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Abstract of the Thesis 

 
Biomedical Simulator Using Nonlinear FEM Modeling of Human Head 

 

By 

 

Shiting Ma 

 

Master of Science in Biomedical Engineering 

 

 University of California, Irvine, 2018 

 

Professor Frithjof Kruggel, Chair 

 

 
 

      Biomaterials, including brain tissue, usually have nonlinear material properties.  In this 

project, a human head simulator using the finite element method (FEM) was improved by adding 

an implementation of a nonlinear material model into it. The Ogden model is chosen to be 

implemented in this project because of its good accuracy to model the brain tissue.  This work 

aims at improving the validity of impact simulation tests. Results show that the nonlinear model 

was successfully implemented into the simulator and a difference was discovered when 

conducting impact simulation. In the simulation using a nonlinear model, the deformation of 

brain tissue is larger than the deformation using a linear model. 
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1  Introduction 

1.1 Motivation 

Severe traumatic brain injury often causes death or permanent disability, especially in children 

and infants [1]. The most common causes of traumatic brain injury include violence, 

transportation accidents, construction accidents and sports [2]. Although trauma can be caused 

by a large acceleration or deceleration, most of traumatic brain injuries are caused by an impact 

[3]. 

 

Considerable effort has been spent developing treatments and therapies to save patients’ life as 

well as to help them recover from injury. Imaging methods such as computational cranial 

tomography (CCT) and magnetic resonance imaging (MRI) have been developed to estimate the 

consequence of a trauma [4]. However, what exactly happens when an impact is applied to the 

head and how the brain is injured from the impact is less known. In fact, understanding how and 

where the external mechanical forces cause the internal brain trauma would also be helpful for 

early diagnosis and for making a good treatment decision. 

 

This project focuses on the development of a biomechanical simulator for modeling the 

consequences of an external impact on the human head. Specifically, this simulation system is 

based on a finite element analysis with the data coming from an anatomical MRI scan [5]. The 

aim of this thesis is to extend material properties to model nonlinear material behavior and 

provide more realistic solutions. 
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1.2 Biomaterial Mechanical Properties 

Biomaterials, such as bone, muscle, skin, soft tissue and fluid inside our body, often have very 

complex mechanical characteristics.  

 

Biomaterials are often composite and contain substructures with very different material 

properties. As a result, the complexity of the components of material leads to difficulty in 

predicting their mechanical behavior [6]. Because of the complex inner structure, biomaterial 

show different behavior with respect to the spatial directions; for example, white matter inside 

the brain usually consists of bundles of neural axons, which likely exhibit anisotropic properties 

[7]. 

 

In order to estimate the interaction between a biomaterial and an external force, proper 

simplification and approximation are necessary. Specific kinds of biomaterials are usually 

modeled as elastomers [8]. 

 

An elastomer is a body with elasticity. Elasticity is usually described with the relationship 

between stress (the force applied per unit area) and corresponding strain (the amount that the 

material deforms per unit length). Elasticity can be separated into two main categories: linear 

elasticity and nonlinear elasticity. Linear means that the ratio of stress and strain remains 

constant when deformation occurs to the material, for example, a metal spring. On the other 

hand, nonlinear elasticity means that the relationship between stress and strain is not constant, as 

for a rubber band [9]. Fig 1.1 shows the linear and nonlinear stress-strain relationship. 
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Fig. 1.1 Linear and nonlinear stress-strain relationship 

Material properties of brain tissues, including white matter and grey matter, can only be 

considered as linear when the displacement is not too large. In contrast, the skull or muscles, 

brain tissue is relatively soft and can easily experience large deformation with only small 

mechanical force [10]. As shown in Fig. 1.1, with a large deformation, the difference between 

linear and nonlinear model cannot be ignored. Thus, brain tissue should be represented with 

nonlinear properties in a bionumerical simulation [8]. 

 

A method of testing brain tissue material property is presented in [11]. Researchers harvested 

specimens from different locations of the brain and apply a uniaxial tension-compression on the 

specimens. The tension and compression are applied to the specimen in a cyclic way, and the 

speed is slow enough so that the influence of the velocity and the acceleration can be ignored. 

This testing is called uniaxial quasi-static cyclic tension-compression test. Fig. 1.2 shows the 

setup of the in vitro experiment setup and Fig. 1.3 shows the anatomical location of the harvested 

specimen.. 
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Fig. 1.2 Experimental setup, from[11] 

 

Fig. 1.3 Sample harvest location, from [11] 

 

The nonlinear stress-strain relationship shown in Fig. 1.1 can be represented by different 

parametric models. We choose to use the Ogden model [12] as a material model to be 

implemented in our simulation system. One reason for this is based on the literature that has 

reported a good fit with experimental results in [11]. This general model can easily be modified 

into other kinds of elastic models such as the Neo-Hookean model, the Mooney-Rivlin model or 

the Yeoh Model by a parameter transformation [13]. 
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1.3 Finite Element Model 

The finite element method is a numerical method for solving boundary value problems for partial 

differential equations (PDE). A large number of engineering and physical problems are described 

by PDEs. However, few systems described by PDEs have an analytical solution, thus, various 

kinds of numerical methods have been developed to provide a numerical solution of PDEs. The 

finite element method is one of the most effective and widely used approaches [14]. 

 

In mechanical engineering, FEM is usually used to design new products and conduct simulations 

to visualize in-structural mechanical quantities such as stress and displacement. Simulations 

using FEM greatly help industries to optimize the time and raw-material costs during the 

manufacturing process, as well as ensure the quality of the products [15]. 

 

By discretization of a continuous body into finite elements and considering elements as 

homogeneous, the problem of solving partial differential equation can be transformed into the 

problem of solving a set of linear equations, which can be implemented in software [16]. Large 

problems, such as modeling impacts on highly resolved head models, require super-computers 

for an efficient solution. 

 

In this project, FEM is chosen to simulate the impact consequence on the human head due to the 

need to visualize a possible cause of intracranial damage, such as large deformation of elements 

or a large pressure change in the brain tissue during and after the impact.  
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This method allows conducting mechanical analyses on objects with complex structures. After 

dividing the object into small elements, every element can have different and independent 

material properties. This is helpful to model the complex micro structure of the human brain. In 

the human head, brain tissues are known to have nonlinear elasticities. Applying a nonlinear 

model to brain tissue, simulation results are expected to be closer to reality than only modeling 

the brain tissue as linear elastomers [12]. However, other tissues such as the skull are much 

stiffer and can be approximated by linear elasticity models. These two kinds of elasticity models 

are able to work simultaneously in one simulation system by using FEM. 

 

Since it is not ethic to conduct controlled scientific impact tests on human head, and the results 

from the feasible animal experiments are difficult to extrapolate to humans because of the 

difference in head and brain geometry, the prediction of brain damage after an impact produced 

by  a simulator is necessary. 

 

The aim of this project is to introduce the modeling of nonlinear material properties into an 

existing software for the simulation of impact on the human head. As mentioned before, brain 

tissue has nonlinear material properties. In order to get the accurate position and severity of the 

possible intracranial damage from the simulation, the implementation of nonlinear model into the 

simulator is necessary. 
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2  Methods 

2.1 Linear Elasticity Derivation 

First, it is necessary to have a review of the mathematical derivation of the linear material model 

in order to introduce some basic definition and theory. The following derivation is based on [13]. 

 

2.1.1 Definition of Stress and Strain 

Stress is defined as force per unit area in uniaxial state and one dimensional structure. However, 

in three-dimensional situation, a thorough understanding and a clear notation of stress is 

necessary.  

 

Fig. 2.1 Stress inside object, from [13] 

In Fig. 2.1, the components of the stress on the three Cartesian planes can be described using a 

virtual cube. In fact, this cube has no extent because it is not a physical cube. The stress at a 

point inside a solid structure can be defined as a tensor of rank 2: 

11 12 13

21 22 23

31 32 33

ij

  

   

  

 
   =   
    

(1)
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As the moment in z-axis must be equal to zero when the body is under static equilibrium, 21  

and 12  should be equal to each other, the same as x-axis and y-axis. As a result, 

12 21 = , 13 31 = , 23 32 =
 

(2)
 

So the stress tensor can also be represented as  

11 12 13

12 22 23

13 23 33

ij

  

   

  

 
   =   
    

(3)

 

As is seen above, there are only six independent elements in the matrix, so the stress tensor can 

be written as a pseudo-vector 

 

11

22

33

12

23

13













 
 
 
  

=  
 
 
 
  

σ

 

(4) 

Strain is defined as the change of length per unit original length in one dimensional situation, but 

it can also be generalized to describe the solid deformation in three-dimensional situation. 
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Fig. 2.2 Deformation of line segment, from [13] 

As shown in Fig. 2.2, points P, Q and R are in the undeformed body and are moved to P’, Q’ and 

R’ in the deformed body. The displacement of point P is represented as u1, u2 and u3 in the 

direction of x1, x2 and x3, respectively.  

 

The nominal strain is defined as 

1
11

1

' ' uP Q PQ

PQ x


−
= =


 

(5) 

Similarly, we can define nominal strains in other directions as 

32
22 33

2 3

,
uu

x x
 


= =
 

 

(6) 

From Fig. 2.2, the angle between P’Q’ and PQ can be derived as 
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'

2 2 2
1

1 1

Q Qx x u

x x


− 
= =

 
 

(7) 

The angle between P’R’ and PR can be similarly derived as 

'

2 2 1
2

2 2

R Rx x u

x x


− 
= =

 
 

(8) 

The definition of the shear strain in x1x2 plane is  

1 2
12 1 2

2 1

u u

x x
  

 
= + = +

 
 

(9) 

The shear strains in x2x3 and x1x3 plane are similarly defined as 

3 32 1
23 13

3 2 3 1

,
u uu u

x x x x
 

  
= + = +
   

 

(10) 

Since it is obvious that 12 21 = , we define the tensorial shear strain element as 

 

11 11

22 22

33 33

12 12

23 23

13 13

2

2

2

 

 

 

 

 

 

   
   
   
      

= =   
   
   
   
      

ε

 

(11) 

or in tensor form 
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11 12 13

12 22 23

13 23 33

ij

  

   

  

 
   =   
    

(12) 

 

Since both stress and strain are rank-2 tensors, the relationship between them need a rank-4 

tensor to describe. For a linear elastic material, the relationship between stress and strain can be 

written as 

:=σ D ε  

(13) 

where the symbol “:” is the contraction operator, which means 

3 3

1 1

ij ijkl kl

k l

D 
= =

=  

(14) 

Here D is called the elasticity tensor. In linear case, D is independent of geometry of the object. 

Since tensor D is symmetric, the relationship between stress and strain can also be written in 

matrix-vector form 

     = σ D ε  

(15) 

where [D] is a 6 by 6 symmetric matrix. Here the symbol ”{}” is used to represent vectors and 

“[]” for matrix. If the material is considered isotropic, [D] is characterized by two material 

constants, Young’s modulus E and the Poisson ratio   as follows: 
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( )( )

1 0 0 0

1 0 0 0

1 0 0 0

1
0 0 0 0 0

21 1 2
1

0 0 0 0 0
2

1
0 0 0 0 0

2

E

  

  

  


 





− 
 

−
 
 −
 
 −= =  + −
 
 −
 
 

− 
  

D  

(16) 

 

2.2 Nonlinear Elasticity Derivation 

2.2.1 Stress and Strain Measures in Large Deformation 

When the deformation is large enough, the difference between undeformed and deformed 

geometries is noticeable. Thus, it is important to understand how to represent a large deformation 

of a material and how to define stress and strain in such case. 

 

 

Fig. 2.3 Undeformed and deformed geometries, From [13] 

As is shown in Fig. 2.3, point P is identified by vector X = [X1,X2,X3] in undeformed geometry 

and is mapped to point Q in deformed geometry, which is identified by vector x = [x1,x2,x3]. 
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Vector u is the displacement of point P. Also, the vector dX deformed to dx. The relationship 

between dX and dx can be expressed as follows: 

d d


=


x
x X

X
 

(17) 

Here the deformation gradient tensor F is defined as  

0


= = +


x
F 1 u

X
 

(18) 

which is also written as 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

1

1

1

u u u

x x x

u u u

x x x

u u u

x x x

   
+ 
   

    
= + 

   
   

+ 
    

F  

(19) 

The Lagrangian strain uses the undeformed geometry as a reference. Consider the two 

differential elements, dX and dx. The vector dX is deformed to dx. The change in squares of 

length of these two vectors can be expressed as follows: 

( )

2 2

                    

                    

T T

T T T

T T

d d d d d d

d d d d

d d

− = −

= −

= −

x X x x X X

X F F X X X

X F F 1 X

 

(20) 

In Eq. (20), T
F F is an important quantity and is defined as a right Cauchy-Green deformation 

tensor: 
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T=C F F  

(21) 

The Lagrangian strain is defined as 

( )
1

2
=E C -1  

(22) 

In terms of displacement gradient, the Lagrangian stain is also written as 

0 0 0 0

1 1
( ) ( )

2 2

T T
T T   

= + + =  + + 
   

u u u u
E u u u u

X X X X
 

(23) 

When the displacement is small, the Lagrangian strain is approximated by the infinitesimal strain 

tensor: 

0 0

1
( )

2

T=  +ε u u  

(24) 

 

Fig. 2.4 Stress vectors in undeformed and deformed geometries, from [13] 

Similar to strain, stress also depends on the frame of reference. As shown in Fig. 2.4, the stress 

vector at point Q in deformed geometry can be written as 
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0
lim

xS
xS →


= =



f
t σn  

(25) 

where xS is the area of differential element, f is the force acting on it and n is the unit normal 

of the area. Hereσ is called Cauchy stress. 

 

A different stress tensor is defined using the undeformed geometry as reference: 

0 0
0

lim T

S S →


= =



f
T P N  

(26) 

where P is known as the first Piola-Kirchhoff stress tensor. Since P is not symmetric, the second 

Piola-Kirchhoff stress is defined as 

1T TJ− − −=S = PF F σF  

(27) 

where J is the determinant of the deformation gradient. 

 

2.2.2 Nonlinear Elastic Analysis 

The stress-strain relation describes the behavior of a material between deformation and internal 

force caused by deformation. 

 

In an elastic material, the strain energy density W is defined as following: 

( )
1

: :
2

W =E E D E  

(28) 
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where D is the rank-4 elasticity tensor. In contrast to the linear model, here D is not a constant 

under deformation. As a result, the relationship between second Piola-Kirchhoff stress and 

Lagrangian strain is obtained as following: 

( )
:

W
 =



E
S D E

E
 

(29) 

Also, we can obtain: 

2

2
4

W 
= =
 

S
D

E C
 

(30) 

To simplify the notation in the following derivation, we define notations of several tensor 

operators. In following definition, a and b are rank-1 tensors, while A and B are rank-2 tensors. 

( )

( )

( ) ( )

( ) ( ) ( )( )

,

,

, ,

1

2

i jij

ij klijkl

ik jl il jkijkl ijkl

ijkl

 =

 =

 =  =

 =  + 

a b a b

A B A B

A B A B A B A B

A B A B A B

 

 

As is mentioned before, C is the right Cauchy-Green deformation tensor. We define the 

invariants of C as  

2 2

1 2 3

1
( ),   ( ( )) ( ) ,   det

2
I tr I tr tr I = = − = C C C C

 

(31) 

a (a=1,2,3) are the eigenvalues of C, and the eigenvalue-bases Ma (a=1,2,3) are related to 

the eigenvectors na of C by: 
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a a a= M n n  

(32) 

Here we use a hyperelastic model, more specifically, the Ogden model to simulate the brain 

tissue because of its good accuracy when the tissue is under large deformation. The following 

derivation is from [17]. 

 

The Ogden constitutive law is widely used to model rubber-like materials. The strain energy 

density function is given as follows 

( ) ( )/ 2 / 2 / 2 / 2

1 2 3 3

1 1

3 1i i i i i

N N
i i

i ii i i

W I
     

  
  

−

= =

= + + − + −   

(33) 

where N, i , i and i  are material parameters. Note the ( ), 1,2,3a a =  is the eigenvalues of the 

Cauchy-Green deformation tensor C. 

 

For convenience of the following derivation, we define 

3

1 2

1

/ 2 / 2 / 2

1 1 2 3

/ 2

2 3

,

,i i i

i i

i i

i

i

i

W W W

W

W I

  

 

  

=

−

= +

= + +

=



 

(34) 

Make a new notation that / 2i =  and / 2i i  = − . The Eq. (35) becomes 

1 1 2 3

2 3

,W

W I

  



  = + +

=
 

(35) 
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The stress tensor is calculated as following: 

( )
3

/ 2 1

3

1 1

i i

N

a a i

a i

S I
   − −

= =

 
= − 

 
 S M C  

(36) 

where ( )aS   is defined by 

( ) / 2 1

1

i

N

a i a

i

S
   −

=

=  

(37) 

As mentioned in Eq. (30) elasticity tensor D is calculated as 

2 22

1 2

2 2 2
1 1

4 4
i iN N

i i

i ii i i

W WW  

  = =

   
= = = + 
    

 
S

D
E C C C

 

(38) 

By deriving twice Eq. (35), we can obtain 

( )

 

2 2

1 2

2 2
1

1 13 3
2

1 1

1 1 1 1 1

3

4

1
  2

i iN
i i

i i i i

a b
N a a a a b b a

a a a bi

i

W W

I

 




 

  

 
 

 



=

− −
−

= =

= − − − −

  
= + 

  

  −
 −  +  +     −=    

 
+  −   



 


D
C C

M M M M M M

C C C C

 

(39) 

where N, i , i and i  are material parameters,  and  are defined as / 2i =  and

/ 2i i  = − . When i j → ,  

( )
1 1

2lim 1
i j

i j

i

i j

 



 

 
 

 

− −

−

→

 −
= −  − 

 

(40) 
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2.3 Finite Element Model 

This section introduces the mathematical background underlying finite element models in 

biomechanics. The following derivation is based on [13]. 

 

2.3.1 Static Finite Element Equation 

 

Fig. 2.5 Deformable body under equilibrium, from [13] 

 

A body shown in Fig. 2.5 is under static equilibrium under the applied body force fb and the 

surface traction t(n). The domain inside the body is and the boundary is . The surface traction 

is applied on s . 

 

Since the body is under static equilibrium, it follows the principle of minimum potential energy 

and the variational equation is established as following 

( ) ( ): : 0
s

bd d d
  

−  −   =  ε u D ε u u f u t  

(41) 

where u  is the virtual displacement. 
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The variational equation (Eq.(41)) mentioned above generally does not have an analytical 

solution. In the context of finite element modeling the body is discretize the body into a set of 

finite elements, and within each finite element, the result is approximated in a simple polynomial 

form. 

 

Consider the isoparametric 3-dimensional hexahedral element with eight nodes shown in Fig. 2.6 

 

Fig. 2.6 3D isotropic hexahedron element, from [13] 

Fig. 2.6a shows a deformed element and 2.6b shows a reference coordinate of the element. Let  

uI = [uI1, uI2, uI3] be the displacement at node I and ξI = [ξI, ηI, ζI] be the corresponding reference 

coordinate. The coordinate and displacement of the element is defined as 

1

( )I I

I

N
=


8

x(ξ) = ξ x  

(42) 

and 

1

( )I I

I

N
=


8

u(ξ) = ξ u  

(43) 
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where xI is the coordinate at node I and NI(ξ) is the interpolation function at node I. 

Then the relationship between displacement and strain is established as  

1

I I

I =


8

ε(u) = B u  

(44) 

where 

,1

,2

,3

,2 ,1

,3 ,2

,3 ,1

0 0

0 0

0 0

0

0

0

I

I

I

I

I I

I I

I I

N

N

N

N N

N N

N N

 
 
 
  

=  
 
 
 
  

B

 

(45) 

and 

,1 ,2 ,3

1 2 3

, ,I I I
I I I

N N N
N N N

x x x

  
= = =
  

 

(46) 

 

Here we define B as the strain-displacement matrix 

 1 2 3 8B = B B B ... B . 

(47) 

Here for the convenience of expression, we also define the interpolation matrix N as 

 1 2 3 8

0 0

0 0 ,

0 0

I

I I

I

N

N

N

 
 

= =
 
  

N N N N N N  

(48) 
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Rewrite the variational equation inside one element as the following 

8 8

1 1

  ( ) ( ) 0
s

T
I II b I

I I

d N d N d 
  

= =

 −  −   =   u B DB u u f u t  

(49) 

The nodal displacement is defined as 

11 12 13 21 22 23 81 82 83[ , , , , , ,..., , , ]Tu u u u u u u u u=d  

(50) 

where Iiu  is the displacement on node I in direction i.
 
d is the rank-1 tensor of nodal virtual 

displacements, and k is the 24 by 24 element stiffness matrix for a single hexahedral element, the 

equation is written as 

T T

ele=d kd d f  

(51) 

 

Fig. 2.7 Assembling the global matrices, from[18] 

Here we need to assemble the element vectors and matrices together into the global vectors and 

matrices. For example, element stiffness matrix k is a 24 by 24 matrix, then the global stiffness 

matrix is a 3N by 3N matrix, N is the total node number of the whole object. As shown in Fig.2.7, 
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the entries of element matrices (left) are added to the corresponding entries of the global matrix 

(right).  

After summing up every elemental equation together and considering the concentrated load L the 

global equation is written as  

=Ku r  

(52) 

where  

8

1

8

1

( )

( )
s s

b T

Ib I b b

m I m

IT I

m I m

N d d

N d d





 
=

 
=

= + +

=   =  

=   =  

  

  

r F F L

F u f N f

F u t N t

 

(53) 

The global nodal displacement u can be solved with given applied load, fixed nodes and global 

stiffness matrix K. Here, the static linear finite element equation had been established, and the 

partial differential equation problem is converted into linear equation problem. 

 

2.3.2 Dynamic Finite Element Equation 

For an object with mass m with an applied force r(t) and the displacement u(t), it obeys following 

relationship 

( )i d sF F F r t+ + =  

(54) 

where  Fi is the inertial force, Fd is the damping force and Fs is the restoring force.  
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Note that the inertial force Fi is calculated with the mass m and the acceleration ( )u t  as 

( )iF mu t=  according to Newton’s law. 

 

With linear elasticity, the restoring force Fs and the damping force Fd are considered as 

proportional to the deformation ( )u t  and velocity ( )u t  so it is also written as following: 

( ) ( ) ( ) ( )mu t cu t ku t r t+ + =  

(55) 

where c is the damping coefficient and k is stiffness. 

 

After discretization mentioned above, the equation becomes 

( ) ( ) ( ) ( )t t t t+ + =Mu Gu Ku r  

(56) 

Eq. (56) is called as a dynamic finite element equation, where M is called mass matrix, G is 

called damping matrix and K is stiffness matrix mentioned previously. Here, with mass density

 , M is written as 

T

m

d


= M N N  

(57) 

The damping matrix G is the linear combination of M and K: 

d d = +G M K  

(58) 

where d and d  are damping coefficients. 
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2.3.3 Newmark’s Method 

To solve a dynamic finite element model, various of methods have been developed. Here, 

Newmark’s method is chosen because of its numerical stability. It is described in this section 

based on [16]. 

 

The first step of solution is the descretize time into small time intervals t and define Newmark 

parameters N and N . Then, define the initial displacement, velocity and acceleration as 0u , 0u ,

0u . In the Newmark integration scheme, following assumptions are used: 

( )

( ) 2

1

0.5

t t t N t N t t

t t t t N t N t t

t

t t

 

 

+ +

+ +

= + − +   

= +  + − +   

u u u u

u u u u u
 

(59) 

where N and N  are parameters to be chosen to  obtain integration accuracy and stability. Here 

we choose to use unconditionally stable scheme (setting N

1

4
 =  and N

1

2
 = ). 

 

After this, calculate the integration constants 0 1 2 7, ,a a a a  with N , N and t  : 

( )

0 1 2 32

4 5 6 6

1 1 1
; ; ; 1

2

1; 2 ; 1 ;
2

N

N N N N

N N
N N

N N

a a a a
t t t

t
a a a t a t



   

 
 

 

= = = = −
  

 
= − = − =  − =  

 

 

(60) 

and form up the modified stiffness matrix as follows: 

0 1
ˆ a a= + +K K M G  

(61) 
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The Newmark integration process is conducted as following procedure at every time step: 

1. Calculate the effective loads: 

( ) ( )0 2 3 1 4 5t t t t t t t t t ta a a a a a+ += + + + + + +R R M u u u G u u u  

(62) 

2. Solve for displacement u: 

ˆ
t t t t+ +=Ku R  

(63) 

3. Calculate acceleration and velocity at t t+ : 

( )0 2 3

6 7= +

t t t t t t t

tt t t t t t

a a a

a a

+ +

+ +

= − − −

+

u u u u u

u u u u
 

(64) 

After going through all the time steps the finite element equation is solved at every time point. 

 

If Newmark’s method is used to solve a nonlinear dynamic problem, the stiffness matrix K is 

replaced by tangent stiffness matrix KT and displacement u by an increment displacementu . 

 

2.4 Nonlinear Finite Element Model Implementation 

In previous section, the FEM formulation of the linear elastic model has been described. We will 

now extend dynamic analysis to include elements with nonlinear material properties, such as 

discussed in Section 2.2. The following derivation is based on [13]. 
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2.4.1 Solution Procedures for Nonlinear Equations 

Before introducing the nonlinear FEM equation, we need to have a glance at the typical solution 

procedures of nonlinear equation first. 

 

Consider the following system of nonlinear equations: 

P(u) = f  

(65) 

where u = {u1,u2,…un}
T is a vector of unknowns, f = {f1,f2,…,fn}

T is a vector of known 

quantities, and P(u) = {P1(u), P2(u), …, Pn(u)} represents vector of nonlinear functions of u, 

which is different from the linear model, P(u) = Ku.  

 

Since P(u) is a nonlinear function of u, the nonlinear analysis focused on how to solve Eq.(65) 

accurately. Here an iteration method is needed. Starting from u0, the increment of the solution

u is obtained by solving a system of linear equations. The solution is iteratively updated by the 

increment until a specific convergence criteria is satisfied. 

 

This iterative method called Newton-Raphson method is popular in numerical analysis to find 

the roots of nonlinear equations. 

 

The Newton-Raphson method assumes an initial estimate, u0, and find its increment,u , with 

the derivative at the initial estimation point, so that the new estimate, 0 + u u , is close to the 

solution.  
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Fig. 2.8 Newton-Raphson method for nonlinear equation P(u) = f, From [13] 

As shown in Fig. 2.8, in order to find the increment, the nonlinear equations are locally 

approximated by linear ones. Suppose a solution at the i th iteration is known and is designated 

by ui. The solution at the next iteration can be approximated as following: 

1 ( )i i i i i

T

+  +  =P(u ) P(u ) K u u f  

(66) 

where ( )i i

TK u  is the Jacobian matrix at ith iteration and iu  is the solution increment. The goal is 

to calculate iu and iteratively update solution 1i+
u . 

 

After rearranging Eq. (66), the linearized equation is written as 

i i i

T  = −K u f P(u )  

(67) 

Here
 

i

TK is a function of ui. After the displacement increment is solved, the new approximation 

is obtained as follows: 

1i i i+ = + u u u  

(68) 
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And the unbalanced force (residual force) is defined as follow: 

1 1i i+ += −r f P(u )  

(69) 

When specific convergence criteria are satisfied, the solution is considered as the accurate 

solution and the process stops. 

 

2.4.2 Nonlinear Finite Element Equation 

The nonlinear variational equation is established as 

( )
0 0 0

: 0
s

T T
b

W
d d d

  


− −  =

  
E

E u f u t
E

 

(70) 

Here S is the second Piola-Kirchhoff stress and E is the Lagrangian Strain as mentioned before. 

 

From Section 2.4.1, we established that the solution of this equation requires linearization.  

The linearization of the energy form in Eq. (73) can be written as 

0 0 0
: : : : : :L d d d

  

      =  +   =  +        S E S E S E E D E S E  

(71) 

The descretized variation of Lagrangian strain E can be written as 

N=E B d  

(72) 

where d is the variation of nodal displacements and NB  is the nonlinear displacement-strain 

matrix defined as 
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11 1,1 21 1,1 31 1,1 11 ,1 21 ,1 31 ,1

12 1,2 22 1,2 32 1,2 12 ,2 22 ,2 32 ,2

13 1,3 23 1,3 33 1,3 13 ,3 23 ,3 33 ,3

11 1,2 21 1,1 11 ,2 21 ,1

22 1,3 32 1,2 22 ,3 32 ,2

13 1,

0 0

0 0

n n n

n n n

n n n

N

n n

n n

F N F N F N F N F N F N

F N F N F N F N F N F N

F N F N F N F N F N F N

F N F N F N F N

F N F N F N F N

F N

=B

3 33 1,1 13 ,3 33 ,10 0n nF N F N F N

 
 
 
  
 
 
 
 
    

 

(73) 

where F is the deformation tensor defined in Eq.(19) 

 

The discrete energy form can be derived as 

0 0

int:         
TT T

Nd d
 

 =   S E d B S d f  

(74) 

Note that from this equation the internal force at every element is calculated as 

0

int
T

N d


= f B S  

(75) 

The discrete load form can be derived as 

( ) ( ) 0 0 0 0

1

        
e

s s

N
T T T Tb b ext

I I I

I

d d N d N d
   

=

+  = +     u f u t u ξ f ξ t d f  

(76) 

The discrete version of variational equation can be established as following:  

( )int  
T T

ext=d f d d f  

(77) 

Consider the equation based on incremental nodal displacement as following: 
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 int
T T

ext

T = −d k d d f f  

(78) 

 

The tangent stiffness matrix at element is calculated as 

0

T T

T N N G G d

 = +   k B DB B B  

(79) 

whereΣ is defined as 

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

 
 
 
 
 
 
 =
 
 
 
 
 
 
  

Σ

 

(80) 

and GB is defined as 

1,1 ,1

1,2 ,2

1,3 ,3

1,1 ,1

1,2 ,2

1,3 ,3

1,1 ,1

1,2 ,2

1,3 ,3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n

n

n

n

n

n

n

n

n

N N

N N

N N

N N

N N

N N

N N

N N

N N

 
 
 
 
 
 
 =
 
 
 
 
 
 
  

GB  

(81) 
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After summing up over every element, the global tangent stiffness matrix TK and the internal 

force f  is calculated as 

0

int

T T

T N N G G

m

m

d

 = +   

=





K B DB B B

f f
 

(82) 

During every step inside the Newton Ralphson iteration, Newmark’s method brings in the 

relationship between displacement, velocity and acceleration. Establishing the equation system 

with the mass matrix M, damping matrix G, internal force vector f and tangent stiffness matrix 

KT, an increment of displacement at every time step is obtained. This process is iterated 

throughout all time steps of the simulation. 
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3  Experiments and Results 

3.1 Homogeneous Deformation of Rubber Model 

The first experiment reproduces the three homogeneous deformation examples listed in [17] in 

order to confirm the correct implementation of the nonlinear finite element method. 

In this experiment a rubber cube (single element model) that obeys a three term Ogden model 

(N=3) is used for testing purpose. The material parameters are: 

μ1 = 0.66, μ2 = 0.0012, μ3 = −0.01, 

α1 = 1.3, α2 = 5, α3 =−2,  

β1 = 10, β2 = 10, β3 = 10. 

The following several different cases are considered: 

Case 1: See Fig. 3.1(a). Only Fx is applied on the cube and the cube is undergoing a uniaxial 

stretch.  

 

In this case, an analytical solution is given in [12] as following: 

( )1 / 2 1

0

1

i i

N

x x x

i

F A
  − − −

=

= −  

(84) 

The result is shown in Fig. 3.2. The numerical result calculated by finite element method has a 

good match with the analytical curve.  

 

Case 2: See Fig. 3.1(b). Fx and Fz are applied on the cube such that uz=0. 

The simulation result is shown in Fig. 3.3. The result is as same as the result presented in [17].  
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Case 3: See Fig. 3.1(c). Fx, Fy and Fz are applied on the cube such that ux=uy=uz. So the cube is 

under hydrostatic pressure. The result is shown in Fig. 3.4 This simulation also successfully 

reproduced the results presented in [17]. 

(a)                                                  (b)                               (c) 

                         

Fig. 3.1 Three Homogeneous Experiment, From[17] 

 

 

Fig. 3.2 Result under case 1 
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Fig. 3.3 Result under case 2 

 

 

Fig. 3.4 Result under case 3 

 

3.2 Single Element Model of Brain tissue 

As is demonstrated in Section 1.2, different sets of brain tissue parameters were derived from the 

biomaterial testing presented in [11]. In this section, a simulation will be conducted to reproduce 
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these results. We decided to use the parameters tested from corpus callosum for the whole brain 

impact presented in Section 3.3. 

Ogden material parameters for the corpus callosum were given as: 

1 2

1 2

1 2

0.032 , 0.179 ,

11.5, 8.1,

20.

kPa kPa 

 

 

= = −

= = −

= =

 

These parameters were chosen for the following reasons: 

The corpus callosum consists of white matter only [19], so measured material properties are not 

confounded by a mixture of different materials (e.g. the different ratio of white matter during 

harvesting of specimen). Also, the absolute value of parameter   is smaller, which will reduce 

the risk of numerical instabilities for large deformations. 

Simulation result for the chosen material parameters are shown in the following Fig. 3.5. 

 

Fig 3.5 Stress-strain relationship for white matter 
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In Fig. 3.5, the cross means the experimental data visually extracted from a diagram from Fig 

4.12 in [11], and the line corresponds to simulation results, demonstrating a good fit at strain 

range from -0.3 to 0.5. 

 

3.3 Whole Brain Simulation 

In this section, a simulation involving whole brain is described.  

Based on an anatomical MR image of the human head, a segmentation is performed that defines 

regions with homogeneous material properties: white matter, grey matter, bone, fluid 

compartments, meninges, and muscles. Next, a hexahedral mesh is introduced at a resolution of 

2.8mm. Each element in this mesh is addressed a material code. A rendering of this mesh is 

shown below: 

 

Fig. 3.6 Volumetric mesh, from[20] 

The whole brain simulation was conducted under two different kind of model. The first model 

treats the white matter and gray matter in brain as linear elastic material. The second model treats 

the white matter and gray matter as nonlinear elastic material (i.e. Ogden material) while the 

other tissues will still be treated as linear elastic materials. 
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The linear material properties used in the first simulation are taken from [10]. Detailed properties 

are listed in the table below: 

Tissue E / [MPa]   Density/[kg/m3] 

Scalp 16.70 0.42 1200 

Skull 6500 0.22 1420 

White matter 0.12 0.499 1040 

Gray matter 0.075 0.499 1040 

CSF 0.075 0.49995 1045 

Table 3.1 Material parameters used in first simulation 

 

In the second simulation, the nonlinear model with parameters from [11] will be used in both the 

white matter and gray matter because of the similarity of the experiment result presented in [11]. 

The other material parameters are the same as in the first simulation:

 Tissue E / [MPa]   Density/[kg/m3] 

Linear 

Scalp 16.70 0.42 1200 

Skull 6500 0.22 1420 

CSF 0.075 0.49995 1045 

Nonlinear 

Brain tissue (white 

matter and gray matter) 

1 20.032 , 0.179kPa kPa = = −  

1 211.5, 8.1 = = −

 1 2 20. = =

 Table 3.2 Material parameters used in second simulation 

Here note that nonlinear parameters shown in Table 3.2 are the parameters of the Ogden model 

in Eq. (33). 
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An example impact will be applied at the center of the forehead along the anteroposterior axis 

and the deformation of the brain tissue will be measured in both situations. The impact is 

performed as a half-period sinusoidal wave from 0ms to 20ms and has a time step interval of 

0.5ms. The peak value of impact force is 41 10 N . The impact position is position of the cross 

shown in the following figure: 

 

Fig 3.7 Impact position 

The test point is chosen in an area of white matter near the impact applying axis, the following 

figure shows the position of the chosen testing point at the center of the cross: 

 

Fig. 3.8 Test point 
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At the end of every simulation time step, the deformation at the test point is recorded. After 

completing both simulations, there are two sets of deformation data collected at the test point. 

The plot of the data is shown in the following figure: 

 

Fig. 3.9 Simulation results 

As we can see in Fig. 3.9, the deformation of the brain tissue with nonlinear elasticity is larger 

than the tissue modeled to have linear elasticity. In fact, the tested deformation in nonlinear 

model is on average 16.9% larger than the deformation of linear model. It means that the brain 

will deform more severely to generate enough internal force to balance the influence from the 

external force. 
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4  Conclusion and Discussion 

The single element simulation result described in Section 3.2 demonstrated a good match with 

the experiment. This result verifies the Ogden model implemented in the simulator has a good 

accuracy under uniaxial tension/compression testing. 

 

The whole brain simulation result described in Section 3.3 revealed that the brain tissue modeled 

by nonlinear properties appears to be more vulnerable and easier to deform with applied external 

force than the linear model. That means, to balance the same external force, brain tissue with 

nonlinear properties needs to go through larger deformation to generate sufficient internal force. 

 

In fact, the stress-strain relationship shown in Fig. 3.7 also implies that near a range around the 

undeformed geometry, with a slight increase in applied force, the brain tissue can easily be 

deformed from the original shape. However, with the low ability to generate internal force and 

low capacity of storing elastic potential energy [21], when the force keeps increasing, the brain 

tissue will stop deforming and start to pass the pressure directly to the tissue nearby. 

 

In this project, the brain tissue is assumed to be isotropic. However, in reality, most of the 

biomaterials are believed to be anisotropic. The white matter in brain consists of long neuron 

axons covered in myelin sheath. The mechanical property is definitely different in the direction 

that is parallel to the axon extending direction or perpendicular to it [7]. The improvement of 

modeling in anisotropy could be done if reasonable experiment is designed and reliable data of 

material anisotropy is successfully collected. 

 



42 
 

The only pattern of the external force used in this project is an impact. However, it is reported 

that there could be a different frequency response between different elastic models [22]. This 

frequency response difference could be tested by applying a periodic external force with a 

specific frequency. 

 

Also, in this project, the possibility of the material breakdown is not considered. In reality, the 

material can be broken when the external force exceeding some threshold. In terms of brain 

tissue, this might mean the detachment between neurons or the fracture of the brain tissue, either 

of them indicates brain damage. This breakdown could be expressed by the sudden change in 

material stress-strain relationship, which will lead to discontinuity or non-derivability of the 

strain energy density [23]. 

 

The effort on eliminating the limitations discussed above is probably next step of this project. In 

fact, any effort that makes the result from this simulator closer to the reality as well as decrease 

time cost of calculation could be the next aim of research in this project. 

 

 

 

 

 

 

 

 



43 
 

Reference 

[1]  Y. Zhang. "A Bio-Medical Model of the Human Head for Impact Simulation", Thesis, UC Irvine, 2015. 

[2]  J. A. Langlois, W. Rutland-Brown, and K. E. Thomas. "Traumatic brain injury in the United States; 

emergency department visits, hospitalizations, and deaths." https://www.cdc.gov/traumaticbraininjury/pdf/ 

blue_book.pdf accessed at Dec, 2018. 

 [3]  J. M. Hardman, and A. Manoukian. "Pathology of head trauma." Neuroimaging Clinics of North America 

12.2 (2002): 175-87. 

[4]  M. F.Kraus, T. Susmaras, B. P. Caughlin, C. J. Walker, J. A. Sweeney, and D. M. Little. "White matter 

integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study." Brain 130.10 

(2007): 2508-2519. 

[5]  U. Hartmann, and F. Kruggel. "Transient analysis of the biomechanics of the human head with a high-

resolution 3D finite element model." Computer Methods in Biomechanics and Biomedical Engineering 2.1 

(1999): 49-64. 

[6]  E. S. Place, N. D. Evans, and M. M. Stevens. "Complexity in biomaterials for tissue engineering." Nature 

materials 8.6 (2009): 457. 

[7]  Y. Feng, R. J. Okamato, R. Namani, G. M. Genin, and P. V. Bayly. "Measurements of mechanical 

anisotropy in brain tissue and implications for transversely isotropic material models of white matter." Journal 

of the mechanical behavior of biomedical materials 23 (2013): 117-132. 

[8]  G. Franceschini, D. Bigoni, P. Regitnig, and G. A. Holzapfel. "Brain tissue deforms similarly to filled 

elastomers and follows consolidation theory." Journal of the Mechanics and Physics of Solids 54.12 (2006): 

2592-2620. 

[9]  K. De, and J. R. White. Rubber technologist's handbook. Vol. 1. iSmithers Rapra Publishing, Shrewsbury, 

UK, 2001. 

[10]   SimBio Consortium. "SimBio: A generic environment for bio-numerical simulation.", NEC Europe Ltd., 

UK, 2000. 

[11]  G. Franceschini. "The mechanics of human brain tissue." Modelling, preservation and control of 

materials and structures, University of Trento, Italy, 2006. 



44 
 

[12]  R. W. Ogden. Non-linear elastic deformations. Courier Corporation, Mineola, New York, US, 1997. 

[13]  N. H. Kim. "Introduction to nonlinear finite element analysis." Springer Science & Business Media, New 

York, 2015. 

[14]  D. L. Logan. A first course in the finite element method. Cengage Learning, Stanford, USA, 2011. 

[15]  Courant, Richard. "Variational methods for the solution of problems of equilibrium and vibrations." 

Lecture Notes in Pure and Applied Mathematics (1994): 1-1. 

[16]  K. J. Bathe. Finite element procedures. Prentice Hall, Upper Saddle River, New Jersy, USA, 2006. 

[17]  F. Peyraut, Z. Q. Feng, Q. C. He, and N. Labed. "Robust numerical analysis of homogeneous and non-

homogeneous deformations." Applied Numerical Mathematics 59.7 (2009): 1499-1514. 

[18]  A. Sprinkart. "A biomechanical finite element model of the human head based on individual medical 

images using parallel computing", Thesis, University of Bonn, 2010 

[19]  A. Fitsiori, D. Nguyen, A. Karentzos, J. Delavelle, and M. I. Vargas. "The corpus callosum: white matter 

or terra incognita." The British journal of radiology 84.997 (2011): 5-18. 

[20]  Z. Cheng, "Simulation of Traumatic Brain Injury in Children using Finite Element Modeling", Thesis, 

UC Irvine, 2017. 

[21]  A. Schettini, and E. K. Walsh. "Brain tissue elastic behavior and experimental brain compression." 

American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 255.5 (1988): R799-

R805. 

[22]  R. de Rooij, and E. Kuhl. "Constitutive modeling of brain tissue: current perspectives." Applied 

Mechanics Reviews 68.1 (2016): 010801. 

[23]  P. M. Duxbury, and P. L. Leath. "Exactly solvable models of material breakdown." Physical Review B 

49.18 (1994): 12676. 

 




