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Abstract

AI-driven brain-computer interfaces for speech

Sean L. Metzger

Speech is a fundamental human behavior, and enables the fast, e↵ortless expression of

emotions, desires, and needs. Devastating conditions like paralysis and brain-stem stroke

can rob individuals of the ability to speak, even though they retain intact cognitive abilities.

Brain-Computer Interface (BCI) technology o↵ers hope for such individuals by reading out

these intact neural signals using a recording device, then deciphering what the person was

trying to say using machine learning and artificial intelligence. Prior to beginning this thesis,

many questions remained in the development of speech-BCIs. Could speech be decoded from

the brain of a person who hadn’t spoken for many years and was su↵ering from paralysis?

What algorithms could do this? What recording technologies could be used? Would the

brain activity look similar to healthy speakers, or would it have evolved? Could we enable

someone to speak quickly and naturalistically with these devices?

With these questions in mind, we launched the BCI restoration of arm and voice (BRAVO)

clinical trial. This trial explores the use of Electrocorticography (ECoG), a high-resolution

neural recording modality, to read out and decode neural activity during intended speech.

This thesis presents results on work I have done as part of this clinical trial, and demonstrates

successful speech decoding with two incredible participants who have each been unable to
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speak for over 15 years.

Chapter 1 introduces a proof-of-concept speech BCI in someone who cannot speak, show-

casing real-time decoding of 50 words and restoring communication at 15 words per minute.

Chapter 2 expands the scope of speech BCIs, enabling speech-based spelling with NATO

codewords, achieving 29 characters per minute and allowing communication with a prac-

tically unlimited vocabulary. We also show silent-speech attempts can be decoded, and

that low-frequency neural activity (between .6 and 16.67 Hz) is critical to decoding. Chap-

ter 3 introduces a state-of-the-art BCI which can decode text from neural activity during

silent speech attempts at 80 words per minute. Sound units and facial gestures were also

predictable, enabling auditory and visual representations of attempted speech. These ad-

vancements illustrate the potential of speech BCIs to restore communication for those who

have lost their voice, and demonstrated that speech representations are maintained for years

even after paralysis.

Taken together, this research presents progress in the development of speech BCIs and

signifies a significant step towards improving the lives of individuals with communication

impairments through versatile and comprehensive speech restoration systems.
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Introduction

Speech is a unique and defining characteristic of the human species and serves as our

primary mode of communication. It enables us to express our desires, emotions, and needs.

It lets us interact with others and form bonds and relationships, and is the default mode of

communication we use in our day to day lives. It is a beautiful and intricate motor process

that requires the brain to control and coordination of hundreds of muscles in our vocal tract

in order to shape breath into words and sentences.

Unfortunately, many individuals lose their ability to speak due to devastating conditions

such as brain-stem stroke, paralysis, and amyotrophic lateral sclerosis (ALS). Despite this

loss, many of these individuals retain intact cognitive abilities and brain signals necessary for

speech production. It is only because of disrupted pathways between the brain and muscles

that the neural commands for speech generation do not reach the vocal tract. While some

individuals with these conditions can resort to communication methods like eye-tracking

based spelling, these solutions can be slow and cumbersome, significantly reducing quality

of life.(Felgoise et al. 2016)

Brain-Computer Interface (BCI) technology has emerged as a promising approach to

restore communication for people with these conditions by circumventing damaged neural

pathways. Fundamentally, a BCI functions by directly decoding neural activity into in-
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tended messages (Brumberg et al. 2018). The majority of intracortical BCIs that have been

demonstrated focus on decoding neural activity related to hand and arm movements into a

binary click (Vansteensel et al. 2016), cursor control to select letters one by one, Pandarinath

et al. 2017 or handwritten letters (Willett et al. 2021) to drive spelling-based devices. While

promising, these devices lag far behind natural rates of communication from speech, achieving

rates of at best 18 words per minute, whereas natural speech enables communication at 150

words per minute (8x higher) (Edward F. Chang and Anumanchipalli 2019). Non-invasive

approaches also show great promise - for example visually-based P300 approaches Nijboer,

Plass-Oude Bos, et al. 2014 were also promising. A full comparison of device communication

rates with paralyzed participants appears in Table 0.1. In addition to their slower rates of

communication, these devices are notably less naturalistic to use than a device where you

would simply speak the words you are intend to say.

Thus, a more ideal BCI would translate intact brain signals directly into intended speech.

However, the development of such technology presents several challenges, including the need

for a neural recording technology that enables precise readout of neural signals, selecting

the right brain areas to record from, and the development of high-performance decoding

strategies.

One potential recording modality for a speech BCI is Electrocorticography (ECoG), a

method that provides high-quality neural signals with excellent temporal resolution across

extensive areas of the motor cortex (Edward F Chang 2015). Because it can record directly

from the brain’s surface, ECoG holds promise in decoding complex neural activity associated
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with speech control that non-invasive recording modalities may not be able to capture. ECoG

electrodes are also relatively large in size (1mm in diameter) and sit on the surface of the

brain, making them less invasive than recording technologies that penetrate into brain tissue

and less prone to instability compared to other devices like the Utah array which record

with higher spatial precision but are susceptible to disruptions in daily use due to its much

smaller electrodes shifting (Pandarinath et al. 2017; Willett et al. 2021). The combination

of high temporal and spatial resolution, along with its potential for stable chronic recordings

make ECoG a promising recording modality for BCIs.

Another crucial question is where to record neural activity to facilitate speech restora-

tion. The ventral sensorimotor cortex (vSMC) is a critical area involved in articulation

control (Chartier et al. 2018; Carey et al. 2017; Bouchard et al. 2013), known to contain

cortical representations that can be leveraged to decode intended speech from brain signals

in healthy speakers with ECoG implanted for the treatment of intractable epilepsy (Makin

et al. 2020; Anumanchipalli et al. 2019). Prior to this thesis, it remained uncertain whether

these representations persisted in individuals with long-term paralysis.

With these questions in mind, our lab initiated the BRAVO (BCI Restoration of Arm and

Voice) trial in 2019, focusing on studying a chronic ECoG-based speech BCI for participants

unable to speak. This thesis presents a series of results from this trial, which have laid the

groundwork towards a clinically viable speech neuroprosthesis and shown the e↵ectiveness

of ECoG as a recording modality for speech brain-computer interfaces.

Chapter 1 presents a proof-of-concept study from the BRAVO trial, showcasing the suc-
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cessful implementation of a speech BCI in an individual with severe paralysis and anarthria

caused by a brainstem stroke. The clinical-trial participant highlighted in this work, BRAVO-

1, had a brainstem stroke following a car accident over 15 years ago. This accident left him

unable to speak or type to communicate and prior to starting the trial, he used small residual

neck movements to type out messages using a stylus attached to a baseball cap on his head

at a painstaking rate of 5 words per minute. In early 2019, Bravo-1 underwent surgery to be

implanted with a 128-electrode ECoG grid. The grid was implanted to maximize coverage

of the vSMC and was attached to a pedestal that was surgically embedded in his skull that

enabled chronic recording with the array.

We then recorded neural activity while Bravo-1 attempted to articulate 50 English words

aloud. These 50 words were selected to be highly usable and important in clinical care setting

and could be combined to form over 1,000 sentences. Next, we trained two artificial neural

network models using Bravo-1’s neural data. We first created a speech-detection model

that could distinguish when Bravo-1 was attempting to speak vs not. Then we trained a

classifier to predict which of the 50 words Bravo-1 was saying during a speech attempt. Using

these models, we created a real-time system that could detect when he was attempting to

speak with the speech-detection model, then predict the probability of each of the 50 words

given the neural activity during the speech attempt with the classifier. We accumulated

sequences of these word predictions as BRAVO-1 attempted to string together words in a

sentence. Natural language processing algorithms infused the sequences of predictions with

the statistics of english to produce the most lingustically probable sentence, given the model
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predictions. We were able to use this system in real-time to decode sentences composed of the

50 words at 15 words per minute and with 25% word error rate. These results highlighted the

persistence of neural signals related to attempted articulation even after long-term paralysis

and demonstrated that it was possible to restore communication via speech decoding in

someone with paralysis and anarthria.

Chapter 2 builds on the technology developed in Chapter 1 by developing a spelling BCI

driven by speech attempts. Although chapter 1 served as an important proof of concept, its

practical use was quite limited, as Bravo-1 could only speak using words that fell within the

50-word vocabulary. We hence devised a spelling system that decoded NATO codewords

(e.g. Alpha for A, Bravo for B and so forth) from neural activity as BRAVO-1 attempted

to say the NATO codewords. The idea was that sequences of these codewords could be

combined to spell out any word in the English language (e.g. Charlie-Alpha-Tango for cat),

greatly expanding the vocabulary BRAVO-1 could use to express himself.

In this work, we also showed it was possible to decode the NATO codewords during silent-

speech attempts, which involve attempted mouth movement without vocalization, rather

than ’overt’ speech attempts which invoked our participants residual vocalization as in our

previous works. Silent-speech attempts are advantageous since they are less e↵ortful to com-

plete and more discreet than overt speech attempts. However, we found they were slightly

more di�cult to decode than ’overt’ speech attempts. To overcome this challenge, we ex-

panded the neural features used during decoding to include both low-frequency signals and

high-gamma activity. We found that important and unique spatial and temporal informa-
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tion was present in low-frequency features, and that these features enabled high-accuracy

decoding of the NATO codewords.

We then used this decoding to drive a real-time speech-driven spelling system that suc-

cessfully decoded sentences with 94% character level accuracy using a large vocabulary of

over 1,000 words. O✏ine simulations indicated that limiting words decoded with this system

to an even larger vocabulary of 9,000 words did not significantly degrade performance. Im-

portantly, our system operated at 29 characters per minute, 70% faster than our participants

communication prior to the study (17 characters per minute). While this speed corresponded

to a communication rate of 7 words per minute that was slower than our previous direct word

decoding approach at 7 words , an advantage of this approach relative to spelling BCIs driven

by hand activity is that it could naturally be paired with a direct word-decoding approach,

making for a fast and generalizable BCI experience.

In summary, chapter 2 demonstrates that speech BCIs can be used with large vocabularies

of over 1,000 words and that silent-speech attempts are a viable recording modality. Its

high accuracy and expressive decoding established that speech BCIs could be a much more

clinically viable pathway for restoring communication.

In 2022, we enrolled another participant into our clinical trial. This participant, similar to

our first, had su↵ered a tragic brainstem stroke and had not been able to speak for 18 years.

This heartbreakingly left her completely unable to vocalize and move. She enrolled in the

BRAVO trial and underwent surgical implantation of an ECoG array. In the time between

our first implantand the second, recording technology had improved such that this array
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had nearly 2x as many electrodes as BRAVO-1’s array and the electrodes were much closer

together (3mm spacing vs 4mm with BRAVO-1). This enabled more detailed recordings

than we had with BRAVO-1, and we asked if we could see better results than what we had

seen with BRAVO-1

Chapter 3 demonstrated that recordings from this grid could be used to develop a state-of-

the-art speech BCI. In this chapter, we trained artificial neural networks to decode sequences

of phonemes from neural activity as our participant attempted to silently speak sentences

scraped from tweets and movie dialogues. The decoded sequences of phonemes could then

be assembled to form words. A significant challenge in training models with this approach

is that we could never know at which timepoint our participant was trying to say each

phoneme, since they cannot speak. We addressed this problem by using the connection-

ist temporal classification loss, which enables the training of decoding algorithms without

alignment between the neural activity and the labels being used for training. This approach

led us to achieve speeds of nearly 80 words per minute during real-time decoding as our

participant produced sentences composed of words from a vocabulary of over 1,000 words

with high accuracy.

While this represents the state-of-the art in communication rates achieved with a brain-

computer interface, speech-based communication relies on many elements beyond just the

text of what we are saying. Sound can convey tone and emphasis in what we are trying to

express. Hence, we modified our system to predict sound units derived from self-supervised

learning instead of phones. These sound-units could then be combined to synthesize an



8

intelligible auditory representation of the speech that the participant was attempting to say.

Similarly, facial gestures play a large role in communication with others, as they can express

emotion and reactions to speech in addition to carrying non-verbal meaning. We therefore

further modified our system to produce discretized movement units that could then be used

to reconstruct the continuous articulatory movements the participant was attempting to

produce. These movements could then be used as inputs to a 3d avatar, which produced

life-like movements that carried information about what the participant was trying to say

and were strongly correlated with neurotypical speaker’s orofacial movements during speech.

Overall, chapter 3 represents the culmination of years of research in the BRAVO trial,

as we leaned on the research in chatpers 1 and 2 demonstrating that speech and silently

attempted speech could be decoded, and used many of the signal processing techniques

learned along the way in this chapter. More importantly, chapter 3 demonstrates the true

promise of speech BCIs - that they can be used to restore communication using the natural

way we communicate at far higher speeds than handwriting driven BCIs.

Together, these chapters present an important series of developments in the development

of Brain-Computer Interface technology for speech restoration in individuals with commu-

nication impairments and expands the possibilities for improving quality of life for those

a↵ected by losing the ability to speak. The integration of direct speech and spelling BCI

approaches, alongside novel phoneme decoding techniques, holds promise for realizing a com-

prehensive and versatile speech restoration system, bringing us one step closer to bridging the

communication divide for the many people around the world who su↵er from the devastating
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loss of the ability to speak.
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Table 0.1. Comparison of BCI communication speeds for participants with paral-
ysis.

Study Recording modality Words per minute Control Strategy

Willett et al. 2021 Utah array 18 Handwriting
Pandarinath et al. 2017 Utah Array 6.3 Cursor control
Nijboer, Sellers, et al. 2008 EEG 0.31-0.82 Visual spelling
Vansteensel et al. 2016 ECoG 0.23 Movement attempts
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Chapter 1

Neuroprosthesis for decoding speech

in a paralyzed person with anarthria

Disclaimer: This chapter is a direct adaptation of the following article. Supplementary

material is not included in this adaptation, but is available online.

David A. Moses*, Sean L. Metzger*, Jessie R. Liu*, et al. (2021). Neuroprosthesis for

Decoding Speech in a Paralyzed Person with Anarthria. New England Journal of Medicine,

385(3), 217-227. doi: 10.1056/NEJMoa2027540.

* Denotes equal contribution.

Personal contributions: I trained and developed the real-time 50-word classification detec-

tion models and performed decoding performance, electrode contribution, and model stability

analyses. With David A. Moses and Jessie. R. Liu, I collected data, edited all figures, and with

Edward F. Chang we wrote the original draft of the manuscript with input from all authors.
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1.1 Abstract

Background: Technology to restore communication for paralyzed patients who have

lost the ability to speak has the potential to improve autonomy and quality of life. Decoding

words and sentences directly from the neural activity of a paralyzed individual who cannot

speak may be an improvement over existing methods for assisted communication.

Methods: We implanted a high-density, subdural multi-electrode array over the speech

motor cortex of a person with anarthria, the loss of the ability to articulate speech, and

spastic quadriparesis caused by brainstem stroke. Across 48 sessions, we recorded 22 hours

of cortical activity while the participant attempted to say individual words from a 50-word

vocabulary. Using deep learning, we created computational models to detect and classify

words from patterns in the recorded cortical activity. We applied these models and a language

model, which describes how frequently certain word sequences occur in natural language, to

decode full sentences as he attempted to say them.

Results: We decoded sentences from the participant’s cortical activity in real time at

a median rate of 15 words per minute with a median word error rate of 26%. In post-hoc

analyses, we detected 98% of individual word production attempts and classified words with

47% accuracy using cortical signals that were stable throughout the 81-week study period.

Conclusions: In a person with anarthria caused by brainstem stroke, we used machine

learning and a natural language model to decode words and sentences directly from cortical

activity as the person attempted to speak.
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1.2 Introduction

Anarthria is the loss of the ability to articulate speech. It can result from a variety of

conditions, including stroke and amyotrophic lateral sclerosis (Beukelman et al. 2007). Pa-

tients with anarthria may have intact language and cognition, and some are able to produce

limited oral movements and undi↵erentiated vocalizations when attempting to speak, but

neuromuscular disorder prevents speech (Nip and Roth 2017). For paralyzed individuals

with severe movement impairment who are unable to operate assistive devices, it hinders

communication with family, friends, and caregivers, reducing self-reported quality of life

(Felgoise et al. 2016).

Advances have been made with typing-based brain-computer interfaces that allow speech-

impaired individuals to spell out messages using cursor control (Sellers et al. 2014; Vansteensel

et al. 2016; Pandarinath et al. 2017; Brumberg, Pitt, et al. 2018; Linse et al. 2018). However,

letter-by-letter selection interfaces driven by neural signal recordings are slow and e↵ortful.

A more e�cient and natural approach may be to directly decode whole words from brain

areas that control speech. Our understanding of how the speech motor cortex orchestrates

the rapid articulatory movements of the vocal tract has expanded (Bouchard et al. 2013;

Lotte et al. 2015; Guenther and Hickok 2016; Emily M Mugler et al. 2014; Chartier et al.

2018; Salari et al. 2019). Engineering e↵orts have leveraged these findings and advances in

machine learning to demonstrate that speech can be decoded from brain activity in people

without speech impairments (Her↵ et al. 2015; Angrick et al. 2019; Anumanchipalli et al.



17

2019; David A. Moses, Metzger, et al. 2021; Makin et al. 2020).

For paralyzed individuals who cannot speak, neural activity cannot be precisely aligned

with intended speech due to the absence of speech output, posing an obstacle for training

computational models (Martin et al. 2018). In addition, it is unclear whether neural signals

underlying speech control are still intact in individuals who have not spoken for years or

decades. In earlier work, a paralyzed person used an implanted intracortical two-channel

microelectrode device and an audiovisual interface to generate vowel sounds and phonemes

but not full words (Guenther, Brumberg, et al. 2009; Brumberg, Wright, et al. 2011).

To determine if speech can be directly decoded from the neural activity of a person who

is unable to speak, we tested real-time word and sentence decoding from the cortical activity

of a person with limb paralysis and anarthria resulting from brainstem stroke.

1.3 Methods

Trial overview

This work was performed as part of the BRAVO study (BCI Restoration of Arm and

Voice function, clinicaltrials.gov, NCT03698149), which is a single-institution clinical trial

to evaluate the potential of electrocorticography, a method for recording neural activity

from the cerebral cortex using electrodes placed on the surface of the brain, and custom

decoding techniques for communication and movement restoration. The device used in this
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study received Investigational Device Exemption approval by the United States Food and

Drug Administration. At the time of writing, only one participant has been implanted with

the device. Due to regulatory and clinical considerations concerning proper handling of the

percutaneous connector, the participant did not have the opportunity to use the system

independently for daily activities.

This work was approved by the UCSF Committee on Human Research and supported

in part by a research contract under Facebook’s Sponsored Academic Research Agreement.

Only the authors were involved in the design and execution of the clinical trial; the collection,

storage, analysis, and interpretation of the data; and the writing of the manuscript and

decision to publish it. No study hardware or data were transferred to any sponsor, and

we did not receive any hardware or software from a sponsor to use in this work. There

were no agreements between the authors and any sponsor restricting the authors’ analysis

or publication of the data. All authors confirm that the clinical study, data, analyses, and

reporting of outcomes are valid and adhere to the protocol.

Participant

The participant is a right-handed male who was 36 years old at the start of the study.

At age 20, he su↵ered extensive bilateral pontine strokes associated with a right vertebral

artery dissection, which resulted in severe spastic quadriparesis and anarthria as confirmed

by a speech language pathologist and neurologists.
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He is cognitively intact, scoring 26 out of 30 points on the Mini-Mental Status Exam and

being physically incapable of scoring the remaining 4 points due to his paralysis. He is able

to vocalize grunts and moans but unable to produce intelligible speech. He has unimpaired

eye-movement control. He normally communicates using an assistive computer-based typing

interface controlled by his residual head movements, with typing rates at approximately 5

correct words or 18 correct characters per minute.

Implant device

The neural implant used to acquire brain signals from the participant is a customized

combination of a high-density electrocorticography electrode array (PMT Corporation, MN,

USA) and a percutaneous connector (Blackrock Microsystems, UT, USA). The rectangular

electrode array has a length of 6.7 cm, width of 3.5 cm, and thickness of 0.51 mm and consists

of 128 flat, disc-shaped electrodes with 4-mm center-to-center spacing arranged in a 16-by-

8 lattice formation. During surgical implantation, the participant was put under general

anesthesia and the left-hemisphere speech sensorimotor cortex, identified using anatomical

landmarks of the central sulcus, was exposed via craniotomy. The electrode array was then

laid on the surface of the brain in the subdural space. The electrode coverage enabled sam-

pling from multiple cortical regions that have been implicated in speech processing, including

portions of the left precentral gyrus, postcentral gyrus, posterior middle frontal gyrus, and

posterior inferior frontal gyrus (Bouchard et al. 2013; Chartier et al. 2018; Guenther and
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Hickok 2016; Emily M. Mugler et al. 2018). The dura was sutured closed and the cranial bone

flap was replaced. The percutaneous connector was placed extracranially on the contralat-

eral skull convexity and anchored to the cranium. This percutaneous connector conducts

cortical signals from the implanted electrode array through externally accessible contacts to

a detachable digital link and cable, enabling transmission of the acquired brain activity to

a computer (Figure 1.6). The participant underwent surgical implantation of the device in

February 2019 and had no complications. The procedure lasted approximately 3 hours. We

began collection of data for this study in April 2019. Neural data acquisition and real-time

processing

Using a digital signal processing system (NeuroPort System, Blackrock Microsystems),

signals from all 128 electrodes of the implant device were acquired and transmitted to a

separate computer running custom software for real-time analysis (Figure 1.6, Figure 1.7

(David A Moses et al. 2018; David A. Moses, Leonard, et al. 2019). Informed by previous

research that has correlated neural activity in the 70–150 Hz (high gamma) frequency range

with speech motor processing (Bouchard et al. 2013; Chartier et al. 2018; Emily M. Mugler

et al. 2018; David A. Moses, Leonard, et al. 2019; Salari et al. 2019), we measured high

gamma activity for each channel on this separate computer to use in all subsequent analyses

and during real-time decoding.



21

Task design

The study consisted of 55 sessions over 81 weeks and took place at the participant’s

residence or in a nearby o�ce. The participant engaged in two tasks: an isolated word task

and a sentence task (Figure 1.8).

On average, we collected approximately 27 minutes of neural data with these tasks during

each session. In each trial of each task, the participant was visually presented with a target

word or sentence as text on a screen and then attempted to produce (say aloud) that target.

In the isolated word task, the participant attempted to produce individual words from a

set of 50 English words. This word set contained common English words that can be used

to create a variety of sentences, including words that are relevant to caregiving and words

requested by the participant. In each trial, the participant was presented with one of these

50 words, and, after a 2-second delay, he attempted to produce that word when the word

text on the screen turned green. We collected a total of 9800 trials of the isolated word task

with the participant across 48 sessions throughout the study period.

In the sentence task, the participant attempted to produce word sequences from a set

of 50 English sentences consisting only of words from the 50-word set. In each trial, the

participant was presented with a target sentence and attempted to produce the words in

that sentence (in order) at the fastest rate that he was comfortably able to. Throughout the

trial, the word sequence decoded from neural activity was updated in real time and displayed

as feedback to the participant. We collected a total of 250 trials of the sentence task with
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the participant across 7 sessions at the end of the study period. A conversational variant of

this task, in which the participant was presented with prompts and attempted to respond

to them, is depicted in Figure 1.1.

Modeling

We used neural activity collected during the tasks to train, optimize, and evaluate custom

models. Specifically, we created speech detection and word classification models that both

leveraged deep learning techniques to make predictions from the neural activity. To decode

sentences from the participant’s neural activity in real time during the sentence task, we

used a decoding approach containing these two models, a language model, and a Viterbi

decoder, which are all described below (Figure 1.1).

The speech detection model processed each time point of neural activity during a task and

detected onsets and o↵sets of attempted word production events in real time (Figure 1.9).

We fit this model using only neural data and task timing information from the isolated word

task.

For each detected event, the word classification model predicted a set of word probabilities

by processing the neural activity spanning from 1 second before to 3 seconds after the

detected onset (Figure 1.10). The predicted probability associated with each word in the

50-word set quantified how likely it was that the participant was attempting to say that

word during the detected event. We fit this model using neural data from the isolated word
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task.

In English, certain sequences of words are more likely than others. To use this underlying

linguistic structure, we created a language model that yielded next-word probabilities given

the previous words in a sequence (Kneser and Ney 1995; Chen and Goodman 1999).

We trained this model on a collection of sentences consisting only of words from the

50-word set, which was obtained using a custom task on a crowdsourcing platform.

We used a custom Viterbi decoder as the final component in the decoding approach,

which is a type of model that determines the most likely sequence of words given predicted

word probabilities from the word classifier and word sequence probabilities from the language

model (Viterbi 1967, Figure 1.11). By incorporating the language model, the Viterbi de-

coder was capable of decoding more plausible sentences than what would result from simply

stringing together the predicted words from the word classifier.

Evaluations

To evaluate the performance of our decoding approach, we analyzed the sentences that

were decoded in real time using two metrics: word error rate and words per minute. The

word error rate of a decoded sentence is defined as the number of word errors made by the

decoder divided by the number of words in the target sentence. Words per minute is equal

to the number of words that were decoded per minute of neural data.

To further characterize the detection and classification of word production attempts from
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the participant’s neural activity, we processed the collected isolated word data with the

speech detection and word classification models in o✏ine analyses. We measured classi-

fication accuracy as the percent of isolated word production attempts in which the word

classifier correctly predicted the identity of the target word. We also measured electrode

contributions as the impact that each individual electrode had on the predictions made by

the detection and classification models (Simonyan et al. 2014; Makin et al. 2020).

To investigate the clinical viability of our approach for a long-term application, we evalu-

ated the stability of the acquired cortical signals over time using the isolated word data. By

sampling neural data from four di↵erent date ranges spanning the 81-week study period, we

assessed if detection and classification performance on data in the final subset could be im-

proved by including data from the three earlier subsets during model training, which would

indicate that training data accumulated across months or years of recording would reduce

the need for frequent model recalibration in practical applications of our approach.

Statistical analyses

Results for each experimental condition are presented with 95% confidence intervals when

appropriate. No adjustments were made for experiment-wide multiple comparisons. Word

error rate, words per minute, and classification accuracy evaluation metrics were prespecified

before the start of data collection. Stability analyses were designed post hoc.
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1.4 Results

Sentence decoding

During real-time sentence decoding, the median decoded word error rate across 15 sen-

tence blocks (each block contained 10 trials) was 60.5% (95% confidence interval: 51.4% to

67.6%) without language modeling and 25.6% (95% confidence interval: 17.1% to 37.1%)

with language modeling (Figure 1.2A). The lowest word error rate observed for a single test

block was 6.98% (with language modeling). The median word error rate was 92.1% (95%

confidence interval: 85.7% to 97.2%) when measuring chance performance with sentences

randomly generated by the language model. Across all 150 trials, the median decoding rate

was 15.2 words per minute when including all decoded words and 12.5 words per minute when

only including correctly decoded words (with language modeling; Figure 1.2B). In 92.0% of

trials, the number of detected words was equal to the number of words in the target sentence

(Figure 1.2C). Across all 15 sentence blocks, 5 speech events were erroneously detected before

the first trial in the block and were excluded from real-time decoding and analysis (all other

detected speech events were included). For almost every target sentence, the average num-

ber of word errors decreased when the language model was used (Figure 1.2D). Furthermore,

over half of the sentences were decoded without error (80 out of 150 trials; with language

modeling). Use of the language model during decoding improved performance by correcting

grammatically and semantically implausible word sequence predictions (Figure 1.2E).
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Word detection and classification

In o✏ine analyses with 9000 isolated word production attempts, the mean classification

accuracy (described in the Modeling section) was 47.1% when using the speech detector and

word classifier to predict the identity of the target word from cortical activity (chance was

2% accuracy; predictions were made without using the language model; see Figure 1.12 and

Figure 1.13. for additional isolated word analysis results). 98% of these word production

attempts were successfully detected (191 attempts were not detected), and 968 detected

events were spurious (not associated with a speech attempt). Electrodes contributing to word

classification performance were primarily localized to the ventral-most aspect of the ventral

sensorimotor cortex, with electrodes in the dorsal aspect of the ventral sensorimotor cortex

contributing to both speech detection and word classification performance (Figure 1.3A).

Classification accuracy was consistent across the majority of the word targets (Figure 1.3B;

47.1% mean and 14.5% standard deviation of the classification accuracy along the diagonal

of the row-normalized confusion matrix).

Long-term signal stability

Long-term stability of the speech-related cortical activity patterns recorded during iso-

lated word production attempts enabled consistent model performance throughout the 81-

week study period without requiring daily or weekly model recalibration (Figure 1.14). When

using the speech detection and word classification models to analyze cortical activity recorded
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at the end of the study period, classification accuracy increased when the training dataset

included data recorded over a year prior to the test dataset (Figure 1.4).

1.5 Discussion

We demonstrated that high-density recordings of cortical activity in the speech motor area

of an anarthric and paralyzed person can be used to decode full words and sentences in real

time. Our deep learning models were able to use the participant’s neural activity to detect

and classify his attempts to produce words from a 50-word vocabulary, and we could use

these models together with language modeling techniques to decode a variety of meaningful

sentences. Enabled by the long-term stability of the implanted device, our models could use

data accumulated throughout the 81-week study period to improve decoding performance

on held-out data recorded at the end of the study.

Previous demonstrations of word and sentence decoding from neural activity were con-

ducted with participants who could speak and did not require assistive technology to com-

municate (Her↵ et al. 2015; Angrick et al. 2019; Anumanchipalli et al. 2019; David A. Moses,

Leonard, et al. 2019; Makin et al. 2020). Similar to decoding intended movements from some-

one who cannot move, the lack of precise time alignment between intended speech and neural

activity poses a challenge during model training. We managed this time-alignment problem

with speech detection approaches (Kanas et al. 2014; David A. Moses, Leonard, et al. 2019;

Dash et al. 2020) and classifiers that used machine learning techniques, such as model ensem-
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bling and data augmentation, to increase tolerance to minor temporal variabilities (Sollich

and Krogh 1996; Krizhevsky et al. 2012). Additionally, decoding performance was largely

driven by neural activity patterns in ventral sensorimotor cortex, consistent with previous

work implicating this area in intact speech production (Bouchard et al. 2013; Chartier et al.

2018; Emily M. Mugler et al. 2018). This finding informs electrode placement decisions for

future studies and demonstrates the persistence of functional cortical speech representations

after more than 15 years of anarthria, analogous to previous findings of limb-related cortical

motor representations in tetraplegic individuals years after loss of limb movement (Shoham

et al. 2001; Hochberg et al. 2006).

Incorporation of language modeling techniques reduced median word error rate by 35%

and enabled perfect decoding in over half of the sentence trials. This improvement was

facilitated by using all of the probabilistic information provided by the word classifier during

decoding and by allowing the decoder to update previously predicted words each time a new

word was decoded. These results demonstrate the benefit of integrating linguistic information

when decoding speech from neural recordings. Speech decoding approaches generally become

usable at word error rates below 30% (Watanabe et al. 2017), suggesting that our approach

may be applicable in other clinical settings.

In previously reported brain-computer interface applications, decoding models often re-

quire daily recalibration prior deployment with a user (Pandarinath et al. 2017; Wolpaw

et al. 2018), which can increase the variability of decoder performance across days and im-

pede long-term adoption of the interface for real-world use (Wolpaw et al. 2018; Silversmith
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et al. 2020). Due to the relatively high signal stability of electrocorticographic recordings

(Chao et al. 2010; Vansteensel et al. 2016; Rao et al. 2017; Pels et al. 2019), we could ac-

cumulate cortical activity acquired by the implanted electrodes across months of recording

to e↵ectively train our decoding models. Overall, decoding performance was maintained or

improved by accumulating large quantities of training data over time without daily recalibra-

tion, demonstrating the suitability of high-density electrocorticography for long-term speech

neuroprosthetic applications.

These results demonstrate the early feasibility of direct word-based speech decoding from

cortical signals in a paralyzed anarthric person.

Disclosure forms provided by the authors are available with the full text of this article at

NEJM.org.
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Figure 1.1. Schematic depiction of the decoding pipeline. (continued on next page).
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(Previous page.) Figure 1.1. Schematic depiction of the decoding pipeline. Shown is how neural
activity acquired from an investigational electrocorticography electrode array implanted in a clinical study
participant with severe paralysis is used to directly decode words and sentences in real time. In a conversa-
tional demonstration, the participant is visually prompted with a statement or question (A) and is instructed
to attempt to respond using words from a predefined vocabulary set of 50 words. Simultaneously, cortical
signals are acquired from the surface of the brain through the electrode array (B) and processed in real time
(C). The processed neural signals are analyzed sample by sample with the use of a speech-detection model
to detect the participant’s attempts to speak (D). A classifier computes word probabilities (across the 50
possible words) from each detected window of relevant neural activity (E). A Viterbi decoding algorithm
uses these probabilities in conjunction with word-sequence probabilities from a separately trained natural-
language model to decode the most likely sentence given the neural activity data (F). The predicted sentence,
which is updated each time a word is decoded, is displayed as feedback to the participant (G). Before real-
time decoding, the models were trained with data collected as the participant attempted to say individual
words from the 50-word set as part of a separate task (not depicted). This conversational demonstration is
a variant of the standard sentence task used in this work, in that it allows the participant to compose his
own unique responses to the prompts.
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Figure 1.2. Decoding a Variety of Sentences in Real Time through Neural Signal Processing
and Language Modeling. (continued on next page).
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(Previous page.) Figure 1.2. Decoding a Variety of Sentences in Real Time through Neural
Signal Processing and Language Modeling. Panel A shows the word error rates, the numbers of words
decoded per minute, and the decoded sentence lengths. The top plot shows the median word error rate
(defined as the number of word errors made by the decoder divided by the number of words in the target
sentence, with a lower rate indicating better performance) derived from the word sequences decoded from the
participant’s cortical activity during the performance of the sentence task. Data points represent sentence
blocks (each block comprises 10 trials); the median rate, as indicated by the horizontal line within a box, is
shown across 15 sentence blocks. The upper and lower sides of the box represent the interquartile range, and
the bars 1.5 times the interquartile range. Chance performance was measured by computing the word error
rate on sentences randomly generated from the natural-language model. The middle plot shows the median
number of words decoded per minute, as derived across all 150 trials (each data point represents a trial).
The rates are shown for the analysis that included all words that were correctly or incorrectly decoded with
the natural-language model and for the analysis that included only correctly decoded words. Each violin
distribution was created with the use of kernel density estimation based on Scott’s rule for computing the
estimator bandwidth; the thick horizontal lines represent the median number of words decoded per minute,
and the thinner horizontal lines the range (with the exclusion of outliers that were more than 4 standard
deviations below or above the mean, which was the case for one trial). In the bottom chart, the decoded
sentence lengths show whether the number of detected words was equal to the number of words in the target
sentence in each of the 150 trials. Panel B shows the number of word errors in the sentences decoded with
or without the natural-language model across all trials and all 50 sentence targets. Each small vertical
dash represents the number of word errors in a single trial (there are 3 trials per target sentence; marks for
identical error counts are staggered horizontally for visualization purposes). Each dot represents the mean
number of errors for that target sentence across the 3 trials. The histogram at the bottom shows the error
counts across all 150 trials. Panel C shows seven target sentence examples along with the corresponding
sentences decoded with and without the natural-language model. Correctly decoded words are shown in
black and incorrect words in red.
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Figure 1.3. Distinct Neural Activity Patterns during Word-Production Attempts. (continued
on next page).
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(Previous page.) Figure 1.3. Distinct Neural Activity Patterns during Word-Production At-
tempts. Panel A shows the participant’s brain reconstruction overlaid with the locations of the implanted
electrodes and their contributions to the speech-detection and word-classification models. Plotted electrode
size (area) and opacity are scaled by relative contribution (important electrodes appear larger and more
opaque than other electrodes). Each set of contributions is normalized to sum to 1. For anatomical ref-
erence, the precentral gyrus is highlighted in light green. Panel B shows word confusion values computed
with the use of the isolated-word data. For each target word (each row), the confusion value measures how
often the word classifier predicted (regardless of whether the prediction was correct) each of the 50 possible
words (each column) while the participant was attempting to say that target word. The confusion value is
computed as a percentage relative to the total number of isolated-word trials for each target word, with the
values in each row summing to 100%. Values along the diagonal correspond to correct classifications, and
o↵-diagonal values correspond to incorrect classifications. The natural-language model was not used in this
analysis.
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Figure 1.4. Signal Stability and Long-Term Accumulation of Training Data to Improve Decoder
Performance. Each bar depicts the mean classification accuracy (the percentage of trials in which the
target word was correctly predicted) from isolated-word data sampled from the final weeks of the study
period (weeks 79 through 81) after speech-detection and word-classification models were trained on di↵erent
samples of the isolated-word data from various week ranges. Each result was computed with the use of a
10-fold cross-validation evaluation approach. In this approach, the available data were partitioned into 10
equally sized, nonoverlapping subsets. In the first cross-validation “fold,” one of these data subsets is used
as the testing set, and the remaining 9 are used for model training. This was repeated 9 more times until
each subset was used for testing (after training on the other subsets). This approach ensures that models
were never evaluated on the data used during training (Sections S6 and S14). Error bars indicate the 95%
confidence interval of the mean, each computed across the 10 cross-validation folds. The data quantities
specify the average amount of data used to train the word-classification models across cross-validation folds.
Week 0 denotes the first week during which data for this study was collected, which occurred 9 weeks after
surgical implantation of the study device. Accuracy of chance performance was calculated as 1 divided by
the number of possible words and is indicated by a horizontal dashed line.
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Figure 1.5. MRI results for the participant Panel A shows a sagittal MRI for the participant, who
has encephalomalacia and brain-stem atrophy (labeled in blue) caused by pontine stroke (labeled in red).
Panel B shows two additional MRI scans that indicate the absence of cerebral atrophy, suggesting that
cortical neuron populations (including those recorded from in this study) should be relatively una↵ected by
the participant’s pathology.
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Figure 1.6. Real-time neural data acquisition hardware infrastructure Electrocorticography
(ECoG) data acquired from the implanted array and percutaneous pedestal connector are processed and
transmitted to the Neuroport digital signal processor (DSP). Simultaneously, microphone data are acquired,
amplified, and transmitted to the DSP. Signals from the DSP are transmitted to the real-time computer.
The real-time computer controls the task displayed to the participant, including any decoded sentences that
are provided in real time as feedback. Speaker data (output from the real-time computer) are also sent to the
DSP and synchronized with the neural signals (not depicted). During earlier sessions, a human patient cable
connected to the pedestal acquired the ECoG signals, which were then processed by a front-end amplifier
before being transmitted to the DSP (the human patient cable and front-end amplifier, manufactured by
Blackrock Microsystems, are not depicted here, but they replaced the digital headstage and digital hub in
this pipeline when they were used).
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Figure 1.7. Real-time neural signal processing pipeline Using the data acquisition headstage and
rig, the participant’s electrocorticography (ECoG) signals were acquired at 30 kHz, filtered with a wide-
band filter, conditioned with a software-based line noise cancellation technique, low-pass filtered at 500 Hz,
and streamed to the real-time computer at 1 kHz. On the real-time computer, custom software was used
to perform common average referencing, multi-band high gamma band-pass filtering, analytic amplitude
estimation, multi-band averaging, and running z-scoring on the ECoG signals. The resulting signals were
then used as the measure of high gamma activity for the remaining analyses. This figure was adapted
from our previous work (David A. Moses, Leonard, et al. 2019), which implemented a similar neural signal
preprocessing pipeline.
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Figure 1.8. Data collection timeline Bars are stacked vertically if more than one data type was collected
in a day (the height of the stacked bars for any given day is equal to the total number of trials collected that
day). The irregularity of the data collection schedule was influenced by external and clinical time constraints
unrelated to the implanted device. The gap from 55–88 weeks was due to clinical guidelines concerning the
COVID-19 pandemic.
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Figure 1.9. Speech detection model schematic The z-scored high gamma activity across all electrodes
is processed time point by time point by an artificial neural network consisting of a stack of three long short-
term memory layers (LSTMs) and a single dense (fully connected) layer. The dense layer projects the latent
dimensions of the last LSTM layer into probability space for three event classes: speech, preparation, and
rest. The predicted speech event probability time series is smoothed and then thresholded with probability
and time thresholds to yield onset (t⇤) and o↵set times of detected speech events. During sentence decoding,
each time a speech event was detected, the window of neural activity spanning from �1 to +3 seconds
relative to the detected onset (t⇤) was passed to the word classifier. The neural activity, predicted speech
probability time series (upper right), and detected speech event (lower right) shown are the actual neural
data and detection results across a 7-second time window for an isolated word trial in which the participant
attempted to produce the word “family”.
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Figure 1.10. Word classification model schematic For each classification, a 4-second time window of
high gamma activity is processed by an ensemble of 10 artificial neural network (ANN) models. Within each
ANN, the high gamma activity is processed by a temporal convolution followed by two bidirectional gated
recurrent unit (GRU) layers. A dense layer projects the latent dimension from the final GRU layer into
probability space, which contains the probability of each of the words from the 50-word set being the target
word during the speech production attempt associated with the neural time window. The 10 probability
distributions from the ensembled ANN models are averaged together to obtain the final vector of predicted
word probabilities.
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Figure 1.11. Sentence decoding hidden Markov model This hidden Markov model (HMM) describes
the relationship between the words that the participant attempts to produce (the hidden states qi) and the
associated detected time windows of neural activity (the observed states yi). The HMM emission probabilities
py0|q0 can be simplified to pwi|yi (the word likelihoods provided by the word classifier), and the HMM
transition probabilities pqi|qi�1 can be simplified to pwi|i (the word-sequence prior probabilities provided by
the language model).
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Figure 1.12. Auxiliary modeling results with isolated word data Panel A shows the e↵ect of the
amount of training data on word classification accuracy (left) and cross-entropy loss (right) using cortical
activity recorded during the participant’s isolated word production attempts. Lower cross entropy indicates
better performance. Each point depicts mean ± standard deviation across 10 cross-validation folds (the error
bars in the cross-entropy plot were typically too small to be seen alongside the circular markers). Chance
performance is depicted as a horizontal dashed line in each plot (chance cross-entropy loss is computed as
the negative log (base 2) of the reciprocal of the number of word targets). Performance improved more
rapidly for the first four hours of training data and then less rapidly for the next 5 hours, although it did not
plateau. When using all available isolated word data, the information transfer rate was 25.1 bits per minute
(not depicted), and the target word appeared in the top 5 predictions from the word classifier in 81.7% of
trials (standard deviation was 2.1% across cross-validation folds; not depicted). Panel B shows the e↵ect
of the amount of training data on the frequency of detection errors during speech detection and detected
event curation with the isolated word data. Lower error rates indicate better performance. False positives
are detected events that were not associated with a word production attempt and false negatives are word
production attempts that were not associated with a detected event. Each point depicts mean ± standard
deviation across 10 cross-validation folds. Not all of the available training data were used to fit each speech
detection model, but each model always used between 47 and 83 minutes of data (not depicted). Panel C
shows the distribution of onsets detected from neural activity across 9000 isolated word trials relative to the
go cue (100 ms histogram bin size). This histogram was created using results from the final set of analyses
in the learning curve scheme (in which all available trials were included in the cross-validated evaluation).
The distribution of detected speech onsets had a mean of 308 ms after the associated go cues and a standard
deviation of 1017 ms. This distribution was likely influenced to some degree by behavioral variability in
the participant’s response times. During detected event curation, 429 trials required curation to choose a
detected event from multiple candidates (420 trials had 2 candidates and 9 trials had 3 candidates).
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Figure 1.13. Acoustic contamination investigation Each blue curve depicts the average correlations
between the spectrograms from a single electrode and the corresponding spectrograms from the time-aligned
microphone signal as a function of frequency. The red curve depicts the average power spectral density
(PSD) of the microphone signal. Vertical dashed lines mark the 60 Hz line noise frequency and its harmonics.
Highlighted in green is the high gamma frequency band (70–150 Hz), which was the frequency band from
which we extracted the neural features used during decoding. Across all frequencies, correlations between
the electrode and microphone signals are small. There is a slight increase in correlation in the lower end of
the high gamma frequency range, but this increase in correlation occurs as the microphone PSD decreases.
Because the correlations are low and do not increase or decrease with the microphone PSD, the observed
correlations are likely due to factors other than acoustic contamination, such as shared electrical noise. After
comparing these results to those observed in the study describing acoustic contamination (which informed
the contamination analysis we used here) (Roussel et al. 2020), we conclude that our decoding performance
was not artificially improved by acoustic contamination of our electrophysiological recordings.
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Figure 1.14. Long-term stability of speech-evoked signals Panel A shows neural activity from a single
electrode across all of the participant’s attempts to say the word “Goodbye” during the isolated word task,
spanning 81 weeks of recording. Panel B shows the participant’s brain reconstruction overlaid with electrode
locations. The electrode shown in Panel A is filled in with black. For anatomical reference, the precentral
gyrus is highlighted in light green. Panel C shows word classification outcomes from training and testing
the detector and classifier on subsets of isolated word data sampled from four non-overlapping date ranges.
Each subset contains data from 20 attempted productions of each word. Each solid bar depicts results
from cross-validated evaluation within a single subset, and each dotted bar depicts results from training
on data from all of the subsets except for the one that is being evaluated. Each error bar shows the 95%
confidence interval of the mean, computed across cross-validation folds. Chance accuracy is depicted as a
horizontal dashed line. Electrode contributions computed during cross-validated evaluation within a single
subset are shown on top (oriented with the most dorsal and posterior electrode in the upper-right corner).
Plotted electrode size (area) and opacity are scaled by relative contribution. Each set of contributions is
normalized to sum to 1. These results suggest that speech-evoked cortical responses remained relatively
stable throughout the study period, although model recalibration every 2–3 months may still be beneficial
for decoding performance.
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Chapter 2

Generalizable spelling using a speech

neuroprosthesis in an individual with

severe limb and vocal paralysis

Disclaimer: This chapter is a direct adaptation of the following article. Supplementary

material is not included in this adaptation, but is available online.
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2.1 Abstract

Neuroprostheses have the potential to restore communication to people who cannot speak

or type due to paralysis. However, it is unclear if silent attempts to speak can be used

to control a communication neuroprosthesis. Here, we translated direct cortical signals in

a clinical-trial participant (ClinicalTrials.gov; NCT03698149) with severe limb and vocal-

tract paralysis into single letters to spell out full sentences in real time. We used deep-

learning and language-modeling techniques to decode letter sequences as the participant

attempted to silently spell using code words that represented the 26 English letters (e.g.

“alpha” for “a”). We leveraged broad electrode coverage beyond speech-motor cortex to

include supplemental control signals from hand cortex and complementary information from

low- and high-frequency signal components to improve decoding accuracy. We decoded

sentences using words from a 1,152-word vocabulary at a median character error rate of

6.13% and speed of 29.4 characters per minute. In o✏ine simulations, we showed that our

approach generalized to large vocabularies containing over 9,000 words (median character

error rate of 8.23%). These results illustrate the clinical viability of a silently controlled

speech neuroprosthesis to generate sentences from a large vocabulary through a spelling-

based approach, complementing previous demonstrations of direct full-word decoding.
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2.2 Introduction

Devastating neurological conditions such as stroke and amyotrophic lateral sclerosis can

lead to anarthria, the loss of ability to communicate through speech (Beukelman et al. 2007).

Anarthric patients can have intact language skills and cognition, but paralysis may inhibit

their ability to operate assistive devices, severely restricting communication with family,

friends, and caregivers and reducing self-reported quality of life (Felgoise et al. 2016).

Brain-computer interfaces (BCIs) have the potential to restore communication to such pa-

tients by decoding neural activity into intended messages (Brumberg et al. 2018; Vansteensel

et al. 2016). Existing communication BCIs typically rely on decoding imagined arm and hand

movements into letters to enable spelling of intended sentences (Pandarinath et al. 2017;

Willett et al. 2021). Although implementations of this approach have exhibited promising

results, decoding natural attempts to speak directly into speech or text may o↵er faster and

more natural control over a communication BCI. Indeed, a recent survey of prospective BCI

users suggests that many patients would prefer speech-driven neuroprostheses over arm- and

hand-driven neuroprostheses (Branco et al. 2021). Additionally, there have been several re-

cent advances in the understanding of how the brain represents vocal-tract movements to

produce speech (Bouchard et al. 2013; Carey et al. 2017; Chartier et al. 2018; Lotte et al.

2015) and demonstrations of text decoding from the brain activity of able speakers (Her↵

et al. 2015; Makin et al. 2020; Mugler et al. 2014; Sun et al. 2020; Dash, Ferrari, et al.

2020; Wilson et al. 2020; Cooney et al. 2022; Angrick et al. 2021), suggesting that decod-
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ing attempted speech from brain activity could be a viable approach for communication

restoration.

To assess this, we recently developed a speech neuroprosthesis to directly decode full

words in real time from the cortical activity of a person with anarthria and paralysis as

he attempted to speak (David A. Moses, Metzger, et al. 2021). This approach exhibited

promising decoding accuracy and speed, but as an initial study focused on a preliminary

50-word vocabulary. While direct word decoding with a limited vocabulary has immediate

practical benefit, expanding access to a larger vocabulary of at least 1000 words would

cover over 85% of the content in natural English sentences (Adolphs and Schmitt 2003) and

enable e↵ective day-to-day use of assistive-communication technology (Tilborg and Deckers

2016). Hence, a powerful complementary technology could expand current speech-decoding

approaches to enable users to spell out intended messages from a large and generalizable

vocabulary while still allowing fast, direct word decoding to express frequent and commonly

used words. Separately, in this prior work the participant was controlling the neuroprosthesis

by attempting to speak aloud, making it unclear if the approach would be viable for potential

users who cannot produce any vocal output whatsoever.

Here, we demonstrate that real-time decoding of silent attempts to say 26 alphabetic code

words from the NATO phonetic alphabet can enable highly accurate and rapid spelling in

a clinical-trial participant (ClinicalTrials.gov; NCT03698149) with paralysis and anarthria.

During training sessions, we cued the participant to attempt to produce individual code

words and a hand-motor movement, and we used the simultaneously recorded cortical activity
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from an implanted 128-channel electrocorticography (ECoG) array to train classification

and detection models. After training, the participant performed spelling tasks in which he

spelled out sentences in real time with a 1152-word vocabulary using attempts to silently

say the corresponding alphabetic code words. A beam-search algorithm used predicted

code-word probabilities from a classification model to find the most likely sentence given

the neural activity while automatically inserting spaces between decoded words. To initiate

spelling, the participant silently attempted to speak, and a speech-detection model identified

this start signal directly from ECoG activity. After spelling out the intended sentence,

the participant attempted the hand-motor movement to disengage the speller. When the

classification model identified this hand-motor command from ECoG activity, a large neural

network-based language model rescored the potential sentence candidates from the beam

search and finalized the sentence. In post-hoc simulations, our system generalized well

across large vocabularies of over 9000 words.

2.3 Results

Overview of the real-time spelling pipeline

We designed a sentence-spelling pipeline that enabled a clinical-trial participant (Clinical-

Trials.gov; NCT03698149) with anarthria and paralysis to silently spell out messages using

signals acquired from a high-density electrocorticography (ECoG) array implanted over his
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sensorimotor cortex (Figure 2.1). We tested the spelling system under copy-typing and con-

versational task conditions. In each trial of the copy-typing task condition, the participant

was presented with a target sentence on a screen and then attempted to replicate that sen-

tence. In the conversational task condition, there were two types of trials: Trials in which

the participant spelled out volitionally chosen responses to questions presented to him and

trials in which he spelled out arbitrary, unprompted sentences. Prior to real-time testing,

no day-of recalibration occured; model parameters and hyperparameters were fit using data

exclusively from preceding sessions.

When the participant was ready to begin spelling a sentence, he attempted to silently

say an arbitrary word (Figure 2.1a). We define silent-speech attempts as volitional attempts

to articulate speech without vocalizing. Meanwhile, the participant’s neural activity was

recorded from each electrode and processed to simultaneously extract high-gamma activ-

ity (HGA; between 70 and 150 Hz) and low-frequency signals (LFS; between 0.3–100 Hz;

Figure 2.1b). A speech-detection model processed each time point of data in the combined

feature stream (containing HGA+LFS features; Figure 2.1c) to detect this initial silent-

speech attempt.

Once an attempt to speak was detected, the paced spelling procedure began (Figure 2.1d).

In this procedure, an underline followed by three dots appeared on the screen in white text.

The dots disappeared one by one, representing a countdown. After the last dot disappeared,

the underline turned green to indicate a go cue, at which time the participant attempted

to silently say the NATO code word corresponding to the first letter in the sentence. The
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time window of neural features from the combined feature stream obtained during the 2.5-s

interval immediately following the go cue was passed to a neural classifier (Figure 2.1e).

Shortly after the go cue, the countdown for the next letter automatically started. This

procedure was then repeated until the participant volitionally disengaged it (described later

in this section).

The neural classifier processed each time window of neural features to predict probabil-

ities across the 26 alphabetic code words (Figure 2.1f). A beam-search algorithm used the

sequence of predicted letter probabilities to compute potential sentence candidates, auto-

matically inserting spaces into the letter sequences where appropriate and using a language

model to prioritize linguistically plausible sentences. During real-time sentence spelling,

the beam search only considered sentences composed of words from a predefined 1152-word

vocabulary, which contained common words that are relevant for assistive-communication

applications. The most likely sentence at any point in the task was always visible to the

participant (Figure 2.1d). We instructed the participant to continue spelling even if there

were mistakes in the displayed sentence, since the beam search could correct the mistakes

after receiving more predictions. After attempting to silently spell out the entire sentence,

the participant was instructed to attempt to squeeze his right hand to disengage the spelling

procedure (Figure 2.1h). The neural classifier predicted the probability of this attempted

hand-motor movement from each 2.5-s window of neural features, and if this probability was

greater than 80%, the spelling procedure was stopped and the decoded sentence was finalized

(Figure 2.1i). To finalize the sentence, sentences with incomplete words were first removed



63

from the list of potential candidates, and then the remaining sentences were rescored with

a separate language model. The most likely sentence was then updated on the participant’s

screen (Figure 2.1g). After a brief delay, the screen was cleared and the task continued to

the next trial.

To train the detection and classification models prior to real-time testing, we collected

data as the participant performed an isolated-target task. In each trial of this task, a NATO

code word appeared on the screen, and the participant was instructed to attempt to silently

say the code word at the corresponding go cue. In some trials, an indicator representing

the hand-motor command was presented instead of a code word, and the participant was

instructed to imagine squeezing his right hand at the go cue for those trials.

Decoding performance

To evaluate the performance of the spelling system, we decoded sentences from the partic-

ipant’s neural activity in real time as he attempted to spell out 150 sentences (two repetitions

each of 75 unique sentences selected from an assistive-communication corpus; see Table 2.1)

during the copy-typing task. We evaluated the decoded sentences using word error rate

(WER), character error rate (CER), words per minute (WPM), and characters per minute

(CPM) metrics (Figure 2.2). For characters and words, the error rate is defined as the

edit distance, which is the minimum number of character or word deletions, insertions, and

substitutions required to convert the predicted sentence to the target sentence that was dis-



64

played to the participant, divided by the total number of characters or words in the target

sentence, respectively. These metrics are commonly used to assess the decoding performance

of automatic speech recognition systems (Hannun et al. 2014) and brain-computer interface

applications (Willett et al. 2021; David A. Moses, Metzger, et al. 2021).

We observed a median CER of 6.13% and median WER of 10.53% (99% confidence inter-

val (CI) [2.25, 11.6] and [5.76, 24.8]) across the real-time test blocks (each block contained

multiple sentence-spelling trials; Figure 2.2a, b). Across 150 sentences, 105 (70%) were

decoded without error, and 69 of the 75 sentences (92%) were decoded perfectly at least

one of the two times they were attempted. Additionally, across 150 sentences, 139 (92.7%)

sentences were decoded with the correct number of letters, enabled by high classification

accuracy of the attempted hand squeeze (Figure 2.2e). We also observed a median CPM of

29.41 and median WPM of 6.86 (99% CI [29.1, 29.6] and [6.54, 7.12]) across test blocks, with

spelling rates in individual blocks as high as 30.79 CPM and 8.60 WPM (Figure 2.2c, d).

These rates are higher than the median rates of 17.37 CPM and 4.16 WPM (99% CI [16.1,

19.3] and [3.33, 5.05]) observed with the participant as he used his commercially available

Tobii Dynavox assistive-typing device (as measured in our previous work (David A. Moses,

Metzger, et al. 2021)).

To understand the individual contributions of the classifier, beam search, and language

model to decoding performance, we performed o✏ine analyses using data collected during

these real-time copy-typing task blocks (Figure 2.2a, b). To examine the chance performance

of the system, we replaced the model’s predictions with randomly generated values while



65

continuing to use the beam search and language model. This resulted in a CER and WER

that was significantly worse than the real-time results (z = 7.09, P = 8.08 ⇥ 10�12 and z =

7.09, P = 8.08 ⇥ 10�12 respectively, two-sided Wilcoxon Rank-Sum test with 6-way Holm-

Bonferroni correction). This demonstrates that the classification of neural signals was critical

to system performance and that system performance was not just relying on a constrained

vocabulary and language-modeling techniques.

To assess how well the neural classifier alone could decode the attempted sentences, we

compared character sequences composed of the most likely letter for each individual 2.5-

second window of neural activity (using only the neural classifier) to the corresponding

target character sequences. All whitespace characters were ignored during this comparison

(during real-time decoding, these characters were inserted automatically by the beam search).

This resulted in a median CER of 35.1% (99% CI [30.6, 38.5]), which is significantly lower

than chance (z = 7.09, P = 8.08 ⇥ 10�12, two-sided Wilcoxon Rank-Sum test with 6-way

Holm-Bonferroni correction), and shows that time windows of neural activity during silent

code-word production attempts were discriminable. The median WER was 100% (99%

CI [100.0, 100.0]) for this condition; without language modeling or automatic insertion of

whitespace characters, the predicted character sequences rarely matched the corresponding

target character sequences exactly.

To measure how much decoding was improved by the beam search, we passed the neural

classifier’s predictions into the beam search and constrained character sequences to be com-

posed of only words within the vocabulary without incorporating any language modeling.
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This significantly improved CER and WER over only using the most likely letter at each

timestep (z = 4.51, P = 6.37 ⇥ 10�6 and z = 6.61, P = 1.19 ⇥ 10�10 respectively, two-sided

Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni correction). As a result of not using

language modeling, which incorporates the likelihood of word sequences, the system would

sometimes predict nonsensical sentences, such as “Do no tooth at again” instead of “Do

not do that again” (Figure 2.2f). Hence, including language modeling to complete the full

real-time spelling pipeline significantly improved median CER to 6.13% and median WER

to 10.53% over using the system without any language modeling (z = 5.53, P = 6.34⇥ 10�8

and z = 6.11, P = 2.01 ⇥ 10�9 respectively, two-sided Wilcoxon Rank-Sum test with 6-way

Holm-Bonferroni correction), illustrating the benefits of incorporating the natural structure

of English during decoding.

Discriminatory content in high-gamma activity and low-frequency

signals

Previous e↵orts to decode speech from brain activity have typically relied on content

in the high-gamma frequency range (between 70 and 170 Hz, but exact boundaries vary)

during decoding (Her↵ et al. 2015; Makin et al. 2020; David A. Moses, Leonard, et al. 2019).

However, recent studies have demonstrated that low-frequency content (between 0 and 40

Hz) can also be used for spoken- and imagined-speech decoding (Mugler et al. 2014; Sun

et al. 2020; Dash, Paul, et al. 2020; Proix et al. 2022; Anumanchipalli et al. 2019), although
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the di↵erences in the discriminatory information contained in each frequency range remain

poorly understood.

In this work, we used both high-gamma activity (HGA; between 70 and 150 Hz) and low-

frequency signals (LFS; between 0.3 and 16.67 Hz after downsampling with anti-aliasing) as

neural features to enable sentence spelling. To characterize the speech content of each fea-

ture type, we used the most recent 10,682 trials of the isolated-target task) to train 10-fold

cross-validated models using only HGA, only LFS, and both feature types simultaneously

(HGA+LFS). In each of these trials, the participant attempted to silently say one of the

26 NATO code words. Models using only LFS demonstrated higher code-word classification

accuracy than models using only HGA, and models using HGA+LFS outperformed the other

two models (z = 3.78, P = 4.71 ⇥ 10�4 for all comparisons, two-sided Wilcoxon Rank-Sum

test with 3-way Holm-Bonferroni correction; Figure 2.3a, Figure 2.10, Table 2.4), achieving

a median classification accuracy of 54.2% (99% CI [51.6, 56.2], Figure 2.3a, Figure 2.11).

Confusion matrices depicting the classification results with each model are depicted in Fig-

ure 2.11, Figure 2.12, and Figure 2.13.

We then investigated the relative contributions of each electrode and feature type to

the neural classification models trained using HGA, LFS, and HGA+LFS. For each model,

we first computed each electrode’s contribution to classification by measuring the e↵ect that

small changes to the electrode’s values had on the model’s predictions (Simonyan et al. 2014).

Electrode contributions for the HGA model were primarily localized to the ventral portion

of the grid, corresponding to the ventral aspect of the ventral sensorimotor cortex (vSMC),
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pars opercularis, and pars triangularis (Figure 2.3b). Contributions for the LFS model were

much more di↵use, covering more dorsal and posterior parts of the grid corresponding to

dorsal aspects of the vSMC in the pre- and postcentral gyri (Figure 2.3d). Contributions

for the HGA model and the LFS model were moderately correlated with a Spearman rank

correlation of 0.501 (n = 128 electrode contributions per feature type, P < 0.01). The sepa-

rate contributions from HGA and LFS in the HGA+LFS model were highly correlated with

the contributions for the HGA-only and LFS-only models, respectively (n = 128 electrode

contributions per feature type, P < 0.01 for both Spearman rank correlations of 0.922 and

0.963, respectively; Figure 2.3c, e). These findings indicate that the information contained

in the two feature types that was most useful during decoding was not redundant and was

recorded from relatively distinct cortical areas.

To further characterize HGA and LFS features, we investigated whether LFS had in-

creased feature or temporal dimensionality, which could have contributed to increased de-

coding accuracy. First, we performed principal component analysis (PCA) on the feature

dimension for the HGA, LFS, and HGA+LFS feature sets. The resulting principal compo-

nents (PCs) captured the spatial variability (across electrode channels) for the HGA and

LFS feature sets and the spatial and spectral variabilities (across electrode channels and

feature types, respectively) for the HGA + LFS feature set. To explain more than 80%

of the variance, LFS required significantly more feature PCs than HGA (z = 12.2, P =

7.57 ⇥ 10�34, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction;

Figure 2.3f) and the combined HGA+LFS feature set required significantly more feature
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PCs than the individual HGA or LFS feature sets (z = 12.2, P = 7.57 ⇥ 10�34 and z =

11.6, P = 2.66 ⇥ 10�33, respectively, two-sided Wilcoxon Rank-Sum test with 3-way Holm-

Bonferroni correction; Figure 2.3f). This suggests that LFS did not simply replicate HGA

at each electrode but instead added unique feature variance.

To assess the temporal content of the features, we first used a similar PCA approach

to measure temporal dimensionality. We observed that the LFS features required signifi-

cantly more temporal PCs than both the HGA and HGA+LFS feature sets to explain more

than 80% of the variance (z = 12.2, P = 7.57 ⇥ 10�34 and z = 12.2, P = 7.57 ⇥ 10�34,

respectively, Figure 2.3g; two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni

correction). Because the inherent temporal dimensionality for each feature type remained

the same within the HGA+LFS feature set, the required number of temporal PCs to explain

this much variance for the HGA+LFS features was in between the corresponding numbers

for the individual feature types. Then, to assess how the temporal resolution of each fea-

ture type a↵ected decoding performance, we temporally smoothed each feature time series

with Gaussian filters of varying widths. A wider Gaussian filter causes a greater amount of

temporal smoothing, e↵ectively temporally blurring the signal and hence lowering temporal

resolution. Temporally smoothing the LFS features decreased the classification accuracy

significantly more than smoothing the HGA or HGA+LFS features (Wilcoxon signed-rank

statistic = 737.0, P = 4.57⇥10�5 and statistic = 391.0, P = 1.13⇥10�8, two-sided Wilcoxon

signed-rank test with 3-way Holm-Bonferroni correction; Figure 2.3h). The e↵ects of tem-

poral smoothing were not significantly di↵erent between HGA and HGA+LFS (Wilcoxon
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signed-rank statistic = 1460.0, P = 0.443). This is largely consistent with the outcomes of

the temporal-PCA comparisons. Together, these results indicate that the temporal content

of LFS had higher variability and contained more speech-related discriminatory information

than HGA.

Di↵erences in neural discriminability between NATO code words

and letters

During control of our system, the participant attempted to silently say NATO code

words to represent each letter (“alpha” instead of “a”, “beta” instead of “b”, and so forth)

rather than simply saying the letters themselves. We hypothesized that neural activity

associated with attempts to produce code words would be more discriminable than letters due

to increased phonetic variability and longer utterance lengths. To test this, we first collected

data using a modified version of the isolated-target task in which the participant attempted

to say each of the 26 English letters instead of the NATO code words that represented

them. Afterwards, we trained and tested classification models using HGA+LFS features

from the most recent 29 attempts to silently say each code word and each letter in 10-

fold cross-validated analyses. Indeed, code words were classified with significantly higher

accuracy than the letters (z = 3.78, P = 1.57 ⇥ 10�4, two-sided Wilcoxon Rank-Sum test;

Figure 2.4a).

To perform a model-agnostic comparison between the neural discriminability of each type
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of utterance (either code words or letters), we computed nearest-class distances for each

utterance using the HGA+LFS feature set. Here, each utterance represented a single class,

and distances were only computed between utterances of the same type. A larger nearest-

class distance for a code word or letter indicates that that utterance is more discriminable in

neural feature space because the neural activation patterns associated with silent attempts

to produce it are more distinct from other code words or letters, respectively. We found that

nearest-class distances for code words were significantly higher overall than for letters (z =

2.98, P = 2.85 ⇥ 10�3, two-sided Wilcoxon Rank-Sum test; Figure 2.4b), although not all

code words had a higher nearest-class distance than its corresponding letter (Figure 2.4c).

Distinctions in evoked neural activity between silent- and

overt-speech attempts

The spelling system was controlled by silent-speech attempts, di↵ering from our previous

work in which the same participant used overt-speech attempts (attempts to speak aloud) to

control a similar speech-decoding system (David A. Moses, Metzger, et al. 2021). To assess

di↵erences in neural activity and decoding performance between the two types of speech

attempts, we collected a version of the isolated-target task in which the participant was

instructed to attempt to say the code words aloud (overtly instead of silently). The spatial

patterns of evoked neural activity for the two types of speech attempts exhibited similarities

(Figure 2.14), and inspections of evoked HGA for two electrodes suggest that some neural
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populations respond similarly for each speech type while others do not (Figure 2.5a–c).

To compare the discriminatory neural content between silent- and overt-speech attempts,

we performed 10-fold cross-validated classification analyses using HGA+LFS features associ-

ated with the speech attempts (Figure 2.5d). First, for each type of attempted speech (silent

or overt), we trained a classification model using data collected with that speech type. To

determine if the classification models could leverage similarities in the neural representations

associated with each speech type to improve performance, we also created models by pre-

training on one speech type and then fine-tuning on the other speech type. We then tested

each classification model on held-out data associated with each speech type and compared

all 28 combinations of pairs of results (all statistical results detailed in Table 2.7). Models

trained solely on silent data but tested on overt data and vice versa resulted in classifica-

tion accuracies that were above chance (median accuracies of 36.3%, 99% CI [35.0, 37.5]

and 33.5%, 99% CI [31.0, 35.0], respectively; chance accuracy is 3.85%). However, for both

speech types, training and testing on the same type resulted in significantly higher perfor-

mance (P < 0.01, two-sided Wilcoxon Rank-Sum test, 28-way Holm-Bonferroni correction).

Pre-training models using the other speech type led to increases in classification accuracy,

though the increase was more modest and not significant for the overt speech type (median

accuracy increasing by 2.33%, z = 2.65, P = 0.033 for overt, median accuracy increasing

by 10.4%, z = 3.78, P = 4.40 ⇥ 10�3 for silent, two-sided Wilcoxon Rank-Sum test, 28-way

Holm-Bonferroni correction). Together, these results suggest that the neural activation pat-

terns evoked during silent and overt attempts to speak shared some similarities but were not
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identical.

Generalizability to larger vocabularies and alternative tasks

Although the 1152-word vocabulary enabled communication of a wide variety of common

sentences, we also assessed how well our approach can scale to larger vocabulary sizes.

Specifically, we simulated the copy-typing spelling results using three larger vocabularies

composed of 3303, 5249, and 9170 words that we selected based on their words’ frequencies

in large-scale English corpora. For each vocabulary, we retrained the language model used

during the beam search to incorporate the new words. The large language model used when

finalizing sentences was not altered for these analyses because it was designed to generalize

to any English text.

High performance was maintained with each of the new vocabularies, with median char-

acter error rates (CERs) of 7.18% (99% CI [2.25, 11.6]), 7.93% (99% CI [1.75, 12.1]), and

8.23% (99% CI [2.25, 13.5]) for the 3303-, 5249-, and 9170-word vocabularies, respectively

(Figure 2.6a; median real-time CER was 6.13% (99% CI [2.25, 11.6]) with the original vo-

cabulary containing 1,152 words). Median word error rates (WERs) were 12.4% (99% CI

[8.01, 22.7]), 11.1% (99% CI [8.01, 23.1]), and 13.3% (99% CI [7.69, 28.3]), respectively (Fig-

ure 2.6b; WER was 10.53% (99% CI [5.76, 24.8]) for the original vocabulary). Overall, no

significant di↵erences were found between the CERs or WERs with any two vocabularies (P

> 0.01 for all comparisons, two-sided Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni



74

correction), illustrating the generalizability of our spelling approach to larger vocabulary

sizes that enable fluent communication.

Finally, to assess the generalizability of our spelling approach to behavioral contexts

beyond the copy-typing task structure, we measured performance as the participant engaged

in a conversational task condition. In each trial of this condition, the participant was either

presented with a question (as text on a screen) or was not presented with any stimuli. He

then attempted to spell out a volitionally chosen response to the presented question or any

arbitrary sentence if no stimulus was presented. To measure the accuracy of each decoded

sentence, we asked the participant to nod his head to indicate if the sentence matched his

intended sentence exactly. If the sentence was not perfectly decoded, the participant used

his commercially available assistive-communication device to spell out his intended message.

Across 28 trials of this real-time conversational task condition, the median CER was 14.8%

(99% CI [0.00, 29.7]) and the median WER was 16.7% (99% CI [0.00, 44.4]) (Figure 2.6c,

d). We observed a slight increase in decoding error rates compared to the copy-typing task,

potentially due to the participant responding using incomplete sentences (such as “going

out” and “summer time”) that would not be well represented by the language models.

Nevertheless, these results demonstrate that our spelling approach can enable a user to

generate responses to questions as well as unprompted, volitionally chosen messages.
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2.4 Discussion

Here, we demonstrated that a paralyzed clinical-trial participant (ClinicalTrials.gov;

NCT03698149) with anarthria could control a neuroprosthesis to spell out intended mes-

sages in real time using attempts to silently speak. With phonetically rich code words to

represent individual letters and an attempted hand movement to indicate an end-of-sentence

command, we used deep-learning and language-modeling techniques to decode sentences

from electrocorticographic (ECoG) signals. These results significantly expand our previous

word-decoding findings with the same participant (David A. Moses, Metzger, et al. 2021) by

enabling completely silent control, leveraging both high- and low-frequency ECoG features,

including a non-speech motor command to finalize sentences, facilitating large-vocabulary

sentence decoding through spelling, and demonstrating continued stability of the relevant

cortical activity beyond 128 weeks since device implantation.

Previous implementations of spelling brain-computer interfaces (BCIs) have demonstrated

that users can type out intended messages by visually attending to letters on a screen (Rezeika

et al. 2018; Sellers et al. 2014) or by using motor imagery to control a two-dimensional com-

puter cursor (Vansteensel et al. 2016; Pandarinath et al. 2017) or attempt to handwrite

letters (Willett et al. 2021). BCI performance using penetrating microelectrode arrays in

motor cortex has steadily improved over the past 20 years (Gilja et al. 2012; Kawala-Sterniuk

et al. 2021; Serruya et al. 2002), recently achieving spelling rates as high as 90 characters

per minute with a single participant (Willett et al. 2021), although this participant was



76

able to speak normally. Our results extend the list of immediately practical and clinically

viable control modalities for spelling-BCI applications to include silently attempted speech

with an implanted ECoG array, which may be preferred for daily use by some patients due

to the relative naturalness of speech (Branco et al. 2021) and may be more chronically ro-

bust across patients through the use of less invasive, non-penetrating electrode arrays with

broader cortical coverage.

In post-hoc analyses, we showed that decoding performance improved as more linguistic

information was incorporated into the spelling pipeline. This information helped facilitate

real-time decoding with a 1152-word vocabulary, allowing for a wide variety of general and

clinically relevant sentences as possible outputs. Furthermore, through o✏ine simulations,

we validated this spelling approach with vocabularies containing over 9000 common En-

glish words, which exceeds the estimated lexical-size threshold for basic fluency and enables

general communication (Laufer 1989; Webb and Rodgers 2009). These results add to consis-

tent findings that language modeling can significantly improve neural-based speech decoding

(Her↵ et al. 2015; Sun et al. 2020; David A. Moses, Metzger, et al. 2021) and demonstrates

the immediate viability of speech-based spelling approaches for a general-purpose assistive-

communication system.

In this study, we showed that neural signals recorded during silent-speech attempts by

an anarthric person can be e↵ectively used to drive a speech neuroprosthesis. Supporting

the hypothesis that these signals contained similar speech-motor representations to signals

recorded during overt-speech attempts, we showed that a model trained solely to classify
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overt-speech attempts can achieve above-chance classification of silent-speech attempts, and

vice versa. Additionally, the spatial localization of electrodes contributing most to classifica-

tion performance was similar for both overt and silent speech, with many of these electrodes

located in the ventral sensorimotor cortex, a brain area that is heavily implicated in artic-

ulatory speech-motor processing (Bouchard et al. 2013; Carey et al. 2017; Chartier et al.

2018; Conant et al. 2018).

Overall, these results further validate silently attempted speech as an e↵ective alternative

behavioral strategy to imagined speech and expand findings from our previous work involving

the decoding of overt-speech attempts with the same participant (David A. Moses, Metzger,

et al. 2021), indicating that the production of residual vocalizations during speech attempts

is not necessary to control a speech neuroprosthesis. These findings illustrate the viability of

attempted-speech control for individuals with complete vocal-tract paralysis (such as those

with locked-in syndrome), although future studies with these individuals are required to

further our understanding of the neural di↵erences between overt-speech attempts, silent-

speech attempts, and purely imagined speech as well as how specific medical conditions might

a↵ect these di↵erences. We expect that the approaches described here, including recording

methodology, task design, and modeling techniques, would be appropriate for both speech-

related neuroscientific investigations and BCI development with patients regardless of the

severity of their vocal-tract paralysis, assuming that their speech-motor cortices are still

intact and that they are mentally capable of attempting to speak.

In addition to enabling spatial coverage over the lateral speech-motor cortical brain re-
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gions, the implanted ECoG array also provided simultaneous access to neural populations

in the hand-motor (hand knob) cortical area that is typically implicated during executed or

attempted hand movements (Gerardin et al. 2000). Our approach is the first to combine

the two cortical areas to control a BCI. This ultimately enabled our participant to use an

attempted hand movement, which was reliably detectable and highly discriminable from

silent-speech attempts with 98.43% classification accuracy (99% CI [95.31, 99.22]), to indi-

cate when he was finished spelling any particular sentence. This may be a preferred stopping

mechanism compared to previous spelling BCI implementations that terminated spelling for

a sentence after a pre-specified time interval had elapsed or extraneously when the sentence

was completed (Pandarinath et al. 2017) or required a head movement to terminate the sen-

tence (Willett et al. 2021). By also allowing a silent-speech attempt to initiate spelling, the

system could be volitionally engaged and disengaged by the participant, which is an impor-

tant design feature for a practical communication BCI. Although attempted hand movement

was only used for a single purpose in this first demonstration of a multimodal communication

BCI, separate work with the same participant suggests that non-speech motor imagery could

be used to indicate several distinct commands (Silversmith et al. 2021).

One drawback of the current approach is that it relies on code words instead of letters

during spelling. Although the use of these longer code words improved neural discriminabil-

ity, they are less natural to use. Separately, the participant had to attempt to produce code

words at a pre-defined pace during spelling, which enabled straightforward parcellation of

the neural activity into separate time windows for classification but reduced flexibility for
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the user. Future work can focus on improving letter decoding and implementing flexible,

user-controlled pacing (for example, through augmented speech-attempt detection) to facil-

itate more naturalistic spelling. Additionally, the present results are limited to only one

participant; to fully assess the clinical viability of this spelling system as a neuroprosthesis,

it will need to be validated with more participants.

In future communication neuroprostheses, it may be possible to use a combined approach

that enables rapid decoding of full words or phrases from a limited, frequently used vocab-

ulary (David A. Moses, Metzger, et al. 2021) as well as slower, generalizable spelling for

out-of-vocabulary items. Transfer-learning methods could be used to cross-train di↵erently

purposed speech models using data aggregated across multiple tasks and vocabularies, as

validated in previous speech-decoding work (Makin et al. 2020). Although clinical and regu-

latory guidelines concerning the implanted percutaneous connector prevented the participant

from being able to use the current spelling system independently, development of a fully im-

plantable ECoG array and a software application to integrate the decoding pipeline with

an operating system’s accessibility features could allow for autonomous usage. Facilitated

by deep-learning techniques, language modeling, and the signal stability and spatial cover-

age a↵orded by ECoG recordings, future communication neuroprostheses could enable users

with severe paralysis and anarthria to control assistive technology and personal devices using

naturalistic silent-speech attempts to generate intended messages and attempted non-speech

motor movements to issue high-level, interactive commands.
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2.5 Methods

Clinical trial overview

This study was conducted as part of the BCI Restoration of Arm and Voice (BRAVO)

clinical trial (ClinicalTrials.gov; NCT03698149). The goal of this single-institution clinical

trial is to assess the incidence of treatment-emergent adverse events associated with the

ECoG-based neural interface and to determine if ECoG and custom decoding methods can

enable long-term assistive neurotechnology to restore communication and mobility. The data

presented here and the present work do not support or inform any conclusions about the

primary outcomes of this trial. The clinical trial began in November 2018. The Food and

Drug Administration approved an investigational device exemption for the neural implant

used in this study. The study protocol was approved by the Committee on Human Research

at the University of California, San Francisco. The data safety monitoring board agreed to

the release of the results of this work prior to the completion of the trial. The participant

gave his informed consent to participate in this study after the details concerning the neural

implant, experimental protocols, and medical risks were thoroughly explained to him.

Participant

The participant, who was 36 years old at the start of the study, was diagnosed with

severe spastic quadriparesis and anarthria by neurologists and a speech-language pathologist

after experiencing an extensive pontine stroke. He is fully cognitively intact. Although he
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retains the ability to vocalize grunts and moans, he is unable to produce intelligible speech,

and his attempts to speak aloud are abnormally e↵ortful due to his condition (according to

self-reported descriptions). He typically relies on assistive computer-based interfaces that he

controls with residual head movements to communicate. This participant has participated in

previous studies as part of this clinical trial (David A. Moses, Metzger, et al. 2021; Silversmith

et al. 2021), although neural data from those studies were not used in the present study.

He provided verbal consent (using his assistive computer-based interface) to participate

in the study and allow his image to appear in material accompanying this chapter. He

also provided verbal consent (again using this interface) to have a designated third-party

individual physically sign the consent forms on his behalf.

Neural implant

The neural implant device consisted of a high-density electrocorticography (ECoG) array

(PMT) and a percutaneous connector (Blackrock Microsystems) (David A. Moses, Metzger,

et al. 2021). The ECoG array contained 128 disk-shaped electrodes arranged in a lattice

formation with 4-mm center-to-center spacing. The array was surgically implanted on the

pial surface of the left hemisphere of the brain over cortical regions associated with speech

production, including the dorsal posterior aspect of the inferior frontal gyrus, the posterior

aspect of the middle frontal gyrus, the precentral gyrus, and the anterior aspect of the post-

central gyrus (Bouchard et al. 2013; Chartier et al. 2018; Guenther and Hickok 2016). The
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percutaneous connector was implanted in the skull to conduct electrical signals from the

ECoG array to a detachable digital headstage and cable (NeuroPlex E; Blackrock Microsys-

tems), minimally processing and digitizing the acquired brain activity and transmitting the

data to a computer. The device was implanted in February 2019 at UCSF Medical Center

without any surgical complications.

Data acquisition and preprocessing

We acquired neural features from the implanted ECoG array using a pipeline involving

several hardware components and processing steps (Figure 2.8). We connected a headstage

(a detachable digital connector; NeuroPlex E, Blackrock Microsystems) to the percutaneous

pedestal connector, which digitized neural signals from the ECoG array and transmitted

them through an HDMI connection to a digital hub (Blackrock Microsystems). The digital

hub then transmitted the digitized signals through an optical fiber cable to a Neuroport

system (Blackrock Microsystems), which applied noise cancellation and an anti-aliasing filter

to the signals before streaming them at 1 kHz through an Ethernet connection to a separate

real-time computer (Colfax International). The Neuroport system was controlled using the

NeuroPort Central Suite software package (version 7.0.4; Blackrock Microsystems).

On the real-time processing computer, we used a custom Python software package (rtNSR)

to process and analyze the ECoG signals, execute the real-time tasks, perform real-time de-

coding, and store the data and task metadata (David A. Moses, Metzger, et al. 2021; David
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A. Moses, Leonard, et al. 2019; David A Moses et al. 2018). Using this software package,

we first applied a common average reference (across all electrode channels) to each time

sample of the ECoG data. Common average referencing is commonly applied to multi-

channel datasets to reduce shared noise (Ludwig et al. 2009; Williams et al. 2018). These

re-referenced signals were then processed in two parallel processing streams to extract high-

gamma activity (HGA) and low-frequency signal (LFS) features using digital finite impulse

response (FIR) filters designed using the Parks-McClellan algorithm (Parks and McClellan

1972) (Figure 2.8; filters were designed using the SciPy Python package (version 1.5.4)).

Briefly, we used these FIR filters to compute the analytic amplitude of the signals in the

high-gamma frequency band (70–150 Hz) and an anti-aliased version of the signals (with a

cuto↵ frequency at 100 Hz). We combined the time-synchronized high-gamma analytic am-

plitudes and downsampled signals into a single feature stream at 200 Hz. Next, we z-scored

the values for each channel and each feature type using a 30-s sliding window to compute

running statistics. Finally, we implemented an artifact-rejection approach that identified

neural time points containing at least 32 features with z-score magnitudes greater than 10,

replacing each of these time points with the z-score values from the preceding time point and

ignoring these time points when updating the running z-score statistics. During real-time

decoding and in o✏ine analyses, we used the z-scored high-gamma analytic amplitudes as

the HGA features and the z-scored downsampled signals as the LFS features (and the combi-

nation of the two as the HGA+LFS feature set). The neural classifier further downsampled

these feature streams by a factor of 6 before using them for inference (using an anti-aliasing
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filter with a cuto↵ frequency at 16.67 Hz), but the speech detector did not.

We performed all data collection and real-time decoding tasks in the participant’s bed-

room or a small o�ce room nearby. We uploaded data to our lab’s server infrastructure and

trained the decoding models using NVIDIA V100 GPUs hosted on this infrastructure.

Task design

We recorded neural data with the participant during two general types of tasks: an

isolated-target task and a sentence-spelling task (Figure 2.7). In each trial of the isolated-

target task, a text target appeared on the screen along with 4 dots on either side. Dots on

both sides disappeared one by one until no dots remained, at which point the text target

turned green to represent a go cue. At this go cue, the participant either attempted to say

the target (silently or aloud, depending on the current task instructions) if it was either a

NATO code word or an English letter. If the target was a text string containing the word

“Right” and an arrow pointing right, the participant instead attempted to squeeze his right

hand. We used the neural data collected during the isolated-target task to train and optimize

the detection and classification models and to evaluate classifier performance.

The sentence-spelling task is described in the start of the Results section and in Figure 2.1.

Briefly, the participant used the full spelling pipeline (described in the following sub-section)

to either spell sentences presented to him as targets in a copy-typing task condition or to spell

arbitrary sentences in a conversational task condition. We did not implement functionality
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to allow the participant to retroactively alter the predicted sentence, although the language

model could alter previously predicted words in a sentence after receiving additional character

predictions. Data collected during the sentence-spelling task were used to optimize beam-

search hyperparameters and evaluate the full spelling pipeline.

Modeling

We fit detection and classification models using data collected during the isolated-target

task as the participant attempted to produce code words and the hand-motor command.

After fitting these models o✏ine, we saved the trained models to the real-time computer

for use during real-time testing. We implemented these models using the PyTorch Python

package (version 1.6.0). In addition to these two models, we also used language models

to enable sentence spelling. We used hyperparameter optimization procedures on held-out

validation datasets to choose values for model hyperparameters (see Table 2.8). We used the

Python software packages NumPy (version 1.19.1), scikit-learn (version 0.24.2), and pandas

(version 0.25.3) during modeling and data analysis.

Speech detection

To determine when the participant was attempting to engage the spelling system, we de-

veloped a real-time silent-speech detection model. This model used long short-term memory

layers, a type of recurrent neural network layer, to process neural activity in real time and de-

tect attempts to silently speak (David A. Moses, Metzger, et al. 2021). This model used both



86

LFS and HGA features (a total of 256 individual features) at 200 Hz. The speech-detection

model was trained using supervised learning and truncated backpropagation through time.

For training, we labeled each time point in the neural data as one of four classes depending on

the current state of the task at that time: ‘rest’, ‘speech preparation’, ‘motor’, and ‘speech.’

Though only the speech probabilities were used during real-time evaluation to engage the

spelling system, the other labels were included during training to help the detection model

disambiguate attempts to speak from other behavior. See Figure 2.9 for further details about

the speech-detection model.

Classification

We trained an artificial neural network (ANN) to classify the attempted code word or

hand-motor command yi from the time window of neural activity xi associated with an

isolated-target trial or 2.5-s letter-decoding cycle i. The training procedure was a form

of maximum likelihood estimation, where given an ANN classifier parameterized by ✓ and

conditioned on the neural activity xi, our goal during model fitting was to find the parameters

✓
⇤ that maximized the probability of the training labels. This can be written as the following

optimization problem:

✓
⇤ = argmax

✓

Y

i

p✓(yi|xi) = argmin
✓

�
X

i

log p✓(yi|xi) (2.1)

We approximated the optimal parameters ✓
⇤ using stochastic gradient descent and the

Adam optimizer (Kingma and Ba 2017).
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To model the temporal dynamics of the neural time-series data, we used an ANN with

a one-dimensional temporal convolution on the input layer followed by two layers of bidi-

rectional gated recurrent units (GRUs) (Cho et al. 2014), for a total of three layers. We

multiplied the final output of the last GRU layer by an output matrix and then applied a

softmax function to yield the estimated probability of each of the 27 labels ŷi given xi.

Classifier ensembling for sentence spelling

During sentence spelling, we used model ensembling to improve classification performance

by reducing overfitting and unwanted modeling variance caused by random parameter ini-

tializations (Fort et al. 2020). Specifically, we trained 10 separate classification models using

the same training dataset and model architecture but with di↵erent random parameter ini-

tializations. Then, for each time window of neural activity xi, we averaged the predictions

from these 10 di↵erent models together to produce the final prediction ŷi.

Incremental classifier recalibration for sentence spelling

To improve sentence-spelling performance, we trained the classifiers used during sentence

spelling on data recorded during sentence-spelling tasks from preceding sessions (in addition

to data from the isolated-target task). In an e↵ort to only include high-quality sentence-

spelling data when training these classifiers, we only used data from sentences that were

decoded with a character error rate of 0.
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Beam search

During sentence spelling, our goal was to compute the most likely sentence text s⇤ given

the neural data X. We used the formulation from Hannun et al. (Hannun et al. 2014) to find

s
⇤ given its likelihood from the neural data and its likelihood under an adjusted language-

model prior, which allowed us to incorporate word-sequence probabilities with predictions

from the neural classifier. This can be expressed formulaically as:

s
⇤ = argmax

s
pnc(s|X)plm(s

↵)|s|� (2.2)

Here, pnc(s|X) is the probability of s under the neural classifier given each window of

neural activity, which is equal to the product of the probability of each letter in s given

by the neural classifier for each window of neural activity xi. plm(s) is the probability of

the sentence s under a language-model prior. Here, we used an n-gram language model

to approximate plm(s). Our n-gram language model, with n = 3, provides the probability

of each word given the preceding two words in a sentence. We implemented this language

model using custom code as well as utility functions from the NLTK Python package (version

3.6.2). The probability under the language model of a sentence is then taken as the product

of the probability of each word given the two words that precede it.

As in Hannun et al. (Hannun et al. 2014), we assumed that the n-gram language-model

prior was too strong and downweighted it using a hyperparameter ↵. We also included

a word-insertion bonus � to encourage the language model to favor sentences containing
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more words, counteracting an implicit consequence of the language model that causes the

probability of a sentence under it plm(s) to decrease as the number of words in s increases.

|s| denotes the cardinality of s, which is equal to the number of words in s. If a sentence s

was partially completed, only the words preceding the final whitespace character in s were

considered when computing plm(s) and |s|.

We then used an iterative beam-search algorithm as in Hannun et al. (Hannun et al. 2014)

to approximate s⇤ at each timepoint t = ⌧ . We used a list of the B most likely sentences from

t = ⌧ � 1 (or a list containing a single empty-string element if t = 1) as a set of candidate

prefixes, where B is the beam width. Then, for each candidate prefix l and each English

letter c with pnc(c|x⌧ ) > 0.001, we constructed new candidate sentences by considering l fol-

lowed by c. Additionally, for each candidate prefix l and each text string c
+, composed of an

English letter followed by the whitespace character, with pnc(c+|x⌧ ) > 0.001, we constructed

more new candidate sentences by considering l followed by c
+. Here and throughout the

beam search, we considered pnc(c+|x⌧ ) = pnc(c|x⌧ ) for each c and corresponding c
+. Next,

we discarded any resulting candidate sentences that contained words or partially completed

words that were not valid given our constrained vocabulary. Then, we rescored each re-

maining candidate sentence l̃ with p(l̃) = pnc(l̃|X1:⌧ )plm(l̃)↵|l̃|�. The most likely candidate

sentence, s⇤, was then displayed as feedback to the participant

We chose values for ↵, �, and B using hyperparameter optimization.

If at any time point t the probability of the attempted hand-motor command (the

sentence-finalization command) was > 80%, the B most likely sentences from the previ-
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ous iteration of the beam search were processed to remove any sentence with incomplete or

out-of-vocabulary words. The probability of each remaining sentence l̂ was then recomputed

as:

p(l̂) = pnc(l̂|X1:t�1)plm(l̂)
↵|l̂|�pgpt2(l̂)↵gpt2 (2.3)

Here, pgpt2(l̂) denotes the probability of l̃ under the DistilGPT-2 language model, a

low-parameter variant of GPT-2 (implemented using the lm-scorer Python package (version

0.4.2)), and ↵gpt2 represents a scaling hyperparameter that was set through hyperparameter

optimization. The most likely sentence l̃ given this formulation was then displayed to the

participant and stored as the finalized sentence.

Performance evaluation

Character error rate and word error rate

Because CER and WER are overly influenced by short sentences, as in previous studies

(Willett et al. 2021; David A. Moses, Metzger, et al. 2021) we reported CER and WER as

the sum of the character or word edit distances between each of the predicted and target

sentences in a sentence-spelling block and then divided this number by the total number of

characters or words across all target sentences in the block. Each block contained between

two to five sentence trials.
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Assessing performance during the conversational task condition

To obtain ground-truth sentences to calculate CERs and WERs for the conversational

condition of the sentence-spelling task, after completing each block we reminded the par-

ticipant of the questions and the decoded sentences from that block, and then, for each

decoded sentence, he either confirmed that the decoded sentence was correct or typed out

the intended sentence using his commercially available assistive-communication device. Each

block contained between two to four sentence trials.

Characters and words per minute

We calculated the characters per minute and words per minute rates for each sentence-

spelling (copy-typing) block as follows:

rate =

P
i NiP
i Di

(2.4)

Here, i indexes each trial, Ni denotes the number of words or characters (including

whitespace characters) decoded for trial i, and Di denotes the duration of trial i (in min-

utes; computed as the di↵erence between the time at which the window of neural activity

corresponding to the final code word in trial i ended and the time of the go cue of the first

code word in trial i).
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Electrode contributions

To compute electrode contributions using data recorded during the isolated-target task,

we computed the derivative of the classifier’s loss function with respect to the input features

across time as in Simonyan et al. (Simonyan et al. 2014), yielding a measure of how much

the predicted model outputs were a↵ected by small changes to the input feature values for

each electrode and feature type (HGA or LFS) at each time point. Then, we calculated the

L2-norm of these values across time and averaged the resulting values across all isolated-

target trials, yielding a single contribution value for each electrode and feature type for that

classifier.

Cross-validation

For each fold, we used stratified cross-validation folds of the isolated-target task. We split

each fold into a training set containing 90% of the data and a held-out testing set containing

the remaining 10%. In all, 10% of the training dataset was then randomly selected (with

stratification) as a validation set.

Analyzing neural-feature principal components

To characterize the HGA and LFS neural features, we used bootstrapped principal com-

ponent analyses. First, for each NATO code word, we randomly sampled (with replacement)

cue-aligned time windows of neural activity (spanning from the go cue to 2.5 s after the go

cue) from the first 318 silently attempted isolated-target trials for that code word. To clearly
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understand the role of each feature stream for classification, we downsampled the signals by

a factor of 6 to obtain the signals used by the classifier. Then, we trial averaged the data

for each code word, yielding 26 trial averages across time for each electrode and feature set

(HGA, LFS, and HGA+LFS). We then arranged this into a matrix with dimensionality N

⇥ TC, where N is the number of features (128 for HGA and for LFS; 256 for HGA+LFS),

T is the number of time points in each 2.5-s window, and C is the number of NATO code

words (26), by concatenating the trial-averaged activity for each feature. We then performed

principal component analysis along the feature dimension of this matrix. Additionally, we

arranged the trial-averaged data for each code word into a matrix with dimensionality T ⇥

NC. We then performed principal component analysis along the temporal dimension. For

each analysis, we performed the measurement procedure 100 times to obtain a representative

distribution of the minimum number of principal components required to explain more than

80% of the variance.

Nearest-class distance comparison

To compare nearest-class distances for the code words and letters, we first calculated

averages across 1000 bootstrap iterations of the combined HGA+LFS feature set across 47

silently attempted isolated-target trials for each code word and letter. We then computed

the Frobenius norm of the di↵erence between each pairwise combination. For each code

word, we used the smallest computed distance between that code word and any other code

word as the nearest-class distance. We then repeated this process for the letters.
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Generalizability to larger vocabularies

During real-time sentence spelling, the participant created sentences composed of words

from a 1152-word vocabulary that contained common words and words relevant to clinical

caregiving. To assess the generalizability of our system, we tested the sentence-spelling

approach in o✏ine simulations using three larger vocabularies. The first of these vocabularies

was based on the ‘Oxford 3000’ word list, which is composed of 3000 core words chosen based

on their frequency in the Oxford English Corpus and relevance to English speakers (About

the Oxford 3000 and 5000 word lists at Oxford Learner’s Dictionaries 2021). The second

was based on the ‘Oxford 5000’ word list, which is the ‘Oxford 3000’ list augmented with

an additional 2,000 frequent and relevant words. The third was a vocabulary based on the

most frequent 10,000 words in Google’s Trillion Word Corpus, a corpus that is over 1 trillion

words in length (Brants and Franz 2006). To eliminate non-words that were included in this

list (such as “f”, “gp”, and “ooo”), we excluded words composed of 3 or fewer characters

if they did not appear in the ‘Oxford 5000’ list. After supplementing each of these three

vocabularies with the words from the original 1152-word vocabulary that were not already

included, the three finalized vocabularies contained 3303, 5249, and 9170 words (these sizes

are given in the same order that the vocabularies were introduced).

For each vocabulary, we retrained the n-gram language model used during the beam-

search procedure with n-grams that were valid under the new vocabulary and used the larger

vocabulary during the beam search. We then simulated the sentence-spelling experiments
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o✏ine using the same hyperparameters that were used during real-time testing.

Statistics and reproducibility

Statistical analyses

The statistical tests used in this work are all described in the figure captions and text. In

brief, we used two-sided Wilcoxon Rank-Sum tests to compare any two groups of observa-

tions. When the observations were paired, we instead used a two-sided Wilcoxon signed-rank

test. We used Holm-Bonferroni correction for comparisons in which the underlying neural

data were not independent of each other. We considered P-values < 0.01 as significant.

We computed P-values for Spearman rank correlations using permutation testing. For each

permutation, we randomly shu✏ed one group of observations and then determined the corre-

lation. We computed the P-value as the fraction of permutations that had a correlation value

with a larger magnitude than the Spearman rank correlation computed on the non-shu✏ed

observations. For any confidence intervals around a reported metric, we used a bootstrap

approach to estimate the 99% confidence interval. On each iteration (of a total of 2000

iterations), we randomly sampled the data (such as accuracy per cross-validation fold) with

replacement and calculated the desired metric (such as the median). The confidence interval

was then computed on this distribution of the bootstrapped metric. We used SciPy (version

1.5.4) during statistical testing.
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Reproducibility of experiments

Because this is a pilot study with a single participant, further work is required to defini-

tively determine if the current approach is reproducible with other participants.

Data exclusions

During the copy-typing condition of the sentence-spelling task, the participant was in-

structed to attempt to silently spell each intended sentence regardless of how accurate the

decoded sentence displayed as feedback was. However, during a small number of trials, the

participant self-reported making a mistake (for example, by using the wrong code word or

forgetting his place in the sentence) and sometimes stopped his attempt. This mostly oc-

curred during initial sentence-spelling sessions while he was still getting accustomed to the

interface. To focus on evaluating the performance of our system rather than the participant’s

performance, we excluded these trials (13 trials out of 163 total trials) from performance-

evaluation analyses, and we had the participant attempt to spell the sentences in these trials

again in subsequent sessions to maintain the desired amount of trials during performance

evaluation (2 trials for each of the 75 unique sentences). Including these rejected sentences

when evaluating performance metrics only modestly increased the median CER and WER

observed during real-time spelling to 8.52% (99% CI [3.20, 15.1]) and 13.75% (99% CI [8.71,

29.9]), respectively.

During the conversational condition of the sentence-spelling task, trials were rejected if
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the participant self-reported making a mistake (as in the copy-typing condition) or if an

intended word was outside of the 1152 word vocabulary. For some blocks, the participant

indicated that he forgot one of his intended responses when we asked him to report the

intended response after the block concluded. Because there was no ground truth for this

conversational task condition, we were unable to use the trial for analysis. Of 39 original

conversational sentence-spelling trials, the participant got lost on 2 trials, tried to use an

out-of-vocabulary word during 6 trials, and forgot the ground-truth sentence during 3 trials

(leaving 28 trials for performance evaluation). Incorporating blocks where the participant

used intended words outside of the vocabulary only modestly raised CER and WER to

median values of 15.7% (99% CI [6.25, 30.4]) and 17.6%, (99% CI [12.5, 45.5]) respectively.
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Figure 2.1. Schematic depiction of the spelling pipeline. (continued on next page).
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(Previous page.) Figure 2.1. Schematic depiction of the spelling pipeline. a At the start of a
sentence-spelling trial, the participant attempts to silently say a word to volitionally activate the speller.
b Neural features (high-gamma activity and low-frequency signals) are extracted in real time from the
recorded cortical data throughout the task. The features from a single electrode (electrode 0, Figure 2.5a)
are depicted. For visualization, the traces were smoothed with a Gaussian kernel with a standard deviation of
150 milliseconds. The microphone signal shows that there is no vocal output during the task. c The speech-
detection model, consisting of a recurrent neural network (RNN) and thresholding operations, processes
the neural features to detect a silent-speech attempt. Once an attempt is detected, the spelling procedure
begins. d During the spelling procedure, the participant spells out the intended message throughout letter-
decoding cycles that occur every 2.5s. Each cycle, the participant is visually presented with a countdown
and eventually a go cue. At the go cue, the participant attempts to silently say the code word representing
the desired letter. e High-gamma activity and low-frequency signals are computed throughout the spelling
procedure for all electrode channels and parceled into 2.5-s non-overlapping time windows. f An RNN-based
letter-classification model processes each of these neural time windows to predict the probability that the
participant was attempting to silently say each of the 26 possible code words or attempting to perform
a hand-motor command (g). Prediction of the hand-motor command with at least 80% probability ends
the spelling procedure (i). Otherwise, the predicted letter probabilities are processed by a beam-search
algorithm in real time and the most likely sentence is displayed to the participant. g After the participant
spells out his intended message, he attempts to squeeze his right hand to end the spelling procedure and
finalize the sentence. h The neural time window associated with the hand-motor command is passed to the
classification model. i If the classifier confirms that the participant attempted the hand-motor command, a
neural network-based language model (DistilGPT-2) rescores valid sentences. The most likely sentence after
rescoring is used as the final prediction.
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Only neural decoding

Idonotwantthat
Thankytu
Yeucanyaythatagain
Tellmeaboutyoulfamily
Fonftoothatagajn
Ithinkthiyibpreteygrod
Easyfomwvutrsle
Weaavetobtop
Youraiigittobekvvding
Whichoneikit
Itthioeanrthengisanyx
 
  

     

+ Vocab constraints

I do not want that
Thank you
You can say that again
Tell me about your family
Do no tooth at again
I think this it pretty good
Easy for i out a say
We have top top
You i a i i got to be kidding
Which one it it
It there an a thing is any i

+ LM (Real-time results)

I do not want that
Thank you
You can say that again
Tell me about your family
Do not do that again
I think this is pretty good
Easy for you to say
We have to stop
You have got to be kidding
Which one edit
Is there a nothing I can do

f

  1. correct sentence: Which one is it
2. correct sentence: Is there anything I can do

1
2

Figure 2.2. Performance summary of the spelling system during the copy-typing task. a
Character error rates (CERs) observed during real-time sentence spelling with a language model (LM),
denoted as ‘+LM (Real-time results)’, and o✏ine simulations in which portions of the system were omitted.
In the ‘Chance’ condition, sentences were created by replacing the outputs from the neural classifier with
randomly generated letter probabilities without altering the remainder of the pipeline. In the ‘Only neural
decoding’ condition, sentences were created by concatenating together the most likely character from each of
the classifier’s predictions during a sentence trial (no whitespace characters were included). In the ‘+Vocab.
constraints’ condition, the predicted letter probabilities from the neural classifier were used with a beam
search that constrained the predicted character sequences to form words within the 1152-word vocabulary.
The final condition ‘+ LM (Real-time results)’ incorporates language modeling. The sentences decoded with
the full system in real time exhibited lower CERs than sentences decoded in the other conditions (***P<
0.0001, P-values provided in Table 2.2, two-sided Wilcoxon Rank-Sum test with 6-way Holm-Bonferroni
correction). b Word error rates (WERs) for real-time results and corresponding o✏ine omission simulations
from A (***P< 0.0001, P-values provided in Table 2.3, two-sided Wilcoxon Rank-Sum test with 6-way Holm-
Bonferroni correction). c The decoded characters per minute during real-time testing. d The decoded words
per minute during real-time testing. In a–d, the distribution depicted in each boxplot was computed across
n=34 real-time blocks (in each block, the participant attempted to spell between 2 and 5 sentences), and
each boxplot depicts the median as a center line, quartiles as bottom and top box edges, and the minimum
and maximum values as whiskers (except for data points that are 1.5 times the interquartile range, which are
individually plotted). e Number of excess characters in each decoded sentence. f Example sentence-spelling
trials with decoded sentences from each non-chance condition. Incorrect letters are colored red. Superscripts
1 and 2 denote the correct target sentence for the two decoded sentences with errors. All other example
sentences did not contain any errors.
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Figure 2.3. Characterization of high-gamma activity (HGA) and low-frequency signals (LFS)
during silent-speech attempts. (continued on next page).
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(Previous page.) Figure 2.3. Characterization of high-gamma activity (HGA) and low-frequency
signals (LFS) during silent-speech attempts. a 10-fold cross-validated classification accuracy on silently
attempted NATO code words when using HGA alone, LFS alone, and both HGA+LFS simultaneously. Clas-
sification accuracy using only LFS is significantly higher than using only HGA, and using both HGA+LFS
results in significantly higher accuracy than either feature type alone (**P=4.71⇥10�4, z=3.78 for each com-
parison, two-sided Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction). Chance accuracy is
3.7%. Each boxplot corresponds to n = 10 cross-validation folds (which are also plotted as dots) and depicts
the median as a center line, quartiles as bottom and top box edges, and the minimum and maximum values
as whiskers (except for data points that are 1.5 times the interquartile range). b–e Electrode contributions.
Electrodes that appear larger and more opaque provide more important features to the classification model.
b, c Show contributions associated with HGA features using a model trained on HGA alone (b) vs using
the combined LFS+HGA feature set (c). d, e depict contributions associated with LFS features using a
model trained on LFS alone (d) vs the combined LFS+HGA feature set (e). f Histogram of the minimum
number of principal components (PCs) required to explain more than 80% of the total variance, denoted as
�2, in the spatial dimension for each feature set over 100 bootstrap iterations. The number of PCs required
were significantly di↵erent for each feature set (***P< 0.0001, P-values provided in Table 2.5, two-sided
Wilcoxon Rank-Sum test with 3-way Holm-Bonferroni correction). g Histogram of the minimum number
of PCs required to explain more than 80% of the variance in the temporal dimension for each feature set
over 100 bootstrap iterations (***P< 0.0001, P-values provided in Table 2.6, two-sided Wilcoxon Rank-Sum
test with 3-way Holm-Bonferroni correction, *P< 0.01 two-sided Wilcoxon Rank-Sum test with 3-way Holm-
Bonferroni correction). h E↵ect of temporal smoothing on classification accuracy. Each point represents
the median, and error bars represent the 99% confidence interval around bootstrapped estimations of the
median.
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Figure 2.4. Comparison of neural signals during attempts to silently say English letters and
NATO code words. a Classification accuracy (across n=10 cross-validation folds) using models trained
with HGA+LFS features is significantly higher for NATO code words than for English letters (**P=1.57 ⇥
10�4, z=3.78, two-sided Wilcoxon Rank-Sum test). The dotted horizontal line represents chance accuracy.
b Nearest-class distance is significantly larger for NATO code words than for letters (boxplots show values
across the n = 26 code words or letters; *P=2.85 ⇥ 10�3, z=2.98, two-sided Wilcoxon Rank-Sum test). In
a, b, each data point is plotted as a dot, and each boxplot depicts the median as a center line, quartiles as
bottom and top box edges, and the minimum and maximum values as whiskers (except for data points that
are 1.5 times the interquartile range). c The nearest-class distance is greater for the majority of code words
than for the corresponding letters. In b and c, nearest-class distances are computed as the Frobenius norm
between trial-averaged HGA+LFS features.
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Figure 2.5. Di↵erences in neural signals and classification performance between overt- and
silent-speech attempts. a MRI reconstruction of the participant’s brain overlaid with implanted electrode
locations. The locations of the electrodes used in b and c are bolded and numbered in the overlay. b Evoked
high-gamma activity (HGA) during silent (orange) and overt (green) attempts to say the NATO code word
kilo. c Evoked high-gamma activity (HGA) during silent (orange) and overt (green) attempts to say the
NATO code word tango. Evoked responses in b and c are aligned to the go cue, which is marked as a vertical
dashed line at time 0. Each curve depicts the mean±standard error across n=100 speech attempts. d Code-
word classification accuracy for silent- and overt-speech attempts with various model-training schemes. All
comparisons revealed significant di↵erences between the result pairs (P< 0.01, two-sided Wilcoxon Rank-Sum
test with 28-way Holm-Bonferroni correction) except for those marked as ‘ns’. Each boxplot corresponds
to n = 10 cross-validation folds (which are also plotted as dots) and depicts the median as a center line,
quartiles as bottom and top box edges, and the minimum and maximum values as whiskers (except for data
points that are 1.5 times the interquartile range). Chance accuracy is 3.84%.
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Questions
1. What is your favorite time of year?
2. Where do you live?
3. What would you change about where you live?
4. What do you like to watch on TV?
5. (Free response; no question shown)  
  
      Answers (Decoded from Brain Activity)
1. Summer time
2. I live in California
3. The food is terrible
4. I like to watch a movie
5. It was nice to see you

Figure 2.6. The spelling approach can generalize to larger vocabularies and conversational set-
tings. a Simulated character error rates from the copy-typing task with di↵erent vocabularies, including
the original vocabulary used during real-time decoding. b Word error rates from the corresponding simu-
lations in a. In a and b, each boxplot corresponds to n=34 blocks (in each of these blocks, the participant
attempted to spell between two to five sentences). c Character and word error rates across the volitionally
chosen responses and messages decoded in real time during the conversational task condition. Each boxplot
corresponds to n=9 blocks (in each of these blocks, the participant attempted to spell between two to four
conversational responses; each dot corresponds to a single block). In a-c, each boxplot depicts the median
as a center line, quartiles as bottom and top box edges, and the minimum and maximum values as whiskers
(except for data points that are 1.5 times the interquartile range, which are individually plotted). d Exam-
ples of presented questions from trials of the conversational task condition (left) along with corresponding
responses decoded from the participant’s brain activity (right). In the final example, the participant spelled
out his intended message without being prompted with a question.
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Figure 2.7. Data collection timeline Each bar depicts the total number of trials collected on each
day of recording. The participant and implant date are the same as in our previous work (David A. Moses,
Metzger, et al. 2021). If more than one type of dataset was collected in a single day, the bar is colored by
the proportion of each dataset collected. Each color represents a specific dataset (as specified in the legend).
Datasets vary in task type (isolated-target or real-time sentence spelling), utterance set (English letters,
NATO code words (which included the attempted hand squeeze), copy-typing sentences, or conversational
sentences), and, for the real-time sentence-spelling datasets, the purpose of the data (for hyperparameter
optimization or for performance evaluation). All speech-related trials were associated with silent-speech
attempts, except for the dataset with “(overt)” in its legend label. Additionally, 3.06% of trials in this
overt dataset were actually recorded during a version of the copy-typing sentence-spelling task in which the
participant attempted to overtly produce the code words. Datasets were collected on an irregular schedule
due to external and clinical time constraints that were unrelated to the neural implant. The gap from 55–88
weeks was specifically due to clinical guidelines during the start of the COVID-19 pandemic that limited or
prevented in-person recording sessions.
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Figure 2.8. Real-time signal-processing pipeline A detachable data-acquisition headstage (NeuroPlex
E, Blackrock Microsystems) attached to the percutaneous pedestal connector applied a hardware-based wide-
band Butterworth filter (between 0.3 Hz and 7.5 kHz) to the ECoG signals, digitized them with 16-bit,
250-nV per bit resolution, and transmitted them at 30 kHz through additional connections to a Neuroport
system (Blackrock Microsystems), which processed the signals using software-based line noise cancellation
and an anti-aliasing low-pass filter (at 500 Hz). Afterwards, the processed signals were streamed at 1 kHz
to a separate computer for further real-time processing and analysis, where we applied a common average
reference (across all electrode channels) to each time sample of the ECoG data. The re-referenced signals
were then processed in two parallel streams to extract high-gamma activity (HGA) and low-frequency signal
(LFS) features. To compute the HGA features, we applied eight 390th-order band-pass finite impulse response
(FIR) filters to the re-referenced signals (filter center frequencies were within the high-gamma band at 72.0,
79.5, 87.8, 96.9, 107.0, 118.1, 130.4, and 144.0 Hz). Then, for each channel and band, we used a 170th-order
FIR filter to approximate the Hilbert transform. Specifically, for each channel and band, we set the real
component of the analytic signal equal to the original signal delayed by 85 samples (half of the filter order)
and set the imaginary component equal to the Hilbert transform of the original signal (approximated by
this FIR filter) (Romero and Jovanovic 2012). We then computed the magnitude of each analytic signal at
every fifth time sample, yielding analytic amplitude signals at 200 Hz. For each channel, we averaged the
analytic amplitude values across the eight bands at each time point to obtain a single high-gamma analytic
amplitude measure for that channel. To compute the LFS features, we downsampled the re-referenced
signals to 200 Hz after applying a 130th-order anti-aliasing low-pass FIR filter with a cuto↵ frequency of 100
Hz. We then combined the time-synchronized values from the two feature streams (high-gamma analytic
amplitudes and downsampled signals) into a single feature stream. Next, we z-scored the values for each
channel and each feature type using Welford’s method with a 30-second sliding window (Welford 1962).
Finally, we implemented a simple artifact-rejection approach to prevent samples with uncommonly large
z-score magnitudes from interfering with the running z-score statistics or downstream decoding processes.
We adapted this figure from our previous works (David A. Moses, Leonard, et al. 2019; David A. Moses,
Metzger, et al. 2021), which implemented similar preprocessing pipelines to compute high-gamma features.
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Figure 2.9. Speech-detection model schematic To detect silent-speech attempts from the participant’s
neural activity during real-time sentence spelling, first the z-scored low-frequency signals (LFS) and high-
gamma activity (HGA) for each electrode are processed continuously by a stack of 3 long short-term memory
(LSTM) layers. Next, a single dense (fully connected) layer projects the latent dimensions of the final LSTM
onto the 4 possible classes: speech, speech preparation, rest, and motor. The stream of speech probabilities
is then temporally smoothed, probability thresholded, and time thresholded to yield onsets and o↵sets of
full speech events. Once the participant attempts to silently say something and that speech attempt is
detected, the spelling system is engaged and the paced spelling procedure begins. The depicted neural
features, predicted speech-probability time series (upper right), and detected speech event (lower right) are
the actual neural data and detection results for a 5-second time window at the beginning of a trial of the
real-time sentence copy-typing task. This figure was adapted from our previous work (David A. Moses,
Metzger, et al. 2021), which implemented a similar speech-detection architecture.
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Figure 2.10. E↵ects of feature selection on code-word classification accuracy A. Classification
accuracy improves for each code word when using high-gamma activity (HGA) and low-frequency signals
(LFS) together (the combined HGA+LFS feature set) instead of only HGA features. The accuracies are
significantly correlated with a Spearman rank correlation of 0.512 (P = 0.0085, permutation testing with
2000 iterations). B. Classification accuracy improves for almost every code word when using HGA+LFS
instead of LFS alone. The accuracies are significantly correlated with a Spearman rank correlation of 0.760
(P ⇡ 0.00, permutation testing with 2000 iterations). Because not all possible permutations were tested
(the number of possible permutations for 26 elements is 4.03 ⇥ 1026, so we approximate this test with 2000
iterations), the P -value is approximately 0.00 in this case. In both A and B, code words are represented as
lower-case letters and the Spearman rank correlations are shown. The associated P -value was computed via
permutation testing. In permutation testing, one group of observations (code-word accuracies for either HGA,
LFS, or HGA+LFS) was shu✏ed before re-computing the correlation between that group of observations and
the other group. 2000 iterations were used during permutation testing for each of the two comparisons. The
P -value was computed as the proportion of the distribution of correlations computed during permutation
testing that were greater in magnitude than the correlation computed on non-shu✏ed data.
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Figure 2.11. Confusion matrix from isolated-target trial classification using HGA and LFS
Confusion values, computed during o✏ine classification of neural data (using both high-gamma activity and
low-frequency signals) recorded during isolated-target trials, are shown for each NATO code word and the
attempted hand squeeze. Each row corresponds to a target code word or the attempted hand squeeze, and
the value in each column for that row corresponds to the percent of isolated-target task trials that were
correctly classified as the target (if the value is along the diagonal) or misclassified (“confused”) as another
potential target (if the value is not along the diagonal). The values in each row sum to 100%. In general,
silent-speech and hand-squeeze attempts were reliably classified. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 56.4%
with a 99% confidence interval of [54.3, 58.2].
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Figure 2.12. Confusion matrix from isolated-target trial classification using only HGA Confu-
sion values, computed during o✏ine classification of neural data (using only high-gamma activity) recorded
during isolated-target trials, are shown for each NATO code word and the attempted hand squeeze. Each
row corresponds to a target code word or the attempted hand squeeze, and the value in each column for
that row corresponds to the percent of isolated-target task trials that were correctly classified as the target
(if the value is along the diagonal) or misclassified (“confused”) as another potential target (if the value is
not along the diagonal). The values in each row sum to 100%. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 32.7%
with a 99% confidence interval of [32.0, 33.6].
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Figure 2.13. Confusion matrix from isolated-target trial classification using only LFS Confusion
values, computed during o✏ine classification of neural data (using only low-frequency signals) recorded
during isolated-target trials, are shown for each NATO code word and the attempted hand squeeze. Each
row corresponds to a target code word or the attempted hand squeeze, and the value in each column for
that row corresponds to the percent of isolated-target task trials that were correctly classified as the target
(if the value is along the diagonal) or misclassified (“confused”) as another potential target (if the value is
not along the diagonal). The values in each row sum to 100%. Including both the attempted NATO code
word trials and the attempted hand squeeze trials, the 10-fold cross-validated median accuracy was 48.2%
with a 99% confidence interval of [42.9, 49.7].
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Figure 2.14. Neural-activation statistics during overt- and silent-speech attempts A. Each image
shows an MRI reconstruction of the participant’s brain overlaid with electrode locations and the maximum
neural activations for each electrode, type of speech attempt (overt or silent), and feature type (high-gamma
activity (HGA) or low-frequency signals (LFS)), measured as maximum peak code-word average magnitudes.
To calculate these values, the trial-averaged neural-feature time series was computed for each code word,
electrode, type of speech attempt, and feature type using the isolated-target dataset (for each trial, the
2.5-second time window after the go cue was used). Then, the peak magnitude (maximum of the absolute
value) of each of these trial-averaged time series was determined. The maximum peak code-word average
magnitude for each electrode, type of speech attempt, and feature type was then computed as the maximum
value of these peak magnitudes across code words for each combination. The two columns show the values
for each type of speech attempt (overt then silent), and the two rows show the values for each feature type
(HGA then LFS). B. The standard deviation of peak code-word average magnitudes. Here, the standard
deviation (instead of the maximum used in A) of the peak average magnitudes across the code words for
each electrode, type of speech attempt, and feature type is computed and plotted, depicting how much
the magnitudes varied across speech targets for that combination. For A and B, the color of each plotted
electrode indicates the true associated value for that electrode, and the size of each electrode depicts the
associated value for that electrode relative to the values for the other electrodes (for a given type of speech
attempt and feature type).
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Table 2.1. Copy-typing task sentences.

Target sentence Decoded sentence in first trial Decoded sentence in second trial
good morning good morning good for legs
you have got to be kidding you have got to be kidding a you have got to be kidding
what do you mean what do you mean what do you mean
good to see you i do i leave you good to see you
i think this is pretty good i think this is pretty good i think they is pretty good
i will check i will check i will the it
thank you thank you thank you
please sit down please sit down please believe
we have to stop we have to stop we have to stop
hand that to me please hand that time please have that time always
i know what you mean i know what you mean i know what you mean
what time is it what time is it what time is it
sit over here with me sit over here with me sit over here with me
no thanks no thanks not happen
you never know you never know you never know
great to see you again great to show my case in great to stay in town
forget about it forget about it forget about it
could you repeat what you said dog lie on repeat what you said could you repeat what you said
where do you live where do you live where do you live
do not be afraid to ask me questions do not be afraid to ask me questions do not be afraid to ask me questions
i cannot believe it i can not believe it i can not believe it
thanks for telling me thank for reading me thanks for telling me
i do not want that i do not want that i do not want that
that is wonderful that is work from a that is wonderful
what do you think about that what do you think about that what do you think about that
thank you very much though it very much thank you very much
i am glad you are here i am glad you are here i am glad you are here
how are you doing how are you doing how are you doing
i agree i agree i agree
i am okay i am okay i am okay
tell me what you are doing tell me what your telling tell me what you are doing
how long did it take how long did it take how long did it take
is there anything i can do is there a nothing i can do is there anything i can do
how are things going for you how are things gives for you how are things going for you
do you know what he did do you know on the ice do you know what he did
was there something else was there to be a high else was there something else
where are you going while are you doing where are you going
who is that who is that why is that
tell me about your family tell me about your family tell me about your family
i could probably do better i could probably do better i could probably do better
you can say that again you can say that again you can say that open
i am sorry to hear that i am to get to hear that i am sorry to hear that
will i see you later will i see you later well i keep by later
i am doing well i am doing well i am doing fine
can that wait until another time can that wait until another time can that wait until another time
how much more is there how much more is there how much were in there
come talk with me come talk with me some take with me
that will be fun that will be fun that will be fun
how often do you do this how often do you do this how often do you do this
how much will it cost how much will it cost how much will it cost
bring that over here clinic hat for hat bring that ever here
turn it o↵ turn it o↵ turn it o↵

(continued on next page).
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(continued from previous page). Table 2.1. Copy-typing task sentences.

Target sentence Decoded sentence in first trial Decoded sentence in second trial
i remember the last time i did that i remember the last time i did that i remember to plan new me i did that
i was just kidding i was mike kidding i was just kidding
i will meet you there i will meet you there i will meet you to eat
i do not really remember i do not really remember ddonoyrballyrlrefbhrh
i feel cold i feel weird i feel cold
excuse me for interrupting excuse me for interrupt any excuse me for interrupting
you are not going to believe this you plan to go in on a bit love this ypuaranpdggingloavlinesoeb
do you understand what i mean do you understand what i mean do you understand what i mean
what are you talking about what are you talking about what are you talking about
which one is it which one edit which one is it
would you like to go with me a all i was like the white me would you like to go with me
i do not understand i do not understand i do not understand
of course i do of course its of course him
anything is possible anything is possible anything is possible
do not do that again do not do that again do not do that again
let me see that let me see that let me see that
what have you been doing what have you been doing what have you been doing
i had a great time i had a great time what a great time
easy for you to say easy for you to say easy for you to say
i want to go i want to go i want to go
how do you feel how do you feel how do you feel
that is all right that is all right that is all right
i told you i do not know i told you i do not know i told you i do not know
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Table 2.2. Statistical comparisons of character error rates across decoding-
framework conditions.

P -value
Statistical comparison1 | z -value | (corrected)2

Chance vs. Only Neural Decoding 7.09 8.08 ⇥ 10�12

Chance vs. + Vocab. Constraints 7.09 8.08 ⇥ 10�12

Chance vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Only Neural Decoding vs. + LM (Real-time results) 6.94 1.21 ⇥ 10�11

+ Vocab. Constraints vs. + LM (Real-time results) 5.53 6.34 ⇥ 10�8

Only Neural Decoding vs. + Vocab. Constraints 4.51 6.37 ⇥ 10�6

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 34 real-time spelling blocks.
2 6-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.3. Statistical comparisons of word error rates across decoding-framework
conditions.

P -value
Statistical comparison1 | z -value | (corrected)2

Chance vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Only Neural Decoding vs. + LM (Real-time results) 7.09 8.08 ⇥ 10�12

Chance vs. + Vocab. Constraints 6.70 8.16 ⇥ 10�11

Only Neural Decoding vs. + Vocab. Constraints 6.61 1.19 ⇥ 10�10

+ Vocab. Constraints vs. + LM (Real-time results) 6.11 2.01 ⇥ 10�9

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 34 real-time spelling blocks.
2 6-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.4. Statistical comparisons of classification accuracy across neural-feature
types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 3.78 4.71 ⇥ 10�4

HGA vs. HGA+LFS 3.78 4.71 ⇥ 10�4

LFS vs. HGA+LFS 3.78 4.71 ⇥ 10�4

1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 10 cross-validation folds.
2 6-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.5. Statistical comparisons of the number of principal components re-
quired to explain more than 80% of the variance in the spatial dimension across
neural-feature types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 12.22 7.57 ⇥ 10�34

HGA vs. HGA+LFS 12.22 7.57 ⇥ 10�34

LFS vs. HGA+LFS 12.02 2.66 ⇥ 10�33

1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 100 bootstrap iterations.
2 3-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.6. Statistical comparisons of the number of principal components re-
quired to explain more than 80% of the variance in the temporal dimension
across neural-feature types.

P -value
Statistical comparison1 | z -value | (corrected)2

HGA vs. LFS 12.22 7.57 ⇥ 10�34

LFS vs. HGA+LFS 12.22 7.57 ⇥ 10�34

HGA vs. HGA+LFS 2.68 0.007 27
1 Each comparison is a two-sided Wilcoxon Rank-Sum test
across 100 bootstrap iterations.
2 3-way Holm-Bonferroni correction for multiple compar-
isons.
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Table 2.7. Statistical comparisons of classification accuracy across attempted-
speech types with various training schemes.

Group 1 Group 2 P -value
Train Test Train Test | z -value | (corrected2)

Silent Silent Silent Overt 3.78 4.4 ⇥ 10�3

Silent Silent Overt Overt 3.78 4.4 ⇥ 10�3

Silent Silent Overt Silent 3.78 4.4 ⇥ 10�3

Silent Silent Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent Overt Overt Overt 3.78 4.4 ⇥ 10�3

Silent Overt Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Overt Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent Overt Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Silent Overt Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Overt Overt Silent 3.78 4.4 ⇥ 10�3

Overt Overt Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Overt Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Overt pre-train, silent fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt Silent Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Overt pre-train, silent fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Silent pre-train, overt fine-tune Silent 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Overt Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Silent pre-train, overt fine-tune Silent Silent pre-train, overt fine-tune Overt 3.78 4.4 ⇥ 10�3

Overt pre-train, silent fine-tune Silent Silent pre-train, overt fine-tune Overt 3.70 4.4 ⇥ 10�3

Silent Overt Overt Silent 3.17 8.99 ⇥ 10�3

Overt pre-train, silent fine-tune Overt Silent pre-train, overt fine-tune Silent 2.76 2.9 ⇥ 10�2

Overt Overt Silent pre-train, overt fine-tune Overt 2.65 3.26 ⇥ 10�2

Overt Overt Overt pre-train, silent fine-tune Silent 2.57 3.26 ⇥ 10�2

Silent Silent Overt pre-train, silent fine-tune Overt 1.51 2.61 ⇥ 10�1

Silent Silent Silent pre-train, overt fine-tune Silent 0.76 4.5 ⇥ 10�1

1 Each comparison is a two-sided Wilcoxon Rank-Sum test across 10 cross-validation folds.
2 28-way Holm-Bonferroni correction for multiple comparisons.
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Table 2.8. Hyperparameter definitions and values.

Hyperparameter Search- Value Optimal
Model description space type1 range values2

Speech Smoothing size Uniform (int) [1, 80] 78
detector Probability threshold Uniform [0.1, 0.9] 0.304

Time threshold Uniform (int) [25, 150] 105
duration

Word Number of GRU layers Uniform (int) [1, 4] 2
classifier Nodes per GRU layer Uniform (int) [128, 512] 274

Dropout fraction Uniform [0.3, 0.8] 0.545
Convolution kernel Uniform (int) [1, 10] 4
size and skip
Jitter amount (seconds), j Uniform [0.0, 2.0] 0.474
Additive noise level, �n Uniform [0.0, 1.0] 0.0027
Scale min., ↵min Uniform [0.8, 1.0] 0.955
Scale max., ↵max Uniform [1.0, 1.2] 1.07
Max. temporal-masking Uniform [0.00, 1.35] 0.871
length (seconds), b
Temporal masking probability, p Uniform [0.0, 0.5] 0.0478
Channel-wise noise, �c Uniform [0.0, 1.0] 0.0283

Beam Language-model scaling factor, ↵ Uniform [0.01, 1.0] (0.642, 0.744)
search Word-insertion weight, � Uniform [0.0, 30.0] (4.03, 10.5)

Number of beams maintained, B Uniform (int) [0, 750] (457, 739)
Distil-GPT2 scaling factor, ↵gpt2 Uniform [0.0, 100.0] (1.53, 1.13)

1 “Uniform (int)” indicates that hyperparameter values were forced to be integers.
2 For the language modeling and beam-search hyperparameters, two values are listed: the first is the
optimal value found when optimizing on the copy-typing sentence-spelling trials prior to the first day of
sentence-spelling evaluations (used during this first day), and the second is the optimal value found when
optimizing on the copy-typing sentence-spelling trials from the first day of sentence-spelling evaluations
(used for the second day and all subsequent days).
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Chapter 3

A high-performance neuroprosthesis

for speech decoding and avatar control
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zger*, Kaylo T. Littlejohn*, Alex B. Silva*, David A. Moses*, Margaret P. Seaton* et. al.

(2023). A high performance neuroprosthesis for speech decoding and avatar control. Nature,

1-10. doi: 10.1038/s41586-023-06443-4

Personal contributions:

I designed and constructed the text decoding models and analyses with help from Alex Silva.

I also developed the analyses showing persistent somatotopy in figure 5 with Alex Silva. With

Kaylo Littlejohn, I trained and developed neural network models and analyses for avatar
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3.1 Abstract

Speech neuroprostheses have the potential to restore communication to people living with

paralysis, but naturalistic speed and expressivity are elusive (David A. Moses et al. 2021).

Here, we use high-density surface recordings of the speech cortex in a clinical-trial participant

with severe limb and vocal paralysis to achieve high-performance real-time decoding across

three complementary speech-related output modalities: text, speech audio, and facial-avatar

animation. We trained and evaluated deep-learning models using neural data collected as

the participant attempted to silently speak sentences. For text, we demonstrate accurate and

rapid large-vocabulary decoding with a median rate of 78 words per minute and median word

error rate of 25%. For speech audio, we demonstrate intelligible and rapid speech synthesis

of high-utility phrases, in the participant’s own voice, with human listeners achieving a

median perceptual word error rate of 28%. For facial avatar, we demonstrate the control

of virtual orofacial movements for speech and non-speech communicative gestures. The

decoders reached high performance with fewer than two weeks of training. Our findings

introduce a new multimodal speech-neuroprosthetic approach that has significant promise

to restore full, embodied communication to people living with severe paralysis.

3.2 Main

Speech is the ability to express thoughts and ideas through spoken words. Speech loss

after neurological injury is devastating because it significantly impairs communication and
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causes social isolation (Peters et al. 2015). Previous demonstrations have shown that it is

possible to decode speech from the brain activity of a person with paralysis, but only in the

form of text and with limited speed and vocabulary (David A. Moses et al. 2021; Metzger

et al. 2022). A compelling goal is to both enable faster large-vocabulary text-based commu-

nication and restore the produced speech sounds and facial movements related to speaking.

While text outputs are good for basic messages, speaking has rich prosody, expressiveness,

and identity that can enhance embodied communication beyond what can be conveyed in

text alone. To address this, we designed a multimodal speech neuroprosthesis that uses

broad-coverage, high-density electrocorticography to decode text and audio-visual speech

outputs from articulatory vocal-tract representations distributed throughout the sensorimo-

tor cortex. Due to severe paralysis caused by a basilar artery brainstem stroke that occurred

over 18 years ago, our 47-year-old participant cannot speak or vocalize speech sounds given

the severe weakness of her orofacial and vocal muscles (anarthria) and cannot type given

the weakness in her arms and hands (quadriplegia). Instead, she uses commercial head

tracking assistive technology to communicate slowly to select letters at up to 14 words per

minute. Here, we demonstrate flexible, real-time decoding of brain activity into text, speech

sounds, and both verbal and non-verbal orofacial movements. Additionally, we show that

decoder performance is driven by broad coverage of articulatory representations distributed

throughout the sensorimotor cortex that have persisted after years of paralysis.
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3.3 Overview of multimodal speech-decoding system

We designed a speech-decoding system that enabled a clinical-trial participant (Clinical-

Trials.gov; NCT03698149) with severe paralysis and anarthria to communicate by decoding

intended sentences from signals acquired by a 253-channel high-density electrocorticography

(ECoG) array implanted over speech cortical areas of the sensorimotor cortex and supe-

rior temporal gyrus (Figure 3.1a-c). The array was positioned over cortical areas relevant

for orofacial movements, and simple movement tasks demonstrated di↵erentiable activations

associated with attempted movements of the lips, tongue, and jaw (Figure 3.1d).

For speech decoding, the participant was presented with a sentence as a text prompt on

a screen and was instructed to silently attempt to say the sentence after a visual go cue.

Specifically, she attempted to silently speak the sentence without vocalizing any sounds,

which di↵ers from imagined or inner speech because she was trying to engage her articu-

lators to the best of her ability. It also di↵ers from mouthing words as she has significant

orofacial weakness and we did not want her to struggle or be constrained by these limitations.

Meanwhile, we processed neural signals recorded from all 253 ECoG electrodes to extract

high-gamma activity (HGA; between 70–150 Hz) and low-frequency signals (LFS; between

0.3–17 Hz) (Metzger et al. 2022). We trained deep-learning models to learn mappings be-

tween these ECoG features and phones, speech-sound features, and articulatory gestures,

which we then used to output text, synthesize speech audio, and animate a virtual avatar,

respectively (Figure 3.1a).
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We evaluated our system using three custom sentence sets containing varying amounts

of unique words and sentences named “50-phrase-AAC,” “529-phrase-AAC,” and “1024-

word-General.” The first two sets closely mirror corpora preloaded on commercially available

augmentative and alternative communication (AAC) devices, designed to let patients express

basic concepts and caregiving needs (Beukelman et al. 2007). We chose these two sets to

assess our ability to decode high-utility sentences at a limited and expanded vocabulary

level. The 529-phrase-AAC set contained 529 sentences composed of 372 unique words,

and we selected 50 high-utility sentences composed of 119 unique words to create the 50-

phrase-AAC set. To evaluate how well our system performed with a larger vocabulary

containing common English words, we created the 1024-word-General set, containing 9,655

sentences composed of 1,024 unique words sampled from Twitter and movie transcriptions.

We primarily used this set to assess how well our decoders could generalize to sentences that

the participant did not attempt to say during training with a vocabulary size large enough

to facilitate general-purpose communication.

To train our neural-decoding models prior to real-time testing, we recorded ECoG data

as the participant silently attempted to speak individual sentences. Learning statistical

mappings between the ECoG features and the sequences of phones and speech sound features

in the sentences was challenged by the absence of clear timing information in the attempted

speech. To overcome the inability to definitively know when the phones and speech units

began and ended, we used a connectionist temporal classification (CTC) loss function during

training of our neural decoders, which is commonly used in automatic speech recognition to
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infer sequences of sub-word units (such as phones or letters) from speech waveforms when

precise time alignment between the units and the waveforms is unknown (Graves et al. 2006).

We used CTC loss during training of the text-decoding, speech-synthesis, and articulatory-

decoding models to enable prediction of phone probabilities, discrete speech-sound units,

and discrete articulator movements, respectively, from the ECoG signals.

3.4 Text decoding

Text-based communication is an important modality for facilitating messaging and in-

teraction with technology. Initial e↵orts to decode text from the brain activity of a person

with anarthria during attempted speech had various limitations, including slow decoding

rates and small vocabulary sizes (David A. Moses et al. 2021; Metzger et al. 2022). Here,

we address these limitations by implementing a flexible approach via phone decoding, en-

abling decoding of arbitrary phrases from large vocabularies while approaching naturalistic

speaking rates.

To evaluate real-time performance, we decoded text as the participant attempted to

silently say 249 randomly selected sentences from the 1024-word-General set that were not

used during model training (Figure 3.2a). To decode text, we streamed features extracted

from ECoG signals starting 500 ms prior to the go cue into a bidirectional recurrent neural

network (RNN). Prior to testing, we trained the RNN to predict the probabilities of 39

phones and silence at each time step. A CTC beam search then determined the most likely
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sentence given these probabilities. First, it created a set of candidate phone sequences that

were constrained to form valid words within the 1,024-word vocabulary. Then, it evaluated

candidate sentences by combining each candidate’s underlying phone probabilities with its

linguistic probability using a natural-language model.

To quantify text-decoding performance, we used standard metrics in automatic speech

recognition: word error rate (WER), phone error rate (PER), character error rate (CER),

and words per minute (WPM). WER, PER, and CER measure the percentage of decoded

words, phones, and characters, respectively, that were incorrect.

During real-time evaluation sentences then computed error rates across sequential pseudo-

blocks of 10-sentence segments (and one pseudo-blocks of 9 sentences due to an error trail).

We achieved a median PER of 18.5% (99% CI [14.1, 28.5]; Figure 3.2b), a median WER

of 25.5% (99% CI [19.3, 34.5]; Figure 3.2c), and a median CER of 19.9% (99% CI [15.0,

30.1]; Figure 3.2d; see Table 1 for example decodes; see Figure 3.6 for the relationship

between decoded PER and WER). For all metrics, performance was better than chance,

which we computed by re-evaluating performance after using temporally shu✏ed neural

data as the input to our decoding pipeline (P < 0.0001 for all three comparisons, two-sided

Wilcoxon rank-sum tests with 5-way Holm-Bonferroni correction). The average WER passes

the 30% threshold below which speech-recognition applications generally become useful 6

while providing access to a large vocabulary of over 1,000 words, indicating that our approach

may be viable in clinical applications.

To probe whether decoding performance was dependent on the size of the vocabulary used
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to constrain model outputs and train the language model, we measured decoding performance

in o✏ine simulations using log-spaced vocabulary sizes ranging from 1,506 to 39,378 words.

We created each vocabulary using the by augmenting the 1024-word-General vocabulary with

the N-1,024 most frequently occurring words outside this set in large-scale corpora, where N

is the size of the vocabulary. Then, for each vocabulary, we retrained the natural-language

model to incorporate the new words and enabled the model to output any word from the

larger vocabulary, and then performed decoding with the real-time evaluation trials. We

observed robust decoding performance as vocabulary size grew (Figure 3.2g, See Figure 3.7

for CER and PER). With a vocabulary of 39,378 words, we achieved a median o✏ine WER

of 27.6% (99% CI [20.0, 34.7]).

We verified that our system remained functional in a freeform setting in which the partic-

ipant volitionally and spontaneously attempted to silently say unprompted sentences, with

the neural data aligned to speech onsets detected directly from the neural features instead

of to go cues.

We observed a median real-time decoding rate of 78.3 WPM (99% CI [75.5, 79.4]; Fig-

ure 3.2f). This decoding rate exceeds our participant’s typical communication rate using her

previous assistive device (14.2 WPM) and is closer to naturalistic speaking rates than has

been previously reported with communication neuroprostheses (David A. Moses et al. 2021;

Metzger et al. 2022; Vansteensel et al. 2016; Pandarinath et al. 2017; Willett et al. 2021a).

To assess how well our system could decode phones in the absence of a language model

and constrained vocabulary, we evaluated performance using just the RNN neural-decoding
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model (using the most likely phone prediction at each time step) in an o✏ine analysis.

This yielded a median PER of 29.4% (99% CI [26.2, 32.8.]; Figure 3.2b) which is only 10.9

percentage points higher than the full model, demonstrating that the primary contributor to

phone-decoding performance was the neural-decoding RNN model and not the CTC beam

search or language model (P

<

0.0001 for all comparisons to chance and to the full model, two-sided Wilcoxon signed-rank

tests with 5-way Holm-Bonferroni correction; Extended Data Table 1).

We also characterized the relationship between quantity of training data and text-decoding

performance in o✏ine analyses. For each day of data collection, we trained 5 models with dif-

ferent random initializations on all the data collected on or before that date, then simulated

performance on the real-time blocks. We observed steadily declining error rates over the

course of 13 days of training-data collection (Figure 3.2f), during which we collected 9,506

sentence trials corresponding to about 1.6 hours of training data per day. These results show

that functional speech-decoding performance can be achieved after a relatively short period

of data collection compared to our prior work 1,3 and is likely to continue to improve with

more data.

To assess signal stability, we measured real-time classification performance during a sep-

arate NATO-motor task that we collected during each research session with our participant.

In each trial of this task, we prompted the participant to attempt to either silently say
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one of the 26 code words from the NATO phonetic alphabet (alpha, bravo, charlie, and so

forth) or attempt one of four hand movements (described and analyzed in a later section).

We trained a neural-network classifier to predict the most likely NATO code word from a

4-second window of ECoG features (aligned to the task go cue), and we evaluated real-time

performance with the classifier during the NATO-motor task (Figure 3.2g). We continued

to retrain the model using available data prior to real-time testing until day 40, at which

point we froze the classifier after training it on data from the 1,196 available trials . Across

19 sessions after freezing the classifier, we observed a mean classification accuracy of 96.8%

(99% CI [94.5, 98.6]), with accuracies of 100% obtained on 8 of these sessions. Accuracy

remained high after a 61 day pause in recording for the participant to travel. These results

illustrate the stability of the cortical-surface neural interface without requiring recalibration

and demonstrate that high performance can be achieved with relatively few training trials.

To evaluate model performance on pre-defined sentence sets without any pausing between

words, we trained text-decoding models on neural data recorded as the participant attempted

to silently say sentences from the 50-phrase-AAC and 529-phrase-AAC sets, then simulated

o✏ine text decoding with these sets. With the 529-phrase-AAC set, we observed a median

WER of 17.1% across sentences (99% CI [8.89%, 28.9%]), with a median decoding rate of

89.9 WPM (99% CI [83.6, 93.3]). With the 50-phrase-AAC set, we observed a median WER

of 4.92% (99% CI [3.18, 14.04]) with median decoding speeds of 101 WPM (99% CI: [95.6,

103]). PERs and CERs for each set are given in Figure 3.8 and Figure 3.9. These results

illustrate extremely rapid and accurate decoding for finite, pre-defined sentences that could
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be used frequently by users.

3.5 Personalized speech synthesis

An alternative approach to text decoding is to synthesize speech sounds directly from

recorded neural activity, which could o↵er a pathway towards more naturalistic and expres-

sive communication for someone who is unable to speak. Previous work in speakers with

intact speech has demonstrated that intelligible speech can be synthesized from neural ac-

tivity during vocalized or mimed speech (Angrick et al. 2019; Anumanchipalli et al. 2019)

but this has not been shown with someone who is paralyzed.

We performed real-time speech synthesis by transforming the participant’s neural activity

directly into audible speech as she attempted to silently speak during the audio-visual task

condition (Figure 3.3a). To synthesize speech, we passed time windows of neural activity

around the go cue into a bidirectional RNN. Prior to testing, we trained the RNN to pre-

dict the probabilities of 100 discrete speech units at each time step. To create the reference

speech-unit sequences for training, we used HuBERT, a self-supervised speech-representation

learning model (Hsu et al. 2021a) which encodes a continuous speech waveform into a tem-

poral sequence of discrete speech units that captures latent phonetic and articulatory rep-

resentations (Cho et al. 2022). Because our participant cannot speak, we acquired reference

speech waveforms from a recruited speaker for the AAC sentence sets or via a text-to-speech

algorithm for the 1024-word-General set. We used a CTC loss function during training to
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enable the RNN to learn mappings between the ECoG features and speech units derived

from these reference waveforms without alignment between our participant’s silent speech

attempts and the reference waveforms. After predicting the unit probabilities, we passed the

most likely unit at each time step into a pre-trained unit-to-speech model that first generated

a mel spectrogram and vocoded this mel spectrogram into an audible speech waveform in

real time (Lakhotia et al. 2021; Prenger et al. 2019). O✏ine, we used a voice-conversion

model trained on a brief segment of the participant’s speech (recorded before her injury) to

process the decoded speech into the participant’s own personalized synthetic voice.

We qualitatively observed that spectrograms decoded in real-time shared both fine-

grained and broad time-scale information with corresponding reference spectrograms (Fig-

ure 3.3b). To quantitatively assess the quality of the decoded speech, we used the mel-cepstral

distortion (MCD) metric, which measures the similarity between two sets of mel-cepstral co-

e�cients (which are speech-relevant acoustic features) and is commonly used to evaluate

speech-synthesis performance (Yamagishi et al. 2010). Lower MCD indicates stronger sim-

ilarity. We achieved mean MCDs of 3.45 (99% CI [3.25, 3.82]), 4.49 (99% CI [4.07, 4.67]),

and 5.21 (99% CI [4.74, 5.51]) dB for the 50-phrase-AAC, 529-phrase-AAC, and 1024-word-

General sets, respectively (Figure 3.3c). We observed similar MCD performance on the

participant’s personalized voice. Performance increased as the number of unique words and

sentences in the sentence set decreased but was always better than chance (all P < 0.0001,

two-sided Wilcoxon rank-sum tests with 19-way Holm-Bonferroni correction; chance MCDs

were measured using waveforms generated by passing temporally shu✏ed ECoG features
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through the synthesis pipeline). Furthermore, these MCDs are comparable to those ob-

served with text-to-speech synthesizers 16 and better than prior neural-decoding work with

participants that were able to speak naturally 11.

Human-transcription assessments are a standard method to quantify the perceptual accu-

racy of synthesized speech 17. To directly assess the intelligibility of our synthesized speech

waveforms, crowd-sourced evaluators listened to the synthesized speech waveforms and then

transcribed what they heard into text. We then computed perceptual WER and CERs by

comparing these transcriptions to the ground-truth sentence texts. We achieved median

WERs of 8.20% (99% CI [3.28, 14.5]), 28.2% (99% CI [18.6, 38.5]), 54.4% (99% CI [50.5,

65.2]) and median CERs of 6.64% (99% CI [2.71, 10.6]), 26.3% (99% CI [15.9, 29.7]), and

45.7% (99% CI [39.2, 51.6]) across test trials for the 50-phrase-AAC, 529-phrase-AAC, and

1024-word-General sets, respectively (Figure 3.3d and 3e; see Figure 3.11 for correlations

between WER and MCD). Similar to the MCD results,WERs and CERs improved as the

number of unique words and sentences in the sentence set decreased (all P < 0.0001, two-

sided Wilcoxon rank-sum tests with 19-way Holm-Bonferroni correction; chance measured

by shu✏ing the mapping between the transcriptions and the ground-truth sentence texts).

Together, these results demonstrate that it is possible to synthesize intelligible speech from

the brain activity of a person with paralysis.
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3.6 Facial-avatar decoding

Face-to-face audio-visual communication o↵ers multiple advantages over solely audio-

based communication. Previous studies show that non-verbal facial gestures often account

for a significant portion of the perceived feeling and attitude of a speaker (Mehrabian 1981;

Jia et al. 2012) and that face-to-face communication enhances social connectivity (Sadikaj

and Moskowitz 2018) and intelligibility (Sumby and Pollack 1954). Therefore, animation of

a facial avatar to accompany synthesized speech and further embody the user is a promising

means toward naturalistic communication, and it may be possible via decoding of articulatory

and orofacial representations in the speech-motor cortex (Chartier et al. 2018; Bouchard et

al. 2013; Carey et al. 2017; Mugler et al. 2018). To this end, we developed a facial-avatar

BCI to decode neural activity into articulatory speech gestures and render a dynamically

moving virtual face during the audio-visual task condition (Figure 3.4a).

To synthesize the avatar’s motion, we used an avatar-animation system designed to trans-

form speech signals into accompanying facial-movement animations for applications in games

and film (Speech Graphics Ltd, Edinburgh, Scotland). This technology uses speech-to-

gesture methods that predict articulatory gestures from sound waveforms then synthesizes

the avatar animation from these gestures (Berger et al. 2011). We designed a 3-D virtual

environment to display the avatar to our participant during testing. Before testing, the

participant selected an avatar from multiple potential candidates.

We implemented two approaches for animating the avatar: a direct approach and an
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acoustic approach. We used the direct approach for o✏ine analyses to evaluate if articulatory

movements could be directly inferred from neural activity without the use of a speech-based

intermediate, which has implications for potential future uses of an avatar that are not based

on speech representations, including non-verbal facial expressions. We used the acoustic

approach for real-time audio-visual synthesis because it provided low-latency synchronization

between decoded speech audio and avatar movements.

For the direct approach, we trained a bidirectional RNN with CTC loss to learn a mapping

between ECoG features and reference discretized articulatory gestures. These articulatory

gestures were obtained by passing the reference waveforms through the animation system’s

speech-to-gesture model. We then discretized the articulatory gestures using a vector quan-

tized variational autoencoder (VQ-VAE) (A. v. d. Oord et al. 2017). During testing, we used

the RNN to decode the discretized articulatory gestures from neural activity and then de-

quantized them into continuous articulatory gestures using the VQ-VAE’s decoder. Finally,

we used the gesture-to-animation subsystem to animate the avatar face from the continuous

gestures.

We found that the direct approach produced articulatory gestures that were strongly

correlated with reference articulatory gestures across all datasets, highlighting the system’s

ability to decode articulatory information from brain activity.

We then evaluated direct-decoding results by measuring the perceptual accuracy of the

avatar. Here, we used a forced-choice perceptual assessment to test whether the avatar

animations contained visually salient information about the target utterance. Crowd-sourced
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evaluators watched silent videos of the decoded avatar animations and were asked to identify

to which of two sentences each video corresponded. One sentence was the ground-truth

sentence while the other was randomly selected from the set of test sentences. We used

the median bootstrapped accuracy across six evaluators to represent the final accuracy for

each sentence. We obtained median accuracies of 85.7% (99% CI [79.0, 92.0]), 87.7% (99%

CI [79.7, 93.7]), and 74.3% (99% CI [66.7, 80.8]) across the 50-phrase-AAC, 529-phrase-

AAC, and 1024-word-General sets, demonstrating that the avatar conveyed perceptually

meaningful speech-related facial movements (Figure 3.4b).

Next, we compared the facial-avatar movements generated during direct decoding with

real movements made by healthy speakers. We recorded videos of eight healthy volunteers

as they read aloud sentences from the 1024-word-General set. We then applied a facial-

keypoint recognition model (dlib) (Davis E King n.d.) to avatar and healthy-speaker videos

to extract trajectories important for speech; jaw opening, lip aperture, and mouth width.

For each pseudo-block of 10 test sentences, we computed the mean correlations across sen-

tences between the trajectory values for each possible pair of corresponding videos (36 total

combinations with one avatar and eight healthy-speaker videos). Prior to calculating cor-

relations between two trajectories for the same sentence, we applied dynamic time warping

(DTW) to account for variability in timing. We found that the jaw opening, lip aperture,

and mouth width of the avatar and healthy speakers were well correlated with median values

of 0.733 (99% CI [0.711, 0.748]), 0.690 (99% CI [0.663, 0.714]), and 0.446 (99% CI [0.417,

0.470]) respectively (Figure 3.4c). Although correlations amongst pairs of healthy speak-
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ers were higher than between the avatar and healthy speakers (all P < 0.0001, two-sided

Mann-Whitney U-test with 9-way Holm-Bonferroni correction) there was a large degree of

overlap between the two distributions, illustrating that the avatar reasonably approximated

the expected articulatory trajectories relative to natural variances between healthy speakers.

Correlations for both distributions were significantly above chance, which was calculated by

temporally shu✏ing the human trajectories and then recomputing correlations with DTW

(all P < 0.0001, two-sided Mann-Whitney U-test with 9-way Holm-Bonferroni correction).

Avatar animations rendered in real time using the acoustic approach also exhibited strong

correlations between decoded and reference articulatory gestures, high perceptual accuracy,

and visual facial-landmark trajectories that were closely correlated with healthy-speaker

trajectories. These findings emphasize the strong performance of the speech-synthesis neural

decoder when used with the speech-to-gesture rendering system, although this approach

cannot be used to generate meaningful facial gestures in the absence of a decoded speech

waveform.

In addition to articulatory gestures to visually accompany synthesized speech, a fully

embodying avatar BCI would also enable the user to portray non-speech orofacial gestures,

including movements of particular orofacial muscles and expressions that convey emotion

(Salari et al. 2020). To this end, we collected neural data from our participant as she per-

formed two additional tasks: an articulatory-movement task and an emotional-expression

task. In the articulatory-movement task, the participant attempted to produce 6 orofacial

movements (Figure 3.4d). In the emotional-expression task, the participant attempted to
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produce 3 types of expressions — happy, sad, and surprised — with either low, medium, or

high intensity, resulting in 9 unique expressions. O✏ine, for the articulatory-movement task

we trained a small feed-forward neural-network model to learn the mapping between the

ECoG features and each of the targets. For the articulatory-movement task, we observed a

median classification accuracy of 87.8% (99% CI [85.1, 90.5]; across n=10 cross-validation

folds; Figure 3.4d) when classifying between the 6 movements. For the emotional-expression

task, we trained a small RNN to learn the mapping between ECoG features and each of the

expression targets. We observed a median classification accuracy of 74.0% (99% CI [70.8,

77.1]; across n=15 cross-validation folds; Figure 3.4e) when classifying between the 9 possi-

ble expressions and a median classification accuracy of 96.9% (99% CI [93.8,100]) when only

considering the classifier’s outputs for the strong-intensity versions of the 3 expression types.

In separate, qualitative task blocks, we showed that the participant could control the avatar

BCI to portray the articulatory movements and strong-intensity emotional expressions, il-

lustrating the potential of multimodal communication BCIs to restore the ability to express

meaningful orofacial gestures.

3.7 Articulatory representations drive decoding

In healthy speakers, neural representations in the sensorimotor cortex (SMC, comprising

the precentral and postcentral gyri) encode articulatory movements of the orofacial muscu-

lature (Chartier et al. 2018; Carey et al. 2017; Eichert et al. 2020). With the implanted
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electrode array centered over the SMC of our participant, we hypothesized that articulatory

representations persisting after paralysis underlied speech-decoding performance. To assess

this, we fit a linear temporal receptive-field encoding model to predict HGA for each electrode

from the phone probabilities computed by the text decoder during the 1024-word-General

text task condition. For each speech-activated electrode, we calculated the maximum en-

coding weight for each phone, yeilding a phonetic-tuning space where each electrode had an

associated vector of phone-encoding weights. Within this space, we determined if phone clus-

tering was organized by the primary orofacial articulator of each phone (place of articulation,

POA; Figure 3.5a), which has been shown in prior studies with healthy speakers (Chartier

et al. 2018; Bouchard et al. 2013). We parceled phones into four POA categories: labial,

vocalic, back tongue, and front tongue. Hierarchical clustering of phones revealed grouping

by POA (P < 0.0001 compared to chance, one-tailed permutation test; Figure 3.5b). We

observed a variety of tunings across the electrodes, with some electrodes exhibiting tuning

to single POA categories and others to multiple categories (such as both front-tongue and

back-tongue phones or both labial and vocalic phones; Figure 3.5c). We visualized the pho-

netic tunings in a two-dimensional space, revealing separability between labial and non-labial

consonants (Figure 3.5d) and between lip-rounded and non-lip-rounded vowels (Figure 3.5e).

Next, we investigated whether these articulatory representations were arranged somato-

topically (with ordered regions of cortex preferring single articulators), which is observed in

healthy speakers (Bouchard et al. 2013). Because the dorsal-posterior corner of our ECoG

array provided coverage of the hand cortex, we also assessed how neural activation patterns
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related to attempted hand movements fit into the somatotopic map, using data collected

during the NATO-motor task containing four finger flexion targets (either thumb or simul-

taneous index- and middle-finger flexion for each hand). We visualized the grid locations

of the electrodes that most strongly encoded the vocalic, front-tongue, and labial phones

as well attempted hand movement (the top 30% of electrodes having maximal tuning for

each condition; Figure 3.5f). Kernel density estimates revealed a somatotopic map with

encoding of attempted hand movements, labial phones, and front-tongue phones organized

along a dorsal-ventral axis. The relatively anterior localization of the vocalic cluster in the

precentral gyrus is likely associated with the laryngeal motor cortex, consistent with previous

investigations in healthy speakers (Bouchard et al. 2013; Carey et al. 2017; Breshears et al.

2015).

Next, we assessed whether the same electrodes that encoded POA categories during

silent speech attempts also encoded non-speech articulatory-movement attempts. Using

the previously computed phonetic encodings and HGA recorded during the articulatory

movement task, we found a positive correlation between front-tongue phonetic encoding

and HGA magnitude during attempts to raise the tongue (P < 0.0001, r=0.84, ordinary

least squares regression; Figure 3.5g). We also observed a positive correlation between labial

phonetic tuning and HGAmagnitude during attempts to pucker the lips (P< 0.0001, r =0.89,

ordinary least squares regression; Figure 3.5h). Although most electrodes were selective to

either lip or tongue movements, others were activated by both (Figure 3.5i). Together, these

findings suggest that, after 18 years of paralysis, our participant’s SMC maintains general-
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purpose articulatory encoding that is not speech specific and contains representations of

non-verbal emotional expressions and articulatory-movements (see Figure 3.4). During the

NATO-motor task, electrodes encoding attempted finger flexions were largely orthogonal to

those encoding NATO code words, which helped to enable accurate neural discrimination

between the four finger-flexion targets and the silent-speech targets (the model correctly

classified 569 out of 570 test trials as either finger flexion or silent speech).

To characterize the relationship between encoding strength and importance during de-

coding, we computed a contribution score for each electrode and decoding modality by mea-

suring the e↵ect of small perturbations to the electrode’s activity on decoder predictions, as

in previous work (David A. Moses et al. 2021; Metzger et al. 2022; Simonyan et al. 2014) (Fig-

ure 3.12a-c). We noted that many important electrodes were adjacent, suggesting sampling

of useful, non-redundant information from the cortex despite the electrodes’ close proximity.

We also observed degraded performance during an o✏ine simulation of low-density sampling,

further highlighting the benefit of high-density cortical recording. As we hypothesized, many

of the highest-contributing electrodes also exhibited substantial articulatory-feature encoding

defined in Figure 3.5 and were similarly important for all three modalities (Figure 3.12e-g).

Indeed, the brain areas that most strongly encoded POA, notably the SMC, were the most

critical to decoding performance in leave-one-area-out o✏ine analyses (Figure 3.13).

These results are in line with growing evidence for motor-movement encoding in the post-

central gyrus (Umeda et al. 2019; Murray and Coulter 1981; Arce et al. 2013), which is further

supported by an analysis of peak-activation times that revealed no significant di↵erence be-
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tween electrodes in the precentral versus postcentral gyrus during silent attempts to speak

(P > 0.01 two-sided Mann-Whitney U-test) (Umeda et al. 2019; Murray and Coulter 1981;

Arce et al. 2013). Interestingly, temporal-lobe electrodes contributing to decoding were not

strongly activated during auditory perception (r < 0.1, P > 0.01, Pearson correlation permu-

tation test), suggesting they may record cortical activity from the subcentral gyrus (Eichert

et al. 2020) or production-specific sites within the temporal lobe (binder˙current˙2017).

3.8 Discussion

Faster, more accurate, and more natural communication are among the most desired

needs of people who have lost the ability to speak after severe paralysis (Peters et al. 2015;

Rousseau et al. 2015; Felgoise et al. 2016; Huggins et al. 2011). Here, we have demonstrated

that all of these needs can be addressed with a speech-neuroprosthetic device that decodes

articulatory cortical activity into multiple output modalities, including text, speech audio

synchronized with a facial avatar, and facial expressions.

During 14 days of data collection shortly after device implantation, we achieved high

performance text decoding, exceeding communication speeds of previous brain-computer

interfaces (BCIs) by a factor of 4 or more 1,3,9 and expanding the vocabulary size of our

prior direct-speech BCI by a factor of 20 1. We also showed for the first time that intelligible

speech can be synthesized from the brain activity of a person with paralysis. Finally, we

introduced a novel modality of BCI control in the form of a digital “talking face” — a
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personalized avatar capable of dynamic, realistic, and interpretable speech and non-verbal

facial gestures. Together, we believe that these results have surpassed an important threshold

of performance, generalizability, and expressivity that could soon have practical benefits to

people with speech loss.

The progress here was enabled by several key innovations and findings: 1) Advances

in the neural interface, providing denser and broader sampling of the distributed orofa-

cial and vocal-tract representations across the lateral sensorimotor cortex; 2) Highly stable

recordings from non-penetrating cortical-surface electrodes, enabling training and testing

across days and weeks without requiring day-of recalibration; 3) Custom sequence-learning

neural-decoding models, facilitating training without alignment of neural activity and output

features 4) Self-supervised learning-derived discrete speech units, serving as e↵ective interme-

diate representations for intelligible speech synthesis; 5) Control of a virtual face from brain

activity to accompany synthesized speech and convey facial expressions; and 6) Persistent ar-

ticulatory encoding in the SMC of our participant that is consistent with prior intact-speech

characterizations despite over 18 years of anarthria, including hand and orofacial-motor so-

matotopy organized along a dorsal-ventral axis and phonetic tunings clustered by place of

articulation.

A limitation of the present proof-of-concept study is that the results shown are from only

one participant. An important next step is to validate these decoding approaches in other

individuals with varying degrees and etiologies of paralysis, for example patients who are fully

locked-in with ALS (Pandarinath et al. 2017; Bruurmijn et al. 2017). Furthermore, while we
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were able to train decoders without the participant hearing or seeing the targets for synthesis

and avatar, providing instantaneous closed-loop feedback during decoding has the potential

to improve user engagement, model performance, and neural entrainment 42,43. Also, further

advances in electrode interfaces 44 to enable denser and broader cortical coverage should

continue to improve accuracy and generalizability towards eventual clinical applications.

The ability to interface with evolving technology to communicate with family and friends,

facilitate community involvement and occupational participation, and engage in virtual,

internet-based social contexts (such as social media and metaverses) can vastly expand a

person’s access to meaningful interpersonal interactions and ultimately improve their quality

of life (Peters et al. 2015; Felgoise et al. 2016). We show here that BCIs can give this ability

back to patients through highly personalizable audio-visual synthesis capable of restoring

aspects of their personhood and identity. This is further supported by our participant’s

feedback on the technology, in which she describes how a multimodal BCI would improve

her daily life by increasing expressivity, independence, and productivity. A major goal now is

to move beyond these initial demonstrations and build seamless integration with real-world

applications.
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3.9 Methods

Clinical-trial overview

This study was completed within the BCI Restoration of Arm and Voice (BRAVO)

clinical trial (ClinicalTrials.gov; NCT03698149). The primary endpoint of this trial is to

assess the long-term safety and tolerability of an electrocorticography (ECoG)-based interface

through the measurement of treatment-emergent adverse events. All data presented here are

part of the ongoing exploratory clinical trial and do not contribute toward any conclusions

regarding the primary safety endpoints of the trial. The clinical trial began in November

2018, with all data in this present work collected in 2022 and 2023. Following the Food

and Drug Administration’s investigational device exemption approval for the neural-implant

device used in this study, the study protocol was approved by the University of California,

San Francisco Institutional Review Board. The participant gave her informed consent to

participate in this trial following multiple conversations with study investigators where the

details of study enrollment, including risks related to the study device, were thoroughly

explained to her. The original and current clinical protocols are provided as a supplementary

file alongside this article.

Participant

The participant, who was 47 years old at time of enrollment into the study, was diag-

nosed with quadriplegia and anarthria by neurologists and a speech-language pathologist
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following a right-pontine infarct in 2005. When the participant was 30 years old and in

good health, she experienced sudden onset dizziness, slurred speech, quadriplegia and bul-

bar weakness. She was found to have a large pontine infarct with left vertebral artery

dissection and basilar artery occlusion. During enrollment testing, she scored 29/30 on the

Mini Mental State Exam and was only unable to achieve the final point because she could

not physically draw a figure due to her paralysis. She can vocalize a small set of mono-

syllabic sounds, such as ”ah” or ”ooh”, but she is unable to articulate intelligible words.

During clinical assessments, a speech-language pathologist prompted her to say 58 words

and 10 phrases and also asked her to respond to 2 open-ended questions within a structured

conversation. From the resulting audio and video transcriptions of her speech attempts, the

speech-language pathologist measured her intelligibility to be 5% for the prompted words,

0% for the prompted sentences, and 0% for the open-ended responses. To investigate how

similar her movements during silent speech attempts were relative to neurotypical speakers,

we applied a state-of-the-art visual-speech recognition 45 model to videos of the participant’s

face during imagined, silently attempted, and vocal attempted speech. We found a median

WER of 95.8% (99% CI [90.0, 125.0]) for silently attempted speech, which was far higher

than the median WER from videos of volunteer healthy speakers, which was 50.0% (99% CI

[37.5, 62.5]). Functionally, she cannot use speech to communicate. Instead, she relies on a

transparent letter board and a Tobii Dynavox for communication. She used her transparent

letter board to provide informed consent to participate in this study and to allow her image

to appear in demonstration videos. To sign the physical consent documents, she used her
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communication board to spell out ”I consent” and directed her spouse to sign the documents

on her behalf.

Neural implant

The neural-implant device used in this study featured a high-density ECoG array (PMT)

and a percutaneous pedestal connector (Blackrock Microsystems). The ECoG array consists

of 253 disk-shaped electrodes arranged in a lattice formation with 3-mm center-to-center

spacing. Each electrode has a 1-mm recording-contact diameter and a 2-mm overall diame-

ter. The array was surgically implanted subdurally on the pial surface of the left hemisphere

of the brain, covering regions associated with speech production and language perception, in-

cluding the middle aspect of the superior and middle temporal gyri, the precentral gyrus, and

the postcentral gyrus. Pre-operative functional magnetic resonance imaging with standard

clinical speech and motor tasks was performed, which also indicated hand-motor encoding in

the brain area covered by the dorsal part of the array. The percutaneous pedestal connector,

which was secured to the skull during the same operation, conducts electrical signals from the

ECoG array to a detachable digital headstage and HDMI cable (CerePlex E256; Blackrock

Microsystems). The digital headstage minimally processes and digitizes the acquired cortical

signals and then transmits the data to a computer for further signal processing. The device

was implanted in September 2022 at UCSF Medical Center with no surgical complications.
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Signal processing

We used the same signal-processing pipeline detailed in our previous work (Metzger et

al. 2022) to extract high-gamma activity (HGA) and low-frequency signals (LFS) from the

ECoG signals at a 200-Hz sampling rate. Briefly, we first apply common average referencing

to the digitized ECoG signals and downsample them to 1kHz after applying an anti-aliasing

filter with a cuto↵ of 500Hz. Then we compute HGA as the analytic amplitude of these

signals after band-passing them in the high-gamma range (70–150 Hz), then downsample

them to 200Hz. For LFS, we only apply a low-pass anti-aliasing filter with a cuto↵ frequency

of 100 Hz, then downsample signals to 200Hz. For data normalization, we applied a 30-second

sliding-window z-score in real time to the HGA and LFS features from each ECoG channel.

We performed all data collection and real-time decoding tasks in the common area of the

participant’s residence. We used a custom Python package named rtNSR, which we created

in prior work but have continued to augment and maintain over time (David A. Moses et al.

2021; Metzger et al. 2022; David A Moses et al. 2018), to collect and process all data, run

the tasks, and coordinate the real-time decoding processes. After each session, we uploaded

the neural data to our lab’s server infrastructure, where we analyzed the data and trained

decoding models.
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Task design

Experimental paradigms

To collect training data for our decoding models, we implemented a task paradigm in

which the participant attempted to produce prompted targets. In each trial of this paradigm,

we presented the participant with text representing a speech target (for example, “Where

was he trying to go?”) or a non-speech target (for example, “Lips back”). The text was

surrounded by three dots on both sides, which sequentially disappeared to act as a count-

down. After the final dot disappeared, the text turned green to indicate the go cue, and the

participant attempted to silently say that target or perform the corresponding action. After

a brief delay, the screen cleared and the task continued to the next trial.

During real-time testing, we used three di↵erent task conditions: text, audio-visual,

and NATO-motor. We used the text task condition to evaluate the text decoder. In this

condition, we used the top half of the screen to present prompted targets to the participant,

similar to what we used for training. We used the bottom half of the screen to display an

indicator (three dots) when the text decoder first predicted a non-silence phone, which we

updated to the full decoded text once the sentence was finalized.

We used the audio-visual task condition to evaluate the speech-synthesis and avatar-

animation models, including the articulatory-movement and emotional-expression classifiers.

In this condition, the participant attended to a screen showing the Unreal Engine environ-

ment that contained the avatar. The viewing angle of the environment was focused on the
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avatar’s face. In each trial, speech and non-speech targets appeared on the screen as white

text. After a brief delay, the text turned green to indicate the go cue, and the participant

attempted to silently say that target or perform the corresponding action. Once the de-

coding models processed the neural data associated with the trial, the decoded predictions

were used to animate the avatar and, if the current trial presented a speech target, play the

synthesized speech audio.

We used the NATO-motor task condition to evaluate the NATO code-word classification

model and to collect neural data during attempted hand-motor movements. This task con-

tained 26 speech targets (the code words in the NATO phonetic alphabet) and 4 non-speech

hand-motor targets (left-thumb flexion, right-thumb flexion, right index- and middle-finger

flexion, and left index- and middle-finger flexion). We instructed the participant to attempt

to perform the hand-motor movements to the best of her ability despite her severe paralysis.

This task condition resembled the text condition, except that the top three predictions from

the classifier (and their corresponding predicted probabilities) were shown in the bottom half

of the screen as a simple horizontal bar chart after each trial. We used the prompted-target

paradigm to collect the first few blocks of this dataset, and then we switched to the NATO-

motor task condition to collect all subsequent data and to perform real-time evaluation.

Sentence sets

We used three di↵erent sentence sets in this work: “50-phrase-AAC”, “529-phrase-AAC”,

and “1024-word-General.” The first two sets contained sentences that are relevant for general
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dialogue as well as augmentative and alternative communication (AAC) 4. The 50-phrase-

AAC set contained 50 sentences composed of 119 unique words, and the 529-phrase-AAC

set contained 529 sentences composed of 372 unique words and included all of the sentences

in the 50-phrase-AAC set. The 1024-word-General set contained sentences sampled from

Twitter and movie transcriptions for a total of 13,463 sentences and 1,024 unique words.

To create the 1024-word-General sentence set, we first extracted sentences from the nltk

Twitter corpus (Bird et al. 2009) and the Cornell movies corpus (Danescu-Niculescu-Mizil

and L. Lee 2011). We drew 18,284 sentences from this corpora that were composed entirely

from the 1,152-word vocabulary from our previous work 3, which contained common English

words. We then subjectively pruned out o↵ensive sentences, sentences that grammatically

did not make sense, and sentences with overly negative connotation, and kept sentences

between 4-8 words, which resulted in 13,463 sentences composed of a total of 1,024 unique

words. Partway through training, we removed sentences with syntactic pauses or punctua-

tion in the middle. Of these sentences, we were able to go through 9,506 with our participant

for use during the training of text and avatar models. We used 95% of this data to train the

models and 5% as a held-out development set to evaluate performance and choose hyper-

parameters prior to real-time testing. Because the synthesis model required several days to

train to convergence, this model only used 6,449 trials for training data since the remaining

trials were collected while the model was training. Of these trials, 100 were used as a held-

out development set to evaluate performance and choose hyperparameters prior to real-time

testing.
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We randomly selected 249 sentences from the 1024-word-General set to use as the final

test sentences for text decoding. We did not collect training data with these sentences

as targets. For evaluation of audio-visual synthesis and avatar, we randomly selected 200

sentences that were not used during training and were not included in the 249 sentences used

for text-decoding evaluation. As a result of the prior reordering, the audio-visual synthesis

and avatar test sets contained a larger proportion of common words.

For training and testing with the 1024-word-General sentence set, to help the decoding

models infer word boundaries from the neural data without forgoing too much speed and

naturalness, we instructed the participant to insert small syllable-length pauses (approxi-

mately 300–500 ms) between words during her silent speech attempts. For all other speech

targets, we instructed the participant to attempt to silently speak at her natural rate.

Text decoding

Phone decoding

For the text-decoding models, we downsampled the neural signals by a factor of 6 (from

200 Hz to 33.33 Hz) after applying an anti-aliasing low-pass filter at 16.67 Hz using the

Scipy python package (Virtanen et al. 2020), as in previous work (David A. Moses et al.

2021; Metzger et al. 2022). We then normalized the high-gamma activity and low-frequency

signals separately to have an L2-norm of 1 across all time steps for each channel. We used

all available electrodes during decoding.
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We trained a recurrent neural network (RNN) to model the probability of each phone

at each time step, given these neural features. We trained the RNN using the connectionist

temporal classification (CTC) loss 5 to account for the lack of temporal alignment between

neural activity and phone labels. The CTC loss maximizes the probability of any correct

sequence of phone outputs that correspond to the phone transcript of a given sentence.

To account for di↵erences in the length of individual phones, the CTC loss collapses over

consecutive repeats of the same phone. For example, predictions corresponding to /w ah

z/ — the phonetic transcription of “was” — could be a result of the RNN predicting the

following valid time series of phones: /w ah z z/, /w w ah ah z/ z/, /w w ah z/, and so

forth.

We determined reference sequences using g2p-en K. Park and Kim 2019, a grapheme-

to-phoneme model that enabled us to recover phone pronunciations for each word in the

sentence sets. We inserted a silence token in between each word and at the beginning and

end of each sentence. For simplicity, we used a single phonetic pronunciation for each word

in the vocabulary. We used these sentence-level phone transcriptions for training and to

measure performance during evaluation.

The RNN itself contained a convolutional portion followed by a recurrent portion, which

is a commonly used architecture in automatic speech recognition 52,53. The convolutional

portion of our RNN was composed of a 1-D convolutional layer with 500 kernels, a kernel

size of 4, and a stride of 4. The recurrent portion was composed of 4 layers of bidirectional

gated recurrent units with 500 hidden units. The hidden states of the final recurrent layer
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were passed through a linear layer and projected into a 41-dimensional space. These values

were then passed through a softmax activation function to estimate the probability of each

of the 39 phones, the silence token, and the CTC blank token (used in the CTC loss to

predict two tokens in a row or to account for silence at each time step) Graves et al. 2006.

We implemented these models using the PyTorch Python package (version 1.10.0) Paszke

et al. 2019

We trained the RNN to predict phone sequences using an 8-second window of neural

activity. To improve the model’s robustness to temporal variability in the participant’s

speech attempts, we introduced jitter during training by randomly sampling a continuous

8-second window from a 9-second window of neural activity spanning from 1 second before

to 8 seconds after the go cue, as in previous work David A. Moses et al. 2021; Metzger et al.

2022. During inference, the model used a window of neural activity spanning from 500 ms

before to 7.5 seconds after the go cue. To improve communication rates and decoding of

variable-length sentences, we terminated trials before a full 8-second window if the decoder

determined the participant had stopped attempted speech by using silence detection. Here,

we use “silence” to refer to the absence of an ongoing speech attempt; all of the participant’s

attempts to speak were technically silent, so the “silence” described here can be thought of

as idling. To implement this early-stopping mechanism, we performed the following steps: 1)

Starting 1.9 s after the go cue and then every 800 ms afterwards, we used the RNN to decode

the neural features acquired up to that point in the trial; 2) If the RNN predicted the silence

token for the most recent 8 time steps (960 ms) with over 88.8% average probability (or, in
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2 out of the 249 real-time test trials, if the 7.5-second trial duration expired), the current

sentence prediction was used as the final model output and the trial ended. We attempted

a version of the task where the current decoded text was presented to the participant every

800 ms; however, the participant generally preferred only seeing the finalized decoded text.

Beam-search algorithm

We used a CTC beam-search algorithm to transform the predicted phone probabilities

into text (Collobert et al. 2016). To implement this CTC beam search, we used the ctc decode

function in the torchaudio Python package (Yang et al. 2022). Briefly, the beam search finds

the most likely sentence given the phone probabilities emitted by the RNN. For each silent

speech attempt, the likelihood of a sentence is computed as the emission probabilities of

the phones in the sentence combined with the probability of the sentence under a language-

model prior. We used a custom-trained 5-gram language model with Kneser-ney smoothing

(Kneser and Ney 1995). We used the KenLM software package (Heafield 2011) to train the

5-gram language model on the full 18,284 sentences that were eligible to be in the 1024-

word-General set prior to any pruning. The 5-gram language model is trained to predict

the probability of each word in the vocabulary based on the previous words (up to 4). We

chose this approach because the linguistic structure and content of conversational tweets and

movie lines are more relevant for everyday usage than formal written language commonly

used in many standard speech-recognition databases (Panayotov et al. 2015; Ito and Johnson

2017). The beam search also uses a lexicon to restrict phone sequences to form valid words
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within a limited vocabulary. Here, we used a lexicon defined by passing each word in the

vocabulary through a grapheme-to-phoneme conversion module (g2p-en) to define a valid

pronunciation for each word. We used a language model weight of 4.5 and a word insertion

score of -0.26.

Decoding speed

To measure decoding speed during real-time testing, we used the formula NT, where N is

the number of words in the decoded output and T is the time (in minutes) that our participant

was attempting to speak. We calculated T by computing the elapsed time between the

appearance of the go cue and the time of the data sample which immediately preceded the

samples that triggered early stopping, giving the resulting formula: rate = N
tsilencedetected�tgocue

Here, N remains the number of words in the decoded output. tsilence detected is the time

of the data sample which immediately preceded the samples that triggered early stopping,

and tgo cue is the time when the go cue appeared.

Error-rate calculation

Word error rate (WER) is defined as the word edit distance, which is the minimum

number of word deletions, insertions, and substitutions required to convert the decoded

sentence into the target (prompted) sentence, divided by the number of words in the target

sentence. Phone error rate (PER) and character error rate (CER) are defined analogously for

phones and characters, respectively. When measuring PERs, we ignored the silence token at
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the start of each sentence, since this token is always present at the start of both the reference

phone sequence and the phone decoder’s output.

For brain-computer interfaces, error-rate distributions are typically assessed across sets

of 5 or more sentences rather than single trials, since single-trial error rates can be noisy

and are highly dependent on sentence length (David A. Moses et al. 2021; Metzger et al.

2022; Willett et al. 2021b). Hence, we sequentially parceled sentences into pseudo-blocks of

10 sentences and then evaluated error rates and other metrics across these pseudo-blocks.

As in previous work (Metzger et al. 2022; Willett et al. 2021b), this entailed taking the sum

of the phone, word, and character edit distances between each of the predicted and target

sentences in a given pseudo-block, and dividing it by the total number of phones, words, or

characters across all target sentences in the block, respectively. In the single case where a

pseudo block contained an invalid trial, that trial was ignored.

O✏ine simulation of large-vocabulary, 50-phrase-AAC, and 500-phrase-AAC

results

To simulate text-decoding results using the larger vocabularies, we used the same neural

activity, RNN decoder, and start and end times that were used during real-time evaluation.

We only changed the underlying 5-gram language model to be trained on all sentences 4

to 8 words in length in the Twitter and Cornell movies corpora that fell within the desired

vocabulary. We evaluated performance using log-spaced vocabulary sizes consisting of 1,506,

2,270, 3,419, 5,152, 7,763, 11,696, 17,621, 11,696, 26,549, and 39,378 words, and also included
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the real-time results (1024 words). To choose the words at each vocabulary size, with the

exception of the already defined vocabulary for the real-time results, we first included all

words in the 1024-word-General set. Then, we used a readily available pronunciation dic-

tionary from the Librispeech Corpus Panayotov et al. 2015 to select all words which were

present in both the Twitter and Cornell movies corpora and the pronunciation dictionary.

The most frequent words which were not in the 1024-word-General set but fell within the

pronunciation dictionary were added to reach the target vocabulary size. We then simulated

the results on the task with the larger vocabulary and language model.

To simulate text-decoding results on the 50-phrase-AAC and 500-phrase-AAC sentence

sets (because we only tested the text decoder in real-time with the 1024-word-General set),

we trained RNN decoders on data associated with these two AAC sets. We then simulated

decoding using the neural data and go cues from the real-time blocks used for evaluation

of the avatar and synthesis methods. We checked for early stopping 2.2 s after the start of

the sentence and again every subsequent 350 ms. Once an early stop was detected, or if 5.5

seconds had elapsed since the go cue, we finalized the sentence prediction. During decoding,

we applied the CTC beam search using a 5-gram language model fit on the phrases from

that set.

Decoding NATO code words and hand-motor movements

We used the same neural-network decoder architecture (but with a modified input and

output layer dimensionality to account for di↵erences in the number of electrodes and target
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classes) as in previous work 3 to output the probability of each of the 26 NATO code words

and the four hand-motor targets. To maximize data e�ciency, we used transfer learning

between our participants; we initialized the decoder using weights from our previous work,

and we replaced the first and last layers to account for di↵erences in the number of electrodes

and number of classes being predicted, respectively.For the results shown in Figure 3.2h, we

computed NATO code-word classification accuracy using a model that was also capable of

predicting the motor targets; here, we only measured performance on trials in which the

target was a NATO code word, and we deemed incorrect any such trial in which a code-word

attempt was misclassified as a hand-motor attempt.

Speech synthesis

Training and inference procedure

We used CTC loss to train an RNN to predict a temporal sequence of discrete speech

units extracted using HuBERT (Hsu et al. 2021b) from neural data. HuBERT is a speech-

representation learning model that is trained to predict acoustic k-means-cluster identities

corresponding to masked timepoints from unlabeled input waveforms. We refer to these

cluster identities as discrete speech units, and the temporal sequence of these speech units

represents the content of the original waveform.

Because our participant cannot speak, we generated reference sequences of speech units

by applying HuBERT to a speech waveform which we refer to as the basis waveform. For the
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50-phrase-AAC and 529-phrase-AAC sets, we acquired basis waveforms from a single male

speaker (recruited prior to our participant’s enrollment in the trial) who was instructed to

read each sentence aloud in a consistent manner. Due to the large number of sentences in

the 1024-word-General set, we used the Wavenet text-to-speech model (A. v. d. Oord et al.

2016) to generate basis waveforms.

We used HuBERT to process our basis waveforms and generate a series of reference

discrete speech units sampled at 50 Hz. We used the base 100-unit, 12-transformer-layer

HuBERT trained on 960 hours of LibriSpeech (Panayotov et al. 2015), which is available in

the open-source fairseq library (Ott et al. 2019). In addition to the reference discrete speech

units, we added the blank token needed for CTC decoding as a target during training.

The synthesis RNN, which we trained to predict discrete speech units from the ECoG

features (high-gamma activity and low-frequency signals), consisted of the following layers

(in order): 1) A 1-D convolutional layer, with 260 kernels with width and stride of 6; 2) 3

layers of bidirectional gated recurrent units, each with a hidden dimension size of 260; and

3) a 1-D transpose convolutional layer, with a size and stride of 6, that output discrete-

unit logits. To improve robustness, we applied data augmentations using the SpecAugment

method (D. S. Park et al. 2019) to the ECoG features during training.

From the ECoG features, the RNN predicted the probability of each discrete unit every 5

ms. We only retained the most likely predicted unit at each time step. We ignored time steps

where the CTC blank token was decoded, as this is primarily used to adjust for alignment

and repeated decodes of discrete units. Next, we synthesized a speech waveform from the
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sequence of discrete speech units, using a pre-trained unit-to-speech vocoder (A. Lee et al.

2022).

During each real-time inference trial in the audio-visual task condition, we provided the

speech-synthesis model with ECoG features collected in a time window around the go cue.

This time window spanned from 0.5 seconds before to 4.62 seconds after the go cue for the

50-phrase-AAC the 529-phrase-AAC sentence sets and from 0 seconds before to 7.5 seconds

after the go cue for the 1024-word-General sentence set. The model then predicted the most

likely sequence of HuBERT units from the neural activity and generated the waveform using

the aforementioned vocoder. We streamed the waveform in 5-ms chunks of audio directly to

the real-time computer’s sound card via the PyAudio Python package.

To decode speech waveforms in the participant’s personalized voice (that is, a voice de-

signed to resemble the participant’s own voice before her injury), we used YourTTS Casanova

et al. 2022, a zero-shot voice conversion model. After conditioning the model on a short clip

of our participant’s voice extracted from a pre-injury video of her, we applied the model to

the decoded waveforms to generate the personalized waveforms (Figure 3.10). To reduce the

latency of the personalized speech synthesizer during real-time inference for a qualitative

demonstration, we trained a HiFi-CAR convolutional neural network67 to vocode HuBERT

units into personalized speech . This model used voice converted LJSpeech (via YourTTS)

as training data.
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Evaluation

To evaluate the quality of the decoded speech, we computed the mel-cepstral distortion

(MCD) between the decoded and reference waveforms (y and y, respectively) Kubichek

1993. This is defined as the squared error between dynamically time warped sequences of

mel cepstra (mcd where d is the index of the mel cepstra) extracted from the target and

decoded waveforms and is commonly used to evaluate the quality of synthesized speech:

MCD(ŷ, y) =
10

log(10)

q
(mc

y
d +mc

ŷ
d)

We excluded silence time points at the start and end of each waveform during MCD

calculation. For each pseudo-block, we combined the MCD of 10 individual trials by taking

their mean.

We designed a perceptual assessment using a crowd-sourcing platform (Amazon Mechan-

ical Turk), where each test trial was assessed by 12 evaluators (except for 3 of the 500 trials,

in which only 11 workers completed their evaluations). In each evaluation, the evaluator

listened to the decoded speech waveform and then transcribed what they heard. For each

sentence, we then computed the WER and CER between the evaluator’s transcriptions and

the ground-truth transcriptions. To control for outlier evaluator performance, for each trial,

we used the median WER and CER across evaluators as the final accuracy metric for the de-

coded waveform. We reported metrics across pseudo-blocks of 10 sentences to be consistent

with text-decoding evaluations and calculated WER across each pseudo-block in the same
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manner as for text decoding

Avatar

Articulatory-gesture data

We used a dataset of articulatory gestures for all sentences from the 50-phrase-AAC,

529-phrase-AAC, and 1024-word-general datasets provided by Speech Graphics. We gener-

ated these articulatory gestures from reference waveforms using Speech Graphics’ speech-to-

gesture model, which was designed to animate avatar movements given a speech waveform.

For each trial, articulatory gestures consisted of 16 individual gesture time series correspond-

ing to jaw, lip, and tongue movements.

O✏ine training and inference procedure for the direct avatar-animation

approach

To perform direct decoding of articulatory gestures from neural activity (the direct ap-

proach for avatar animation), we first trained a vector-quantized variational autoencoder

(VQ-VAE) to encode continuous Speech Graphics’ gestures into discrete articulatory-gesture

units (A. v. d. Oord et al. 2017). A VQ-VAE is composed of an encoder network that maps

a continuous feature space to a learned discrete codebook and a decoder network that recon-

structs the input using the encoded sequence of discrete units. The encoder was composed of

3 layers of 1-D convolutional units with 40 filters, a kernel size 4, and a stride of 2. Rectified
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linear unit (ReLU) activations followed the second and third of these layers. After this step,

we applied a 1-D convolution, with 1 filter and a kernel size and stride of 1, to generate the

predicted codebook embedding. We then used nearest-neighbor lookup to predict the dis-

crete articulatory-gesture units. We used a codebook with 40 di↵erent 1-D vectors, wherein

the index of the codebook entry with the smallest distance to the encoder’s output served

as the discretized unit for that entry. We trained the VQ-VAE’s decoder to convert discrete

sequences of units back to continuous articulatory gestures by associating each unit with the

value of the corresponding continuous 1-D codebook vector. Next, we applied a 1-D convo-

lution layer, with 40 filters and a kernel size and stride of 1, to increase the dimensionality.

Then, we applied 3 layers of 1-D transpose convolutions, with 40 filters, a kernel size of 4,

and a stride of 2, to upsample the reconstructed articulatory gestures back to their original

length and sampling rate. ReLU activations followed the first and second of these layers.

The final 1-D transpose convolution had the same number of kernels as the input signal (16).

We used the output of the final layer as the reconstructed input signal during training.

To encourage the VQ-VAE units to decode the most critical gestures (such as jaw opening)

rather than focusing on those that are less important (such as nostril flare), we weighted the

mean-squared error (MSE) loss for the most important gestures more highly. We upweighted

the jaw opening’s MSE loss by a factor of 20, and the gestures associated with important

tongue movements (tongue body raise, tongue advance, tongue retraction, tongue tip raise)

and lip movements (rounding and retraction) by a factor of 5. We trained the VQ-VAE

using all of the reference articulatory-gestures from the 50-phrase-AAC, 529-phrase-AAC,
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and 1024-word-General sentence sets. We excluded from VQ-VAE training any sentence that

was used during the evaluations with the 1024-word-General set.

To create the CTC decoder, we trained a bidirectional RNN to predict reference dis-

cretized articulatory-gesture units given neural activity. We first downsampled the ECoG

features by a factor of 6 to 33.33 Hz. We then normalized these features to have an L2-norm

of 1 at each time point across all channels. We used a time window of neural activity span-

ning from 0.5 s before to 7.5 seconds after the go cue for the 1024-word-General set and from

0.5 s before to 5.5 seconds after for the 50-phrase-AAC and 529-phrase-AAC sets. The RNN

then processed these neural features using the following components: 1) A 1-D convolution

layer, with 256 filters with kernel size and stride of 2; 2) 3 layers of gated recurrent units, each

with a hidden dimension size of 512; and 3) A dense layer, which produced a 41-dimensional

output. We then used the softmax activation function to output the probability of the 40

possible discrete units (determined by the VQ-VAE) as well as the CTC blank token. The

model hyperparameters stated here are for the 1024-word-General sentence set.

During inference, the RNN yielded a predicted probability of each discretized articulatory-

gesture unit at every 60 ms. To transform these output probabilities into a sequence of

discretized units, we only retained the most probable unit at each time step. We used the

decoder module of the frozen VQ-VAE to transform collapsed sequences of predicted discrete

articulatory units (here, “collapsed” means that consecutive repeats of the same unit were

removed) into continuous articulatory gestures.
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Real-time acoustic avatar-animation approach

During real-time testing, we animated the avatar using avatar-rendering software (re-

ferred to as SG Com; provided by Speech Graphics). This software converts a stream of

speech audio into synchronized facial animation with a latency of 50 ms. It performs this

conversion in two steps: First, it uses a custom speech-to-gesture model to map speech au-

dio to a time series of articulatory-gesture activations; Then, it performs a forward mapping

from articulatory-gesture activations to animation parameters on a 3-D MetaHuman charac-

ter created by Epic Games, Inc (Cary, North Carolina). The output animation was rendered

using Unreal Engine 4.26.

For every 10 ms of input audio, the speech-to-gesture model produces a vector of articulatory-

gesture activation values, each between 0 and 1 (where 0 is fully relaxed and 1 is fully con-

tracted). The forward mapping converts these activations into deformations, simulating the

e↵ects of the articulatory gestures on the avatar face. Because each articulatory gesture

approximates the superficial e↵ect of some atomic action, such as opening the jaw or pursing

the lips, the gestures are analogous to the Action Units of the Facial Action Coding System

70, a well-known method for taxonomizing human facial movements. However, these articu-

latory gestures from Speech Graphics are more oriented toward speech articulation and also

include tongue movements, containing 16 speech-related articulatory gestures (10 for lips, 4

for tongue, 1 for jaw, and 1 for nostril). The system does not generate values for aspects of

the vocal tract that are not externally visible, such as the velum, pharynx, or larynx.
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To provide avatar feedback to the participant during real-time testing in the audio-visual

task condition, we streamed 10-ms chunks of decoded audio over an Ethernet cable to a

separate machine running the avatar processes to animate the avatar in synchrony with

audio synthesis. We imposed a 200-ms delay on the audio output in real-time to improve

perceived synchronization with the avatar.

The avatar-rendering system also generates non-verbal motion, such as emotional expres-

sions, head motion, eye blinks, and eye darts. These are synthesized using a superset of the

articulatory gestures involving the entire face and head. These non-verbal motions are used

during the audio-visual task condition and emotional-expression real-time decoding.

Speech-related animation evaluation

To evaluate the perceptual accuracy of the decoded avatar animations, we used a crowd-

sourcing platform (Amazon Mechanical Turk) to design and conduct a perceptual assessment

of the animations. Each decoded animation was assessed by 6 unique evaluators. Each

evaluation consisted of playback of the decoded animation (with no audio) and textual

presentation of the target (ground-truth) sentence and a randomly chosen other sentence

from the same sentence set. Evaluators were instructed to identify the phrase that they

thought the avatar was trying to say. We computed the median accuracy of the evaluations

across evaluators for each sentence and treated that as the accuracy for a given trial and then

computed the final accuracy distribution using the pseudo-block strategy described above.

Separately, we used the dlib software package Davis E. King 2009 to extract 72 facial key-
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points for each frame in avatar-rendered and healthy-speaker videos (sampled at 30 frames

per second). To obtain videos of healthy speakers, we recorded video and audio of 8 volun-

teers as they produced the same sentences used during real-time testing in the audio-visual

task condition. We normalized the keypoint positions relative to other keypoints to account

for head movements and rotation: We computed jaw movement as the distance between the

keypoint at the bottom of the jaw and the nose, lip aperture as the distance between the

keypoints at the top and bottom of the lips, and mouth width as the distance between the

keypoints at either corner of the mouth. To compare avatar keypoint movements to those for

healthy speakers, and to compare amongst healthy speakers, we first applied dynamic time

warping to the movement time series and then computed the Pearson’s correlation between

the pair of warped time series. We held out 10 of 200 1024-word-General avatar videos from

final evaluation since they were used to select parameters to automatically trim the dlib

traces to speech onset and o↵set. We did this because our automatic segmentation method

relied on the acoustic onset and o↵set, which is absent from direct avatar decoding videos.

Articulatory-movement decoding

To collect training data for non-verbal orofacial-movement decoding, we used the articulatory-

movement task. Prior to data collection, the participant viewed a video of an avatar perform-

ing the following 6 movements: open mouth, pucker lips, lips back (smiling or lip retraction),

raise tongue, lower tongue, and close mouth (rest or idle). Then, the participant performed

the prompted-target task containing these movements as targets (presented as text). We
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instructed the participant to smoothly transition from neutral to the peak of the movement

and then back to neutral, all within approximately 2 seconds starting at the go cue.

To train and test the avatar-movement classifier, we used a window of neural activity

spanning from 1 second before to 3 seconds after the go cue for each trial. We first down-

sampled the ECoG features (high-gamma activity and low-frequency signals) by a factor of

6 to 33.33 Hz. We then normalized these features to have an L2-norm of 1 at each time

point across all channels separately for the low-frequency and high-gamma signals. Next,

we extracted the mean, minimum, maximum, and standard deviation across the first and

second halves of the neural time window for each feature. These features were then stacked

to form a 4048-dimensional neural-feature vector (the product of 256 electrodes, 2 feature

sets, 4 statistics, and 2 data halves) for each trial. We then trained a multi-layer perceptron

consisting of 2 linear layers with 512 hidden units and ReLU activations between the first

and second layers. The final layer projected the output into a 6-dimensional output vector.

We then applied a softmax activation to get a probability for each of the 6 di↵erent gestures.

We evaluated the network using 10-fold cross-validation.

Emotional-expression decoding

To collect training data for non-verbal emotional-expression decoding, we used the emotional-

expression task. Using the prompted-target task paradigm, we collected neural data as the

participant attempted to produce three emotions (sad, happy, and surprised) at three in-

tensity levels (high, medium, and low) for a total of 9 unique expressions. The participant
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chose her three base emotional expressions from a list of 30 options per emotion, and the

animations corresponding to the three intensity levels were generated from these chosen

base expressions. We instructed the participant to smoothly transition from neutral to the

peak of the expression and then back to neutral, all within approximately 2 seconds starting

at the go cue. We used the same data-windowing and neural-processing steps as for the

articulatory-movement decoding. We used the same model architecture and training proce-

dure as for the NATO-and-hand-motor classifier and our previous work 3. We initialized the

expression classifier with a pre-trained NATO-and-hand-motor classifier (trained on 1,222

trials of NATO-motor task data collected prior to the start of collection for the emotional-

expression task) and fine-tuned the weights on neural data from the emotional-expression

task.

We evaluated the expression classifier using 15-fold cross-validation. Within the training

set of each cross-validation fold, we fit 10 unique models to ensemble predictions on the

held-out test set. We applied hierarchical agglomerative clustering to the 9-way confusion

matrix in Figure 3.4e using SciPy Virtanen et al. 2020.

Articulatory-encoding assessments

To investigate the neural representations driving speech decoding, we assessed the selec-

tivity of each electrode to articulatory groups of phones. Specifically, we fit a linear receptive-

field encoding model to predict each electrode’s high gamma activity (HGA) from phone-
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emission probabilities predicted by the text-decoding model during 10-fold cross-validation

with data recorded with the 1024-word-General sentence set. We first decimated the HGA

by a factor of 24, from 200 Hz to 8.33 Hz, to match the sampling rate of the phone-emission

probabilities. Then, we fit a linear receptive-field model to predict the HGA at each elec-

trode, using the phone-emission probabilities as time-lagged input features (39 phones and

1 aggregate token representing both the silence and CTC-blank tokens). We used a +/-

4-sample (480-ms) receptive-field window, allowing for slight misalignment between the text

decoder’s bidirectional-RNN phone-emission probabilities and the underlying HGA. We fit

an independent model for each electrode. The true HGA, HGA(t), is modeled as a weighted

linear combination of phone-emission probabilities (indexed by p) in the overall emissions

matrix (X) over a +/- 4-sample window around each time point. This resulted in a learned

weight matrix w(d,p) in which each phone, p, has temporal coe�cients d1. . . D, where d1 is

-4 and D is 4. During training the squared error between the predicted HGA, HGA*(t), and

the true HGA, HGA(t), is minimized, Using the following formulas:

HGA
⇤(t) =

DX

d=1

PX

p=1

w(d, p) ⇤ X(p, t � d)

min
X

t

[HGA ⇤ (t) � HGA(t)]2

We implemented the model with the MNE toolbox’s receptive-field ridge regression in

Python (Gramfort et al. 2013). We used cross-validation to select the alpha ridge-regression
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parameter by sweeping over the values [1e-1, 1e0, 1e1, . . . 1e5], using 10% of our total

data as a held-out tuning set. We used the remaining 90% of our total data for 10-fold

cross-validation with the alpha parameter found optimal on the tuning set. We averaged

the coe�cients for the model across the 10 folds and collapsed across time samples for every

phone using the maximum magnitude weight. The sign of the weight could be positive or

negative. This yielded a single vector for each electrode, where each element in each vector

was the maximum encoding of a given phone. Next, we pruned any electrode channels

that were not significantly modulated by silent speech attempts. For each electrode, we

computed the mean HGA magnitudes in the 1 s intervals immediately before and after the

go cue for each NATO code-word trial in the NATO-motor task. If an electrode did not

have significantly increased HGA after the go cue compared to before, it was excluded from

the remainder of this analysis (significant modulation determined using one-sided Wilcoxon

signed-rank tests with an alpha level of 0.00001 after applying 253-way Holm-Bonferroni

correction). We then applied a second pruning step to exclude any electrodes that had

encoding values (r) less than or equal to 0.2. We applied the centroid clustering method,

a hierarchical, agglomerative clustering technique, to the encoding vectors using the SciPy

Python package (Virtanen et al. 2020). We performed clustering along both the electrode

and phone dimensions.

To assess any relationships between phone encodings and articulatory features, we as-

signed each phone to a place-of-articulation (POA) feature category, similar to previous work

(Chartier et al. 2018; Bouchard et al. 2013). Specifically, each phone was either primarily
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articulated at the lips (labial), the front tongue, the back tongue, or larynx (vocalic). To

quantify whether the unsupervised phone-encoding clusters reflected grouping by POA, we

tested the null hypothesis that the observed parcellation of phones into clusters was not

more organized by POA category than by chance. To test this null hypothesis, we used the

following steps: 1) Compute the POA linkage distances by clustering the phones by Eu-

clidean distance into F clusters, where F=4 is the number of POA categories; 2) Randomly

shu✏e the mapping between the phone labels and the phonetic encodings; 3) For each POA

category, compute the maximum number of phones within that category that appear within

a single cluster; 4) Repeat steps 2 and 3 over a total of 10,000 bootstrap runs; 5) Compute

the pairwise Euclidean distance between all combinations of the 10,000 bootstrap results; 6)

Repeat step 3 using the true unsupervised phone ordering and clustering; 7) Compute the

pairwise Euclidean distances between the result from step 6 and each bootstrap from step

4; 8) Compute the one-tailed Wilcoxon rank-sum test between the results from step 7 and

step 5. The resulting P-value is the probability of the aforementioned null hypothesis.

To visualize population-level (across all electrodes that were not pruned from the analysis)

encoding of POA features, we first computed the mean encoding of each electrode across the

4 POA feature groups (vocalic, front tongue, labial, and back tongue). We then z-scored

the mean encodings for each POA feature and then applied multidimensional scaling (MDS)

over the electrodes to visualize each phone in a 2-dimensional space. We implemented this

using the scikit-learn Python package (Pedregosa et al. 2011).

To measure somatotopy, we computed kernel density estimations of the locations of top
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electrodes (the 30% of electrodes with the strongest encoding weights) for each POA category

along anterior-posterior and dorsal-ventral axes (Figure 3.2f). To do this, we used the seaborn

Python package (Waskom 2021), Gaussian kernels, and Scott’s Rule.

To quantify the magnitude of activation in response to non-verbal orofacial movements,

we took the median of the evoked response potential to each action over the time win-

dow spanning from 1 s before to 2 s after the go cue. From this, we subtracted the same

metric computed across all actions to account for electrodes that were non-di↵erentially task-

activated. For each action, we then normalized values across electrodes to be between 0 and

1. We used ordinary least squares linear regression, implemented by the statsmodels Python

package (Seabold and Perktold 2010), to relate phone-encoding weights with activation to

attempted motor movements.

To assess whether postcentral responses largely reflected sensory feedback, we compared

the time to activation between precentral and postcentral electrodes. For each speech re-

sponsive electrode (see above), we averaged the HGA across trials (ERP) of each of the 26

NATO code-words. For each electrode, we found the time at which each code-word ERP

reached its peak. Given that electrodes may have strong preferences for groups of phones

(Figure 3.5), we took the minimum time-to-peak across code-word ERPs for further analysis.

For each electrode’s optimal code-word ERP, we also calculated the time-to-onset, defined

as the earliest time point at which the HGA was statistically significantly greater than 0.

We measured this with Wilcoxon Rank-sum tests at a significance level of 0.05, similar to

prior work (Cheung et al. 2016).
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Exclusion analyses

We assigned each electrode to an anatomical region and visualized all electrodes on the

pial surface using the same methods described in our previous work 77. For the exclusion

analyses, we tested the phone-based text-decoding model on the real-time evaluation trials

in the text task condition with the 1024-word-General sentence set. We did not use early

stopping for these analyses; we used the full 8-s time windows of neural activity for each trial.

For the synthesis and avatar direct-decoding models, we tested on the real-time synthesis

evaluation trials from the 1024-word-General set, and evaluation remained consistent with

other analyses. Also, we tested the NATO code-word classifier by training and testing on

NATO code-word trials recorded during the NATO-motor task. We used all of the NATO-

motor task blocks recorded after freezing the classifier (Figure 3.2h), a total of 19 blocks, as

the test set.

Electrode contributions

For text, synthesis, and direct avatar decoding models, we measured the contribution

of each electrode to the model’s predictions. We computed the derivative of each model’s

loss function with respect to the HGA and LFS features of each electrode across time 32.

We then computed the L1 norm of these values across time and averaged across all trials in

the corresponding test set for the model. For each electrode, we then summed the resulting

contribution for HGA and LFS to obtain one aggregate contribution. For each model,
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contributions were then normalized to fall between 0 and 1. To compare contributions

across decoding modalities, we used ordinary least squares linear regression, implemented

by the statsmodels Python package (Seabold and Perktold 2010).

Statistics

Statistical analyses

Statistical tests are fully described in the figure captions and text. To summarize, we

used two-sided Mann-Whitney Wilcoxon Rank-sum tests to compare unpaired distributions.

Critically, these tests do not assume normally distributed data. For paired comparisons, we

used two-sided Wilcoxon signed-rank tests, which also do not assume normally distributed

data. When the underlying neural data was not independent across comparisons, we used

the Holm-Bonferroni correction for multiple comparisons. P-values < 0.01 were considered

statistically significant. 99% confidence intervals were estimated using a bootstrapping ap-

proach where we randomly sampled the distribution (e.g. trials or pseudo-blocks) of interest

with replacement 2000 or 1000 times and the desired metric was computed. The confidence

interval was then computed on this distribution of the bootstrapped metric. P-values asso-

ciated with the Pearson correlation were computed with a permutation test where data was

randomly shu✏ed 1000 times. To compare success rates of decoding during our freeform

demonstration with the main real-time evaluation, we used a t-test.
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Figure 3.1. Multimodal speech decoding in a participant with vocal-tract paralysis (continued
on next page).
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(Previous page.) Figure 3.1. Multimodal speech decoding in a participant with vocal-tract
paralysis a Overview of the speech-decoding pipeline. A brainstem-stroke survivor with anarthria was
implanted with a 253-channel high-density electrocorticography (ECoG) array 18 years after injury. Neural
activity was processed and used to train deep learning models to predict phone probabilities, speech-sound
features, and articulatory gestures. These outputs were used to decode text, synthesize audible speech, and
animate a virtual avatar, respectively. b, A sagittal MRI showing brainstem atrophy (in the bilateral pons;
red arrow) resulting from stroke. c, MRI reconstruction of the participant’s brain overlaid with the locations
of implanted electrodes. The ECoG array was implanted over the participant’s lateral cortex, centered on
the central sulcus. d Top: Simple articulatory movements attempted by the participant. Middle: Electrode-
activation maps demonstrating robust electrode tunings across articulators during attempted movements.
Only the electrodes with the strongest responses (top 20%) are shown for each movement type. Color
indicates the magnitude of the average evoked high-gamma activity (HGA) response with each type of
movement. Bottom: Z-scored trial-averaged evoked HGA responses with each movement type for each of
the boxed electrodes in the electrode-activation maps. In each plot, each response trace shows mean +/-
standard error across trials and is aligned to the peak activation time.
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Figure 3.2. High-performance text decoding from neural activity a. During attempts to silently
speak, a bidirectional recurrent neural network (RNN) decodes neural features into a time series of phone
and silence (denoted as Ø) probabilities. A CTC beam search computes the most likely sequence of phones
that can be translated into words in the vocabulary. An n-gram language model rescores sentences created
from these sequences to yield the most likely sentence. b Median phone error rates, calculated using shu✏ed
neural data (Chance), neural decoding without applying vocabulary constraints or language modeling (Neural
decoding only), and the full real-time system (Real-time results) across n=25 pseudo-blocks. c Word error
rates and d, character error rates for chance and real-time results. In b–d, ****P < 0.0001, Two-sided
Wilcoxon Signed-Rank test with 5-way Holm-Bonferroni correction for multiple comparisons; P-values and
statistics in Extended Data Table 1. e, Decoded words per minute. Dashed line denotes previous state-of-
the-art speech BCI decoding rate in a person with paralysis David A. Moses et al. 2021 f, O✏ine evaluation
of g. error rates as a function of data quantity and h. word error rate as a function of the number of words
used to apply vocabulary constraints and train the language model. f-g Error bars represent 99% CIs of
the median, calculated using 1000 bootstraps across n=125 pseudo-blocks f and n=25 pseudo-blocks g at
each point. h. Real-time classification accuracy during attempts to silently say 26 NATO code words across
many recording days. The vertical line represents when the classifier was no longer re-trained before each
session. In b–g, results were computed using the real-time evaluation trials with the 1024-word-General
sentence set. Box plots in all figures depict median (horizontal line inside box), 25th and 75th percentiles
(box), 25th and 75th percentiles +/- 1.5 times the interquartile range (whiskers), and outliers (diamonds).
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Figure 3.3. Intelligible speech synthesis from neural activity. (continued on next page).
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(Previous page.) Figure 3.3. Intelligible speech synthesis from neural activity. a Schematic diagram
of the speech-synthesis decoding algorithm. During attempts to silently speak, a bidirectional recurrent
neural network (RNN) decodes neural features into a time series of discrete speech units. The RNN was
trained using reference speech units computed by applying a large pretrained acoustic model (HuBERT) on
basis waveforms. Predicted speech units are then transformed into the mel spectrogram and vocoded into
audible speech. The decoded waveform is played back to the participant in real time after a brief delay.
O✏ine, the decoded speech was transformed to be in the participant’s personalized synthetic voice using a
voice-conversion model. b Top: Three example decoded spectrograms and waveforms (top) from the 529-
phrase-AAC sentence set. Bottom: The corresponding reference spectrograms and waveforms representing
the decoding targets. c Mel-cepstral distortions (MCDs) for the decoded waveforms. Lower MCD indicates
better performance. Chance waveforms were computed by shu✏ing electrode indices in the test data for the
50-phrase-AAC set with the same synthesis pipeline. d Perceptual word error rates from untrained human
evaluators via a transcription task. e Perceptual character error rates from the same human-evaluation
results as d. In c–e, ****P < 0.0001, Mann-Whitney U-test with 19-way Holm-Bonferroni correction for
multiple comparisons; all non-adjacent comparisons were also significant (P < 0.0001; not depicted); n=15
pseudo-blocks for the AAC sets, n=20 pseudo-blocks for 1024-word-General set. P-values and statistics in
Extended Data Table 2. In b–e, all decoded waveforms, spectrograms, and quantitative results use the
non-personalized voice .
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Figure 3.4. Direct decoding of orofacial articulatory gestures from neural activity to drive an
avatar (continued on next page).



196

(Previous page.) Figure 3.4. Direct decoding of orofacial articulatory gestures from neural
activity to drive an avatar a Schematic diagram of the avatar decoding algorithm. O✏ine, a bidirectional
recurrent neural network (RNN) decodes neural activity recorded during attempts to silently speak into
discretized articulatory gestures (quantized via a vector quantised variational autoencoder, abbreviated VQ-
VAE). A convolutional neural network de-quantizer (VQ-VAE decoder) is then applied to generate the final
predicted gestures, which are then passed through a pre-trained gesture-animation model to animate the
avatar in a virtual environment. b Binary perceptual accuracies from human evaluators on avatar animations
generated from neural activity, n=2000 bootstrapped points. c Correlations for jaw, lip, and mouth-width
movements between decoded avatar renderings and videos of real human speakers on the 1024-word-General
sentence set across all pseudo-blocks for each comparison (n=152 for avatar-person comparison, n=532 for
person-person comparisons; ****P < 0.0001, Mann-Whitney U-test with 9-way Holm-Bonferroni correction;
p-values and U-statistics in Table S3). A facial-landmark detector (dlib) was used to measure orofacial
movements from the videos. d Top: Snapshots of avatar animations of 6 non-speech articulatory movements
in the articulatory-movement task. Bottom: Confusion matrix depicting classification accuracy across the
movements. The classifier was trained to predict which movement the participant was attempting from her
neural activity, and the prediction was used to animate the avatar. e Top: Snapshots of avatar animations of
3 non-speech emotional expressions in the emotional-expression task. Bottom: Confusion matrix depicting
classification accuracy across 3 intensity levels (high, medium, and low) of the 3 expressions, ordered via
hierarchical agglomerative clustering on the confusion values. The classifier was trained to predict which
expression the participant was attempting from her neural activity, and the prediction was used to animate
the avatar.
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Figure 3.5. Articulatory encodings driving speech decoding (continued on next page).
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(Previous page.) Figure 3.5. Articulatory encodings driving speech decoding a, Mid-sagittal
schematic of the vocal tract with phone place of articulation (POA) features labeled. b, Phone-encoding
vectors for each electrode computed by a temporal receptive-field model on neural activity recorded during
attempts to silently say sentences from the 1024-word-General set, organized by unsupervised hierarchical
clustering. c, Z-scored POA encodings for each electrode, computed by averaging across positive phone
encodings within each POA category. Z values are clipped at 0. d,e, Projection of consonant (d) and vowel
(e) phone encodings into a two-dimensional space via multidimensional scaling (MDS). f, Bottom-right: Vi-
sualization of the locations of electrodes with the greatest encoding weights for labial, front-tongue, and
vocalic phones on the electrocorticography array. The electrodes that most strongly encoded finger flexion
during the NATO-motor task are also included. Only the top 30% of electrodes within each condition are
shown, and the strongest tuning was used for categorization if an electrode was in the top 30% for multiple
conditions. Black lines denote the central sulcus (CS) and sylvian fissure (SF). Top and bottom-left: The
spatial electrode distributions for each condition along the anterior-posterior and ventral-dorsal axes, respec-
tively. g–i, Electrode-tuning comparisons between front-tongue phone encoding and tongue-raising attempts
(g; r=0.84, P < 0.0001, ordinary least squares regression), labial phone encoding and lip-puckering attempts
(h; r=0.89, P < 0.0001, ordinary least squares regression), and tongue-raising and lip-rounding attempts (i).
Non-phonetic tunings were computed from neural activations during the articulatory-movement task. Each
plot depicts the same electrodes encoding front-tongue and labial phones (from f) as blue and orange dots,
respectively; all other electrodes are shown as gray dots.
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Figure 3.6. Word vs phone error rate Relationship between phone error rate and word error rate across
n =549 points. Each point represents the phone and word error rate for all sentences used during model
evaluation for all evaluation sets. The points display a linear trend, with the linear equation corresponding
with an R2 of .925. Shading denotes 99% confidence interval which was calculated via bootstrapping over
2000 iterations.
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Figure 3.7. Phone and character error rates for simulated text decoding with larger vocabu-
laries We simulated text decoding results with using log-spaced vocabularies of 1,506, 2,269, 3,419, 5,152,
7,763, 11,696, 17,621, 26,549, and 39,378 words, and compared performance to the real-time results using
our 1,024 word vocabulary. Each point represents the median a character or b phone error rate across
n=25 real-time evaluation pseudo-blocks, and error bars represent 99% confidence intervals of the median.
With our largest 39,378 word vocabulary, we found a median character error rate of 21.7% (99% CI [16.3%,
28.1%]), and median phone error rate of 20.6% (99% CI [15.9%, 26.1%]). We compared the WER, CER, and
PER of the simulation with the largest vocabulary size to the real-time results, and found that there was no
significant increase in any error rate (P > .01 for all comparisons. Test statistic=48.5, 93.0, 88.0, respectively,
p=.342, .342, .239, respectively, Wilcoxon signed-rank test with 3-way Holm-Bonferroni correction).
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Figure 3.8. Simulated results on the 50-phrase-AAC sentence set We simulated text decoding
results on the real-time blocks used for evaluation with the synthesis models. On the 50-phrase-AAC sentence
set, we achieved extremely high accuracy. a Across n = 15 pseudo-blocks, we observed a median PER of
5.63% (99% CI [2.10, 12.0]). b Median WER was 4.92% (99% CI [3.18, 14.0]), and c median CER was
5.91% (99% CI [2.21, 11.4]). Speech was decoded at high rates with a median WPM of 101 (99% CI [95.6,
103]). The PER, WER, and CER were also significantly better than chance (P < .001 for all metrics,
Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction for multiple comparisons). Statistics
compare n = 15 total pseudo-blocks. For PER: stat=0, P = 1.83e-4. For CER: stat = 0, P=1.83e-4. For
WER: stat = 0, P=1.83e-4.
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Figure 3.9. Simulated text decoding results on the 529-phrase-AAC sentence set We simulated
text decoding results on the real-time blocks used for evaluation of with the synthesis models. We observed
a median PER of 17.3 (99% CI [12.6, 20.1]). Median WER was 17.1% (99% CI [8.89, 28.9]), and median
CER was 15.2% (99% CI [10.1, 22.7]). Speech was decoded at high rates with a median WPM of 89.9
(99% CI [83.6, 93.3]). The PER, WER, and CER were also significantly better than chance (P < .001
for all metrics, two-sided Wilcoxon signed-rank test with 3-way Holm-Bonferonni Correction for multiple
comparisons). Statistics compare n = 15 total pseudo-blocks. For PER: stat=0, P = 1.83e-4. For CER: stat
= 0, P=1.83e-4. For WER: stat = 0, P=1.83e-4.
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Figure 3.10. Mel-cepstral distortions (MCDs) using a personalized voice tailored to the par-
ticipant We calculate the Mel-cepstral distortion (MCDs) between decoded speech with the participant’s
personalized voice and voice-converted reference waveforms for the , , and set. Lower MCD indicates better
performance. We achieved mean MCDs of 3.87 (99% CI [3.83, 4.45]), 5.12 (99% CI [4.41, 5.35]), and 5.57
(99% CI [5.17, 5.90]) dB for the (N = 15 pseudo-blocks), (N = 15 pseudo-blocks), and sets (N = 20
pseudo-blocks) Chance MCDs were computed by shu✏ing electrode indices in the test data with the same
synthesis pipeline and computed on the evaluation set. The MCDs of all sets are significantly lower than
the chance. vs. ⇤ ⇤ ⇤ = P < 0.001, otherwise all ⇤ ⇤ ⇤⇤ = P < 0.0001. Two-sided Wilcoxon rank-sum
tests were used for comparisons within-dataset and Mann-Whitney U-test outside of dataset with 9-way
Holm-Bonferroni correct.
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Figure 3.11. Comparison of perceptual word error rate and mel-cepstral distortion Scatter plot
illustrating relationship between perceptual word error rate (WER) and mel-cepstral distortion (MCD) for ,
, . Each data point represents the mean accuracy from a single pseudo-block. A dashed black line indicates
the best linear fit to the pseudo-blocks, providing a visual representation of the overall trend. Consistent with
expectation, this plot suggests a positive correlation between WER and MCD for our speech-synthesizer.
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Figure 3.12. Electrode contributions to decoding performance MRI reconstruction of the partici-
pant’s brain overlaid with the locations of implanted electrodes. Cortical regions and electrodes are colored
according to anatomical region (PoCG: postcentral gyrus, PrCG: precentral gyrus, SMC: sensorimotor cor-
tex). b–d, Electrode contributions to text decoding (b), speech synthesis (c), and avatar direct decoding
(d). Black lines denote the central sulcus (CS) and sylvian fissure (SF). e-g, Each plot shows each electrode’s
contributions to two modalities as well as the Pearson correlation across electrodes and associated p-value.
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Figure 3.13. E↵ect of anatomical regions on decoding performance A. a–c, E↵ect of excluding
each region during training and testing on text-decoding word error rate (a), speech-synthesis mel-cepstral
distortion (b), and avatar direct-decoding correlation (c; average DTW correlation of jaw, lip, and mouth-
width landmarks between the avatar and healthy speakers), computed using neural data as the participant
attempted to silently say sentences from the 1024-word-General set. Significance markers indicate compar-
isons against the None condition, which uses all electrodes. *P < 0.01, **P<0.005, ***P<0.001, ****P <
0.0001, two-sided Wilcoxon signed-rank test with 15-way Holm-Bonferroni correction (full comparisons are
given in Table S5). Distributions are over 25 pseudo-blocks for text decoding, 20 pseudo-blocks for speech
synthesis, and 152 pseudo-blocks (19 pseudo-blocks each for 8 healthy speakers) for avatar direct decoding.
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