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Environmental Factors
Katherine D. Wick, MDa,b, Michael A. Matthay, MDb,c,d,*
KEYWORDS

� Acute respiratory distress syndrome (ARDS) � Acute lung injury (ALI)
� Environmental pollution � Wildfires � Tobacco smoke � e-cigarettes
� e-cigarette and vaping-associated lung injury (EVALI)

KEY POINTS

� Preventable environmental exposures are associated with an increased risk of developing
the acute respiratory distress syndrome (ARDS).

� Environmental pollution and cigarette smoke likely predispose the lung to injury from other
causes, whereas e-cigarettes are a direct cause of lung injury.

� Evidence-based strategies of lung protective ventilation, fluid conservative strategy, and
early prone positioning for PaO2/FiO2 less than 150 mm Hg are the cornerstones of man-
agement regardless of environmental factors.

� Both patient- and policy-level interventions are needed to reduce harm from these
exposures.
INTRODUCTION

The acute respiratory distress syndrome (ARDS) affects at least 10% of patients in the
intensive care unit (ICU) and carries a high mortality rate of approximately 40%.1 There
have been effective advances in supportive care, but there are as yet no consistently
proven effective pharmacologic treatments for ARDS.2 One approach to addressing
this problem is to target the heterogeneity of ARDS by understanding patient factors
that impact response to treatment once ARDS has already developed. For example,
secondary analyses of randomized clinical trials demonstrate that ARDS subpheno-
types respond differentially to simvastatin therapy.3 Another important facet is early
intervention in hospitalized patients at risk of ARDS.4 However, clinicians and re-
searchers should also focus on identifying preventable patient exposures that increase
the risk for ARDS, as demonstrated by a growing body of research. Understanding and
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addressing these exposures offers an opportunity for primary prevention (Fig. 1). This
review summarizes the current literature on environmental exposures andARDSdevel-
opment and outcomes, discusses underlying mechanisms, and outlines the implica-
tions for patient management and policy-guided solutions.

AIR POLLUTION

According to the World Health Organization, the pollutants with the greatest effect on
human health are ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate
matter (PM).5 In 2014, PM less than 10 mm in diameter (PM 10) and less than 2.5 mm in
diameter (PM 2.5) accounted for at least 3 million deaths and 85 disability-adjusted life
years, primarily because of impacts on chronic cardiovascular and pulmonary condi-
tions.6 Recently, air pollution in the United States has begun increasing for the first
time since 2016 (Fig. 2).7 Ambient pollution is a risk factor not only for the development
or worsening of chronic illnesses8–10 but also for acute illness. For example, a case-
control study of older adults in Canada found that long-term exposure to PM 2.5
and NO2 was independently associated with an increased risk of hospitalization for
community-acquired pneumonia.11 Short-term exposure to increasing levels of PM
2.5 was also shown to increase the risk of hospital admission for cardiac and respira-
tory disease in the United States.12

Several recent studies have demonstrated that exposure to even low to moderate
levels of ambient pollutants increases the risk of developing ARDS. In a prospectively
enrolled cohort of patients with ARDS in the Southeastern United States, long-term
ozone exposure was associated with the development of ARDS in a dose-dependent
manner.13 This association was most pronounced among patients with trauma as their
primary risk factor. Although the associationbetweenozoneexposure and thedevelop-
mentofARDS remainedsignificantwhencontrolling for potential confounders including
smoking status, there was a statistically significant interaction between ozone expo-
sure and smoking. When patients were stratified by smoking status, ozone exposure
Fig. 1. Levels of intervention to prevent adverse outcomes from ARDS.



Fig. 2. Changes in ambient levels of major pollutants in the United States, 2008 to 2018.
Dotted lines represent 95% confidence intervals. (From Clay K, Muller N. Recent increases
in air pollution: Evidence and implications for mortality. 2019. https://doi.org/10.3386/
w26381; with permission.)
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remained significantly associated with ARDS only among smokers. The investigators
concluded that cigarette smoking likely potentiates the risk from ozone exposure.13

A subsequent study of patients from a prospectively enrolled cohort in Philadelphia
further investigated the relationship between exposure to pollutants and ARDS devel-
opment among patients with trauma.14 This study analyzed exposure to low to mod-
erate levels of ozone, NO2, SO2, PM 2.5, and carbon monoxide (CO). Long-term
exposure to each of the pollutants was independently associated with an increased
odds of developing ARDS. Furthermore, even 6 weeks of exposure to NO2, SO2,
and PM 2.5 increased the odds of developing ARDS.14 Differences between the find-
ings of the 2 studies might be accounted for by regional variation in levels of pollutants
and air quality monitoring and by the shared risk factor of the population in the second
study. Together these studies suggest that exposure to ambient pollution even at low
to moderate levels for time periods as short as 6 weeks increases the risk of ARDS.
Large epidemiologic studies have also found associations between exposure to

ambient pollution and an increased risk of developing ARDS. An observational study
of more than 1 million hospitalizations between the years 2000 and 2012 among Medi-
care beneficiaries who developed ARDS used advanced modeling drawing on multi-
ple data sources to predict average annual levels of ambient pollution across more
than 30,000 zip codes.15 The investigators found that the rate of ARDS hospitalizations
increased with increasing levels of both PM 2.5 and ozone. These findings were
consistent even in regions where pollutant levels were within national air quality stan-
dards. The effect of PM 2.5 was most pronounced among patients whose primary risk
factor was sepsis. Ozone exposure had the greatest effect among patients with pneu-
monia or trauma as their primary risk factor. Although fully accounting for confounding

https://doi.org/10.3386/w26381
https://doi.org/10.3386/w26381
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factors in observational studies can be difficult, results were similar in a propensity-
matched analysis that included variables such as demographic variations and percent
of ever-smokers.15 The results of this large study demonstrate that the association be-
tween ambient pollution and ARDS is present outside of the trauma population in pa-
tients who are older with comorbid conditions. Another retrospective cohort study of
more than 90,000 patients found that increases in average annual PM 2.5 and ozone
concentrations independently increased the odds of death from ARDS, suggesting
that ambient pollution impacts not only ARDS incidence but also its outcomes.16

High levels of ambient pollution have also been associated with incidence and adverse
outcomes in the coronavirus disease 2019 (COVID-19) pandemic,17,18 although further
studies in this area are needed.
The preponderance of the literature examining the connection between ARDS and

ambient pollution has revealed an association between long-term rather than short-
term exposure to pollutants and ARDS incidence and outcomes. For example, the in-
vestigators who found a link between long-term ozone exposure and ARDS did not
find the same association for 3-day exposure to environmental pollutants.13 However,
one study from Guangzhou, China, demonstrated an association between short-term
PM exposure and incident ARDS.19 This association may be related to the exception-
ally poor air quality of the region20 in contrast to the other studies, which focused on
settings with low to moderate levels of pollutants. There is some evidence, however,
that short-term exposure to low levels of ambient pollution is associated with adverse
pulmonary outcomes in critically ill patients. A study from Antwerp, Belgium—an area
with historically low levels of ambient pollution—found that short-term pollution expo-
sure was associated with longer mechanical ventilation.21 This study included a broad
range of critically ill patients, some of whom did not have ARDS, but does suggest that
a deleterious effect from short-term pollution exposure is not limited to areas with
exceptionally poor air quality.
Various underlying biological mechanisms may explain the basis for the relationship

between environmental pollution and ARDS. A meta-analysis of exposure studies in
healthy volunteers found that ozone increases the number of bronchoalveolar lavage
(BAL) neutrophils,22 which are implicated in ARDS pathogenesis.23 Ozone exposure
also increased total protein levels in this analysis,22 reflecting loss of alveolar epithe-
lial/endothelial barrier integrity.24 Many components of air pollution exert deleterious
effects on pulmonary surfactant.25 Urban air particles directly stimulate an inflamma-
tory response by pulmonary macrophages in vitro.26 PM has also been shown to in-
crease markers of apoptosis, oxidative stress, and inflammation27 and to directly
cause lung injury in mouse models.28 In humans, increased PM 2.5 levels are associ-
ated with circulating markers of endothelial injury,29 which is one of the key patho-
physiological mechanisms in the development of ARDS.30 Although environmental
pollutants alone may not be sufficient to induce severe pulmonary injury in humans,
they likely increase susceptibility to other causes of ARDS such as respiratory infec-
tion31 and prime the alveolus for damage in these settings.
WILDFIRES

Wildfire smoke is an increasingly prevalent source of environmental pollution. Climate
change has led to more frequent wildfires over a longer season.32 In the United States,
PM air quality has improved over the past 3 decades except in areas that are prone to
wildfires.33 Wildfires are associated with acute increases in ozone and PM as well as
other pollutants such as volatile organic compounds.34 As noted earlier, previous
studies of the relationship between ambient pollution and ARDS13–16 have generally
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focused on the average exposure in various regions over time, rather than on events
that might be expected to acutely increase ambient pollution. In addition, smoke from
wildfires may have chemical properties that make its risk profile different from that of
PM or smoke from other sources.34,35 Although it is clear that wildfire-related pollution
contributes to increased respiratory morbidity and health utilization overall,36 the spe-
cific relationship between ARDS and exposure to pollutants generated by wildfire
smoke has not been studied (in contrast to direct inhalational or thermal injury or
burn-related ARDS in persons who are survivors of fire accidents,37,38 which is outside
of the scope of this review). In vitro evidence demonstrates that wood smoke expo-
sure diminishes alveolar barrier function39 and increases alveolar endothelial oxidative
stress and apoptosis.40 In mice, PM collected during wildfires induced a more proin-
flammatory response and greater oxidative stress than ambient PM collected in the
absence of wildfires.41 Woodfire smoke exposure has also been shown to induce a
pulmonary and systemic inflammatory response in healthy volunteers.42 It is mecha-
nistically plausible that the increased inflammation, oxidative stress, and lung micro-
vascular permeability in response to woodfire smoke demonstrated under
experimental conditions would translate to an increased risk of ARDS. Future research
should test whether ARDS incidence and outcomes change during or after wildfire
events.
CIGARETTE SMOKE

The link between cigarette smoke and adverse health outcomes is well established,
and reducing cigarette use has been a major focus of public health efforts over the
past half century.43 Although rates of tobacco smoking have generally declined glob-
ally, they remain unacceptably high, and cigarette smoking is a leading cause of avoid-
able death. For example, the 2015 Global Burden of Disease Study found that
approximately 11% of women and 14% of men in the United States report daily smok-
ing and that smoking accounted for 6.4 million deaths globally.44 Alternative tobacco
and nicotine delivery systems such as electronic cigarettes (e-cigarettes), or vapes,
are increasingly popular, an especially concerning trend among children and adoles-
cents.45 Although their long-term health consequences are not well established, e-cig-
arettes cause a specific lung injury syndrome, e-cigarette- or vaping-associated lung
injury (EVALI).46 E-cigarettes will be discussed in detail in a separate section.
Although some retrospective studies have not found an association between ciga-

rette smoking and ARDS,47 many studies demonstrate that both active smoking and
passive cigarette smoke exposure are associated with ARDS, especially among
certain clinical populations. Importantly, this association is independent of alcohol
use, which is frequently associated with smoking and is a known risk factor for
ARDS.48 A retrospective cohort study of patients in Northern California found that
ARDS was more common among self-reported smokers in a dose-dependent
manner. The investigators estimated that smoking carried an attributable risk in
ARDS of 50%.49 A 2014 study of 381 patients with ARDS previously enrolled in ran-
domized clinical trials examined the relationship between tobacco exposure and
ARDS.50 Rather than relying on patient or surrogate reports, which lack sensitivity
when compared with biomarkers for tobacco exposure,51 urine levels of NNAL (4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanol) were used to determine smoking history.
The rate of active smoking among patients with ARDS in this study was significantly
higher than the population average (36% vs 20%, P<.01). Smokers were younger
and had fewer comorbidities than nonsmokers despite similar ARDS severity.
Although unadjusted mortality among smokers was significantly lower than in
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nonsmokers, there was no significant difference after adjusting for comorbidities and
severity of illness,50 suggesting that smokers develop ARDS when their illness is less
severe than that of otherwise similar patients.
Prospective studies have also demonstrated an increased risk of ARDS among

smokers. Current cigarette smoking (determined through medical chart review)
conferred increased odds (odds ratio, 3.4; 95% confidence interval, 1.22–9.7;
P 5 .020) for the development of transfusion-related acute lung injury (ALI) in a two-
center prospective case-control study.52 Donor smoking history increased the odds
of grade 3 primary graft dysfunction in a multicenter prospectively enrolled cohort
of lung transplant recipients.53 A prospective study of the association between to-
bacco exposure and the development of ALI54 after blunt trauma used plasma levels
of cotinine to differentiate between active and passive smoke exposure and to quan-
tify exposure levels.55 Active smokers and passively exposed patients in this cohort
from a single level 1 trauma center had similarly increased odds of developing
ARDS independent of confounding factors, including alcohol use and trauma severity.
Higher levels of plasma cotinine were associated with higher odds of developing
ARDS.55 Another prospective study of patients with trauma enrolled between 2005
and 2015 confirmed that cigarette smoke exposure remains an important risk factor
for ARDS and highlighted a particularly elevated risk among passive smokers in later
years.56 In patients with trauma, impaired platelet aggregation likely mediates at least
part of the effect of cigarette smoke exposure on ARDS risk.57 In addition, cigarette
smoke alters the microbiota in patients with trauma such that their pulmonary micro-
biome is enriched for specific pathologic bacteria that are associated with ARDS
development.58

In a prospectively enrolled cohort with diverse predisposing risk factors for ARDS,
active cigarette smoking both by self-report and urine NNAL was associated with
an increased odds of ARDS among patients with nonpulmonary sepsis as their pri-
mary predisposing risk factor.59 Patients with trauma and transfusion as their primary
risk factor were not included in this study because of the previously established link
between smoking and ARDS in these populations. Again, the mortality rate of active
smokers was lower in an unadjusted analysis, but mortality was similar after adjusting
for baseline severity of illness.59 This finding is consistent with the previous one that
smokers are at increased risk of developing ARDS when their underlying illness is
comparatively less severe.
Similarly to ambient pollution, cigarette smoke exposure likely predisposes the

lung to injury in the setting of a second insult such as trauma, multiple transfu-
sions, or sepsis (Fig. 3). This concept was elegantly demonstrated in an experi-
mental model in healthy humans who were exposed to inhaled
lipopolysaccharide (LPS).60 BAL and plasma biomarkers for alveolar epithelial-
capillary permeability, inflammation, and alveolar endothelial dysfunction were
compared between self-reported smokers and nonsmokers. Absolute measure-
ments were consistent with more alveolar permeability to protein and inflammation
in smokers, and statistical tests of interaction demonstrated that smoking potenti-
ated these responses to LPS.60 In mice, cigarette smoke exposure itself does not
cause frank lung injury, but mice exposed to cigarette smoke develop worse pul-
monary edema, increased vascular permeability, worse histologic injury, and
increased biomarker evidence of inflammation after exposure to LPS.61 A similar
pattern was demonstrated in a clinically relevant model of pneumococcal pneu-
monia after antibiotic treatment,62 and other animal models have also shown
that cigarette smoke increases alveolar epithelial-capillary permeability and sus-
ceptibility to lung injury.63



Fig. 3. Pollution and/or cigarette smoke exposure likely predisposes the lung to severe injury
in the presence of risk factors for ARDS such as trauma, sepsis, or multiple transfusions.
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The relationship between cigarette smoking and COVID-19, which in 2020 was the
leading cause of ARDS in the United States,64 is unclear. There is evidence that the
receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
angiotensin-converting enzyme 2 (ACE2), is more highly expressed in the lung epithe-
lium of smokers than in nonsmokers.65,66 It is not obvious from the available data,
however, that this leads to an increased risk of SARS-CoV-2 infection or worse out-
comes from COVID-19. In fact, smokers are disproportionately underrepresented
among patients with COVID-19.67 It has been proposed that nicotine as an isolated
substance may have a protective effect in COVID-19.68 The relationships among ciga-
rette smoking, ACE2, nicotine, and inflammation are complex, and a full understand-
ing of the implications of smoking on COVID-19 pathogenesis and outcomes requires
further study.

E-Cigarettes

E-cigarette use has increased among young people in recent years.69 Furthermore,
using e-cigarettes increases the likelihood of future cigarette smoking among children
and adolescents,70 is associated with increased rates of smoking initiation in adults,
and increases the risk of relapse among former cigarette smokers.71 Therefore, pro-
moting vaping as a harm reduction strategy from traditional cigarettes may be
misguided. E-cigarette use likely has negative implications for long-term health based
on the cellular and molecular mechanisms it affects,72,73 although confirming this will
require longitudinal studies. In addition, e-cigarettes pose an increased public health
risk as a direct cause of ALI.
An outbreak of EVALI, mostly among patients younger than 35 years, emerged in the

United States in the spring and summer of 2019. The Centers for Disease Control and
Prevention has reported more 2800 cases and 68 deaths.74 The diagnostic criteria are
vaping within the prior 90 days and a new infiltrate on chest imaging in the absence of
pulmonary infection.75 EVALI most commonly presents as acute to subacute consti-
tutional and respiratory symptoms with radiographic findings of bilateral ground glass
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opacities (Fig. 4).76 In one case series, 26% of patients required mechanical ventila-
tion, and approximately 12% of patients met the Berlin criteria for ARDS by chart
review.77,78

Vitamin E acetate (VEA) is likely the major causative agent among patients with
EVALI. In one case series of patients from 16 different states, VEA was found in
94% of BAL fluid samples from patients with EVALI and in none of the samples
from healthy comparators.79 Most patients report using tetrahydrocannabinol (THC)
products, in which VEA is frequently used as a diluent,80 although some report exclu-
sively using nicotine-based products.76 The effect of VEA was recently studied in a
murine model and in primary alveolar type II (ATII) cell culture.81 In the mouse model,
exposure to aerosolized VEA resulted in significantly increased BAL protein, excess
lung water, and BAL biomarkers of alveolar epithelial damage and inflammation
when compared with aerosolized tobacco or vegetable glycerin and propylene glycol.
Histologic patterns closely mirrored those found in patients with EVALI.82 VEA was
also found to cause direct, dose-dependent ATII toxicity.81 Because of the many in-
gredients found in e-cigarettes and the use of unregulated products,83 however, iden-
tifying a single culprit in EVALI is difficult.
It is unknown whether chronic e-cigarette use also increases the risk of developing

ARDS from other causes. Studies of cigarette smoke exposure and ARDS using bio-
markers for nicotine may have included patients who were using both traditional cig-
arettes and e-cigarettes, and smoking histories in medical records do not always
describe whether patients also vape. E-cigarette vapor both with and without nicotine
increases rat endothelial cell permeability in vitro, although the effect is more pro-
nounced with nicotine.84 Mice chronically exposed to e-cigarette vapor with and
without nicotine demonstrate altered lipid homeostasis in alveolar macrophages
and changes to ATII lamellar body ultrastructure, which may indicate that e-cigarettes
disrupt surfactant production.85 Chronic e-cigarette exposure also delays the immune
response and results in worse lung injury in mice exposed to influenza.85 Similar
changes in humans could plausibly prime the lung for injury as with cigarette use.60

Further studies should examine whether e-cigarettes increase the risk of developing
ARDS from infection, trauma, or other causes.

DIAGNOSIS AND MANAGEMENT IMPLICATIONS

Regardless of the environmental risk factors for ARDS, the cornerstones of diagnosis
and management remain the same. None of the aforementioned exposures, including
Fig. 4. Computed tomographic scan of a patient with EVALI, demonstrating diffuse bilateral
ground glass opacities with characteristic subpleural sparing. (Courtesy of Dr. Carolyn Cal-
fee, UCSF.)
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e-cigarettes, results in a unique radiographic appearance,76 and clinicians should use
the Berlin criteria for ARDS for diagnosis.78 Workup should include a thorough inves-
tigation of possible pulmonary and extrapulmonary infections, including viral pneu-
monia, and bronchoscopy may be warranted.86 Understanding the environmental
risk factors for ARDS underscores the importance of an accurate exposure history.
For example, patients or surrogates should be asked about both personal use of cig-
arettes and passive (second-hand) cigarette smoke exposure. A thorough history
should also include questions about e-cigarette use (vaping), regardless of whether
patients also use combustible cigarettes. Providers should ask about product type;
duration and frequency of use; use of nicotine-based products, cannabis products,
or both; additives; and where the patient obtains their product.87 Although corticoste-
roids are frequently used in EVALI,76 this treatment has not been assessed in prospec-
tive randomized trials. Similarly, there is no pharmacotherapy specific to patients who
smoke or who have been exposed to environmental pollutants. Management should
therefore be based on the evidence-supported strategies of lung protective ventila-
tion,88 conservative fluid management,89 and early prone positioning when PaO2/ frac-
tion of inspired oxygen is less than 150 mm Hg.90

The period during and after critical illness may be a unique opportunity for clinicians
to encourage smoking and vaping cessation. Behavioral counseling for hospitalized
patients, including critically ill patients, can lead to increased abstinence from smok-
ing.91 Providers caring for ICU survivors may also have an opportunity to encourage
smoking cessation or continued abstinence.92 Current American Thoracic Society
(ATS) guidelines recommend pharmacologic therapy with varenicline and nicotine
replacement for smoking cessation in adults.93 Initiating varenicline therapy in critically
ill patients has not been studied, and the role of nicotine replacement therapy in crit-
ically ill patients is not well established.94 Research about pharmacologic therapy for
teenagers who use cigarettes or electronic cigarettes is limited. The American Acad-
emy of Pediatrics recommends behavioral interventions, adding pharmacologic ther-
apy depending on the severity of tobacco dependence.95 The best approach for
addressing tobacco dependence or e-cigarette use in patients with ARDS requires
further investigation. Other exposures such as pollution and wildfire smoke are best
addressed by public policy, which also plays a crucial role in smoking and vaping
cessation.
PUBLIC HEALTH STRATEGIES AND KNOWLEDGE GAPS

The emerging data about chronic exposures and the risk of ARDS underscores how
policy-level interventions impact the practice of critical care. Policy provides opportu-
nities to fill current knowledge gaps through research funding and to limit risks of envi-
ronmental exposures on a population level. Air quality measures and wildfire mitigation
largely depend on public health and policy strategies. Upholding safe air quality stan-
dards is necessary to limit population-level exposure, but ambient pollution and the
risk of wildfires will continue to increase as climate change progresses. The ATS
has made climate change a priority for its public health and research agenda, citing
the risk posed to cardiopulmonary health.96

Patient-level interventions are important for smoking and vaping cessation, but they
should be part of a larger policy agenda (Table 1). Declining smoking rates are one of
the great public health achievements of the twentieth and twenty-first centuries, and
there are still many opportunities for progress such as expanded laws mandating
smoke-free public environments, ongoing public awareness campaigns, and wide-
spread adoption of evidence-based treatment of tobacco users.43 The emergence



Table 1
Individual and policy-level interventions for reducing exposures that increase risk of ARDS

Exposure Patient-Level Interventions Policy-Level Interventions

Environmental
pollution

Increased awareness of air
quality metrics

Staying indoors, avoiding
strenuous activity when air
quality is poor

Compliance with evacuation
orders during wildfires

Stringent air quality standards
Focus on climate and

environmental policies to
limit impact of climate
change

Cigarette smoke Evidence-based approach to
cessation

Expanded public health
messaging, including about
second-hand smoke

Smoke-free public spaces
Increased taxation of tobacco

products

E-cigarettes Avoid e-cigarettes as a harm
reduction strategy

Specific social history questions
about e-cigarette use

Strict safety standards and
regulation of market,
including taxation

Reduce availability of products
that appeal to young people
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of e-cigarettes and other alternative nicotine and cannabis delivery systems require
new regulatory efforts. The Food and Drug Administration (FDA) has recently started
enforcing regulations of flavored e-cigarette cartridges, for example, but many prod-
ucts still fall outside of this enforcement effort.97 Illicit products necessarily are not
subject to FDA regulations. Rates of EVALI may be higher in regions where cannabis
is illegal,98 and because it remains so on a federal level, there are no federal guidelines
for the safe manufacturing or use of cannabis vaping products. There are also federal
limitations on cannabis research, which restrict opportunities to study short- and long-
term pulmonary effects of THC exposure.
Future research and policy priorities should focus on continuing to limit exposures

that increase ARDS risk on both an individual and the population level. Researchers
should investigate the optimum timing and method for encouraging smoking cessa-
tion after critical illness, including whether it may be appropriate to initiate pharmaco-
logic therapy in the ICU. Priorities for e-cigarettes include strict safety standards,
investigating whether e-cigarette exposure increases the risk of ARDS from other
causes, and expanding research of potentially harmful electronic marijuana delivery
systems. Public messaging about air quality standards should be expanded, and
the medical community should continue to raise awareness about the impact of
climate change on pollutants that threaten cardiopulmonary health. In summary, the
scientific understanding of how environmental exposures increase the risk of ARDS
is well established, but there is much to be learned. There are many opportunities
to expand our knowledge and implement policy-level changes to continue combat
this deadly syndrome.

CLINICS CARE POINTS

� Environmental factors such as cigarette smoking, environmental pollution, and the use of
e-cigarettes (vapes) should be recognized as a contributing risk factor for ARDS.

� Evidence-based smoking cessation resources, including pharmacologic aids, should be
offered to patients regardless of their stated readiness to quit as per ATS guidelines.
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� When patients present with ARDS, clinicians should conduct a detailed exposure history
including whether a patient uses combustible cigarettes or e-cigarettes. Vaping history
should include frequency, type of product, duration, and source.

� Clinicians should rely on evidence-based cornerstones of ARDS management regardless of
exposure history.
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