Lawrence Berkeley National Laboratory

Recent Work

Title
EXACT VLASOV-MAXWELL EQUILIBRIA WITH SHEARED MAGNETIC FIELDS

Permalink

https://escholarship.org/uc/item/9c90x5n5

Author

Channell, Paul J.
Publication Date
1976

Paul J. Channell

January 1976

For Reference

Not to be taken from this room

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

EXACT VLASOV-MANI EQULLIBRIA WITH SHEARED MAGNETIC FIELDS*

Paul J. Channell
Lerrence Berkeley Laboratory
Tmiversity of California.
Eerteley, California 94720

January 12, 1976

ABSTRACT

We present a theoretical formalism which allows the generation of a large class of exact Vlasov-Marwell equilibria with sheared IT magnetic fields. All quantities are assumed to vary only in one spatial direction, x, the magnetic field has components only In the y and z directions. The Vlasov equations are solved by "iaking the distribution fuactions depend only on constants of the motion. The Maxwell equations are then reduced to finding the motion If a paeudo-particle in a two dimensional potential. Three examples Corresponding to sheet-ilke, sheath-like, and wave-like equilibria àre presented.

I. INTRODUCTION

Knowledge of the exact Vlasov-Mamell equilibrium is of ten neceasary when analyzing the stability of a plasma, expecially when the inhomogeneity scale leagth is not large compared to the ion Eyroradius. Examples of such equilibria with unidirectional, i.e., unsheared, magnetic fields have been constructed previously. ${ }^{1-6}$ However, for reasons of plasma stabillty or particle containment, devices are often built rith sheared magnetic fields; for example the toroidal stuffed cusp, Tormac, ${ }^{7-9}$ in which the width of the sheath
is on the order of an ion gyroradius. In this paper we present a theoretical formalism which allows us to generate a large class of exact Vlasov-Maxwell equilibria with sheared magnetic fields.

For simplicity we consider a situation in which all quantities vary only in the x direction, and the magnetic fleld has components B_{y} and B_{i} in the y and z directions. The equilibrium is characterized by a zero electric field. To find a self-consistent equilibrium; we must solve the coupled Vlasov-Maxwell equations. The Vlasov equations are easily satisfied by making the distribution functions depend only on constants of the motion. Maxwell's equations are then a coupled set of nonlinear integro-differential equations.

We will find a large, but not complete, class of solutions to these equations.

II. GENERAL FORMALISM

Since the electric field is taken to be zero, we require exact charge neutrality:

$$
\begin{equation*}
N_{1}(x)=N_{e}(x) \tag{1}
\end{equation*}
$$

The magnetic field can be derived from a vector potential; \mathbb{A}, and

$$
\begin{equation*}
B_{z}=\frac{d A_{y}}{d x} \quad B_{y}=-\frac{d A_{z}}{d x} \tag{2}
\end{equation*}
$$

The Marwell's equations for the magnetic field become

$$
\begin{equation*}
\frac{d^{2} A_{y}}{d x^{2}}=-\frac{4 \pi J_{y}}{c} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} A_{2}}{d x^{2}}=-\frac{4 \pi J z}{c} \tag{4}
\end{equation*}
$$

Where $J(x)$ is the eurent density.

The constants of the motion for particles of species, s ($\mathrm{s}=1$ or $\dot{\mathrm{e}}$), are the Enmiltonian

$$
\begin{equation*}
H_{s}=\frac{H_{s}}{z}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) \tag{5}
\end{equation*}
$$

and the y and z components of momentum,

$$
\begin{equation*}
P_{y s}=m_{s} y_{y}+\frac{q_{s}^{A} y}{c} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
P_{z B}=m_{s} v_{z}+\frac{q_{g} A_{z}}{c} \tag{7}
\end{equation*}
$$

where m_{s}, q_{s} are the mass and charge of particles of species s.
In order to satisfy the Vlasov equation for species s, the distribution function zust be a function of the constants of the motion.

We assume it is of the form

$$
\begin{equation*}
f_{s}=e^{-\beta_{s} H_{s}} g_{s}\left(p_{y s}, P_{z s}\right) \tag{8}
\end{equation*}
$$

where β_{s} are constants and g_{8} are functions to be determined. This form for f_{s} is arbitrary but is motivated by physical reasonableness and by the considerable mathematical simplicity which follows from the chosen dependence on H_{8} :

The number densities of ions and electrons are easily seen to be given by

$$
N_{s}(x)=\frac{1}{m_{s}^{2}} \sqrt{\frac{2 \pi}{m_{s} \beta_{s}}} \int e^{-\frac{\beta_{s}}{2 m_{s}}}\left[\left(P_{y}-\frac{q_{s} A_{y}}{c}\right)^{2}+\left(P_{z}-\frac{q_{s} A_{z}}{c}\right)^{2}\right]
$$

$$
\begin{equation*}
\times \quad g_{8}\left(P_{y}, P_{z}\right) d P_{y} d P_{z} \tag{9}
\end{equation*}
$$

The current density can be written

$$
\begin{gather*}
J_{y s}=\frac{\dot{q}_{s}}{m_{s}^{3}} \sqrt{\frac{2 \pi}{m_{s} \beta_{s}}} \int\left(P_{y}-\frac{q_{s} A_{y}}{c}\right) e^{-\frac{B_{s}}{2 m_{s}}}\left[\left(P_{y}-\frac{q_{s} A_{y}}{c}\right)^{2}+\left(P_{z}-\frac{q_{s} A_{z}}{c}\right)^{2}\right] \\
\times g_{s}\left(P_{y}, P_{z}\right) d P_{y} d P_{z}, \tag{10}\\
J_{z s}=\frac{q_{s}}{m_{s}^{3}} \sqrt{\frac{2 \pi}{m_{s} B_{s}}} \int\left(P_{z}-\frac{q_{s} A_{z}}{c}\right) e^{-\frac{B_{s}}{2 m_{s}}}\left[\left(P_{y}-\frac{q_{s} A_{y}}{c}\right)^{2}+\left(P_{z}-\frac{q_{s} A_{z}}{c}\right)^{2}\right] \\
\times g_{s}\left(P_{y}, P_{z}\right) d P_{y} d P_{z} \tag{11}
\end{gather*}
$$

Let us observe that

$$
\begin{align*}
& J_{y s}=\frac{c}{\beta_{s}} \frac{\partial N_{s}}{\partial A_{y}} \\
& J_{z B}=\frac{c}{\beta_{s}} \frac{\partial N_{s}}{\partial A_{z}} \tag{12}
\end{align*}
$$

Let us now assume that N_{i} and N_{e} are equal not only as functions of x but also as functions of A_{y} and $A_{z} ;$ i.e.,

$$
\begin{equation*}
N_{1}\left(A_{y}, A_{z}\right)=N_{e}\left(A_{y}, A_{z}\right) \tag{13}
\end{equation*}
$$

This is a revtrictive assumption but despite it we are able to find many equilibria. The total current can now be written as

$$
\begin{align*}
& J_{y}=c\left(\frac{1}{B_{1}}+\frac{1}{B_{e}}\right) \frac{\partial N_{i}}{\partial A_{y}} \\
& J_{z}=c\left(\frac{1}{B_{1}}+\frac{1}{B_{e}}\right) \frac{\partial N_{i}}{\partial A_{z}} \tag{14}
\end{align*}
$$

Note; by the way, that the ratio of ion current to electron current 18

$$
\begin{equation*}
\frac{\left|J_{i}\right|}{\left|J_{e}\right|}=\frac{B_{e}}{B_{i}} \tag{15}
\end{equation*}
$$

Since B_{B} is the interse temperature, Equation (15) is what we Ty vould expect to be the case.
ansy
If we define

$$
\begin{equation*}
V\left(A_{y}, A_{z}\right)=4 \pi\left(\frac{1}{B_{1}}+\frac{1}{B_{e}}\right) N_{i} \tag{16}
\end{equation*}
$$

then Equations (3) and (4) become

$$
\begin{equation*}
\frac{d^{2} A_{y}}{d x^{2}}=-\frac{\partial U}{\partial A^{y}}, \quad \frac{d^{2} A_{z}}{d x^{2}}=-\frac{\partial U}{\partial A_{z}} \tag{17}
\end{equation*}
$$

These are just the Hamiltonian equations for a pseudo-particle with coordinates $\left(A_{y}, A_{z}\right)$ moving in the potential $U\left(A_{y}, A_{z}\right)$. Equations (17) can be derived from the Hamiltonian

$$
\begin{equation*}
H_{A}=\frac{P_{A_{y}}^{2}+P_{A_{z}}^{2}}{2}+U\left(A_{y}, A_{z}\right) \tag{18}
\end{equation*}
$$

Since

$$
\begin{equation*}
B_{z}=\frac{d A_{y}}{d x}=\frac{\partial H_{A}}{\partial P_{A}}=P_{A_{y}} \quad \text { and } \quad-B_{y}=\frac{d A_{z}}{d x}=\frac{\partial H_{A}}{\partial P_{A_{z}}}=P_{A_{z}} \tag{19}
\end{equation*}
$$

we note that the constancy of H_{A} in x is just the equation of total pressure balance.

We have reduced the equations for the fields to a two
dimensional potential problem. Typically, however, instead of knowing the distribution functions from which we can derive the flelds we have some idea of what the fields are and want to find the distribution functions. Thus; usually we know the ffelds and can, by solving quations (2), find the trajectory of the pseudo-particle in the (A_{y}, A_{z}) plane. We then want to find a potential, $U\left(A_{y}, A_{z}\right)$, which vill produce this trajectory, a problem which, in many cases, is easy to solve qualitatively. Given the potential, $U\left(A_{y}, A_{z}\right)$, we must then find the distribution functions. Using Equations (9), (13), and (16), we find that the distribution functions satisfy

$$
\begin{gather*}
\frac{1}{m_{s}^{2}} \sqrt{\frac{2 \pi}{m_{s} \beta_{s}}} \int e^{-\frac{\beta_{B}}{2 m_{s}}}\left[\left(P_{y}-\frac{q_{B} A_{y}}{c}\right)^{2}+\left(P_{z}-\frac{q_{8} A_{z}}{c}\right)^{2}\right]_{\dot{g}_{8}\left(P_{y}, P_{z}\right) d P_{y} d P_{z}} \\
\frac{\beta_{e} B_{i} U\left(A_{y}, A_{z}\right)}{4 \pi\left(B_{e}+B_{i}\right)} \tag{20}
\end{gather*}
$$

Equations (20) are integral equations for g_{s}; the distribution functions are then given by Equation (8).

Once the trajectory of the pseudo-particle, i.e., the fields, is known, the potentiei, $U\left(A_{y}, A_{z}\right)$, can be changed, without changing the magnetic fields: ". itravily or any set which dees not intersect
the trajectory. Howeve, the distribution functions, given by Equation (20), depend $2: U\left(A_{y}, A_{z}\right)$ for all ($\left.A_{y}, A_{z}\right)$ and thus, there are arbitrarily many dirribution functions which produce a given set of fields. This arbitriciness in the potential can be used to produce a variety of fextures, such as asymmetric momentum distributions, In the distributim functions.

Note also that $a n$ overall constant can be added to the potential without changing the fields. The freedom to add this constant mist sometimes be used to insure that the distribution functions, which are sointions of Equation (20), are everywhere non-negative. For conmeaience, the potential can be translated arbitrarily in the ($A_{z} A_{z}$) plane without changing the fields.

Notivated by the mach wider class of situations to which it might be applied, हe brow attempted to extend this formalism to cylindrical geometry, wat have found that a straightforward extension isn't possible.

III. EXAMPLES

In this section we give three examples, each of which fllustrates a different way of solving Equation (20).
(a) Unsheared Sheath

Consider a sitration in which the magnetic field is unidirectional; we can take $A_{z}=0$. Equation (20) then becomes

$$
\begin{equation*}
\frac{2 \pi}{m_{8}^{2} \beta_{s}} \int e^{-\frac{\beta_{B}}{2 m_{8}}}\left[\left(P_{y}-\frac{q_{B}}{c}\right)^{2}\right] g_{s}\left(P_{y}\right) d P_{y}=\frac{\beta_{e} \beta_{i} U\left(A_{y}\right)}{4 \pi\left(\beta_{e}+\beta_{i}\right)}, \tag{21}
\end{equation*}
$$

where we have assumed

$$
\begin{equation*}
g_{8}=g_{8}\left(P_{y}\right), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{U}=\mathbf{U}\left(\mathbf{A}_{\mathbf{y}}\right) \tag{23}
\end{equation*}
$$

Let us now assume that

$$
\begin{equation*}
U\left(A_{y}\right)=D e^{-\gamma A^{2}} \tag{24}
\end{equation*}
$$

Where D and γ are constants, so that the potential now resembles a "hill". We can easily choose the velocity (i.e., magnetic field) at $-\infty$ to be such that the pseudo-particle just manages to roll to the top of the hill; i.e., we choose

$$
\begin{equation*}
B_{2}(\infty)=\frac{d A_{y}(-\infty)}{d x}=\sqrt{2 D}=B_{0} \tag{25}
\end{equation*}
$$

Thus, the magnetic rield and, from the constancy in x of H_{A} (see Eq. (18)), particle density are as shown in FIgure i; this is a sheath.

To find the distribution fuction we must solve Equation (21) with U(Ay given by Equation (24). We Fourier transform Equation (21) and, denoting transformed functions by a tilde, obtain

$$
\begin{equation*}
\frac{2 \pi}{m_{8}^{2} \beta_{B}} \sqrt{\frac{2 \pi m_{8}}{B_{8}}} \tilde{g}_{8}(w) e^{-\frac{m_{8} w^{2}}{2 B_{8}}}=\frac{\beta_{e} \beta_{i} D}{\left(\beta_{e}+\beta_{i}\right) 8 \pi^{2}} \sqrt{\frac{\pi}{\gamma}} e^{-\frac{w^{2}}{4 Y}} \tag{26}
\end{equation*}
$$

Solving for $\tilde{\mathbf{g}}_{8}$. We find

$$
\begin{equation*}
\tilde{B}_{s}(w)=\frac{\beta_{e} \beta_{i} D m_{s}^{2} \beta_{B}}{16 \pi^{3}\left(\beta_{e}+\beta_{i}\right)} \sqrt{\frac{\beta_{s}}{2 \gamma_{B}}} e^{-\frac{w^{2} m_{B} w^{2}}{4 \gamma}+\frac{m^{2}}{2 \beta_{B}}} \tag{27}
\end{equation*}
$$

In order to be able to تgert the Fourier transform we must reouire

$$
\begin{equation*}
\gamma<\min \left(\frac{\beta_{e}}{2 m_{e}}, \frac{\beta_{i}}{2 m_{i}}\right) \tag{28}
\end{equation*}
$$

This simply says that $\because \sim$ the sheath is too narrow then charge neutrality can not be mintained. If we let

$$
\begin{equation*}
\delta_{s}=\frac{I}{\mu_{T}}-\frac{m_{B}}{\beta_{s}}, \tag{29}
\end{equation*}
$$

then the distribution factions are given by

$$
\begin{equation*}
f_{s}\left(H_{s}, P_{y s}\right)=\frac{m_{s}^{2} B_{s} g_{0}}{4 \pi^{2}} \sqrt{\frac{\pi B_{s}}{2 \gamma_{s} m_{s}}} e^{-\frac{P_{y s}}{4 \delta_{s}}-\beta_{s} H_{s}}, \tag{30}
\end{equation*}
$$

where N_{0} is the density at $x=+\infty$.

(b) Sheared Sheet

Let us assure thet

$$
\begin{equation*}
\text { ov(Ayz }=D e^{Y\left(A_{y}+A_{z}\right)} \tag{32}
\end{equation*}
$$

where D and r are tants. Then Equation (17) becomes

$$
\begin{align*}
& \frac{d^{2} A_{y}}{d x^{2}}=-\operatorname{Dr} e^{r\left(A_{y}+A_{z}\right)}, \tag{32}\\
& \frac{d^{2} A_{z}}{d x^{2}}=-\operatorname{Dr} e^{r\left(A_{y}+A_{z}\right)} \tag{33}
\end{align*}
$$

We observe that

$$
\begin{equation*}
\frac{d^{2} A_{y}}{d x^{2}}=\frac{d^{2} A z}{d x^{2}} \tag{34}
\end{equation*}
$$

Equation (34) can be immediately integrated twice to give

$$
\begin{equation*}
A_{y}=A_{z}+E_{1} x+E_{2} \tag{35}
\end{equation*}
$$

where E_{1} and E_{2} are constants. Combining Equations (33) and (35) gives

$$
\begin{equation*}
\frac{d^{2} A_{z}}{d x^{2}}=-D^{\prime} e^{2 \gamma A_{z}+\gamma E_{1} x} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
D^{\prime}=\operatorname{Dye}^{\gamma E_{2}} . \tag{37}
\end{equation*}
$$

If we define

$$
\begin{equation*}
G=2 \gamma A_{z}+\gamma R_{1} x, \tag{38}
\end{equation*}
$$

then Equation (36) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{G}}{\mathrm{dx}}=-2 \mathrm{x}^{2} \mathrm{D}^{\mathrm{G}} . \tag{39}
\end{equation*}
$$

Maltiplying by $\frac{\mathrm{dG}}{\mathrm{dx}}$ and integrating gives

$$
\begin{equation*}
\left(\frac{d G}{d x}\right)^{2}=-4 Y D^{\prime} e^{G}+E_{3} \tag{40}
\end{equation*}
$$

Where E_{3} is a corsvant. Equation (40) can be easily integrated to give

$$
\begin{equation*}
G(x)=\ln \left\{\frac{-E_{3}}{4 \gamma D^{\prime} \cosh ^{2} \frac{\sqrt{E}_{3} x}{2}}\right\} \tag{41}
\end{equation*}
$$

Using Equation (38) we sind

$$
\begin{equation*}
A_{2}(x)=-\frac{1}{Y} \ln \left(\cosh \frac{\sqrt{E_{3}} x}{2}\right)+\frac{1}{2 \gamma} \ln \left(\frac{-E_{3}}{4 y^{r}}\right)-\frac{E_{1} x}{2} \tag{42}
\end{equation*}
$$

Combining Equations (35) and (42), we get

$$
\begin{equation*}
A_{y}(x)=-\frac{1}{\gamma} \ln \left(\cosh \frac{\sqrt{E_{3}} x}{2}\right)+\frac{E_{1} x}{2}+E_{2}+\frac{1}{2 \gamma} \ln \left(\frac{-E_{3}}{4 \gamma D^{\top}}\right) \tag{43}
\end{equation*}
$$

If we require

$$
\begin{align*}
& B_{y}(-\infty)=0 \\
& B_{y}(+\infty)=B_{0} \tag{44}
\end{align*}
$$

then, dropping additive constants, we find

$$
\begin{align*}
& A_{z}(x)=-\frac{1}{\gamma}\left(\cosh \frac{\gamma B_{0} x}{2}\right)-\frac{B_{0} x}{2} \tag{45}\\
& A_{y}(x)=-\frac{1}{\gamma} \operatorname{tn}\left(\cosh \frac{\gamma B_{0} x}{2}\right)+\frac{B_{0} x}{2} . \tag{46}
\end{align*}
$$

The trajectory of the pseudo-particle is shown in Fig. 2. We can now find the magnetic fielids from Equation (2);

$$
\begin{equation*}
B_{z}=\frac{\dot{B}_{0}}{2}-\frac{B_{0}}{2} \tanh \frac{\gamma B_{0} x}{2} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
B_{y}=\frac{B_{0}}{2}+\frac{B_{0}}{2} \tanh \frac{\gamma_{0} B_{0}}{2} \tag{48}
\end{equation*}
$$

In order to find the distribution functions, we must solve Equation (20) with the potential given by Equation (31). Although we cannot use Fourier transforms in this case, the solution is easily seen to be, by inspection,

$$
\begin{equation*}
g_{8}\left(P_{y}, P_{z}\right)=\frac{\beta_{e} \beta_{i} D}{4 \pi\left(\beta_{e}+\beta_{1}\right)}\left(\frac{m_{8} \beta_{8}}{2 \pi}\right)^{\frac{3}{2}} e^{\frac{\gamma^{2} c^{2} m_{8}}{\beta_{s} q_{8}}} e^{\frac{\gamma c\left(P_{y}+P_{z}\right)}{q_{8}}} \tag{49}
\end{equation*}
$$

The distribution function is now given by Equation (8). The number density and magnetic fields for this equilibrium are shown in Figure 3. This is a plasma sheet in a sheared magnetic field.
(c) Wave-like Solution

In our previous examples the pseudo-particle's trajectory vent to infinity. If the potential, $O\left(A_{y}, A_{z}\right)$, increases as A_{y}, A_{z} go to infinity then the pseudo-particle will be confined and periodic motion can result. Thus; let us assume that the potential is

$$
\begin{equation*}
U\left(A_{y}, A_{z}\right)=D_{1}+\frac{D_{2}}{2}\left(A_{y}^{2}+A_{z}^{2}\right) \tag{50}
\end{equation*}
$$

Equation (17) is then

$$
\begin{align*}
& \frac{d^{2} A_{y}}{d x^{2}}=-D_{2} A_{y} \tag{51}\\
& \frac{d^{2} A_{z}}{d x^{2}}=-D_{2} A_{z} \tag{52}
\end{align*}
$$

The solutions of Equetixs (f2 and (52) are clearly

$$
\begin{align*}
& A_{y}=1_{0} \sin \left(-\sqrt{D_{2}} x+\delta_{1}\right) \tag{53}\\
& A_{z}=I_{z} \sin \left(\sqrt{D_{2}} x+\delta_{2}\right) \tag{54}
\end{align*}
$$

where $A_{y_{0}}, A_{z_{0}}, \delta_{1}, \delta_{2}$ are real constants. The magnetic fields are

$$
\begin{align*}
& B_{2}=-\sqrt{D_{2}} A_{Y_{0}} \cos \left(\sqrt{D_{2}} x+\delta_{1}\right) \tag{55}\\
& B_{y}=-\sqrt{D_{2}} A_{z_{0}} \cos \left(\sqrt{D_{2}} x+\delta_{2}\right) \tag{56}
\end{align*}
$$

∞
We have found a statiomary wave solution. By transforming to a moving frame of referemes, sc that the magnetic field becomes both an electric and a mangetic field, we produce a travelling electromagnetic wave the is an exact solution of the Vlasov-Maxwell 7
equations. (Note that iy choosing a potential, U($\left.A_{y}, A_{z}\right)$, which de
depends on higher powers of A and A_{z} we could produce waves with nonsinusoidal shapes.)
9
We can solve Equistion (20) for the distribution function by Inspection, but we choose instead to illustrate another technique.
∞ Note that ${ }^{10}$
$e^{-\frac{B_{B}}{2 m_{s}}\left(P-\frac{q_{s} A}{c}\right)^{n}}=\sum_{n}^{-\frac{B_{B} P^{2}}{2_{s}}} \underbrace{H_{n}\left(\sqrt{\frac{B_{s}}{2 m_{s}}} P\right)\left(\sqrt{\frac{\beta_{s}}{m_{s}} \frac{q_{B} A}{c}}\right)^{2}}_{n}$,
where H_{n} is the nth hermite polynomial. Using expansion (57) in both variables in Equation (20), we find

$$
\begin{gather*}
\frac{\beta_{e} B_{i} U\left(A_{y}, A_{z}\right)}{4 \pi\left(\beta_{e}+\beta_{i}\right)}=\frac{1}{m_{s}^{2}} \sqrt{\frac{2 \pi}{m_{s} \beta_{s}}} \sum_{m, n} \frac{1}{m!n!}\left(\frac{\beta_{s}}{2 m_{s}}\right)^{\frac{m+n}{2}} \\
\times\left(\frac{q_{s} A_{y}}{c}\right)^{m}\left(\frac{q_{s} A_{z}}{c}\right)^{n}\left(e^{-\frac{B_{s}}{m_{s}}}\left(P_{y}{ }^{2}+P_{z}^{2}\right) H_{m}\left(\sqrt{\frac{\beta_{s}}{2 m_{s}}} P_{y}\right)\right. \\
\times \quad H_{n}\left(\sqrt{\frac{\beta_{s}}{2 m_{s}} P_{z}}\right) g_{s}\left(P_{y}, P_{z}\right) d P_{y} d P_{z} \tag{58}
\end{gather*}
$$

Let us also expand g_{s} as

$$
\begin{equation*}
g_{s}\left(P_{y}, P_{z}\right)=\sum_{k, \ell} C_{k \ell}^{(s)} H_{k}\left(\sqrt{\frac{\beta_{s}}{2 m_{s}}} P_{y}\right) H_{\ell}\left(\sqrt{\frac{\beta_{s}}{2 m_{s}}} P_{z}\right) \tag{59}
\end{equation*}
$$

Using Equation (59) in Equation (58) we find

$$
\begin{array}{r}
U\left(A_{y}, A_{z}\right)= \\
\frac{4 \pi^{2}\left(\beta_{e}+\beta_{i}\right)}{B_{e} B_{i}^{m} m_{s}^{2}} \sqrt{\frac{2 \pi}{m_{s} \beta_{s}}} \sum_{m, n}\left(\frac{2 \beta_{s}}{m_{s}}\right)^{\frac{m+n}{2}} \tag{60}\\
\\
\quad c_{m}^{(8)}\left(\frac{q A_{y}}{c}\right)^{m}\left(\frac{q A_{z}}{c}\right)^{n}
\end{array}
$$

This equation determines $C_{\text {m }}^{(s)}$ in terms of the (m, n) coefficient of the Taylor series for $U\left(A_{y}, A_{z}\right)$. Equation (60) is particularly useful when, as is the case in Equation (50), $U\left(A_{y}, A_{z}\right)$ is a polynomial. Thus Equations (50) and (60) yleld:

$$
\begin{equation*}
c_{\infty}^{(s)}=\frac{e_{e^{E} \Xi_{z}}}{4 \pi^{2} E_{t}-z_{t}!} \sqrt{\frac{m_{s} \beta_{s}}{2 \pi}} D_{1} \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
c_{02}^{(s)}=C_{20}^{(s)}=\frac{3_{s} \beta_{i} m_{s}^{3} c^{2}}{16^{2}\left(\beta_{e}+\beta_{i}\right) \beta_{s} q_{s}^{2}} \sqrt{\frac{m_{s} \beta_{s}}{2 \pi}} D_{2} \tag{62}
\end{equation*}
$$

Inserting the expressiocs for the hermite polynomials, ${ }^{10}$ we find

$$
\begin{equation*}
g_{s}\left(P_{y}, P_{z}\right)=\frac{B_{e} B_{i} H_{3}^{2}}{4 \pi^{2}\left(B_{z}+B_{i}\right)}-\sqrt{\frac{m_{s} \beta_{s}}{2 \pi}}\left[D_{1}+\frac{m_{s} c^{2}}{\beta_{s} q_{s}^{2}} D_{2}\left(P_{y}^{2}+P_{z}^{2}-1\right)\right] \tag{63}
\end{equation*}
$$

Requiring $g_{s} \geq 0$ imise

$$
\begin{equation*}
D_{1} \geq D_{2} \max _{s}\left(\frac{m_{8} c^{2}}{B_{s} q_{8}^{2}}\right) \tag{64}
\end{equation*}
$$

Equation (64) simply sers that there must be enough particles present

 to produce the required currents.The hermite pcifnomial expansion can be used to solve Equation (20) whenever the potential can be expanded in a convergent power series; in fact, our second example could have been solved in this fashion.

We could easing construct other examples of Vlasov-Maxwell equilibria. Because $:$? the intuitive nature of two dimensional potential problems, woosing a potential, $U\left(A_{y}, A_{z}\right)$, that will produce the desired menetic fields is generally easy, even though
simple analytic solutions of Equations (3) and (4) do not, in general, exist. The eolution of Equation (20) for the distribution functions is more difficult, but, if the potential, $U\left(A_{y}, A_{z}\right)$, can be chosen to be a real analytic function the hermite polynomial expansion method can be used to find the distribution functions.

ACKNOWLEDCMENTS

I am grateful to A. M. Sessler and J. H. Hammer for helpful discussions.

* This work was suppored by the U. S. Energy Research and Development Adminismation.

1. H. Grad, Phys. Flūas 4, 1366 (1961).
2. J. Hurley, Phys. F2itids 6, 83 (1963).
3. B. Bertott1, Annals $2 \boldsymbol{2}$ Phys. 25, 271 (1963).
4. R. B. Nicholson, Pips. Fuids 6, 1581 (1963).
5. A. Sestero, Phys. Fuids 7, 44 (1964).
6. S. H. Lam, Phys. Fiwids 10, 2454 (1967).
7. C. C. Gallagher, In S. Combes, and M. A. Levine, Phys. Fluids 13, 1617 (1970).
8. M. A. Levine, A. F. Hoozer, G. Kalman, and P. Bakshi, Phys. Rev. 4 Letters 28, 1323 (19972).
9. A. H. Boozer and 1. Levine, Phys. Rev. Lett. 31, 1287 (1973).
10. P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book na., New York; 1953), Vol. I, p. 786 and p. 935.

FIGURE CAPTIONS

Figure 1: Ratio of magnetic field to maximum magnetic field, B / B_{0}, and ratio of particle density to maximum particle density, $\mathrm{N} / \mathrm{N}_{\mathrm{O}}$, as a function of x for the unsheared sheath of section III(a). We have taken $\gamma=.25$ in Equation (24), with $A_{y}(0)=-2$.
Figure 2: Trajectory of the pseudoparticle with coordinates (A_{y}, A_{z}) as given by Equations (45) and (46). The components of velocity of the pseudoparticle are related to the magnetic fleld by Equation (2).

Pigure 3: Ratio of B_{z} to maximum $B_{z}, B_{z} / B_{0}$, ratio of B_{y} to maximum $B_{y}, B_{y} / B_{0}$, and ratio of particle density to maximun particle density, N / N_{O}, as a function of x for the equilibrium given by Equations (47), (48), and (49). In Equations (47) and (48), we have taken $\gamma B_{0}=2$. As can be seen, this corresponds to a sheared sheet.

Fig. 1
XBL 761-2172

Fig. 3
XBL 761-2173
$\therefore,+n^{2}$
$00: 34130010 \quad 1$

- \quad.

LEGAL NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United 'States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

