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ABSTRACT 

We present a the:llretical formalism whi·ch allows the generation 

or a large class of exaei Vlasov-Maxwell .equilibria with sheared 
'~() 
mgnetic fields. All qaamti ties are assumed to vary only in one 

0-
spatial. direction, x, llilll the magnetic field has component~:~ only 

~ 'iii the y and z diree1.1ans. The Vlasov equations are solved by 
.;.'""'1'" ' • 

·•"iiihld.ng the distribution !lmCtions depeiul only on constants of the 

::';btion. The Maxwell eq1aUons are then reduced to finding the motion 

],~(lr a pseudo-particle in a two dimensional potential. Three examples 

·:ccorresponding to sheet-lib, sheath-like, and wave-like equilibria 

c:::ire preserited. 

I. INTROOOCTION 

Knowledge of tbe exact Vlasov-Yaxtrell equilibrium is often 
0 .. 

.necessary when anal.yUJ:lg the stability of a plasma, expecially when 

the 1nho100geneity scale length is not large compared to the ion · 

. jyroradius. Examples or such equilibria with unidirectional, i.e .• 

. 1-6 
unsheared, magnetic fields have been constructed previously. 

However, for reasons or· plasma stability or particle containment, 

devices are often built with sheared magnetic fields; for example 

' 7-9 . 
the toroidal stuffed cusp, TormacJ in which the width of the sheath 

-2-

is on the order of an ion .gyroradius. In this paper we prese!"lt a 

theoretical formalism Which allows us to generate a large class of 

exact Vlasov~t~xwell equilibria with sheared magnetic fields. 

For simplicity we consider a situation in which all quanti ties 

vary only in the x direction, and the magnetic field bas components 

By and Bz in the y and z directions. The equilibrium is 

characteriZed by a zero electric field. To find a. self-consistent· 

equilibrium, we must.solve the coupled Vlasov-Maxwell equations. 

The Vlasov equations are easily satisfied by making the distribution 

functions depend only on constants of the motion. Maxwell's equations 

are then a coupled set of nonlinear integra-differential equations. 

We will find a large, but not complete, class of solutions to these 

equations. 

II. GENERAL FORMALISM 

Since the electric field is taken to be zero, we require 

exact charge neutrality: 

(1) 

'lhe magnetic field can be derived from a vector potential, A, and 

dA z 
- dX 

The Maxwell's equations for the magnetic field become 

41TJ ___ Y 
c 

(2) 

(J) 



4nJ z ---c 
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where l(x) is the c~nt density. 

(l,) 

The constants o!' the .mtion for particles .of species, s 

(s = 1 or e), are the ~~miltonian 

and the y 

where 

_ lls ~ 2 . 2 
Hs - -· v + v + 2 X Y 

and z 

p 
zs 

ccuponents of momentum, 

= Ill v + <lsAy 
s y c 

= Ill v s z 

q A . 
. s z 
+--c 

( 5) 

(6) 

(7) 

are the ~s and charge of particles of species s. 

In order to sau.aty the Vl.asov equation for species s, the 
' 

distribution function .wt be a function of the constants of the motion. 

We assume it is of the form 

-fiH 
f -ess r: p'\ 

s - gs\?ys' zs) (8) 

where es are constants and gs are functions to be determined. 

This form for f s is arbitrary but is mti \rated by physical 

reasonableness and QJ the conSiderable mathematical simplicity 

which· follows from the . ehosen dependence on H . . s 
The number densities of ions and electrons are easily 

seen to be given by 

)( 

The current dens! ty can be writ ten 

.. s 2'11' p 
q -Vl£fi~ m/ msBs z 

Let us observe that 

x gs(PY,P )dP dP z y z 

X 

. (9) ~ . 

(10) 

(11) 

(12) 

Let us now assume that Ni and N
8 

are equal bot only as functions 

of x but also as functions of A and A; i.e., 
y z 

( 13) 
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This is a rc;,u tricti ve assumption but despite it we are able to find 

many equil11Jt'ia. '!'te total current can now be written as 

(14) 

Note, by the way, that the ratio of ian current to electron current 

is 

'•.0 
(15) 

0 Since Bs is the inv-erSe temperature, Equation (15) is what we 

01 would expect to .be the case. 

If we define 

(16) 

then Equa tiona (3) and ( 4) become 

2 . d-"' au -;! = - 11) (17) 

0 'lhese are just the Hamil toni an equations for a pseudo-particle with 
.,-'' 

coordinates (Ay,Az) moving in the potential U(A ,A ). Equations y z 

(17) can be derived from the Hamiltonian 

2 2 
PA + PA 

y z + U(A ,A ) 
2 y z 

( 18) 
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Since 

dA ClHA dA ClHA 
B ...J.. PA and -B z 

I' A z dx ~ y dx ~ y z y z 

(19) 

we note that the constancy of HA in x is just the equation of 

.total pressure balance. 

We have reduced the equations for the fields to a two 

dimensional potential problem. Typically 1 however, instead of knowing 

the distribution functions from which we can derive the fields we 

have some idea of what the fields are and want to find the distribu-

tion functions. Thus, usually we know the ffelds and can, by solving 

B~,uatians ( 2), find the trajectory of the pseudo-particle in the. 

·· (Ay,Az) plane. We then want to find a potential, U(Ay,Az ), which 

vill produce this trajectory, a problem which, in many cases 1 is 
' . . 

, easy ;to solve qualitatively. Given the potential, U( A 1 A ) , we must . y z 

1b.en find the distribution functions. Using Equations ( 9), ( 13), and 

(16), we find that the distribution functions satisfy 

(20) 

Equations ( 20) are integral equations for g
9

; the distribution 

functions are then given by Equation (8 ). 

Once the trajectory of the pseudo-particle., i.e., the fields, 

is known,, the potential, U(Ay,Az), can be changed, without changing 

the magnetic fie} ds. . i. tn~~ny or,- "'rt.'/ set ·.-.'lich does not intersect 
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the trajectory. Howevc, •.he distribution functions, given by 

Equation (20), depend x. U(A ,A ) for all (A ,A ) and thus, there 
y z y z 

are arbitrarily many di.r-:ribution functions which produce a given set 

of fields. This arbit:!"L'"'i.ness in the potential can be used to 

produce a variety of feEtures, such as asymmetric momentum distribu-

tions, .in the distribu-r.::~ functions. 

Note also that m overall constant can be added to the 

potential without changing the fields. The freedom to add this 

constant must sanetime£ ~ used to insure that the distribution 

functions, which are scillu.tions of Equation ( 20), are everywhere 

non-negative. For cOIIlii!!Uence, the potential can be translated 

arbitrariiy in the (:l~z) plane without ch~ing the fields. 

Uotivated by the much wider class of situations to which it 

might be applied, we birR attempted to extend this formalism to 

' cylindrical geometry, ut have found that a straightforward extension 

isn't possible. 

III. EXAMPLES 

In this sectiam we g1 ve three examples, each of which 

illustrates a differelrt way of solving Equation {20'). 

{a) Unsheared Sheath 

Consider a sit•:Uon in which the magnetic field is unidirec-

tional; we can take A& : 0. Equation ( 20) then becomes 

+I:~[~-~J] 
ms Bs 

(21) 

where we have assumed 

and 
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U = U('\r) . 

Let us now assume that 

2 -yA 
U(Ay) = De y 

(22) 

(23) 

( 24) 

where D and y are constants, so that the potential now resembles 

a "hill". We can easily choose the velocity (i.e. , magnetic field) 

at ..... to be such that the pseudo-particle just manages to roll to 

the top of the hill; i.e., we choose 

( 25) 

Thus, the magnetic field and, from the constancy in x of HA 

(see Eq. (18)), particle density are as shown in Figure 1; this is 

a sheath. 

To tind the distribution function we must solve lquation ( 21) 

with U(Ay) given _by_,Equation (24). We Fourier transform Equation 

{21) and, denoting transformed functions by a tilde, obtain 

_rr; 
l(2Yii; 

• (26) 

(27) 
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In order to be able :.c ::=.vert the Fourier transform we must req_uire 

_ (ee 61) 
Y < n:::l. • 2me ·~ . ( 28 ) 

This simply says that ~ the sheath is too narrow then charge 
·~ . I . . . 
neutral! ty can not be J&.intained. If we l~t • 

';:'J where N
0 

is the denld~ at x = +oo • 

,:J (b) Sheared Sheet 

::i Let us aBS\Die 1a&t 

to.· 
y(A,:_+A ) 

De ·" z 

where D and y are =astanta. Then Equation (17) becomes 

y(A +A ) 
-Dye Y z 

(29) 

( 31) 

( 32) 

( 33) 

·-10-

We observe that 

04) 

·Equation ( 34) can be immediately integrated twice to give 

A = .A + K:x + E y z -1 2 • ( 35) 

where ~ e.nd E2 are constants. Compining Equations (33) and 

( 35) gives 

where 

If we define 

D' 

'2:yA +yE
1
x 

-D' e z 

then Equation ( 36) becomes 

dG Multiplying by dx and integrating gives 

G = -4yD'e .+ E 
3 

( 36) 

( 37) 

(38) 

0 ~ 

(39) 

(40) 

where EJ is a cor,s-~ant. Equation ( 40) can be easily integrated 

to give 
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G( X) in 3 l. -E l 
2~x 

4yD' cosh -f-
, Using Equation ( 38) we ~ 

( 41) 

"z(x) = -~tn~-*) •frtn(4J.) -+ • (42) 

Collbining Equations ( -"t and (42 ), we get 

It we require 

B ( .-) = 0 
7 

then, dropping additive constants, we find 

The trajectory of tbe pseudo-particle is shown in Fig. 2. 

find the magnetic fieldls from Equation ( 2); 

:~' 

(44) 

(45) 

(46) 

We can now 

(47) 

-12-. 

(48) 

In order to find the distribution functions, we.must solve 

Equation (20) with the potent!~ given by Equation (.31). Although we 

cannot use Fourier transforms in this case, the solution is easily '" . 

seen to be, by inspection, 

(49) 

Dle distribution fwtction is now given by Equation ( 8). The number 

deueity and magnetic fields for this equilibrium are shOwn in Figure J. · 

T.bia is a plasma sheet in a sheared magnetic field. 

( c ) Wave-like Solution 

In our previous examples the pseudo-particle's trajector,y 

went to infinity. If the potential, u( A ,A ) , increases as A ,Az . y z . y 
/ 

go to infinity then the pseudo-particle rill be confined and periodic 

motion can result. Thus; let us assume that the potential 18 

Equation (17) is then 

d2A 

-;!: -DI-Y , (51) 

iA z = -D2Az 7x2 . (52) 
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The solutions of Equat~:c3 .' t:- ' 
\ ·.,_. ~d (52) are clearly 

\ = · . .L si:: (-fi2x + csl'). 
TJ 

(53) 

(54) 

h A ·' ·A· o o ~- real constants. ~ ere '3 z· , 1 , 2 ..... '" The magnetic fields are 
0 0 

(55) 

(56) 

ro 
l; have found a static::JD£r,f wave solution. By transforming to a 

moving frame' of refe:reDte,. sc that the 1111.gnetic field becomes 
~'.! . 
~1loth an electric and a D&gnetic field, we produce a travelling 
.,..;? . ' . 

electro1111.gnetic wave 1:Jlr'. is an exact solution of the Vlasov-Ma..xwell 
1~"1, . 

;;:.uauons. (Note that ~ c:boosing a potential, U( A.._,•Az), which 

depends on higher pollleft of ~ and Az we could produce waves 
'JN'~· 

·~ th nonsinusoidal shsp!s.) 

We can solve Eqmlftion (20) for th~ distribution function by 
;"""'~ . 
inspection, but we cbcasle instead to illustrate another technique. 

0 Note that10 

o· 
r i". 

D 
(57) 

where H
0 

is the !!th bermi te polynomial. Using expansion ( 57) in 

both variables in Equation ( 20), we find 

X 

13 13
1 

U(A ,A ) e y z 

4TI( Be + s1 ) 
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2TT 1 f\ 2 

( 

\!!!:!!. 

Vl£ L mrnr 2ms) 
m,n 

X g (P',P )dP dP s y z y z 
(58) 

Let us also ·expand gs as 

(59) 

Using Equation (59) in Equation ( 58) we find 

(60) 

This equationd<!termines 

of the Taylor series for 

c<s) in terms of the (m,n) coefficient mn . 

U(Ay,Az ). Equation ( 60) is particularly 

useful when, as is the case in Equation (50),. U(Ay,Az) is a 

polynomial. Thus Equations (50) and ( 60) yield: 



c<s> 
02 

c< s) 
20 

( 61) 

(62) 

. 10 
Inserting the express!.o:s for the hermite polynomials, we. find 

+ p 2 
z 

(63) 

(64) 

Equation ( 64) SiJIIlly S,QS that there must be enough particles present 

to produce the require! currents~·· 

The. hermite ~al expansion. can· be used io solve 

Equation ( 20) whenever .the potential can be expandec:t in a convergent 

power series; in fae't. our second example could have been solved in 

this fashion. 

We could eas~ construct other examples of Vlasov-Ma.xwell 

equilibria. Because t :' the intuitive nature of two dimensional 

potential problems, ::::i:Jcsing a potential, U(A ,A ), that will 
y z 

produce the desirec ~~tic fields is generally easy, even though 

-16-

simple analytic solutions of Equations (J) and (4) do not, in 

general, exist. The solution of Equation (20) for the distribution 

functions is more difficult, but, if the potential, U(A ,A ), can 
y z 

be chosen to be a real analytic function the hermite polynomial 

expansion method can be used to find the distribution functions. 
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FIGURE CAPTIONS 

Figure 1: Ratio of magnetic field to maximum magnetic field, B!B
0

, and 

ratio of particle density to maximum particle density, N/N0 , 

as a function of x for the unsheared sheath of section 

III( a). We have taken y = • 25 in Equation ( 24), with 

Ay(O) = -2. 

Figure 2: Trajectory. of the pseudoparticle rlth coordinates (Ay, Az) · 

as g1 ven by Equations ( 45) and ( 46). The components of 

velocity of the pseudoparticle are related to the magnetic 

field by Equation ( 2). 

Figure J: Ratio of Bz to maximum Bz, Bz/BO, ratio of By to 

maximum BY, B,JBo• and ratio of particle density to maxiunm 

particle density, N/N0, as a function of x for the 

equilibrium given by Equations (47), (48), and (49). In 

Equations (47) and (48), we have taken yB
0 

= 2. As can be 

seen, this corresponds to a sheared sheet. 
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