UC Riverside UC Riverside Previously Published Works

Title

A Bound on the Sum of Weighted Pairwise Distances of Points Constrained to Balls

Permalink https://escholarship.org/uc/item/9c84b11m

Author Young, Neal E

Publication Date 2010-07-01

Peer reviewed

A Bound on the Sum of Weighted Pairwise Distances of Points Constrained to Balls *

Neal E. Young

September 1994

Abstract

We consider the problem of choosing Euclidean points to maximize the sum of their weighted pairwise distances, when each point is constrained to a ball centered at the origin. We derive a dual minimization problem and show strong duality holds (i.e., the resulting upper bound is tight) when some locally optimal configuration of points is affinely independent. We sketch a polynomial time algorithm for finding a near-optimal set of points.

1 Introduction

We consider the following maximization problem $P(n, w, \ell)$:

$$\begin{aligned} & \text{maximize}_{\{p_i\}} \quad \sum_{1 \le i < j \le n} w(i, j) d(p_i, p_j) \\ & \text{subject to} \begin{cases} p_i \in \mathbb{R}^{n-1} & (i = 1, .., n); \\ ||p_i|| & \le \ell(i) & (i = 1, .., n). \end{cases} \end{aligned}$$

Here each $w(i, j) \ge 0$ and each $\ell(i) \ge 0$ is fixed, d(p, q) denotes the Euclidean distance between points p and q, and ||p|| denotes the Euclidean length (distance from the origin) of point p.

We derive the following dual problem $D(n, w, \ell)$:

$$\begin{array}{l} \text{minimize}_{\{x_i\}} \sqrt{\sum_{1 \le i < j \le n} \frac{w^2(i,j)}{x_i x_j}} \times \sqrt{\sum_{i=1}^n \ell^2(i) x_i} \times \sqrt{\sum_{i=1}^n x_i} \\ \text{subject to} \begin{cases} x_i \in \mathbb{R} \quad (i=1,..,n); \\ x_i \ge 0 \quad (i=1,..,n). \end{cases} \end{aligned}$$

Throughout the paper, $\frac{0}{0}$ is defined to be 0.

We show that the value of the maximization problem is at most the value of the minimization problem. We use a physical interpretation of the two problems to show that the values are equal

^{*}Technical Report #1103, School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca NY. This research was partially supported by Éva Tardos' NSF PYI grant.

provided the maximization problem admits a set of points $\{p_i\}$ that is both affinely independent and stationary (i.e., the gradient of the objective function is a nonnegative combination of the gradients of the active constraints, a necessary condition at any local maximizer of $P(n, w, \ell)$).

We sketch how a near-optimal solution to the problem can be found in polynomial time via the ellipsoid method.

2 Related Work

The case $w(i, j) = \ell(i) = 1$ (in which the optimal points are given by the vertices of the regular *n*-simplex, achieving a value of $n\sqrt{\binom{n}{2}}$) was previously considered by [3]. Our Lemma 1 generalizes a bound in that paper.

Specific instances of $P(n, w, \ell)$ were studied to obtain geometric inequalities that were used to analyze approximation algorithms for finding low-degree, low-weight spanning trees in Euclidean spaces [2].

Goemans and Williamson [1] consider related problems with applications to approximating the maximum cut in a graph and to maximizing the number of satisfied clauses in a CNF formula. We modify their approach to solving their problems to obtain a polynomial time algorithm for ours.

3 A Dual Problem

Lemma 1 For any n, w, and ℓ , the value of the maximization problem $P(n, w, \ell)$ is at most the value of the minimization problem $D(n, w, \ell)$.

Proof: Fix any n, w, and ℓ . Fix any set of points $\{p_i\}$ and values $\{x_i\}$ meeting the constraints of $P(n, w, \ell)$ and $D(n, w, \ell)$, respectively. Let $A(i, j) = \frac{w(i, j)}{\sqrt{x_i x_j}}$ and $B(i, j) = \sqrt{x_i x_j} d(p_i, p_j)$ for $1 \le i < j \le n$. Then, by the Cauchy-Schwartz inequality $A \cdot B \le ||A|| \times ||B||$ (where A and B are interpreted as $\binom{n}{2}$ -dimensional vectors, and \cdot denotes the dot product):

$$\sum_{i < j} w(i,j)d(p_i,p_j) \le \sqrt{\sum_{i < j} \frac{w^2(i,j)}{x_i x_j}} \times \sqrt{\sum_{i < j} x_i x_j d^2(p_i,p_j)}.$$
(1)

It remains only to show

$$\sum_{i < j} x_i x_j d^2(p_i, p_j) \le \left(\sum_i x_i\right) \times \left(\sum_i \ell^2(i) x_i\right).$$

Expanding the left-hand side,

$$\begin{split} \sum_{i < j} x_i x_j d^2(p_i, p_j) \\ &= \frac{1}{2} \sum_{i,j} x_i x_j (p_i - p_j) \cdot (p_i - p_j) \\ &= \frac{1}{2} \sum_{i,j} x_i x_j (p_i \cdot p_i - 2p_i \cdot p_j + p_j \cdot p_j) \end{split}$$

$$\leq \sum_{i,j} x_i x_j (\ell^2(i) - p_i \cdot p_j)$$

$$= \left(\sum_i x_i \right) \times \left(\sum_i x_i \ell^2(i) \right) - \left(\sum_i x_i p_i \right) \cdot \left(\sum_i x_i p_i \right)$$

$$= \left(\sum_i x_i \right) \times \left(\sum_i x_i \ell^2(i) \right) - \left\| \sum_i x_i p_i \right\|^2$$

$$\leq \left(\sum_i x_i \right) \times \left(\sum_i x_i \ell^2(i) \right).$$
(3)

Lemma 2 Fix any n, w, and ℓ . Suppose the maximization problem $P(n, w, \ell)$ admits a set of points $\{p_i\}$ that is both stationary and affinely independent. Then the values of the two problems are equal. Further, there exists $\{x_i\}$ such that

$$x_{i}p_{i} = \sum_{j} w(i,j) \frac{p_{i} - p_{j}}{d(p_{i}, p_{j})}$$
(4)

(where $x_i = 0$ in case $||p_i|| < \ell_i$, and w(i, j) = w(j, i) and w(i, i) = 0), and $\{p_i\}$ and $\{x_i\}$ are global optima for the two problems.

Proof: Fix any n, w, and ℓ . Consider the objective function $\Phi(\{p_i\}) = \sum_{ij} w(i, j)d(p_i, p_j)$ of $P(n, w, \ell)$. That $\{p_i\}$ is stationary means that the gradient of Φ is a nonnegative combination of the gradients of the constraints of $P(n, w, \ell)$ active at $\{p_i\}$. By elementary calculus, the gradient of Φ consists of a vector f_i for each point p_i , with each f_i equal to the right-hand side of (4). The only constraint on p_i is $||p_i|| \leq \ell(i)$, whose gradient (again by elementary calculus) is a nonnegative multiple of p_i . Thus, for each i, there exists an $x_i \geq 0$ such that (4) holds. Note that if $||p_i|| < \ell(i)$, then the constraint is not active, so that f_i must be the zero vector. In this case we take $x_i = 0$.

We will show that each inequality in Lemma 1 is tight for these $\{p_i\}$ and $\{x_i\}$. Inequality (3) is tight because, by (4), $\sum_i x_i p_i$ is the zero vector. Inequality (2) is tight because $||p_i|| < \ell(i)$ only if $x_i = 0$.

Inequality (1) is tight provided the vector A (in the proof of Lemma 1) is a scalar multiple of B. Assume $\{p_i\}$ is affinely independent. Then, considering $\{x_i\}$ and $\{p_i\}$ fixed and $\{w(i, j)\}$ as the set of unknowns (i.e., reversing their roles), (4) uniquely determines each w(i, j). Since

$$w(i,j) = \frac{x_i x_j d(p_i, p_j)}{\sum_k x_k} \quad (1 \le i < j \le n)$$

$$\tag{5}$$

is consistent with (4) (check this by substitution for w(i, j) in (4)), it follows that (5) necessarily holds. Thus, A is a scalar multiple of B and Inequality (1) is tight.

A physical model for the quantities involved is as follows. Consider a physical system of n points $\{p_i\}$. Each point p_i is constrained to a ball of radius $\ell(i)$ centered at the origin. For each pair of points (p_i, p_j) , p_i repels p_j (and vice versa) with a force of magnitude w(i, j).

Under this interpretation, each vector f_i in the proof corresponds to the force on p_i , and x_i is the magnitude of this force, divided by $||p_i||$.

4 Solving $P(n, w, \ell)$ in Polynomial Time

If the instance of $P(n, w, \ell)$ is small or has a high degree of symmetry, the dual problem $D(n, w, \ell)$ might yield a function that can be minimized directly by symbolic methods. In general, it is possible to solve $P(n, w, \ell)$ (to any given degree of precision) in polynomial time using semi-definite programming, following the approach in [1].

Those authors consider a related problem GW(w, n):

$$\begin{aligned} & \text{maximize}_{\{p_i\}} \quad \sum_{1 \le i < j \le n} w(i, j) d^2(p_i, p_j) \\ & \text{subject to} \begin{cases} p_i \in \mathbb{R}^n \quad (i = 1, .., n); \\ \|p_i\| &= 1 \qquad (i = 1, .., n). \end{cases} \end{aligned}$$

The authors show how to solve this problem in polynomial time by formulating it as a semi-definite program, and how to round a (near-)optimal set of points $\{p_i\}$ to obtain an approximate solution to a corresponding max-cut problem. This approach yielded the first polynomial-time approximation algorithm achieving a performance guarantee better than two for the max-cut problem.

We briefly sketch their aproach for solving GW(w, n) and how it can be modified to solve $P(w, n, \ell)$. The connection between sets of points and positive semi-definite matrices is the following: an $n \times n$ symmetric matrix Y is positive semi-definite if and only if there exists a set of n points $\{p_i\}$ in \mathbb{R}^n such that $Y_{ij} = p_i \cdot p_j$. Thus, GW(w, n) is equivalent to following:

$$\begin{aligned} & \text{maximize}_{\{Y\}} \ \sum_{ij} w(i,j)(2-2Y_{ij}) \\ & \text{subject to} \begin{cases} Y & \text{is an } n \times n \text{ symmetric, positive semi-definite matrix;} \\ & Y_{ii} &= 1 \end{cases} & (i=1,..,n). \end{aligned}$$

The space of $n \times n$ symmetric, positive semi-definite matrices admits a polynomial time separation oracle because a symmetric matrix Y is positive semi-definite if and only if $x^T Y x \ge 0$ for each $x \in \mathbb{R}^n$, and in fact it suffices to check each eigenvector x of Y. Thus, combining the constraint that Y is positive semi-definite with arbitrary linear inequalities on the elements of Y yields a convex space with a polynomial time separation oracle. Approximate feasibility of such a problem is testable in polynomial time via the ellipsoid method. Thus, GW(n) can be solved to near-optimality in polynomial time.

A similar approach can be used to solve $P(n, w, \ell)$ in polynomial time. In particular, $P(n, w, \ell)$ corresponds to the following semi-definite program:

$$\begin{aligned} & \text{maximize}_{\{Y\}} \sum_{ij} w(i,j) \sqrt{Y_{ii} + Y_{jj} - 2Y_{ij}} \\ & \text{subject to} \begin{cases} Y \text{ is an } n \times n \text{ symmetric, positive semi-definite matrix;} \\ & Y_{ii} \leq \ell(i) \end{cases} & (i = 1, .., n). \end{aligned}$$

Since $\sum_{ij} w(i,j) \sqrt{Y_{ii} + Y_{jj} - 2Y_{ij}}$ is a concave function in $\{Y_{ij}\}$ whose gradient can be computed in polynomial time, the above program also admits a separation oracle sufficient to solve it to near-optimality in polynomial time using the ellipsoid method.

5 Open Problems

It would be interesting to obtain a more efficient algorithm for solving $P(w, n, \ell)$ than is obtained by reducing to the ellipsoid method. Especially interesting would be a primal-dual algorithm along the lines of traditional "combinatorial" algorithms for solving or approximating linear programs. It is not clear how to achieve such algorithms in the semi-definite setting.

Similarly, the only known method for achieving a better factor than two for the max-cut problem is by reduction to semi-definite programming. Goemans and Williamson leave open the problem of finding a more efficient algorithm that beats a factor of two. A more efficient algorithm for $P(n, w, \ell)$ (with each $\ell(i) = 1$) would solve this, because applying their randomized rounding technique to $P(n, w, \ell)$ also yields an approximation algorithm for max-cut with performance guarantee better than two.

On the other hand, consider the generalization of GW(n, w) in which the objective function is replaced by $\sum_{ij} w(i, j) d^{2+\epsilon}(p_i, p_j)$ for some $\epsilon \ge 0$. For $\epsilon > 0$, applying Goemans and Williamson's approach to this program rather than GW(n, w) would provide a better approximation to max-cut. Is the generalization solvable in polynomial time for some $\epsilon > 0$?

6 Acknowledgements

Thanks to Michael Todd for helpful discussions and comments on an earlier draft of this paper.

References

- Michel Goemans and David Williamson. .878-approximation algorithms for MAX CUT and MAX 2SAT. In Proc. of the 26th Ann. ACM Symp. on Theory of Computing, 1994.
- [2] Samir Khuller, Balaji Raghavachari, and Neal Young. Low-degree spanning trees of small weight. In Proc. of the 26th Ann. ACM Symp. on Theory of Computing, 1994.
- [3] J. N. Lillington. Some extremal properties of convex sets. Math. Proc. Cambridge Philosophical Society, 77:515–524, 1975.