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Abstract 

We derive a fonnula for the free electron laser gain in the small-signal, low-gain regime 

which resembles closely the I-D fonnula but taking into account the effect of wave diffraction and 

electron beam divergence and betatron motion. The fonnula is cast in a fonn which exhibits clearly 

the role of the transverse phase space distribution of photons and electrons. 

1 . Introduction 

We obtain a simple expression for the free electron laser (PEL) gain in the low gain regime 

that takes into account the three dimensional effects due to wave diffraction, and electron beam 

divergence and betatron motion. The analysis is based on a perturbation theory of the coupled 

Maxwell-Vlasov's equations derived earlier [1]. 

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy 
Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. 
DE-AC03-76SFOOO98. 
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Section 2 establishes the notation and provides a brief summary of the steps leading to the 

coupled equations. Section 3 contains the main results of this paper. The fonnula for the gain is 

given by eq. (23), where F is the electron distribution function, Uy is the amplitude of the 

undulator radiation, and Ay is the amplitude of the incoming laser; The gain is an energy derivative 

of the undulator radiation intensity emitted into the incoming laser mode - averaged over the 

electron beam distribution. Thus it is in a form closely analogous to the I-D Madey's theorem [2]. 

When the betatron focusing effect can be neglected, the gain fonnula can be cast into a form which 

brings out the effects of the electrons' phase space distribution and the wave diffraction very 

clearly. This is equation (28), which is a convolution of three phase space distribution functions; F 

for the electrons, B A for the incoming radiation and BU for the undulator radiation. Here B A and 

Bu are an exanJi1le of the generalized brightness function which plays the role of the phase space 

distribution function for radiation field [3]. 

2. EEL Eguations Takin~ into Account 3-D Effects and Electron Beam Betatron Motion 

We consider electrons traveling in the z-direction through an undulator, interacting with the 

radiation field The notations are as follows: Tae average energy of electrons = mc2yo (m = 
electron mass, c = velocity of light), length of the undulator period = Au, peak undulator magnetic 

2 
field = Bo, the fundamental resonant frequency COl = Ck1 = 21tCf)...1 = 2 kuC'YQI(1 + K2/2), 

K = eBoImc ku, e = electron charge, ku = 21t1Au. (MKS units are used throughout this paper). 

We consider the case of a planar undulator with the magnetic field in the y-direction. Denoting the 

transverse coordinate by x = (x, y), the x-component electric field is represented by 

E (x. z. t) = & f do> av(x.z) e-iAvk.z eiv",,(t-zfc) 

In PELs, the complex amplitude ay(x, z )is a slowly varying function of z and peaked around 

narrow regions of v = CO/ro1 = k/lq around odd integers n, i.e., 

Il.v == v - n «1 . 
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The distance z will be regarded as the independent variable. The dependent variables 

describing the motion of an electron in the longitudinal direction are 

8 = kuz - COl (i (Z) - z/C), 11 = (1 - 10'110 . 

Here i(z) is the time at which the electron passes through z, averaged over one undulator period. 

The variables in the transverse direction are 

x = (x, y) , 

The pair (x ,x) describes the betatron motion of the electron trajectory. The equations of motion 

which generalize the one-dimensional pendulum equation are 

(3) 

(4) 

de. = 211ku - kl (x2 + k~ x2) , dl1 = eCOl L Kn 1 dv av (x, z)e-iv9 (5) 
dz 2 dz 2Y2x mc2 Yo n v-n 

~ = x , ~ = - k~x (6) 

In the above, k~ is the strength of the betatron focussing due to, for example, a shaping of the 

undulator poles, and 

(7) 

The Klimontovitch distribution function describing the microscopic distribution of the electrons is 

F(e,,, ,x,x;z) = (kl~e) ~ o(e - ei(Z)) Ii(" - T\~z)) 0(2)(x - Xi(Z)) 0(2)(i - Xi(Z)) , (8) 
1 
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where dNeldz is the average number of electrons per unit longitudinal length, assumed in this paper 

to be constant. The distribution function is separated into the ensemble averaged smooth 

background F and the deviation from it Sf: 

F{9,11 ,x,x;z) = F(l1,x,x;z) + S~9,Tl ,x,x;z) 

Note that F is independent of 9, since we are assuming that the beam density is unifonn in the 

longitudinal direction. The nonnalization is such that 

f F (l1,x,x;z) dll dx dX = 1 . 

The function SF contains the FEL dynamics, and will be regarded small compared to F. It is 

convenient to introduce the Fourier transfonn: 

l)Fv(TJ.x.x;Z) = ,in f de eivG l)~e.TJ.x.x;z) . 

With these definitions, the Maxwell equation becomes 

where 

(~ - iavku + ~ Vi) av(x;z) = -gn f drt dHFv(TJ .x.x;z) • 

g _ e Kn dNe 
n - 4£oYock l dz 

Here, Eo is the vacuum dielectric constant. The continuity equation for the electron distribution 

function can be separated into two parts. The equation for SF'v in the lowest order is 

(~- 2iVl'\ku + i ~ w(x.x) + i:: ~- k~ x~) SFv(Tl,x,x;z) az ax ax 

= - hn av(x;z) ~ F (Tl,x,x;z) , 
en, 
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where 

hn = e kl Kn . 
2mc~ 

(12) 

(13) 

The equation describing the evolution of F, obtained by taking the ensemble- and the a-averaging 

of the continuity equation is 

(a . a k2 a)n .) -+x-- ~x - £,l1,x,x;z 
az ax ax 

(14) 

Here D. z is the length of the electron bunch, assumed to be sufficiently long. 

Equations (9), (11) and (14) are the basis of a self-consistant, quasi-linear theory of FEL 

including the three dimensional effect. In this paper, we neglect the evolution ofF, taking it to be 

the unperturbed distribution. The coupled set, Eqs. (9) and (11), then describes the FEL 

amplification in the small signal regime. 

We solve Eq. (11) by the technique of the integration over the unperturbed trajectory [4] 

One obtains 

exp - iv {2 k,.n(s-z) -~ f ds' w(xo. iol} . 

c: 
.J 

(15) 



o 
where SF is 8Fv in the absence of the PEL interaction, L is the length of the undulator, and v 

Xo == X <1x,X,z;s] ,xo == x <1x,X,z;s] , 

are the solutions of the traj~tory equation, Eq. (6), with the initial condition 

Xo = x, xo = i at s=z. Also x~ and x~ represent X() and xo in the above with the independent 

variable s replaced by st. We note that 

F(1l ,xo,xo;s) = F(1l ,x,x;z) . 

Inserting Eq. (15) into Eq. (9), we obtain 

(i;: -~vku + 2~ V2
) ay(x;z) = - g" f dTJ iii 8~ (T'\.X.X.Z) - g"hn f dTl die F (Tl.x.x;z) 

~- r ds av(xo. s) eXP-iv\/2k.,Tl(s-z) -~ l' dS'w(X~.i~)} 
dr1 )-1../2 z 

(16) 

(17) 

The effect of t:!le first tenn in the R.H.S. is to produce the spontaneous radiation. The second tenn 

contains the f'EL gain, and reduces the well known fonnula for the case electrons are parallel [5]. 

The Laplace-traDsfonned version of the equation was first reported in Ref [1]. The equation was 

solved by a variational approximation to obtain the exponential growth rate in the high-gain regime 

[6]. Recently, a more general approach to study the exponential gain regime is being developed 

based on orthogonal1"unction expansion of SFv [7]. 

3. Analysis in IDe Low Gain Re~ime 

To solve Eq (17) in perturbation series, it is convenient to introduce the angular 

representation: 

6 



(18) 

Equation (17) can be converted to an integral equation for Av(';z), which ~an be iterated to obtain a 

perturbation series. The lowest order terms are 

(19) 

In the above, the first, the second and the third tenns in the bracket represent respectively the 

incident radiation, the spontaneous radiation usually referred to as the undulator radiation, and the 

first order amplification. The undulator radiation is given by 

LI2 f.' U lit., .) - ik,·x f d -i ds' ~.("ll.x.i:s') v\",1l,x,x - Un e s eo' 
- L/2 

(20) 

where Un = e Kn/4 V!i £0 'Yo c A,2, and x(s) and x(s) are the solution of the trajectory equation with 

the initial condition x(O) = x and x(O) = x. The first order amplification tenn is given by 

Tbegain is defined as 

l' ds' e-ik,'·x e{ ds,/i.(",'l,X,';;S,) A~cp') . 
.L/2 
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To the lowest order, it then follows from Eq. (21) that 

G = -Cn f dl1 dx di F(l1,x,x;O) ~ 

(22) 

(23) 

where Cn = hn gnlu~ ).2, and Uy • is the complex conjugate ofUy • Equation (23) is Oile of the main 

results of the present paper. Recall that Uy (CP,l1,x,x) is the amplitude of the (spontaneous) 

undulator radiation, at (0 = VCIlj, by an electron travelling the entire length of the undulator with 

energy 'Y = 'Yo( 1 + 11) and with the transverse position x and angle x at z=O. The integral I dcp 

U * (CPt •• ) A O(CP) can be interpreted as the projection of the undulatorradiation amplitude into the v y 

mode of the incoming radiation. Equation (23) closely resembles the 1-D Madey's theorem [2]. 

The mode with the maximal gain can be found from the eigenvalue equation 

Equations (23) and (24) are a generalization of those derived by Moore [5] for the case the 

electrons move parallel to each other without the betatron motion (no focusing). 

When the focusing can be neglected, we h~ve [3] 

UJcp,l1 ,x,,,) = eik~·" U~(cp-i'Tl) , 

o 
o 

(24) 

(25) 



where U~CP,''1) = Uv(CP,11 ,0,0) is the radiation amplitude of an ideal trajectory with x = i = 0. 

From Eq. (25), we have 

U~CP,11) = Un L sin 4>/4> , (26) 

where 4> = ((AV -211v) ku + kcp2/2) l/l is sometimes known as the detuning parameter. Inserting 

Eq. (25) into Eq. (23), we obtain the following gain formula when the focussing can be neglected: 

G = -(e2 1(2,J8mc3 Eo Yo) dNJdz f dll dx <Ii F (ll,x,x;O) ~ 
(27) 

In the I-D limit without energy spread, we set F = S (1\) S(2) (iVI" where l: is the transverse area, 

and lA~cpf = S(2'cp). Equation (27) then becomes the well-known I-D formula. 

G~ven an electric field amplitude E(cp) in angular representation, we can introduce the 

corresponding brighbless distribl!tion function 

The real function B can be interpreted as the phase space density of the spectral flux of photons, 

much like F (11 ,x,x; 0) is the phase space density of electrons [3]. Denoting BA and BU be the 

brightness functions corresponding to the input radiation A~(CP) and the undulator radiation 

U~(CP;l1), we can show from (Eq. (27) that the gain in the case of no transverse focussing can be 

written as 

(28) 
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Thus the gain is essentially a convolution of the three phase-space distribution functions, F, Bu 

and B A. Equation (28) exhibits very clearly the role of the phase space distribution of electrons 

and photons in the PEL gain. 

The three distribution functions in Eq. (28) are those evaluated at z=O. The distribution 

functions, for electrons as well as photons, at Zi!O are related to those at z=O by the coordinate 

transfonnation of the form x-+x - ~, cp -+ • [3]. Equation (28) is invariant under this 

transformation. 

Numerical study of the fonnula derived in this paper wi! be presented elsewhere. A 

previous work on the subject of this paper can be found in Ref. [8]. 
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