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Collective behaviours, such as flocking in birds or decision making by bee
colonies, are some of the most intriguing behavioural phenomena in the
animal kingdom. The study of collective behaviour focuses on the interactions
between individuals within groups, which typically occur over close ranges
and short timescales, and how these interactions drive larger scale properties
such as group size, information transfer within groups and group-level decision
making. To date, however, most studies have focused on snapshots, typically
studying collective behaviour over short timescales up to minutes or hours.
However, being a biological trait, much longer timescales are important in
animal collective behaviour, particularly how individuals change over their
lifetime (the domain of developmental biology) and how individuals change
from one generation to the next (the domain of evolutionary biology). Here,
we give an overview of collective behaviour across timescales from the short
to the long, illustrating how a full understanding of this behaviour in animals
requires much more research attention on its developmental and evolutionary
biology. Our review forms the prologue of this special issue, which addresses
and pushes forward understanding the development and evolution of collective
behaviour, encouraging a new direction for collective behaviour research.

This article is part of a discussion meeting issue ‘Collective behaviour
through time’.
1. Introduction
The benefits and costs of living in groups have been studied extensively [1–3], and
variation in these benefits and costs helps explain why there is such diversity in
social behaviour in the animal kingdom. Avoidance of predation risk is a wide-
spread explanation for group living, while competition for food and disease
transmission are common costs. While the behavioural ecology of living in groups
has a long history of research, more recently attention has shifted to what is
known as collective behaviour: the mechanisms that allow animals to maintain
groups and transfer information, and how interactions between individuals give
rise to group-level properties such as shape and spatial positioning within groups,
groupmovement speed and direction, information transfer within groups, and col-
lective decisionmaking. These group-level properties are often emergent, as theyare
difficult to predict from the simple inter-individual interactions that drive them,
which lack centralized or external control and are hence self-organized [4–6].

The mechanisms underlying collective behaviour are typically local-scale, i.e.
involve interactions between individuals physically close to one another in the
group, and occur over short timescales. For example, the response of a fish to
the sudden change of direction of a near neighbour can occur in a fraction of a
second, resulting in coordinated movement of the entire school [7]. Understand-
ably, the field of collective behaviour has thus focused on these short timescales.
However, longer timescales are important for all biological traits, including how
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they change within the lifetime of an individual (ontogeny)
and over evolutionary time. Niko Tinbergen [8], recipient of
the 1973 Nobel Prize for co-founding the modern study of
animal behaviour, emphasized that a full understanding of a
behavioural trait requires an understanding of these develop-
mental and evolutionary histories. The other two questions
of Tinbergen’s ‘Four Questions’, the functional adaptive
reason(s) why a behaviour occurs and the proximate mechan-
ism(s) of how it occurs, are now relatively well researched for
collective behaviours. While developmental and evolutionary
changes are pillars of modern biology, their importance in col-
lective behaviour has been mostly neglected [9]. Thus, this
special issue ‘Collective animal behaviour through time’ aims
to encourage research in the developmental and evolutionary
aspects of collective behaviour.

There is an incredible diversity of collective behaviours in a
wide range of animals that have now been studied, which
can make it difficult to clearly define a threshold timescale
that separates the relatively well-studied ‘short’ timescales
compared to longer timescales. Given the clear importance
of collective behaviour to the biology of social insects, it is
not surprising that the study of collective behaviour developed
most rapidly in these animals [4,10], with some research atten-
tion being given, independently of the research in social
insects, to shoaling in fishes [6,11]. With technological
advancements making the computer simulation of multiple
individuals interacting simultaneously feasible (i.e. agent-
based models [12,13]) and the application of the complex
systems approach from the physical sciences [14], the simi-
larities in collective behaviour across diverse taxonomic
groups have become evident and allowed general principles
to become established across taxa [5]. Advances in technology
to obtain empirical data from a wider range of animal groups,
particularly under natural conditions [15], have now allowed
the collective behaviour of birds and mammals to also be
studied more extensively [16–21]. This taxonomic diversity is
a strength of this research area, although it does raise a question
of how we define timescales: while a shoal of fish can make a
decision regarding which of two arms of a maze to swim into
within seconds [22], a seemingly similar binary decision can
take hours in an ant colony and involve multiple phases
[23,24]. Investigations of collective decision making can even
extend into multiple days, which we still consider to be a collec-
tive behaviour that occurs over a short timescale; nest-site
selection in honeybees (Apis mellifera) is a particularly well-
researched example [25]. Rather than distinguishing short
versus long timescales by a threshold length of time such as
those collective behaviours not lasting, for example, more than
an hour, in this review we instead propose that long timescales
are important for collective behaviour when there is a change
in the biology of the individuals within the group; these can be
relatively short-term changes in state (such as in knowledge or
hunger), changes associated with ontogeny, or changes between
generations over evolutionary timescales.

Previous reviews on collective behaviour have begun to
focus on some aspects of change at temporal scales longer
than those typically studied in collective behaviour. Biro
et al. [9] discussed the importance of learning in collective
behaviour, considering how being part of a group allows
individuals to obtain information, how learning about past
individual and collective performance can allow individuals
to adapt their behaviour in future collective actions, and
hence how learning can feed back into collective performance.
Importantly for our special issue, Biro et al. [9] made the
point that collective behaviour in animals is distinguished
from collective behaviour in physical or chemical systems
because of the potential for change over time in the indivi-
dual units that make up the collective (i.e. the individual
animals). Bengston & Jandt [26] explored how consistent
inter-individual nbsp;behavioural variation between groups
within the same population (i.e. ‘collective personality’)
arises, particularly in social insects. They identified amultitude
of factors that, over time, accumulate to lead to consistent
differentiation between groups. This includes early experience,
the age of the colony and its constituent members, and vari-
ation in the individuals that make up the colonies that results
in different developmental trajectories.

Here in this introduction to the special issue ‘Collective
animal behaviour through time’, we aim to provide a much
broader (but correspondingly, much less in depth) view of the
timescales relevant in collective behaviour, focused on empirical
studies and structured to take the reader through the multiple
timescales that collective behaviour can be studied across.
2. Aims of the themed issue
Collective behaviour is a truly inter-disciplinary field. It has
relied on the quantitative approaches of physicists, computer
scientists and mathematicians to investigate the mechanisms
that underlie collective behaviour, and rigorous experimental
approaches from behavioural biologists to provide empirical
tests for these mechanisms and to understand its adaptive func-
tions. Now the time is ripe to extend the study of collective
behaviour further to include much longer timescales. This
special issue is intended to encourage cross-pollination of disci-
plines by offering a unique opportunity for readers from
traditionally disparate perspectives to be exposed to unfamiliar
ideas that they can incorporate into their own work or use to
build productive collaborations. Our goal is to spark a new
wave of inter-disciplinary research that reinvigorates the field
of collective animal behaviour. In addition to fostering new col-
laborations built on conceptual common ground, we aim to
facilitate further research by combining methods from the
study of collective behaviour, development and evolution,
where there is great potential in inter-disciplinary approaches.
Understanding changes in collective behaviour over long time-
scales also offers insight into how responsive collective
behaviours can be to external influences. This is particularly
timely as there is intense and growing research in how collective
behaviour is affected by human-induced environmental change
[27–29]. A comprehensive understanding of the different time-
scales over which collective behaviour can change has the
potential to help inform which species that rely on collective be-
haviour for survival are vulnerable to environmental change,
and if they are adaptable, how rapidly.
3. Rapid timescales (typically less than 1 second
and seconds)

While we argue that the long timescales of development
and evolution have been neglected in the study of collective
behaviour, the existing literature in this field on shorter time-
scales still shows considerable variation in timescales,
depending on the collective behaviour and the species of
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interest. Even when studying the same species and behaviour,
studies can focus on the microscale interactions between indi-
viduals (e.g. [30,31]) or the macroscale group-level behaviour
and outcomes of these interactions [32,33]. While some studies
have used data at static instances in time, particularly analysing
the spatial arrangement of individuals within groups [34–36],
the short timescales in which inter-individual interactions
occur have been given much more research attention, which
typically happen over the timescale of seconds.

An intensely researched question within collective behav-
iour is how individuals interact within moving groups to
achieve collective motion while maintaining group cohesion.
Fish shoals have become a model system for examining these
behaviours and broadly support models of collective motion
[13,37] that ‘interaction rules’ within groups consist of
prioritizing repulsion when neighbours are too close to
avoid collision, and otherwise attracting to, and aligning
direction of travel with, near neighbours. These interactions
are determined by individuals rapidly adjusting their speed
and direction of motion as the group moves [30,38]. In bird
flocks, evidence suggests that collective movement is regu-
lated by individuals adjusting their direction of movement
rather than their speed, owing to the increased cost of adjust-
ing speed during flight [39].

During collective motion, individual responses to infor-
mation from near neighbours can occur very rapidly, in less
than a second [7,40,41]. As changes in the direction of move-
ment of the whole group require repeated interactions
between individuals, this collective behaviour occurs at a
longer timescale, such as seconds in fish shoals and bird
flocks [42,43]. These changes in a group’s direction can be
the result of information transfer within the group [44,45],
where the change in direction is owing to some individuals
responding to a stimulus, such as a predator or food cue
[46–49], and their response being copied by their near neigh-
bours. Information can transfer within a group more rapidly
than the approach of a predator [50], suggesting that some
individuals in the group will be able to initiate anti-predator
behaviour at a further distance from the predator than if they
relied only on their own, i.e. private, information. The copy-
ing of a neighbour’s behaviour can create waves of altered
behaviour moving across the group, which can not only
transfer information, but deter predators from attacking the
group [51]. Experimental work has suggested that explicit
consideration of sensory cues greatly improves the ability to
predict information flow in fish shoals in contrast with classic
models of collective motion [52], which are now being
explored in more biologically realistic models of collective
movement [53,54].

The existing literature on fish shoals and bird flocks
suggests that the most widespread proximate mechanism
for individuals responding to their near neighbours is copy-
ing the speed and direction of those near neighbours. This
is a passive mechanism that does not rely on active signals
or any other mechanism that has probably evolved specifi-
cally for this purpose (although see Jägers et al. [55] for an
example of active signalling in fish shoaling). By contrast,
there are a variety of mechanisms that ants and bees use to
transmit information to one another. Some are also based
on speed and direction, such as the streaking behaviour of
scouts in bee swarms, where the scouts with knowledge of
a new nest-site fly with an elevated velocity through the
moving swarm in the direction of that site [56,57]. As in
fish and bird collective movement, this is believed to be
mediated primarily through vision [58].

Probably reflecting the importance of collective behaviour
in social insects, the mechanisms for inter-individual inter-
actions in these species are, however, more diverse and
specialized than the passive mechanism in fish and bird
groups. These mechanisms vary in spatial as well as temporal
scale. At the small, local scale, the decision to engage in fora-
ging activities in harvester ants (Pogonomyrmex barbatus) is
mediated by direct antennal contact between two individuals
[59], and traffic flows in ants are regulated by collisions
between pairs of ants moving in different directions [60]. By
contrast, the deposition of pheromones in ants does not require
direct contact between individuals and allows influence of
multiple other colony members, e.g. to recruit others to food
[61,62]. The iconic and well-researched waggle dance of bees
[63,64] is another important example of a specialized form of
inter-individual interaction underpinning collective behaviour
where information is made available to multiple other individ-
uals simultaneously, although in this case the transmission of
information is direct rather than indirect as is the case with
pheromones. The variety in inter-individual interactions
within social insects that underpin collective behaviour is
reflected in the variable timescales that these interactions take
place over; waggle dances can vary in duration up to multiple
seconds [65], and while laying a pheromone takes less than a
second [66], the pheromone can persist for minutes, making
that information available to other colony members for an
extended period of time [67]. While inter-individual inter-
actions in social insects do often occur more slowly than the
speed and directional changes in fish shoals and bird flocks,
they can encode a greater range of information, such as the
direction and distance of a food source [63–65].
4. Minutes, hours and days
While inter-individual interactions can be very rapid, these
interactions give rise to group-level collective properties
that change over longer timescales. Evidence exists that the
density of groups (i.e. the spacing between individuals) can
oscillate over time without any external influence, shown in
both fish shoals [68] and sheep herds [19]. Changes in such
collective state variables can arise owing to conflicts in the
preferred state [46]. The timescale in which collective proper-
ties change can be, however, dependent on group size. For
example, the direction of travel of locust swarms switches
over time without any external influence, but the rate of
switching reduces as the number of individuals’ increases
[33], which was later demonstrated to be driven by canniba-
listic interactions between the locusts [31]. Despite the
differences between locusts and fish in their morphological,
sensory and cognitive traits, and their functional reasons
for grouping, this dependence on group size has also been
demonstrated in fish shoals [32]. In golden shiners Notemigo-
nus crysoleucas, the degree of group polarization (fish being
aligned and swimming in the same direction) is more stable
over time at larger group sizes [32].

While two individuals in a group can exchange infor-
mation very rapidly, group-level decisions are the outcome
of many such decisions that occur through self-organized
and decentralized processes, and thus such decisions will
occur at longer timescales than individual interactions.
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Collective decision making has been studied most extensively
in social insects, primarily in the context of foraging and
relocating to a new nest site. This work has shown how con-
sensus for a collective decision, for example towards a food
source or nest site, requires time to build. A prominent
example is how foraging trails form in ants that lay phero-
mones while foraging [61,62,66,69]. Here, the deposition
of pheromones by foragers returning from food sources
recruits subsequent foragers to the food source, who deposit
additional pheromone which attracts further foragers to the
source. This positive feedback gradually builds the foraging
trail and can lead to the disproportionate use of one food
source when multiple food sources of equal quality are avail-
able (known as symmetry breaking [69]). Quorum decision
making is another well-researched example of how collective
decisions take longer to occur than the decision making of the
individuals contributing to that collective outcome [70]. Here,
when the number of other individuals in the group (or the
proportion of the group) that has chosen an option reaches
a threshold, the probability that undecided individuals
copy that choice increases dramatically, again triggering a
positive feedback favouring that choice. In the ant Tem-
nothorax albipennis, there is evidence that the number of
encounters per unit time (i.e. the encounter rate) between
individuals is the proximate mechanism that allows individ-
uals to determine whether a quorum threshold has been met
for a particular choice [71], and similarly in harvester ants, the
decision to leave the nest to forage is influenced by the rate of
encounters with individuals returning to the nest after fora-
ging [59]. The accumulation of individual-level information
over an extended period of time further emphasizes the
importance of time in collective behaviour.

The pooling of individual-level information can provide
animal groupswith a greater cognitive ability tomake decisions
than the individuals making up the group [72–74]. However,
what is evident in the collective decision making of some
social insects is that group-level decisions can involve several
distinct phases of different collective behaviours, so that the
group decision has to take longer than any one of the phases.
For example, in Temnothorax rugatulus, nest-site selection
begins with scouts discovering potential sites and recruiting
other members of the colony using tandem running [75],
where informed scouts guide others to the potential site. Once
a quorum threshold is met for a site, the behaviour switches to
transport, where informed individuals physically carry others
to the site [24]. Emigration to a newnest site in bees is also clearly
divided into multiple phases [25,76], again beginning with
scouts initially discovering and assessing potential sites. These
scouts recruit others to sites using waggle dances at the colony.
Once a quorum threshold of scouts visiting a particular site is
met, scouts begin a piping signal at the nest to indicate that the
colony should prepare to fly to the chosen site [77]. During
flight to the new site, the scouts then streak through the swarm
in the direction of the site [56,57]. Thus, the collective action of
emigration to a new nest site can be a composite of different
kinds of collective behaviour, occurring in a sequence that maxi-
mizes decisionmaking efficiency. Additionally, there is evidence
in both bees [76] and ants [78] that the timescale over which col-
lective decisions are made can be variable to optimize the trade-
off between speed and accuracy, which is achieved by adjusting
the quorum threshold used to make a decision.

At longer temporal scales than a single collective action,
a number of studies have investigated animal groups
repeatedly performing a collective action. How the learning
of individuals interacts with collective behaviour is covered
in detail in Biro et al.’s [9] review, and studies in this area typi-
cally repeatedly test the same individuals in a collective task.
Such repeated testing has shown important effects on diverse
aspects of collective behaviour, including nest-site selection in
ants and bees [79,80], homing in pigeons [81,82], and collec-
tive motion [83,84] and decision making [85,86] in fishes.
Learning is one way that an individual’s state can influence
collective behaviour, as it involves an increase in an individ-
ual’s state of knowledge. Changes in individuals’ energetic
state (i.e. nutritional or metabolic state) over time can also
affect collective behaviour. A number of empirical studies
have shown hungrier individuals take positions at the front
of moving fish shoals, where feeding rates are higher [87,88].
Furthermore, as individuals at the front of shoals feed and
incur metabolic costs of digestion over time, reducing their
aerobic capacity for swimming, they move towards the rear
of the shoal [89]. With increasing hunger, fishes have greater
inter-individual distances and are more likely to be isolated
[90], which may explain reduced collective behaviour over
repeated tests in addition to acclimatization to the environment
[85]. The importance of nutritional and metabolic state has
also been demonstrated in pigeons (Columba livia) during
long-duration flights, where over time the flock becomes
more widely dispersed. This can be fatigue; birds tire over
time and are less able to respond to their near neighbours to
maintain group cohesion [91].

Differences in state, such as in knowledge or energetics,
can also be mechanisms that drive differentiation between
individuals within groups to adopt leader or follower roles.
The spatial sorting in moving groups where hungrier individ-
uals are found at the front suggests that they may have more
influence on, and hence lead, the direction and speed of
movement [40,41]. In the model of Rands et al. [92], leaders
and followers emerged from pairs of individuals foraging
from a refuge owing to diverging energetic states, even
though the two individuals were initially identical. Although
it is difficult to minimize inter-individual variation in empiri-
cal studies, there is evidence that over repeated trials where
the environment becomes more familiar, influence over
group movements becomes less egalitarian and instead led
by a minority of the group [86]. Even with extensive evidence
that a range of (relatively fixed) individual traits determine
which individuals lead in animal groups [93], social feedback
between individuals during collective decision making can
magnify these differences over time, reinforcing leader and
follower roles [94]. Such social feedback can also be impor-
tant in determining which workers perform which tasks in
social insect colonies, i.e. the division of labour [95–97].

Many of the processes discussed in this section can con-
tribute to differences between groups in their behaviour
where these differences are consistent over time. This collec-
tive personality variation is, by definition, stable over at
least multiple days [26,98,99]. Consistent variation between
groups can be driven by differences in the composition of
the group [26], and/or be magnified over time as a result
of social feedback or state-dependent changes in individuals
[83]. Thus, consistency in collective behaviour over time, as
well as variation over time, is important in understanding
the diversity we observe in collective behaviour.

Here we have highlighted how considerable research effort
has been spent to understand how collective behaviours occur
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as a result of individual decisions and the transfer of infor-
mation. Longer timescales are involved when a collective
action involves multiple phases, or repeated collective beha-
viours over time, resulting in changes in knowledge or
energetic state. We now focus on expanding this time view
even further to incorporate aspects of developmental and evol-
utionary change in individual behaviour to better understand
how collective behaviour develops throughout the lifetime and
evolves across generations.
/journal/rstb
Phil.Trans.R.Soc.B
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5. Development: changes over the lifetime
The study of ontogeny investigates how an individual’s traits
arise and change over their lifetime, and the drivers that
influence these changes. Bengston & Jandt [26] review the
developmental changes that colonies of social insects undergo,
such as the tendency for colonies to becomemore aggressive as
they increase in age and size [100]. This group-level approach is
most relevant to groups with stable membership such as euso-
cial insect colonies. Here, we discuss the importance of the
ontogeny of individuals in collective behaviour, which has
wider taxonomic relevance as it includes animals that live in
more loosely formed groups. As already mentioned, variation
between individuals in their traits can be important in collec-
tive behaviour, and changes over developmental time as an
animal reaches and passes maturity are associatedwith altered
physiology, morphology, sensory systems and cognition, all of
which can impact collective behaviour [93]. However, such
age-related changes have been relatively neglected in the
field of collective behaviour compared to individual-level
traits which vary over shorter timescales (such as changes in
knowledge or energetic state), or those traits which are fixed
in the lifetime of (most) animals, such as sex.

Shoaling behaviour during the early life of fishes is one
aspect of the development of collective behaviour that has
attracted some research attention. This research shows that fish
larvae do not demonstrate collective behaviour from birth,
rather it develops as the individual grows. In Spanish mackerel
Scomberomorus niphonius, for example, close neighbour distances
and coordinated schools of fish swimming in the same direction
(i.e. demonstrating polarization) develop between 17 and
19 days post hatching, without further change from day 19 to
23 [101]. By contrast, Nakayama et al. [102] showed that in
chub mackerel (Scomber japonicus), there is a gradual increase
in individuals’ polarization with neighbours from 10 days post
hatching. However, they also showed that the social cue of a
fright stimulus from conspecifics does not induce a response
until twoweeks later in development, and linked these develop-
mental changes in collective behaviour to the change in the
volume of the optic tectum over this time period [102]. The
importance of the development of the visual system in early
life was also demonstrated in striped jack Pseudocaranx dentex,
where larger (and hence older) fish were able to school at
lower light levels than smaller (younger) fish [103]. Providing
a sensory basis for developmental changes in collective
motion illustrates the importance of determining the proximate
mechanisms underlying variation observed in collective
behaviour, a point discussed in detail by Jolles et al. [93].

Of particular promise in studying collective behaviour
from a developmental perspective is the zebrafish, Danio
rerio. This species shoals under both natural [104] and
laboratory conditions [105], and is a major vertebrate model
organism in developmental biology and genetics [106]. A
handful of studies have shown the potential of zebrafish in
expanding our understanding of the early ontogeny of collec-
tive behaviour. As with other fishes, there was no evidence of
collective behaviour in the very first days of life in zebrafish,
but rather they show a gradual increase in cohesion (after
controlling for body size) over their early lives [107,108].
Studies have linked the ontogeny of collective behaviour in
this species to dopamine levels in the brain [109]. Altogether,
this suggests that zebrafish show similar patterns of develop-
ment in collective behaviour as other species and may be a
very promising study system to investigate the proximate
mechanisms generating change in individual and hence
collective behaviour throughout early ontogeny.

The importance of age in leadership during group decision
making is another case where the ontogeny of individuals has
been shown to have importance in collective behaviour.
Studies on this question are more taxonomically diverse than
those examining the early onset of collective motion, which
have been focused on fishes as discussed above, and also
emphasize the importance of older, usually more experienced
individuals within groups. It has been shown that older indi-
viduals are often at the front of moving groups, where they
typically have more influence on the direction of the group’s
movement, for example this is found in greater white-fronted
geese (Anser albifrons) [110], killer whales (Orcinus orca) [111]
and muskoxen (Ovibos moschatus) [112]. Similarly, differen-
tiation into leader and follower roles can be more stable
when age is more variable within the group [113]. Importantly,
the presence of older, more experienced individuals in the
group has been shown to have benefits for those following,
including in migratory performance in whooping cranes
(Grus americana) [114] and predator avoidance in African
elephants (Loxodonta africana) [115].

Where the importance of individuals’ ages in collective be-
haviour has beenmost intensely researched in is the division of
labour within social insect colonies [116]. The workers in colo-
nies of many social insects shift from tasks within the nest
when young, such as caring for brood, to riskier tasks such
as foraging as they age, a phenomenon known as age (or tem-
poral) polyethism [117]. Age polyethism is typically more
pronounced in species with more advanced eusociality in
contrast with those that are primitively eusocial [118],
suggesting that it contributes to the success of eusociality, a
highly advanced collective behaviour. The social environment
can, however, influence the age that individuals change tasks
in some species [119]. For example, a depletion of foragers
induces younger individuals to start foraging earlier, as
demonstrated in honeybees A. mellifera where this change
was also associated with corresponding changes in workers’
juvenile hormone [97]. There is additional evidence for changes
in gene expression [120], lipid reserves [121], musculature [122]
and brain morphology [123] associated with changes in the
tasks that individuals carry out [119]. Interestingly, where it
is possible to separate age and experience, there is evidence
that experience with different tasks, rather than age per se, is
the driving factor for these changes [121,123]. Thus, while
age and other factors such as the social environment (the
number of other individuals engaged in different tasks)
might trigger the change to a different task, it is experience
with the task that leads to these individual-level changes. Flexi-
bility in the age that individuals engage in different tasks
provides plasticity for the colony in response to variable
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conditions, alongside the advantage of efficient use of workers
associated with age polyethism.

While there has been considerable research investigating
how physiology, sensory systems and behaviour develop
over an individual’s early life, less research has focused
on how collective behaviour is thus influenced by these
developmental changes. As individuals develop they will
experience changes in their ecology becoming more or less
vulnerable to predators, begin seeking mates, or inhabiting
new environments, and it is currently unclear how patterns
of collective behaviour shift in response to these changing
pressures, and how collective behaviour can help mitigate
such demands too. Here we see fruitful research avenues
that can take a more holistic, long-term view of collective
behaviour over an animal’s lifetime.
 Trans.R.Soc.B
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6. Changes over evolutionary time
Of the timescales studied in biology, arguably the least well
advanced in the study of collective behaviour is the longest,
that of change over generations. This is somewhat surprising
as the functional explanation (i.e. the adaptive value of a be-
haviour in Tinbergen’s four questions [8]) for living in groups
has been researched for many decades [1–3], and more
specifically, the benefits of a diverse range of collective beha-
viours have been demonstrated [22,24,36,46–48,65,74]. Here,
we review approaches that have been used to study the evol-
utionary history of collective behaviours.

A core tool in the evolutionary biologist’s toolbox is the
comparative approach, i.e. comparing the traits of different
species. Together with knowledge of the evolutionary tree
of how these species are related, it can reveal, for example,
whether similar traits across species are conserved from a
common ancestor, or have evolved independently (conver-
gent evolution). The differentiation into queen and worker
castes in social insect colonies is one such example of con-
vergent evolution, where this has multiple origins in the
evolutionary past of bees, ants and wasps [124]. Comparative
studies can also test whether the presence of multiple traits is
correlated across species, indicating coevolution of these
traits. For example, warning coloration (aposematism) is
associated with the transition from group to solitary living
in caterpillars [125], eusociality is associated with a decrease
in the size of central processing brain regions in wasps [126]
and long-distance migration is associated with larger flocks
while in flight in birds [127].

These examples of studies that explore the evolutionary
history of social behaviour use measures that are relatively
easy to characterize, such as the degree of eusociality or
group size. Often these data are pre-existing in the scientific
literature or in databases such as FishBase [128], facilitating
the comparison of many species which improves test power
as well as allowing for phylogeny (the evolutionary related-
ness between species) to be included in the analysis.
However, many of the collective behaviours that researchers
are most interested in, usually those occurring on timescales
from seconds to days as discussed previously, take consider-
able effort for researchers to measure and quantify. This is
probably explains why comparative studies of collective
behaviour are usually limited to very few species in compari-
son to typical comparative studies. In an early example from
fish shoaling, Partridge et al. [34] carried out detailed
measurements under laboratory conditions of the shoal
shape and structure of three species of fishes which varied
in their schooling tendency. In marine field conditions, Bur-
ford et al. [129] compared inter-individual distances,
alignment between neighbours, and the speed of alignment
with neighbours between two taxonomically very different
species, California market squid (Doryteuthis opalescens) and
Pacific sardine (Sardinops sagax). Bisazza et al. [130] measured
shoal cohesion and behavioural lateralization in 16 species of
fishes under laboratory conditions, with shoal cohesion quan-
tified from the number of fishes located in the same sections
of a grid. Understandably given the trade-offs generated by
the constraints of empirical work, the trend here is that
where collective behaviour is studied in natural conditions
and/or in greater detail, fewer species can be studied.

A similar trend exists in comparative studies of collective
behaviour in social insects. Latty & Beekman [131] compared
five ant species in their use of dynamically changing foraging
resources. Hölldobler et al. [132] found similarity in the chemi-
cal composition of pheromones used for recruiting colony
members to food in four species of harvester ant. Four species
of ant were also compared in Creery’s [133] study of collective
transport. Three species were compared in Muscedere &
Traniello’s [134] comparative study of the relationship between
the relative sizes of different brain regions and division of
labour in Pheidole ants, and Beekman et al.’s [64] comparative
study of the waggle dance involved three species of Apis.
Czaczkes et al. [135] compared the mechanism of recruiting
other ants to cooperatively retrieve large food items in the long-
horn crazy ant Paratrechina longicornis to two unrelated species
of ant. Such studies are essential to understand the extent of
generality versus specialization of different collective beha-
viours, as well as their evolutionary history. The current
challenge is to develop protocols that can quantify collective
behaviour with a higher throughput, facilitating comparison
of far more species.

Rather than compare species, a similar approach is to
make comparisons across populations of the same species,
where the populations have been isolated for a sufficient
length of time that they have adapted to local environmental
conditions. Such comparisons are most reliable when there
are multiple, independent populations evolving across a
range of the environmental parameter of interest. A classic
example is the guppy in Trinidad (Poecilia reticulata), which
lives in geographically isolated rivers in the Northern
Range mountains. Waterfalls and rapids limit the dispersal
of predator fish species upstream, so that in many of these
rivers, the downstream stretches are high-predation risk habi-
tats, in contrast with the low-predation habitats upstream
[136]. Early studies revealed that guppies from sites with
high-predation pressure form larger shoals [137]. More
recently, comparing guppies from rivers varying in predation
risk has demonstrated differences in their fine-scale inter-
individual interactions during collective motion [138], and
in collective decision making when tested both in situ in the
field [139] and under standardized conditions [140]. Further
evidence that collective behaviour adapts to local environ-
mental conditions within species comes from the Mexican
tetra (Astyanax mexicanus), where ancestral populations live
in rivers exposed to light (surface populations) and show
attraction and alignment to their neighbours, while multiple
populations of this species have independently adapted to
live in dark caves and show avoidance of conspecifics [141].
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While research comparing across populations of the same
species is studying evolutionary change that has occurred
over a shorter timescale than comparative studies across
species, an even shorter timescale is involved in artificial
selection experiments which can involve only a few gener-
ations [142]. Here, researchers choose individuals that will
breed to create the next generation based on a trait (or
traits) of interest, thus the selection process is artificial. This
has the potential to reveal the speed at which traits can
evolve, and how other traits covary with selection on the
trait being directly selected for. Applying this to research
on collective behaviour is still in its infancy but has been
used in some species of fishes that have generation times typi-
cally shorter than in birds or mammals (as well as being
considerably easier to maintain under laboratory conditions),
and do not have the complication of eusocial insects
where selection acts primarily on the colony, rather than the
individual. Kotrschal et al. [143] bred guppies (P. reticulata)
for increased alignment with neighbours (i.e. polarization).
Within three generations compared to control (non-selected)
fish, the artificially selected fish increased both polarization
and group cohesion, corresponding to stronger responses in
alignment and attraction to neighbours. Selection for polariz-
ation was not strongly associated with changes in cognitive
traits of the individual guppies [144], contributing to the
ongoing debate regarding the link between group living
and individual-level cognitive abilities.

Artificial selection on non-social traits has documented
impacts on collective behaviour. Goldbelly topminnows
(Girardinus falcatus) artificially selected for behavioural latera-
lization were more cohesive and more aligned in the direction
of travel with neighbours than individuals selected for low
lateralization [145]. In zebrafish (D. rerio), artificial selection
has been used to recreate size-selective mortality, which is
common in fishes from their natural predators and fishing
by humans. Fishes selected for larger body sizes (mimicking
harvesting of smaller individuals, typical of natural preda-
tion) formed more cohesive shoals than controls, while
those selected for small body size (mimicking harvesting of
larger individuals, typical of human fishing) formed less
cohesive shoals [146]. Studies of these fishes have also
shown how the change over ontogeny in group cohesion
[147] and collective foraging under predation risk [148] can
be affected by size-selected mortality, illustrating that there
can be interactions across developmental and evolutionary
timescales in collective behaviour.

A major consideration in the evolutionary change of
collective behaviour is the heritability of this trait. The tendency
to be social has been shown to be heritable across a range of
taxa (reviewed by Gartland et al. [149]), and there is evidence
that some collective behaviours are heritable. Seghers’ ([137],
also see [150]) early study of local adaptation to predation
risk in the guppy (P. reticulata) included raising guppies from
different populations under the same conditions (i.e. in a
common garden experiment) without predators for 3–4 gener-
ations, and showed that differences in shoal cohesion between
fish fromhigh- and low-predation environments persisted over
generations, revealing a heritable component of the shoaling
differences. Heritability in attraction to and alignment with
neighbours has also been demonstrated in three-spined stickle-
backs (Gasterosteus aculeatus) by comparing fish from marine
(strongly schooling) and freshwater benthic (weakly schooling)
populations [151]. There is also evidence from the pharaoh ant
(Monomorium pharaonis) that collective foraging, aggression
and exploration are heritable, as well as being correlated with
one another [152].

Corresponding to the heritability of collective behaviour,
a number of studies have explored its genetic basis. In
social insects, the heritability of, and genes underlying, the
division of labour between workers has been reviewed by
Smith et al. [153]. For example, the expression of the foraging
gene plays a major role in regulating switching between
different behavioural tasks in workers in a range of social
insects [154]. Although a small number of strains of zebrafish
(D. rerio) have been compared and shown to vary in their col-
lective motion [109,155,156], Tang et al.’s [157] study used a
comparison of wild-type fish with 90 mutant lines created
with CRISPR-Cas9 to demonstrate the genetic basis for differ-
ences in inter-individual spacing and polarization in shoals.
The Ectodysplasin (Eda) gene has been identified to play a
major role in the differences between marine and freshwater
benthic populations of three-spined sticklebacks (G. aculeatus)
in their collective motion [158]. By breeding marine and
freshwater benthic three-spined sticklebacks to create F2
hybrids, Greenwood et al. [159] found that the strength of
attraction to neighbours and alignment of orientation to
neighbours are uncorrelated, and are associated with differ-
ent genomic regions. Kowalko et al. [160] also used crosses
of different populations, in this case surface and cave popu-
lations of the Mexican tetra (A. mexicanus), to demonstrate
that schooling tendency is a dominant trait, and loss of
schooling in cave populations over evolutionary time is
associated with the loss of vision. Interestingly, while
Kowalko et al. [160] found only a small role for changes in
the lateral line sensory system in explaining the differences
in schooling behaviour in the Mexican tetra, Greenwood
et al. [159] identified a genetic link between schooling and
variation in the lateral line in three-spined sticklebacks. Over-
all, these studies demonstrate the range of methods that can
be used to determine the genetic basis of collective behaviour,
yet the challenge now is to test a greater range of species to
determine the generality of the findings so far.
7. Concluding remarks
Our special issue brings together leaders in collective animal
behaviour and biologists with expertise in studying the devel-
opment and evolution of behavioural traits. The primary
objective is for researchers to recognize the untapped potential
in studying collective behaviours from novel perspectives. In
this introduction to the special issue, we provide an overview
of the current state of our understanding of collective behav-
iour over highly variable timescales that have been applied to
the study of these incredible animal behaviours.

For brevity, we have focused our review here on types of
collective behaviour that have been extensively researched,
such as nest-site selection in social insects and shoaling in
fishes. Other collective behaviours exist and broadening
studies to include other behaviours and systems could provide
fruitful opportunities for comparative studies and assessing
the generalities of our findings. For example, the collective
architectures of social insects can be critical to a colony’s survi-
val; in this issue, Muratore & Garnier [161] discuss how these
structures can be studied using a developmental biology
approach. Rathore et al. [162] make the argument that lekking,
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which occurs when multiple males congregate to perform
mating displays, might be best viewed through the lens of col-
lective behaviour, whereby the emergent properties of the lek
can be understood as the result of small, local-scale
individual-level interactions. Also, whilemuch of collective be-
haviour research has focused on fishes, birds and eusocial
insects, McLellan &Montgomery [163] highlight how caterpil-
lars (i.e. Lepidopteran larvae) exhibit many of the same
characteristics we value in these other animal taxa and may
be especially tractable systems for investigating the develop-
ment and mechanistic underpinnings of collective behaviours.

Considering awider scope than our reviewhere covers, there
are also a number of broader contexts involving collective
behaviourwherevariable timescaleswill be important. The inter-
actions between groups can themselves give rise to interesting
dynamics. In groups of stablemembership, this can result in con-
flict or cooperation between the groups (the focus of Rodrigues
et al.’s [164] article in this special issue), while in free-entry
groups, i.e. those where group members are free to join and
leave, fission–fusion dynamics can be important [165]. Collective
behaviour can also be important in responding to dynamically
varying resources [131,166] and environmental conditions
[167,168]. An additional layer of complexity exists when consid-
ering the dynamics of animal groups interacting with other
biological agents under selection, such as predators and (specifi-
cally, horizontally transmitted) diseases [48,51,169–171], where
the interactions can again take place over multiple timescales.
We also do not consider in our introduction review the
collective behaviour of mixed-species groups [172], the topic of
Lukas et al.’s [173] contribution to the special issue. Mixed-
species grouping will typically involve substantial within-
group inter-individual variation, as different species will have
different response times to stimuli, developmental trajectories,
and rates of adaptation.

While there is great potential in studying collective behav-
iour over developmental and evolutionary timescales, there
are substantial challenges comparing behaviours across time
and species. The contributions to the special issue by Sridhar
et al. [174] andOgino et al. [175] both analysemetrics of collective
behaviour at a range of timescales, and demonstrate that the
conclusions drawn are dependent on the timescale chosen for
analysis. Romero-Ferrero et al. [176] develop new analytical
tools to track how information can flow among members of
the same group. Sumner et al.’s [177] article in this special
issue investigates how analysing genes and genomes can
reveal whether highly advanced collective behaviour (in this
case, colonies of social insects that can be defined as superorgan-
isms) evolved gradually in small increments or in a nonlinear,
stepwise trajectory. This approach is possible, in part, because
superorganismality is well defined and relatively easily quanti-
fied to exist, or not exist, in different species. However, likemany
behavioural traits, other collective behaviours are frequently
context specific, making comparisons across species difficult
[130]. For example, should we quantify and compare shoaling
across fish species under identical laboratory conditions, even
though some species may be more stressed under these con-
ditions than others? Even where observational field studies are
possible, variation in the habitats occupied by different species
could explain differences observed in collective behaviour,
rather than be representative of direct differences between
species. A related issue for cross-species comparisons is in
using the same approach to quantifying collective behaviour.
Although a large array of metrics have been developed to
quantify collective behaviour, measures such as inter-individual
distances and polarization are frequently used, and Papadopou-
lou et al.’s [178] article in this special issue demonstrates how
these metrics can be used to directly compare the collective
behaviour of taxonomically and ecologically diverse species.

Other challenges are common to studies of collective be-
haviour in general but are likely to be particularly relevant
to developmental studies. A major theme in the field of col-
lective behaviour is that the group-level ‘macroscopic’
properties are often difficult to predict from the ‘microscro-
pic’ inter-individual interactions that drive the group-level
behaviour. These emergent properties suggest that develop-
mental changes at the individual level may not correspond
to changes at the collective level. For example, Rolland
et al.’s [179] study of ageing in the slime mould Physarum
polycephalum could be extended further by investigating
how developmental changes can be explained by the com-
ponents contributing to decentralized decision making in
these single-celled organisms. Siracusa et al. [180] examine
how ageing in free-living rhesus macaques Macaca mulatta
can impact individual- and group-level social properties.
Here, older individuals show changes in their social behav-
iour, but these individual-level changes may not scale up to
affecting whole networks. This could in part be because
unlike most traits, the collective behaviour an individual
expresses is reliant on other members of the group, thus sep-
arating out an individual’s behaviour from the behaviour of
others can raise difficulties. Even under controlled exper-
imental conditions, the behaviour of a focal individual can
be dependent on the behaviour of others in the group [181],
and those groupmates can vary considerably given the
degree of inter-individual variation that has been demon-
strated to be important in collective behaviour [93]. In some
species without groups of stable membership, short-term
studies can overcome this by testing the same individual
with different groupmates. Wice & Saltz [182] exploit the
powerful fruit fly system to generate replicated social
groups to better investigate how social interactions among
individuals influence entire social networks. Finding both
direct and indirect genetic effects on an individual’s social
position within the network opens up the possibility for the
evolution of the entire social environment. Over longer time-
scales, the developmental trajectory of an individual’s
behaviour may be shaped by the collective behaviour (as
part of the social environment) it experienced in the past.
Learning is a prime example of this and Collet et al. [183] pro-
vide a framework for conceptualizing how collective learning
might occur in groups. In particular, they propose a number
of different mechanisms through which individuals can learn
and adjust their behaviour to improve collective perform-
ance, providing testable predictions for each.

We hope our special issue will drive forward new ave-
nues of research using both theoretical and empirical
approaches to investigate why and how we would expect col-
lective behaviour to change over time. We aim to inspire
readers to consider novel directions for their research, either
by integrating developmental and evolutionary perspectives
into their existing research for those already working on col-
lective behaviour, or by including collective behaviour as an
understudied trait of interest for those already working in
developmental or evolutionary biology.
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