
Lawrence Berkeley National Laboratory
LBL Publications

Title

NANDFlashSim

Permalink

https://escholarship.org/uc/item/9c90h5n4

Journal

ACM Transactions on Storage, 12(2)

ISSN

1553-3077

Authors

Jung, Myoungsoo
Choi, Wonil
Gao, Shuwen
et al.

Publication Date

2016-03-08

DOI

10.1145/2700310

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9c90h5n4
https://escholarship.org/uc/item/9c90h5n4#author
https://escholarship.org
http://www.cdlib.org/

NANDFlashSim: Intrinsic Latency Variation Aware
NAND Flash Memory System Modeling and

Simulation at Microarchitecture Level

Myoungsoo Jung1, Ellis Herbert Wilson III1, David Donofrio2, John Shalf2 Mahmut Taylan Kandemir 1

1 Department of CSE, The Pennsylvania State University
2 National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory

{mj@cse.psu.edu, ellis@cse.psu.edu, ddonofrio@lbl.gov, jshalf@lbl.gov, kandemir@cse.psu.edu}

Abstract—As NAND flash memory becomes popular in diverse
areas ranging from embedded systems to high performance
computing, exposing and understanding flash memory’s perfor-
mance, energy consumption, and reliability becomes increas-
ingly important. Moreover, with an increasing trend towards
multiple-die, multiple-plane architectures and high speed in-
terfaces, high performance NAND flash memory systems are
expected to continue to scale. This scaling should further reduce
costs and thereby widen proliferation of devices based on the
technology. However, when designing NAND flash-based devices,
making decisions about the optimal system configuration is non-
trivial because NAND flash is sensitive to a large number of
parameters, and some parameters exhibit significant latency
variations. Such parameters include varying architectures such
as multi-die and multi-plane, and a host of factors that affect
performance, energy consumption, diverse node technology, and
reliability. Unfortunately, there are no public domain tools
for high-fidelity, microarchitecture level NAND flash memory
simulation in existence to assist with making such decisions.
Therefore, we introduce NANDFlashSim; a latency variation-
aware, detailed, and highly configurable NAND flash simulation
model. NANDFlashSim implements a detailed timing model for
operations in sixteen state-of-the-art NAND flash operation mode
combinations. In addition, NANDFlashSim models energies and
reliability of NAND flash memory based on statistics. From our
comprehensive experiments using NANDFlashSim, we found that
1) most read cases were unable to leverage the highly-parallel
internal architecture of NAND flash regardless of the NAND
flash operation mode, 2) the main source of this performance
bottleneck is I/O bus activity, not NAND flash activity itself,
3) multi-level-cell NAND flash provides lower I/O bus resource
contention than single-level-cell NAND flash, but the resource
contention becomes a serious problem as the number of die
increases, and 4) preference to employ many dies rather than
to employ many planes promises better performance in disk-
friendly real workloads. The simulator can be downloaded from
http://www.cse.psu.edu/∼mqj5086/nfs.

I. INTRODUCTION

While processors have enjoyed doubled performance every
18 months, and main memory performance increases roughly
7% in the same time frame, non-volatile storage media has
been stuck at a standstill for nearly a decade [23]. Many efforts
have been made to remedy such a great gap, and NAND flash
has positioned itself at the forefront of such efforts. Since
NAND flash is hundreds to thousands of times faster than
conventional storage media and has a small form factor, it has
been employed in the construction of devices such as Solid

Fl
as

h
Fi

rm
w

ar
e

La
te

nc
y

Ap
pr

ox
im

at
io

n

SSD SimulatorI/O
Subsystem

(a) Existing SSD simulations

Host
Model

V-NANDV-NANDV-NAND
NAND

simulator

Fl
as

h
Fi

rm
w

ar
e

• CPU
• I/O Subsystem
• SSD
• NAND-flash

based
applications

(b) The proposed NAND simulation

(c) Latency comparison

Fig. 1. Concept of a µarch-level NAND flash simulation model (NAND-
FlashSim). While existing SSD simulators are highly coupled to flash firmware
emulation with simplified latency model, NANDFlashSim simulates NAND
flash memory system itself with independently synchronous clock domains
and detailed NAND operation timing models aware of latency variation.

State Disks (SSD), Compact Flash, and Flash Cards. NAND
flash density is increasing by two to four times every two years
[16], which is in turn decreasing its cost and enabling wide-
spread deployment in arenas as diverse as embedded systems
and high-performance computing. In addition, by introducing
multiple planes and dies, the NAND flash memory is expected
to continue in this trend as it experiences the same ease of
scaling multiprocessors currently enjoy. As a result of such
proliferation, performance, energy consumption, and reliability
of NAND flash memory are becoming increasingly important
[26]. Further, this proliferation also results in a diversifica-
tion of target system configurations, such as additional Flash
Translation Layer (FTL) logic positioned atop flash, which is
often tailored to the demands of various NAND-flash based
applications. However, because NAND flash is very sensitive
to a large number of parameters, and some latency parameters
fluctuate between best-case and worst-case [6], deciding on
an optimal NAND flash memory system’s configuration is
non-trivial. Furthermore, NAND flash memory can have many
different parameters depending on what memory system types
are employed (e.g., single level cells (SLC), multi level cells978-1-4673-1747-4/12/$31.00 c⃝ 2013 IEEE

(MLC), diverse node technologies (fabrication processes),
page sizes, register management policy, memory density, and
pin configurations). Consequently, this large parameter space
and sensitivity of NAND flash to such parameters results in
memory systems exhibiting significantly different behaviors.

Unfortunately, a comparison between different types of
NAND flash memory systems becomes even harder when
multi-die and multi-plane architectures are considered [5].
In these architectures, scheduling methods and arbitration
[22] among multiple dies and planes are important factors
in determining I/O performance [5]. However, incorporation
of these methods and arbiters results in a greatly increased
complexity of flash firmware and controllers. Even though
simulation-based prior research [7], [12], [17], [20] reveals
performance tradeoffs in an application level, the main focus
of such studies has been on SSD rather than the NAND
flash memory system itself; this difference is pictorially shown
in Figure 1(a). Such simulations make several assumptions
that ignore, to varying extents, the fluctuating timing be-
haviors of the diverse I/O operations supported by state-of-
the-art NAND flash memory. These assumptions range from
extremely widespread, where the SSD is modelled as having
constant time and energy per I/O request, to more confined
but still overly simplified, where dies and planes are modelled
but the interactions between various NAND commands and
components are still represented with constants. This implies
that the existing simulation models used in those prior studies
are strongly coupled to particular flash firmware and policies
– performing the exact same study using slightly different
firmware or policy-set has the potential to result in wildly
different performances and conclusions. Using such impre-
cise timing models of NAND flash and NAND operations,
hardware and system designers may overlook opportunities
to improve memory system performance. Furthermore, as
shown in Figure 1(c), since such prior studies are oblivious
of intrinsic latency variation of NAND flash, they are not
be able to properly model diverse node technologies. Also,
simplified latency models ignore the substantial contributions
of the flash firmware to memory system performance. This
may result in these designers overlooking research potential
regarding new algorithms in/on NAND flash memory systems,
such as those involved in internal parallelism handling, wear-
leveling, garbage collection, the flash translation layer, flash-
aware file systems, flash controllers, and so on.

To address heretofore mentioned drawbacks, the introduc-
tion of a microarchitecture (µarch) level NAND flash memory
system simulation model that is decoupled from specific flash
firmware and supports detailed NAND operations with cycle-
accuracy is required. This low-level simulation model can en-
able research on the NAND flash memory system itself as well
as many NAND flash-based devices, as illustrated in Figure
1(b). Specifically, in this paper, we propose NANDFlashSim;
a latency variation-aware, detailed and highly reconfigurable
µarch-level NAND flash memory system based on multi-die
and multi-plane architectures. To the best of our knowledge,
NANDFlashSim is the first simulation model to target the
NAND flash memory system itself at µarch-level, and the first

model to provide sixteen latency variation-aware NAND flash
operations with NAND command set architecture.

From our comprehensive experiments using NANDFlash-
Sim, we found that 1) most read cases were unable to lever-
age the highly-parallel internal architecture of NAND flash
regardless of the NAND flash operation mode. Specifically,
the read throughputs improvements between quad dies and
octal dies, between four-plane and eight-plane, and between
4KB and 8KB page size are 10.9%, 10.8%, and 10.9%,
respectively, while the write throughputs are improved by
91.2% on average. 2) the main contributor of performance
bottleneck is I/O bus activity, not NAND flash activity itself.
50.5% cycles of total I/O execution cycles are consumed by
operations related to such I/O bus activity. The bottleneck is
more problematic when advance NAND flash commands (e.g.,
cache and multi-plane mode) are applied. 3) MLC NAND flash
provides lower I/O bus resource contention than SLC NAND
flash, but such resource contention becomes a serious problem
as the number of dies increases, and 4) preference of employ-
ing many dies rather than employing many planes provides
average 54.5% better performance in terms of throughput in
disk-friendly workloads [25]. This paper makes the following
main contributions:

• Detailed Timing Model: NANDFlashSim presents a
µarch-level flash simulation model for many NAND flash-
based applications. The memory system, controller and NAND
flash memory cells have independent synchronous clock do-
mains. In addition, by employing multi-stage operations and
command chains for each die, NANDFlashSim provides a
set of timing details for a large array of NAND flash op-
eration modes including: legacy mode, cache mode, internal
data move mode, multi-plane mode, multi-plane cache mode,
interleaved-die mode, interleaved-die cache mode, interleaved-
die multi-plane mode, and interleaved-die multi-plane cache
mode. These detailed NAND operation modes and their as-
sociated timings expose performance optimization points to
NAND flash-based application designers and developers.

• Intrinsic Latency Variation-Aware Simulation Model:
NAND flash memory, especially MLC, suffers from intrinsic
performance variations when accessing a block. In our obser-
vations, write latency of [19] and [8] varies between 250µs
to 2,200µs and 440µs to 5,000µs, respectively (maximum
latencies are 8.8 ∼ 11.3 times higher than minimum laten-
cies). Therefore, NANDFlashSim, a cycle-accurate simulation
model, is designed to be performance variation-aware and
employs different page offsets in a physical block. To collect
statistics related to the performance variation and validate our
simulation model accuracy, we prototype a NAND flash hard-
ware platform, called Memory Statistic Information System
(MSIS). We present a comprehensive evaluation considering
different types of NAND flash and NAND operation on both
NANDFlashSim and MSIS.

• Reconfigurable Micoarchitecture: NANDFlashSim sup-
ports highly reconfigurable architectures in terms of multiple
dies and planes. This architecture allows a researcher to
explore true internal parallelism in such an architecture by
exposing the intrinsic latency variations in NAND flash. In

I/O Control

Control
Logic

Address
Register
Status

Register
Command
Register

Memory Cells

Column Decoder

Ro
w

 D
ec

od
er

Data Register
Cache Register

Data Path

Control Path

(a) NAND flash microarchitecture

Logical Unit

DIE
PLANE

Registers

(b) Die microphotograph [11]
Fig. 2. NAND flash memory system internals.

contrast to prior simulation models, NANDFlashSim removes
the dependency on a particular flash firmware, which enables
memory system designers and architects to develop and opti-
mize diverse algorithms targeting NAND flash such as buffer
replacement algorithms, wear-leveling algorithms, flash file
systems, flash translation layers, and I/O schedulers.

II. NAND FLASH MICROARCHITECTURE

Figure 2(a) illustrates the NAND flash microarchitecture
[19], and Figure 2(b) depicts the physical NAND memory
cell microphotograph [11]. Energy consumption and interface
complexity are important factors in NAND flash memory
system design. Therefore, interfaces for data, commands, and
addresses are multiplexed onto the same I/O bus, which
helps to reduce pin counts, interface complexity, and energy
consumption [19]. Because of this, a host model must first
inform the NAND flash package that it wishes to use the I/O
bus through control logic before acquiring it. This information
is provided via control signals like command latch enable
(CLE) and address latch enable (ALE). Similarly, NAND
commands are responsible for signalling usage of the I/O bus
in addition to classifying following NAND operation types.
• Page/Block. A page is a set of NAND memory cells, and

a block is a set of pages (typically 32∼256 pages). A physical
NAND block makes up a plane.
• Register. Registers are adopted to provide collection and

buffering for delayed write-back of small writes and to fill
the performance gap between the NAND flash interface and
flash memory cells. Supporting multiple registers is a common
trend to boost NAND flash memory performance. NAND flash
is typically composed of a set of cache and data registers.
• Plane. A plane is the smallest unit that serves an I/O

request in a parallel fashion. In practice, physical planes share
one or more word-lines for accessing NAND flash cells, which
enables the memory system to serve multiple I/O requests
simultaneously [14].
• Die. A die contains an even number of planes and

constitutes a NAND flash package. Depending on how many
dies are placed into a package, a NAND flash memory is
classified as a single die package (SDP), dual die package
(DDP), quad die package (QDP), or octal die package (ODP).
• Logical Unit. A logical unit consists of multiple dies,

and is the minimum unit that can independently execute
commands and report its status. Multiple dies in a logical unit
are interlaced by a chip enable (CE) pin, leading to a reduction
in I/O bus complexity and total pin counts.
Since the number of dies sharing the I/O bus and CE pins

is determined at packaging time, different numbers of logical

units are used in DDP, QDP and ODP. Although state-of-
the-art NAND flash provides at most four planes [11] and
eight dies, our proposed simulation model can be configured
to simulate a much larger number of planes and dies in a
logical unit.

III. NAND FLASH OPERATIONS

Legacy NAND operations can be classified into three types:
read, write (also referred to as program), and erase. While
reads and writes operate at a page granularity, erase operation
executes on an entire block. To operate NAND flash memory,
the first task is to load a command into the command register
by raising the CLE signal, which informs what operation will
be executed. After that, a start address for the operations is
loaded into an internal address register by raising the ALE
signal. Once the address is loaded, the NAND operation can
be issued by loading the initiate command. Each of the NAND
operations has different timings for data movement. For reads,
a page of data is loaded from specific NAND memory cells
into the data register. This data movement stage is called
transfer-out of NAND memory cells (TON). Then, data are
sequentially output from the register, byte by byte, which
is a process termed transfer-out of register (TOR). In the
case of a write operation, after the address is loaded, the
data can be stored in the data register. This data movement
stage, called transfer-in of register (TIR), should be processed
before loading the initiate NAND command. Following TIR,
the NAND flash memory system starts to write data from
the register to NAND memory cells, called transfer-in of
NAND cell (TIN) stage. In addition to these basic operations,
state-of-the-art NAND flash memories support more complex
operations to improve system performance [5]. Below, we
explain different I/O modes, which are used in concert with
these legacy commands.

A. Cache Mode Operation

In cache mode operation, data are first transferred to a
cache register and then copied to a data register. After that
the NAND flash memory system enters the TIN stage. In
the meantime, the memory system is available again for TIR
stage operations using the cache register because only the
data register and memory cells are involved in writing. This
cache mode operation overlaps the process of putting data into
register and that of writing data into the NAND memory cells,
thereby hiding the TIR time. Just like writes, read operations
can also take advantage of the cache register. However, in
our observations, cache mode operations demonstrate slightly
different performances between reads and writes. This is due
to the latency-dominating NAND operation differing between,
which will be further discussed in Section VIII.

B. Internal Data Move Mode Operation

Flash applications may need to copy data from a source
page to a destination page on the same NAND flash memory.
Since data movement from one location to another within
flash memory requires external memory space and cycles,
a data copy is suprisingly expensive and time consuming.
To reduce the time required to copy data, state-of-the-art

NAND flash memory support internal data move operations.
In these operations, a host is not involved in managing the data
copy process. Instead, the host only has to load the source
and destination address for copying data into the address
registers, and commit the internal data move mode NAND
command. Then, the NAND flash memory reads data from
the source using the data register and directly writes it to
its destination, without any data transfer involving the host
model. That is, in internal data movement operation mode,
data in one page of NAND memory destined for another
page can be copied without any external memory cycles. This
specialized operation alleviates the overheads of data copying,
which notably results in greatly enhanced garbage collection
performance [4], a critical task of flash firmware.

C. Multi-plane Mode Operation

Multi-plane mode operations serve I/O requests using sev-
eral planes at a time that are connected by word-line(s).
Specifically, these operations can enhance performance up
to n times, where n is the number of planes in a word-
line. However, the multi-plane architecture carries with it
limitations for addressing planes. Specifically, in multi-plane
mode operations, I/O requests should indicate the same page
offset in a block, same die address, and should have different
plane addresses [19], [21]. These constraints are collectively
referred to as the plane addressing rule. Therefore, perfor-
mance enhancement using a multi-plane architecture may be
limited based on user access patterns (we will discuss this
issue in Section VIII-E). Regulating plane addressing rules is
required to obtain realistic performance with the multi-plane
mode of operation. Using such rules, NANDFlashSim provides
an accurate implementation of multi-plane mode operations,
which may be used in any combination with other NAND
flash operations.

D. Interleaved Die Mode Operation

State-of-the-art flash memory share between one and four
I/O buses among multiple dies in order to reduce the number of
pins. While sharing the I/O bus reduces energy consumption
and complexity, I/O bandwidth of the system also reduces.
This is because all NAND operations except those related
to NAND memory cells (e.g., TON, TIN) should acquire
permission to use the I/O bus before they start executing. Thus,
efficient bus arbitration and NAND command scheduling poli-
cies are critical determinants of memory system performance.
Interleaved die mode operations provide a way to share the I/O
bus and take advantage of internal parallelism by interleaving
NAND operations among multiple dies. Unlike multi-plane
mode operations, interleaved-die mode operations have no
addressing restrictions.
It should be noted that all NAND operations discussed

above can be used in any combination with interleaved-
die operations. For example, a host model can issue an
interleaved-die multi-plane mode operation, which stripes a set
of multi-plane mode operations across multiple dies. Similarly,
interleaved-die multi-plane cache mode operations are possi-
ble, which are operations that have the properties of operating
in cache mode, being striped over multiple dies and being

No I/O Bus Arbitration

Timings are simplified with the assumption that such timings are perfectly overlapped

Unified I/O timing

ALE&TIR ALE&TIR ALE&TIR ALE&TIR

No I/O Bus Arbitration

ALE&TIRALE&TIRALE&TIRALE&TIR TIN

TIN (250 microsec)

TIN

TIN

TIN

I/O Bus

DIE 0

DIE 1

DIE 2

Time line

(a) A typical-case timing parameter based simulation model

TIR TIR

TIN (MSB, 2200 microsec)

I/O Bus Arbitration with fine-grain bus activities

Tansfer Delay
ALE ALE ALE TIR

TIN (MSB, 2200 microsec)

TIN (LSB, 250 microsec)

ALE TIR ALE TIR ALE TIR

Transfer Delay

ALE TIR TINTIN

Transfer Delay

I/O Bus

DIE 0

DIE 1

DIE 2

Time line

(b) Latency-aware NANDFlashSim
Fig. 3. A timing diagram of interleaved die with four legacy writes. While an
existing simulation model simplifies bus activities and assumes that latencies
are perfectly overlapped and interleaved with constant time, NANDFlashSim
employs fine-grain bus activities and is aware of intrinsic latency variations.

applied to multiple planes. A simplified and approximated
latency circulation model with constant times is unable to cap-
ture the behavior of and interactions between these different
types of operations. Furthermore, intrinsic latency variations
exhibited by the NAND flash make it difficult for a latency
model with constant time to mimic elaborate bus arbitration
or scheduling NAND commands.
Consider the comparison, shown in Figure 3, between the

existing simulation model (with constant time) and variation-
aware NANDFlashSim. In the figure, four I/O requests are
striped over three dies with interleaved-die legacy write mode.
Existing simulation models will calculate the latency under
the assumption that timings are perfectly overlapped and
interleaved. Let tio denote execution time for I/O activities,
and tprog denote programing (write) time. Suppose that nio

denotes the number of the write requests, and tinterleaved
resp legacy

denotes the response time for nio requests, In existing sim-
ulation models, tinterleaved

resp legacy is simply calculated by nio ∗ tio +
tprog as shown in the time line of Figure 3(a). However,
in practice, tinterleaved

resp legacy varies significantly based on system
configurations. This is because tprog fluctuates based on the
access address and the transfer delay time is also varied by
the service order. In contrast, NANDFlashSim is aware of
latency variation and provides a method for scheduling NAND
commands and activities with fine granularity.

IV. INTRINSIC LATENCY VARIATION OF NAND FLASH

NAND flash memory has the interesting characteristic of
performance variation [6], [13], [14], which results in the
latencies of the NAND flash memory system to fluctuate
significantly depending on the address of the pages in a block.
Typically, this variation is not specified in the datasheets of

Gate

Floating Gate

Source DrainChannel

Electrons

stored here

(a) NAND transistor cell

Di
st

rib
ut

io
n

of
 C

el
ls

-2.0V 0V 1.1V 2.3V 5.5V
11 10 01 00

Reference Points

Second program (MSB)

First program (LSB)

(b) Example of cell distribution
Fig. 4. NAND flash memory cell organization. MLC NAND flash memory
has multiple states in a cell, which causes intrinsic latency variation [14].

NAND flash memory. NAND flash memory puts electrons,
which represents cell states, into a NAND flash floating gate.
To achieve this, NAND flash memory selects the NAND
flash memory cells, and makes an electron channel between
a source and drain (see Figure 4(a)). Once the channel is
built and voltage is applied over a certain threshold voltage,
electrons can be moved from the channel to the floating
gate. This process is called Fowler-Nordheim tunneling (FN-
tunneling) [14], which is a well-known programming (write)
operation. As illustrated in Figure 4(b), based on differing cell
distributions, a MLC NAND flash memory system can identify
bit states like ’11’, ’10’, ’00’ and ’01’ in a cell1. According
to the specific bit states for programming, therefore, a MLC
NAND flash memory system will end up spending different
amounts of time and power. Specifically, MLC NAND flash
is able to store multiple bits on a cell using incremental step
pulse programming (ISPP) [13], [14].
For example, in the first phase, MLC NAND flash programs

a cell from ’11’ to ’10’ or ’11’ state. This phase represents
the least significant bit (LSB) of an MLC cell. In the second
phase, the NAND flash reprograms the cell from the ’11’
or ’10’ state to a ’01’/’11’ or ’00’/’10’ state, respectively,
so that the memory cell represents the most significant bit
(MSB). Since MLC devices utilize four states using this
ISPP, FN-tunneling for MSB pages requires more energy and
takes a longer time when compared to LSB pages [6], [15],
[24]. Due to these NAND flash memory characteristics, one
may observe performance variations between worst-case and
typical-case programming time parameters. Since there is no
need for ISPP to a specific cell in SLC flash, this latency
variation characteristic is more pronounced in MLC NAND
flash memory.

V. RELATED WORK

There are several prior studies for simulating a NAND
flash-based SSD. The SSD add-on [20] to DiskSim [3] is
a popular simulator that models idealized flash firmware.
FlashSim [12] is another simulator, implemented using object-
oriented code for programmatic ease and extensibility. This
simulator supports several types of flash software algorithms.
While these simulation models compute performance by cal-
culating latency for each of the basic NAND operations,
SSDSim [7] accommodates latency calculation models for
cache, multi-plane, interleaved-die operations of SLC devices
at application-level.
Even though these simulation models can enable researchers

to explore the design tradeoffs of SSDs, they have limitations

1The ’0’ bit in a NAND flash cell represents programed (written) state.

NA
ND

 F
la

sh
 I/

O
 B

us Die
Interfaces

k*
j

Bl
oc

ks

Controller

Multiplexed
Interface

DATA REGISTER

CACHE REGISTER

NAND Flash
Memory Array

DATA REGISTER

CACHE REGISTER

NAND Flash
Memory Array

1 Block 1 Block

DIE 0

PLANE 0 PLANE j
k Blocks k Blocks

DIE 0

DIE 1

DIE n

ADDR REGISTER
CMD REGISTER

ADDR REGISTER
CMD REGISTER

ADDR REGISTER
CMD REGISTER

Lo
gi

ca
l U

ni
t

Host models/
System-level
Simulation

models

Fig. 5. NANDFlashSim architecture. NANDFlashSim is a reconfigurable
µ-level multi-plane and multi-die architecture. The number of registers,
blocks, planes and dies can be reorganized, and each entity has independent
synchronized clock domain.

in simulating the µarch-level NAND flash memory since they
highly simplify NAND flash characteristics, latencies, and
energies from a flash firmware perspective. Also, these studies
are appropriate to simulate only SLC NAND flash type.

•Unaware of latency variations. These existing simula-
tion models are ignorant of NAND flash memory’s latency
variations; they implement the flash memory system based
on constant times and energies of worst-case or typical-case
time parameters. However, as mentioned in Section III, the
state-of-the-art memory systems are very complex and support
diverse NAND I/O operations for high performance I/O, which
results in latency varying immensely even between executions
of operations of the same type. In contrast, our proposed
NANDFlashSim is aware of the latency variations based on
most significant bit (MSB) and least significant bit (LSB) page
addresses in a block and provides legacy mode operations as
well as a number of state-of-the-art modes for more complex
operations at µarch-level. As consequence, NANDFlashSim is
able to simulate both MLC and SLC NAND flash.

•Coarse-grain NAND command handling. Moreover,
these past studies mimic multi-die and multi-plane architecture
using coarse-grain I/O operations, which means that NAND
operation and control are simplified by host-level I/O requests.
Even though they consider basic I/O timing based on time
parameter statistics and internal parallelism of NAND flash
memory, the evaluation of accurate memory system latencies
is non-trivial. Using multi-stage and command chains for each
of the NAND flash operations , our proposed NANDFlashSim,
reconfigurable for multi-die and plane architectures, provides
detailed timing models for NAND operations and manages bus
arbitration based on different latencies at µarch-level.

•Weak model of NAND flash memory constraints. The
memory system’s performance and energy consumption can
exhibit a variety of patterns due to NAND flash memory
constraints. For example, as mentioned in Section III, multi-
plane I/O operations should satisfy plane addressing rules.
This constraint results in different performance characteristics
depending on I/O patterns. Even though the past studies
consider these kinds of constraints, their simulation is tightly
coupled with specific firmware. This problem makes it very
difficult to explore new memory systems that can be built using
NAND flash memory. As opposed to these prior efforts, our
NANDFlashSim regulates NAND flash memory constraints in
µarch-level, and is not tied to any specific flash firmware,
algorithm or NAND flash applications like SSDs.

VI. HIGH LEVEL VIEW OF NANDFLASHSIM

NANDFlashSim employs a highly reconfigurable and de-
tailed timing model for various state-of-the-art NAND flash
memory systems. NANDFlashSim removes the specific flash
firmware and algorithm from the NAND flash simulation
model so that memory system designers and architects can
employ NAND flash memory systems for various NAND
flash-based applications and research/develop flash software
for their specific purposes. To achieve its design goals, instead
of employing underlying simplified latency calculation mod-
els, NANDFlashSim uses a NAND command set architecture
and individual state machines associated to the command
sets, which results in independent synchronous clock domains.
These mechanisms enable designers and architects to closely
study the NAND flash performance and optimization points at
a cycle-level by exposing the details of NAND flash.

A. Software Architecture

Figure 5 illustrates the software architecture of our proposed
simulation model. NANDFlashSim is comprised of a logical
unit, NAND flash I/O bus model, several registers, a controller
module, die modules, plane modules, and virtual NAND
blocks. A host model can issue any type of NAND flash
operations through the NAND I/O bus when the memory
system is not busy. NANDFlashSim provides two interfaces
to manage NAND flash memory. The first is a low-level
command interface, which is compliant with Open NAND
Flash Interface (ONFI) [21]. In this case, the host model fully
handles the set of NAND commands for addressing, moving
data, and operating NAND flash memory cells. Since a wrong
command or inappropriate NAND command sequence can
make the NAND memory system malfunction, NANDFlash-
Sim verifies the correctness of command uses by checking
the command/address registers and its own state machines
every cycle. If it detects a wrong command sequence, it
enforces a system fail and notifies the host model. The host
model is able to identify the type of failure that occurred
using read-status commands or return codes. The second is
a memory transaction based interface. In this case, the host
model is not required to manage the set of NAND commands,
command sequences, or data movement. Figure 6 visualizes
how NANDFlashSim supports such interface logic. When the
logical unit of NANDFlashSim receives a request from the
host model, it creates a memory transaction (discussed in the
next subsection), which is a data structure that includes the
command, address, and data. It then places the memory trans-
action into the internal NAND I/O bus. Once the controller
module detects a memory transaction on the NAND flash I/O
bus, it starts to handle the command sequence based on the
command chain associated with the memory transaction. Note
that this is handled by NANDFlashSim instead of the host
model. In the meantime, the logical unit arbitrates NAND
flash internal resources (e.g., the NAND I/O buses) and also
manages I/O requests across multiple dies and planes. The set
of NAND commands generated by the command chain handles
the command/address latch and data movement processes
such as TOR, TIR, TON, and TIN, called stages (we will

TIR
I/O

request

FETCH

Memory
Transactions

BUILD

CLE

TON

TIN

STAGE

M
ul

tip
le

 D
ie

s

Plane

Plane

Plane

Plane

CHAIN ARBI. EXE.
Arbitration Execution

REL.
Release

N
AN

D
I/

O
Bu

s

READ INIT CONFREAD INIT

PAGE READ PAGE READ (CACHE MODE)
Cache

PROG INIT

PAGE PROGRAM(WRITE)

READ
STATUS

PROG INIT CONF
Cache

READ
STATUS

PAGE PROGRAM (INTERLEAVED DIE CACHE MODE)

Update

A
Se

t o
f C

om
m

an
d

Ch
ai

ns

Fig. 6. The process of NAND flash memory transactions and examples of
NAND command chains. NANDFlashSim handles fine-grain NAND transac-
tions by NAND command set architecture

discuss this shortly). It should be noted that using these two
interfaces, other simulator models can be easily integrated into
NANDFlashSim.

B. Clock Domains and Lifetime of Transaction

Our simulation model assumes that the logical unit,
controller, die, and plane form a module working as an
independently-clocked synchronous state machine. Many such
state machines can be executed on separate clock domains. In
general, there are two separate clock domains: 1) the host
clock domain, and 2) NAND flash memory system’s clock
domain. The entities of NANDFlashSim are updated at every
clock cycle, and the transaction lives until either getting an
I/O completion notification or NAND flash memory requires
a system reset due to an I/O failure. Since the time for a
NAND operation can vary from a few cycles to a million
cycles, updating all components (e.g., planes, dies, and I/O
bus) of NANDFlashSim using the default update interface at
every clock can be expensive and ineffective. Therefore, in
addition to the default update interface NANDFlashSim also
supports a mechanism to skip cycles not worth simulating. In
this mechanism, NANDFlashSim looks over all modules in
the logical unit, and then finds out the minimum clock cycles
to reach the next state among them at a given point. NAND-
FlashSim updates system clocks for its own components based
on the detected minimum clock cycles, thereby skipping the
meaningless cycles in the update process.

VII. IMPLEMENTATION DETAILS

A. NAND Command Set Architecture

The number of combinations of operations possible with
a state-of-the-art NAND flash memory is as high as sixteen,
and each combination has varying timing behaviors. Therefore,
NANDFlashSim divides a NAND I/O request into several
multiple NAND command sets based on the information
specified by ONFI and updates them at every cycle (as a
default). To appropriately operate the NAND flash memory
system, this NAND command set architecture is managed by
multi-stage operations and command chains, as described next.
Multi-stage Operations. Stages are defined by common
operations that NAND flash has to serve. Specifically, all
types of µarch-level NAND operations should have at least
one stage, which are classified by CLE, ALE, TIR, TOR,

CLE

TIN
TIR

ALE

IDLE
TON

TOR
Write

Write

Write

Read Status/Write

Read

read

Basic, Random, Cache,
Multiplane,

Internal data movement mode

NAND I/O Bus Operations
NAND Flash Cell Operations
Registers Operations

BER

Erase

Read Status

Fig. 7. State machine for multiple NAND stages. Each state is identified by
different type of stages and states of the machine are transited by different
type of NAND commands. Since each die has their own state machine,
NANDFlashSim provides an independent clock cycle domain per die.

TIN, TON, and BER. CLE is a stage for a command by
following command latch enable signal, and ALE a stage in
which an address is loaded into an address register, which is
triggered by address latch enable. BER is a stage for erasing
block(s). Other stage names that NANDFlashSim employs
are the same as the name described earlier in Section II.
These stages comprise an independently clocked synchronous
state machine, as illustrated in Figure 7. This state machine
describes different stages for each NAND I/O operations as
visualized in the bottom of Figure 6. All dies have such state
machines based on stage and regulate/validate correctness of
NAND commands and multi-stage sequence.
Command Chains. A command chain is a series of NAND
commands, and each combination of NAND operations has
its own command chain. Even though the state machine
with multi-stage is capable of handling diverse depths of
NAND command sets, the introduction of a command chain
is required, because many operations have different command
requirements and sequences. Also, the process of transitioning
from one stage to another stage varies based on what command
is loaded into the command register. For example, as illustrated
in Figure 6, the write operation has a different sequence for
data movement and a different number of commands compared
to the erase and read operations. When a combination of
NAND operations with cache, multi-plane or die-interleaved
mode is applied, the differences are more striking. Therefore,
NANDFlashSim employs command chains, which are updated
by the NANDFlashSim controller and logical unit. Also, the
command chains are used to verify whether the host model
manages NAND operation using a correct set of commands
and command sequences or not. Using multi-stage operations
and command chains, NANDFlashSim defines a NAND com-
mand set architecture and provides a cycle accurate NAND
flash model.

B. Awareness of Latency Variation

NANDFlashSim is designed to be aware of intrinsic latency
variations when it simulates MLC NAND flash. To extract
real performance and introduce variation characteristics into
NANDFlashSim, we implemented a hardware prototype called
MSIS, which stands forMemory Statistics Information System.
MSIS is able to evaluate various types of NAND flash based
on different memory sockets as illustrated in Figure 8. Suppose
that npages is the number of page per block, and λ is constant
value related to a page offset. npages and λ are device specific
value. Typically, npages is powers of two, and λ is 2 or 4. We
assume that a set of page addresses, which show relatively high
latency, indicates the MSB pages referred as to msb(n), where

∀n, 0 ≤ n ≤ (npages/2). We also assume that another set of
page addresses, which exhibit low latencies, are the LSB pages
referred as to lsb(n). With this assumption2 in place, NAND-
FlashSim generates different programming timing based on
these two sets of page addresses, which are extracted from
MSIS. Even though these address sets of page addresses can
be varied based on NAND flash manufacturers, we found
that these address sets can be classified by two groups for
diverse NAND flash devices (we tested eight devices from four
manufacturers, and technology nodes of them range from 24
nanometer to 32 nanometer). These two groups of such page
address sets indicated by different subscripts, α and β (e.g.,
msbα(n), lsbα(n), msbβ(n), and lsbβ(n)). For lsbα(n), if n
is zero or equal to npages−1 then n and n+1 are LSB pages.
Otherwise, the lsbα(n) is generated by λn, and the msbα(n)
is generated by λn− (λ +1). On the other hand, for lsbβ(n),
if n is less than λ or n is grater than npages−λ then n is LSB
pages. Otherwise, λn and λn+1 are elements of lsbβ(n), and
λn − (λ + 2) and λn − (λ + 1) are elements of msbβ(n). It
should be noted that NAND flash parameters related to these
sets of addresses only affect NAND flash activity, especially
transfer-in of NAND (TIN) stage. I/O bus activities such as
CLE, ALE, TIR, and TOR are not affected by such sets of
addresses.

C. Enforcing Reliability Parameters

NANDFlashSim enforces three constraints to guarantee
reliability: 1) the Number-Of-Program (NOP) constraint, 2) In-
order update in a block, and 3) endurance. The NOP constraint
refers to the total number of contiguous programmings that
the NAND flash memory allows for a block before an erase
is required. The plane model in NANDFlashSim records the
number of programs for each page. If a request tries to
program a page over the NOP limit, NANDFlashSim informs
the host model of this violation. In addition, the plane model
maintains the page address which was most recently written.
When a host model requests to program a page that has a
lower address than the most recently written page address,
NANDFlashSim reports this as a violation of the in-order
update constraint to the host. To enforce the endurance limita-
tion, each block in the plane model tracks erase counts. When
NANDFlashSim detects a request that would erase a block
over the number of erases that the memory system guarantees,
it informs the host model of this endurance violation. These
reliability models provide an environment for system designers
and architects to study NAND flash reliability and explore fu-
ture research directions such as developing new wear-leveling,
garbage collection and address mapping algorithms.

VIII. EVALUATION

For the validation of NANDFlashSim compared to other
real products, we utilize two different types of MLC NAND
flash packages [19] (i.e., Single Die Package (SDP) and Dual
Die Package (DDP), and two MLC devices came from two
different manufacturers [19], [8]. In addition, for evaluating

2This assumption is already widely used by both industry and academia
[6], [15], [24].

TSOP type socket
for SLC/MLC NAND flash

Samsung S3C2440
Controller

DRAM/NOR Flash

(a) Our Hardware Prototype
(MSIS)

(b) A Contour Map of Latency
Variation

Fig. 8. Implemented evaluation hardware prototype (MSIS). MSIS is used
to extract the LSB and MSB page address and to evaluate performance for
NANDFlashSim validation.

Device Type Feature Value

Single Level Cell Page Size(Byte) 2048
of Page Per Block 64
of Block 4096
Write Latency(us) 250
Read Latency(us) 25
Erase Latency(us) 1500

Multi Leve Cell 1 Page Size(Byte) 2048
(MLC1) # of Page Per Block 128

of Block 8196
Write Latency(us) 250∼2200
Read Latency(us) 50
Erase Latency(us) 2500

Multi Leve Cell 2 Page Size(Byte) 8192
(MLC2) # of Page Per Block 256

of Block 8196
Write Latency(us) 440∼5000
Read Latency(us) 200
Erase Latency(us) 2500

TABLE I
NAND FLASH DEVICE CHARACTERIZATION

NANDFlashSim, we also use SLC and MLC type NAND
flash. The main parameters for those devices such as block,
page sizes and latency, are described in Table I. Unless
otherwise stated, we will use parameters of MLC1 as default.
Table II analyzes workloads that we tested. In addition

to a number of disk-friendly traces from actual enterprise
applications (msnfs, fin, web, usr, and prn) [25], we also
synthesized write and read intensive workloads of which
access pattern are fully optimized to NAND flash. Specifically,
in the swr and srd workloads, we perform reads and writes of
data on different block boundaries, and make the access pattern
of the workload sequential in the block boundary. With these
synthesized flash-friendly workloads, the ideal performance of
NAND flash can be evaluated with less restrictions. Access
patterns of all workloads tested are used by both the hardware
prototype (MSIS) and NANDFlashSim.

A. Validation of NANDFlashSim

Latency Validation. Figure 9 pictorially illustrates cumula-
tive distribution function (CDF) of latency for both NAND-
FlashSim and MSIS on enterprise application workloads. In
this validation, interleaved die mode and multiplane mode
NAND commands are interplayed with legacy mode NAND
operations, and a queue (32 entries) [9] is applied for han-

Workloads Write
(%)

Write Req.
Size (KB)

Read Req.
Size (KB)

Synthesized Write Intensive (swr) 100 2 -
Synthesized Read Intensive (srd) 0 - 2

MSN File Storage Server (msnfs) 93.9 20.7 47.1
Online Transaction (fin) 84.6 3.7 0.4
Search Engine (web) 0.01 99.1 15.1
Shared Home Directories (usr) 2.6 96.2 52.6
Printing Serving (prn) 14.5 97.1 15.1

TABLE II
WORKLOADS CHARACTERIZATION

dling incoming I/O requests. The microscopic illustration
of inflections for each CDF are also pictorially embedded.
In the figures, the red line represents MSIS latency with
MLC2 [8] and the blue line represents latency of variation-
aware NANDFlashSim. As shown in the figures, latencies
of NANDFlashSim are almost completely overlapped with
the real product latencies. Since NANDFlashSim employs a
variation-aware timing model as default, it exhibits very close
performance to the real product of MSIS.
System Performance Validation. In these performance vali-
dation tests, we evaluate performance for our variation-aware
based NANDFlashSim, worst-case timing based simulation
model [10], typical-case timing based simulation model [20],
[12], [7] and MSIS in terms of bandwidth. In this test, we
scheduled NAND I/O commands in plane-first fashion, which
means the requests are served with write/read two-plane mode
first rather than striping them across multiple dies.
Figure 10 compares the SDP [19] read/write performance on

NANDFlashSim and MSIS. The throughput values obtained
using NANDFlashSim (with variance-aware latency model)
are close to the real product performance of MSIS. In the read
cases, NANDFlashSim is no more accurate relative to MSIS
than the other timing models. This is because variation for
reads of NAND flash memory is negligible. In contrast, write
operations show different performances according to the type
of latency models employed. Since write performances are
seriously varied between the minimum to maximum latency,
there is a performance gap between performance of MSIS and
that of both worst-case timing parameter and typical-timing
parameter based latency models.
These plots also depict bars of the percentage of de-

viation between MSIS performances and NANDFlashSim
performances among different latency models. Specifically,
variation-aware NANDFlashSim provides around 12.9%,
2.1%, 1.6% and 3.8% deviation in performance for the legacy,
cache mode, 2x mode, and 2x cache mode operation, respec-
tively. This is a significant improvement from the deviation
range of 48.7% to 79.6% in typical-case timing parameter
based simulation and from 44.4% to 53.5% in the worst-case
timing parameter based simulation.
Figure 11 illustrates read/write performance results with

DDP [19] on the same test set. Typical-timing parameter based
latency model shows highly errant performance compared
to MSIS ones (deviation range is 83.1% to 170.9%). Even
though this latency model is the most popular one among
SSD simulators, it mimics the ideal performance, which can
be achieved if and only if the time spent in TIN can perfectly

(a) msnfs (b) fin (c) web (d) usr (e) prn
Fig. 9. Cumulative Distribution Function (CDF) of Latency. Latencies of NANDFlashSim are mostly overlapped with real NAND flash product latencies.

(a) Read performance (srd) (b) Write performance (swr)
Fig. 10. Performance comparison on SDP. Typical-case/worst-case time
parameter based latency models show unreasonable performance gap from
real product ones.

(a) Read performance (srd) (b) Write performance (swr)
Fig. 11. Performance comparison on DDP. While typical-based latency model
show more discrepant performance than that of multi-plane tests, the variation-
aware NANDFlashSim provides performances close to the real product ones.

be overlapped with other operations stages, and the NAND
bus I/O utilization is reasonably high across multiple dies. Al-
though the worst-case parameter based latency model provide
closer performance (deviation range is 7.3% ∼ 42.0%), it still
shows unrealistic performance. In contrast, the performance
deviation range of our current variation-aware NANDFlashSim
is between 5.3% and 9.4%. This is because the detailed
bus arbitrations across multiple dies, which are based on the
intrinsic latency variations are captured by NANDFlashSim.

B. Individual Cycle Analysis

Figures 12 and 13 illustrate an individual cycle comparison
among legacy, cache mode, and 2x mode operations. In this
evaluation, we request 8 pages read or write for two blocks,
and the size of the requests is 2KB.
Write Cycles. Cycle analysis for legacy mode writes is
illustrated in Figure 12(a). In the write operations, the per-
formances of TINs fluctuate from 650 thousand cycles to
5 million cycles. This intrinsic latency variation is one of
the reasons why NANDFlashSim demonstrates performance
closer to reality. Figure 12(b) illustrates write cycle analysis
of cache mode operations. Since latencies for ALE, CLE, and
TIR operations (related to operating the NAND flash I/O bus)
can be overlapped with latency of the TIN operation, latencies
for sixteen TIN stages consecutively occur without latencies
spent to operate the I/O bus.

(a) Legacy write operation

(b) Cache mode write operation

(c) Two-plane mode (2x) write operation
Fig. 12. Cycle analysis for write operations (NANDFlashSim). Note that
the command sequence is a chronological oder based on a set of NAND
commands that host commits, and one cycle takes 1 nanosecond.

(a) Legacy read operation

(b) Cache mode read

(c) Two-plane mode (2x) read operation
Fig. 13. Cycle analysis for read operations (NANDFlashSim). Since handling
2x mode is fancy more than other operation modes, it requires more commands
to read data. Note that system designers is able to get these microscopic cycle
analysis for diverse NAND flash operations from outputs of NANDFlashSim.

Figure 12(c) depicts cycle analysis for 2x mode write
operations. While cache mode operations save cycles for the
I/O bus, 2x mode operation reduces the number of TIN
operations itself by writing data to both planes at a time. This
is because those planes share one word-line. Since cycles spent
in the TIN operation is much longer than the sum of cycles
for ALE, CLE and TIR operations, it doubles throughput as
shown in Figure 10(b).
Read Cycles. Figure 13 illustrates read cycle analysis executed
by NANDFlashSim. Read operation behaviors for legacy,
cache mode and 2x modes are similar to the writes, having
only two main differences: 1) latencies for the TON operation
do not fluctuate like TIN of write operations, and 2) the TOR
cycle fraction of the total execution cycles (see Figure 13(a)) is
close to the TON ones. In Figure 13(b), one can see that cycles
for TOR, which are related to bus operations, are higher than
TON related to operations for NAND memory cells, meaning
that reads spend many cycles on the I/O bus operations (we
will discuss more detail in Section VIII-D).
It should be noted that the reason one obtains accurate

latency values from NANDFlashSim is that it works at
cycle-level and executes NAND operations through multi-
stage operations, which are defined by NAND command set
architecture. In addition, NANDFlashSim reproduces intrinsic
latency variations based on different addresses for LSB and
MSB pages.

C. Performance and Power Consumption Comparison: Page
Migration Test

We also evaluate a page migration test, which is a series
of tasks copying pages from source block(s) to destination
block(s) and erasing the block(s). This test mimics a very
time consuming job of a flash firmware occuring frequently
during garbage collection. To evaluate performance of page
migration, we read whole pages in the source blocks and wrote
them to the destination blocks on NANDFlashSim for various
block sizes. In this process, we erased the destination blocks
before migrating pages, and erased the source blocks after the
page migration tasks are done. These page migration tasks are
performed by legacy, cache, internal, 2x, 2x cache, and 2x
internal mode operations. As shown in Figure 14(a), there is
little performance difference at page migrations of 2 blocks,
but as the number of blocks for the migration increases, laten-
cies for 2x cache mode, internal data move, and 2x internal
data move mode operations are about two times smaller than
legacy, cache mode and 2x mode operations. Importantly, the
2x internal data move mode operation outperforms all other
operations. In contrast, energy consumptions for each NAND
I/O operation are not much different between them as shown in
Figure 14(b). This is because even though the latency benefits
come from internal parallelism, the same amounts of power
for operating I/O requests are required by all memory system
components.
Figure 16 shows cycle analysis for each NAND operation

type. One can see that internal data move mode operations
(including 2x internal) eliminate operations associated with
registers (TOR and TIR), thereby improving migration perfor-
mance.

(a) Bandwidth (b) Energy

Fig. 14. Block migration performance comparison and energy consumption.
While energy consumption are similar to different NAND operation modes,
2x cache mode and internal data move mode operations have great impact on
enhancing performance in the page migration test.

(a) Writes (swr) (b) Reads (srd)

Fig. 15. Breakdown of cycles. Note that, in reads, TOR operations are the
performance bottleneck while TIN operations are on the critical path in writes.

Fig. 16. Cycle analysis for page migration. Internal data move modes
removes the most NAND I/O bus activities thereby improving throughputs.

D. Breakdown of Read and Write Cycles

In the write cases shown in Figure 15(a), most cycles
are consumed by operations related to NAND flash itself
(93%∼96.5%). While write operations spend at most 7.0%
of the total time performing data movement (TOR/TIN), read
operations spend at least 50.5% of the total time doing so.
Therefore, even though 2x or cache mode is applied to read
operations (see Figure 15(b), there is small benefit in terms of
bandwidth. We believe that this is a reason why much research
in industry is directed towards enhancing bus bandwidth. How-
ever, do note that the write performance cannot be enhanced
by any kind of high speed interfaces because the speed is
dominated by the latency of the TIN stage. It also should be
noted that since NANDFlashSim allows us to count cycles
dedicated to each NAND flash stage and command, it helps
us determine which operations are the performance bottleneck,
or which operation is the best operation for a specific access
pattern to improve performance.

E. Performance on Multi-plane and Multi-die Architectures

Multi-plane. Figure 17 compares throughputs observed in
NANDFlashSim for varying the numbers of planes and trans-
fer sizes. Performance of write operations is significantly
enhanced as the number of planes increases because most
of TIN can be executed in parallel. In contrast, for the read
operations, such benefits are much lower than for write oper-
ations. This is because cycles for data movement (TOR) are a
dominant factor in determining bandwidth, and it is unaffected

(a) Read performance (srd) (b) Write performance (swr)

Fig. 17. multi-plane architecture performance with varying page unit sizes.
While write throughputs of many plane architecture are enhanced by 360.9%
to single plane architecture, read throughputs are enhanced by 75.5%.

(a) Read performance (srd) (b) Write performance (swr)

Fig. 18. Multi-die architecture performance. While many dies architecture
with the swr workload enjoys linear enhancement (ODP improves throughput
541.1% to the SDP ones), it saturates read throughputs with eight dies (76.3%
enhancement compared to SDP ones).

(a) Sensitivity to number of plane (b) Sensitivity to number of die

Fig. 19. Performance sensitivity to the number of plane and die with actual
application workloads. the performance of many-die architecture is 54.5 %
better than the performance of many-plane architecture in terms of IOPS.

by the number of planes. As shown in Figure 19(a), this
performance bottleneck of a many-plane architecture becomes
more problematic under disk-friendly workloads. Specifically,
the performance gains of the many-plane architecture become
limited starting at a four-plane architecture. The main reason
is that most workloads are optimized for traditional blocks
without regard for the plane addressing rule. In other words,
as the number of planes increases, it becomes hard to build
multi-plane mode operations with existing disk-friendly I/O
access patterns.
Multi-die. Figure 18 illustrates performance improvement as
the number of dies increase. In this section, we tied mul-
tiple dies to one NAND flash I/O bus path and have them
sharing one CE pin. Similar to multi-plane operations, reads
performance enhancement (as the number of dies increases) is
limited by latency of the TOR operation. Even though multiple
dies are able to serve I/O requests in parallel, performance
is bounded by data movement again. This is because during
execution of a TOR operation, the NAND flash I/O bus is not
capable of handing another TOR one. Therefore, regardless of
the fact that 2x or cache mode are applied, TOR operations
are the performance bottleneck in read case.
In contrast, as shown in Figure 18(b), throughputs of write

(a) Single level cell (SLC) (b) Multi level cell (MLC)

Fig. 20. Resource contention comparison between SLC NAND and MLC
NAND devices. The resource contentions of MLC NAND flash have less
impact on SLC NAND flash, but the contention problem is still problematic
and become more serious as the number of die increases.

(a) Read (srd) (b) Write (swr)

Fig. 21. Sensitivity to page organization (2x, DDP). Most read performance
are bounded because of TOR times and NAND flash I/O bus competition.

(a) Read performance (srd) (b) Write performance (swr)

Fig. 22. Effects of different NAND command scheduling policies. Based
on different transfer sizes and scheduling policies, performance enhancement
with multi-die and plane architecture show different performance.

operations are significantly improved by increasing the number
of dies. The reason behind this benefit is interleaving TIN,
which is the dominant factor in determining write band-
widths with small bus resource conflicts. It should be noted
that NANDFlashSim is able to reproduce/simulate resource
(NAND flash I/O bus and dies) conflicts by employing multi-
stage operations and being aware of intrinsic latency variations
at µarch-level. As shown in Figure 19(b), unlike many-plane
architecture, many-die architecture enjoys performance gains
under even disk-friendly real workloads. This is because data
can be parallelized across multiple dies with fewer restrictions.

F. Performance Sensitivity to Page Size

Intuitively, large page sizes can be a good choice to achieve
high bandwidth because many bytes can be programmed or
read within the same amount of cycles. However, this intuition
is only true for writes. Figure 21 plots performance sensitivity
to different page sizes on diverse read and write operations.
While the bandwidth of writes for most operation modes in-
creases as the page size increases, read performances saturate.
As explained in Section VIII-E, the small enhancements for
read operations are due to bus resource conflicts and the large
time spent in data movement.

G. Resource Contention

Since multiple dies share the flash interface, I/O bus activ-
ities such as ALE, CLE, TOR and TIR should be serialized,
which means they cannot execute simultaneously. Instead, this
I/O bus activities can be interleaved across multiple dies at
µarch level. During the interleaving time, I/O requests related
to such activities suffer from internal NAND I/O bus resource
contention. Figure 20 visualizes the fraction of internal NAND
I/O bus resource contention to total I/O execution time using
disk-friendly workloads. As shown in the figure, interleaving
I/O bus activities in SLC is 45.2% more competitive than
MLC’s ones. The reason is that since the latencies of MLC
activities are much longer than the latencies of SLC activities,
it has more chances to be executed with I/O bus activities at the
same time. However, as the number of die increases, for both
SLC and MLC throughput, the fraction of the I/O bus resource
contention to total I/O execution time increases, which is a
reason of performance limitation in many dies architecture.

H. Scheduling Strategy

To test the potential research on NAND command schedul-
ing strategies, we implemented two simple command sched-
ulers in the logical unit of NANDFlashSim: 1) Die-first and
2) Plane-first schedulers. The die-first scheduler simply stripes
I/O requests as they arrive over multiple dies rather than
planes. In the plane-first scheduler, I/O requests are collected
into two pages upon arrival and served to multiple planes
rather than striping them across dies. As illustrated in Figure
22, since multiple dies share one I/O bus, performances
saturate faster than with the plane-first scheduler. Even though
plane-first operation provides better performance, the die-first
scheduler is more flexible in serving I/O requests of a smaller
size. This is because multi-plane operation performance is
limited by plane addressing rules (see Section III-C), whereas
multiple dies can be interleaved to serve I/O requests without
any addressing constraints.

IX. SIMULATION SPEED AND DOWNLOAD

The current version of NANDFlashSim is capable of exe-
cuting 824 I/O requests (2KB) per second for DDP and 295
I/O requests per second for ODP with MLC1. The simulator
performances were measured on a machine with virtualized
dual core, 1GB memory, and 200GB disk. The source code can
be downloaded from http://www.cse.psu.edu/∼mqj5086/nfs.

X. CONCLUSION

Since NAND flash memory is sensitive to a large number
of parameters, and some performance parameters have signif-
icant latency variation, making decisions on how to configure
NAND flash memory for optimal performance is non-trivial.
A comparison of various NAND flash memory architectures
become even harder when considering multi-die and multi-
plane architectures, latency variations, energy consumption
costs, reliability issues, and addressing restrictions. Therefore
in this work we propose NANDFlashSim, a detailed and
highly configurable low-level NAND flash simulation model.
NANDFlashSim supports detailed timing models for sixteen
I/O operations by being aware of intrinsic latency variations.

Our ongoing work includes incorporating a 400MHz high
speed NAND interface (not published yet) and implementing
a multiple logical unit on chip architecture. In addition, we
plan to apply our simulation model to cycle accurate Green
Flash [1] and Tensilica Xtensa simulation model [2] of hard-
ware/software co-design platform for exascale computing [18].

XI. ACKNOWLEDGEMENTS

We would like to express thanks to Dean Klein (Micron
Technology, Inc.), Seung-hwan Song (University of Min-
nesota), and Yulwon Cho (Stanford University) for technical
support/discussion on NAND flash memory technologies. We
are grateful to many anonymous reviewers for their detailed
comments which have greatly improved the quality of our
paper. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] http://www.lbl.gov/cs/html/greenflash.html.
[2] http://www.tensilica.com/products/hw-sw-dev-tools/.
[3] BUCY, J. S., ET AL. The disksim simulation environment version 4.0

reference manual. In Parallel Data Laboratory (2008).
[4] CHANG, L.-P., AND KUO, T.-W. Real-time garbage collection for

flash-memory storage systems of real-time embedded systems. ACM
Transactions on Embedded Computing Systems 3, 4 (November 2004).

[5] FISHER, R. Optimizing NAND flash performance. In FlashMemory
Summit (2008).

[6] GRUPP, L. M., ET AL. Characterizing flash memory: Anomalies,
observations,and applications. In MICRO (2009).

[7] HU, Y., ET AL. Performance impact and interplay of SSD parallelism
through advanced commands,allocation strategy and data granularity. In
ICS (2011).

[8] HYNIX, INC. NAND flash memory MLC datasheet, H27UBG8T2A. In
http://www.hynix.com/ (2009).

[9] INTEL, AND SEAGATE. Serial ATA Native Command Queuing: An
Exciting New Performance Feature for Serial ATA. 2003.

[10] JUNG, M., AND YOO, J. Scheduling garbage collection opportunistically
to reduce worst-case I/O performance in solid state disks. In Proceedings
of IWSSPS (2009).

[11] KIM, C., ET AL. A 21nm high performance 64gb mlc nand flash memory
with 400mb/s asynchronous toggle ddr interface. In VLSIC (2011).

[12] KIM, Y., ET AL. Flashsim: A simulator for NAND flash-based solid-
state drives. In SIMUL (2010).

[13] LEE, J., ET AL. Memory system and method of accessing a semiconduc-
tor memory device. In US2009/0310408A1 (2009).

[14] LEE, S., ET AL. A 3.3v 4gb four-level NAND flash memory with 90nm
cmos technology. In ISSCC (2004).

[15] LEE, S., ET AL. Flexfs: A flexible flash file system for MLC NAND
flash memory. In FAST ATC (2009).

[16] LEE, S.-W., ET AL. A case for flash memory SSD in enterprise database
applications. In SIGMOD (2008).

[17] MAGHRAOUI, K. E., ET AL. Modeling and simulating flash based solid-
state disks for operating systems. In WOSP/SIPEW (2010).

[18] MICHAEL F. WEHNER AND OTHERS. Hardware/software co-design of
global cloud system resolving models. JAMES (2011).

[19] MICRON TECHNOLOGY, INC. NAND flash memory MLC datasheet,
MT29F8G08MAAWC, MT29F16G08QASWC.

[20] N. AGRAWAL ET AL. Design tradeoffs for SSD performance. In
Proceedings of USENIX ATC (2008).

[21] ONFI WORKING GROUP. Open NAND flash interface.
[22] PARK, S.-Y., ET AL. Exploiting internal parallelism of flash-based

SSDs. In Computer Architecture Letters (2010).
[23] PATTERSON, D. A. Latency lags bandwidth. In CACM (2004).
[24] ROOHPARVAR, F. F. Single level cell programming in a multiple level

cell non-volatile memory device. In U.S. Patent 7529129 (2007).
[25] SNIA. http://iotta.snia.org/. IOTTA repository.
[26] WEI, M., ET AL. Reliably erasing data from flash-based solid state

drives. In FAST 11 (2011).

