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ABSTRACT OF THE THESIS 

 

Genome-Scale Reconstruction of the Chlorella vulgaris UTEX 395 Metabolic 

Network 

by 

Tyler Paul Huelsman 

Master of Science in Bioengineering 

 

University of California, San Diego, 2015 

Professor Nathan Lewis, Chair 

 

 

 Genome-scale metabolic network reconstructions are organized knowledge 

bases consisting of the genomic information and metabolic pathways of a species. They 

provide a library of gene-protein-reaction relationships and a mathematical means for 

metabolic analysis of the organism. Chlorella vulgaris is a species of photosynthetic, 

eukaryotic microalgae that has received keen interest as a potential feed source for the 

manufacture of biofuels. Using its genome annotation, and implementing a homology-

based reconstruction strategy, the metabolic network of C. vulgaris UTEX 395 was 



 
 

x 
 

reconstructed. The reconstruction was then formatted into a mathematical model to 

emulate the metabolism of C. vulgaris in photoautotrophic, mixotrophic, and 

heterotrophic growth conditions. The flux distributions of the reactions in each growth 

condition were then compared to identify key reactions in central carbon metabolism 

and lipid metabolism. The reconstruction network provides insight into the potential of 

C. vulgaris for metabolic engineering and represents a promising resource for the study 

of the metabolism of photosynthetic and algal organisms. 
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I: 

Introduction 
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 There is considerable interest in the use of microalgae as a feedstock for the 

production of biofuels due to their fast growth, high lipid yield, and low space 

requirement (Li et al. 2008; Savage 2011; Shi et al. 2012). Algae are comprised of a 

large group of photosynthetic eukaryotic organisms that display a wide variety of 

characteristics and come in diverse forms. They can be unicellular microalgae, as is the 

case with Chlorella vulgaris, or multicellular macroalgae, as in giant kelp. Unicellular 

microalgae are the most interesting as a potential biofuel feedstock due to their fast 

growth rate, photosynthetic efficiency, and high oil accumulation (Savage 2011; Shi et 

al. 2012). Sometimes referred to as “oleaginous” algae, microalgae species including 

Chlamydomonas reinhardtii and C. vulgaris are promising because of their ability to 

produce large amounts of neutral lipids (20-50% dry cell weight), their ability to grow 

at rates as high as one to three doublings per day, their ability to grow in lands unsuitable 

for agriculture of conventional crops, their ability to use nitrogen and phosphorous 

nutrients from wastewater for bio-remediation, and their ability to sequester CO2 from 

point sources such as coal power plants to reduce carbon emissions (Chisti 2007; Hu et 

al. 2008; Shi et al. 2012). 

Concern over the future availability of fossil fuels and the environmental impact 

of procuring, processing, and burning these fuels has become an impetus for seeking 

alternative energy sources (Bentley and Boyle 2008). Biofuels, such as biodiesel, 

bioethanol, and biohydrogen represent a renewable, sustainable, and carbon-neutral 

alternative to non-renewable liquid fuels such as petroleum; they can be used for 

transportation, power generation or heat. However, their greatest potential lies in the 
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transportation sector for which petroleum encompassed 90% of all energy used in the 

United States in 2012 (U.S. Department of Energy 2012). 

 Currently, oil is expected to maintain its dominance as the primary energy source 

for transportation worldwide for at least the next few decades; consumption of oil is 

predicted to increase from 87 million barrels per day in 2010 to 119 million barrels per 

day in 2040 (U.S. Energy Information Administration 2014). Biofuels are unlikely to 

replace oil as the dominant worldwide transportation energy source soon, but they do 

likely represent a renewable energy source that will displace fossil fuel consumption in 

the near future. Current projections predict consumption more than tripling from 1.3 

million barrels of oil equivalent per day in 2011 to 4.6 million barrels of oil equivalent 

a day in 2040 (International Energy Agency 2014). At this consumption level, biofuels 

would occupy 8% of total transportation fuel demand in 2040, up from about 3% in 

2011. Improving the efficiency of biofuel production by improving existing technology 

and using more effective feedstocks may make biofuels an even more appealing option 

and trigger a much faster expansion of the biofuels industry. 

 Biofuels have the advantage over fossil fuels of being renewable and carbon-

neutral. Extraction and consumption of fossil fuels effectively means removing 

hydrocarbons from the earth and releasing them into the atmosphere in the form of 

carbon dioxide (CO2) and other gases. In the atmosphere, CO2 acts as a greenhouse gas, 

and is a major contributor to rising global average surface temperatures. Between the 

onset of the industrial revolution and 2013, global atmospheric CO2 levels have risen 

from an annual average of about 280 ppm to about 396 ppm, an increase of 41% (U.S. 

Environmental Protection Agency 2014). 
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 In contrast to fossil fuels, the production of biofuels operates within the natural 

global carbon cycle, fixing atmospheric CO2 and converting it into lipids and other 

biofuel precursors. Biofuels are produced by photosynthetic organisms that can use CO2 

as their sole carbon source. These photosynthetic organisms, called photoautotrophs, 

convert CO2 into organic compounds for growth and for biosynthesis of fatty acids used 

in biofuel production. Burning biofuels still releases CO2 into the atmosphere, but it can 

be no more than the amount of CO2 captured from the atmosphere or sequestered from 

point sources during the synthesis of the biofuel, meaning either atmospheric carbon 

dioxide levels are reduced, or else no net change in atmospheric CO2 results from the 

consumption of biofuels.  

Factors that may offset the theoretical carbon-neutrality of biofuels include 

carbon dioxide emissions from change of land use and carbon dioxide emissions from 

processing and transportation of biofuels (Wise et al. 2014). Change of land use is 

problematic for current biofuel feedstocks, such as ethanol from sugarcane and corn and 

biodiesel from palm, canola, and soybeans. Far less land would be required to garner an 

equivalent amount of fuel from algae, since it is estimated that algae could produce as 

much as 61,000 liters per hectare of fuel compared to 200 to 450 liters per hectare for 

soy and canola biodiesel (Savage 2011) and 5,900 and 3,100 liters per hectare for 

sugarcane and corn ethanol (Goldemberg 2008; Budny 2007). The result of switching 

biofuel paradigms to algae from current feedstocks would be a sharp reduction in carbon 

emissions from change of land use and a massive increase in fuel-per-land production 

efficiency.  
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 The idea of using microalgae as a feedstock for biofuel is not new. The United 

States Department of Energy’s Office of Fuels Development funded an extensive 

program from 1978 to 1996 with the goal of developing renewable transportation fuels 

from algae (Sheehan et al. 1998). One of the major focuses of this project was the 

Aquatic Species Program, which produced biodiesel from high lipid-content algae 

grown in open ponds with waste CO2 from coal power plants. The Aquatic Species 

Program ultimately concluded that the most optimistic prediction of this technology is 

that it could produce biodiesel at a price two times that of diesel at the time. Sheehan et 

al. also concluded that major limitations preventing algae biodiesel from being cost 

effective are less engineering-related and more biological; there is a need for a highly 

productive algae species that can efficiently use sunlight for biomass production. 

However, the project also concluded that land requirement would not be an issue, as 

only 200,000 hectares of land, less than 0.1% of climatically suitable land in the United 

States, would be needed to produce a “quad” (quadrillion BTU). One quad is 

approximately 1% of the total energy consumption of the United States. A more recent 

estimate suggests that only 1-3% of the total cropping area in the United States would 

be necessary for microalgae to provide 50% of the country’s transportation fuel (Chisti 

2007). 

 Although the Aquatic Species Program was unable to prove the economic 

feasibility of producing biofuels from algae, the private sector has since pursued the 

technology and has achieved promising results. One group was able to cultivate the 

microalgae Haematococcus pluvialis in a coupled photobioreactor-open pond system 

that required two hectares of land to produce an annual average rate of oil production 
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of 420 GJ hectare−1 year−1, which exceeded all estimations for any land crop to biodiesel 

system (Huntley and Redalje 2006). On top of this, they achieved a maximum oil 

production rate of 1014 GJ hectare−1 year−1, and claimed that a rate of 3200 hectare−1 

yr−1 is possible if a high photosynthetic efficiency organism such as Chlorella is used 

instead of H. pluvialis. C. vulgaris has been demonstrated to have a photosynthetic 

efficiency of 20% in large-scale cultures exposed to natural sunlight (Huntley and 

Redalje 2006) At this efficiency, they claim biodiesel would be cost-competitive with 

regular diesel. 

 Although C. vulgaris is considered one of the most suitable organisms for 

sustainable large-scale production of biodiesel, the process is still not considered by 

most to be commercially viable. There are two main strategies for addressing this issue; 

one is to improve the rate of biomass production of the organism and the other is to 

improve the rate of lipid biosynthesis within the available biomass production (Anthony 

et al. 2015). Much of the problem, however, lies in the fact that these two strategies 

seem to be mutually exclusive; one strategy cannot be employed without inhibiting the 

other (Sheehan et al. 1998). The simplest way to increase oil content in microalgae is 

through nutrient starvation, but this sharply decreases overall biomass production, and 

the net result of nutrient starvation is a lower yield of oil production (Sheehan et al. 

1998; Chisti 2007; Hu et al. 2008). What is needed to move forward is to overcome the 

paradoxical nature of the algal species and to discover a method of cultivating a fast-

growing and high oil-content organism. 

Genome-scale metabolic reconstruction has been useful in guiding metabolic 

engineering and hypothesis-driven exploration in a variety of organisms including 



7 
 

 
 

Escherichia coli, Saccharomyces cerevisiae, Mus musculus, and even Homo sapiens 

(Feist and Palsson 2008; Oberhardt, Palsson, and Papin 2009). To date, only a few 

genome-scale metabolic reconstructions of photosynthetic organisms have been created, 

including Synechocystis sp. (Montagud et al. 2010), Arabidopsis thaliana (de Oliveira 

Dal’Molin et al. 2010), Zea mays (Saha, Suthers, and Maranas 2011), Brassica napus 

(Hay et al. 2014), and C. reinhardtii (Chang et al. 2011). Of these, C. reinhardtii is the 

only algae with a genome-scale metabolic reconstruction. 

A metabolic reconstruction provides organized genomic, biochemical, and 

metabolic information on an organism that can be readily implemented into a functional 

metabolic model (Thiele and Palsson 2010). A high-quality reconstruction includes a 

network of reactions with proper stoichiometry, balanced mass and charge, gene-

protein-reaction (GPR) associations, and confidence scores which indicate the amount 

of available evidence for the reaction. With this level of information, reconstructions 

can be implemented for use in constraint-based analyses, specifically using the 

methodological framework outlined by COnstraint-Based Reconstruction and Analysis 

(COBRA) (Schellenberger et al. 2011). Using this framework, constraints based on 

mass conservation, thermodynamics, and experimental data can be input into a 

reconstruction to model organism behavior based on specified growth conditions, 

genetic modifications (knockouts, knockdowns, upregulations), and various other 

metabolic scenarios. 

In this thesis I report the creation of iCZ842, a genome-scale metabolic 

reconstruction of Chlorella vulgaris UTEX 395 based on homology with 

Chlamydomonas reinhardtii. The nearness of C. reinhardtii to C. vulgaris in phylogeny 
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made it an ideal candidate for a homology-based reconstruction. I created a draft 

reconstruction for C. vulgaris by computationally comparing the organism’s genes to 

the metabolic network reconstruction of C. reinhardtii, iRC1080 (Chang et al. 2011), 

and continued to use iRC1080 as a reference network for the duration of the manual 

curation phase of the project. I then proceeded to compile the results of published 

computational algorithms for the determination of subcellular localization of proteins. 

The consolidation of these algorithms allowed for the deduction of the 

compartmentalization of metabolic pathways, which is a key feature as well as a key 

challenge of eukaryotic network reconstructions. I then commenced a pathway-by-

pathway, reaction-by-reaction manual curation of the draft reconstruction. This 

involved identifying and characterizing every reaction in carbohydrate metabolism, 

energy metabolism, lipid metabolism, glycan metabolism, metabolism of cofactors and 

vitamins, and the metabolism of secondary metabolites. This was done by consulting 

literature and systematically identifying GPR associations using bioinformatics tools 

such as NCBI BLAST (Altschul et al. 1990). Amino acid metabolism and nucleotide 

metabolism pathway reconstruction were completed by another member of the lab. 

Following manual curation, I ensured that the network reactions were charge and mass-

balanced and further network validation tests including identification of metabolic dead-

ends and gap-filling were performed using COBRA Toolbox 2.0 by my collaborator 

(Schellenberger et al. 2011). I then used the completed model to simulate 

photoautotrophic, mixotrophic, and heterotrophic growth conditions in C. vulgaris. 
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II: 

Materials and Methods
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The Chlorella model reconstruction was created with assistance from the 

online tools and resources listed in Table M1. 

 

Draft Reconstruction 

The generation of a draft reconstruction for Chlorella vulgaris UTEX 395 was 

performed computationally by running a bidirectional BLAST (Altschul et al. 1990) 

with the manually curated reference network of the microalgae Chlamydomonas 

reinhardtii, iRC1080 (Chang et al. 2011). The selection of C. reinhardtii is based on the 

nearness in phylogeny of the photosynthetic organism based on the homology of 

multiple sequence alignments of ribulose-1,5-bisphosphate carboxylase (RuBisCO, EC 

4.1.1.39) (Figure M1). 

The initial draft reconstruction of the model was generated automatically using 

RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox 

(Agren et al., 2013). The RAVEN Toolbox incorporates subcellular localization of 

reactions, making it useful for reconstructions of eukaryotic organisms. RAVEN is also 

capable of interpreting input reference network reconstructions and genome sequences 

in order to automatically add reactions and genes from pre-existing models of similar 

organisms based on protein homology. It is also able to ascertain the KEGG Orthology 

ID of the genes of the subject organism based on the closest matches. 

Using the predicted C. vulgaris gene models (Guarnieri et al. 2013) and the 

reference network iRC1080, a draft reconstruction based on homology with C. 

reinhardtii was obtained. The resulting homology reconstruction accounts for 621 genes 

associated with 1,108 reactions and 1,249 metabolites distributed across six 
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compartments, namely cytoplasm, extracellular space, chloroplast, mitochondria, 

thylakoid and glyoxysome. This draft reconstruction forms the basis for the final 

reconstruction. 

A second draft reconstruction was also generated based on KEGG orthology. 

RAVEN Toolbox’s KEGG Orthology ID capability matches each gene of the organism 

of interest with a predicted homologous KEGG gene. A draft reconstruction based on 

KEGG was created, which accounts for 470 genes associated with 804 reactions and 

1,048 metabolites within the cytoplasm. Thus, the reconstruction based on KEGG 

orthology lacks compartmentalization. This network was utilized as an additional 

resource for the manual curation step, but was not the foundation for the final 

reconstruction. A reconstruction based on KEGG allowed for easy comparison between 

different resources, such as primary literature, KEGG and SwissProt. 

 

Subcellular Localization and Compartments 

 Various algorithms were implemented in tandem to help determine the 

subcellular localization of the proteins. The outputs of the following algorithms were 

combined in a single spreadsheet and considered in conjunction with information from 

literature references and metabolic context from surrounding reactions to determine the 

location of each reaction: 

ChloroP was used to predict chloroplastic proteins; it determines the presence 

of chloroplast transit peptides (cTP) in amino acid sequences and predicts the location 

of cTP cleavage sites (Emanuelsson, Nielsen, and Heijne 1999). 
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TargetP was used to predict the subcellular location of eukaryotic proteins as 

either mitochondrial, chloroplastic, signaling, or other; it assigns a location to an amino 

acid sequence based on the predicted presence of one of the N-terminal presequences 

including chloroplast transit peptides (cTP), mitochondrial targeting peptides (mTP) or 

secretory pathway signal peptides (SP) (Emanuelsson et al. 2000). 

SignalP was used to discriminate between signal peptides and transmembrane 

proteins; it outputs a signal peptide/non-signal peptide prediction and a signal peptide 

cleavage site location prediction in amino acid sequences from three different types of 

organisms (eukaryotes, Gram-positive prokaryotes, and Gram-negative prokaryotes) 

using artificial neural networks (Petersen et al. 2011). 

WoLF PSORT was used to predict subcellular localization based on similar 

protein sequences with known localizations (Horton et al. 2007). It converts amino acid 

sequences into numerical features and employs a k-nearest neighbor algorithm to 

determine similarity between the features of the input sequence and a dataset of either 

plant, fungi, or animal proteins from UniProt and other resources. WoLF PSORT 

classifies amino acid sequences as being located in either the nucleus, mitochondria, 

cytosol, plasma membrane, extracellular matrix, or chloroplast, and also includes 

potential dual-localizations for proteins that shuttle between compartments. 

CELLO II was used to predict subcellular localization for prokaryotic or 

eukaryotic proteins based on sequence homology and coding schemes involving amino 

acid physicochemical features; it outputs localization predictions for amino acid 

sequences based on composition, dipeptide composition, partitioned composition, and 

chemo-typy, and it also outputs an aggregate prediction that incorporates all 
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aforementioned methods (Yu et al. 2006).  CELLO II’s possible subcellular location 

predictions for eukaryotes include chloroplast, cytoplasmic, cytoskeleton, endoplasmic 

reticulum, extracellular, Golgi apparatus, lysosomal, mitochondrial, nuclear, 

peroxisomal, and plasma membrane. 

HECTARSEC is the general eukaryotic version of HECTAR, which specializes 

in predicting subcellular targeting in heterekonts; it outputs predictions for amino acid 

sequences as either containing a signal peptide, type II signal anchor, cTP, mTP or a 

protein that doesn’t contain a N-terminal target peptide (Gschloessl, Guermeur, and 

Cock 2008). 

 

Compartment pH and Protonation States 

In order to determine the protonation states of metabolites in their respective 

compartments, apposite pH values were assigned to each compartment based on 

literature evidence. When extracellular pH was 6.5, the pH of the cytosol was 

determined to be 7.2 (Komor and Tanner 1974; Kusel et al. 1990). The pH of the 

chloroplast was shown to be 8.0 in light conditions (Goss and Garab 2001; Hogetsu and 

Miyachi 1979). The thylakoid was also assigned a pH of 8.0 because it is a sub-

compartment of the chloroplast. The matrix of the mitochondria was found to have a pH 

of 7.8 in green algae (Giordano et al. 2003; Parisi et al. 2004). A pH of 7.0±0.2 was 

assigned to the extracellular matrix based on the pH of Bold’s minimal growth medium. 

The glyosxysome was assigned a pH of 8.2 (Dansen et al. 2001). 
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Manual Curation 

The manual curation phase of the reconstruction was performed by adapting a 

standardized high-quality metabolic reconstruction protocol to the requirements of our 

organism (Thiele and Palsson 2010). Metabolic pathways (e.g. pentose phosphate 

pathway) were added to the reconstruction one-by-one, using the primary pathways of 

the C. reinhardtii reconstruction as a reference initially, but also including additional 

pathways suggested by literature and gene presence to be present in C. vulgaris.  

To begin the manual curation process for each individual pathway, metabolic 

pathway databases including KEGG (Kanehisa and Goto 2000) and BioCyc, and 

MetaCyc (Caspi et al. 2014) were consulted so that a general layout of the pathway 

could be readily perceived. 

Each pathway was manually curated using available literature evidence from C. 

vulgaris and related species to determine the presence of particular enzymes and 

associated reactions, reaction directionality, cofactors involved in particular reactions 

and the mass and charge balance of the reactions. Protonation states of all compounds 

based on compartment-specific pH were accounted for when assigning charges. 

For every reaction in each pathway, the gene of a phylogenetically close 

organism or genes from multiple organisms (Chlorella variabilis, Coccomyxa 

subellipsoidea, Chlamydomonas reinhartii, Volvox carteri f. nagariensis, etc.) 

was/were selected to be compared with C. vulgaris genes in order to identify gene-

protein-reaction (GPR) associations. To perform this comparison and find the 

appropriate C. vulgaris gene, a local protein-protein BLAST (Altschul et al. 1990) of 

each characterized protein sequence selected from KEGG was performed against an 
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assembled database of the protein sequences of C. vulgaris to identify the individual 

protein(s) most likely responsible for catalyzing the given reaction. The resulting C. 

vulgaris protein sequences with expectation values (E values) smaller than 10-50, or else 

the protein with smallest E value, was/were presumed to be potential GPR associations 

for the reaction. To test these assumptions, each of the proposed protein sequences were 

then entered into a global protein-protein BLAST against NCBI’s non-redundant (nr) 

protein sequence database using NCBI’s blastp suite (Altschul et al. 1990). The C. 

vulgaris protein sequence or sequences that resulted in high-identity (40+%) matches 

with protein sequences of the expected gene association using this method was/were 

then assigned as the correct GPR association for the given reaction. Reactions with 

multiple protein sequences in their GPR association required a Boolean notation to 

indicate whether or not each protein sequence represented a subunit of a complex of 

proteins necessary for a reaction to take place (“and”) or an isozyme that also catalyzes 

the reaction (“or”). The absence of a high-identity protein sequence match for a GPR 

association for any given reaction resulted in low confidence for the existence of that 

reaction, and thus, that reaction would be left out of the model unless literature sources 

provided evidence for its existence, or else if the reaction was determined to be 

necessary to fill a gap within the network.  

Every reaction was characterized with a reaction name, reaction stoichiometry 

and directionality (reversible or irreversible), a gene-reaction rule providing organized 

GPR association information, an EC Number, a KEGG ID, literature references if 

available, a confidence score based on the literature and genetic evidence for the 

reaction, and reaction notes describing the unique and/or features of the reaction. 
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Similarly, every metabolite was characterized with a metabolite name, chemical 

formula, charge, compartmentalization, KEGG ID and InChI String if available. Once 

all the aforementioned reaction and metabolite information for the reactions was 

retrieved, it was added to the network using scripts from the COBRA toolbox 

(Schellenberger et al. 2011). 

The localization of each pathway in the network model was followed by 

assignment of transporters needed for functional conversion of pathway intermediates. 

Literature evidence and publicly available databases (BRENDA) were used to assign 

family and stoichiometry of transporters. In the absence of other evidence, necessary 

transporters were inferred from other organisms or else assumed to take the form of 

passive diffusion. 

 

Network Evaluation  

Following thorough manual curation of each pathway, the network was 

evaluated using the COBRA toolbox (Schellenberger et al. 2011). Charge and mass 

balance for every reaction was checked. Additionally, gap-filling analysis was 

performed to account for reaction gaps in the network and dead-ends in conversion of 

included intermediates and cofactors.  

The initial and final reactants and products of each pathway were investigated 

to identify potential dead-ends, and additional metabolic or transport reactions were 

incorporated as appropriate. In addition, manual quality control tests on ATPm, 

NADPH and NADH were done, ending in the elimination of free energy loops. 
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Modeling-based gap-filling was also performed in the framework of flux balance 

analysis, with the addition of reactions determined in silico to be needed for growth. 

 

Biomass Objective Functions 

Protein, nucleotide, lipid, carbohydrate and ribose in RNA profiles were 

measured experimentally under both photoautotrophic and heterotrophic conditions 

using the method outlined by Long and Antoniewicz 2014. C. vulgaris UTEX 395 cells 

were grown in a 250 mL bottle containing 200 mL of Bold’s Basal medium at a 

temperature of 24 ̊C (Guarnieri et al. 2013). A 14:10 hour light:dark cycle at 10,000 lux 

and a 1 percent CO2 flow of (12 mL min-1) were used. The tests for heterotrophic growth 

took place in identical conditions except instead using 10 g L-1 of glucose as an organic 

carbon source in 24 hours of dark. The protein profiles of C. vulgaris were completed 

by pulling from data in literature. Arginine, cysteine, glutamine, and tryptophan levels 

in photoautotrophic growth were found in Khairy, Ali, and Dowidar 2011 and Faheed 

and Abd-El Fattah 2008. Cysteine levels for heterotrophic growth were obtained from 

Wu et al. 2015. The determination of fatty acids group quantification was based on the 

lipid profile of C. vulgaris shown in Nichols, James, and Breuer 1967. The ratio of 

nucleotides (28 RNA per DNA) was obtained from Muthuraj et al. 2013. Experimental 

and literature data values were normalized considering a C. vulgaris cell of idealized 

weight and size. Rates of starch production and degradation were determined using 

experimental data. 
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Flux Balance Analysis and Flux Variability Analysis 

 Flux balance analysis (FBA) and flux variability analysis (FVA) were performed 

using COBRA Toolbox 2.0 and Gurobi Optimization tools. Autotrophic, mixotrophic, 

and heterotrophic growth conditions (Table M2) were simulated using Flux Balance 

Analysis to optimize flux through their respective biomass functions.  Then Flux 

Variability Analysis was then run on the optimized models at 90% of optimal flux 

through the biomass function to return a flux distribution. 

 

Flux Distribution Sampling 

 Reactions in the flux distributions returned by FVA analysis that carried a flux 

of 1E-9 or lower were removed from the dataset. The solution spaces were then sampled 

using optGPSampler (Megchelenbrink, Huynen, and Marchiori 2014). 50,000 sample 

steps and a quantity of sampling points equal to double the number of reactions were 

used for each solution space being sampled. The three resulting sampled solution spaces 

representing the three growth modes were then compared for significance using a p-

value cutoff of 0.05. 
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Table M1: Online resources and tools used for the construction of the Chlorella vulgaris mathematical 

model. 

Database Link Reference 

Functional annotation, draft generation and subcellular localization 

InterPRO http://www.ebi.ac.uk/interpro/ (Jones et al. 2014) 

PRIAM http://priam.prabi.fr/  (Claudel-Renard et al. 2003) 

Blast http://blast.ncbi.nlm.nih.gov/ (Altschul et al. 1990) 

RAVEN Toolbox http://www.biomet-toolbox.org/  (Agren et al. 2013) 

SignalP 4.1 Server http://www.cbs.dtu.dk/services/SignalP/ (Petersen et al. 2011) 

ChloroP 1.1 Server http://www.cbs.dtu.dk/services/ChloroP/ (Emanuelsson et al. 1999) 

WoLF PSORT http://www.genscript.com/psort/wolf_psort  (Horton et al. 2007) 

CELLO http://cello.life.nctu.edu.tw/ (Yu et al. 2006) 

TargetP 1.1 Server http://www.cbs.dtu.dk/services/TargetP/ (Emanuelsson et al. 2000) 

HECTAR http://www.sb-roscoff.fr/hectar/ (Gschloessl et al. 2008) 

SwissProt http://web.expasy.org/blast/  (The UniProt Consortium 2015) 

TransportDB http://www.membranetransport.org/  (Ren et al. 2007) 

TCDB http://www.tcdb.org (Saier et al. 2014) 

Manual curation 

KEGG http://www.genome.jp/kegg/  (Kanehisa et al. 2000) 

MetaCyc http://metacyc.org/  (Caspi et al. 2010) 

BIGG http://bigg.ucsd.edu/ (Schellenberger et al. 2010) 

BRENDA http://www.brenda-enzymes.org/ (Scheer et al. 2011) 

SwissProt http://enzyme.expasy.org/  (The UniProt Consortium 2015) 

EMBL-EBI http://www.ebi.ac.uk/intenz/ (McWilliam et al. 2013) 

ExplorEnz http://www.enzyme-database.org/  McDonald et al., 2007 

Conversion to mathematical model 

COBRA Toolbox 2.0 http://sourceforge.net/projects/opencobra/files/  (Schellenberger et al. 2011) 

ChemAxon http:// http://www.chemaxon.com/  ChemAxon, Inc. 

GUROBI optimization http://www.gurobi.com/  Gurobi Optimization, Inc 

ESCHER http://escher.github.io/ (King et al. 2015) 

optGpSampler http://cs.ru.nl/~wmegchel/optGpSampler/ (Megchelenbrink et al. 2014) 

SimPheny, Version 3.3   Genomatica, Inc. 

 

  

http://www.ebi.ac.uk/interpro/
http://priam.prabi.fr/
http://blast.ncbi.nlm.nih.gov/
http://www.biomet-toolbox.org/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/ChloroP/
http://www.genscript.com/psort/wolf_psort
http://www.cbs.dtu.dk/services/TargetP/
http://web.expasy.org/blast/
http://www.membranetransport.org/
http://www.tcdb.org/browse.php
http://www.genome.jp/kegg/
http://metacyc.org/
http://bigg.ucsd.edu/
http://www.brenda-enzymes.org/
http://enzyme.expasy.org/
http://www.ebi.ac.uk/intenz/
http://www.enzyme-database.org/
http://sourceforge.net/projects/opencobra/files/
http://www.chemaxon.com/
http://www.gurobi.com/
http://escher.github.io/
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Table M2: Growth conditions and constraints for autotrophic, mixotrophic, and heterotrophic growth 

modes. Flux values are given in mmol gDW-1 h-1. The “default” bounds for metabolic reactions are a 

lower bound of -1000 and upper bound of 1000. PRISM_solar_litho is the flux of photons into the 

network.  

 

  

Growth 

Condition/Constraint 

Autotrophic 

Flux 

Mixotrophic 

Flux 

Heterotrophic 

Flux 

Bound 

PRISM_solar_litho -646 -646 0 lower/lower/both 

EX_co2(e) -11 -11 0 lower/lower/both 

EX_glc-A(e) 0 -1 -1 both/lower/lower 

EX_starch(h) 0 0 -10 both/both/lower 

EX_o2(e) -10 -10 -10 lower 

EX_h(e) -10 -10 -10 lower 

EX_h2o(e) -10 -10 -10 lower 

EX_pi(e) -10 -10 -10 lower 

EX_nh4(e) -10 -10 -10 lower 

EX_no3(e) -10 -10 -10 lower 

EX_so4(e) -10 -10 -10 lower 

EX_fe2(e) -10 -10 -10 lower 

EX_fe3(e) -10 -10 -10 lower 

EX_mg2(e) -10 -10 -10 lower 

EX_na1(e) -10 -10 -10 lower 

H2Oth 0 0 0 upper/upper/lower 

PCHLDR 0 0 default both/both 

G6PADHh 0 0 default both/both 

G6PBDHh 0 0 default both/both 

FBAh 0 0 default both/both 

ATPSh default default 0 both 

GAPDH(nadp)hi default default 0 both 

MDH(nadp)hi default default 0 both 

MDHC(nadp)hr default default 0 both 

RBPCh default default 0 both 

RBCh default default 0 both 

SBP default default 0 both 

STARCH300DEGRA 1.7521e-07 1.7521e-07 0 upper 

STARCH300DEGR2A 0 0 6.5705e-07 upper 

STARCH300DEGRB 1.7521e-07 1.7521e-07 0 upper 

STARCH300DEGR2B 0 0 6.5705e-07 upper 
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Figure M1: Arbitrarily rooted phylogenetic tree based on multiple sequence alignments of long-chain 

RuBisCO generated using Phylogeny.fr (Dereeper et al. 2008). 

 



 
 

22 
 

 

 

 

III: 

Results
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 The genome-scale metabolic reconstruction of Chlorella vulgaris consisted of 

three major steps: 1) the generation of a draft reconstruction from homology with C. 

reinhardtii, 2) pathway-by-pathway manual curation of the draft reconstruction using 

literature and gene-reaction pathway databases and 3) network validation and 

simulation. The result of the reconstruction process can be compared to the 

reconstructions of other photosynthetic organisms in Table R1. 

 

Draft Reconstruction Characteristics 

 The draft reconstruction consists of 621 genes, 1108 reactions, and 1249 

metabolites that are distributed across six compartments. Namely, the cytosol, 

chloroplast, mitochondria, glyoxysome, thylakoid, and extracellular space. The 

aforementioned quantities of reactions and metabolites include reactions and 

metabolites that are present in multiple compartments. The number of compartments 

included in this reconstruction was reduced from the number of compartments in 

iRC1080, which includes also nucleus, flagellum, eyespot, and golgi. The reasoning for 

not including flagellum and eyespot compartments is obvious; Chlorella contains 

neither of these physiological structures. The golgi and nucleus were not included due 

to a general dearth of knowledge about reaction pathways in these bodies in Chlorella, 

and also, fewer subcellular localization methods were able to assign protein sequences 

into these compartments, making the potential certainty of such compartmentalization 

tenuous. Instead, reactions anticipated as occurring in compartments other than the six 

included were placed in the cytosol. 
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Reconstruction Subcellular Localization 

 Subcellular localization within C. vulgaris was assigned to reactions with the 

aid of information from literature, awareness of the localization of neighboring 

reactions, and various bioinformatics tools found online. Based on this information, 

each of the 1819 metabolic reactions were assigned to one of five compartments within 

the reconstruction (Figure R1). In this reconstruction, the thylakoid compartment is fully 

contained within the chloroplast just as it is located physiologically. The thylakoid is 

where the primary photosynthetic reactions, photosystems I and II occur, as well as 

chlorophyll and carotenoid synthesis. Meanwhile, the glyoxysome contains portions of 

the tricarboxylic acid (TCA) cycle, the glyoxylate cycle, fatty acid metabolism, and 

amino acid metabolism. 

 As mentioned previously, this reconstruction has four fewer compartments than 

the iRC1080 reconstruction. GPRs for retinol metabolism were found in C. vulgaris 

despite the absence of an eyespot. Since the eyespot is located in the chloroplast in C. 

reinhardtii, and because subcellular localization methods suggested the chloroplast as 

the most likely location for the reactions, retinol metabolism was placed in the 

chloroplast in iCZ842. The flagellar reactions in iRC1080 were not unique to the 

compartment, and simply were not included in iCZ842. A side-by-side comparison of 

the compartmentalization of iCZ842 and iRC1080 is shown in Figure R2. 

 

Reconstruction Subsystems 

 The final reconstructed metabolic network of iCZ842 consists of 1812 metabolic 

reactions divided into 8 major groups of subsystems and 70 different subsystems (Figure 
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R3). Subsystems are simply a way of organizing the metabolic network into sets of 

pathways so that specific reaction pathways are easier to find and work with. These 

subsystems range in size between one reaction (Tryptophan metabolism) and 359 

reactions (Glycerolipid metabolism). 

  iCZ842 exhibits more similarities to iRC1080 than differences in terms of the 

contents of the metabolic network. Of the 1812 reaction in the iCZ842 metabolic 

network, 209 of these reactions are not in iRC1080 (Table R2). Conversely, 109 

reactions in the iRC1080 metabolic network are not in iCZ842. These differences span 

all major groups of subsystems (Figure R4). The reactions omitted from iCZ842 

primarily include O-Glycan biosynthesis pathway reactions that were not found in C. 

vulgaris and pathways that were located in compartments not included in iCZ842 such 

as glycolysis in the flagellum, as well as a handful of reactions here and there for which 

no gene or insufficient evidence was found. The reaction pathways that are in just 

iCZ842 include thiamine metabolism, biotin biosynthesis, lipoic acid metabolism, 

ubiquinone and other terpenoid-quinone biosynthesis, brassinosteroid biosynthesis, 

alpha-linolenic acid metabolism, and the biosynthesis of phosphatidylcholines. 

 C. vulgaris can produce monogalactosyl diglycerides, digalactosyl diglycerides, 

phosphatidylglycerols, sulphoquinovosyl diglycerides, phosphatidylethanolamines, and 

phosphatidylcholines. For all of these, it produces significant amounts of C18:1, C18:2, 

and C18:3 fatty acid chains. It also produces C16:0, C16:1, C16:2, and C16:3 

monogalactosyl and digalactosyl diglycerides, and C16:0 phosphatidylglycerols 

(Nichols et al. 1967). All of the pathways necessary to produce these lipids were 

included in the lipid metabolism section of the reconstruction. 
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Biomass Objective Functions 

 C. vulgaris can grow under three different conditions: photoautotrophic, 

mixotrophic, and heterotrophic. Each growth condition can be represented 

quantitatively by using different biomass objective functions (BOF). Each BOF is an 

equation that contains stoichiometric coefficients expressed in mmol gDW-1 of all 

metabolites that contribute to the biomass of the organism. The BOFs of the C. vulgaris 

model contain values for 20 amino acids, 4 nucleosides, 4 nuclotides, 5 carbohydrates 

(including starch), 101 lipid compounds, and 11 pigments. The Chlorella model 

includes three biomass objective functions corresponding to three different growth 

modes: autotrophic, mixotrophic, and heterotrophic. 

 

Growth Mode Analysis 

 Following the computational determination of optimal growth using flux 

balance analysis (FBA), flux variability for each reaction in the Chlorella network was 

determined. By sampling the solution space, we were able to predict the average and 

range expected values for fluxes through each reaction in each growth mode. 

Statistically significant differences in sampled flux distributions for specific reactions 

between different growth modes provided insight into how Chlorella’s metabolism 

responds to different growth scenarios. Photoautotrophic growth was modeled using 

inputs of light (i.e. photons) and carbon dioxide; mixotrophic growth was modeled using 

inputs of light, carbon dioxide, and glucose; heterotrophic growth was modeled using 

no light and an input of glucose as the lone carbon source. 
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Five reactions in the pentose phosphate pathway (PPP) were determined to have 

statistically significant differences in flux between autotrophic and heterotrophic growth 

modes and also between mixotrophic and heterotrophic growth modes (Table R3). 

Ribose-phosphate diphosphokinase (RPDPK), D-ribulose-5-phosphate 3-epimerase 

(RPEh), ribose-5-phosphate isomerase (RPIh), transketolase 1 (TKT1h) and 

transketolase 2 (TKT2h) play a crucial role in the central carbon metabolism as they act 

as intermediaries between glycolysis, carbon fixation, and nucleotide biosynthesis. A 

metabolic network map of the relevant portion of the PPP was created to show how the 

different reaction fluxes affected the flow of metabolites in each growth mode (Figures 

R5-R7). Immediately noticeable is that phosphoribulokinase (PRUK) and ribulose-

bisphosphate carboxylase (RBPCh) carry a significant amount of flux away from the 

D-ribulose 5-phosphate node in the autotrophic and mixotrophic modes, but carries no 

flux in the heterotrophic mode. This is also expected, as a key characteristic of 

heterotrophic growth is the inability to fix carbon, and the light-activated RBPCh is the 

primary reaction in carbon fixation (Pedersen, Kirk, and Bassham 1966). Thus, RBPCh 

has been switched off in the heterotrophic growth mode. It is also apparent that fewer 

metabolites are channeled through the PPP in the heterotrophic growth mode (Figure 

R7). Yang et al. show that while the cytosolic portion of the PPP seems to carry more 

flux in heterotrophic growth than in photoautotrophic or mixotrophic growth in 

Chlorella sp., the chloroplastic portion of the PPP is not significantly active in 

heterotrophic growth, and overall, the photoautotrophic and mixotrophic growth modes 

carry more flux through the PPP (Yang, Hua, and Shimizu 2000). This claim is 

substantiated in our simulation of Chlorella vulgaris, where PPP is much more active 
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in photoautotrophic and mixotrophic growth, as in these modes, glucose 6-phosphate 

metabolites are channeled through the PPP towards D-ribulose 5-phosphate to be used 

as a substrate for carbon fixation by RuBisCO (RBPCh).  However, despite its low 

utilization of the PPP, the heterotrophic growth mode sees the most metabolites 

channeled towards nucleic acid production via ribose-phosphate diphosphokinase 

(RPDPK).  

Sampling the solution space of growth modes also provided insight into the 

production of fatty acids and lipids in Chlorella. For instance, four fundamental 

reactions in the fatty acid biosynthesis pathway were determined to have statistically 

different sampled flux distributions between the three growth modes (Table R4). 

ACOATA and MCOATA produce acetyl-acyl-carrier-protein (acetyl-ACP) and 

malonyl-acyl-carrier-protein (malonyl-ACP) respectively. These are the two substrates 

required by KAS14 to initiate the entire process of building fatty acids, which are in 

turn used as substrates to produce all the lipids created by the organism. Intriguingly, 

the mixotrophic mode provides the largest flux through these three reactions, whereas 

the heterotrophic growth mode provides the least. However, acyl-ACP delta9-

desaturase ((9Z)-n-C16:1) (ACP1619ZD9DS), which produces C16:1 

monounsaturated fatty acids and leads to the production of C18:1 monounsaturated fatty 

acids, is slightly higher in heterotrophic mode than mixotrophic or autotrophic modes. 

Variations in activity for certain enzymes at these key junctures of lipid production 

could significantly alter the outcome of what types of lipids are produced, and in what 

quantity. 
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Table R1: Characteristics of metabolic network reconstruction of Chlorella vulgaris and other 

photosynthetic species. All species are eukaryotic, except Synechocystis, which is a cyanobacterium. 

Organism 
Synechocystis 

sp. PCC6803 

Zea 

mays 

Ostreococcus 

tauri 

Chlamydomonas 

reinhardtii 

Chlorella 

protothecoides 

Chlorella 

vulgaris 

UTEX 

395 

Genome size 3.57 Mb 2.4 Gb 12.6 Mb 100 Mb 22.9 Mb 63 Mb 

Model genes 

(Total genes) 
678 (3,575) 

1563 

(32540) 
0 (7699)* 1073(14,354) 461 (7039) 

842 

(7100) 

Total 

Reactions 
863 1985 801 2190 272 2261 

Metabolites 790 1825 1014 1707 144 1760 

Compartments 3 5 1 10 4 6 

Reference 
Nogales et al. 

2012 

Saha, 

Suthers, 

and 

Maranas 

2011 

Krumholz et 

al. 2012 

Chang et al. 

2011 
Wu et al. 2015 

This 

thesis 
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Figure R1: Distribution of the metabolic reactions of iCZ842 based on compartment. 
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Figure R2: Quantity of metabolic reactions in the different compartments of iCZ842 and iRC1080. 
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Table R2: Quantity of metabolic reactions in each the major groups of subsystems in just iCZ842, iCZ842 

and iRC1080, or just iRC1080  

 
iCZ842 

iCZ842 and 

iRC1080 
iRC1080 

Carbohydrate Metabolism 26 238 44 

Energy Metabolism 0 52 1 

Lipid Metabolism 68 623 4 

Nucleotide Metabolism 7 175 9 

Amino Acid Metabolism 29 283 3 

Glycan Metabolism 0 28 23 

Metabolism of Cofactors and Vitamins 72 143 24 

Secondary Metabolites and Other 

Reactions 
7 61 1 

Total Metabolic Reactions 209 1603 109 
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Figure R3: Percentage of metabolic reactions contained by each of eight major groups of subsystems in 

iCZ842. 
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Figure R4: Quantity of metabolic reactions that are not in both iCZ842 and iRC1080 by subsystem. 

iCZ842 contains several pathways in Metabolism of Cofactors and Vitamins that are not in iRC1080 

including thiamine metabolism, biotin biosynthesis, lipoic acid metabolism, ubiquinone and other 

terpenoid-quinone biosynthesis, brassinosteroid biosynthesis, alpha-linolenic acid metabolism. iCZ842 

also contains a phosphatidylcholine biosynthesis pathway in Lipid Metabolism that is not in iRC1080. 

iCZ842 does not contain the O-glycan biosynthesis pathway that is present in iRC1080. iCZ842 also does 

not contain some duplicate pathways (pathways that occur in more than one compartment) in 

Carbohydrate Metabolism and Nucleotide Metabolism that are located in the flagellum and nucleus 

respectively in iRC1080, compartments which are not in iCZ842. 

  

0

50

100

150

200

250

iCZ842 iRC1080

Metabolic Reaction Subsystem Comparison

Secondary Metabolites and
Other Reactions

Metabolism of Cofactors and
Vitamins

Glycan Metabolism

Amino Acid Metabolism

Nucleotide Metabolism

Lipid Metabolism

Energy Metabolism

Carbohydrate Metabolism



35 
 

 
 

Table R3: The mean flux value of sampled points for five key reactions in the pentose phosphate pathway 

of C. vulgaris in the autotrophic, mixotrophic, and heterotrophic growth modes. For all five reactions, the 

difference in flux between autotrophic and heterotrophic as well as mixotrophic and heterotrophic modes 

were determined to be statistically significant (p < 0.05). Additionally, there is a significant difference in 

RPDPK flux between autotrophic and mixotrophic growth modes (RPDPK = ribose-phosphate 

diphosphokinase, RPEh = D-ribulose-5-phosphate 3-epimerase, RPIh = ribose-5-phosphate isomerase, 

TKT1h = transketolase 1, TKT2h = transketolase 2). 

 

  

 Mean sampled flux value (mmol gDW-1 h-1) 

Autotrophic Mixotrophic Heterotrophic 

RPDPK 0.00029 0.00004 0.00041 
RPEh -7.24040 -9.80200 0.02999 
RPIh 3.52250 4.35360 -0.07049 
TKT1h -3.61790 -4.88380 0.01823 
TKT2h -3.62250 -4.91820 0.01175 
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Figure R5: Pentose phosphate pathway map of the autotrophic growth mode. Flux values given in mmol 

gDW-1 h-1 are mean values received from sampling (G6PBDH = glucose-6-phosphate 1-dehydrogenase 

(g6p-B), G6PADH = glucose-6-phosphate 1-dehydrogenase (g6p-A), 6PGLthr = 6-phospho-D-glucono-

1,5-lactone transport (chloroplast) , PGLh = 6-phosphogluconolactonase, PGDHh = 6-phosphogluconate 

dehydrogenase, TAh = transaldolase, PRUK = phosphoribulokinase, RBPCh = ribulose-bisphosphate 

carboxylase, RPDPK = ribose-phosphate diphosphokinase, RPEh = D-ribulose-5-phosphate 3-

epimerase, RPIh = ribose-5-phosphate isomerase, TKT1h = transketolase 1, TKT2h = transketolase 2).  
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Figure R6: Pentose phosphate pathway map of the mixotrophic growth mode. Flux values given in mmol 

gDW-1 h-1 are mean values received from sampling (G6PBDH = glucose-6-phosphate 1-dehydrogenase 

(g6p-B), G6PADH = glucose-6-phosphate 1-dehydrogenase (g6p-A), 6PGLthr = 6-phospho-D-glucono-

1,5-lactone transport (chloroplast) , PGLh = 6-phosphogluconolactonase, PGDHh = 6-phosphogluconate 

dehydrogenase, TAh = transaldolase, PRUK = phosphoribulokinase, RBPCh = ribulose-bisphosphate 

carboxylase, RPDPK = ribose-phosphate diphosphokinase, RPEh = D-ribulose-5-phosphate 3-

epimerase, RPIh = ribose-5-phosphate isomerase, TKT1h = transketolase 1, TKT2h = transketolase 2).  
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Figure R7: Pentose phosphate pathway map of the heterotrophic growth mode. Flux values given in mmol 

gDW-1 h-1 are mean values received from sampling (G6PBDH = glucose-6-phosphate 1-dehydrogenase 

(g6p-B), G6PADH = glucose-6-phosphate 1-dehydrogenase (g6p-A), 6PGLthr = 6-phospho-D-glucono-

1,5-lactone transport (chloroplast) , PGLh = 6-phosphogluconolactonase, PGDHh = 6-phosphogluconate 

dehydrogenase, TAh = transaldolase, PRUK = phosphoribulokinase, RBPCh = ribulose-bisphosphate 

carboxylase, RPDPK = ribose-phosphate diphosphokinase, RPEh = D-ribulose-5-phosphate 3-

epimerase, RPIh = ribose-5-phosphate isomerase, TKT1h = transketolase 1, TKT2h = transketolase 2).  
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Table R4: The mean flux value of sampled points for four reactions in the fatty acid biosynthesis 

pathway of C. vulgaris in the autotrophic, mixotrophic, and heterotrophic growth modes. For all four 

reactions, the differences in flux between each pairing of growth modes were determined to be 

statistically significant (p < 0.05), except there was no significant difference between autotrophic and 

mixotrophic growth modes for ACP1619ZD9DS (ACP1619ZD9DS = acyl-ACP delta9-desaturase 

((9Z)-n-C16:1)), KAS14 = beta-ketoacyl-ACP synthase, ACOATA = beta-ketoacyl-acyl-carrier-protein 

synthase III, MCOATA = malonyl-CoA ACP S-malonyltransferase). 

 

 Mean sampled flux value (mmol gDW-1 h-1) 

Autotrophic Mixotrophic Heterotrophic 

ACP1619ZD9DS 0.0040 0.0036 0.0056 

KAS14 0.0406 0.2235 0.0105 

ACOATA 0.0406 0.2235 0.0105 

MCOATA 0.2953 1.5719 0.0809 
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IV: 

Discussion
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 The genome-scale reconstruction of the metabolic network of C. vulgaris UTEX 

395 was reconstructed using a methodical procedure incorporating genomics, reaction 

databases, and literature searches. The reconstruction includes organized genomic, 

biochemical, and metabolic information of C. vulgaris and can be utilized to map its 

metabolism. The reconstruction has also been successfully implemented as a 

mathematical model to predict metabolic behavior in various growth conditions. The 

model used was able to predict a decrease in total flux through the pentose phosphate 

pathway when C. vulgaris is grown in heterotrophic conditions versus when it is grown 

in photoautotrophic or mixotrophic conditions. 

 Several vitamin and cofactor pathways of interest have been included in this 

reconstruction based on genomic and literature evidence. In particular, the pathways 

leading to the production of brassinosteroids, plant hormones recently isolated and 

characterized in C. vulgaris (Bajguz 2009). Brassinosteroids are important regulators of 

plant growth and factor significantly into plant response and resistance to environmental 

stresses (Bajguz and Hayat 2009) Similarly, pathways leading to jasmonic acid 

production were also included due to being identified in Chlorella (Ueda et al. 1991). 

Jasmonic acid is another plant hormone that is known to play a role in biotic and abiotic 

stress response (Bajguz and Hayat 2009). Inclusion of these pathways is potentially 

useful to researchers attempting to improve growth rates of C. vulgaris, as well as 

bolster its ability to resist environmental stresses. Additionally further investigation of 

vitamin biosynthesis pathways in C. vulgaris may be useful in investigating its potential 

to produce pharmaceuticals and other high value products (Skjånes, Rebours, and 

Lindblad 2012). 
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 Because there is particular interest in C. vulgaris as a source of lipids for the 

production of biofuels, special attention was given to including all lipid metabolism 

pathways that are evidenced by literature and the genome functional annotation. The 

reconstruction includes pathways leading to the production of triacylglycerides (TAGs) 

with C16 and C18 fatty saturated, monounsaturated, and polyunsaturated fatty acid 

groups. These TAGs can be split via transesterification into C16 and C18 fatty acid 

esters to produce biodiesel. Much is known about the relative lipid production of 

Chlorella vulgaris in photoautotrophic, mixotrophic, and heterotrophic growth 

conditions with both glucose and acetate as a carbon source (Nichols 1965; Nichols et 

al. 1967; Chisti 2007; Liang, Sarkany, and Cui 2009). Namely, that Chlorella grown 

heterotrophically on glucose or acetate generally produces a larger quantity of lipids 

than photoautotrophically grown Chlorella. However, the various metabolic routes used 

(and unused) by Chlorella that determine which types of lipids are produced, and that 

ultimately result in higher lipid yield for heterotrophic conditions, is still unclear on a 

network-wide level. It is clear from both prior experimental results, as well as from our 

simulations, that the PPP and Embden-Meyerhof glycolytic pathway differ significantly 

between growth modes, and are fundamental in both the general growth of the organism, 

and in producing the building block metabolites that become lipids. The iCZ842 

reconstruction allows for simple quantitative modeling of these central carbon 

metabolism pathways and others on a system-wide scale in specific growth conditions, 

and will help determine the optimal condition for growth and lipid production of C. 

vulgaris. 
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 The iCZ842 reconstruction also provides a path forward towards understanding 

the metabolic pathways that lead to the production of the TAGs that are ideal for the 

manufacture of biodiesel; it can be used to model growth conditions as well as potential 

gene insertions and deletions that could optimize TAG production. The model was able 

to identify acyl-ACP delta9-desaturase (ACP1619ZD9DS), beta-ketoacyl-ACP 

synthase (KAS14), beta-ketoacyl-acyl-carrier-protein synthase III (ACOATA), and 

malonyl-CoA ACP S-malonyltransferase (MCOATA) as four fundamental fatty acid 

biosynthesis reactions whose fluxes varied significantly between autotrophic, 

mixotrophic, and heterotrophic growth conditions. These reactions and the gene-

protein-reaction connections that govern them could be candidates for further study 

regarding their potential for increasing lipid production via metabolic engineering. 

 Beyond the inherent value of the iCZ842 reconstruction to investigating C. 

vulgaris for its scientific and industrial potential, the reconstruction can also be used as 

a template to study further algal and plant specimens. C. vulgaris is now just one of a 

few photosynthetic species with a genome-scale metabolic reconstruction (Table R1). 

Much as iRC1080 was an invaluable reference network reconstruction to the creation 

of iCZ842, it is evident that iCZ842 could be used in a similar way. Therefore, in 

addition to serving as a mathematical model and a genomic, metabolic, and biochemical 

knowledgebase for C. vulgaris UTEX 395, iCZ842 can be used to aid the construction 

of further high-quality metabolic network reconstructions.  
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