it is provided as a 

convenience. Regardless of whether participants make use of the D3R-provided CELPPade 

template, the getchallengedata.py and packdockingresults.py scripts can be used in a standalone 

fashion to perform the weekly data download and upload. If D3R modifies the mechanism of 

providing challenge data packages or receiving participant predictions, new versions of these 

scripts will be made available. 

 

Score reporting 

Scores are emailed directly to participants. In the future scores will be posted online. 

Participants may choose to remain anonymous, in which case their results may be posted without 

identifying information. 

 

Discussion 

One goal of D3R is to encourage the creation of automated drug discovery workflows. 

The CELPP challenge data format is designed to be general in the information that it provides, 

rather than being shaped to the inputs of any specific docking program. Therefore, we anticipate 

that a workflow that is compatible with the CELPP challenge data format will be suitable for 

real-world pose prediction applications beyond benchmarking.  
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CELPP workflows are encouraged to perform protein preparation, ligand preparation, and 

docking in a modular fashion, where each is a standalone process. The benefit of using modular 

workflows is that researchers will be able to easily swap and study how each part influences 

workflow performance. This process should enable both direct comparison of distinct 

approaches, as well as benchmarking of incremental improvements. 

D3R has established the Continuous Evaluation of Ligand Pose Prediction (CELPP) 

challenge to evaluate pose prediction workflow performance. This challenge offers benefits for 

both participants and the community by establishing a neutral benchmark set of targets and 

encouraging the automation of pose prediction workflows.  

The rigorous standardization encouraged by CELPP will enable the measurement of how 

developments that are removed from the specific process of docking, such as structural water 

prediction and unresolved atom replacement, contribute to overall pose prediction accuracy. D3R 

recommends that steps in workflows be made modular to provide an easy means of swapping 

one process for another. The ability to A/B test the performance of steps in a docking workflow 

over large test sets will aid the identification of the best performing individual steps and 

combinations. 

CELPP will identify the greatest strengths of current approaches, help map docking 

problems to the algorithms most likely to solve them, and illuminate areas of unmet need in 

structure-guided drug design. D3R will, via the analysis and publication of results, align 

community efforts to push forward the cutting edge of computer-aided drug design.  
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