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ABSTRACT OF THE DISSERTATION

Revealed Preferences Models for Reconstructing and Analysing Partnerships in Two-Sided

Matching Markets

by

Shuchi Goyal

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Mark S. Handcock, Chair

Many social processes studied by demographers can be viewed as two-sided matching mar-

kets. For example, heterosexual marriages, job searching, and residency assignments for

medical school graduates all require members of two disjoint groups to mutually consent to

form a relationship, or “match.” Yet the underlying mechanisms dictating such processes

are often opaque. Demographers require statistical models for partnership formation that

separate the underlying preferences individuals have for various types of partners from the

availability of such partners.

To address this need, in my dissertation I develop a revealed preferences model (RPM)

which captures the complex interplay between discrete characteristics, both observed and

unobserved, of individuals and the availabilities of potential partners to form a stable set

of partnerships in networks of different sizes. The major contribution of this work is the

introduction of a model that not only estimates partnership outcomes in a two-sided matching

market, but also is flexible enough to handle realistic data drawn from various sampling

schemes and population types.

Contextualizing the problem in the heterosexual marriage market setting, in the first

two chapters I present background information on the two-sided matching market problem
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and and introduce the revealed preferences model novel statistical methodology to com-

pute point estimates for preferences parameters. I validate the approaches with multiple

simulation studies and demonstrate RPM’s key novel contribution, the ability to recover so-

cietal preferences for partners independent of the types of partners available. I additionally

use these simulation studies to conduct a comprehensive study of model performance un-

der different conditions, such as varying population and sample sizes and different sampling

schemes.

To facilitate the use of the model in practical settings, I propose additional novel tools

such as bootstrap procedures for bias-correcting parameter estimation and empirical and

analytical approaches for computing uncertainty intervals for the preference parameter es-

timates. I discuss the process of model selection and propose several methods for assessing

the goodness-of-fit, including quantitative and visual procedures. To my knowledge this is

the first time these procedures have been discussed in literature.

To aid continued development of models for two-sided matching markets, I present a re-

view of the two major frameworks that have been hypothesized as underlying the partnership

process. While developments in marriage modeling under these different frameworks have

continued in parallel over the last several years, this is the first time that the assumptions

and implications of the two frameworks have been compared clearly side-by-side using con-

sistent notation. I bridge the gap in literature between the two settings by demonstrating

how RPM can be adapted to model the marriage process in either scenario.

Throughout the dissertation, I continue to validate the proposed procedures through

extensive simulation studies, and I show how the model can be applied and interpreted

given survey data from the 2008 Survey on Income and Program Participation.
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Introduction

The objective of this dissertation is to develop a practical model which approximates the

dynamics of a two-sided matching market. I consider a scenario in which we observe the

partnership decisions by some or all agents in a population, as well as discrete covariates

for the agents (and their partners, if any). I hypothesize that given such data, the proposed

model “reveals,” or allows inference of, preferences of the agents in the market when in the

partnership formation process. We therefore refer to this general class of models as revealed

preference models.

The matching markets considered in this dissertation share two important characteris-

tics. First, they are “two-sided,” meaning that network is bipartite, agents in the market

must belong to one of two disjoint groups, and partnerships can only be formed between

agents of different groups. Second, matchings must be one-to-one, meaning that an agent

either chooses exactly one partner or remains single. To facilitate discussion throughout this

dissertation, I will frame the development of model theory and simulation studies in the

context of the heterosexual monogamous marriage market.

The remainder of this dissertation is organized as follows: Chapters 1 and 2 of this thesis

are adapted from Goyal et al. (2023). Chapter 1 introduces the revealed preferences model

(RPM). I show how, given a list of pairings and the characteristics of agents in those pairings,

RPM can be used to estimate market preferences. In Chapter 3, I introduce methodology for

model selection, proposing both quantitative and ad-hoc metrics for comparing goodness-of-

fit. I also introduce a modified significance test and tools for visualizing model fit for RPM.

In Chapter 4, I discuss the extension of the model to transferable utility frameworks and

utilize goodness-of-fit methodology to directly compare the model fit under assumptions of

non-transferable and non-transferable utility.
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CHAPTER 1

Background

This chapter introduces the proposed revealed preferences model and has been adapted from

Goyal et al. (2023).

Many social processes of pair formation can be viewed as two-sided matching problems.

These scenarios are prevalent in demography, economics, sociology, political science and

education, among other fields. For example, heterosexual marriages, job searching, and res-

idency assignments for medical school gradfuates all require members of two disjoint groups

to mutually consent to forming a relationship, or match. Yet the underlying mechanisms

which dictate such processes are often opaque.

We consider not only how an actor chose a spouse of the opposing gender, but also the

interactions between pairs of actors in a choice situation and the stability of the matching

result. Actors from opposing sides have to choose each other voluntarily in order for a

“match” to occur. Of particular interest to many researchers is the role individual and

societal preferences play in the match-making process.

These preferences are difficult to discern for multiple reasons. First, it is challenging to

collect data which records complete information about characteristics of observed pairings

and the pool of options from which each individual made a selection. Second, the final

observed matchings are as much a result of the availability of different types of individuals

as they are of individual preferences.

As a simple example, consider a heterosexual marriage market within a two-sex popula-

tion of size N = 100, as illustrated in Figure 1.1a. The nodes represent individuals in the

market. The shape of a node represents the gender of the individual, either male or female,
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and the color of the node represents the individual’s education level (high school diploma or

no high school diploma). An edge connects two nodes if the individuals represented by those

nodes are married, and edges can only exist between individuals of opposite genders. Nodes

with no edges represent a single individual, and nodes cannot have more than one edge, a

feature of the monogamous marriage market.

In this example, a researcher may observe that married women with no high school

diploma tend to have spouses who also do not have a high school diploma. Theoretically,

this phenomenon could be driven by two conflicting factors: 1) Women without a high

school diploma prefer a partner without a high school diploma to partners with high school

diplomas; or 2) women without a high school diploma prefer a partner with a high school

diploma but are restricted in their options due to low availability of men with high school

diplomas in the population.

It is important to identify which of these scenarios is correct by distinguishing the effects

of preferences and availability in the final realized matching, as the scenarios have differing

implications. Suppose, for example, that a new education initiative allows several males in

the market who did not previously have a high school diploma to obtain one. Assuming

partnership preferences and education levels on the female side stay the same, then in the

first scenario, the shift in male education attainment would lead to a decrease in partnership

rates among females without a high school diploma. However, under the same conditions

in scenario 2, the partnership rate among females without a high school education would

increase.

Changing partnership rates can have implications on fertility rates, population growth,

and other societal factors. In fact, a major motivation for this work in the dissertation

is ongoing research on intergenerational transfers of inequality and poverty, e.g. Rendall

et al. (2022). Prior research in this area has largely relied on one-sex models, in which

child outcomes are modeled based on the characteristics of only one parent, usually the

mother. Without considering the characteristics of the second parent, these models suffer

from bias. Fertility rates depend on the characteristics of both parents and, clearly, people
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do not choose partners completely randomly. Advancements in partnership modeling within

two-sided markets, and more specially modeling preferences for partners within the marriage

market, are crucial for furthering research in this area.

Menzel (2015) proves a series of new mathematical results related to the asymptotic dis-

tribution of matching outcomes in a two-sided market. I develop Menzel’s (2015) technical

findings for application in demographic studies of two-sided matching processes. We pro-

pose a revealed preferences model which, given an observed set of stable matchings in a large

population, uses a re-parameterised version of Menzel’s (2015) equations to recover latent

preference parameters in the population. These preference parameters are used to estimate

the total utility of a given partnership, given the characteristics of the individuals in that

partnership. To measure uncertainty of parameter estimates, we also propose both an ana-

lytical and an empirical approach to computing confidence intervals. We conduct simulation

studies to show that for realistic populations, the revealed preferences model reconstructs

preference parameters that are invariant under different population availabilities. We also

show that the proposed confidence intervals achieve appropriate coverage.

The revealed preferences model can be generalized for applications where an individual

is permitted to have multiple relationships, as in the case of an employer and its employees

(Yeung, 2019). However, for the purposes of this dissertation I focus only on the case in

which individuals have at most one partner, also known as one-to-one matching.

The remainder of this chapter provides a review of existing literature exploring the two-

sided matching market. In Section 1.1 I provide background information on key concepts

related to the revealed preferences problem. In Section 1.2 I review existing literature on

attempts to solve the two-sided matching problem and the challenges of identifying individual

preferences in such settings.
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Sex

Male
Female

Education

No HS Diploma
HS Diploma

(a) Observed marriages for N=100 (b) c̄ for the network on the left.

Figure 1.1: A synthetically generated example of partnership data from the heterosexual

marriage network.

5



1.1 Concepts

This problem of separating the effects of preferences and availability in partnership formation

has long been recognized in demography and has motivated an impressive body of literature

without having been satisfactorily resolved (Choo and Siow, 2006; Dagsvik, 2000; Logan

et al., 2008).

There are several relevant concepts that we borrow from other fields in the development

of the revealed preferences model for a two-sided matching market. We discuss each of these

in subsequent sections of this chapter.

1.1.1 Stable Matching

First, we consider the idea of stable matchings. In most social settings, relationships are

constantly shifting over time. For example, marriages form and dissolve, employees join

and leave firms, and students enroll in and drop out of schools. These complex movements

are difficult to capture in any data set due to their continuous nature. To circumvent this

problem in the context of marriages, we focus on newly-formed partnerships in a given sample

at a discrete point and assume that this organization of one-to-one matches is stable.

The notion of stable matchings has been previously explored in depth by economists and

statisticians. A matching is stable at a given timepoint when no two individuals who are not

currently partnered with each other exist such that both individuals would prefer each other

over their current partner. Furthermore, no person in a partnership would prefer to be single

over their current partner. Gale and Shapley (See Roth and Sotomayor, 1990) showed that

in large populations, there are various stable matchings that can be realized. By assuming

matching stability, we are able to assume that the observed data accurately reflect individual

and societal preferences at that time point.
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1.1.2 Revealed Preferences Theory

The idea that we can infer preferences from a stable matching stems from the theory of

revealed preferences, which has been studied extensively in economics and was notably de-

veloped in (Samuelson, 1938, 1948) in the context of consumer-goods markets. Samuelson

(1938) hypothesizes that a consumer’s preferences can be inferred based on their purchasing

habits. An agent selects a good from a discrete set of options. Thus, the agent’s choice

reveals his preference for that option over all others. The inference of these preferences is

achieved through the use of discrete choice models, which we discuss in 1.1.3.

The idea of revealed preferences becomes more complex when we shift from a consumer-

goods market to a matching market. This is primarily because the final choices, or “pairings”,

achieved reflect the (possibly competing) preferences ofmultiple agents. A man may “select”,

or propose marriage to, the woman in the marriage market who maximizes his utility, but

the woman also assesses her own utility gain from the partnership and can choose to reject

the proposal. In this case, the marriage is not realized, and the man must revise his decision

with a new, restricted option set which excludes the woman who rejected his proposal. In

other words, the passive “choice” from the consumer-goods market has been replaced with

an active agent who “chooses back.”

A researcher interested in preferences for specific traits in spouses typically only observes

the final list of achieved marriages, not the proposal-rejection process which precedes it. The

researcher must distinguish whether a marriage occurred because it generated high utility

for the individuals involved or because, despite generating low utility, it was simply the best

option available to the individuals. Addressing this question requires complex analytical

tools.

1.1.3 Discrete Choice Models

Closely related to the development of revealed preferences theory is the study of discrete

choice models.
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In general, discrete choice models statistically relate the choice decision to the decision

maker’s attributes and the attributes of the alternatives available. Game theorists and

statisticians initially proposed discrete choice models to understand agent preferences in

one-sided settings. In these scenarios, each individual has a set of discrete possible choices.

Essentially, there is a “chooser” and a “chosen”. The agent in the role of chooser is the sole

decision maker of their outcome, although his decision may be affected by the decisions of

other choosers around them. The one-sided discrete choice model estimates the utility the

chooser would derive from every possible choice in his option set and assumes that agents

make the utility-maximizing choice. The parameters of interest are the chooser’s preferences.

However, the traditional one-sided discrete choice model is unsuitable for use in two-

sided scenarios. First, as mentioned earlier, the option set of each agent is rarely observed

completely. Second, the observed matchings in two-sided processes are no longer reflective

of the preferences of a single individual, as both actors involved in the partnership must

consent to the partnership. That is, rather than dividing the population into groups of

“choosers” and “chosens,” both individuals in the partnership are choosers of each other.

Each member of the partnership aims to maximize his or her own utility, and preferences may

not necessarily be reciprocated. For example, highly educated women may have a preference

for highly educated men, but highly educated men may not have a preference for highly

educated women.

One approach to studying two-sided matching scenarios is through the use of two-sided

discrete choice models, so-called because individuals in the population have a set of discrete

options with which they can match. The goal of two-sided matching models is to obtain

the frequencies for the different types of partnerships that can occur, where the partnership

type is defined by the combination of observable characteristics of the individuals in the

partnership (Dagsvik et al., 2001).
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1.2 Literature Review

Among others, Schoen (1981), Pollak (1986) and Pollard (1997) approached the two-sided

matching problem with the goal of estimating the frequency distribution of match types.

However, the methodologies they propose are limited in that they say little about the be-

havior of agents in the two-sided market. Thus, there is no apparent mechanism for detecting

the underlying preferences which motivate the matchings.

In contrast, Logan et al. (2008), Dagsvik (2000) and Menzel (2015) all theorize two-sided

versions of the discrete choice model which consider the role of both preference parame-

ters and availability of partners in matching markets and propose methodology which can

implicitly be used to estimate said preferences. Logan et al. (2008) propose a model for

bipartite populations where each side has a distinct utility function for partnerships with

agents on the opposing side. In the case of heterosexual marriages, all women have an

identically-defined deterministic component to their utility which depends on the woman’s

own observed characteristics z and the characteristics of her partner x; similarly, all men

have an identically-defined deterministic component to their utility which depends on the

man’s own observed characteristics z and the observed characteristics x of his partner. Here,

x ∈ X and z ∈ Z, where the sample spaces X and Z represent the set of observable types

of women and men, respectively, and may be continuous or discrete. Unobserved character-

istics are accounted for in the utility by including an individual fixed effect term for each

actor. Logan et al. (2008) assume that an individual’s unobserved option set within the local

marriage market can be approximated by the observed sample distribution of characteristics.

Logan et al. (2008) show that their proposed method for small populations could theoret-

ically be used to compute maximum-likelihood estimates (MLEs) of preference parameters.

Rather than basing their inference on the true likelihood of the observed match being re-

alized, they propose inferences based on the likelihood that the observed match is stable.

For computation of these estimates, they propose Bayesian inference based on Markov chain

Monte Carlo (MCMC).
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The approach suggested by Logan et al. (2008) is limited in that the Bayesian inference

works best for small populations. For example, the authors apply their method to make

inferences about gender-based marital preferences using data from the National Survey of

Families and Households (NSFH). With a sample containing 314 men and 360 women, they

are able to compute parameter estimates for the two-sided model.

However, the method cannot be used with large sample data sets such as the Survey

of Income and Program Participation (SIPP), where the number of people of each gender

exceeds 16,000 or the American Community Survey (ACS), where the number of people of

each gender exceeds 100,000. In such cases, the calculations required to update parameter

estimates in each step of the MCMC process are extremely complex and often intractable.

Additionally, when large populations with multiple stable matching solutions are studied,

the posterior distribution of the parameters may have multiple maxima, thereby also ren-

dering the parameters unidentifiable. Logan et al. (2008) also note limitations in parameter

identifiability when certain parallel terms are included in the utility functions.

Dagsvik (2000) focuses on the identification and estimation of preference parameters in a

closely related two-sided matching market model. He proposes constructing aggregate supply

and demand functions based on preferences on both sides of the matching market. When the

asymptotic supply and demand functions are equal, they derive equilibrium equations for

the number of partnerships achieved between individuals of specific types. These equations

imply that availability of partners and personal preferences are asymptotically separable

in their relationship to the distribution of matching outcomes in a large population. This

is a significant finding because, intuitively, the ability of people to achieve their preferred

partnership outcome is constrained by the existence of partners. Dagsvik (2000) then shows

that these equations can be manipulated to obtain point estimates of preference parameters.

However, methodology for analytically computing standard errors for these estimates is not

presented. In addition the results only apply to discrete agent types.

Nevertheless, the insights by Dagsvik (2000) lay important groundwork for the work

done by Menzel (2015). Specifically, Menzel (2015) proves that the relationships suggested
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by Dagsvik (2000) hold true for large populations. Menzel (2015) derives equations which es-

tablish a relationship between the preference parameters and availabilities of men and women

of each type in the population and the limiting distribution of types of matches across the

possible outcomes. These calculations prove that in a large population, the interdepen-

dency between availability and preferences can be accurately modeled, and therefore that

preferences can be recovered independently of the population availability context. Menzel

(2015) then proposes that the relationship he develops can be used to construct a likelihood

function for observing a particular matching. His results also apply to continuous agent

characteristics.

We develop the results of Menzel (2015) to derive re-parametrized equations which allow

asymptotically stable estimates of the proportions of single and partnered persons of each

type in the population. We propose a subclass of two-sided discrete choice models which we

refer to as revealed preference models. In this subclass of models we, like Logan et al. (2008),

Dagsvik (2000) and Menzel (2015), focus on bipartite networks. Actors in the network are

divided into two distinct groups. Edges, which represent partnerships, form only between

members of opposing groups. Whereas Logan et al. (2008) assume that the full opportunity

set of each actor is observed, we allow agents of different observed types to have different

opportunity sets (Yeung, 2019). The goal of our study is to extend Menzel’s (2015) findings

to estimate a set of latent structural parameters that describes the decision-making behavior

of a given population which led to the observed matching outcome. The difficulty of this

problem is that the set of alternatives for each actor is not generally observed and determined

endogenously in the market. Our proposed model utilizes key findings from Menzel (2015)

about the limiting distribution of matches in a large population and applies them to estimate

preference parameters based on an observed distribution of matches. We extend Menzel

(2015) by developing a modification of his estimator that corrects for bias in small populations

across a range of sample sizes and sample fractions.

Our study extends from the non-transferable utility assumption following Dagsvik (2000),

Logan et al. (2008) and Menzel (2015). Variants of this model have been used to represent
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decision-making in a matching market that assumes transferable utility (TU) within part-

nerships, with recent studies, including Dupuy and Galichon (2014), Chiappori et al. (2017),

and Galichon and Salanié (2021) building on the TU framework developed by Choo and Siow

(2006). We note here only the basic commonalities and differences between the TU model of

Choo and Siow (2006) and the NTU model of Menzel (2015).1 The TU model is grounded in

the economic theory of Becker’s (1973, 1974) model of marriage. It requires the key assump-

tion that the members of a couple engage in within-couple exchanges of utility-providing

goods and services. Choo and Siow (2006) interpret these exchanges as determining “...each

spouse’s share of responsibilities within a marriage.” The major statistical modeling impli-

cation is that in a TU model, the choosing individual only considers the prospective match’s

observable characteristics (Chiappori, 2020). In contrast, within the NTU framework there

is no similar exchange of utility-providing goods and services, and the individual is influenced

by the prospective match’s observable (to the researcher) characteristics and the character-

istics that are to the researcher unobservable. In the NTU case, increased availability leads

to increased propensity to find a match.

1A more detailed discussion comparing the NTU and TU frameworks is found in Chapter 4.
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CHAPTER 2

Revealed Preferences Model

To facilitate our discussion of the revealed preferences model, we will discuss the problem

within the context of heterosexual marriages within a two-sex population unless otherwise

noted. In this set-up, we consider a population with two distinct groups, and individuals are

either male or female. At any given point in time, individuals have at most one partner of

the opposite sex, and they also have the outside option to remain unpartnered (single). Both

the male and the female must agree to the partnership for that partnership, or “marriage,”

to be observed.

Individuals evaluate their marital options through use of a utility function, which con-

sists of a deterministic and random component. Actors of the same gender are assumed to

have deterministic components to their utility functions that depend on their own observed

characteristics x and those of their potential partners, z. The random component of the

utility function accounts for the fact that agents’ characteristics are only partially observed.

Agents choose the partner from available options who will maximize their own total utility.

The latent parameters in the deterministic component of the utility function which govern

this pair formation are commonly known as preference parameters in the sense that they

represent how actors would choose among different alternatives if given a choice (Logan,

1996a; Logan et al., 2008).

We also consider the heterosexual monogamous marriage market in our empirical ex-

ample of application, which relies on data from the 2008 Survey of Income and Program

Participation. (U.S. Bureau of the Census, 2020)
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2.1 Notation

We consider a population with Nw women and Nm men, so that the total population size

is N = Nw + Nm. Nh represents the number of households in the population, where a

household is defined as an entity consisting of either a single (unpartnered) man or woman

or a partnered couple, so that Nh ≤ N , and Nh = N only when all individuals choose to

remain single. A household is either “single” if it contains of a single, unpartnered person

or “partnered” if it contains two individuals in an exclusive partnership.

A household holds either exactly one single person of any gender or one married couple,

and a household is characterized by the type(s) of the individual(s) in it.1 Each single

household is further differentiated by the gender and type of the individual living in it. Each

partnered household is further differentiated by the combination of the type of female and

the type of male who live in the household.

The differentiation between N and Nh is important when considering the sampling

scheme, as Nh is equal to the total number of sampled units, while N is the number of

individuals considered across the Nh sampled units. We expand on this point in Section 2.4.

Using the same notation introduced in Section 1.2, we observe a p−vector of observed

covariates x ∈ X p on the women and a q−vector of observed covariates z ∈ Zq on the men.

For ease, we will generally omit the p and q superscripts when referring to the covariate

spaces X and Z hereafter. X and Z may overlap but are not required to.

Let xi and zj denote the observed attributes of woman i = 1, . . . , Nw and man j =

1, . . . , Nm, respectively. The equations in this section are written generally so that the

elements of x and z may be continuous, discrete, or a combination of the two. For ease of

presentation, however, in the simulation studies in Section 2.9 where we apply the revealed

preferences model, we assume that x and z are discrete.

Actors may perceive potential partners differently based on their own characteristics.

1This definition of household is different from the one often utilized in demography work, where households
can consist of any combination of unpartnered and partnered individuals, as well as their offspring.
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Thus, the perceived utility gained by partnering with a particular opposite-sex individual

may differ from one decision-maker to the next. However, all actors are assumed to choose

the partner within their respective choice sets that maximizes utility. Given the utility-

maximizing behavior of the decision-makers, we define the utility gained by woman i with

observed attributes xi from partnering with man j with observed attributes zj as

Uij = U(xi, zj|
˜
θW )︸ ︷︷ ︸

deterministic
component

+ ηij︸︷︷︸
unobserved random

component

(2.1)

where
˜
θW is the set of parameters denoting the woman’s preferences. The deterministic part

of the utility functions depend on variables representing the respective types of women and

men. Similarly, we define the utility gained by man j with observed attributes zj from a

partnership with woman i with observed attributes xi as

Vij = V (zj, xi|
˜
θM)︸ ︷︷ ︸

deterministic
component

+ ζij︸︷︷︸
unobserved random

component

(2.2)

where
˜
θM is the set of parameters representing men’s preferences. From this point forth in

the paper, we will use tilde below a Greek letter to refer to a vector.

Following Menzel (2015), we assume that unobserved random components of the utility

functions as defined in Equations (2.1) and (2.2) are independently and identically distributed

draws from a distribution in the domain of attraction of the extreme-value type-I (Gumbel)

distribution. This domain includes Exponential, Gamma, Gaussian, Lognormal, and Weibull

distributions. Here we will focus on the Gumbel itself, but note our model and methods are

generalizable.

2.2 Model specifications

Having introduced the general setup of a two-sided discrete choice model, we now go into

detail about model forms for the deterministic and random utility components. We focus

on the special case where the deterministic components of the utilities in (2.1) and (2.2) are
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additive linear functions; however, other choices of utility functions can also be used (See

Dagsvik (1994) for inference of latent preferences under other choices of utility functions).

For additive linear utility functions, let

U(xi, zj|
˜
θW ) = θw0 +

Kw∑
k=1

θwkX
k(xi, zj)

V (zj, xi|
˜
θM) = θm0 +

Km∑
k=1

θmkZ
k(xi, zj)

(2.3)

where xi and zj are vectors measuring observed characteristics of woman i and man j,

respectively. The woman’s deterministic utility consists of an intercept term θw0 and Kw

functions Xk(xi, zj) which represent utility that woman i derives from the partnership based

on her perception of her own characteristics and the characteristics of man j. For example,

Xk(xi, zj) might be an indicator function that represents whether certain observed attributes

are identical for the pair (i.e., the partnership is homogamous). The corresponding Km

functions for the man’s side are denoted as Zk(xi, zj). Here
˜
θW = [θw0, θw1, . . . θwKw ]

T and

˜
θM = [θm0, θm1, . . . θmKm ]

T are the preference parameters.

The random component of the utility model accounts for unobserved information about

individuals in the data which may impact partnership choices. The random terms, are

assumed to be identically distributed draws from an extreme-value type-I (Gumbel) distri-

bution.

We additionally define the random utility for the choice of remaining single as Menzel

(2015) did, so that

Ui0 = 0 + max
k=1,...,Nδ

m

{ηi0,k} (2.4)

Vj0 = 0 + max
k=1,...,Nδ

w

{ζj0,k}

for females and males, respectively.

The single household utility specification in Equation (2.4) implies that the determinis-

tic component of the utility for an individual choosing to be unpartnered is 0. The non-

deterministic component of the single utility function of females is defined as the maxi-

mum of N δ
m independent draws of ηi,k, the Gumbel-domain-of-attraction distributed random
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term of the male partnered utility function presented in Equation (2.1). Similarly, the

non-deterministic component of the single utility function for males is the maximum of N δ
w

independent draws of ζj,k from Equation (2.2). Am interpretation for this formulation is that

in a market of Nm men, woman i also considers N δ
m outside latent non-market alternatives

(and vice-versa for men).

We focus on the case where ηi,k and ζi,k are i.i.d. Gumbel. Since the maximum of N δ
m i.i.d.

Gumbel random variables is also Gumbel-distributed with the location parameter increased

by δ logNm, the hyperparameter δ effectively sets the expected utility for an individual

choosing to be unpartnered. We choose δ based on prior expectations of how the proportion

individuals in the population who are single will change for different market sizes. For this

model, we set δ = 1/2. This specification ensures that the share of singles in the market

is stable for different market sizes (Menzel, 2015, Assumption 2.2). Intuitively, increasing

the value of δ will make the choice of remaining single more attractive in large populations,

while decreasing the value of δ makes the single option less attractive.

2.2.1 Large population approximation

Let w(x) be the number of women in the population with characteristics x and m(z) be

the number of men in the population with characteristics z. For notational convenience, let

w̄(x) = w(x)/N and m̄(x) = m(x)/N .

Consider a population with utilities drawn from the model (2.1), (2.2), (2.3) and (2.4).

Then the stable matching induces a probability distribution over the observed characteris-

tics. Consider sampling a random household from the data. Let f(x, ∗) and f(∗, z) be the

probability that a sampled household consists of an unmatched woman of type x, and an

unmatched man of type z, respectively. Let f(x, z) be the probability a sampled household

consists of a woman of type x and a man of type z who are married to each other. Finally

let f̄ = {f(x, z), f(x, ∗), f(∗, z)}, x ∈ X , z ∈ Z. Together, f̄ defines a distribution satisfying
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the overall normalization constraint:∫
f(x, z)dxdz +

∫
f(x, ∗)dx+

∫
f(∗, z)dz = 1 (2.5)

More specifically,

w̄(x) = f(x, ∗) + f(x, ⋄) (2.6)

m̄(z) = f(∗, z) + f(⋄, z)

where f(x, ⋄) is the probability the person is a matched woman of type x:

f(x, ⋄) =
∫
f(x, z)dz

f(⋄, z) =
∫
f(x, z)dx

Amajor result of Menzel (2015) is that, under mild regularity conditions, if the population

size is large and the matching is stable, the frequencies approximately satisfy the relations:

f(x, z) = eW (x,z|
˜
β)f(x, ∗)f(∗, z) ∀x, z. (2.7)

W (x, z|
˜
β) = U(x, z|

˜
θW (

˜
β)) + V (z, x|

˜
θM(

˜
β)), ∀x ∈ X , z ∈ Z

is the sum of the deterministic components of the utilities and
˜
θW (

˜
β) and

˜
θM(

˜
β) are functions

such that
˜
β parameterizes W (x, z|·). The solution must satisfy the population equilibrium

conditions on the parameter values,
˜
β:

f(x, ⋄)
f(x, ∗)

=

∫
eW (x,s|

˜
β)f(∗, s)ds ∀ x (2.8)

f(⋄, z)
f(∗, z)

=

∫
eW (s,z|

˜
β)f(s, ∗)ds ∀ z

The typical number of stable matchings possible increases exponentially with the population

size. However, all of these stable matchings have the same limiting probability distribution

(f̄) over the observed characteristics.

Together, (2.6) and (2.7) make it possible to obtain estimates ˆ
˜
β of the preference param-

eters.
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2.3 Parametrisation and Identifiability

We say that a parametrisation of the model, β ∈ B, is large population identifiable if for

each β1, β2 ∈ B with β1 ̸= β2 there exists a state of the covariates x and z such that

P (c̄|β1) ̸= P (c̄|β2)

Based on equations (2.7) and (2.8), and the expression

W (x, z|
˜
β) = U(x, z|

˜
θW (

˜
β)) + V (z, x|

˜
θM(

˜
β)), ∀x ∈ X , z ∈ Z

only the sum of the partnered individuals’ utilities is identifiable. U(x, z|
˜
θW ) and V (z, x|

˜
θM)

may not be separably identifiable when they are additive linear functions as in Equation (2.3)

and include parallel terms. In general, let
˜
θW (

˜
β) and

˜
θM(

˜
β) be functions such that

W (x, z|
˜
β) = U(x, z|

˜
θW (

˜
β)) + V (z, x|

˜
θM(

˜
β)), ∀x ∈ X , z ∈ Z

In this case, W (x, z) can be parameterized in terms of
˜
β. We will consider parametrisations

where
˜
β is identifiable. To emphasize the relationship between

˜
β,
˜
θW , and

˜
θM , we refer to

the gender-specific preference parameters as
˜
θW (

˜
β) and

˜
θM(

˜
β) for the rest of this paper.

2.3.1 Reparametrisation of the model

We can reparametrise these expressions to improve interpretability and ease computation.

Define parameters g(x, ∗) and g(∗, z) via the equations:

f(x, ∗) = w̄(x)eg(x,∗)

(1 + eg(x,∗))
(2.9)

f(∗, z) = m̄(z)eg(∗,z)

(1 + eg(∗,z))

so that g(x, ∗) and g(∗, z) both have range the real line.

We interpret g(x, ∗) as the log-odds that a women with characteristics x is single. Simi-

larly, we interpret g(∗, z) as the log-odds that a men with characteristics z is single. Hence
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this reparametrisation is essentially from probabilities to logits. We will use g(x, ∗) and

g(∗, z) in place of f(x, ∗) and f(∗, z) to ease computation and interpretability. Note that

f(x, ⋄) = w̄(x)

(1 + eg(x,∗))

f(⋄, z) = m̄(z)

(1 + eg(∗,z))

so that (2.6) is automatically satisfied and (2.7) becomes

f(x, z) = pref(x, z)w̄(x)m̄(z) ∀x, z (7’)

where

pref(x, z) =
eW (x,z)+g(x,∗)+g(∗,z)

[1 + eg(∗,z)][1 + eg(x,∗)]
∀x, z

Equation (7’) explicitly separates the availability component of the model (w̄(x)m̄(z)) from

the preferences-related component (pref(x, z)). In this parametrisation (2.8) becomes

e−g(x,∗) =

∫
eW (x,s)+g(∗,s)m̄(s)

1 + eg(∗,s)
ds ∀ x (8’)

e−g(∗,z) =

∫
eW (s,z)+g(s,∗)w̄(s)

1 + eg(s,∗)
ds ∀ z

2.4 Data

The analysis depends on the sampling design that produces the data. Let c(x, ∗) and c(∗, z)

be the counts of households with unmatched women of type x, and unmatched men of type

z, respectively. Let c(x, z) be the sample counts of households which consist of a partnered

woman and man, where the woman has observed characteristics x and the man has observed

characteristics z. Finally, let c̄ = {c(x, z), c(x, ∗), c(∗, z)}, x ∈ X , z ∈ Z. Together, c̄ defines

the empirical version of the distribution f̄ . Note that

∑
x∈X

∑
z∈Z

c(x, z) +
∑
x∈X

c(x, ∗) +
∑
z∈Z

c(∗, z) = Nh.

As an example, we refer again to the simulated population with size N = 100 shown

in Figure 1.1a. Figure 1.1b visualizes c̄ for this population. The columns in the inner grid
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correspond to different types of women, and the rows represent type of their partner. The

number of women of each type who remain single is represented by on the bottom margin

to correspond with the columns. Similarly, the rows of the inner grid correspond to types of

men, and now the columns represent their partner’s type. The frequency of single men of

each type is provided on the left margin in alignment with the rows.

Our method can be applied to a broad range of complex survey sampling designs, with

the requirement that they produce estimates of f̄ . The interpretation of c differs slightly

based on the sampling design, although there is no difference in the practical implications.

In the case of census data, c̄ represents the frequency distribution over the total popula-

tion of households Nh. Similarly, in a stock-stock sampling scheme, the sampling units are

households, so c̄ is the frequency distribution over all sampled households. By contrast, in

a stock-flow sampling scheme, the sampling units are individuals and spouses of partnered

sampled individuals are considered “after the fact.” In this case, c̄ is the frequency distribu-

tion over all sampled individuals. However, the sum over the distribution is still effectively

the number of households considered based on the sample. By defining c̄ as the frequency

distribution over sampled units rather than sampled individuals, we ensure c(x, z) ∈ Z+ for

all x ∈ X , z ∈ Z.

In this section we focus on the situation where the data are a probability sample of

the individuals in a population where the weights are wwi for the ith woman and wmj for

the jth man. It is presumed that the weights are normalized via post-stratification to sum

to population quantities over the covariates in the model. It is also presumed that the

characteristics of the partner, if any, of sampled individuals are available. We take a super

population framework, where the population is sampled from a super population process.

Specifically, the N members of the population are independent and identical draws from a

super population stochastic process. The sample of women is denoted {xi, zi, wwi }nw
i=1, where

zi are the characteristics of the women’s partner, if any. If the sampled women is single,

formally set zi to ∗. Similarly, the sample of men is {zj, xj, wmj }nm
j=1.

Estimates of w(x) and m(z) may be available from auxiliary surveys. Otherwise, we can
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use the data alone and standard design-based estimates of w(x) and m(z), written as w̃(x)

and m̃(z), respectively. Note that these represent availabilities and do not depend on the

preference parameters. The parameters are then
˜
ψ = (

˜
β, {g(x, ∗)}x∈X , {g(∗, z)}z∈Z).

2.5 Large-population Likelihood Approach

Had we observed the entire population, the likelihood for
˜
ψ would involve the complex

dependencies between the individual choices and matchings in the population. Each of the

matchings is interdependent. Our approach is to use as a surrogate for the likelihood for
˜
ψ,

one based on the likelihood of the observed frequencies of pairings by covariates, c̄, and the

model (2.7) and (2.8). Specifically, we approximate the exact likelihood for
˜
ψ by:

lp-log-lik(
˜
β, g(x, ∗), g(∗, z)|{xi, zi, wwi }nw

i=1, {zj, xi, wmj }
nm
j=1) (2.10)

=
∑
x∈X

∑
z∈Z

c(x, z) log f(x, z) +
∑
x∈X

c(x, ∗) log f(x, ∗) +
∑
z∈Z

c(∗, z) log f(∗, z)

The log-likelihood (2.10) can be written in terms of g(x, ∗) and g(∗, z) using (7’).The values

w̃(x) and m̃(z) replace w(x) and m(z) in these expressions.

To obtain estimates, (2.10) can be maximized subject to the constraints expressed in

(8’) to produce the maximum large-population likelihood estimator (MLPLE), ˆ
˜
ψ. This was

achieved via a sequential quadratic programming (SQP) algorithm for non-linearly con-

strained gradient-based optimization (Kraft, 1994; Johnson, 2020). The algorithm optimizes

successive second-order (quadratic/least-squares) approximations of the objective function

(via BFGS updates), with first-order (affine) approximations of the constraints. We note

that there are many possible survey sampling schemes in use, and the sampling could be at

the individual level or at the household level. These alternative survey designs are straight-

forward to incorporate into the above equations and we do not explicate it here.
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2.6 Correcting the estimator for bias and confidence coverage

It is likely that the estimator of Section 2.5 will be biased because it is based on a large-

population approximation to the generating process followed by a number of statistical ap-

proximations. As noted in Section 4.1, we take a super population framework, with N

specifying the size of the draw from the super population to the population and n ≤ N the

size of the subsequent draw of the sample from the population. There is added uncertainty

associated with both steps (specifically, the large population approximation at the first step

and the sampling error at the second step).

The large population approximation does not take into account information in the match-

ing that is not captured by the counts of matches and singles by type. In addition, the super

population sampling distribution of these counts is not truly multinomial; While the utilities

in equations (2.1) and (2.2) are independent, the matches are interdependent and hence so

are the counts. However, the counts are asymptotically (with N) sufficient for parameter

estimation (Menzel, 2015), and the bias should be small for large population sizes.

To address potential bias, we propose using bootstrap procedures to estimate the sam-

pling distribution of the estimator and correct for bias and confidence coverage. We propose

two versions of this bootstrap: a parametric version that is preferred where computationally

feasible and a classical version to be used for large population sizes.

2.6.1 Parametric bootstrap

If the population size is small (e.g., less than 20,000), we can generate the (stochastic)

relational utilities for all population members using equations (2.1), (2.2), and (2.4) at the

MLPLE parameter values. We can then use the Gale-Shapley algorithm to achieve a stable

matching for that population. This matching is from the population-generating process of the

data. We follow it with a sampling of size n using the sampling design of the data including

survey weights (e.g., stock-stock, stock-flow, census). We repeat this process b times, so

that we have b bootstrapped samples. We fit the revealed preferences model to each of
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the b samples and obtain the bootstrapped parameter estimates for a single parameter
˜
ψ,

which we denote as
˜
ψ∗ = [

˜
ψ∗
(1),

˜
ψ∗
(2), . . . ,

˜
ψ∗
(b)]. Doing so requires us to re-solve a constrained

maximization problem for each bootstrap sample. This can be computationally expensive,

but is simply parallelizable (as we have done in the software associated with this paper

(Handcock et al., 2022)).

The empirically estimated bias of ˆ
˜
ψ, denoted as b̂ias ˆ

˜
ψ, is equal to the mean of the

bootstrapped parameter estimates
˜
ψ∗ minus ˆ

˜
ψ. We then propose as our bias-corrected point

estimator ˆ
˜
ψ
BC

= 2 ˆ
˜
ψ − 1

b

∑b
i=1

˜
ψ∗
(i).

As we are drawing directly from the super-population generating and sampling processes,

we believe this will provide a firm basis for bias-reduction and coverage correction for the

census case.

2.6.2 Large-population bootstrap

The computational burden of the Gale-Shapley algorithm is heavy for large populations

(e.g., N > 20, 000). In this case, we consider a classical bootstrap for survey data, simple

random resampling b data sets from the original data with replacement so that we have b

sets of bootstrapped samples (Shao and Tu, 1995). As before, we fit the revealed preferences

model to each of the b samples and obtain the bootstrapped parameter estimates for a single

parameter
˜
ψ, which we denote as

˜
ψ∗ = [

˜
ψ∗
(1),

˜
ψ∗
(2), . . . ,

˜
ψ∗
(b)] and propose a bias-corrected

point estimator appropriate for survey data ˆ
˜
ψ
BC

= ˆ
˜
ψ − N−n

n−1
(1
b

∑b
i=1

˜
ψ∗
(i) − ˆ

˜
ψ) (McCarthy

and Snowden, 1985).

In this scenario, N ≫ n so that sampling uncertainty dominates errors from the large-

population approximation. We then appeal to survey sampling bootstrap asymptotics as

justification (Shao and Tu, 1995, Theorem 6.5).

This procedure and its parametric complement appear to work well, as is borne out in

the simulation studies of Sections 2.8 and 6.
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2.7 Measuring uncertainty of the estimates

Once we obtain the parameter estimates ˆ
˜
ψ, a natural next step is to measure their uncer-

tainty.

The covariance matrix of the estimates can be approximated by a standard Central Limit

Theorem argument. The approximate log-likelihood function, augmented by the constraints,

is

log-likA(
˜
ψ|{xi, zi, wwi}nw

i=1, {zj, xi, wmj}
nm
j=1) (2.11)

= lp-log-lik(
˜
ψ|{xi, zi, wwi}nw

i=1, {zj, xi, wmj}
nm
j=1) +

|X |+|Z|∑
k=1

λkhk(
˜
ψ) (2.12)

where {hk(
˜
ψ)}|X |+|Z|

k=1 are the constraints (7’). Its Hessian is

E
(
∂2log-likA
∂
˜
ψ∂

˜
ψ′

)
=

H J

JT 0

 (2.13)

whereH is the Hessian of (2.10) with ijth element E
(
∂2lp-log-lik
∂
˜
ψ∂

˜
ψ′

)
and J is the Jacobian matrix

of the constraints with kjth element
∂hk(

˜
ψ)

∂
˜
ψ

. The estimate of the (asymptotic) covariance

matrix of the MLPLE of
˜
ψ is the (1,1) block of the Moore-Penrose inverse of this matrix

(Hartmann and Hartwig, 1996).

The accuracy of the estimate of the covariance matrix depends on the application-specific

accuracy of the various approximations. Thus, the analytically estimated standard errors

may not accurately reflect the standard errors of parameter estimates that are observed over

repeated samples from the same population. However, they are easy and fast to compute.

It is natural to consider robust (sandwich formula) variance estimators for this situation.

However these performed poorly as they did not adequately take into account the constraints.

As an alternative, we propose estimating standard errors empirically using the bootstrap

procedures of Section 2.6. Most directly, the empirically estimated standard error of ˆ
˜
ψ,

denoted as ŝe ˆ

˜
ψ, is equal to standard error of the bootstrapped parameter estimates

˜
ψ∗.
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We also consider various methods employing bootstrap procedures to compute confidence

intervals for each parameter. The percentile bootstrap, is the most straightforward of these

methods. We denote
˜
ψ∗
(α) as the α percentile of the bootstrap parameter estimates

˜
ψ∗. The

(1− α)% percentile bootstrap confidence interval for parameter
˜
ψ:

(
˜
ψ∗
(α/2),

˜
ψ∗
(1−α/2)).

The second method we employ is the basic bootstrap confidence interval. For the param-

eter
˜
ψ with estimate ˆ

˜
ψ, we use the basic bootstrap procedure to obtain a (1−α) confidence

interval:

(2 ˆ
˜
ψ −

˜
ψ∗
(1−α/2), 2

ˆ
˜
ψ +

˜
ψ∗
(α/2)).

We also consider a modified version of the studentized t bootstrap confidence interval.

Here we obtain a (1− α)% confidence interval as:

( ˆ
˜
ψ − t∗(1−α/2)ŝe ˆ

˜
ψ,

ˆ
˜
ψ + t∗(α/2)ŝe ˆ

˜
ψ).

We test the performances of the analytical confidence intervals as well as those of all three

proposed bootstrap confidence interval methods in Section 2.9.5 as part of our simulation

studies.

2.8 Simulation Studies of Model and Inferential Accuracy

In this section we illustrate the statistical properties of the revealed preferences model by

conducting three simulation studies which we refer to hereafter as studies I, II, and III. In

simulation study I we show that the revealed preferences model accurately estimates un-

derlying preference parameters which partially motivate matching outcomes in a population

under different availability scenarios. In simulation study II, we investigate the relationship

between the population size N and bias of preference parameter estimates produced by the

revealed preferences model when census data is available. In simulation study III, we inves-

tigate the relationship between the relative sample proportion nh/N and bias of preference
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parameter estimates when data is available for a sample of a population. In all three stud-

ies, we show the bias-corrected maximum large-population likelihood estimates (MLPLEs)

for the preference parameters, adjusted using the methodology proposed in Section 2.6. In

addition, in studies II and III we also show the MLPLEs prior to bias correction and com-

pare them to the bias-corrected MLPLEs, demonstrating that the bias-corrected MLPLEs

consistently improve estimate accuracy with little cost to precision.

Together, the simulation studies shown in this paper make a significant contribution to

existing literature as they clearly demonstrate the novel ability of our proposed revealed

preferences methodology to separate effects of preference and availability on matching out-

comes. Previously, Menzel (2015) presented a simulation study with maximum-likelihood

estimation of preference parameters. However, his results were extremely limited in that he

considers populations that are restricted to size N ≤ 2, 000 and are generated under a single

availability scenario. In contrast, we will show that the revealed preferences model recovers

preferences for given sample or census data for a wide range of population (sample) sizes and

under different availability scenarios. We also demonstrate the use of bias-correction proce-

dures to improve the accuracy of our estimates. For researchers in other fields who will apply

our model, we also consider several different specifications for the systematic component of

the utility function to demonstrate the flexibility of our proposed approach.

The remainder of this section is structured as follows: we first describe a general procedure

for the three simulation studies. We then describe the two availability scenarios considered

for generating individuals of different genders and education in each simulated population

in Section 2.8.1. In Section 2.8.2 we discuss the choice of
˜
β0 and the different utility model

specifications considered for the function W (xi, zj|
˜
β). Once we have defined the availability

scenarios and utility model specification, we then provide further detail about the different

specifications of each study in Section 2.8.3.

The basic procedure for the different simulation studies is the same. We begin by assum-

ing a heterosexual marriage market in which males and females base partnership decisions on

their own education level and the education of prospective spouses, as well as some other un-

27



observed characteristics. We assume that the marginal distributions of gender and education

within the population are known and represented as availability scenario A = {w̄(x), m̄(z)}.

We also assume that the form of the partnership utility function W (xi, zj|
˜
β) and the prefer-

ence parameters
˜
β for individuals in the market are both known.

We suppose a population of size N which reflects the gender and education distributions

of availability scenario A and the partnership preferences
˜
β. In simulation studies I.i and

II, we assume the data consists of information on the full simulated population, while for

simulation studies I.ii and III we suppose that the data is a sample of nh households from the

simulated population. We then obtain the distribution of partnerships c̄, either empirically or

via large population approximation described in Equation 2.7. We fit the revealed preferences

model to the data to produce estimates ˆ
˜
β of the original preference parameters.

2.8.1 Choice of availability scenarios

We consider two marginal distributions for gender and education as our availability scenarios,

referred to hereafter as A1 and A2. Both availability scenarios were chosen based on data

from the 2008 Panel of the Survey of Income and Program Participation (SIPP), which

has been made publicly available by the United States Census Bureau (U.S. Bureau of the

Census, 2020). The 2008 SIPP is a nationally representative panel study that followed

individuals in sampled households from 2008 through 2012. Individuals responded to a set

of core questionnaires administered every 4 months and in 2009, individuals over the age

of 15 answered a series of supplemental survey questions on their marital history, and, if

currently married, the date their most recent marriage began.

We limit the analytic sample to individuals 18-59 years old who either: 1) at wave 2

had married for the first time in the past year; or 2) were not currently married and never

had been married, and were living in households that responded to Waves 1 and 2 of the

2008 SIPP Panel as well as the marital history topical module administered at the Wave 2

interview. We focus on first marriages that initiated no more than a year prior to the survey

data to ensure we capture preferences at the time the marriage was initiated and to avoid bias
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due to marital dissolution, remarriage, or educational upgrading (Schwartz and Mare, 2005;

Kalmijn, 1994). With these limitations, our analytic sample consists of 21,567 individuals,

1,040 of whom had married in the last year, and 20,527 who remained single in the last

year. The 1,040 newly-married individuals were by survey design married to another sample

member, and therefore were in 520 couples in our sample. Within a given year, entering into

a marriage is therefore relatively rare, with only 5% of individuals in our analytic sample

having entered a new marriage. Thus preferences for marriage, meaning for getting married

in a given year, are negative when we run the revealed preferences model in Section 2.9.

This 2008 SIPP sample design corresponds to Menzel’s (p.913) sample of households that

are assumed to be drawn from a population resulting from the stable matching. In our case,

we have 21,077 households, of which 520 consist of a married couple.

The maximum education level attained by each individual is a categorical variable coded

as 1 for less than a high school education, 2 for a high school degree, 3 for some college, and

4 for a bachelors degree or beyond. The education level of female i is stored as xi and the

education level of male j is stored as zj.

The first availability scenario A1 is factual (a population like the 2008 SIPP). In other

words, it utilizes the gender and education distributions of the overall population based on

the 2008 SIPP sample, and the partnership preferences of individuals are equal to preferences

estimated in the 2008 SIPP sample. In this availability scenario, about 49.1% of individuals

are women and 51.9% are men.

Availability scenario A2 has the same marginal distribution of education and availability

as the non-Hispanic Black population in the 2008 SIPP data. However, the preferences of

individuals in availability scenario are kept the same as those of individuals in scenario A1.

Under availability scenario A2 about 58.0% of individuals are females and 42.0% are males,

which reflects a significant gender skew not seen in scenario A1. In both A1 and A2, women

are less likely to have less than a high school degree (education category 1) and are more

likely to have completed any college (education category 3 or higher).

In simulation studies I.i and I.ii we simulate populations from both scenarios A1 and A2.
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Table 2.1: Availability Scenarios

Availability Source of Type

scenario availability distribution

A1 2008 SIPP full sample Total U.S. population in 2008

A2 2008 SIPP non-Hispanic Black sample A realistic sub-population availability

Given the utility model specification, we assume that in both scenarios all individuals are

characterized the same true preference parameters
˜
β0. By fitting the revealed preferences

model on data from populations based on both availability scenarios, we show that preference

parameter estimates are unbiased even as the availability of potential partners changes.

Thereafter, in simulation studies II and III we only simulate populations based on availability

scenario A1.

2.8.2 Utility model specification

We now discuss three different partnership utility specifications under which we test the

performance of the revealed preferences model. We first consider a very simple model speci-

fication in which a female experiences a shift in utility, relative to her utility had she remained

unpartnered, only when she partners with a man whose education level is the same as her

own. The tendency for partnered individuals to share similar characteristics is reflected by

homogamous pairings, and preference for such partnerships is referred to as homophily. We

designate this specific model as the uniform homophily model because the shift in the deter-

ministic component of the utility is uniform for all types (education levels) of individuals.

The set of parameters for this model is denoted as
˜
βUH. The sum of woman i and man j’s

utilities if they partnered with each other is

Wij(xi, zj|
˜
βUH) = β0 + βUHI{xi = zj}, (2.14)

The uniform homophily model can be extended if we assume that the utility a woman

derives from a partnership is based not only on whether she and her partner have equal
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Table 2.2: Gender and Education Distributions under the two availability scenarios

Males Females

Education Level % Population % of Males % Population % of Females

Availability scenario A1

1 (< high school) 7.4 14.5 5.3 10.9

2 (high school) 14.5 28.5 11.2 22.8

3 (some college) 19.5 38.4 21.0 42.9

4 (≥ bachelors) 9.5 18.6 11.5 23.4

Total 50.9 100.0 49.1 100.0

Availability scenario A2

1 (< high school) 7.2 17.1 7.1 12.3

2 (high school) 13.8 33.0 15.3 26.4

3 (some college) 15.9 37.8 25.4 43.7

4 (≥ bachelors) 5.1 12.1 10.2 17.6

Total 42.0 100.0 58.0 100.0
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education levels, but also on the education level itself. Once again, there is a corresponding

utility function for males. We refer to this as a differential homophily model, where the

change in utility depends not only on partners share a particular trait, but also on the value

of trait considered. Given the set of education types T = X ∪ Z, the model is denoted as

˜
βDH.

Wij(xi, zj|
˜
βDH) = β0 +

T∑
t=1

βt,tI{xi = zj = t}. (2.15)

The third model we consider is a modified version of the saturated mix model, which

includes every possible first-order term. In the saturated mix model, women and men both

derive a different utility from each possible combination of education levels in the marriage.

The full set of parameters is denoted by the vector
˜
βSM.

We are able to remove the intercept term β0 from the utility model because it is a

constant value added to the matching utility of every pair. Thus, the sum of the utilities of

two individuals in a marriage is given by

W (xi, zj|
˜
βSM) =

∑
x,z

βx,zI{xi = x, zj = z}. (2.16)

The term βx,z is the coefficient to an indicator which equals 1 if the partnership consists of

a woman of type x and a man of type z, and 0 otherwise. The saturated mix model consists

of X × Z first-order parameters where, as previously defined, X = |X | is the number of

possible discrete types for women and Z = |Z| is the number of possible discrete types for

men.

Out of the 21,077 households in the SIPP analytic sample, there is 1 couple which consists

of a woman with education level 1 and a man with education level 4, and 1 couple which

contains a woman with education level 4 and a man with education level 1. The low counts

make estimation of the θ1,4 and θ4,1 parameters difficult, as the joint utility of such couple is

perceived as effectively negatively infinite. To facilitate estimation in these cases, we consider

pairings between a woman with education level 1 and a man of education level 4 to have equal
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utility to a pairing between a woman with education level 2 and a man of education level 4.

This “reduces” the β1,4 and β2,4 parameters to a β1 or 2,4 parameter. Likewise, we can equate

pairings between a woman with education 4 and man with education 1 to pairings between

a woman with education 4 and a man with education 2, so that β4,1 and β4,2 are replaced by

β4,1 or 2. Thus, rather than using the fully saturated model with 16 parameters to estimate,

we consider a reduced mix model with only 14 parameters, represented in vector form as

˜
βRM. The situation here is very similar to the “collapsing cells” situation in contingency

table modeling (Agresti, 2002, Section 10.1).

We note that mix models are of particular interest to demographers who have access to

large samples from populations. When the size of the available data is small as is the case

for simulation studies II and III, however, model saturation can result in biased and highly

variable parameter estimates and the less parametrised uniform homophily or differential

homophily model may be preferable.

The testing procedure for each model specification is the same, and we outline the basic

procedure which is used in simulation study I. We first choose a set of preference parameters

˜
β0 given the specific model that we assume is the underlying truth. This is done by using

RPM to fit that model on the analytic 2008 SIPP data and calculating parameter estimates

˜
˜
β. We assume that these estimates are equivalent to the true preference parameters of

individuals under all availability scenarios, so that
˜
β0 = ˜

˜
β. In each simulated population,

the known preferences
˜
β0 are applied to calculate total household utility for every potential

partnership and form a stable matching. We fit the revealed preferences model on the

observed stable matching outcome from the simulated population, constraining the MLPLEs

to lower and upper bounds of -10 and 10, respectively, and utilize the methodology proposed

in Section 2.6 to obtain bias-corrected MLPLEs. We compare these estimates to the true

underlying true preferences
˜
β0. We make minor modifications to this process for simulation

studies II and III which are described below.
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2.8.3 Details for simulation studies I, II, and III

Having established the availability scenarios and utility models we will consider in this paper,

we now provide further detail on each of the simulation studies.

To demonstrate that the revealed preferences model produces unbiased estimates of
˜
β

given either an observed distribution of partnerships c̄ or a large population approximation

of c̄, we conduct simulation study I in two parts. In study I.i, we simulate populations of

size N = 6, 000. The generating distribution for the populations may be either availability

scenario A1 or A2, and a population consists of individuals whose partnership utilities are

either all determined by the differential homophily utility model (Equation 2.15) or the

reduced mix utility model (Equation 2.16). Thus, we consider four possible combinations

of availabilities and utility model specifications, and we simulate 1,000 populations of each

combination. For every simulated population, based on the utility function and
˜
β0 we

obtain a stable matching using the Gale-Shapley algorithm. (Gale and Shapley, 1962) We

then compute the empirical distribution of partnerships c̄ observed in this stable matching.

Treating the simulated data as a census, we fit the revealed preferences model to obtain

preference parameter estimates.

Ideally, to obtain the distribution of partnerships within a population, we would al-

ways use the Gale-Shapley algorithm to first achieve a stable matching for that population.

However, a large amount of memory and computational power is required to create stable

partnerships for large population sizes (e.g., greater than 20,000), since the household utility

matrices {Wij}Nw×Nm and {Mij}Nm×Nw must be calculated for all potential pairings. In such

cases, rather than implementing the Gale-Shapley algorithm to achieve a stable matching,

we can approximate the empirical distribution of household types in the outcome and esti-

mate preference parameters based on the large population approximation (Equation (2.7)).

In general, we suggest using the large population approximation rather than replicating the

actual matching process when working with simulated populations with more than 6,000

individuals.

In study I.ii, we show that a large population approximation of c̄ is suitable for unbi-
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ased estimation of preference parameter estimates. We begin once again assuming that a

population can be characterized by the same four combinations of availabilities and utility

model specifications considered in study I.i. In this case, however, we suppose that N = 300

million within a single population. Rather than simulating the population directly, we ap-

proximate the distribution of partnerships that would occur in a stable matching within

such a population. We then sample about 20 thousand households from this approximated

distribution, fit the revealed preferences model to the sample data, and obtain preference

parameter estimates. For each combination of availability and utility model, we take 1,000

samples.

We note here that populations generated using availability scenario A1 can be considered

“factual” in that they resemble the 2008 SIPP sample. In other words, both the underlying

marginal distributions of gender and education A1 and the preferences
˜
β used to generate

matchings in the simulated population are based on the 2008 SIPP. In contrast, populations

generated using availability scenario A2 are “counter-factual” as the population composition

changes while preferences of the 2008 SIPP are maintained.

In simulation study II, we simulate 1,000 populations each of size N = 60, 600 and 6, 000

with the assumption that the education and gender for individuals in all populations are

generated based on availability A1 and all individuals have a uniform homophily utility

model (Equation 2.14) for partnership. We choose the uniform homophily model for this

part of the study to avoid negatively infinite estimates at N = 60. We also make a small

modification here to the model testing procedure described previously; we do not set the

true underlying preferences
˜
β0 equal to ˜

˜
β
UH

, the preference estimates obtained by fitting the

uniform homophily model on the SIPP data. Instead, we increase the intercept term in ˜
˜
β
UH

by a magnitude of 4 to increase the number of partnerships and facilitate stable estimation

of preference parameters. For each simulated population, we use the Gale-Shapley algorithm

to obtain a stable matching and fit the revealed preferences model to the observed c̄ for the

entire population. We then compare the bias of the median parameter MLPLEs and bias-

corrected MLPLEs. at each N as N increases. We also evaluate the effectiveness of using a
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bootstrap approach for bias correction of ˆ
˜
β at different N .

For simulation study III, we simulate populations of size N = 6, 000 with the assumption

that the education and gender for individuals in all populations are generated based on

availability A1 and all individuals have a differential homophily utility model (Equation 2.15)

for partnership. For each stable population, after using the Gale-Shapley algorithm to reach a

stable matching, we sample nh = 600, 1, 200 or 3, 000 households. Similar to simulation study

II, rather than set
˜
β0 = ˜

˜
β
DH

, we increase the intercept term in ˜
˜
β
DH

by 4 units to increase

partnership rates. We fit the revealed preferences model to the sample data and compare

the performance of the mean MLPLEs and bias-corrected MLPLEs ˆ
˜
β as nh increases.

2.9 Results

2.9.1 Simulation study I.i: Population Data

For simulation study I.i, we simulate populations of size N = 6, 000 from “factual” avail-

ability A1 and “counterfactual” availability A2 and utilized the Gale-Shapley algorithm to

perform stable matching on the individuals in each simulated population. The utility de-

rived from each potential partnership was calculated based on
˜
β0 for a specified deterministic

utility function and an extreme-value Type-I distributed random error term. The utility a

woman achieves by staying single is equal to maximum value of
√
Nw random draws from

an extreme-value Type-I distribution.

The plots in Figure 2.1 show the distribution of the 1,000 bias-corrected MLPLEs for

each combination of availability scenario A ∈ {A1,A2} and two utility model specifications

(differential homophily and reduced mix). The red lines in the plots represent the true β0

preference values which induced the Gale-Shapley matchings. Negatively infinite estimates

are recognized via a point mass at value -6 with an area proportional to the number of such

estimates.

The medians and standard deviations, of parameter estimates for the match and reduced

mix models are presented in Tables A.1 and A.2. For this and all following simulation studies,
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Figure 2.1: Distribution of bias-corrected MLPLEs in simulation study I.i:

Population data with N = 6, 000 (1,000 simulations)

we compute standard deviation as a standardized version of the interquartile range. Tables

with numerical results are in Appendix A.1.

Although availability of individuals differs between A1 and A2, under both model specifi-

cations the revealed preferences model produces estimates of the true preference parameters
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which are about equal in accuracy and precision. Based on the plots for study I.i in Fig-

ure 2.1, the mean estimates of all reduced mix model parameters except β1 or 2,4 appear to

align with the true values fairly well in all availability scenarios. Furthermore, the estimates

for all parameters, with the exception of β1 or 2,4, resemble a normal distribution.

We note that when using the reduced mix model, for both availability scenarios the

distribution of β̂1 or 2,4 displays a right skew. When the population has very few or no

pairings of a certain type, the model estimates the total utility of such a pairing as very

negative, if not infinitely so. In our implementation of this model, we impose an upper

bound of 10 and a lower bound of -10 on all parameters. The high frequency of extremely

negative values (≤ −6) in the parameter estimates of β1 or 2,4 indicate that in that specific

population, there were very few or no households which contained a matching between a

woman with education level 1 or 2 and a man with education level 4.

We ran simulation study I.i with both the differential homophily and reduced mix model

specifications on a third availability scenario (results not shown), in which men outnumber

women 3:1 and educational attainment was highly asymmetric across genders. We found

that in this artificially extreme case, the occurrence of highly negative estimates of β1 or 2,4

increased. Furthermore, the estimates of β1,3 and β2,3 also showed a strong right skew. In

general, the standard deviation of the parameter estimates tends to increase as the population

becomes more skewed.

2.9.2 Simulation study I.ii: Sampling from a large population

In this simulation study, we simulate samples from large populations using availabilities

A1 and A2, each with a nominal size of N = 300 million and a household sample size

of nh = 21, 077 (equivalent to the size of the analytic SIPP sample). We find that the

resulting estimates are very robust to the population size as long as it is modestly large (e.g.,

N > 6, 000). We choose to study large populations as they are typical in demography. Brien

(1997), for example, compares model performance for three levels of population aggregation

of the marriage market: in descending order, state, metropolitan area, and county group. He
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finds that the highest, state level of aggregation best explains marriage differentials between

population subgroups.

We employ a large population approximation of stable matching outcomes in the simu-

lated population that would be observed if individuals had true preferences
˜
β0, either based

on a differential homophily or a reduced mix utility model. The plots in Figure 2.2 show the

distribution of the 1,000 parameter estimates ˆ
˜
β for each combination of simulating availabil-

ity scenario and revealed preferences model specification. The red lines in the plots represent

the true values
˜
β0 which we are attempting to recover.

The first row of Figure 2.2 shows the distributions of the parameter estimates under the

differential homophily model given large simulated population. The medians and standard

errors of the differential homophily model parameters are presented in Table A.3.

In both availability scenarios, we observe that the mean estimate for each parameter in

the differential homophily model is very close to the true value. We also note that when

simulating from availability scenarios A1 and A2, the standard errors of the parameter esti-

mates stay about the same. However, we also ran this simulation study under the artificially

extreme availability scenario described in the results for study I.i (results not shown) and

found that in that case the standard error nearly tripled for all parameters.

The second row of Figure 2.2 shows the distributions of the parameter estimates under the

reduced mix model when the simulated population size is large. Due to space constraints, we

relegate Table A.4, which shows the medians and standard errors of the parameter estimates,

to Appendix A.1. The revealed preferences model recovers the true preference parameters

˜
βRM,0 for all availability scenarios. Furthermore, the standard deviations of all parameter

estimates stay similar across the availability scenarios.

2.9.3 Simulation study II: Small population sizes

Simulation study II is carried out for two primary purposes. The first purpose is to illustrate

how the revealed preferences model can be used with population data that includes small to
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very-small population sizes. The second is to show the relationship between population size

N and estimate bias and the relationship between population size N and the effectiveness

of our proposed bias correction methodology.

We simulate 1,000 populations each of sizes N = 60, 600, and 6, 000 from availability

scenario A1. We then use the Gale-Shapley algorithm to obtain a stable matching in the

population, with true preference parameters
˜
βUH,0 based on the uniform homophily model

and the inflated intercept. The distributions of the maximum large-population likelihood

estimates (MLPLEs) and the bias-corrected MLPLEs for each N are shown in Figure 2.3.

The median estimates and standard deviations of the MLPLEs and bias-corrected MLPLEs

given in Table A.5, respectively.

The panels in the first column of Figure 2.3 shows model estimates for each parameter

when N = 60. Each panel corresponds to a single parameter and shows two distributions;

the left box plot shows the distribution of the MLPLEs and the right box plot shows the

distribution of the bias-corrected MLPLEs. The second and third columns of Figure 2.3

show the same information for N = 600 and N = 6, 000.

At each population size, the MLPLEs for both the intercept term and the uniform ho-

mophily preference term underestimates the true value
˜
βUH,0, though the bias of the latter

term is of a much smaller magnitude than of the former. For both parameters, bias decreases

as the population N increases. The standard deviation of the MLPLE estimate decreases

substantially as N increases; we see in Table A.5 that when N increases by a factor of 10, the

standard deviation decreases by a factor of approximately 1/3 for the intercept parameter

and 1/4 for the homophily parameter.

When bias correction methodology is applied, the bias in the estimates of both the

intercept and the homophily parameter decreases for all population levels. The improvement

of the estimates due to bias correction is especially clear for the intercept term. We also notice

that for both parameters the difference in the mean MLPLE and mean bias-corrected MLPLE

is greatest at N = 60. The bias-corrected MLPLEs have a slightly higher standard deviation

than the non-bias-corrected MLPLEs, though the magnitude of this different decreases with
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population size N .

2.9.4 Simulation study III: Increasing Relative Sample Size

In simulation study III, we investigate the relationship between the sample size nh and the

bias of MLPLEs when fitting the revealed preferences model, as well as the impact of bias

correction methodology on the estimates as sample size increases.

Figure 2.4 shows the distribution of parameter MLPLEs and bias-corrected MLPLEs at

each value of nh, while the medians and standard deviations of the estimates are given in

Tables A.6. At all three values of nh, the mean MLPLE estimate underestimates the true

value. We see much less bias, though still a small amount (< 0.05 units), in the estimates

for the matching preferences at each education level. The variance of the MLPLEs decreases

as the sample size increases.

After bias correction methods are used, the difference between the truth
˜
βDH,0 and the

bias-corrected MLPLE becomes very small. As with simulation study II, a consequence

of bias correction is a slight increase in variance for nh = 600 and 1200. At nh = 3, 000,

however, the impact of bias correction on the variance of estimates is ambiguous. While

the variance increases with bias correction for the intercept parameters and the parameters

indicating homogamy on the education levels 2 (high school education) and 3 (some college),

the variance of the parameters indicating homogamy at education levels 1 (less than high

school) and 4 (college degree or higher) actually decreases.

We repeated this exercise at N = 1, 000 and nh = 100, 200, and 500 (results not shown)

and obtained results that were consistent with the earlier findings. Specifically, the MLPLEs

showed some bias at all nh, with bias in the intercept MLPLEs being much higher than in

other parameters. The bias-corrected MLPLEs were closer estimates of the true
˜
βDH,0. As

nh increased, the variance of both the MLPLEs and the bias-corrected MLPLEs decreased.

In general we find that as long as the sample size is large enough to ensure non-zero entries

in c̄ are rare, the bias-corrected MLPLEs have high accuracy and improve in precision as nh

increases.

41



2.9.5 Confidence intervals and coverage probabilities

To supplement the findings in simulation study I.ii, we calculate 95% confidence intervals

for bias-corrected MLPLEs based on samples from simulated populations of size N = 300

million, and we compare the empirical coverage rates of the true parameter values to the

95% threshold.

To calculate empirical coverage rates, we simulate S = 200 samples from large popu-

lations from availability A1. For each sample, we fit the reduced mix model and produce

analytical 95% confidence intervals based on the approximated Hessian matrix, as detailed

in Section 2.7. We additionally implement the basic, percentile, and modified studentized t

bootstrap methods also discussed in Section 2.7 to construct empirical 95% confidence inter-

vals. An illustration of the coverage results from a single set of 200 simulations are presented

for selected parameters in Figures A.1 and A.2 in Appendix A.2.

The process of simulating 200 populations and constructing confidence intervals for each

simulation was repeated 40 times, so that we observed an empirical coverage rate across 200

simulations 40 times. We show the mean coverage rates of the reduced mix model parameters

using the various confidence intervals in the right-hand panel of Figure 2.5. The dotted

black line at 0.95 denotes the 95% threshold we aim to achieve. The analytical confidence

intervals appears to be the most volatile; across the 14 parameters estimated in the reduced

mix model, the mean coverage rate of the analytical confidence intervals ranged from 19.3 to

99.2%. The three bootstrap confidence intervals have a more consistent performance; within

each interval type, the range of the mean coverage rates across the parameters is about 2

percentage points. The basic and percentile bootstraps both display undercoverage, with

mean coverage rates around 90% across parameters. The studentized t interval achieves

mean coverage rates closest to the 95% target.

We pay special attention to the coverage rates for the β1 or 2,4 parameter. This parameter

corresponds to a preference for couples with a female of education level 1 or 2 and a male

of education level 4. As noted earlier, the number of couples of this type in the SIPP data

and in the simulated samples was very small. The mean coverage rates of the percentile,
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basic, and analytical confidence intervals are all lowest for this parameter, likely because of

the low count of such couples in the data. We note, however, that the performance of the

studentized t interval does not appear to be affected by the low couple count. In fact, the

mean coverage rate of the studentized t interval for β1 or 2,4 is 95.3%.

The coverage rates shown Figure 2.5 were produced based on populations simulated from

the “factual” availability scenario A1. We repeated the procedure to evaluate confidence in-

terval coverages using populations simulations from the “counterfactual” availability scenario

A2 (results not shown. We found no evidence that the change in population availabilities

impacted the coverage rates of the bootstrap confidence intervals.

We also repeated this process to evaluate the performance of confidence intervals for dif-

ferential homophily model parameters. In this case, we found that the analytical confidence

intervals were two to three times wider than the student t intervals and captured the true

value 100% of the time for all parameters, indicating overcoverage. We again observed that

the studentized t confidence intervals consistently achieved the highest coverage rate of the

bootstrap procedures. The basic and percentile bootstrap 95% confidence intervals show

slight undercoverage, falling between 89.6% and 91.3% coverage. A plot of mean coverage

rates by analytical and bootstrap confidence intervals for the differential homophily model is

provided in the left panel of Figure 2.5 under Appendix A.2. We show coverage results from

a single set of 200 simulations for selected parameters in the differential homophily model in

Figures A.3 and A.4 in Appendix A.2

2.10 Discussion

The ability to extract preferences separably from availabilities is a key feature of the revealed

preferences model and methodology which we propose in this paper. In simulation study

I.i we simulate a small population (N = 6, 000) and run the Gale-Shapley algorithm to

obtain a stable matching. Given statistics of the types of matchings, we are able to compute

parameter estimates which are very close to the true values. We note that Logan (1996b)
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was able to show a similar result for his initial special case of the model.

In simulation study I.ii, we simulate a large population and obtain an approximate dis-

tribution of household types in a stable matching. We sample couples and individuals from

this matching and then maximize (2.10) over the sample data to obtain parameter estimates,

showing that the method accurately recovers true preference parameter values even under

various different availabilities of prospective partners. In both simulation studies I.i and I.ii,

the distribution of the parameter estimates appears Gaussian in most cases. The standard

errors decrease when the population size is larger, as in simulation study I.ii.

When there are very few or none of a certain type of couple in the data, the total utility

of such a pairing is estimated be negative infinity. As an example, we refer to the estimates

of β1 or 2,4 in simulation study I.ii, shown in the first column of Figure 2.2. If we observed

no couples in which a woman has education level 1 or 2 and the man has education level 4,

then the parameter estimate for the utility model term indicating such a match is negative

infinity. This artifact is a form of separation also seen for generalized linear models (Heinze

and Schemper, 2002). The high concentration of parameter estimates for β1 or 2,4 under -6

correctly captures this and reflects the lower utility corresponding to such pairings.

For both availability scenarios A1 (“factual”) and A2 (“counterfactual”) under the dif-

ferential homophily model, the standard errors of the estimates in simulation study I.ii are

smaller than the corresponding values in Simulation study I.i (small population scenario).

As in simulation study I.i, the distributions of the parameter estimates appear to follow a

Gaussian distribution.

In simulation studies II and III, we investigated the performance of the revealed preference

model under different population and sample sizes. In simulation study II we assumed access

to population data.

We found that for different population sizes N , the bias-corrected MLPLEs provided ac-

curate estimates of preference parameters with the variance of estimates decreasing inversely

with N . This is a significant finding as the previous formulation of the model proposed by

Menzel (2015) required n/N to be small. We show that even when n/N = 1, the bias-
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corrected MLPLEs obtained using bootstrap methods recover true preference for pairings.

The bias-corrected MLPLEs are similarly effective in reduced estimate bias in simulation

study III, in which we obtain samples of different sizes from populations of N = 6, 000 in-

dividuals. We note again that bias in the MLPLEs is mitigated through the bootstrap bias

correction. Together, the findings of simulation studies II and III provide strong support

for the use of bias-corrected MLPLEs to estimate preferences in revealed preferences models

and show that accurate estimates can be achieved for a wide range of n/N .

We also evaluate different methods of accounting for uncertainty in our estimates. Based

on results in Section 2.9.5, we believe that the approximation of the Hessian matrix leads

to volatile analytical confidence intervals which deviate from the threshold coverage rate

of 95%. These confidence intervals are often too wide or narrow to be useful. We also

find that among the three bootstrap based methods for producing confidence intervals, the

mean coverage probabilities of the studentized t interval were the closest to 95%, while the

percentile and basic method-based confidence intervals demonstrate slight undercoverage.

The revealed preferences model can be used to make inferences which are particularly

useful in demographic studies. For example, the preference parameter estimates when we fit

the reduced mix specification of the revealed preferences model to the 2008 SIPP data are

given in column 3 of Table A.2. The estimated utility of pairings in which both individuals

have the same education level is substantially higher than it is for pairings where individuals

have different education levels. Homophilous behavior is expected by researchers who study

matching problems. It is also consistent with the findings of Logan et al. (2008), who

presented results that implied a preference for homophily in race and religion in heterosexual

marriages.
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Figure 2.2: Distribution of bias-corrected MLPLEs in simulation study I.ii:

Sample data with nh = 21, 077 from a population of N = 300 million (1,000 simulations)
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Figure 2.3: Simulation study II: Distribution of uniform homophily MLPLEs and

bias-corrected MLPLEs for different population sizes N ; 1,000 simulations
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Figure 2.4: Simulation study III: Distribution of differential homophily MLPLEs and

bias-corrected MLPLEs for different nh, where N=6,000; 200 simulations
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Figure 2.5: Mean empirical coverage probability by bootstrap confidence intervals for

model parameters (40 sets of 200 simulations from Availability scenario A1)
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CHAPTER 3

Goodness-of-fit and model selection for revealed

preferences models

An advantage of the revealed preferences model proposed in Chapter 2 is that it allows for a

broad spectrum of possible model specifications for the partnership surplus utility function

W (referred to as the marital surplus model, joint surplus model, or simply surplus model,

hereafter) in the two-sided market which motivates the preferences-driven component of the

matching. Examples of such model specifications are discussed in Section 2.8.2. The choice

of model specification may be driven by prior knowledge, logic, or intuition. By following

procedures to obtain the MLPLEs of the preference parameters, we are able to identify the

“best” model within that model class based on the observed data.

Often, however, there are multiple plausible specifications that a researcher may consider,

and the best one is not immediately clear. A natural follow-up question for researchers is how

to evaluate candidate models across classes and choose the “best” one, while acknowledging

that the “best” model almost surely is not the correct data-generating process, which is too

complex to be specified. For example, given the MLPLEs for a uniform homophily surplus

model (Equation 2.14) and a differential homophily surplus model (Equation 2.15) for the

2008 SIPP data, how does one choose the best option?

To assess this, we may consider the plausibility of the different models given the data.

This plausibility can be measured in a number of ways, such as the likelihood that the

hypothesized utility model would produce a matching like the one observed in our data, the

difference between some feature of the observed matching and the expectation of that feature

under the hypothesized model, or the amount of variation in the observed data that can be
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explained by the model. Collectively, these attributes all describe the model’s“goodness-of-

fit” to the data and provide a tool for evaluating a model’s performance both individually and

relative to competing models, so that researchers can ultimately choose the most appropriate

model for their study.

To the best of my knowledge, there are currently no proposed methods for model selection

in the existing literature studying two-sided revealed preference models. To address this

need, in this chapter I initiate the development of procedures for testing goodness-of-fit for

RPMs and propose several procedures for model selection while considering both accuracy

in capturing true matching behavior and preference for parsimony.

In Section 3.1 I review the traditional conceptualization of goodness-of-fit and discuss

the limitations of the traditional approach in practical settings. In Section 3.2 I develop

the concept of model classes in the context of the revealed preferences model as it pertains

to model selection. To facilitate the following discussion of goodness-of-fit procedures, in

Section 3.3 I suggest various specific statistics that can be used as raw metrics of deviance

between the observed data and the expected outcome under a given model. Based on these

measures, I propose basic tools for model selection across several candidate models by using

information criterion scores and information gain in Section 3.4. In Section 3.5 I propose a

re-conceptualization of significance testing in the context of the two-sided matching problem

which can be used for additional goodness-of-fit testing when census data is available for

small populations. I describe two simulation study procedures in Section 3.6 to assess the

performance of the proposed procedures under different conditions and validate approaches.

The results of these simulation studies and related discussion are in Sections 3.7 and 3.8.

In Section 3.9 I propose additional visual tools for assessing goodness-of-fit which, when

applied alongside numerical measures, allow for a better understanding of lack of fit. I close

the chapter with a discussion in Section 3.10 of general findings, the state of goodness-of-

fitness testing for RPM following the proposed methods in this chapter, and steps for further

development.
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3.1 Motivation

Goodness-of-fit testing can be broadly defined as a statistical technique used to determine

whether a certain data-generating process could have produced an observed set of data.

In the traditional goodness-of-fit test, the null hypothesis explicitly states that a particular

modelWH0 is the true data-generating process. The researcher computes a test statistic that

measures the deviance d between the observed data and data that would be expected under

the null hypothesis. If the test statistic is small, it suggests a good fit between the observed

and expected data, while a large test statistic indicates a poor fit. The researcher may also

conduct significance testing by comparing d from the observed data to the distribution of

deviances D0 which would occur across samples if model WH0 were the true data-generating

process and compute a p-value representing the probability of observing the data given the

null hypothesis, e.g. p = P(d ≤ D0). Based on this p-value, the researcher may reject or

fail to reject the null hypothesis that model WH0 is the true underlying data process. A

test with confidence level (1 − α)% will reject the null hypothesis when p < α. If the null

hypothesis is correct, the distribution of p values over repeated samples is uniform.

The interpretation of the null hypothesis and subsequent analysis in goodness-of-fit test-

ing varies based on the research question at hand and the conditions under which the study is

being conducted. For example, in the heterosexual marriage market within a two-sex popu-

lation, the researcher may know the distribution of marriage types in a large population and

wish to test the hypothesis that an observed sample could have been randomly selected from

this population. If all observable agent characteristics are discrete, then this situation is very

similar to comparing two categorical distributions. We may use a chi-squared goodness-of-fit

test to compare the observed distribution of household types to the expected distribution

given the population.1

In an alternate and perhaps more interesting case, the researcher may observe a sample

1We note here that the assumption of independent observations required for the validity of chi-squared
goodness-of-fit tests is violated, as there are subtle interactions and effects of competition between agents in
the matching market. This is discussed further in Section 3.3.
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of married couples and singletons and wish to test the hypothesis that a certain surplus

function motivated the matches in the observed data. In this case, the researcher can derive

the expected distribution of partnership types that satisfies Equations 2.7 and 2.8 under the

null preferences model and the known availability of different agent types. Once again, the

chi-squared goodness-of-fit test can be used to compare the observed partnership distribution

to the expected distribution under the model to obtain the likelihood that the observed

sample could have resulted from the hypothesized data-generating process.

These examples of applications of goodness-of-fit testing to two-sided matching market

problems rely on the assumption that the researcher is able to either observe the distribu-

tion of partnership types in a full population or hypothesize the exact utility function that

motivated the partnership formation process.

However, once we move beyond these unlikely scenarios, there are major limitations to

practical applications of traditional goodness-of-fit testing to two-sided matching markets.

In most realistic scenarios, the true utility model is unknown and/or too complex to be

specified. Instead, the model specified under the null hypothesis is only an estimate of this

truth, often chosen exogenously through inference procedures such as MLPLE. Performing

significance testing in the traditional way to test the hypothesis that the null model is

correct is not very useful because the null model is already known to be incorrect and thus

will almost always be rejected. The goodness-of-fit test described above gives no indication of

the potential usefulness of the hypothesized model. Furthermore, even with the rejection of

the null model, the direction of the lack of fit remains ambiguous; that is, it can be difficult to

ascertain whether the model was over- or under-specified relative to the true data-generating

process.
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3.2 Choosing WH0 for the null hypothesis

To facilitate the discussion of goodness-of-fit in this chapter, I first discuss the concept of

model class2 in the context of revealed preferences in greater detail. Let W refer to the

set of all possible (linear) surplus models. Then, a “model class” Wc ⊆ W is a subset

of models defined by some constraint. Examples of model specification are the uniform

homophily (UH), differential homophily (DH) and saturated mix (SM) models described in

Section 2.8.2. We recall that the MLPLE is computed over such a model class.

Each of these specifications comes with a different set of restrictions. For example, the

saturated mix model class WSM (Equation 2.16) is the least restrictive linear specification

and allows each possible partnership combination of (x, z) for all x ∈ X , z ∈ Z to have its

own deterministic utility.

The differential homophily model class WDH (Equation 2.15 introduces the assumption

that individuals get no additional deterministic utility by marrying a partner of a different

type, relative to staying single. It is only possible to achieve a shift in deterministic utility

if the individuals in the marriage have the same type, and the magnitude and direction of

the shift depend on the value of the type itself. Formally,
˜
β is constrained such that the

deterministic shift in partnership utility βx,z = 0 for all partnerships between women of type

x and men of type z where x ̸= z.

The uniform homophily class WUH (Equation 2.14) further constrains the set of models

considered by assuming that the additional deterministic utility a partnership between a

type x woman and type z man generates when x = z is the same regardless of the value of

z or z. Thus, in addition to the constraint which defines the differential homophily class,

a second constraint is imposed stating that if x = z and x′ = z′, then βx,z = βx′,z′ for all

(x, x′) ∈ X and (z, z′) ∈ Z.

Each model class is a continuous N -dimensional space, where N is the number of free

model parameters. Then WUH is a subspace of WDH, which is itself a subspace of WSM.

2In this chapter, the terms “model class” and “model specification” will be used interchangeably.
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Theoretically, then, if marriages in an observed closed population were truly motivated by

a UH surplus model, then the MLPLEs of the preference parameters should be equivalent

regardless of whether we fit a UH or SM model to the data. But then, why not always choose

to fit the SM model? Computation of the MLPLE becomes more expensive as the number of

parameters in the marital surplus model to be estimated increases and requires more data to

avoid sparsity issues. Overfit models may also generalize poorly to new data from the same

population and lead to erroneous conclusions if data is simulated from the overfit model for

future study. A common goal in goodness-of-fit testing is to choose a model that balances

good fit to the data with parsimony.

3.3 Deviance metrics for revealed preferences models

An important decision for any goodness-of-fit analysis and for the model selection procedure

discussed in the previous two sections is the choice of metric used to measure deviance

between observed and expected data. The difference between the observed and expected

data in a two-sided matching market can be assessed in several different ways. We recall

that in the case of a market where agents have discrete types, we can summarize the observed

data using the sufficient statistic c̄, representing the frequency of marriage and singleton types

across sampled households. (See, for example, Figure 1.1b.) We aim to compare the observed

frequency distribution to ˆ̄c, the frequency distribution that which would be expected under

the hypothesized model. Alternately, we can compare the observed and expected probability

mass distributions, denoted f̄ and ˆ̄f , respectively.

Let X = |X | denote the number of possible observable types for women and Z = |Z|

denote the number of possible observable types for men, We note that the frequency distribu-

tion c̄ (and the corresponding probability distribution f̄) of unique household combinations

in the matching market resembles an observation of a vector of counts from a multinomial

distribution that has

T = X × Z +X + Z (3.1)
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discrete outcomes, where X×Z is the number of possible combinations for types in a married

household, and X and Z are the number of possible types of singleton female households

and singleton male households, respectively. An important difference between data from a

multinomial distribution and matching market data is that in the former, observations are

completely independent, so that the outcome for one “trial” (e.g. the marital or singleton

type of a sampled household) is unrelated to the outcome of all other trials. Within the

two-sided matching market setting where we apply the revealed preferences model, however,

there is interaction and competition between individuals so that the count outcomes for each

household type share some interdependence. If, as Menzel (2015) asserts, this interaction

effect becomes negligible in asymptotically large populations, the consequences of violating

the independence assumption are not significant. Thus, we propose that many deviance

metrics used for equivalence testing of multinomial distributions can also be applied as test

statistics for revealed preferences models, though the distributions of these statistics in two-

sided matching markets may differ from the distribution that would occur if observations

were truly completely independent.

All of the deviance metrics which I will discuss below broadly measure the distance

between observed and expected data but vary in computation. There are some metrics that

might be useful in special cases, such as when census data for a population with a fixed

composition is available. However, this case requires more sophisticated computational tool

and is therefore relegated to a brief discussion in Appendix B.2

Because we mostly deal with empirical distributions of the deviance metrics rather than

the asymptotic ones in our proposed procedures, the analytical properties of the statistic

are less important for our decision-making and the choice of deviance metric may be more a

matter of personal preference. So long as the deviance values used to compare two models

are computed using the same metric, they should all lead to similar conclusions. For model

selection, as discussed in Section 3.4, we may prefer a metric that additionally considers

model complexity. I explore choices for the deviance metric below.
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3.3.1 Power-divergence statistics

Suppose we consider a multinomial distribution with n trials and T mutually exclusive

possible outcomes. For category t ∈ {1, . . . , T}, c(t) represents the observed frequency in

that category and ĉ(t) represents the expected frequency so that
∑

t c(t) =
∑

t ĉ(t) = n,

where n is the sample size. The power-divergence class of statistics takes the form

2nIλ =
2

λ(1 + λ)

T∑
t

c(t)
[(c(t)
ĉ(t)

)λ
− 1
]
, λ ∈ R

If the null hypothesis is true, then as n → ∞, the distribution of a statistic in the power

divergence class approaches χ2
N−p−1.

The optimal choice of λ is explored by Cressie and Read (1984), who recommend any

λ ∈ [0, 11
2
] when there is no information about the alternative hypothesis. Two well-known

statistics in the power divergence family which fall in Cressie et al.’s recommended range

are the X2 statistic (λ = 1) and the likelihood ratio statistic G2 (λ = 0). We define these

statistics mathematically below:

X2 =
T∑
t

(c(t)− ĉ(t))2

ĉ(t)
(3.2)

G2 = 2
T∑
t

c(t) ln
c(t)

ĉ(t)
(3.3)

The X2 and G2 statistics correspond to the χ2 and G-tests, respectively, that are com-

monly referenced in goodness-of-fit literature. For large sample sizes, X2 and G2 lead to

similar conclusions in goodness-of-fit testing. Because the distribution of G2 under the null

hypothesis is a closer approximation to the χ2 distribution, particularly for small samples,

it has been increasingly recommended over the X2 statistic. However, because we will com-

pare the observed test statistic to the empirical approximation of the distribution under the

null rather than a theoretical distribution, the differences between the two test statistics in

practice are insubstantial.

A limitation of statistics in the power-divergence family is that they both rely on a large

sample size but become useless if the sample size is too large. For large samples, tests
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based on power divergence statistics will reject almost any null hypothesis, even when the

deviation between the observed and expected values is small. (Simonoff, 2003, Section 4.4)

Furthermore, likelihood-based statistics such as G2 are sensitive to outliers. (Simonoff, 2003,

Section 4.7)

3.3.2 f-divergence statistics

In the previous section we considered statistics which measure the divergence between the

observed and expected frequency distributions. Now we consider measures of divergence

between observed and expected probability distributions.

The class of f -divergence functions was introduced by Renyi (1961) and usually refers to

divergences between continuous distributions, although the statistics in this family can be

generalized to discrete distributions. An advantage of statistics in the f -divergence class to

power-divergence statistics is that they are more robust to outliers.

Arguably the best-known divergence in the f -divergence family is the Kullback-Leibler

(KL) divergence, which measures entropy as the divergence of one probability distribution P

from anotherQ. In our notation, we use f̄ in place of P for the observed distribution, and ˆ̄f in

place to Q to represent the model, or expected, distribution. KL divergence was introduced

as a measure of relative entropy and can be interpreted as the expected difference in the

logarithmic probability of an event between distributions f̄ and ˆ̄f , given that the event has

true (observed) probability distribution f̄ . For discrete distributions defined over a sample

space of K possible outcomes, the KL divergence is defined as

DKL(f̄ || ˆ̄f) =
T∑
t

f(t) log

(
f(t)

f̂(t)

)
. (3.4)

The terms f(t) and f̂(t) denote the observed and expected probability mass in the tth

category, respectively.

KL divergence is not symmetric, e.g. DKL(f̄ || ˆ̄f) ̸= DKL(
ˆ̄f ||f̄) and has a range [0,∞).

Additionally, the KL divergence may be inflated when f̂(t) is small for some t. An alternate

f -statistic is the squared-Hellinger distance, which is both symmetric and bounded by [0, 1].
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The squared-Hellinger distance between two discrete distributions f̄ and ˆ̄f is defined as

DHS =
1

2

T∑
t

(
√
f(t)−

√
f̂(t))2. (3.5)

The squared-Hellinger distance is equal to the squared Euclidean distance between
√
f̄ and√

ˆ̄f , with 1
2
acting as the scaling factor that restricts the Hellinger distance to the desired

range.

3.3.3 Additional goodness-of-fit metrics

Of common goodness-of-fit criteria for model selection, the Akaike information criterion

(AIC) and Bayesian information criterion (BIC) scores are two well-known options that

consider model complexity, with smaller scores generally indicating better models. In Sec-

tion 2.2.1, we presented an approximation of the log-likelihood for a given model in Equa-

tion 2.10. For brevity, we notate the pseudo-log-likelihood of the observed data under esti-

mated model Ŵ as simply ℓ(Ŵ ). When model-fitting using the proposed revealed preferences

procedure from Chapter 2, we choose some model class Wc and compute the MLPLE as the

model Ŵ ∈ Wc which maximizes ℓ(Ŵ ). The AIC score computation incorporates both ℓ(Ŵ )

and the model complexity by considering the number of model parameters estimated k.

AIC(Ŵ ) = 2k − 2ℓ(Ŵ ). (3.6)

Because lower AIC scores are preferable, the k term acts as a penalty for models which have

achieved high log-likelihood values by overfitting on multiple nuisance parameters.

BIC is a similar computation which additionally considers the number of sampled units

n (either sampled households for stock-stock sampling or sampled individuals for stock-flow

sampling) in the data:

BIC(Ŵ ) = log(n)k − 2ℓ(Ŵ ). (3.7)

In effect, the penalty imposed by BIC for model complexity is greater than that imposed by

AIC when the sample size is greater than 7.
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Burnham and Anderson (2004) present a comparison of AIC and BIC scores and their

performance in different use cases. AIC is usually suggested for model selection when the

goal is prediction, i.e. projecting marital outcomes in a population with changing population

characteristics or composition. For more general inference and interpretation purposes, the

BIC may be more appropriate. BIC has important theoretical properties when the true data-

generating process is represented within the set of candidate models. Because BIC assigns

greater penalties to complex models when sample sizes are large, as is often true given two-

sided matching data, it should theoretically detect over-parametrized models better than the

AIC.

A challenge with both AIC and BIC scores is that the conclusion about the “best” model

can be subjective. While we generally prefer models with lower scores, when the difference

in the scores of two competing models is small, the choice between models may depend on

outside knowledge and other considerations within the context of the research question. In

this case, what constitutes a “small” difference may not be defined by an absolute threshold.

Burnham and Anderson (2004) suggest soft guidelines for comparing models based on the

differences in their AIC scores, proposing that when the difference between the AIC scores

of two models is less than or equal to 2, the models may be deemed similar.

3.4 Comparing models by raw deviance score and information

gain

Using the deviance metrics just described, we can rank candidate models in terms of use-

fulness by comparing observed data is to data expected under the model. Given models

{W1,W2, . . .}, we can simply compute deviances {dW1 , dW2 , . . .}. A simple analysis might

conclude that the model that minimizes dW is the best one. However, for statistics in the

f -divergence and power-divergence classes, when one candidate model class is nested in an-

other, this method favors the more complex class. For example, suppose that Ŵc and Ŵc+

are the MLPLEs from model classes Wc and Wc+, respectively, for a given sample, and that
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Wc ⊆ Wc+. Then it is almost always true that dWc ≤ dWc+ , and the researcher may almost

always choose Wc+ over Wc.

A slightly more sophisticated analysis will consider the trade-off between decreasing

model deviance and increased model complexity. This requires a deviance metric that ac-

counts for model complexity, such as the Akaike information criterion (AIC) or Bayesian

information criterion (BIC) score.

Alternatively, we may perform model selection based on a more informal analysis of

complexity-deviance trade-off by assessing the decrease in deviation facilitated by a given

marital surplus model relative to the maximum possible deviance. To compute the maximum

possible deviance, we consider a “null” marital surplus model where agents are completely

indifferent to all potential partnerships based on the deterministic utility. In other words, the

surplus model consists only of a deterministic intercept term and an idiosyncratic component,

where the intercept term represents the overall market preference for partnership relative to

staying single. 3 After fitting the intercept-only model, the maximum possible deviance dmax

is equal to the deviance between the observed data and the data expected under this model.

Let IG(W ) denote the information gain achieved about the data-generating process given

modelW , relative to a completely naive model. We can decompose dmax into the information

gain achieved by Then, we can compute the information gain IG(W ) that model W provides

about the data-generating process as the reduction from to maximum possible deviance dmax

achieved under model W . We divide IG(W ) by 1/dmax to scale the value between 0 and 1.

This scaling also allows us to think of IG(W ) as the proportion of the maximum deviance

reduced by model W :

IG(W ) =
dmax − dW
dmax

, 0 ≤ IG(W ) ≤ dmax. (3.8)

3We could also consider a model where agents are completely indifferent to all potential partnerships and
the choice of remaining single. In this case, the deterministic quantities of the surplus function Wij and
the singlehood utility functions Ui0 and Vj0 are all fixed at 0, and the model requires no “fitting” because
there are no parameters to estimate. In most realistic settings, the choice of “null” model between these
two options generally will not impact the conclusion of the analysis, but the intercept-only model is more
aligned with traditional conceptualizations of a null model, e.g. when considering F -tests.
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The true model W0 would yield a deviance of 0 between the observed and expected data, so

that IG(W0) = 1. A large IG(W ) corresponds to a smaller deviance between the observed

data and the data expected under model W and an overall closer model fit. In general,

the smaller the remaining deviance between the observed and expected data given model

W , the better we believe the model to be. However, in some cases, a model Wc with a

simpler specification may already cover a lot of the information gain. The added benefit of

a more complex model Wc+ may appear to have a high information gain when compared to

the maximum possible deviance, but may actually have limited added value when compared

to the simpler model. We can think of rIG(c+, c) = IG(Wc+) − IG(Wc) as the relative

information gain achieved by modelWc+ compared toWc. When rIG is small, the researcher

may decide that the relative information gain of the more complex model is minimal and

that the simpler model is sufficient for their purposes.

There are no firm rules or benchmarks regarding the threshold at which relative informa-

tion gain becomes small enough that it can be considered “negligible”; this usually depends

on the context of the research question. Although the information gain procedure is a more

informal way of model selection with consideration of parsimony than the use of AIC and

BIC scores, it has better interpretability and can therefore be a useful measure to consider.

3.5 Proposed re-conceptualizations of goodness-of-fit significance

testing for two-sided markets

In Section 3.1 I described traditional signifance testing for goodness-of-fit and its limitations

when applied to two-sided matching market models. In this section I propose an alternate

way to think about goodness-of-fit that considers how well a particular model class reflects

the true partnership-generating process. The proposed method can be used to refine the

set of candidate models to the best choice(s). I first provide a general overview of the test,

and then go into detail about the computation of the null distribution of the test statistic,

to which the observed test statistic is compared and which is generally difficult to compute
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analytically. Prior to going into these details, however, it is important to note that this

proposed test still suffers from many weaknesses and is only intended as a starting point for

developing improved significance testing procedures for RPMs.

In the proposed goodness-of-fit significance test, the null hypothesis asserts that the

true partnership surplus model W0 is a member of some class WH0. The test statistic is

the deviance d′ between the observed data and the data expected under ŴH0 ∈ WH0, where

ŴH0 is the optimized model estimate (e.g. MLPLE) from class WH0. Options for computing

d′ are discussed in Section 3.3. By design, ŴH0 is equivalent to the model under the null

hypothesis in traditional goodness-of-fit testing. Thus the test statistic d′ in this test is

equivalent to the test statistic d as defined in Section 3.1.

Next we obtain the distribution of the test statistic D′
0 which would occur if the null

hypothesis is true. Each draw from this distribution represents a single instance of the

deviation between data observed in a sample drawn from Ŵ0 and the data expected under

model Ŵs, where Ŵs represents the MLPLE over WH0 given sample s. Computation of the

null distribution of D′
0 is often not feasible and can be estimated empirically, as discussed in

Section 3.5.1.

We compare the observed test statistic d′ to the distribution under the null hypothesis

for D′
0. To proceed with significance testing, we compare the p-value P(d′ ≤ D′) to some

Type I error threshold α and accept or reject the null hypothesis. As previously, when the

null hypothesis is true, the p-value theoretically follows a uniform distribution.

3.5.1 Computation of the null distribution of test statistic

The distribution of deviances D′ under the null hypothesis is usually difficult to compute

analytically and can instead be estimated empirically. (Simonoff, 2003, Section 4.4.3). To do

this, a bootstrapping method may be employed. First simulate B draws of n-sized samples

from Ŵ0, where n is the size of the observed sample. By simulating from ŴH0, we ensure that

all B simulated samples are generated from the hypothesized model class WH0. Define f(b)

as the statistic observed in the bth iteration of simulated data - in the case of the matching
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market, the frequency distribution of household types c̄. Now, compute Ŵ(b) as the MLPLE

model from WH0 given the bth simulated sample, and let f̂(b) be the expected distribution

under Ŵ(b).

By repeating this procedure B times, we obtain B observed statistics from the simu-

lated matchings {c(1), c(2), . . . , c(B)} and B expected statistics {ĉ(1), ĉ(2), . . . , ĉ(B)} given the

MLPLEs from the null family over the simulated data. We can now compute the divergence

d′(b) between c(b) and f̂(b) for b ∈ [1 : B]. As B grows large, the empirical distribution of

{d′1, d′2, . . . , d′B} converges to D′.

3.5.2 Advantages and disadvantages of the proposed goodness-of-fit test

The proposed goodness-of-fit test asks the question, if the model class WH0 includes the

true data-generating process for a given sample, how often would we observed a deviation

this extreme between the observed data and the data observed under the MLPLE model

from that same class? This question is broader than the traditional question of whether

the MLPLE model ŴH0 itself is correct and more likely to yield useful results. Significance

testing is useful for quantifying uncertainty when answering this question and communicating

confidence through traditional statistical language, including p-values and confidence levels.

An advantage of significance testing is that theoretically, it should have high sensitivity to

over-parametrized models; that is, it should be able to detect cases where the model family

can be further restricted. Consider, for example, a market where the true surplus utility

model is in the uniform homophily class WUH:

W = WUH
ij (xi, zj|

˜
βUH) = β0 + βUHI{xi = zj}+ ηij + ζij. (3.9)

The identical surplus utility model can also be written as a member of the differential

homophily class WDH:

WUH
ij (xi, zj|

˜
βUH) = WDH

ij (xi, zj|
˜
βDH) = β0 +

∑
T

βUHI{xi = zj = t}+ ηij + ζij (3.10)

where T = X ∪ Z.
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Just as WUH ⊂ WDH, the deviances D′
UH that would occur over repeated samples from

models in WDH are a subset of the deviances WDH that would occur over repeated samples

from models in WDH. Since both classes are technically correct in that they include the

true partnership surplus, we might expect that the significance test will usually fail to reject

either class under the null hypothesis. However, the distribution of D′
DH is narrower than

the distribution of the D′
UH.

If we compute the same MLPLE for a given data set by fitting models from UH and DIH

classes, we would observe the same test statistic d′. However, the distributions of the test

statistic under the null hypothesis to which we compare dDH are different. Since D′
DH has a

narrower distribution, P (d′ ≤ D′
DH) ≤ P (d′ ≥ D′

UH). Therefore, we are more likely to reject

the null hypothesis of the DH class than we are the UH class.

I re-iterate here that model specifications like UH, DH and SM are rarely true generating

processes themselves, but estimates of a far more complex true surplus function. The pro-

posed significance testing procedure works when the candidate model classes could plausibly

include the true match-motivating function, but this scenario is extremely unlikely; in real-

istic two-sided matching markets that have surplus functions too complex to be reasonably

specified. Thus, the procedure may still lead to the rejection of most model classes.

Additionally, in simulation studies, the significance testing using the proposed method

appeared to work well when population sizes were small (N < 1, 000). However, performance

deteriorated when samples were drawn from larger populations. Therefore, significance test-

ing using this procedure is only recommended with the population size is small.

3.6 Simulation Studies

The purpose of the simulation studies in this chapter is to evaluate the performance of the

different deviance metrics and methods for assessing goodness-of-fit that are proposed in

this chapter. I conducted several experiments under different conditions to see how different

methods performed in response to such changes. The findings from these experiments have
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been organized into two separate simulation studies, which we refer to as Simulation Study I

and Simulation Study II. Simulation Study I focuses on model selection through comparison

of raw deviance statistics, information gain, and information criterion scores. Simulation

Study II focuses on significance testing. 4

All experiments were conducted using synthetic data. In this chapter, I will first describe

how I constructed the synthetic data used for the simulation studies and then discuss the

procedure for each study in Section 3.6.2. Results and related discussion of the simulation

studies are presented in Section 3.7 and Section 3.8.

3.6.1 Synthetic Population Data

The simulation studies use data from synthetically-generated populations. Every synthetic

population consists of two distinct sides of the market, female and male. Within each

gender, agents come in one of 4 types T = {1, 2, 3, 4}. The gender distribution, as well as

the marginal distributions of agent type by gender, are parameters of the superpopulation

from which simulated populations are realized. These are defined in Table 3.1. To simulate a

synthetic population, I use the superpopulation availabilities to sample a random assortment

of N individuals. These individuals are in the realized synthetic population.

Within each population, a stable matching is achieved using the Gale-Shapley algorithm,

based on either the UH marital surplus utility model WUH described in Table 3.2 or the DH

marital surplus utility model WDH described in 3.3. According to model WUH, a partnership

between any two individuals results in a marital surplus of -1.5 units, relative to the baseline

deterministic utility for remaining single. If the individuals in the partnership have the same

type, the deterministic surplus utility generated by the marriage shifts an additional 2.8

units in the positive direction. Formally,

WUH(xi, zj|
˜
β) = −1.5 + 2.8× I{xi = zj}. (3.11)

4As a brief digression, I note that some results from additional simulation studies are not presented in the
main body of this chapter as they are still in development and require more work. While I will not detail these
experiments formally in this chapter, I include some brief notes on preliminary findings in Appendix B.1.
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Table 3.1: Gender and Type Availability Distributions in Superpopulations for synthetic

data

Males Females

Type % Population % of Males % Population % of Females

1 9.00 20.0 8.25 15.00

2 15.75 35.0 16.50 30.0

3 13.50 30.0 19.25 35.0

4 6.75 15.0 11.00 20.0

Total 45.0 100.0 55.0 100.0

Equation 3.11, along with randomly-generated taste-shifters, determines the stable matching

in each population in the first set. In this way, I constructed 200 stable matchings motivated

by WUH each for populations with size N ∈ {1000, 5000}.

I repeated this procedure for synthetic populations in which a stable matching was

achieved based on WDH, where

WUH(xi, zj|
˜
β) =− 1.5 + 3.0I{xi = zj = 1}+ 2.4I{xi = zj = 2}+ (3.12)

2.5I{xi = zj = 3}+ 3.3I{xi = zj = 4.4}.

I again generate 200 such synthetic stable matchings for each population sizeN ∈ {1000, 5000}.

In the simulation studies, I denote a single synthetic population using the notation S
(b)
N,w,

whereN ∈ {1000, 5000} refers to the number of individuals in the population, w ∈ {UH,DH}

refers to the partnership surplus utility model which motivated the stable matching in the

population, and b ∈ 1, . . . , B is the index of the simulation. A synthetic population with w =

UH has a stable matching motivated by WUH in Equation 3.11, and a synthetic population

with w = DH has a matching motivated by WDH in Equation 3.12.
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Table 3.2: Parameters of UH partnership surplus utility model WUH for marriage within

synthetic populations

Parameter
˜
βUH Value

Intercept -1.5

βUH 2.8

Table 3.3: Parameters of DH partnership surplus utility model WDH for marriage within

synthetic populations

Parameter
˜
βDH Value

Intercept -1.5

β1,1 3.0

β2,2 2.4

β3,3 2.5

β4,4 3.3

3.6.2 Procedure

Each simulation study has two parts, the first of which studies populations where matchings

were generated based on a UH model, and the second of which studies populations where

matchings were generated based on the DH model. For Simulation Study I, these parts are

denoted as studies I.i and I.ii, respectively. Similarly, for Simulation Study II, the two parts

are denoted as studies II.i and II.ii.

We will begin by described the procedure for Simulation Study I.i. In this study I, I

analyze each subset of N -sized populations separately. For the bth synthetic population of

size N , I fit models from the uniform homophily and differential homophily classes to obtain

MPLEs ŴUH(SN,UH)
(b) and ŴDH(SN,UH)

(b). At each iteration, we compute goodness-of-fit

measures of the MLPLE models by using various raw deviance metrics, information gain,

and AIC and BIC scores and compare the values for the two hypothesized models. For raw

deviance metrics and computation of information gain, we consider four options: the chi-
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squared divergence, G-squared divergence, squared Hellinger distance, and KL divergence.

Since the uniform homophily class is nested in the differential homophily class and the true

matching model belongs to both, we expect the raw deviance statistics under ŴDH(SN,UH)
(b)

to be lower than the corresponding statistic under ŴUH(SN,UH)
(b). We also expect the DH

model estimate to give higher information gain than the UH model estimate, but only slightly,

since both models are correct. Lastly, we expect the AIC and BIC scores for the DH model

estimates to be better (lower) than the corresponding scores for the UH model. I plot the

distribution of the values from the different analyses over the 200 iterations and assess the

performance of the different approaches.

For Simulation Study I.ii, I repeat this entire procedure from I.i using synthetic popula-

tions that have matchings motivated by WDH. I use corresponding notation for this part of

the study. The only change in this study is that I fit the saturated mix model in addition to

the differential homophily and uniform homophily models, so that the null hypotheses con-

sider an underparametrized class (WUH), an overparametrized class (WSM), and the correct

class (WDH).

In Simulation Studies II.i and II.ii, I attempt to validate the proposed significance test

approach. For this study, I only present results for synthetic matching data from populations

of size N = 1, 000 individuals. I use 200 synthetic stable matchings motivated by WUH in

study II.i and 200 stable matchings motivated byWDH in study II.ii. In both II.i and II.ii, for

each iteration of data in each set, I fit a model from the UH class and a model from the DH

class. I compute the deviance using all four metrics for each hypothesized model and then

follow the procedure described in Section 3.5 to obtain a p-value for the observed deviance.

I plot the distributions of these p-values and assess the performance of the proposed method

by computing Type I and Type II error rates under different conditions.
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3.7 Results: Simulation Study I

In this section, I present the results from Simulation Study I. While the results are fairly

straightforward, I add some analysis and commentary as I introduce different sets of results

to track insights gained from the studies.

3.7.1 Simulation Study I.i

For Simulation Study I.i, I have 200 synthetic populations each of sizes N = 1, 000 and

N = 5, 000 individuals. The composition of all synthetic populations are based on the

hyperparameters given in Table 3.1, and a stable matching is simulated in each population

based on WUH (Equation 3.11). I then assume census data and fit UH and DH models onto

the synthetic populations and compared the fits.

For the first step in assessing goodness-of-fit, I compute the raw deviances between each

observed distribution of households and the distribution expected under the MLPLE, using

four different metrics for deviance. The distributions of these deviances are shown in Fig-

ure 3.1. Each row of the figure shows a different deviance metric, and each column shows

the results for a different population size. On each plot, the blue line shows the density of

deviances D′
N,UH(UH) when fitting a model from the UH class to S

(b)
N,UH for all b, and the red

line shows the density of deviances D′
N,UH(DH) when fitting a model from the DH class.

For all deviance metrics and both population sizes, the deviances observed after fitting

the UH models are distributed toward higher values than the deviances from the DH models.

This makes sense intuitively, as WUH ⊂ WDH and the additional parameters in the DH class

will almost always result in a closer fitting model.

The magnitudes of the chi-squared and G-squared divergences increase with population

size, while the squared Hellinger distances and KL divergences decrease slightly. This is

because the former two metrics are calculated based on frequency distributions while the

latter two are calculated based on probability distributions. Because the increased popu-

lation size allows for a closer-fitting model while the scale of the probability distribution
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remains unchanged, the squared Hellinger distance and KL divergence actually decrease in-

versely with population size. Although the values and scales of the four deviance metrics are

different, their distributions look quite similar within each (N,w). This is particularly true

at N = 5, 000.

In our second step, I assess the relative value of fitting more complex models by looking

at information gain scores. While the DH model will produce a closer fit to the data, we

know that in reality the UH model is sufficient for the synthetic data in this portion of the

study and therefore expect the information gain achieved by the DH model relative to the

UH model to be small. I plot the distributions of information gain achieved by each model

in Figure 3.2. The values shown in the figure were computed based on raw chi-squared

divergences; I found similar results when I computed information gain based on the other

three metrics. For brevity, I show only the chi-squared-based information gain scores in this

section and relegate the rest to Appendix B.3.

The first row of Figure 3.2 shows information gain results for synthetic populations of

size N = 1, 000, and the second row shows the same for N = 5, 000. In the plots in the

first column, we show the distribution of the information gain achieved by fitting each model

to the synthetic population data, relative to the null (intercept-only) model. The left box

shows the distribution of information gain achieved by fitting UH models IG
(b)
N (ŴUH), with

N referring to the size of the population data and b referring to the simulation iteration.

Similarly, the right box shows the distribution of information gain achieved by fitting DIH

models IG
(b)
N (ŴDH), with N referring to the size of the population data.

The information gains achieved by fitting the UH model for N = 1, 000 populations are

very high. The average information gain achieved by fitting the UH model IG1000(ŴUH) is

approximately 0.96, meaning that the UH model reduces 96% of the maximum possible de-

viance relative to the naive model. At N = 5, 000, the average information gain IG5000(ŴUH)

increases to 0.988. At both population sizes, while the plots show that the DH models do

have slightly higher information gain scores, the distributions of IGN(ŴUH) and IGN(ŴDH)

show considerable overlap.
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Figure 3.1: Simulation Study I.i: Distribution of raw deviances; true partnership utility

model is WUH (200 simulations)
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Figure 3.2: Simulation Study I.i: Relative information gain (chi-squared based) achieved by

different models; true partnership utility model is WUH (200 simulations)
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Figure 3.3: Simulation Study I.i: Differences in AIC (top) and BIC (bottom) scores of

different models; true partnership utility model is WUH (200 simulations)

In the second column of Figure 3.2 I show the distribution of the relative information

gains achieved by fitting the DH model compared to the UH model rIG
(b)
N (ŴDH, ŴUH) when

both models are computed using the same synthetic population data S
(b)
N,UH. For N = 5, 000,

there was one instance across the 200 iterations in which rIG
(b)
N (ŴDH, ŴUH) < 0, indicating

that the chi-squared divergence between the estimated and observed data in that iteration

was actually lower when fitting the UH model relative to the DH model. The actual relative

information gain for this iteration is -0.002. It is possible that bias-correction, which has

some randomness due to the empirical bootstrapping procedure it employs, perturbed the

model count matrices in a way that led the DH model to have a (very slightly) poorer fit

than the UH model.

In general, the relative information gain is very small for the DH model relative to the

UH model, with rIG1000(DH,UH) = 0.011 and rIG5000(DH,UH) = 0.0024. An increase in

the population size by a factor of 5 corresponds to a decrease in relative information gain

by a factor of a little over 1/5 ( rIG5000(DH,UH)

rIG1000(DH,UH)
= 0.218), although confirming this relationship

74



would require further study.

Notably, while the IG distributions in Figure 3.2 have some low outliers, there are no such

outliers in the rIG distributions for either population (though there is a high outlier in the

distribution of rIG1000(DH,UH)). This implies that even when the information gain for the

models for a particular iteration is near the tail of the distribution, the relative information

gain remains generally consistent.

The third step of the results is a more formal model comparison. Since we know that

in truth the UH model is sufficient for the populations in this portion of Simulation Study

I and the criterion scores penalize added model complexity, we expect better (lower) AIC

and BIC scores from the UH model relative to the DH model; equivalently, the difference

in scores (DH − UH) should be positive. In Figure 3.3 I show the histograms of observed

AIC and BIC differences of 200 simulations for each population size. The top row shows

the difference in AIC scores while the bottom row shows the difference in BIC scores. The

left column shows the distribution of differences for synthetic populations of size N = 1, 000

while the right column shows the same for N = 5, 000. The dotted red line on each plot

marks where the difference equals 0. We expect most of the distribution to fall to the right

of this line.

In all four plots in Figure 3.3, a considerable portion of the distributions are in fact on the

left side of the red line. The error rate, or rate at which the direction difference in criterion

scores is opposite to what we would expect, varies widely across the four plots, with the score

difference (DH-UH) less than 0 between 11% and 58% of the time depending on the criterion

used and the population size. For both population sizes, the BIC scores gave the expected

result more often than the AIC scores, which makes sense because the BIC assigns higher

penalties for additional terms. For both AIC and BIC, the mean of the distribution stays

consistent as population size changes, while the variance increases with population size.
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3.7.2 Simulation Study I.ii

I now present a similar set of results for synthetic populations in which stable matchings

were achieved based on WDH (Equation 3.12). I again generate 200 populations each of size

N = 1, 000 and N = 5, 000 and assume census data. This time I fit UH, DH, and SM models

onto the synthetic populations and compared the fits of all three.

I follow the first step of the goodness-of-fit analysis by showing the distributions of

the raw deviances between the observed and expected distributions of households and the

distribution expected under the model class MLPLE in Figure 3.4. Once again, each row

of the figure corresponds to a different deviance metric, and each column shows the results

for a different population size. On each plot, the blue line shows the density of deviances

D′
N,DH(UH) when fitting a model from the UH class to S

(b)
N,UH for all b, the red line shows

the density of deviances D′
N,DH(DH) when fitting a model from the DH class, and the green

line shows the density of deviances D′
N,DH(SM) when fitting a model from the SM class.

The plots show that for all population sizes and deviance metrics, the variance ofD′
N,DH(SM)

is far lower than the corresponding variances of D′
N,DH(UH) and D′

N,DH(DH) Within each

population size-deviance metric cell, as model complexity (the number of parameters to be

estimated) increases, the raw deviances decrease. For the chi-squared and G-squared statis-

tics, the means of the distributions of each model increase with population size. For the

squared Hellinger distance and KL divergence the means decrease very slightly with the in-

creased population size. These shifts mirror the ones seen in Figure 3.1 for Simulation Study

I.i.

The second step of the results are the distributions of IG and rIG scores, shown in

Figure 3.5. The right column shows the information gain scores for the three hypothesized

models. In general, the models appear to provide more information gain when N = 5, 000 as

compared to N = 1, 000. The UH model, which is from the simplest of the three candidate

classes considered, achieves average IG scores of 0.942 and 0.965 for N = 1, 000 and N =

5, 000, respectively. While these scores are quitehigh, they are lower than the corresponding

scores in Simulation Study I.i. This makes sense since in study I.i the UH model actually
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was the true model, whereas in this study the UH model is underparametrized for the data.

The information gain relative to the null model increases with model complexity. The SM

model seems to achieve a near-perfect fit and has an extremely small variance, although it

does also have a relatively large number of outliers. With the increase in population size,

the variance of the information gain distributions for all three models decreases.

The left column of Figure 3.5 shows the relative information gain for increasingly complex

models. The first boxplot shows the distribution of the relative gain from the UH to the DH

model rIGN(DH,UH), and the second shows the relative gain from DH to SM rIGN(SM,DH).

The mean relative gain achieved by the DH model compared to the UH model is 0.310 for

both rIG1000(DH,UH) and rIG5000(DH,UH). This value is larger than the information gain

seen for the same pair of models in Simulation Study I.i but is still somewhat smaller than

expected. The small relative information gain from UH to DH might be explained by the

high IG already achieved by the UH model. The UH model’s high IG scores despite being

underparametrized in this part of the study may be due to the fact that although the true

preferences β1, β2, β3 and β4 are all different from each other, the overall difference between

the parameters may be small enough that the true model WDH is perhaps just outside the

boundary of the UH class. Thus, the UH model is still able to fit the data fairly well.

At N = 1, 000, the tail of the distribution of rIG1000(SM,DH) is actually just below 0,

implying that the SM model is actually leading to information loss instead of gain relative

to the DH model. Similar to the explanation in Section 3.7.1, the considerable number of

rIG values at N = 1, 000 which fall below 0 may be an artifact of bias correction, as well as

the small population size possibly leading to sparse distributions and greater instability in

estimation for the saturated model.

When the population size increases toN = 5, 000, the variance in the distributions of both

rIGN(DH,UH) and rIGN(SM,DH) decreases. While the average relative information gain

from the UH to DH model rIGN(DH,UH) stays stable with the population increase fromN =

1, 000 to N = 5, 000, rIGN(SM,DH) decreases considerably, from rIG1000(SM,DH) = 0.0284

to rIG5000(SM,DH) = 0.0059. As the population size increased by a factor of 5, the average
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Figure 3.4: Simulation Study I.ii: Distribution of raw deviances; true partnership utility

model is WDH (200 simulations)
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Figure 3.5: Simulation Study I.ii: Relative information gain (chi-squared based) achieved

by different models; true partnership utility model is WDH (200 simulations)
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Figure 3.6: Simulation Study I.ii: Differences in AIC and BIC scores of different models;

true partnership utility model is WDH (200 simulations)
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rIG for the oversaturated model decreased by a factor of slightly over 1/5 ( rIG5000(SM,DH)

rIG1000(DH,UH)
=

0.227). This is similar to the ratio observed in the corresponding results for Simulation Study

I.i in Section 3.7.1. However, we reiterate that further study would be required to establish

a formal relationship.

In the final part of this portion of Simulation Study I.ii, I present the differences in AIC

and BIC scores for the MLPLEs of the different model classes. The distributions of these

differences are shown in Figure 3.6. The top panel of four plots shows the distributions of

differences in criterion scores when comparing the UH and DH models, with AIC in the top

row and BIC in the bottom row. The bottom panel of four panels are organized the same

way to compare the DH and SM models. I calculate AIC differences for these comparisons

as AIC(DH) − AIC(UH) and AIC(SM) − AIC(DH), respectively, so that the difference is

always taken from the model with more parameters. We do the same for BIC. Again, the

plots in the right column show criterion scores when the models are fit to populations of size

N = 1, 000 and those on the left show the same for N = 5, 000.

In the comparison of criterion scores of the UH and DH models, we expect the model

from the DH class to have a better (lower) score than the UH model and therefore should

observe negative differences. The criterion scores appear to achieve this, with over 90% of the

observed differences for both AIC and BIC less than zero when the synthetic populations

are of size N = 1, 000, and 100% of both scores less than zero at N = 5, 000. For each

population size, the two scores appear to perform similarly.

When comparing the criterion scores for the DH and SM models, we expect to see a

positive difference since the scores for the over-parametrized SM models should be worse

(higher) than the scores for the DH models at the same iteration. For both AIC and BIC

and at both N = 1, 000 and N = 5, 000, the difference in criterion scores for the SM and

DH models is positive in at least 95% of simulations.

The high success rate of the criterion scores in correctly rejecting the SM model when

comparing it to the DH model is encouraging. A natural question might be why the criterion

scores have a considerably lower success rate when comparing the DH and UH models in
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this study at N = 1, 000. This is in part because as the number of agent “types” in the

population goes up, the difference between the SM and DH models becomes much greater

than the difference between the DH and UH models. The UH model always has exactly two

preference parameters requiring estimation. For a population with agents of K types, the

DH model will have K−1 more parameters than the UH model. The SM model in turn will

have K2 −K − 1 more parameters than the DH model. The greater distance between the

SM and DH models makes the difference in their performance easier to detect.

3.8 Results: Simulation Study II

The purpose of Simulation Study II is to assess the validity of the proposed significance

testing procedure. I compute p-values for the raw deviance statistics computed given the

observed synthetic data and hypothesized model distribution. All synthetic populations in

this study consist of exactly N = 1, 000 individuals and are individually sampled from the

hyperpopulation with availabilities as described in Table 3.1. I present the results for this

study in two parts: Simulation Study II.i shows results when the true partnership surplus

model is WUH, and Simulation Study II.ii shows results when the true partnership surplus

model is WDH.

3.8.1 Simulation Study II.i

I first show the results for study II.i. The distributions of the p-values are shown as a set

of eight plots in Figure 3.7. The plots in the left column show p-values when WUH is the

hypothesized class, and those in the right column show the p-values when WDH. The four

plots in each column correspond to the four power divergence and f -divergence deviance

metrics discussed in this chapter which I used to compute p-values. Each row corresponds

to a different metric.

The vertical dashed red line on each plot indicates the threshold where p = 0.05. The

density to the left of this threshold is equal to the proportion of times we would reject the
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null hypothesis at α = 0.05. If the null hypothesis is correct and the significance testing

procedure is working as expected, 5% of the p-values will be less than or equal this value.

The red label at the top-right corner of every panel gives the proportion of times over the

200 simulations where p was computed as less than 0.05.

Since the UH class is the correct family of the marital surplus utility function in this part

of the study, we expect the p-values under this null hypothesis to follow a uniform distribu-

tion. However, the resemblance of all four p-value distributions to the uniform distribution

is, at best, weak. Furthermore, when the null hypothesized class is the over-parametrized

DH class, the distribution of the p-values actually looks slightly more uniform.

Based on the distributions of the p-values in Figure 3.7, we can conclude that the proposed

significance testing procedure performed quite poorly overall in this portion of the study.

Still, it is worth commenting on some other features of the results. Under the UH null

hypothesis, the p-values from the chi-squared, G-squared, and KL statistics all appear to

follow a similarly shaped right-skewed distribution. However, the p-value distribution based

on the squared Hellinger distance looks markedly different, following a more bell-curved

shape. This is also true under the DH class null hypothesis – while the p values based on

the other statistics under this hypothesis appear to be clustered mostly below 0.5, the p-

values computed based on the Hellinger distance under H0 : WDH again follow a bell curve

distribution.

The different shape of the Hellinger-based p-value distributions under both null hypothe-

ses may be attributed to the fact that the Hellinger distance itself is constrained between 0

and 1, whereas p-values are generally computed for test statistics that are unbounded on at

least one side. Thus, it may be best to rule out the squared Hellinger distance as a choice

for test statistic for significance testing RPMs. We do not discuss it further for this portion

of the simulation study.

For completeness, we can look at P (p ≤ 0.05) in these plots. At α = 0.05 we expect

Type I error rate, or the probability of rejecting a correct hypothesis, to be 5%. In reality,

however, we see that for the chi-squared, G-squared, and KL-based p-values under the UH
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null hypothesis, the Type I error rate is much larger, ranging from 0.115 to 0.315.

Conversely, the probability of rejecting the DH null hypothesis at α = 0.05 ranges be-

tween 0.055 and 0.065 depending on the metric used for the test statistic. This finding is

interesting because of the persisting question of how the proposed significance test performs

when the class under the null hypothesis is overparametrized. On the one hand, the true

data-generating model WUH is in fact the DH class, so the null hypothesis is technically cor-

rect. On the other hand, as discussed in Section 3.5.2, the distribution of deviances between

estimates from most models in the DH class and the data actually observed based on those

models should be quite narrow and therefore results in a smaller p-value.

3.8.2 Simulation study II.ii

In this study, the stable matchings in the simulated populations were motivated by WDH.

Similar to study II.i, for each model fit and deviance metric, I show the distributions of the

200 simulated p-values, producing the 8 panels shown in Figure 3.8. The p−values based on

the UH null hypothesis are in the left column, and those based on the DH null hypothesis

fit are in the right column.

Though not quite uniform, the p-values under the DH null are closer to the uniform

distribution than those under the UH null. Within each null hypothesis, the distribution of

p-values looks similar for the chi-squared, G-squared, and KL divergence metrics but again

looks slightly different for the squared Hellinger distance. Under the UH null hypothesis,

the distribution of the p-values based on the squared Hellinger distance declines less steeply

than the distributions from all the other metrics under the same null hypothesis. Under

the DH null hypothesis, the p-values based on the squared Hellinger distance follow a distri-

bution resembling a normal distribution but with a plateau at the peak, whereas the other

distributions under that null have much milder peaks and are more right-skewed. Due to the

continued inconsistent results produced in significance testing using the squared Hellinger

distance relative to the other metrics, I reiterate that it should generally not be used for

significance testing.
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With the other metrics, I assess error rates. Under the DH null hypothesis, if we assign

α = 0.05 the empirical Type I error rate is between 0.055 and 0.065, depending on the

metric used, over 200 simulations. This aligns fairly closely with what we would expect and

is encouraging. However, this comes with the caveat that the observed Type I error rate

here only aligns with the expected value at α = 0.05; since the distribution of the p-values

is not truly uniform, if we increased our α threshold to 0.1, we would likely observed a Type

I error rate higher than the expected rate of 10%.

The error rates under the UH null hypothesis on the other hand are quite poor, especially

considering that the true stable matching-motivating model is not a member of the UH class.

The test fails to reject the incorrect null hypothesis between 68% (based on the chi-squared

statistic) and 90% (based on the G-squared statistic) of the time.

3.9 Visual tools for more in-depth goodness-of-fit analysis

In assessing goodness-of-fit for revealed preferences models, a researcher may be interested

in how much a model reduces the overall lack-of-fit of the expected data to the observed and

how well lack-of-fit is reduced in specific areas of the distribution.

I explored several different options for deviance metrics in Section 3.3. While the inter-

pretations and underlying theoretical properties of these statistics differ, we note the power-

divergence and f -divergence statistics for measuring the deviance between distributions P

and Q have computations that can be written in the form

D(P,Q) =
∑
t

d(P (t), Q(t)) (3.13)

In other words, there is a natural way to decompose the deviance, or lack-of-fit, into the

contributions from each of t ∈ {1, . . . , T} household categories, where T = X × Z +X + Z.

As T increases, the job of comparing these contributions against each other based on the raw

numerical data and identifying any patterns therein becomes cumbersome. For this reason, I

propose an intuitive visual tool to help researchers evaluate and compare the goodness-of-fit
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Figure 3.7: Simulation Study II.i: Distribution of p-values; true partnership utility model is

WUH (200 simulations)
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Figure 3.8: Simulation Study II.ii: Distribution of p-values; true partnership utility model

is WDH (200 simulations)
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Male’s (Female’s Partner’s) Type

1 . . . z . . . Z Single

Female’s
(Male’s Partner’s)

Type

1 c(1, 1) c(1, ∗)
...

. . .
...

x c(x, z) c(x, ∗)
...

. . .
...

X c(X,Z) c(X, ∗)

Single c(∗, 1) . . . c(∗, z) . . . c(∗, Z) 0

Figure 3.9: Frequency distribution c̄ for matching outcomes represented as a

(X + 1)× (Z + 1) contingency table

for different models at a more granular level.

Rather than treating the frequency distribution c̄ (or f̄) as a T -length vector, it is helpful

to visualize it as a (X + 1)× (Z + 1) contingency table, as shown in Figure 3.9. Across the

first X rows and Z columns, the (x, z)th element holds c(x, z), representing the frequency

of partnerships between a type x woman and type z man in the data. The xth element of

the (Z + 1)th column is c(x, ∗), representing the frequency of type x women who are single.

Similarly, the zth element of the (X + 1)th row is c(∗, z), the frequency of type z men who

are single. The (X + 1, Z + 1)th element is a structural 0 because a partnership between

a single man and a single woman is, by definition, impossible. Thus, the table has T cells.

The observed matching can be represented in a table this way for any sampling design.

Since the frequency distribution over these outcomes can be decomposed as

c̄ = {c(x, z), c(x, ∗), c(∗, z);x ∈ X , z ∈ Z}

(and similarly for f̄), the deviance in Equation 3.13 can be rewritten as

D(c̄, ˆ̄c) =
X∑
x

Z∑
z

d(c(x, z), ĉ(x, z)) +
X∑
x

d(c(x, ∗), ĉ(x, ∗)) +
Z∑
z

d(c(∗, z), ĉ(∗, z)). (3.14)

When decomposed in this way, we can more intuitively visualize dxz = d(c(x, z), ĉ(x, z)), x ∈

X , z ∈ Z as a X × Z grid, where the (x, z)th item represents the divergence between the
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observed and expected proportions of the units consisting of a partnership between a type

x woman and type z man. We then represent the divergences contributions from singleton

households dx∗ = d(c(x, ∗), ĉ(x, ∗)), x ∈ X and d∗z = d(c(∗, z), ĉ(∗, z)), z ∈ Z as X-vector

and Z-vectors on the margins, representing single women and men respectively. Together,

the partnership grid and singleton vectors are treated like a heat map, so that the outcomes

with the darkest coloring correspond to the areas of the distribution with the poorest fit.

This tool can be applied using any of the deviance metrics discussed in Section 3.3,

although some choices have more intuitive interpretations than others. The additive compo-

nents of the squared Hellinger distance, for example, are each bound between 0 and 1 when

the scaling factor
1

2
is excluded from the calculation. The squared Hellinger contribution

from the kth category is 0 if the expected and observed proportions of outcomes in that

category are equal. Conversely, the squared Hellinger distance for the kth category is 1

when the observed proportion is 1 and the expected proportion is 0, or vice versa, in that

category. The decomposed squared Hellinger distance therefore allows comparison not only

of the contributions to the deviance from different household types relative to each other,

but also the contribution from a single category to the minimum and maximum possible

values.

The KL divergence is also a good measure for decomposing deviance contributions. While

the total KL divergence between two contributions must be non-negative, the contributions

from each cell have an unrestricted domain across R. A negative KL divergence contribution

at the tth category implies a negative log-likelihood ratio at that category, indicating that

the observed density at that outcome P (t) is less than the expected density Q(t). Similarly,

a positive value implies that P (t) > Q(t). The KL-divergence equals 0 when P (t) = Q(t).

Thus the KL-divergence allows investigation not only of where the lack-of-fit has the greatest

magnitude, but also into the direction of the lack-of-fit at each location.
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Figure 3.10: Synthetic Population with matching from SM model

3.9.1 Example

As an example, suppose we observe a (synthetic) closed two-sex population of sizeN = 5, 000,

where each women and men have sets of discrete types X and Z, such that X = Z. The

observed frequencies of partnership by type for a synthetic population following this set-up

is visualized in Figure 3.10. Based on the frequency distribution, partnerships tend to be

more common between individuals of the same type, indicating a preference for homophily.

I first fit a DH model to the data and compute deviance between the observed and model

frequency distributions in terms of squared Hellinger distance. The categorical decomposition

of the squared Hellinger distance under the DH model is shown in Figure 3.11, with the sum

total equal to 20.6 × 10−4. From the figure, among partnered households the contribution

to the total deviance is relatively low from household categories where both individuals are

the same type. The lack of fit contribution also tends to be greater in categories with low
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observed or expected probabilities.

To address the relatively large lack-of-fit from partnered household categories where the

man and woman have different types, we may then try fitting a model from the SM class.

The deviance decomposition of the squared Hellinger distance is shown in Figure 3.12. With

the SM model, the total deviance is reduced by a factor of 10. Furthermore, the lack of

fit across all categories is now very small. Notably, although d(1, 1) and d(2, 2) are slightly

greater under the SM model than under the DH model, the increased deviance contribution

in these categories is more than offset by the reduced error in the others. In fact, the synthetic

population in Figure 3.10 over which we are assessing goodness-of-fit was actually matched

based on an SM partnership utility function.

I repeated this analysis of lack-of-fit using KL divergence. The KL divergence decom-

positions for the DH model fit and the SM model fit are shown in Figures 3.13 and 3.14,

respectively. In Figure 3.13, the KL divergence contribution d(4, 3), representing partner-

ships between a Type 4 woman and a Type 3 man, has a high magnitude in the positive

direction, while the contributions from all other partnered households including a Type 4

woman are all negative. This implies that the DH model underestimates the number of part-

nerships between Type 4 women and Type 3 men and overestimates all other partnerships

involving Type 4 women. When the SM model is fit, not only does the overall deviance

reduce by a factor of nearly 8, but the deviance contributions from all partnered outcomes

involving a Type 4 woman also decrease in magnitude.

We can supplement these decomposition visualizations with a table showing information

gain statistics. Table‘3.4 shows the information gain attained by fitting the UH, DH, and

SM models to the data in Figure 3.10

As shown in this example, the visual decomposition allows intuition for how a hypoth-

esized model can be improved, based on the areas of the distribution with the greatest

lack-of-fit. However, even if two different models have similar overall deviances, researchers

may be more interested in accurately estimating matching behavior of specific types of in-

dividuals or more closely modeling the number of individuals who remain single. In this
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Table 3.4: Information gain (relative to null) from fitting different models, given

population data shown in Figure 3.10 with true matching motivated by SM model

Sq. Hellinger KL Divergence

Model Deviance IG Deviance IG

Null 0.0064 - 0.026 -

UH 0.0051 0.206 0.020 0.231

DH 0.0023 0.641 0.0091 0.650

SM 0.00026 0.959 0.0010 0.962

case, the visual tool helps differentiate two similarly performing models by identifying the

outcomes with the greatest error contributions and allows researchers to select models based

on the priorities of the research question at hand.

92



Figure 3.11: Sq. Hellinger distance decomposition when fitting DH model to data from SM

model

Figure 3.12: Sq. Hellinger distance decomposition when fitting SM model to data from SM

model
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Figure 3.13: KL divergence decomposition when fitting DH model to data from SM model

3.10 Discussion

In this chapter I proposed several tools for model selection and assessing goodness-of-fit when

applying RPMs. The results from Simulation Studies I.i and I.ii suggest that criterion scores

can be used to select models while balancing error and parsimony and that the BIC is a

particularly good metric for this. The studies additionally show how analysis of information

gain can also facilitate model selection in a way that is intuitive and interpretable.

I also tested four different metrics for measuring model deviance from observed data and

compared their performances. We find that all four metrics have comparable performance

when studying information gain but that their performances were more varied when used

for significance testing as in Simulation Study II.

While this chapter substantially develops goodness-of-fit procedures for RPM and estab-

lishes some baseline findings, there is much room for continued progress and further research.

As mentioned in Section 3.5, the current method proposed for significance testing is a mean-

ingful step in communicating confidence about a hypothesized model, but it collapses when

population sizes exceed 1, 000 or when sample data is provided. This is clearly a major
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Figure 3.14: KL divergence decomposition when fitting SN model to data from SM model

weakness. Further development of significance testing procedures would be of substantial

value to researchers using RPM.

Closely related to this topic is the current lack of procedure for determining the asymp-

totic distribution of different deviance metrics under a null hypothesis. The asymptotic

independence of preferences and availability, as proposed by Menzel (2015), suggests that

for large populations the outcomes for individual households should be independent. In

actuality, however, asymptotically large populations are not available to researchers, and

supplementary simulation studies I conducted (not presented in this dissertation) strongly

suggested that for populations as large as N = 20, 000, a given realized stable matching

did not resemble a multinomial distribution with independent units. The chi-squared and

G-squared divergence statistics computation between the data-generating model and the

samples drawn from that process did not appear to follow a chi-squared distribution, as

would be expected if the household outcomes were truly independent, nor were the observed

distributions a straightforward transformation of the chi-squared distribution. While empir-

ical estimates of the distributions of the deviance metrics work well in practice, additional

research on the analytical distributions of any of these metrics in the RPM setting would
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strengthen the approach.
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CHAPTER 4

Utility transfer in the two-sided matching market

4.1 Introduction

In the previous chapters of this dissertation, all proposed models, methods, and discussions

have been set in a framework assuming non-transferable utility (NTU). An alternative to

this setting is the transferable utility (TU) framework. These frameworks refer to a different

sets of assumptions about how spouses share utility after marriage and, more broadly, about

the target utility that agents are trying to maximize during the matching process.

Many economists and sociologists have made considerable contributions over time to

modeling preferences under TU assumptions in the two-sided marriage market (e.g. Choo and

Siow, 2006; Galichon and Salanié, 2021; Chiappori et al., 2017). Conversely, Dagsvik (1994),

Logan et al. (2008), and Menzel (2015) contextualize their research of matching models in

the NTU setting. Until now, much of the development of models in these two frameworks has

taken place in parallel rather than in conjunction. Consequently, to our knowledge there is

currently no recent literature that formally and comprehensively compares the assumptions,

both implicit or imposed, of the NTU and TU frameworks as they are applied in the modeling

of two-sided matching markets.

In this chapter of my dissertation, I aim to bridge this gap in the literature by providing

a consolidated review of the TU and NTU frameworks in one place, using the same notation

to describe the assumptions and models to ease direct comparison between the two. The

contributions of this chapter are as follows: 1) a formal comparison of the NTU and TU

frameworks in two-sided matching market literature, and the assumptions under each; 2)

development of a recent TU model and results (Galichon and Salanié, 2021) from economics
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to a statistical framework; and 3) a comparison of how NTU and TU models compare when

fit on real data.

The remainder of the chapter is organized as follows: in Section 4.2, I formally introduce

the TU framework and review the NTU framework, explaining how RPM can be extended

as an inference procedure for preferences in both cases. I note the commonalities in the

initial structure of both models and then show how they deviate in current modeling. In

Section 4.3 I show how RPM can be used to estimate educational preferences in spouses

using data from the 2008 SIPP Topical Module. (U.S. Bureau of the Census, 2020) I follow

this with a simulation study in Section 4.4 to demonstrate that RPM can be used to select

between the NTU and TU frameworks for modeling when the researcher wishes to consider

both as candidate models. I conclude in Section 4.5 with general comments on the different

frameworks and suggestions for further research.

4.2 Settings for the NTU and TU markets

I briefly mentioned the NTU and TU frameworks in Section 1.2 and outlined some basic

differences between the two. I now provide a more in-depth explanation of these frameworks

and how they apply within the two-sided matching market, first discussing each framework

individually and then formally comparing the two.

In Chapters 1 and 2, we discussed the basic setting of two-sided matching markets and

how we conceptualize agents and preferences and developed basic notation. To ease conti-

nuity for the reader and facilitate the flow of the presentation of material in this chapter,

I will review some of these concepts throughout this section. I begin by stating the basic

characteristics in the marriage market that apply to both the NTU and TU frameworks.

4.2.1 Common background

Consider a two-sex population of size N with Nw women and Nm men, so that Nw+Nm = N .

Women are indexed by i ∈ {1, . . . , Nw} and men are indexed y j ∈ {1, . . . , Nm}.
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The observable characteristics of woman i can be represented by some vector xi ∈ X and

the observable characteristics of man j can be represented by some vector zj ∈ Z. X and

Z are countable finite sets with lengths X and Z, respectively, so that there are X = |X |

observable types for women and Z = Z| observable types for men. Let w̄(x) represent the

proportion of the entire population consisting of type x ∈ X women and m̄(z) represent the

same proportion for type z ∈ Z men.

In the two-sided setting, marriages can only occur between individuals on opposite sides

of the market. Individuals can also choose to remain single. We define households as entities

that consist of either: 1) exactly one couple (a married woman and man); 2) exactly one

single woman; or, 3) exactly one single man. A household is characterized by the observable

type, or combination of types, of the individual(s) within it, so that there are X×Z+X+Z

distinct types of households observable. The total number of households in the population

is Nh. We note that Nh ≤ N , with equality only if every woman and man in the population

remains single.

A sufficient statistic to summarize the stable matching in this population

c̄ = {c(x, z), c(x, ∗), c(∗, z), x ∈ X , z ∈ Z}.

• c(x, z) is the count of households consisting of a married type x woman and type z

man

• c(x, ∗) is the count of households consisting of a single type x woman

• c(∗, z) is the count of households consisting of a single type z man

Effectively, c̄ is the realized frequency distribution of household types with the sum of its

elements equal to Nh.

Presented with data on the stable matching in the form of c̄, we are able to discern the
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composition, or availabilities, of the individuals in the population:

c(x, ∗) +
∑

z∈Z c(x, z)

N
= w̄(x) ∀x ∈ X (4.1)

c(∗, z) +
∑

x∈X c(x, z)

N
= m̄(z) ∀z ∈ Z (4.2)

For inference of preference parameters, we require

c(x, ∗), c(∗, z), c(x, z) ≥ 0, ∀x ∈ X , z ∈ Z. (4.3)

Let

f̄ = {f(x, z), f(x, ∗), f(∗, z), x ∈ X , z ∈ Z},

with elements referring to the proportion of all Nh households in each category but otherwise

similarly defined to c̄. f̄ represents the probability mass distribution of households in the

population given some hypothesized data-generating process (model). Then, c̄ is an empirical

realization of f̄ .

Additionally, let g(x, ∗) represent the log-odds that a type x woman chooses to remain

single in the stable matching, so that

f(x, ∗) = w̄(x)eg(x,∗)

(1 + eg(x,∗))
(4.4)

f(∗, z) = m̄(x)eg(∗,z)

(1 + eg(∗,z))
. (4.5)

In both the TU and NTU frameworks, it has been shown that as the population size grows

large, f̄ approaches a limiting distribution that can be defined by separable terms repre-

senting preferences parameters and availabilities. These relationships have been derived by

Choo and Siow (2006) for the TU setting and by Dagsvik (2000) and Menzel (2015) in the

NTU setting.

To proceed with inference, we can approximate the log-likelihood of the realized household

counts c̄ with a large population pseudo-likelihood function:

lp-log-lik(
˜
β, g(x, ∗), g(∗, z)|{xi, zi, wwi }nw

i=1, {zj, xi, wmj }
nm
j=1) (4.6)

=
∑
x∈X

∑
z∈Z

c(x, z) log f(x, z) +
∑
x∈X

c(x, ∗) log f(x, ∗) +
∑
z∈Z

c(∗, z) log f(∗, z),
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where f̄ represents the model-based probability mass distribution of households in large

populations.

We re-write f(x, z) as the product of an availability component and a preferences compo-

nent as dictated by the asymptotic relationship in our chosen marriage market framework.

We additionally substitute f(x, ∗) and f(∗, z) with Equations 4.4 and 4.5, respectively. This

gives a pseudo-log-likelihood function which is written in terms of preference parameters

˜
β, {g(x, ∗), g(∗, z), ∀(x, z)}, and {w̄(x), m̄(z)}. We derive the maximum large population

pseudo-likelihood estimates (MLPLEs) for
˜
β, g(x, ∗), and g(∗, z) subject to additional asymp-

totic constraints dependent on the framework . Having established a common set-up and

notation, we now proceed to describe the specific assumptions and properties in the TU and

NTU frameworks. The next two subsections can be read in any order.

4.2.2 Transferable utility framework

In a work seminal to the modern development of marriage modeling using tools from eco-

nomics, Becker (1973) suggests that a marriage generate a “total output,” or surplus utility,

which is shared between the individuals in that marriage. This notion forms the basis of the

transferable utility setting, in which researchers assume that in a marriage, one agent can

decrease their utility by a specific amount to increase his or her spouse’s utility by the exact

same amount. In some literature, this is understood as the idea that the members of a cou-

ple engage in within-couple exchanges of utility-providing goods and services. Alternatively,

Choo and Siow (2006) interpret these exchanges as determining “...each spouse’s share of

responsibilities within a marriage.”

Choo and Siow (2006) developed a marriage model in the TU setting to allow point

estimation of societal-level preferences for each possible observable household type. This

work served as a basis for later developments in the same setting by other economists,

including Dupuy and Galichon (2014), Chiappori et al. (2017), and Galichon and Salanié

(2021). As the setting specifications assumed in Choo and Siow (2006) are the ones that

much subsequent literature has followed when developing the TU marriage market model,
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those are the ones we will describe here.

In the TU market, the joint surplus utility of any given woman i of type xi and any given

man j of type zj is given by

W TU
ij (xi, zj) = W (xi, zj|

˜
βTU) + ηiz + ζxj (4.7)

This function has a deterministic component W (xi, zj|
˜
βTU) deterministic component and

stochastic components ηiz and ζxj. The random component ηiz represents some utility shift

that occurs in a partnership between woman i and any man of type z due to the unobserved

preferences either of woman i for all type z men. This component is drawn from an extreme-

value Type-I (Gumbel) distribution Pxi . Then ζxj represents the corresponding quantity for

man j and any woman of type x and is drawn from an extreme-value Type-I distribution

Qzj . The random error terms η for all type x women are drawn from the same distribution

Px, and the random error terms ζ for all type z men are drawn from the same distribution

Qz.

A key assumption of this set-up is that woman i may have unobserved (to the researcher)

idiosyncratic preferences, represented by ηiz for the observed characteristics zj of man j.

However, she cannot have unobserved preferences for his unobserved characteristics. Thus,

in isolation, woman i is indifferent between all men with type z. Furthermore, woman i’s

idiosyncratic preference for the type z man is drawn from a probability distribution that

depends on her own type x. The parallel assumption holds true for men. This assumption

is known as separability.

In addition to the joint partnership utility function, woman i of type xi perceives her

utility for remaining single as

UTU
i0 = 0 + ηi0, ηi0 ∼ Pxi (4.8)

and man j perceives his utility for remaining single as

V TU
0j = 0 + ζ0j, ζ0i ∼ Qzj (4.9)
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The deterministic components of the singlehood utilities for both genders are scaled to 0,

and the idiosyncratic terms are drawn from type-I extreme-value distributions determined

by the agent’s type (and the same distribution from which that agent’s idiosyncratic term

in the partnership utility function was drawn.)

An exogenously-determined surplus splitting function τ(xi, zj) (known to all individuals

in the market prior to partnership) determines the share of the fixed component of the joint

surplus utility W TU
ij (xi, zj|

˜
βTU) that woman i of type xi receives after marrying man j of

type zj. The share of the deterministic utility received by woman i is determined only by

her type and her spouse’s type.

The final realized post-marriage utility for woman i is

UTU
ij = τ(xi, zj) + η(i, zj). (4.10)

Similarly, the realized post-marriage utility for man j is

V TU
ij = W (xi, zj|

˜
βTU)− τ(xi, zj) + ζ(xi, j). (4.11)

For every woman i (resp. man j), there is some z ∈ Z (resp. x ∈ X ) that maximizes

4.10 (resp. 4.11). This translates to a demand from a type xi woman (resp. type zj man)

for a type z man (resp. type x woman). An additional important but somewhat opaque

assumption made by Choo and Siow (2006) is that there are a large (uncountable infinite)

number of woman and men of each type x ∈ X and z ∈ Z in this population. As a result,

the demand for type z men among type x women is met by the supply of z men who demand

a marriage with a type x women.

This appears to be a fairly strong assumption. In practical applications, a vital but as

yet unanswered question is how large N must be for this assumption to hold true and for

the marriage market to clear. Interestingly, subsequent literature that builds on Choo and

Siow’s (2006) framework either only mentions this assumption briefly or not at all, and there

is little elaboration on whether it is possible for compositional changes in the population to

create violations of this assumption. (Chiappori et al., 2017; Galichon and Salanié, 2021)
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Assuming that the TU marriage market does clear, however, Choo and Siow (2006) show

that the following relationship holds asymptotically

f(x, z) = 2eW (x,z|
˜
β)

√
eg(x,∗)+g(∗,z)

(1 + eg(∗,x))(1 + eg(∗,z))︸ ︷︷ ︸
preference
component

·
√
w̄(x)m̄(z)︸ ︷︷ ︸
availability
component

∀x, z. (4.12)

Thus, in a TU setting f(x, z) can be decomposed into separate preferences-related and

availability-related components, suggesting that the interaction between these two compo-

nents becomes negligible for large populations. We exploit the relationship in Equation 4.19

to infer the joint surplus preference parameters
˜
βNTU alongside the relative likelihoods of

remaining single g(x, ∗), g(∗, z) ∀x ∈ X , z ∈ Z.

4.2.3 Non-transferability framework

The core assumption of the NTU framework is that there is no mechanism for utility transfer

between spouses once a marriage occurs. In other words, neither spouse can decrease their

own utility to increase their partner’s utility by an equal amount.

In the application of this framework, we consider a utility function for partnership that

any given woman i uses to assess any given man j as potential partners based on the ob-

servable characteristics of both the woman i and man j:

UNTU
ij = Uij(xi, zj|

˜
θW ) + ηij (4.13)

The partnership utility function has a deterministic component Uij(xi, zj|
˜
θW ) and a stochas-

tic component ηij. Previous literature on NTU markets, including Menzel (2015) and the

earlier chapters of this dissertation, focus on the case where ηij follows standard extreme-

value Type-I (Gumbel) distribution.

Any given man j similarly assesses a potential partnership with any given woman i using

the function

V NTU
ij = Vij(zj, xi|

˜
θM) + ζij, (4.14)
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which shares the characteristics of the Uij described above.

Woman i also assesses her utility for remaining single based on a singlehood utility

function

UNTU
i0 = 0 + ηi0. (4.15)

The deterministic component of this utility function is scaled to 0. Following earlier NTU

work, e.g. Menzel (2015), as well as our proposed model, the random error term ηi0 in the

singlehood utility function is drawn from a Gumbel distribution with location parameter

ln
√
Nw (and scale parameter 1).

Man j has a similarly defined function for his own singlehood utility

V NTU
0j = 0 + ζ0j, (4.16)

with ζ0j ∼ Gumbel ln
√
Nm, 1).

The sum of Uij and Vij gives the total partnership surplus Wij that would exist in a

marriage between woman i and man j, e.g.

WNTU
ij = Uij + Vij

= Uij(xi, zj|
˜
θW ) + Vij(zj, xi|

˜
θM) + ηij + ζij (4.17)

The deterministic component of this surplus function is written as

WNTU
ij (xi, zj|

˜
βNTU) = Uij(xi, zj|

˜
θW (

˜
βNTU) + Vij(zj, xi|

˜
θM(

˜
βNTU)), (4.18)

where
˜
βNTU, which parametrizes Wij, is a (in our case linear) combination of

˜
θW and

˜
θM .

In Chapter 2, we presented the results that showed for asymptotically large populations,

the following relationship approximately holds

f(x, z) = 2
eWij(xi,zj |

˜
βNTU)+g(x,∗)+g(∗,z)

(1 + eg(x,∗))(1 + eg(∗,z))︸ ︷︷ ︸
preference
component

· w̄(x)m̄(z)︸ ︷︷ ︸
availability
component

. ∀x ∈ X , z ∈ Z (4.19)

In this relationship f(x, z) is decomposed into separate preferences-related and availability-

related components, suggesting that the interaction between these two components becomes
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negligible for large populations. We exploit the relationship in Equation 4.19 to infer the

joint surplus preference parameters
˜
βNTU alongside the relative likelihoods of remaining single

g(x, ∗), g(∗, z) ∀x ∈ X , z ∈ Z.

4.2.4 Comparison of the frameworks

The defining assumption that distinguishes the TU and NTU frameworks is that in the former

spouses are able to transfer utility to one another while in the latter they are not. The major

implication of this assumption is that agents behave differently during the matching process.

In the TU setting, agents choose partnerships to maximize their surplus partnership utility

functionWTU
ij , whereas in the NTU setting women and men aim to maximize their individual

utility functions UNTU
ij and V NTU

ij respectively.

Because of the difference in behavior during the matching process, what constitutes a

stable matching in one framework may not be stable in the other. In the big picture, the

stable matchings in the two frameworks converge to different limiting distributions.

Alongside this consideration of whether or not utility can be transferred within a part-

nership, there are several other subtle but important differences in the TU and NTU settings

as they have been developed by Choo and Siow (2006) and Menzel (2015), respectively. We

list some of them here:

1. In the NTU framework, the idiosyncratic component in the female’s partnership utility

function ηij is unique to every man j and independent of both her type and his, and

all ηij are drawn from a standard Gumbel distribution. In the TU framework, woman

i derives the same idiosyncratic utility shift for all type z men and does not distinguish

between them. In addition, the distribution underlying the random component is

dependent on woman i’s type. This difference applies in parallel to the male partnership

utility function.

The major implication of this difference is that in a TU model, the choosing individual

only considers the prospective match’s observable characteristics (Chiappori, 2020).

106



In contrast, within the NTU framework, individuals are influenced by the prospective

match’s observable (to the researcher) characteristics and the characteristics that are

to the researcher unobservable.

2. Also in the NTU framework, the idiosyncratic component ηi0 of the partnership func-

tion is drawn from a standard Gumbel distribution, while the idiosyncratic component

ηij of the singlehood function is drawn from Gumbel distribution with location param-

eter ln
√
Nw. The shift in the distribution of ηi0 is in place so that the probability

of remaining single remains stable with changes in the population size. In the TU

framework, ηij and ηi0 are drawn from the same distribution. This difference applies

in parallel to the male partnership utility function.

3. A significant but, in my view, underemphasized assumption of the TU framework is

the large population assumption which seems to render the question of population

composition and availability of different types of spouses moot. To my knowledge,

there are not currently any guidelines for how the TU model can be adapted to work

with small populations or in large populations where individuals are still constrained

by an option set with a limited number of potential partners of each type. For the

NTU model, we have developed bias correction procedures to address this scenario.

4. Early versions of the TU model did not allow for spillover effects - that is, variations in

the number of type x′ women or type z′ men do not impact c(x, z) for x ̸= x′, z ̸= z′.

(Schoen, 1981) Choo and Siow (2006) indicate that their revision of the TU model

addresses this deficiency, but it is not entirely clear how, or how it compares to this

property goes unmentioned in subsequent papers by other researchers who build on

their work. (Dupuy and Galichon, 2014; Galichon and Salanié, 2021)

Under the NTU model, however, the entry of type x′ women can impact is such that

an increased availability of potential partners leads to increased probability of an agent

finding a match.

Despite these differences in the TU and NTU settings, RPM can still be used for prefer-
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ence parameter inference assuming either framework. We only need to account for the dif-

ference in the asymptotic relationship between f(x, y), preferences, and availabilities, which

we then plug into the large population pseudo-likelihood function (Equation 4.6).

4.3 Applications

Whether the TU or NTU framework provides a more accurate model for the two-sided

marriage market is still debated. In this section, I show how this question might be answered

by applying goodness-of-fit procedures to assess the fits of a TU and NTU model on data

from the 2008 Survey on Income and Program Participation.

To review, the sample was drawn using a stock-stock design and was isolated for this study

to only include households consisting of single individuals who had never been married or

couples who had gotten married for the first time in the prior year at the time of survey. The

sample consisted of 21,077 households, of which 520 contained married couples and the rest

contained singletons. Researchers recorded the education level of each agent as either: less

than high school (LHS), high school (HS), some college (SCO), or college graduate (CO).

I fit SM models from TU and NTU frameworks to it. The parameter preference estimates

were constrained to fall between -15 and 15. The parameter estimates for βx,z, representing

the deterministic shift in surplus utility in a partnered household with type x woman and

type z, are visualized in Figure 4.1. The left plot shows the parameter estimates under the

TU model and the right plot shows the estimates under the NTU model.

We note first that the TU model estimates universally lower preference parameters than

the NTU model for the MLPLE in the SM class, with an average difference of about 5 units.

Both models indicate that models between individuals with very different education levels

produce the most negative shifts in utility. The lightest colored squares lie along the positive

diagonal, indicating a preference for partners of the same education level and reflecting a

broader preference for educational homogamy in the population.

Despite the difference in parameter estimates, the two models have equal AIC scores
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Figure 4.1: SM model parameter estimates when applying TU (L) and NTU (R)

frameworks to SIPP data
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of 95470.11 and equal BIC scores 95482.47 given the data. As it turns out, the estimated

probability mass distribution of households is almost exactly the same between these two

models, so that even the difference in the chi-squared scores (TU-NTU) is only -0.07 -

extremely small considering the sample size of over 21,000.

Through additional studies (not presented here), I found that for large populations,

although the estimated TU and NTU models are clearly different from each other, they

achieve almost identical similar fits to the data.

4.4 Simulation Study

To better understand the TU and NTU models and to assess how well goodness-of-fit mea-

sures can actually detect the differences between the two models, I conducted a simulation

study in two parts. In Part I, I simulated B = 200 populations of size N = 5, 000, where

men and women come in four observable types each and are drawn from the same marginal

distribution considered in Table 3.1 in Chapter 3. I then used a modified version of the Gale-

Shapley algorithm to achieve a stable matching in that population based on a DH marital

surplus model with TU assumptions. The DH model is specified identically to the one in

3.12 of Chapter 3.

I use RPM to fit the TU and NTU models to the data, estimating ŴTU,b1 and ŴNTU,b1

for each iteration b1 ∈ {1, . . . , B}. I then compute the AIC scores of the models and sub-

tract AIC(ŴNTU,b1) from AIC(ŴTU,b1). Because the TU model is actually the correct data-

generating process, we expect it to have a greater log-likelihood and thus a smaller AIC

score.

The distribution of the differences in Figure 4.2. The red dotted line indicates where

the difference in the two AIC scores is equal. The plot shows that the difference in the

AIC scores of the TU and NTU models is in fact almost always negative, with a mean of

approximately -17.8. It also appears to follow a bell-shaped distribution. The error rate, or

probability that the difference in the AIC scores is greater than 0 and thus indicating the
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AIC score favors the NTU framework, is quite low 3.36%.

I repeat this procedure for Part II of the simulation study, except this time the stable

matching is achieved under NTU assumptions. I again fit RPM under both frameworks

and estimate ŴTU,b2 and ŴNTU,b2 for each iteration b2 ∈ {1, . . . , B}. This time, I compute

the difference of AIC scores as AIC(ŴNTU,b2) − AIC(ŴTU,b2). Since we are once again

subtracting the AIC of the incorrect model from that of the correct model, we again expect

to see differences less than 0.

The distribution of the AIC differences in Part II is shown in Figure 4.2. The majority

of the distribution does appear to fall below 0 as expected. The distribution still seems to

resemble a bell-curve with a mean at -7.4, though perhaps it is slightly skewed right. This

slight skew is reflected in the error rate of 0.168, which is quite a bit higher than the error

rate in Part I.

Notably, the magnitude of the differences appears to be much higher in Part I when

fitting the NTU model to the TU data, than in Part II when fitting the TU model to NTU

data. As Burnham and Anderson (2004) suggests that a difference of even 2 in AIC scores

is often enough to imply a considerable difference in model fit, the differences observed in

both parts of the simulation study are still large enough usually to suggest that the correct

model is definitively better than the incorrect one. However, the lower mean and variance

observed in the distribution of differences in Part II, as shown in Figure 4.3, combined with

the higher error rate indicates that perhaps TU models fit slightly better to NTU data than

the other way around.

4.5 Discussion

This chapter formally compares the two most common frameworks that have developed over

the last two decades for modeling two-sided marriage markets. By developing the results from

Choo and Siow (2006) and Menzel (2015) into similar notation, we hope to ease comparison

of the two frameworks for future researchers and encourage researchers to consider both
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Figure 4.2: Difference in AIC scores of TU and NTU models over simulated data from TU

framework (200 simulations)

Figure 4.3: Difference in AIC scores of TU and NTU models over simulated data from

NTU framework (200 simulations)

models in analyzing market preferences, particularly when there is no strong prior evidence

suggesting (non-)transferability of utility.

As noted throughout the chapter, there are some assumptions invoked in the TU market

that remain opaque and thus difficult to translate. Further development in this area is neces-

sary. There are some additional weaknesses of the TU framework that were not commented

on earlier, such as the unlikely assumptions that transfers are required, unconstrained, and

frictionless (i.e. no loss of utility in the transfer process). More likely, the transfer function
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or mechanism is dependent on observed and unobserved characteristics of the agents in the

partnership.

We note that besides TU and NTU, there are additional frameworks that make more

relaxed assumptions about the transferability of utility, e.g. imperfectly transferable utility

(ITU). For a review of these frameworks, which relax some of the assumptions of the TU

framework, I recommend Chiappori (2020).
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CHAPTER 5

Parallel and Future Work

This dissertation makes a significant contribution by proposing a revealed preferences model

to infer preferences in marriage markets and other two-sided markets. However, many of the

methods presented here have significant room for further development. An effective method

of significance testing that can be used in practical applications, for example, would be a

major step forward and facilitate the usefulness of this model to demographers, economists,

and other interested parties. Another potential approach for goodness-of-fit that is not

explored in this dissertation is using cross-validation - e.g. splitting data into training and

testing sets.

This dissertation also makes a significant step in bridging the widening gap between TU

and NTU literature by formally comparing them side-by-side. As noted in Chapter 4, beyond

the obvious difference in assumption about utility transferability which defines the TU and

NTU frameworks, there are many additional, more subtle differences in the assumptions

imposed by researchers in each setting to facilitate inference. Future work may continue to

further develop one framework to more closely resemble the other so that direct comparison

of the models is easier.

An important issue not addressed by this paper is the identification of the effective

population that constitutes the market. An important concept that I did not explore in

this dissertation is that of awareness, that is, the set of people a person effectively chooses

among. There are numerous ways to conceptualize this - perhaps, for example, the social

distance between two people. This idea can be pursued in at least two separate ways.

In one case we model a person’s aware of a potential partner as a function of observed
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characteristics of the individuals (e.g., geographic distance, age difference) (Menzel, 2015).

Incorporating these characteristics requires a significant expansion of the model (for example,

geographic distance is a continuous variable, requiring the integral version of the model)

and decisions about the model should incorporate awareness as a deterministic (0-1) or

probabilistic, as well as of course choices about how to parameterized the awareness function

itself.

Alternatively, we could conceptualize lack of awareness of a potential partner as inter-

changeable with negative utility for that partnership. The idea here is that there is some

reason people are unaware of each other, perhaps due to geographic or social distance. We

could add a term to the surplus utility model which then shifts utility based on this “dis-

tance” between individuals. This line of research is pursued in Zhang (2022).

115



APPENDIX A

Simulation Studies from Chapter 2

A.1 Supplementary Tables

Table A.1: Medians and standard deviations (SDs) of differential homophily model bias

corrected MLPLEs in simulation study I.i (1,000 simulations, N = 6, 000)

Availability

Parameter Truth A1 A2

˜
βDH,0 Median SD Median SD

intercept -3.439 -3.435 0.136 -3.425 0.133

homophily e.1 1.883 1.887 0.391 1.879 0.332

homophily e.2 0.868 0.886 0.310 0.875 0.290

homophily e.3 0.557 0.561 0.238 0.558 0.256

homophily e.4 2.191 2.198 0.243 2.194 0.308

The homophily t parameter is the coefficient of an indicator which equals 1 if both partners

have education level t.
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Table A.2: Medians and standard deviations (SDs) of reduced mix model bias corrected

MLPLEs in simulation study I.i (1,000 simulations, N = 6, 000)

Education Availability

Parameter Truth A1 A2

Female Male
˜
βRM,0 Median SD Median SD

1 1 -1.572 -1.565 0.401 -1.585 0.330

2 1 -2.877 -2.854 0.433 -2.837 0.389

3 1 -3.419 -3.374 0.477 -3.377 0.422

1 2 -3.209 -3.070 0.496 -3.097 0.406

2 2 -2.570 -2.561 0.277 -2.561 0.270

3 2 -3.256 -3.226 0.283 -3.247 0.269

1 3 -3.695 -3.619 0.627 -3.524 0.672

2 3 -3.348 -3.311 0.348 -3.328 0.306

3 3 -2.888 -2.867 0.216 -2.855 0.217

4 3 -3.211 -3.207 0.330 -3.186 0.397

3 4 -3.387 -3.365 0.372 -3.311 0.425

4 4 -1.270 -1.249 0.190 -1.257 0.274

1 or 2 4 -5.082 -5.139 4.128 -4.838 4.349

4 1 or 2 -3.883 -3.829 0.450 -3.839 0.441

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors
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Table A.3: Medians and standard deviations (SDs) of differential homophily model bias

corrected MLPLEs in simulation study I.ii (1,000 simulations, nh = 21, 077)

Availability

Parameter Truth A1 A2

˜
βDH,0 Median SD Median SD

intercept -3.439 -3.437 0.072 -3.435 0.064

homophily e.1 1.883 1.889 0.180 1.875 0.181

homophily e.2 0.868 0.854 0.156 0.864 0.145

homophily e.3 0.557 0.544 0.127 0.553 0.127

homophily e.4 2.191 2.200 0.115 2.195 0.149

The homophily e.t parameter is the coefficient of an indicator which equals 1 if both

partners have education level t.
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Table A.4: Medians and standard deviations (SDs) of reduced mix model bias corrected

MLPLEs in simulation study I.ii (1,000 simulations, N = 21, 077)

Education Availability

Parameter Truth A1 A2

Female Male
˜
βRM,0 Median SD Median SD

1 1 -1.572 -1.585 0.180 -1.563 0.167

2 1 -2.877 -2.892 0.238 -2.873 0.207

3 1 -3.419 -3.421 0.230 -3.422 0.198

1 2 -3.209 -3.219 0.297 -3.210 0.273

2 2 -2.570 -2.584 0.146 -2.576 0.137

3 2 -3.256 -3.273 0.157 -3.261 0.137

1 3 -3.695 -3.745 0.335 -3.740 0.287

2 3 -3.348 -3.360 0.185 -3.343 0.178

3 3 -2.888 -2.893 0.115 -2.884 0.104

4 3 -3.211 -3.212 0.164 -3.230 0.206

3 4 -3.387 -3.388 0.200 -3.378 0.256

4 4 -1.270 -1.271 0.092 -1.264 0.128

1 or 2 4 -5.082 -5.069 0.410 -5.047 0.529

4 1 or 2 -3.883 -3.889 0.230 -3.891 0.240

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors

119



Table A.5: Simulation study II: MLPLEs and bias corrected MLPLEs for different N with

Availability A1 and uniform homophily preferences (1,000 simulations)

Parameter Truth Bias Correction N = 60 N = 600 N = 6, 000

˜
βUH,0 Median SD Median SD Median SD

intercept 0.558 No 0.007 0.465 0.179 0.151 0.218 0.052

Yes 0.485 0.533 0.509 0.171 0.520 0.059

homophily 1.170 No 1.086 0.580 1.117 0.168 1.147 0.053

Yes 1.120 0.630 1.159 0.182 1.166 0.058

A.2 Confidence intervals from 200 simulations

Figures A.1 and A.2 show the analytical confidence intervals and the empirical bootstrap

confidence intervals produced over 200 simulations for the β4,4 and β1 or 2,4 parameters in the

reduced mix model. These figures coincide with the simulation results related to uncertainty

estimates described in Section 2.9.5. The horizontal axis gives the simulation index, and the

vertical axis shows the range of the interval. The solid point at the center of each interval

indicates the parameter estimate in the bootstrapped sample at that index. The horizontal

red line in each plot represents the true parameter value, and intervals in blue are those which

failed to include the true value. We provide the empirical coverage rate of the parameter for

each method of confidence interval in the top-right corner of the plots.

The first three panels of Figure A.1 show the 200 confidence intervals for β4,4 produced

by each of the three bootstrapping methods which were described in Section 2.7. The three

methods for constructing the bootstrapped confidence intervals produce very similar results,

with the basic bootstrap method achieving 95% coverage and the percentile and modified

studentized t methods achieving 96% coverage. Furthermore, the confidence intervals appear

to have similar lengths across the three methods.The bottom-right panel shows the analytical

confidence intervals produced for β4,4 based on the same simulated populations. We note that
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Table A.6: Simulation study III, MLPLEs for different nh with Availability A1 and

differential homophily preferences at N = 6, 000 (200 simulations)

Parameter Truth Bias Correction nh = 600 nh = 1, 200 nh = 3, 000

˜
βDH,0 Median SD Median SD Median SD

intercept 0.561 No 0.223 0.142 0.227 0.092 0.218 0.057

Yes 0.531 0.156 0.537 0.107 0.519 0.064

homophily e.1 1.883 No 1.859 0.363 1.848 0.262 1.844 0.153

Yes 1.891 0.388 1.884 0.294 1.886 0.170

homophily e.2 0.868 No 0.872 0.262 0.861 0.186 0.870 0.121

Yes 0.866 0.295 0.846 0.199 0.872 0.129

homophily e.3 0.557 No 0.567 0.216 0.569 0.141 0.581 0.087

Yes 0.551 0.242 0.541 0.159 0.564 0.097

homophily e.4 2.191 No 2.122 0.269 2.106 0.178 2.110 0.119

Yes 2.206 0.281 2.173 0.197 2.193 0.126

Education level codes: 1 =<high school, 2 =high school, 3 =some college, 4 =≥bachelors

The homophily e.t parameter is the coefficient of an indicator which equals 1 if both

partners have education level t.
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the analytical 95% confidence intervals only achieve 83% coverage in this set of simulations,

indicating undercoverage.

The performances of the three bootstraps methods are more varied more when evaluating

the β1 or 2,4 parameter. The modified studentized t and the percentile bootstrap confidence

intervals achieve a coverage rate of 88% and 86.5%, respectively, while the basic bootstrap

intervals achieve much lower coverage of 78.5%. Furthermore, the percentile and studentized

t methods produce intervals which are generally wider than those produced by the basic

bootstrap method. The analytical confidence intervals in the bottom-right panel of the

figure are so narrow that few of them capture the true value, resulting in a poor coverage

rate of 10.5%.
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Figure A.1: Coverage of β4,4 in reduced mix model over 200 simulations
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Coverage probability= 0.900
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Figure A.2: Coverage of β1 or 2,4 in reduced mix model over 200 simulations
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Figure A.3: Coverage of intercept β0 in differential homophily model over 200 simulations

Figure A.4: Coverage of βhomophily e.1in differential homophily model over 200 simulations
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APPENDIX B

Supplementary material on goodness-of-fit

B.1 Additional simulation study findings

I repeated the simulation study procedures described in Section 3.6 for synthetic population

data with N = 10, 000 and N = 20, 000 individuals and for synthetic samples with n = 1, 000

households. For the latter study, I first generated synthetic populations of size 10, 000 using

the availabilities from Table 3.1, generated a stable matching based on either WUH or WDH,

and then randomly drew sampled 1, 000 households based on a stock-stock sampling design.

At small sizes of B (up to 50), the results for these studies appeared consistent with

those discussed in this section. Significance testing continued to perform poorly at large

population sizes and for sampled data. The other proposed methods for goodness-of-fit

testing, such as comparison of information gain and AIC and BIC scores, performed well for

both large population data and for the sample. In the studies of synthetic populations with

N = 10, 000 and N = 20, 000 individuals, the error rate in the AIC and BIC scores decreased

and the information gain achieved by all models increased. However, these studies could not

be repeated at a larger number of iterations for inclusion in this dissertation due to resource

constraints. For this reason, they have been excluded from formal discussion in the results

section. Further efforts in understanding the performance of goodness-of-fit methods given

sample or large census data on a stable matching would further understanding of advantages

and disadvantages of the methods proposed in this chapter.
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B.2 Goodness-of-fit measurement for census data

In rare cases, researchers may obtain data on partnership outcomes within a fully observed

closed population. In such a scenario, every woman i ∈ {1, . . . , Nw} is fully aware of every

man j ∈ {1, . . . , Nm} in the closed population for consideration as a marital partner, and

vice versa. Agents of either gender do not consider any partners outside the market, and

the researcher has information on all partnerships formed in the stable matching achieved

within this market. Because there is no element of random sampling, the only randomness

in the observed matching comes from the stochastic component of the surplus function.

Recall that in Section 3.9 we showed that, for agents with discrete characteristics, match-

ing data c̄ can be represented as a contingency table, as in Figure 3.9.

When census data is available, a special case arises where the marginal totals are fixed

for rows 1, . . . , X and for rows 1, . . . , Z. Letting w(x) and m(z) equal the number of type x

women and type z men in the population, respectively,

c(x, ∗) +
∑
z∈Z

c(x, z) = w(x) ∀x ∈ X (B.1)

c(∗, z) +
∑
x∈X

c(x, z) = m(z) ∀z ∈ Z (B.2)

For each of the first X rows, the sum of the xth row is equal to the total number of type x

women in the data. In each of the first Z columns, the sum of the zth column equals the

total number of type z men in the data.

Whereas with sample data we considered the probability of observing the given sample

assuming some hypothesized partnership surplus utility function; with population data we

consider instead the probability that the observed count matrix would occur in that popula-

tion over the distribution of unobserved preferences (idiosyncratic taste-shifters, or random

errors). To test the goodness-of-fit of the model in this case, we can adapt the goodness-

of-fit statistic suggested for X × Z contingency tables with fixed margins, which follows a

hypergeometric distribution. (Agresti, 2002, Section 3.5.7) However, because the derivation

of the distribution under the null hypothesis becomes unfeasible for large population sizes,
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and because census data is so rarely available, I do not explore this scenario in-depth in this

dissertation.

B.3 Relative information gain in simulation studies using other

deviance metrics

B.3.1 Simulation Study I.i
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Figure B.1: Simulation Study I.i: Relative information gain (G-squared based) achieved by

different models; true partnership surplus utility model is WUH (200 simulations)
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Figure B.2: Simulation Study I.i: Relative information gain (squared Hellinger distance

based) achieved by different models; true partnership surplus utility model is WUH (200

simulations)
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Figure B.3: Simulation Study I.i: Relative information gain (KL divergence based)

achieved by different models; true partnership utility model is WUH (200 simulations)
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B.3.2 Simulation Study I.ii
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Figure B.4: Simulation Study I.ii: Relative information gain (G-squared based) achieved by

different models; true partnership utility model is WDH (200 simulations)
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Figure B.5: Simulation Study I.ii: Relative information gain (squared Hellinger distance

based) achieved by different models; true partnership utility model is WDH (200

simulations)
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Figure B.6: Simulation Study I.ii: Relative information gain (KL divergence based)

achieved by different models; true partnership utility model is WDH (200 simulations)
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