
UCLA
UCLA Electronic Theses and Dissertations

Title
Understanding continuous and discrete stochastic models by coarse-graining

Permalink
https://escholarship.org/uc/item/9c94r72j

Author
Wu, Tianqi

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9c94r72j
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Understanding continuous and discrete stochastic models by coarse-graining

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Mathematics

by

Tianqi Wu

2022



© Copyright by

Tianqi Wu

2022



ABSTRACT OF THE DISSERTATION

Understanding continuous and discrete stochastic models by coarse-graining

by

Tianqi Wu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Georg Menz, Chair

This thesis will examine three stochastic models using the idea of coarse-graining:

(1) A quantitative hydrodynamic limit of the Kawasaki dynamics via a �two-spatial-scale�

approach, re�ning the original two-scale approach of Grunewald, Otto, Villani, and

Westdickenberg.

(2) A quantitative ergodic theorem of the in�nite-swapping process via a �two-time-scale�

approach, adapted from the approach of Menz and Schlichting to the setting of an

inhomogeneous di�usion.

(3) A sharp leading order asymptotic for the diameter of a long-range percolation graph via

concentration inequalities, which improves a previous result by Coppersmith, Gamarnik,

and Sviridenko.

A common key feature in these problems is the presence of multiple �levels� (or scales) in

space or time. The solution generally involves understanding the characteristic behavior at

each level and then combining the information about di�erent levels together.
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Chapter 1

Introduction

A common theme in probability theory is the emergence of new types of patterns in an

appropriately �zoomed out� view, or on a coarse-grained scale. The emergent new order may

be either deterministic or stochastic:

� For example, the law of large numbers says that given a sequence of i.i.d. integrable

random variables X1, X2, · · · , the sample average 1
N
(X1 + X2 + · · · + XN) converges

almost surely to the expected value EX1 as N → ∞.

� On the other hand, if we take away the expected value from eachXi and then change the

scale factor 1
N
to 1√

N
, then we obtain a di�erent type of convergence result known as the

central limit theorem: the rescaled sample average of the �uctuations, 1√
N

∑N
i=1(Xi −

EXi), converges to a normal distribution N (0,VarX1) as N → ∞.

The intuition behind the law of large numbers is the di�culty for many independent sources

of randomness to work together: in a large i.i.d. sample, the individual �uctuations tend

to cancel each other, leaving only their common statistical properties in the average. In

an opposite manner, the Poisson limit theorem, also known as the law of rare events, is an

example of how rare �uctuations on a small scale can accumulate to an occurrence with high

probability on a large scale:

� According to the Poisson limit theorem, a sequence of binomial distributions Binom(n, pn)

satisfying npn → λ converges to a Poisson distribution Poi(λ) as n→ ∞.
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� As a consequence, suppose the probability of getting a phone call in a small time

interval ∆t is approximately λ∆t as ∆t → 0, then the waiting time between phone

calls is exponentially distributed with mean 1/λ, i.e. the phone calls follow a Poisson

process of rate λ.

In this dissertation, we apply the idea of coarse-graining illustrated in these basic examples

to study three more complex stochastic models involving multiple scales in space or time.

The solution generally involves understanding the characteristic behavior at each scale and

then combining the information about di�erent scales together.

1.1 Quantitative hydrodynamic limit of the Kawasaki dy-

namics

Our �rst topic is concerned with a dynamical version of the law of large numbers, called the

hydrodynamic limit. This type of results say that under a suitable time-space rescaling, a

deterministic dynamics emerges as the typical macroscopic behavior of a random evolution

on a microscopic lattice as the system size goes to in�nity. The particular microscopic

evolution we study is the Kawasaki dynamics of 1-dimensional lattice systems of continuous,

unbounded spins. It is a spin-exchange dynamics preserving the mean spin and, in the

hydrodynamic limit, converges to a non-linear di�usion equation. On a qualitative level,

this convergence had been established in [Fri87], [GPV88], and [LY93], but it is not apparent

how to obtain quantitative rates of convergence from their methods.

The �rst step toward a quantitative theory was made in [GOVW09] by introducing the

two-scale approach. In a nutshell, one chooses a mesoscopic scale between the microscopic

and macroscopic scales and then de�nes a mesoscopic dynamics that is close to both the

microscopic dynamics and macroscopic dynamics. The key insight behind the choice of the

mesoscopic dynamics in [GOVW09] is a gradient �ow interpretation of the microscopic and
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macroscopic dynamics, leading to the de�nition of the mesoscopic evolution in terms of an

appropriately coarse-grained gradient �ow structure. However, this perspective was not fully

carried out in [GOVW09] due to technical reasons. In our work, we capitalize a lot more on

the idea of choosing a mesoscopic evolution with the natural gradient �ow structure, which

leads to improved error estimates in the system size.

Let us now give more details. We consider a spin system consisting of N real-valued

spins located on the 1-dimensional periodic lattice {1, . . . , N}. The associated Hamiltonian

H : RN → R for the spin values only has single-site potentials ψ : R → R and no interaction

term:

H(x1, x2, . . . , xn) :=
N∑
i=1

ψ(xi).

The evolution of the spin values is governed via a coupled system of SDEs, called the

Kawasaki dynamics :

dXt = −A∇H(Xt)dt+
√
2AdBt,

where Bt denotes a standardN -dimensional Brownian motion and−A denotes the (centered)

second-order di�erence operator for the periodic rescaled lattice
{

1
N
, . . . , 1

}
. The presence

of the matrix A means a site can only change its spin by distributing the di�erence to its

neighbors. Consequently, the mean spin is conserved and we may restrict the dynamics to

the hyperplane XN := {x ∈ RN :
∑N

i=1 xi = 0}.

As mentioned before, it is known that in the hydrodynamic limit N → ∞, the Kawasaki

dynamics converges to a nonlinear PDE on the 1-dimensional torus T = [0, 1]

∂tζ = ∂2θφ
′(ζ),

where the function φ : R → R is the Cramér transform of the single-site potential ψ, i.e.

φ(m) = sup
σ∈R

(
σm− log

∫
R
exp (σz − ψ(z)) dz

)
.

Compared with the microscopic dynamics,

3



� the 1-dimensional periodic lattice is rescaled and embedded into the 1-dimensional

torus;

� the Euclidean space XN is rescaled and embedded into the function space L2(T), as

the subspace of piecewise constant functions;

� the second-order di�erence operator −A is replaced by the second derivative ∂2θ ;

� the microscopic Hamiltonian H is replaced by the macroscopic free energy H(ζ) :=∫ 1

0
φ(ζ)dθ, with ∇H and φ′ as their gradient mappings in their respective spaces;

� and the noise term
√
2AdBt has disappeared.

Our aim is to make this statement of convergence quantitative, providing a good estimate

on the speed of convergence, which is needed in applications. Towards this end we adapt

the two-scale approach introduced in [GOVW09]. The basic idea is to choose a suitable

mesoscopic scale between the microscopic and macroscopic scales on which we can de�ne

a mesoscopic dynamics ηt that serves as a coarse-grained version of both the microscopic

dynamics Xt and macroscopic dynamics ζt:

� Relative to the microscopic scale of XN , the mesoscopic observables should become

more and more coarse-grained, which helps remove the random �uctuations of the

microscopic dynamics by the law of large numbers.

� Relative to the macroscopic scale of L2(T), the mesoscopic observables should become

more and more �ne-grained, so that the coarse-grained dynamics approximate the full

dynamics on the macroscopic scale.

After a suitable space Y of mesoscopic observables is chosen and embedded in the function

space L2(T), the mesoscopic dynamics ηt will be given in the form of a (deterministic) high-

dimensional ODE

d

dt
ηt = −Ā∇L2H̄(ηt),

where H̄ and Ā will be coarse-grained versions of H and A for the mesoscopic space Y .

The key feature of this set-up is that all three dynamics can now be viewed as gradient
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�ows, i.e. the evolution of each dynamics reduces some kind of energy in the fastest possible

way via some dissipation mechanism (see e.g. [AGS05, San16] for more details, examples,

and further references).

� For the macroscopic dynamics ζt, the energy functional is H and the dissipation mech-

anism is the H−1 metric.

� For the mesoscopic dynamics ηt, the energy functional is H̄ and the dissipation mech-

anism is the Euclidean metric on Y given by the inner product ⟨·, Ā−1·⟩L2 .

� For the microscopic dynamics, the gradient �ow structure appears on the level of the

law ρt of the process Xt, which evolves according to the Fokker-Planck equation

∂tρt = ∇ · (ρtA∇H + A∇ρt).

The associated energy functional is then given by the relative entropy of ρt with respect

to the Gibbs equilibrium measure µ(dx) := 1
Z
exp(−H(x))dx,

Ent(ρt|µ) =
∫
H(x)ρt(dx) +

∫
log ρt(x)ρt(dx).

The dissipation mechanism is the Wasserstein distance on the space of probability

measures over the Euclidean space XN with the Euclidean metric given by the inner

product x · A−1y,

W2(ν, ν
′) := min

γ∈Π(ν,ν′)

(∫
XN×XN

|x− x′|2A−1 dγ

) 1
2

,

where Π(ν, ν ′) is the set of all coupling of measures ν and ν ′ and | · |A−1 denotes the

Euclidean norm induced by the inner product x · A−1y.

It is known that the convergence of gradient �ows may be deduced from the Γ-convergence

of the associated energy functionals together with the convergence of the dissipation mech-

anisms in the proper sense (see e.g. [SS04, Ser11, Mie16]). Consequently, the gradient �ow

interpretation provides insights for the convergence of these dynamics. In terms of the energy

functionals:
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� The convergence of the coarse-grained Hamiltonian H̄ to the macroscopic free energy

H is a version of the local Cramér theorem. This input from equilibrium statistical

mechanics also has the important consequence that H̄ gains convexity from coarse-

graining.

� The relative entropy Ent(ρt|µ) can be interpreted as a free energy associated to the

ensemble ρt, consisting of an energy part
∫
H(x)ρt(dx) coming from the Hamiltonian

H and an entropy part
∫
log ρt(x)ρt(dx) coming from the noise Bt.

� Under coarse-graining onto mesoscopic pro�les y ∈ Y , the entropy part vanishes

due to the law of large numbers.

� On the other hand, as the mesoscopic scale becomes more �ne-grained, the en-

ergy part converges to the coarse-grained Hamiltonian H̄ because the Kawasaki

dynamics equilibrates faster on smaller spatial scales due to its spin-exchange

mechanism. In the rigorous analysis this fact will be quanti�ed with the help of

a log-Sobolev inequality for the conditional Gibbs measures µ(dx|y) that is based

on the convexity of H̄.

In terms of the dissipation mechanisms:

� The operator −Ā is a coarse-grained version of the second-order di�erence operator

−A and therefore should converge to the second derivative ∂2θ .

� The dissipation mechanism on the microscopic level has two layers, an outer Wasser-

stein distance associated with the transportation of probability measures and an inner

Euclidean metric associated with the spin-exchange mechanism mediated by the ma-

trix A. Under coarse-graining, the outer metric on the space of probability measures

becomes degenerate as randomness vanishes, leaving only the inner metric on XN asso-

ciated with the A−1 inner product, which should then converge to the Euclidean metric

on Y associated with the Ā−1 inner product.

To fully take advantage of the gradient �ow interpretation, the operation of taking second-

order di�erence should be compatible with coarse-graining, which means the mesoscopic
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observables need to be su�ciently smooth. In [GOVW09], the mesoscopic observables were

chosen to be piecewise constant functions. The lack of regularity then forces one to use an

unnatural de�nition of the coarse-grained operator Ā in the mesoscopic dynamics, leading

to sub-optimal error estimates when that approach is taken to completion. In our work, we

instead choose the mesoscopic observables to be splines, i.e. piecewise polynomials that are

smoothly joined together. The extra regularity then allows a more natural de�nition of the

mesoscopic dynamics in terms of its gradient �ow structure, leading to overall better error

estimates. On the other hand, the smoothness constraints of the splines also make them

non-local functions, which makes deducing the main ingredients in the two-scale approach

more subtle. As a workaround, we need to introduce another level of mesoscopic observables

that are piecewise polynomials, on which we can perform the analysis more easily and then

transfer the properties established there back to the original level of splines.

1.2 Ergodicity of the in�nite swapping algorithm

Our second topic is concerned with the ergodic properties of sampling dynamics in a non-

convex energy landscape. In many applications in physics, chemistry, engineering, statistics,

machine learning, etc, one needs to compute integrals with respect to Gibbs measures at low

temperature, i.e. probability distributions on Rn whose probability density is proportional

to exp(−H(x)/τ), for some energy landscape H : Rn → R, and temperature 0 < τ ≪ 1.

Because the dimension n is usually very large, direct integration is not numerically feasible.

Instead, by the ergodic theorem, one can (with high probability) approximate the integral by

the long-time average of one simulation of some random dynamics Xt of a particle moving in

the state space Rn, with the property that the distributions of Xt converge to µ as t → ∞.

The basic idea is that the dynamics Xt will eventually visit the state space Rn everywhere

with frequency according to µ. For example, the overdamped Langevin dynamics Xt governed
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by the stochastic di�erential equation (SDE)

dXt = −∇H(Xt) +
√
2τdBt

where Bt is a standard n-dimensional Brownian motion, can be used to sample the Gibbs

measure µ(dx) := 1
Z
exp(−H(x)/τ)dx.

However, at low temperatures τ , if the energy landscape H has multiple deep local min-

ima, then a full exploration of the state space becomes very slow because of the metastability

phenomenon: the particle would quickly go down a nearby valley (due to the gradient term),

stay there waiting for an exponentially long time, before it �nally jumps over to the neigh-

borhood of another valley (thanks to the random �uctuations of the Brownian motion). The

average waiting time for the jump follows the Arrhenius's law, originally discovered in the

context of chemical reactions:

E[waiting time] = A(τ) exp

(
∆E

τ

)
,

where the energy barrier ∆E is the minimal height that a particle has to climb up in order

to cross over from one valley to another in the energy landscape H, and the pre-exponential

factor A(τ) is a sub-exponential factor given by the more re�ned Eyring-Kramers formula

(see [Ber13] for background).

One way to overcome this slow-down of sampling Gibbs measures at low temperatures

due to the dynamics getting trapped at local minima is the replica exchange method, also

known as parallel tempering. In the simplest version, one considers two independent particles

governed by the same underlying dynamics, i.e. the overdamped Langevin dynamics in our

example, with one particle evolving at the desired low temperature τ1 and the other particle

evolving at some higher temperature τ2, where 0 < τ1 ≪ τ2 ≪ 1. At some random times,

the positions of the two particles are swapped. The advantage of this method is that the

low-temperature particle can gather information about the desired low-temperature Gibbs

measure while the high-temperature particle can more freely explore the full state space. In

8



a study of the sampling performance of parallel tempering, the authors of [DLPD12] found

that the rate of convergence of the empirical measures (as measured by the large deviation

rate function) is a monotone increasing function of the swap rate, which naturally leads them

to consider a suitable limiting process as the swap rate goes to in�nity, the in�nite swapping

algorithm (isa). This requires a shift of perspective from a particle-swapped process to a

temperature-swapped process : rather than swapping particle positions in�nitely fast (which

would result in in�nitely many jumps in �nite time), the isa does not swap particle positions

at all but instead swaps temperatures in�nitely fast.

In more detail, suppose the goal is to sample the Gibbs measure ντ with density propor-

tional to exp
(
−H(x)

τ

)
, for some smooth non-convex energy landscape H : Rn → R, at low

temperatures 0 < τ ≪ 1. Given two di�erent temperatures 0 < τ1 ≪ τ2 ≪ 1, let π be

the product measure π(x1, x2) := ντ1(x1)ν
τ2(x2). The isa is de�ned as the evolution of two

particles X1(t) and X2(t) governed by the SDEs: dX1 = −∇H(X1) dt+
√
2τ1ρ(X1, X2) + 2τ2ρ(X2, X1) dB1,

dX2 = −∇H(X2) dt+
√

2τ2ρ(X1, X2) + 2τ1ρ(X2, X1) dB2,

where B1, B2 are independent standard Brownian motions in Rn, and ρ(x1, x2) is the relative

weight of the con�guration (x1, x2) versus (x2, x1) assigned by

ρ(x1, x2) :=
π(x1, x2)

π(x1, x2) + π(x2, x1)
.

At each instant, this assignment essentially gives the higher temperature τ2 (resp. the lower

temperature τ1) to the particle whose potential energy H is higher (resp. lower) at that

instant (see also [DDN17, Section 3.2]). The crucial feature of the in�nite swapping dynamics

is that the empirical measure

ηt :=
1

t

∫ t

0

(
ρ(X1, X2)δ(X1,X2) + ρ(X2, X1)δ(X2,X1)

)
ds

converges weakly to the product measure π as t→ ∞ by the ergodic theorem. In particular,

the �rst marginal of the measure ηt approximates the Gibbs measure ντ1 for t large enough.
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In [DLPD12], a large deviation principle was established for the measure ηt, though it is

not clear how the rate function depends on the temperatures τ1, τ2. Further numerical

and heuristic studies in [DDN17] indicate that the isa has an exponential gain in sampling

performance over the classical overdamped Langevin dynamics. More recently, the isa was

applied to training restricted Boltzmann machines [HNR20] and was shown to be competitive

empirically.

In our work, we take the analysis of the isa to the next level via a functional inequality

approach. It is well-known that Poincaré and log-Sobolev inequalities yield estimates on the

speed of convergence of the time average to the ensemble mean (see e.g. [CG08, WY08]).

By rigorously deducing low-temperature asymptotic formulas for the Poincaré and log-

Sobolev constants of the isa, we thus quantify how the speed of convergence depends on

the two temperatures τ1, τ2, under some standard non-degeneracy assumptions. Compared

with the Eyring-Kramers formulas for the classical over-damped Langevin dynamics (see

e.g. [BEGK04, BGK05, MS14]), our results for the isa show an exponential gain: the energy

barrier in the leading exponential term now only �sees� the higher temperature τ2 instead of

the lower temperature τ1, at a polynomial cost in terms of the ratio τ2/τ1.

The proof of our results adapts the �two-time-scale� approach of [MS14] for overdamped

Langevin dynamics. The basic idea is to decompose the Gibbs measure ντ into two levels:

� a local measure on each of the domains of attraction Ωi of the Hamiltonian H, corre-

sponding to the fast convergence to local minima mi, and

� a coarse-grained discrete measure on the set {Ω1,Ω2, · · · }, corresponding to the expo-

nentially long transitions between the local minima.

Consequently, by the law of iterated expectation, the variance (resp. entropy) splits into

local variances (resp. entropies) and a coarse-grained variance (resp. entropy). The Poincaré

(resp. log-Sobolev) inequality for the full Gibbs measure then follows from analyzing these

two levels separately:
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� The local variances (resp. entropies) are controlled by the corresponding Poincaré

(resp. log-Sobolev) inequalities for the local measures. The two-time-scale heuristic

suggests this should not be of leading order. However, the non-convexity of both the

Hamiltonian H and the regions Ωi, combined together with the low temperature τ ,

makes it di�cult to apply the usual methods for proving such inequalities. These ob-

stacles were overcome in [MS14] by a subtle combination of a Lyapunov argument and

a perturbation argument.

� The coarse-grained variance (resp. entropy) can be expressed in terms of mean dif-

ferences between the local measures. This is where the energy barrier between local

minima comes into play and hence will be the dominant contribution to the Eyring-

Kramers formula. The proof is based on �nding a good transportation interpolation

of measures between the regions Ωi.

In the setting of isa, another layer of complexity is introduced by the swapping between two

temperatures: the stationary distribution is now a mixture of products of Gibbs measures at

the two di�erent temperatures, µ = 1
2
(ντ1 ⊗ ντ2 + ντ2 ⊗ ντ1). In order that the energy barrier

only �sees� the higher temperature τ2, the exponentially long transitions should only happen

in the high-temperature component, and thus an estimate for swapping the temperatures of

the two components comes into play as a new ingredient.

1.3 Diameter of a long-range percolation graph

Our third topic is concerned with a random graph model inspired by the small-world phe-

nomenon exhibited in many real-world networks, i.e. their typical distances are much smaller

than their sizes. The term originates from the old paper [Mil67] which suggested that two

average Americans are just six acquaintances away from each other (the so-called �six degrees

of separation�), and the phenomenon has received renewed interest since advances in com-

munication and transportation technologies, in particular the Internet, have tremendously
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increased global connectivity in recent decades.

A natural way to model this phenomenon is a long-range percolation graph on the hyper-

cubic lattice Zd, in which nearest neighbors are connected a priori and, independently at

random, a new edge is added between each pair of non-adjacent sites x, y with probability

px,y := 1 − exp (−β|x− y|−s) ≈ β|x − y|−s, for some parameter β > 0, s > 0. The objects

of interest are how the typical graph-theoretical distance D(x, y) scales with the Euclidean

distance |x− y| and, when restricted to a �nite box [N ]d := {0, 1, · · · , N}d, how the diame-

ter DN in the graph-theoretical distance scales with the box size N . The motivation is that

adding long edges, even quite sparsely, could substantially shorten the typical distance of

the network (see e.g. the short article [WS98]).

This type of models was introduced and studied by [BB01] for a one-dimensional case and

extended to a multi-dimensional version by [CGS02]. Five regimes of behavior have been

identi�ed based on the exponent s: s < d, s = d, d < s < 2d, s = 2d, and s > 2d.

� In the regimes s < d, [BKPS04] showed the graph diameter DN approaches the (de-

terministic) number ⌈d/(d− s)⌉ as N → ∞ using the stochastic dimension method.

� In the regime d < s < 2d, Biskup ([Bis04], [Bis11]) showed a poly-logarithmic scaling

for both the graph distance and the graph diameter: D(x, y) = (log |x − y|)∆+o(1)

as |x − y| → ∞ and DN = (logN)∆+o(1) as N → ∞, where ∆−1 := log2(2d/s).

For the graph distance, this result was improved in the more recent work [BL19] to

D(x, y) = Θ(1)(log |x−y|)∆. The main idea is identifying a �binary hierarchy� of edges

forming the path between two given sites.

� In the regimes s > 2d, [Ber04] showed the graph distance resumes linear scaling with

the Euclidean distance.

� The critical regime s = 2d, where the model is scale-invariant, is still largely open. In

dimension d = 1, [DS13] showed that there exists an exponent θ(β) ∈ (0, 1) such that

the graph distance D(0, N) = Θ(1)N θ(β).
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Our work focuses on the critical regime s = d. For s = d, it has been shown in [CGS02] that

DN = Θ(1) logN/ log logN as N → ∞.

Heuristically, the critical scaling in the connection probabilities suggest the graph is like a

�tree� with branching degree Θ(logN). For instance, we can partition (or coarse-grain) the

box [N ]d into Θ(logN) many dyadic annuli around a given site:

� Within each dyadic annulus, the critical scaling s = d means the sum of the connection

probabilities is on the order Θ(1), and the law of rare events takes e�ect, resulting in

an overall degree of connection distributed like Poi(Θ(1)).

� Across the dyadic annuli, there are Θ(logN) many such Poi(Θ(1))-distributed con-

nection degrees, and the law of large numbers takes e�ect, resulting in a concentra-

tion around the expected value of the total connection degree, which is on the order

Θ(logN).

Therefore, in m steps one would reach [Θ(logN)]m sites, ignoring for the moment any �re-

coils� back to the sites already visited and multiple �redundant� connections to the same

site. Taking m = d logN/ log logN , then Θ(Nd) sites would be reached. This suggests the

(random) pre-factor Θ(1) above should be close to the dimension d. In fact, the counting

arguments in [CGS02] already give a lower bound d − o(1), but give a much less optimal

upper bound. Guided by the �tree� heuristic mentioned before, we show a matching upper

bound d+ o(1) for the pre-factor by a more systematic counting, so now we know

DN = (d+ o(1)) logN/ log logN as N → ∞.

The natural next step is to go beyond the leading order, which requires dealing with the

�recoils� and �redundancies� more carefully. In turn, this requires a deeper look at the spatial

distribution of the �tree� to see how �homogeneously� the �tree� is distributed in the box.
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Chapter 2

Quantitative hydrodynamic limit of the

Kawasaki dynamics

We derive a rate of convergence to the hydrodynamic limit of the Kawasaki dynamics for a

one-dimensional lattice spin system as considered by Guo, Papanicolaou and Varadhan. We

follow the two-scale approach of Grunewald, Otto, Villani, and Westdickenberg. However, we

use a di�erent coarse-graining operator that allows us to leverage the gradient �ow structure.

As a consequence, we obtain a better convergence rate.

2.1 Introduction

The broader context of this work is the derivation of scaling limits for lattice systems. Typ-

ically, such a result shows that under a suitable time-space re-scaling, a random evolution

of a lattice system converges to a macroscopic evolution as the system size goes to in�nity.

Two di�erent kinds of limits may be considered. In the hydrodynamic limit (a dynamical

version of the law of large numbers), the limiting macroscopic evolution is deterministic and

describes the typical macroscopic behavior of the system. In the �uctuation limit (a dynam-

ical version of the central limit theorem), the limiting macroscopic evolution is random and

describes the �uctuations around the hydrodynamic limit.
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This work is devoted to the hydrodynamic limit of the Kawasaki dynamics of one-dimensional

lattice systems of continuous, unbounded spins. The Kawasaki dynamics is a spin-exchange

dynamics preserving the mean spin. In the hydrodynamic limit, it converges to a non-linear

di�usion equation. On a qualitative level, this convergence was established in [Fri87] using

resolvent techniques and in [GPV88] using convergence of martingales and entropy estimates.

Our quantitative approach is closer to the [GPV88] method in the sense that we use ther-

modynamically natural quantities like the relative entropy and its dissipation, and allow for

non-convex single site potentials. As an alternative to the martingale method in [GPV88],

Lu and Yau introduced the entropy method in [LY93], which is based on a sophisticated

Gronwall-type estimate for a relative entropy functional. This method is more straightfor-

ward and gives stronger results, but also makes stronger assumptions on the initial data

(closeness to hydrodynamic behavior in the sense of relative entropy rather than in the sense

of macroscopic observables). All those results were qualitative, and it is not apparent how

to make them quantitative.

In the present work we develop a quantitative theory of the hydrodynamic limit of the

Kawasaki dynamics by establishing convergence rates. The �rst step toward a quantitative

theory was made in [GOVW09] by introducing the two-scale approach. For a detailed de-

scription of the two-scale approach, we refer to Section 2.3. In a nutshell, the two-scale

approach introduces an additional mesoscopic scale in-between the microscopic and macro-

scopic scales. The hydrodynamic limit is then deduced in two steps, �rst showing the close-

ness of the stochastic microscopic dynamics to a carefully chosen, deterministic mesoscopic

dynamics, and then showing the closeness of that mesoscopic dynamics to the macroscopic

dynamics. In [GOVW09], the hydrodynamic limit is still deduced only on a qualitative level,

but the main estimate for the �rst step is already quantitative, and in principle the second

step could also be made quantitative with some numerical analysis, which overall would lead

to a quantitative result on the hydrodynamic limit.
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However, rather than completing the approach of [GOVW09], we instead proceed by ap-

plying the two-scale approach with a di�erent choice of the mesoscopic scale. The reason is

that the choice of the mesoscopic scale in [GOVW09] would result in error terms with a worse

scaling in the system size compared to ours (for details see Remark 2.3.13 and Remark 2.4.6

below). More precisely, [GOVW09] de�nes the mesoscopic observables by projection onto

piecewise constant functions. Due to the lack of regularity, the mesoscopic dynamics has to

be de�ned in an unnatural way, and consequently one has to use a mixed Galerkin proce-

dure, which is not optimal. In the present work, we de�ne the mesoscopic observables by

projection onto splines. Because the splines are smooth, the mesoscopic dynamics can be

de�ned more naturally as the Galerkin approximation of the macroscopic dynamics, leading

to better error estimates compared to [GOVW09]. On the other hand, because splines do

not have a localized basis, deducing the main ingredients of the two-scale approach becomes

more subtle. (See Section 2.1.1 for more discussion on the rationale behind the choice of the

mesoscopic dynamics.)

The second motivation behind improving the estimates of [GOVW09] is to develop a quan-

titative theory of the �uctuation limit, which states that the �uctuations of the Kawasaki

dynamics converge to the solution of a stochastic di�usion equation. As with the hydrody-

namic limit, the �uctuation limit of the Kawasaki dynamics is well understood on a qual-

itative level (see for example [Spo86, Zhu90, CY92, DGP17]), but there is no quantitative

result. A possible line of attack would be to use the two-scale approach. The estimates

of [GOVW09] for the distance between the microscopic and mesoscopic dynamics are too

weak when using the scaling of the �uctuation limit. Because our error terms scale better,

our estimates are still meaningful under this scaling (cf. Theorem 2.3.14).

Another interesting question in this setting is the convergence of the microscopic entropy

16



to the hydrodynamic entropy. Again, this question is well understood from a qualitative

point of view (cf. [Kos01, Fat13]). With the tools provided here, one could hope to make the

approach of Fathi [Fat13] quantitative.

2.1.1 Connection to gradient �ows

Deducing the hydrodynamic limit is more accessible if both the microscopic and macroscopic

dynamics come from gradient �ows, i.e. the evolution of each dynamics reduces some kind of

energy in the fastest possible way via some dissipation mechanism (see e.g. [AGS05, San16] for

more details, examples, and further references). The main idea is that Γ−convergence of the

energy functionals, together with the convergence of the dissipation mechanisms in the proper

sense, yields the convergence of the associated gradient �ows (see e.g. [SS04, Ser11, Mie16]).

This new perspective was applied, for example, in the recent works [FS16, MSW22].

Hence, �nding the appropriate gradient �ow structure for the microscopic and macroscopic

dynamics is bene�cial. This task is non-trivial because di�erent gradient �ow structures could

give rise to the same evolution equation. For example, it was pointed out in [Ott01] that

the porous medium equation may be seen both as a H−1-gradient �ow of functions and as

a Wasserstein gradient �ow of number densities. Studying this question led to the recently

highlighted insight that the appropriate gradient �ow structure arises from the large deviation

principle of the underlying microscopic process (see e.g. [ADPZ10, ADPZ13, DLR13, Fat16]),

as was implicitly known before (see e.g. line (1.5) in [DG87]).

Let us illustrate the importance of selecting the appropriate gradient �ow structure with

two examples. The �rst example is the hydrodynamic limit for interacting Brownian particles

on the circle (see [Var91]). The second example is the hydrodynamic limit of the Kawasaki

dynamics on a one-dimensional lattice spin system (see e.g. [GPV88]), which is studied in
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the present work. The two examples appear quite similar in that they both yield a porous

medium type equation in the hydrodynamic limit. However, they di�er signi�cantly in terms

of the underlying microscopic model: an interacting particle system in the �rst example and

a spin system in the second one. The di�erences become even more apparent when studying

the associated gradient �ow structures.

The �rst example, the hydrodynamic limit of the interacting Brownian particles, can be

interpreted as a convergence of gradient �ows in the following way.

� In [Var91], on the microscopic level N Brownian particles interact on a circle S. The

positions Xi of the particles are given by a coupled system of SDEs with repulsive

interaction. Because the evolution is reversible, one can interpret the associated

forward Kolmogorov equation as a gradient �ow for the relative entropy functional

w.r.t. to the Gibbs equilibrium measure in the Wasserstein space of probability mea-

sures (see [JKO98]). Here, the inner metric in the Wasserstein distance is given by the

Euclidean distance on SN .

� Because the Brownian particles are indistinguishable, one considers the empirical dis-

tribution of the particles, which is obtained by �forgetting� the labels of the particles.

The unlabelling of the particles naturally pushes forward the inner metric (see Section

4 in [Ott01]). For the former, the inner metric as described in the �rst bullet point

describes the displacement of the particles (Lagrangian description). For the latter,

the inner metric is the discrete Wasserstein distance, i.e. the minimal displacement of

the particles required to transport one empirical distribution into another (Eulerian

description). The microscopic dynamics relevant for the hydrodynamic limit is then

the associated projected evolution of the empirical distributions of the particles.

� As a consequence, one should view the porous medium equation obtained in the hydro-

dynamic limit as a Wasserstein gradient �ow, namely the gradient �ow of the macro-

scopic free energy on the Wasserstein space M1(S) of number densities on S.
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It is worth noting that there are two �levels� of Wasserstein metrics involved here. The

�inner� Wasserstein metric is associated with the �movement mechanism� of the dynamics

itself, i.e. transporting empirical distributions (for the microscopic dynamics) or transport-

ing number densities (for the macroscopic dynamics). The �outer� Wasserstein metric is

associated with the stochastic �uctuations of the dynamics and becomes degenerate, as it

is the nature of the hydrodynamic limit to be deterministic. The main takeaway is that

the dissipation mechanism for the macroscopic gradient �ow is induced by the underlying

�movement mechanism� of the microscopic dynamics (in this case, the Wasserstein distance

on M1(S)).

Let us now turn to the second example: the interpretation of the hydrodynamic limit of

the Kawasaki dynamics as a convergence of gradient �ows.

� On the microscopic level, the spin system consists of N real-valued spins located on

the discrete one-dimensional torus {1, . . . , N}. The associated Hamiltonian for the

spin values only has single-site potentials and no interaction term (see (2.2.1) below).

The evolution of the spin values is governed via a coupled system of SDEs, called the

Kawasaki dynamics (see (2.2.4) below). This means that a site can only change its

spin by distributing the di�erence to its neighbors. This spin-exchange mechanism

is mediated through the matrix A in (2.2.4). As in the �rst example, the associated

forward Kolmogorov equation (see equation (2.2.9) below) has a gradient �ow structure

given by the relative entropy w.r.t. to the Gibbs equilibrium measure in the Wasserstein

space of probability measures.

� Because a site can only reduce its energy via spin-exchange, the appropriate choice for

the inner metric is the inner product x · A−1y. Because A is a second-order di�erence

operator, x ·A−1y corresponds to a discrete H−1 metric. This illustrates another main

di�erence between both examples. The interaction is not mediated by the Hamiltonian

but by the dissipation mechanism of the dynamics.

� As a consequence, the porous medium equation obtained in the hydrodynamic limit
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of the Kawasaki dynamics should be considered as a (now continuum) H−1-gradient

�ow.

In [GOVW09], those insights were applied to study the hydrodynamic limit. However, it

was not completely carried out. Because of technical reasons, the authors of [GOVW09] did

not choose a mesoscopic evolution with the natural H−1− gradient �ow structure, leading to

suboptimal estimates. In this work, we capitalize more on the idea of using the appropriate

gradient �ow structure and choose a mesoscopic evolution with the natural H−1− gradient

�ow structure. While this makes our proof more involved compared to [GOVW09], it leads

to estimates with an improved scaling in the systems size N .

Notations and conventions

� We use the letter C to denote a universal generic constant 0 < C < ∞ that is inde-

pendent of the dimension N of the underlying lattice.

� We denote with a ≲ b that a ≤ Cb. We denote a ≃ b if a ≲ b and b ≲ a.

� We denote with a · b and | · | the standard Euclidean inner product and norm on RN .

� Let X be a Euclidean space and f : X → R. Then we denote with ∇f and Hess f the

gradient and Hessian inherited from the Euclidean structure of X.

� We use dx as a shorthand for the Hausdor� or Lebesgue measure of appropriate di-

mension.

� | · |H1 denotes the homogeneous H1 norm.

� Φ(z) := z log z.

� [M ] := {1, . . . ,M}. When indexing over [M ], we use the convention 0 =M .

� L2(T) denotes the L2 functions on the torus T = [0, 1].

� L2
0(T) denotes the L2 functions on the torus T = [0, 1] with mean zero.
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2.2 Setting and main result

We start with describing the Kawasaki dynamics on the microscopic lattice {1, . . . , N}.

De�nition 2.2.1 (Microscopic Hamiltonian H). The Hamiltonian H : RN → R of the

system is given by

H(x) := HN(x) =
N∑

n=1

ψ(xn). (2.2.1)

Here ψ : R → R is the single-site potential, assumed to be of the form

ψ(x) =
1

2
x2 + ax+ b+ δψ(x) (2.2.2)

for some constants a, b and some function δψ that is bounded in C2(R), i.e.

∥δψ∥L∞(R) ≤ C and ∥δψ′′∥L∞(R) ≤ C. (2.2.3)

The function ψ may be non-convex and it helps to consider the case of a double-well

potential.

De�nition 2.2.2 (Microscopic dynamics). The Kawasaki dynamics Xt is given by the so-

lution of the SDE

dXt = −A∇H(Xt)dt+
√
2AdBt. (2.2.4)

Here Bt denotes a standard N-dimensional Brownian motion and −A denotes the (centered)

second-order di�erence operator for the periodic rescaled lattice
{

1
N
, . . . , 1

}
. More precisely,

the operator A is given by the N ×N−matrix

Ai,j := N2(−δi,j−1 + 2δi,j − δi,j+1). (2.2.5)

Remark 2.2.3 (Structure of the operator A). The second-order di�erence operator A is of

the form A = DtD, where D denotes the periodic rescaled N ×N forward di�erence matrix

given by

Di,j := N(δi,j−1 − δi,j),

and Dt denotes the matrix transpose of D.
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It follows from the structure of the operator A that the Kawasaki dynamics (2.2.4)

conserves the mean spin of the system. Hence, after a translation of the single-site potential

ψ, we may restrict the state space RN of the Kawasaki dynamics Xt to the hyperplane of

zero mean

XN :=

{
x ∈ RN :

1

N

N∑
i=1

xi = 0

}
.

We endow the space XN with the standard Euclidean inner product inherited from RN

⟨x, y⟩XN
:= x · y :=

N∑
i=1

xiyi.

Additionally, the operator A is positive de�nite when restricted to XN . Hence:

De�nition 2.2.4 (Euclidean structures on XN induced by A). The operator A induces a

dual pair of inner products on the state space XN , given by

⟨x, y⟩A := x · Ay, and ⟨x, y⟩A−1 := x · A−1y.

We denote by | · |A and | · |A−1 the corresponding norms on XN .

The A/A−1-Euclidean structures can be seen as a discrete version of the H1/H−1 struc-

tures. In particular, we have the following well-known discrete analogue of the Poincaré

inequality for functions with zero mean.

Lemma 2.2.5 (Discrete Poincaré inequality). For all integers N ≥ 1 and all x ∈ XN ,

|x|2 ≲ |x|2A. (2.2.6)

When the state space XN is endowed with the A−1 inner product, the dynamics (2.2.4)

can be written in the more suggestive form

dXt = −∇A−1H(Xt)dt+
√
2dBA−1

t , (2.2.7)

where ∇A−1 := A∇ denotes the gradient operation wrt. to the A−1 inner product and

BA−1

t :=
√
ABt denotes a Brownian motion on XN having identity covariance matrix wrt. to
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the A−1 inner product.

As a standard result in the theory of stochastic processes (see for example [Pav14]), the

law of the process Xt at time t is characterized via the forward Kolmogorov equation.

Lemma 2.2.6 (Forward Kolmogorov equation). Assume that the law of initial condition X0

is absolutely continuous wrt. the N − 1 dimensional Hausdor� measure LN−1. Let µ denote

the Gibbs measure on XN associated to the Hamiltonian H, i.e. the measure µ is absolutely

continuous wrt. the N − 1-dimensional Hausdor� measure LN−1 with the Radon-Nikodym

derivative given by

dµ

dLN−1
(x) =

1

Z
exp (−H(x))1x∈XN

. (2.2.8)

Then for all times t > 0, the law ρ(t) of the Kawasaki dynamics Xt (2.2.7) is absolutely

continuous wrt. the Gibbs measure µ, i.e. ρ(t) = f(t)µ for some f(t) ∈ L1(µ), and is a weak

solution of the Fokker-Planck equation

∂tρt = ∇ · (ρt∇A−1H +∇A−1ρt) (2.2.9)

in the sense that for any smooth test function ξ : XN → R it holds

d

dt

∫
ξ(x)ρt(dx) =

∫
−∇H · ∇A−1ξ ρt(dx) +

∫
∇ · ∇A−1ξ ρt(dx).

In particular, the Gibbs measure µ is the unique stationary distribution of the Kawasaki

dynamics (2.2.7).

As a consequence of the forward Kolmogorov equation, the relative entropy of the law of

Xt wrt. the Gibbs measure µ,

Ent(ρ(t)|µ) :=
∫
f(t, x) log f(t, x)µ(dx),

decreases monotonically over time at the rate

d

dt
Ent (ρ(t)|µ) = −

∫
|∇ log f(t, x)|2A ρt(dx). (2.2.10)
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The integral on the right hand side is the Fisher information for the Kawasaki dynamics,

which di�ers from the standard Fisher information

Iµ(f(t)) :=

∫
|∇ log f(t, x)|2f(t)µ(dx)

only in the Euclidean structure being used. Hence, after we use the discrete Poincaré in-

equality in Lemma 2.2.5 to account for the di�erent Euclidean structures on XN , the rate

of dissipation of the relative entropy is quanti�ed by a log-Sobolev inequality (LSI) for the

Gibbs measure µ by a standard Gronwall-type argument. In [GOVW09] it was shown that

this rate of dissipation is independent of the system size N :

Proposition 2.2.7 (Uniform LSI for µ). The Gibbs measure µ given by (2.2.8) satis�es a

LSI with constant ϱ̂ > 0 uniform in the system size N . More precisely, for any nonnegative

test function g : XN → R that satis�es
∫
g(x)µ(dx) = 1, it holds that

Ent (gµ|µ) ≤ 1

2α̂
Iµ(g). (2.2.11)

Remark 2.2.8 (Gradient �ow structure of the microscopic dynamics). The Fokker-Planck

equation (2.2.9) can be written in the form

∂tρt = ∇ ·
(
ρt∇A−1

δE

δρ
(ρt)

)
,

where E(ρ) is the microscopic free energy of an ensemble ρ = fµ,

E(ρ) :=

∫
Hdρ+

∫
ρ log ρ dx = Ent(ρ|µ),

and
δE

δρ
= H + log ρ = log f is its �rst variation. Consequently, on the level of probability

densities on XN , the Kawasaki dynamics Xt may be viewed as an A−1-Wasserstein gradient

�ow for the convex energy functional E(·) = Ent(·|µ), whose unique minimizer is the Gibbs

measure µ. As expected for Wasserstein gradient �ows, the energy functional E decreases

over time at the rate

d

dt
E(ρt) = −

∫ ∣∣∣∣∇A−1

δE

δρ
(ρ)

∣∣∣∣2
A−1

dρt.
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Moreover, the log-Sobolev inequality (2.2.11) that quanti�es this dissipation of the energy

functional E(·) = Ent(·|µ) may also be seen as a statement quantifying its convexity wrt. the

Wasserstein distance, since by Theorem 1 in [OV00] the inequality (2.2.11) implies the Ta-

lagrand's transportation inequality

Ent (ρ|µ) ≥ α̂

2
W 2

2 (ρ, µ), (2.2.12)

where W2 denotes the L
2-Wasserstein distance.

The goal of the present work is to derive quantitative bounds on the hydrodynamic limit of

the Kawasaki dynamics Xt ∈ XN . Hydrodynamic limit means that as N → ∞ the random

dynamics Xt de�ned on the one-dimensional periodic lattice {1, 2, · · · , N} converges to a

deterministic dynamics ζt on the one-dimensional torus T = R/Z. Towards this end, we

embed the spaces XN into the space L2
0(T) of square-integrable functions of mean zero, by

identifying the vector x ∈ XN with its corresponding step function on the interval [0, 1].

Convention. Given x ∈ XN , we identify it with the step function

x(θ) = xj, θ ∈
[
j − 1

N
;
j

N

)
.

Then the space XN is identi�ed with the space of piecewise constant functions on T = R/Z

with mean 0, i.e.

XN =

{
x : T −→ R; x is constant on

[
j − 1

N
;
j

N

)
, j = 1, .., N, and

∫ 1

0

x(θ)dθ = 0

}
.

(2.2.13)

With this identi�cation, XN ⊂ L2
0(T) and inherits the L2 inner product, which is related to

the standard Euclidean inner product on XN by a rescaling

⟨x, y⟩L2 =
1

N
x · y.

It turns out the L2 norm is not well-suited to describe the hydrodynamic limit since it is

too sensitive to local �uctuations. Therefore we endow the embedded space XN ⊂ L2
0(T)
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with the weaker homogeneous H−1-norm, which is natural in light of the alternative form of

the Kawasaki dynamics in (2.2.7) and the analogy between A−1-norm and H−1-norm.

De�nition 2.2.9 (H−1-norm). If f : T → R is a locally integrable function with mean zero,

then

||f ||2H−1 :=

∫
T
w(θ)2dθ, w′ = f,

∫
T
w(θ)dθ = 0.

We now describe the limiting macroscopic dynamics ζt.

De�nition 2.2.10 (Macroscopic free energy). The macroscopic free energy H : L2(T) → R

is given by

H(ζ) =

∫
T
φ(ζ(θ))dθ, (2.2.14)

where the function φ : R → R is the Cramér transform of the single-site potential ψ, given

by

φ(m) = sup
σ∈R

(
σm− log

∫
R
exp (σz − ψ(z)) dz

)
. (2.2.15)

Accordingly, ∇H(ζ) = φ′(ζ) in the variational sense:

d

dε
H(ζ + εξ) = ⟨φ′(ζ), ξ⟩L2 for any ξ ∈ L2(T). (2.2.16)

In particular, the macroscopic free energy H is convex. Indeed, the integrand φ(m) is de�ned

as the Legendre transform of the smooth function ψ∗ : R → R given by

ψ∗(σ) := log

∫
R
exp (σz − ψ(z)) dz, (2.2.17)

which is the log partition function associated to the linearly shifted potential ψ(z)− σz. It

turns out that the perturbed quadratic form (2.2.2) of ψ implies that ψ∗ is strongly convex

and bounded in C2 (see e.g. Lemma 2.7.9 below or [GOVW09, Lemma 41]). These properties

are then transferred to the conjugate function φ by the Legendre transform:

Lemma 2.2.11. The function φ : R → R given by (2.2.15) is smooth and satis�es

0 < λ ≤ φ′′(θ) ≤ Λ <∞ for all θ ∈ R.
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Moreover, the strong convexity of ψ∗ means the mapping m = (ψ∗)′(σ) is bijective, so

that up to a change in the linear term in the potential ψ, we may assume (ψ∗)′(0) = 0 and

therefore φ′(0) = 0. Finally, up to a change in the constant term in ψ, we may also assume

ψ∗(0) = 0. After applying the Legendre transform, this means we conveniently have that

Assumption 1. The function φ satis�es φ(0) = φ′(0) = 0. Consequently, the macroscopic

free energy H(ζ) is minimized at ζ = 0 with H(0) = 0.

De�nition 2.2.12 (Macroscopic dynamics). The macroscopic dynamics ζ(t, ·) is the unique

weak solution of the nonlinear di�usion equation

∂ζ

∂t
=

∂2

∂θ2
φ′(ζ) (2.2.18)

with initial condition ζ(0, ·) := ζ0. The precise formulation is deferred to De�nition 2.2.15

at the end of this section.

Remark 2.2.13 (Gradient �ow structure of the macroscopic dynamics). The nonlinear

di�usion equation (2.2.18) can be written in the form

∂tζ = −∇H−1H(ζ),

where ∇H−1 is the gradient mapping of the �rst variation δH
δζ

wrt. to the H−1 inner product

(rather than wrt. to the L2 inner product as in the formulation of (2.2.16)). Consequently, the

macroscopic dynamics may be viewed as a H−1-gradient �ow for the convex energy functional

H, which therefore monotonically decreases over time at the rate

d

dt
H(ζt) = −|∇H−1H(ζ)(t)|2H−1 = −|φ′(ζt)|2H1 . (2.2.19)

Now, let us formulate the main result of this work.

Theorem 2.2.14 (Quantitative hydrodynamic limit for the Kawasaki dynamics). We as-

sume that the single-site potential ψ satis�es (2.2.2) and (2.2.3). Let µ denote the Gibbs

measure given by (2.2.8) and let ρ(t) = f(t)µ denote the law of the Kawasaki dynamics Xt
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(cf. Lemma 2.2.6). We assume that the initial law ρ(0) = f(0)µ of X0 has bounded micro-

scopic entropy in the sense that for some constant 0 < CEnt <∞,

Ent(ρ(0)|µ) :=
∫
f(0, x) log f(0, x)µ(dx) ≤ CEntN. (2.2.20)

Let ζt be the deterministic dynamics described by equation (2.2.18). Then there is a con-

stant 0 < C < ∞ depending only on the constants appearing in (2.2.3) such that for any

T > 0,

sup
0≤t≤T

E|Xt − ζt|2H−1 ≤ C E|X0 − ζ0|2H−1 +
C

N
2
3

[
T + CEnt + |ζ0|2L2 + 1

]
. (2.2.21)

The statement of Theorem (2.2.14) is a quantitative version of the hydrodynamic limit.

In [GOVW09], only the error from comparing the microscopic scale to a mesoscopic scale

was explicit. That error scaled in [GOVW09] like 1√
N
.

We �nish this section by giving the precise formulation of equation (2.2.18) that describes

the limiting macroscopic dynamics.

De�nition 2.2.15. We call ζ(t, θ) a weak solution of (2.2.18) on [0, T ]× T if

ζ ∈ L∞
t (L2

θ),
∂ζ

∂t
∈ L2

t (H
−1
θ ), φ′(ζ) ∈ L∞

t (L2
θ)

and 〈
ξ,
∂ζ

∂t

〉
H−1

= −⟨ξ, φ′(ζ)⟩L2 for all ξ ∈ L2
0(T), for a.e. t ∈ [0, T ]. (2.2.22)

Here, L∞
t (L2

θ) (resp. L2
t (H

−1
θ ) is the set of functions ζ : [0, T ] × T −→ R such that∫

T ζ(t, θ)dθ = 0 and ||ζ(t, ·)||L2 (resp. ||ζ(t, ·)||H−1) is essentially bounded in t (resp. in

L2([0, T ])).

2.3 The two-scale approach

We will use the two-scale approach from [GOVW09] to deduce Theorem 2.2.14. The main

idea is to introduce an intermediate dynamics on a mesoscopic scale between the microscopic
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dynamics (2.2.4) and the macroscopic dynamics (2.2.18). The hydrodynamic limit is then

deduced in two steps; in the �rst step, one deduces the convergence of the microscopic dy-

namics to the mesoscopic dynamics (see Theorem 2.3.14 from below); in the second step,

one deduces the convergence of the mesoscopic dynamics to the macroscopic dynamics (see

Theorem 2.3.15 from below).

The most important ingredient in the two-scale approach is the correct de�nition of the

mesoscopic dynamics. The mesoscopic dynamics emerges from projecting the microscopic

observables onto mesoscopic observables. The projection onto mesoscopic observables is

done with the help of a coarse-graining operator P . We recall that an element x ∈ XN is

identi�ed with a function on the torus T = [0, 1] that is piecewise constant with value xn on

[n−1
N
, n
N
), n = 1, . . . N (cf. (2.2.13)). The coarse-graining operator P used in [GOVW09] can

be interpreted in the following way. It is the projection of XN in L2(T) onto the space of

functions that are piecewise constant on the intervals
[
m−1
M
, m
M

)
,m = 1, ...,M . More precisely,

this means that �rst one decomposes the lattice {1, . . . , N} into M -many blocks B(m) of

size K i.e. N =MK and

B(m) = {m(K − 1) + 1, . . . ,mK} for 1 ≤ m ≤M.

Then the operator P : XN → RM in [GOVW09] is given for x ∈ XN by

P (x) =

 1

K

∑
i∈B(1)

xi, . . . ,
1

K

∑
i∈B(M)

xi

 .

The main di�erence of this work compared to [GOVW09] is that the operator P is now

de�ned as the L2 projection onto splines of degree 2 instead (see De�nition 2.3.1 from below).

Because spline functions of degree 2 are C1(T), the mesoscopic variables are more regular

compared to [GOVW09]. This has two important advantages:

� In the �rst step of the two-scale approach, namely showing the convergence of the

microscopic dynamics to the mesoscopic dynamics (see Theorem 2.3.14 below), we get
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a better error estimate compared to [GOVW09, Theorem 8].

� The second step of the two-scale approach, namely deducing the convergence of the

mesoscopic dynamics to the macroscopic dynamics, becomes signi�cantly easier (see

Theorem 2.3.15 below). Instead of a mixed method we can apply a direct Galerkin

approximation method.

However, there is a trade-o� compared to the argument of [GOVW09]. For deducing the

convergence of the microscopic dynamics to the mesoscopic dynamics one needs certain in-

gredients, among which is a uniform logarithmic Sobolev inequality (LSI) for the conditional

Gibbs measures and the strong convexity of the coarse-grained Hamiltonian. Deducing those

ingredients becomes more di�cult compared to [GOVW09].

We now build up the notion of the mesoscopic dynamics by coarse-graining the relevant

features of the microscopic dynamics Xt.

De�nition 2.3.1 (The coarse-graining operator P ). For M ∈ N, let Y = YM be the space

of spline functions of degree L with mean zero on the torus T = [0, 1] corresponding to the

mesh
{

m
M

}
m∈[M ]

. That is

YM :=

{
y ∈ CL−1(T)| ∀m ∈ [M ] : y|(m−1

M
,m
M ) polynomial of degree ≤ L, and

∫ 1

0

y(θ)dθ = 0

}
.

In this work, we choose the degree of the splines in YM to be L = 2. We endow YM with the

inner product inherited from L2(T). We de�ne the coarse-graining operator P : L2(T) → YM

as the L2-orthogonal projection onto YM .

The following basic facts show that splines serve as good approximations for deducing the

hydrodynamic limit in the H−1 norm.

Lemma 2.3.2 (Penalization of �uctuations by a strong norm). For any function ζ ∈ L2
0(T),

|ζ − Pζ|H−1 ≲
1

M
|ζ − Pζ|L2 ≲

1

M2
|ζ|H1 , and (2.3.1)
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|Pζ|H1 ≲ |ζ|H1 , |Pζ|H−1 ≲ |ζ|H−1 . (2.3.2)

The proof of Lemma 2.3.2 is given in Section 2.6, where we gather and prove facts about

splines. The core idea is a Poincaré inequality on an internal length scale 1
M
.

We also need the adjoint operator P t : YM → XN , de�ned by

⟨Px, y⟩L2 = x · P ty, ∀x ∈ XN , y ∈ YM .

It follows that NP t : YM → XN is the L2-orthogonal projection of YM onto XN . Because the

spline space YM is not a subspace of XN for spline degree L ≥ 1, PNP t ̸= idYM
in general

(cf. assumption (2) in [GOVW09]). However, once the block size K is large enough, the

microscopic space XN will have enough resolution to fully describe the splines in YM , and

the back-and-forth projection PNP t will become close to the identity operator.

Lemma 2.3.3. Assume N = KM for K ∈ N. It holds that

∥PNP t − idYM
∥ = O

(
1

K2

)
.

In particular, if K = N
M

is large enough, then PNP t : YM → YM is invertible.

Lemma 2.3.3 is a corollary of Lemma 2.7.3 in Section 2.7.1. The core idea is a Poincaré

inequality on an internal length scale 1
K
.

From now on, we assume N = KM for K ∈ N large enough so that PNP t : YM → YM

is invertible. In particular, this means the coarse-graining operator P : XN → YM has full

range and the orthogonal projection NP t : YM → XN is an embedding. Hence:

De�nition 2.3.4 (Disintegration of the canonical ensemble µ). The operator P induces

a decomposition of the Gibbs measure µ into a family of conditional measures µ(dx|y) :=

µ(dx|Px = y) on the �bers P−1(y) ⊂ XN and a marginal measure µ̄(dy) on the image YM ,

in the sense that ∫
g(x)µ(dx) =

∫ ∫
g(x)µ(dx|y)µ̄(dy)

for any test function g : XN → R.
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More explicitly, the conditional measure µ(dx|y) is a probability measure of the form

µ(dx|y) = 1

Z
1{Px=y}(x) exp (−H(x))LN−M(dx),

where LN−M denotes the N − M -dimensional Hausdor� measure on the a�ne subspace

P−1(y) ⊂ XN . The marginal measure µ̄ is a probability measure of the form

µ̄(dy) =
1

Z
exp

(
−NH̄(y)

)
dy,

where H̄ is the coarse-grained Hamiltonian given by (2.3.3) below and dy is the Hausdor�

measure on YM .

De�nition 2.3.5 (Coarse-grained Hamiltonian H̄). The coarse-grained Hamiltonian H̄ :

YM → R is given by

H̄(y) := − 1

N
log

∫
{x∈XN :Px=y}

exp (−H(x))LN−M(dx), (2.3.3)

where LN−M denotes the N −M-dimensional Hausdor� measure.

It follows from a short calculation that the gradient of H̄ is also a coarse-grained version

of the gradient of H:

NP t∇H̄(y) = Eµ(dx|y)∇H(x), (2.3.4)

which serves as a crucial link between the microscopic and mesoscopic dynamics. The main

advantage of the coarse-grained Hamiltonian H̄ over the original microscopic Hamiltonian

H is a convexi�cation resulting from averaging over large blocks, which is a well-known

phenomenon in statistical mechanics and will be central to our analysis.

Theorem 2.3.6 (Uniform strong convexity of H̄). There are constants 0 < λ,Λ, K∗ < ∞

such that for all K ≥ K∗, M and all y ∈ YM it holds

2λ idYM
≤ Hess H̄(y) ≤ 2Λ idYM

in the sense of quadratic forms.
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Remark 2.3.7. Theorem 2.3.6 will be proven in Section 2.7. It should be compared to

the similar statement of Lemma 29 in [GOVW09]. The situation here is more subtle.

In [GOVW09], the mesoscopic observables are also piecewise constant functions and therefore

local functions. In contrast, the mesoscopic observables in our setting are given by contin-

uous splines which are non-local functions. This introduces additional interactions between

blocks. We work around this obstacle by �rst deducing the strong convexity for mesoscopic

observables that are piecewise polynomials of degree L, or discontinuous Galerkin functions

in the jargon of numerical analysis, and then transferring the result back to the spline space

YM .

Besides the coarse-grained Hamiltonian H̄, we also need a coarse-grained version of the

second-order di�erence operator −A.

De�nition 2.3.8 (Coarse-grained operator Ā). The coarse-grained second-order di�erence

operator −Ā is de�ned by

Ā := PANP t.

In particular, the coarse-grained operator Ā inherits the positive de�niteness of the oper-

ator A. Hence:

De�nition 2.3.9 (Euclidean structures on YM induced by Ā). The operator Ā induces a

dual pair of inner products on the spline space YM

⟨y, z⟩Ā := ⟨y, Āz⟩L2 and ⟨y, z⟩Ā−1 := ⟨y, Ā−1z⟩L2 .

We denote by | · |Ā and | · |Ā−1 the corresponding norms on YM .

The de�nition of −Ā as a coarse-graining of the second-order di�erence operator −A

suggests that it is a discrete version of the second derivative adapted to the spline space YM

(see Lemma 2.5.3 below for a precise statement). Indeed, it turns out that the Ā and Ā−1

norms are equivalent to the H1 and H−1 norm on YM , respectively.
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Lemma 2.3.10. There exists an integer K∗ such that for all K ≥ K∗,M and all y ∈ YM ,

|y|Ā ≃ |y|H1 and |y|Ā−1 ≃ |y|H−1 . (2.3.5)

The proof of Lemma 2.3.10 is given in Section 2.6, where we gather and prove facts about

splines. This is where we need the degree of the splines in YM to be at least L ≥ 1.

We are now ready to introduce the mesoscopic dynamics.

De�nition 2.3.11 (Mesoscopic dynamics). The mesoscopic dynamics ηt on YM is given by

a solution of the ordinary di�erential equation

d

dt
ηt = −Ā∇H̄(ηt). (2.3.6)

Remark 2.3.12 (Gradient �ow structure of the mesoscopic dynamics). The mesoscopic

dynamics may be viewed as a Ā−1-gradient �ow for the energy functional H̄,

d

dt
ηt = −∇Ā−1H̄(ηt), (2.3.7)

where ∇Ā−1 := Ā∇ denotes the gradient operation wrt. to the Ā−1 inner product. The

strong convexity of the energy functional H̄ then implies the convergence of all trajectories

irrespective of the starting point. More precisely, if ηt and η̃t are two solutions of (2.3.6),

then

d

dt

1

2
|ηt − η̃t|2Ā−1 = −⟨ηt − η̃t,∇H̄(ηt)−∇H̄(η̃t)⟩L2 (2.3.8)

≤ −2λ |ηt − η̃t|2L2 .

Before moving on, let us take a closer look at the gradient operation ∇Ā−1 on YM . It is

related to the gradient operation ∇A−1 on XN by

∇A−1ξ(Px) = AP tĀ−1∇Ā−1ξ(Px) for all x ∈ XN (2.3.9)

for any test function ξ : YM → R. It is easy to check that the operator norm of AP tĀ−1

blows up if one projects onto piecewise constant functions or piecewise linear functions that
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are C0(T) (i.e. splines of degree L = 0 or L = 1). However, we do get a good control if we

project onto splines of degree L = 2 (see Lemma 2.4.14 below). This observation was the

original motivation to consider the two-scale approach with the coarse-graining operator P

given by De�nition 2.3.1.

Remark 2.3.13. In [GOVW09], the coarse-graining operator P was de�ned as the L2-

orthogonal projection onto piecewise constant functions and one worked around the problem

that operator AP tĀ−1 is unbounded by using a less straight-forward de�nition of Ā as Ā−1 :=

PA−1NP t. That choice led to a sub-optimal error when comparing the microscopic to the

mesoscopic evolution (see also Remark 2.4.6 below). Choosing splines of degree L > 2 does

not improve the error derived with our method further.

Now, we state the �rst ingredient of the two-scale approach.

Theorem 2.3.14 (Convergence of the microscopic to the mesoscopic dynamics). Under

the same assumption as in Theorem (2.2.18), let η denote the solution of the mesoscopic

equation (2.3.6). Then

sup
0≤t≤T

E|Xt − ηt|2H−1 ≲ E|X0 − η0|2H−1 +
T

K
+

1

M2
(CEnt + 1) , (2.3.10)

where CEnt is given by (2.2.20).

We prove Theorem 2.3.14 in Section 2.4. The error term T
K

on the right hand side

of (2.3.10) comes from comparing the stochastic microscopic dynamics to the determin-

istic mesoscopic dynamics. Its scaling corresponds to what one would expect from the decay

of variance in the weak law of large numbers, if we had chosen to project onto piecewise

constant functions, in which case y would be a vector whose entries are means of K weakly

correlated random variables and η would be interpreted as the expectation of this vector.

Now, let us state the second ingredient in the two-scale approach.
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Theorem 2.3.15 (Convergence of the mesoscopic to the macroscopic dynamics). Let η

denote the solution of the mesoscopic dynamics (2.3.6) and let ζ denote the solution of the

macroscopic dynamics (2.2.18). Then

sup
0≤t≤T

|ζt − ηt|2H−1 +

∫ T

0

|ζs − ηs|2L2ds ≲ |ζ0 − η0|2H−1 +
T

K
+

(
1

K2
+

1

M2

)
|ζ0|2L2 .

We prove Theorem 2.3.15 in Section 2.5. For the proof we adapt a standard method from

numerical analysis, in which the mesoscopic evolution (2.3.6) is interpreted as a Galerkin ap-

proximation of the macroscopic evolution (2.2.18). The non-standard part of the argument

is that when comparing (2.3.6) to (2.2.18) one gets two additional sources of errors. One

source of error comes from approximating the Euclidean structure ⟨·, ·⟩H−1 by the Euclidean

structure ⟨·, Ā−1·⟩L2 . The other source of error comes from approximating the gradient of

the macroscopic free energy H by the gradient of the coarse-grained Hamiltonian H̄.

We are now ready to give the proof of Theorem 2.2.14.

Proof of Theorem 2.2.14. We choose the initial condition of the mesoscopic dynamics η given

by (2.3.6) to be η0 = Pζ0. Combining Theorem 2.3.14 and Theorem 2.3.15 yields the estimate

sup
0≤t≤T

E|Xt − ζt|2H−1 ≤ sup
0≤t≤T

2E|Xt − ηt|2H−1 + sup
0≤t≤T

2|ηt − ζt|2H−1

≲ E|X0 − Pζ0|2H−1 + |ζ0 − Pζ0|2H−1

+
T

K
+

1

M2
(CEnt + 1) +

(
1

K2
+

1

M2

)
|ζ0|2L2 .

Applying (2.3.1) and (2.3.2), and choosing K =M2 yields the desired estimate (2.2.21).

2.4 Convergence of microscopic dynamics to mesoscopic

dynamics

The proof of Theorem 2.3.14 is quite complex. Before proceeding to the rigorous argument

let us give some heuristics. Theorem 2.3.14 states that the stochastic microscopic evolution
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given by the Kawasaki dynamics in (2.2.7), i.e.

dXt = −∇A−1H(Xt)dt+
√
2dBA−1

t ,

is close in the H−1−norm to the mesoscopic deterministic dynamics given by (2.3.7), i.e.

d

dt
η = −∇Ā−1H̄(η). (2.4.1)

The �rst observation needed is that because the H−1−norm is a weak norm (i.e. it involves

integration, see De�nition 2.2.9) one can control the di�erence between Xt and the projected

process PXt in this norm (see Lemma 2.3.2). Hence, it su�ces to show that the stochastic

evolution

dPXt = −P∇A−1H(Xt)dt+
√
2PdBA−1

t (2.4.2)

is close to the deterministic mesoscopic dynamics (2.4.1). Because the operator P takes

averages over blocks of size K, the noise term
√
2PdBA−1

t of the projected Kawasaki dynam-

ics (2.4.2) should vanish as K → ∞ by the law of large numbers. It is left to show that the

dynamics

d

dt
PXt = −P∇A−1H(Xt) (2.4.3)

is close to the mesoscopic dynamics (2.4.1). By the coarse-graining relation (2.3.4) one sees

that the mesoscopic dynamics (2.4.1)can be written as

d

dt
ηt = −P Eµ [∇A−1H(x) | Px = ηt] , (2.4.4)

where the expectation is taken with respect to the canonical ensemble µ conditioned on the

mesoscopic pro�le given by ηt. Let us recall that µ is also the equilibrium distribution of the

Kawasaki dynamics (2.2.4) (see Lemma 2.2.6). The nearest-neighbor interaction of the spins

mediated by the matrix A means the Kawasaki dynamics Xt equilibrates faster on smaller

spatial scales, so we expect that the dynamics (2.4.3) and (2.4.4) are close if the blocks are

much smaller than the overall system size N , in other words K
N

= 1
M

→ 0. In the rigorous
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argument, this fact will be quanti�ed with the help of a uniform LSI which characterizes the

speed of the convergence to equilibrium (see Theorem 2.4.12 below).

Let us turn now to the rigorous proof of Theorem 2.3.14. The �rst ingredient of the proof

is an estimate of the second moment of Xt in L2 norm, which controls the di�erence in H−1

norm between Xt and the projected dynamics PXt by Lemma 2.3.2.

Proposition 2.4.1 (Second moment estimate). Under assumption (2.2.20), the Kawasaki

dynamics satis�es that

E|Xt|2L2 ≲
1

N
Ent(ρ(t)|µ) + Eµ|x|2L2 ≲ CEnt + 1.

Remark 2.4.2. This was shown as part of Proposition 24 in [GOVW09]. A quicker deriva-

tion suggested there is that the �rst inequality can be restated as

W 2
2 (ρ(t), δ0) ≲ Ent(ρ(t)|µ) +W 2

2 (µ, δ0),

where W2 denotes the L2-Wasserstein distance and δ0 is the Dirac measure supported at

0 ∈ XN . After �rst applying a triangle inequality for Wasserstein distance, this follows

from Talagrand's transportation inequality (2.2.12). The latter is implied by the log-Sobolev

inequality for µ (2.2.11), which also implies a Poincaré inequality for µ and yields the second

inequality.

In light of the equivalence between the H−1 norm and Ā−1 norm (Lemma 2.3.10), it

remains to control the di�erence between the projected microscopic dynamics PXt and the

mesoscopic dynamics ηt in Ā−1 norm. This is provided by the following estimate, which

constitutes the main part of the proof of Theorem 2.3.14.

Theorem 2.4.3. Under the same assumptions as in Theorem 2.3.14, there is an integer K∗

and λ > 0 such that for all K ≥ K∗ and any �nite time T > 0 it holds

1

2
sup

0≤t≤T
E|PXt − ηt|2Ā−1 + λ

∫ T

0

E|PXt − ηt|2L2 dt ≤ E|PX0 − η0|2Ā−1 +
2T

K
+ 2C

CEnt

M2
.

(2.4.5)
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Remark 2.4.4. The estimate (2.4.5) also shows that the projected Kawasaki dynamics (2.4.2)

is close to the mesoscopic dynamics (2.4.1) using a time-integrated strong norm. This is rem-

iniscent of the well-known phenomenon of parabolic improvement in numerical analysis.

Remark 2.4.5. The universal constant 0 < C < ∞ in Theorem 2.4.3 is given by C =

κ2γ

4σ2λα2
, where the constants κ, λ, γ, σ, and α are given by:

· κ := ∥HessH∥, which is bounded independently of N by the assumption (2.2.1), (2.2.2)

and (2.2.3);

· 2λ the lower bound on Hess H̄ as in Theorem 2.3.6 from below;

· α is the constant of the logarithmic Sobolev inequality (LSI) from Theorem 2.4.12 from

below;

· σ is the constant from Lemma 2.4.14 from below;

· γ the constant from Lemma 2.4.11 from below.

Remark 2.4.6. Theorem 2.4.3 was �rst derived in Dizdar's diploma thesis [Diz07]. We

present below a more streamlined derivation that makes clear the underlying gradient �ow

structure. Theorem 2.4.3 should be compared with Theorem 8 in [GOVW09]. They arrive

at a similar bound for the deviation from hydrodynamic behavior with an additional term

scaling like M−1. As mentioned before this additional error term occurs due to their choice

of the coarse-graining operator P as the projection onto piecewise constant functions and the

di�erent de�nition of Ā.

Theorem 2.4.3 will be proven in Section 2.4.1. We �nish this section with a quick derivation

of Theorem 2.3.14 based on the ingredients above.

Proof of Theorem 2.3.14. Combining Proposition 2.4.1 and Theorem 2.4.3 together with

Lemma 2.3.2 and Lemma 2.3.10,

E|Xt − ηt|2H−1 ≤ 2E|Xt − PXt|2H−1 + 2E|PXt − ηt|2H−1

≲
1

M2
E|Xt|2L2 + E|PXt − ηt|2Ā−1
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≲
1

M2
(CEnt + 1) + E|PX0 − η0|2Ā−1 +

T

K
+ C

CEnt

M2

≲ E|PX0 − η0|2H−1 +
T

K
+

1

M2
(CEnt + 1).

This veri�es the estimate (2.3.10).

2.4.1 Proof of Theorem 2.4.3

Before we proceed, let us �rst introduce an conditioning for the Kawasaki dynamics Xt on

the level of mesoscopic pro�les, analogous to the disintegration of the canonical ensemble µ

from De�nition 2.3.4.

De�nition 2.4.7 (Disintegration of the law ρt of the Kawasaki dynamics). The operator P

induces a decomposition of the law ρt of the Kawasaki dynamics into a family of conditional

measures ρt(dx|y) := ρt(dx|Px = y) on the �bers P−1(y) ⊂ XN and a marginal measure

ρ̄t(dy) on the image YM , in the sense that∫
g(x)ρt(dx) =

∫ ∫
g(x)ρt(dx|y)ρ̄t(dy) (2.4.6)

for any test function g : XN → R.

We also need a decomposition of the microscopic observables in XN into parts correspond-

ing to mesoscopic pro�les and microscopic �uctuations.

De�nition 2.4.8 (Orthogonal decomposition of the state space XN). The operator P in-

duces an orthogonal decomposition of the state space XN into a subspace corresponding to

mesoscopic pro�les, X⊥
N := imNP t, and a subspace corresponding to microscopic �uctua-

tions around these pro�les, X
∥
N := (imNP t)⊥ = kerP ∩XN , as

XN ∋ x = x∥ ⊕ x⊥ ∈ X
∥
N ⊕X⊥

N .

For a smooth function f : XN → R, its gradient ∇∥ along X
∥
N and its gradient ∇⊥ along X⊥

N

are given by ∇∥f = (∇f)∥ and ∇⊥f = (∇f)⊥.
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The starting point of the analysis is an equation of time evolution for the di�erence between

the projected dynamics PXt and the mesoscopic dynamics ηt, provided by the forward

Kolmogorov equation (2.2.9) for the microscopic dynamics Xt

d

dt

1

2
E |PXt − ηt|2Ā−1 =

∫ (
d

dt
−∇H(x) · ∇A−1 +∇ · ∇A−1

)(
1

2
|Px− ηt|2Ā−1

)
ρt(dx)

= E ⟨− d

dt
ηt, PXt − ηt⟩Ā−1 −

∫
∇H(x) · AP tĀ−1(Px− ηt) ρt(dx)

+

∫
∇ · (AP tĀ−1(Px− ηt)) ρt(dx), (2.4.7)

where we used the relation (2.3.9) between ∇A−1 and ∇Ā−1 . Let us �rst look at the last

integral of the right hand side of (2.4.7). This is a purely entropic term coming from the

projected Brownian motion PdBA−1

t (see (2.4.2)), whose covariance matrix can be easily

calculated to be
idY

N
wrt. the Ā−1 inner product. Indeed, the divergence term inside the

integral equals

trX(AP
tĀ−1P ) = trY (PAP

tĀ−1) = trY

(
idY

N

)
=

dimY

N
.

This is a constant M−1
N

≈ 1
K

that scales like the variance of the average of K i.i.d. random

variables. It accounts for the discrepancy that the Kawasaki dynamics (2.2.4) has noise

whereas the mesoscopic dynamics (2.3.6) is deterministic.

Having dealt with the noise term, we apply disintegration of measure (2.4.6) to the law ρt

in (2.4.7) and get

d

dt

1

2
E|PXt − ηt|2Ā−1 =

M − 1

N
+ E ⟨− d

dt
ηt, PXt − ηt⟩Ā−1

−
∫

Eρt(dx|y)∇H(x) · AP tĀ−1(y − ηt) ρ̄t(dy).

As the expectations are now taken on the level of the mesoscopic pro�les of the process Xt,

it helps to mentally �x one realization y = PXt. The �rst expectation on the right hand

side is a purely kinetic term: it looks like the rate of convergence between the mesoscopic

dynamics ηt and an alternate trajectory η̃t of it that happens to be in state y at time t (cf.
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(2.3.8)), if there were a corresponding time derivative

d

dt
η̃t = −∇Ā−1H̄(η̃t) = −∇Ā−1H̄(y).

Remarkably, the coarse-graining relation (2.3.4) between ∇H and ∇H̄ indicates that this

missing mesoscopic energy gradient may be supplied by the average microscopic energy

gradient, when themicroscopic �uctuations of the dynamicsXt around the mesoscopic pro�le

y has reached stochastic equilibrium:

∇H̄(y) = Ā−1PA Eµ(dx|y)∇H(x). (2.4.8)

Moreover, the operator Ā−1PA : XN → YM in (2.4.8) is exactly the adjoint of the operator

AP tĀ−1 : YM → XN in (2.3.9). These observations lead to the rearranged equation

d

dt

1

2
E|PXt − ηt|2Ā−1 =

M − 1

N
− E ⟨∇H̄(PXt)−∇H̄(ηt), PXt − ηt⟩L2 (2.4.9)

−
∫

(Eρt(dx|y)∇H(x)− Eµ(dx|y)∇H(x)) · AP tĀ−1(y − ηt) ρ̄t(dy).

In this form, the �rst expectation on the right hand side of (2.4.9) now fully resembles (2.3.8)

and can be estimated by the uniform convexity of H̄ from Theorem 2.3.6:

E ⟨∇H̄(PXt)−∇H̄(ηt), PXt − ηt⟩L2 ≥ 2λE |PXt − ηt|2L2 . (2.4.10)

It remains to estimate the second integral on the right hand side of (2.4.9). After taking the

operator norm of AP tĀ−1 into account (see Lemma 2.4.14 below), this integral quanti�es

how far away the conditional measure ρt(dx|y) is from the conditional Gibbs measure µ(dx|y)

through the mean di�erence Eρt(dx|y)∇H(x)− Eµ(dx|y)∇H(x). The latter quantity turns out

to be controlled by a bound on the operator norm of HessH and a log Sobolev inequality

(LSI) of the conditional Gibbs measure µ(dx|y).

Proposition 2.4.9 (Mean di�erence estimate). Let κ := ∥HessH∥. Suppose µ(dx|y) given

by (2.2.8) satis�es a LSI with constant ϱ > 0 in the sense of (2.4.13) below. Then we have:

|Eρt(dx|y)∇H(x)− Eµ(dx|y)∇H(x)|2 ≤ κ2

α2

∫
|∇|| log f(t, x)|2 ρt(dx|y), (2.4.11)

where ∇|| is the gradient along the subspace of �uctuations de�ned in De�nition 2.4.8.
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Remark 2.4.10. This is a well-known result, e.g. contained in Lemma 22 in [GOVW09] in

the form of a covariance estimate. The proof given there starts with using the Kantorovich-

Rubinstein duality to bound the mean di�erence by the Wasserstein distance. By Theorem 1

in [OV00], the Wasserstein distance is bounded by the relative entropy provided a logarith-

mic Sobolev inequality is satis�ed, which in turn bounds the relative entropy by the Fisher

information.

Moreover, the following discrete analogue of (2.3.1) allows us to pass from the Fisher

information involving∇|| in (2.4.11) to the full Fisher information for the Kawasaki dynamics

in (2.2.10).

Lemma 2.4.11 (Penalization of �uctuations by spin-exchange). There exists constant γ > 0

such that for x ∈ XN

|x|||2 = |x− x⊥|2 ≤ γ

M2
x · Ax, (2.4.12)

where x||, x⊥ denote the �uctuation and mesoscopic parts of x, respectively, as de�ned in

De�nition 2.4.8.

The proof of Lemma 2.4.11 is given in Section 2.6, where we gather and prove facts about

splines. It remains to establish a uniform log Sobolev inequality:

Theorem 2.4.12 (Uniform LSI for µ(dx|y)). The conditional measure µ(dx|y) given by (2.2.8)

satis�es a LSI with constant ϱ > 0 uniform in the system size N and the mesoscopic pro-

�le y. More precisely, this means that for any nonnegative test function g : XN → R that

satis�es
∫
g(x)µ(dx|y) = 1, it holds that

Ent (gµ(dx|y)|µ(dx|y)) ≤ 1

2α

∫ |∇||g(x)|2

g(x)
µ(dx|y), (2.4.13)

where ∇|| is the gradient along the subspace of �uctuations de�ned in De�nition 2.4.8.

Remark 2.4.13. Theorem 2.4.12 should be compared to [GOVW09, Theorem 14], where a

similar statement was deduced for the case L = 0 using the two-scale criterion for LSI (see
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Lemma 2.8.6 below). As with the proof of Theorem 2.3.6, the non-locality of the projection P

onto the spline space YM creates di�culties with a direct application of the two-scale criterion,

and we have to take a detour through the space of discontinuous Galerkin functions.

The proof of Theorem 2.4.12 is given in Section 2.7. To get an overall estimate for the

integral involving the mean di�erence, we also need to control the operator norm of AP tĀ−1 :

YM → XN , which measures the compatibility of projecting and taking second di�erences.

Lemma 2.4.14 (Interchanging second-order di�erence with coarse-graining). There exists

a universal constant σ > 0 and an integer K∗ such that for all K ≥ K∗,M and all y ∈ YM

it holds

|ANP tĀ−1y|L2 ≤ 1

σ
|y|L2 . (2.4.14)

The proof of Lemma 2.4.14 is given in Section 2.6, where we gather and prove facts about

splines. We are now ready to prove Theorem 2.4.3.

Proof of Theorem 2.4.3. Applying the convexity estimate (2.4.10) to the evolution equation

(2.4.9) and using Lemma 2.4.14 and Cauchy-Schwarz on the last integral yields that

d

dt

1

2
E|PXt − ηt|2Ā−1 + 2λE|PXt − ηt|2L2

≤ 1

K
+

∫
1

σ
|y − ηt|L2

∣∣Eρt(dx|y)∇H(x)− Eµ(dx|y)∇H(x)
∣∣
L2 ρ̄t(dy), (2.4.15)

where we accounted for di�erent Euclidean structures on XN . By Lemma 2.4.9, Lemma

2.4.11 and the observation (2.2.10), we have∫
|Eρt(dx|y)∇H(x)− Eµ(dx|y)∇H(x)|2L2 ρ̄t(dy) ≤ −κ

2

α2

γ

M2

1

N

d

dt
Ent (ρt|µ) .

Applying Young's inequality and using this estimate, the integral on the right hand side of

(2.4.15) is bounded by

λE|PXt − ηt|2L2 −
1

4λ

κ2γ

σ2α2

1

M2

1

N

d

dt
Ent (ρt|µ) . (2.4.16)

Putting the upper bound (2.4.16) back into (2.4.15) and integrating over the time inter-

val [0, T ] yields the desired estimate (2.4.5).
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2.5 Convergence of mesoscopic dynamics to macroscopic

dynamics

In this section we state the proof of Theorem 2.3.15. We need to show that the mesoscopic

evolution (2.3.6)

d

dt
ηt = −∇Ā−1H̄(ηt) = −Ā∇H̄(ηt)

converges to the macroscopic evolution (2.2.18)

∂

∂t
ζt = −∇H−1H(ζt) =

∂2

∂θ2
φ′(ζt).

Formally, this means that one has to exchange the operator −Ā with the operator ∂2θ

and the function ∇H̄ with the function φ′. The �rst exchange is plausible because −Ā is

a coarse-grained version of the second-order di�erence operator −A. The second exchange

is essentially the consequence of a (local) Cramér theorem: H̄ is a coarse-graining of the

Hamiltonian H with single-site potential ψ, while φ is the Cramér transform of the same ψ.

The proof of Theorem 2.3.15 is inspired by the Galerkin approximation scheme, a well-

known method in numerical analysis. First, we need to show the macroscopic dynamics ζt is

close to the projected dynamics Pζt. Because the H−1 norm is a weak norm, this di�erence

is controlled by the spline estimates in Lemma 2.3.2 together with the following a priori

energy estimates.

Lemma 2.5.1. Let ζt denote the macroscopic dynamics given by (2.2.22). Then it holds

that

sup
0≤t≤T

|ζt|2L2 ≲ |ζ0|2L2 and

∫ ∞

0

|ζt|2H1dt ≲ |ζ0|2L2 .

Lemma 2.5.1 plays a similar role as Proposition 2.4.1. It follows directly from integrating

the dissipation (2.2.19) of the macroscopic free energyH wrt. theH−1 gradient �ow structure,
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after applying the estimates

λ|ζ|2L2 ≤ H(ζ) ≤ Λ|ζ|2L2 and λ|ζ|H1 ≤ |φ′(ζ)|H1 ≤ Λ|ζ|H1 ,

which are straightforward consequences of the convexity estimates of φ (see Lemma 2.2.11).

It remains to show that the mesoscopic dynamics ηt is close to the projected dynamics

Pζt. Because of Lemma 2.3.10, we will work with the more natural Ā−1 norm instead of

H−1 norm. Di�erentiating in time, we have

d

dt

1

2
|ηt − Pζt|2Ā−1 =

〈
d

dt
ηt −

d

dt
Pζt, ηt − Pζt

〉
Ā−1

.

This almost looks like the rate of convergence between the mesoscopic dynamics ηt and an

alternate trajectory η̃t of it that happens to be in state Pζt at time t (cf. (2.3.8)), except

that the time derivative of the projected macroscopic dynamics

d

dt
Pζt = P

∂ζ

∂t
= P

∂2

∂θ2
φ′(ζt)

is not exactly the same as the time derivative of the hypothetical mesoscopic dynamics

d

dt
η̃t = −∇Ā−1H̄(η̃t) = −Ā∇H̄(Pζt).

These observations lead to the rearranged equation

d

dt

1

2
|ηt − Pζt|2Ā−1 =

〈
d

dt
ηt +∇Ā−1H̄(Pζt), ηt − Pζt

〉
Ā−1

+ ⟨Āφ′(ζt)−∇Ā−1H̄(Pζt), η − Pζt⟩Ā−1

+

〈
− d

dt
Pζt − Āφ′(ζt), ηt − Pζt

〉
Ā−1

= −⟨∇H̄(ηt)−∇H̄(Pζt), η − Pζt⟩L2 + ⟨φ′(ζt)−∇H̄(Pζt), η − Pζt⟩L2

+ ⟨φ′(ζt), (−∂2θ Ā−1 − id)(ηt − Pζt)⟩L2 . (2.5.1)

The �rst term in (2.5.1) now fully resembles (2.3.8) and can be estimated by the uniform

strong convexity of H̄ (see Theorem 2.3.6):

⟨∇H̄(Pζt)−∇H̄(ηt), ηt − Pζt⟩L2 ≤ −λ|ηt − Pζt|2L2 . (2.5.2)
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The second term in (2.5.1) is small because the gradient of the coarse-grained Hamiltonian

H̄ is a good approximation of the gradient of the macroscopic free energy H.

Lemma 2.5.2 (Closeness of ∇H̄ and ∇H). There is an integer K∗ such that if K ≥ K∗

then it holds for all ζ ∈ L2
0(T)∣∣∇H̄(Pζ)−∇H(ζ)

∣∣
L2 ≲

(
1

K
+

1

M

)
|ζ|H1 +

1

K
1
2

. (2.5.3)

We prove Lemma 2.5.2 in Section 2.9. The last term in (2.5.1) is controlled by the following

error estimates for exchanging the coarse-grained second-order di�erence operator −Ā and

the second derivative ∂2θ .

Lemma 2.5.3 (Discrepancy between −Ā and ∂2θ ). There exists an integer K∗ such that for

all K ≥ K∗,M and all y, ỹ ∈ YM ,

| − ∂2θ Ā
−1y|L2 ≲ |y|L2 , (2.5.4)

|⟨−∂2θ Ā−1y, ỹ⟩L2 − ⟨y, ỹ⟩L2| ≲ 1

K
|y|H−1|ỹ|H1 . (2.5.5)

The proof of Lemma 2.5.3 is given in Section 2.6, where we gather and prove facts about

splines. The error estimate (2.5.4) is closely related to the error estimate (2.4.14). We are

now ready to prove Theorem 2.3.15.

Proof of Theorem 2.3.15. We �rst bound Pζt − ζt. By Lemma 2.3.2 and Lemma 2.5.1,

sup
0≤t≤T

|Pζt − ζt|2H−1 ≲ sup
0≤t≤T

1

M2
|ζt|2L2 ≲

1

M2
|ζ0|2L2 ,∫ T

0

|Pζt − ζt|2L2dt ≲
∫ T

0

1

M2
|ζt|2H1

dt ≲
1

M2
|ζ0|2L2 .

We now bound ηt − Pζt. By Lemma 2.5.2, the second term in (2.5.1) is estimated as

⟨φ′(ζt)−∇H̄(Pζt), ηt − Pζt⟩L2 ≲

((
1

K
+

1

M

)
|ζt|H1 +

1

K
1
2

)
|ηt − Pζt|L2 . (2.5.6)

By Lemma 2.5.3 and Lemma 2.3.2, the last term in (2.5.1) is estimated as

⟨φ′(ζt), (−∂2θ Ā−1 − id)(ηt − Pζt)⟩L2
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= ⟨φ′(ζt)− Pφ′(ζt),−∂2θ Ā−1(ηt − Pζt)⟩L2 + ⟨Pφ′(ζt), (−∂2θ Ā−1 − id)(ηt − Pζt)⟩L2

≲ |φ′(ζt)− Pφ′(ζt)|L2|ηt − Pζt|L2 +
1

K
|Pφ′(ζt)|H1|ηt − Pζt|H−1

≲
1

M
|φ′(ζt)|H1|ηt − Pζt|L2 +

1

K
|φ′(ζt)|H1|ηt − Pζt|L2 . (2.5.7)

Combining the estimates (2.5.2), (2.5.6), and (2.5.7) for equation (2.5.1) and applying

Young's inequality yields that

d

dt

1

2
|ηt − Pζt|2Ā−1 +

λ

2
|ηt − Pζt|2L2 ≲

1

K
+

(
1

K2
+

1

M2

)(
|ζt|2H1 + |φ′(ζt)|2H1

)
.

Integrating in time from 0 to T , applying the energy estimates in Lemma 2.5.1, and exchang-

ing Ā−1 norm with H−1 norm (see Lemma 2.3.10), we get

sup
0≤t≤T

1

2
|ηt − Pζt|2H−1 +

λ

2

∫ T

0

|ηt − Pζt|2L2dt ≲
T

K
+

(
1

K2
+

1

M2

)
|ζ0|2L2 .

Combining the estimates for ηt − Pζt and Pζt − ζt yields Theorem 2.3.15.

2.6 Properties of spline approximations

In this section we gather and prove the facts about splines y ∈ YM needed in this work,

namely Lemma 2.3.2, Lemma 2.3.10, Lemma 2.4.11, Lemma 2.4.14, Lemma 2.5.3.

2.6.1 Penalization of �uctuations around spline pro�les

In this subsection we prove those auxiliary results that show �uctuations around spline pro-

�les are penalized when measured in a weak norm, namely Lemma 2.3.2 and Lemma 2.4.11.

We need two auxiliary ingredients. The �rst is an inverse Sobolev inequality on the space YM .

Lemma 2.6.1 (Inverse Sobolev inequality). For all y ∈ YM holds

|y|H2 ≲M |y|H1 ≲M2|y|L2 . (2.6.1)
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It is clear that the estimate (2.6.1) holds. The spline spaces YM are �nite dimensional

and norms on �nite-dimensional vector spaces are equivalent. The factors M and M2 comes

from a scaling argument i.e. 1
M

is the only internal length scale. We omit the details of the

proof, which consists of a straightforward calculation. The second auxiliary ingredient is a

nice basis for the spline functions that forms a �partition of unity� on the torus T.

De�nition 2.6.2 (B-spline functions). The B-spline functions of YM are given by

Bj(θ) =


M2

2
(θ − j−2

M
)2 for θ ∈ [ j−2

M
, j−1

M
),

3
4
− M2(θ − 2j−1

2M
)2 for θ ∈ [ j−1

M
, j
M
),

M2

2
(θ − j+1

M
)2 for θ ∈ [ j

M
, j+1

M
),

0 else.

(2.6.2)

Proof of Lemma 2.3.2. The proof of (2.3.1) is based on the following spline interpolation:

for ζ ∈ L2(T), we de�ne Iζ ∈ YM as

Iζ(θ) =
M∑
j=1

ζ

(
2j − 1

2M

)
Bj(θ),

where Bj ∈ YM is the B-spline basis de�ned in (2.6.2). We claim that

|ζ − Pζ|L2 ≤ |ζ − Iζ|L2 ≲
1

M
|ζ|H1 , (2.6.3)

which establishes the second estimate of (2.3.1), from which the rest follows by duality.

To verify (2.6.3), note the �rst inequality is simply due to the fact that Pζ is the best L2

approximation of ζ in YM . The second estimate of (2.6.3) is well known in the literature

on B-splines (see for example [DL93]). For the convenience of the reader we give a short

proof of this fact. Using the fact that the Bj have small support and sum to 1, we obtain

for θ ∈
(
m−1
M
, m
M

)
:

ζ(θ)− Iζ(θ)
(2.6.2)
=

2∑
j=0

(
ζ(θ)− ζ

(
2m− 3 + 2j

2M

))
Bm−1+j(θ).

We use Young's inequality, the Fundamental Theorem of Calculus and the Cauchy-Schwarz

inequality to deduce an estimate:∫ m
M

m−1
M

|ζ(θ)− Iζ(θ)|2 dθ
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≤ 3
2∑

j=0

∫ m
M

m−1
M

(
ζ(θ)− ζ

(
2m− 3 + 2j

2M

))
Bm−1+j(θ)

≤
∫ m

M

m−1
M

3
2

M

(∫ 2m+1
2M

2m−3
2M

|ζ ′(θ̃)|2dθ̃

)
(B2

m−1(θ) +B2
m(θ) +B2

m+1(θ)) dθ

≤ 6

M2

∣∣∣∣∣
M∑
j=1

B2
j

∣∣∣∣∣
L∞

(∫ 2m+1
2M

2m−3
2M

|ζ ′(θ̃)|2dθ̃

)
.

Summing over m = 1, ...,M yields the second estimate of (2.6.3).

Let us now turn to the veri�cation of (2.3.2). Again, by duality it su�ces to show the

�rst inequality only, which follows at once from the next two estimates

|ζ − Iζ|H1 ≲ |ζ|H1 and |Pζ − Iζ|H1 ≲ |ζ|H1 . (2.6.4)

The �rst estimate of (2.6.4) can be deduced with similar calculations as were used for verify-

ing the second estimate of (2.6.3). We leave the details as an exercise. The second estimate

of (2.6.4) follows from the inverse Sobolev inequality on YM and the estimates of (2.6.3):

|Pζ − Iζ|H1

(2.6.1)

≲ M |Pζ − Iζ|L2 ≤M(|Pζ − ζ|L2 + |ζ − Iζ|L2)
(2.6.3)

≲ |ζ|H1 .

Proof of Lemma 2.4.11. The argument is essentially analogous to the one given for the pre-

vious lemma. In the main step, we will use the discrete Poincaré inequality (2.2.6) and de�ne

a spline interpolation. Observe that

|x− x⊥|2 ≤ |x−NP ty|2 for all y ∈ YM

since imNP t = kerP⊥. Let βj := NP tBj be the L2-orthogonal projection onto XN of the B-

spline function Bj given by (2.6.2). For each x ∈ XN , de�ne a projected spline interpolation

I(x) :=
M∑
j=1

 1

3K

(j+1)K∑
i=(j−2)K+1

xi

 βj =:
M∑
j=1

x̂jβ
j.

The properties that 0 ≤ Bj ≤ 1, Bj is supported on [ j−2
M
, j+1

M
], and

∑M
j=1Bj = 1 imply

the corresponding properties for βj: 0 ≤ βj
n ≤ 1 for each n ∈ [N ], βj is supported on
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n ∈ ((j − 2)K, (j + 1)K], and
∑M

j=1 β
j
n = 1. Hence,

(xn − I(x)n)
2 =

(
m+1∑

j=m−1

(xn − x̂j)β
j
n

)2

≤
m+1∑

j=m−1

(xn − x̂j)
2

for n ∈ ((m− 1)K,mK]. Summing this inequality over n leads to

N∑
n=1

(xn − I(x)n)
2 ≤

M∑
m=1

(m+1)K∑
n=(m−2)K+1

(xn − x̂m)
2

(2.2.6)

≤
M∑

m=1

C(3K)2
(m+1)K∑

n=(m−2)K+1

(xn − xn−1)
2

= 33CK2

N∑
n=1

(xn − xn−1)
2

(2.2.5)
= 33C

K2

N2
x · Ax.

Thus (2.4.12) holds with γ = 33C, where C is the constant in (2.2.6).

2.6.2 Spline approximations involving the operator Ā

In this section we prove those auxiliary results which make precise the idea that the operator

−Ā, due to its de�nition as a coarse-graining of the second-order di�erence operator −A,

should be a discrete version of the second derivative adapted to the spline space YM . We

begin with showing that the H1 inner product on YM is close to the inner product induced

by the positive de�nite operator Ā.

Lemma 2.6.3. There exists an integer K∗ such that for all K ≥ K∗,M and all y, ỹ ∈ YM

|⟨ỹ, Āy⟩L2 − ⟨ỹ, y⟩H1| ≲ 1

N
(|ỹ|H1|y|H2 + |ỹ|H2|y|H1) (2.6.5)

≲
M

N
|ỹ|H1 |y|H1 . (2.6.6)

This leads to a quick proof of Lemma 2.3.10 by a duality argument.

Proof of Lemma 2.3.10. Let z ∈ H1(T) be arbitrary, then we have

⟨y, z⟩L2 = ⟨y, Pz⟩L2 ≤ |y|Ā−1|Pz|Ā
(2.3.5)

≲ |y|Ā−1 |Pz|H1

(2.3.2)

≲ |y|Ā−1|z|H1 ,
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which implies |y|H−1 ≲ |y|Ā−1 . To show the opposite inequality, let w ∈ YM be arbitrary,

then we have

⟨y, Ā−1w⟩L2 ≤ |y|H−1|Ā−1w|H1

(2.3.5)

≲ |y|H−1|Ā−1w|Ā = |y|H−1|w|Ā−1 ,

which implies |y|Ā−1 ≲ |y|H−1 .

To prove Lemma 2.6.3, we will use the following simple facts about �nite di�erence oper-

ators.

Lemma 2.6.4 (Finite Di�erence Operators). Let Q : L2(T) → XN be the L2-orthogonal

projection onto XN (cf. (2.2.13)), then NP t = Q on YM . Let D be a rescaled N × N

forward di�erence matrix, given by (Dx)i = N(xi+1 − xi), then A = DtD, where Dt denotes

the transpose of D. Let ∂hθ be the di�erence quotient with step size h, given by ∂hθ y(θ) =

1
h
(y (θ + h)− y (θ)), then

DQ = Q∂
1
N
θ , DtQ = −Q∂−

1
N

θ . (2.6.7)

Proof of Lemma 2.6.3. We will prove the estimate (2.6.5), and then the estimate (2.6.6)

follows from (2.6.5) by an application of the inverse Sobolev inequality (2.6.1). For ỹ, y ∈ YM

⟨ỹ, Āy⟩L2 = ⟨NP tỹ, A(NP ty)⟩L2

= ⟨DQỹ,DQy⟩L2
(2.6.7)
= ⟨∂

1
N
θ ỹ, Q∂

1
N
θ y⟩L2 . (2.6.8)

Using (2.6.8) we get that

⟨ỹ, Āy⟩L2 − ⟨ỹ, y⟩H1 = ⟨∂
1
N
θ ỹ, Q∂

1
N
θ y⟩L2 − ⟨∂θỹ, ∂θy⟩L2

= ⟨∂
1
N
θ ỹ − ∂θỹ, Q∂

1
N
θ y⟩L2 + ⟨∂θỹ, Q(∂

1
N
θ y − ∂θy)⟩L2

+ ⟨∂θỹ, (Q− id)∂θy⟩L2 ,

which implies

∣∣⟨ỹ, Āy⟩L2 − ⟨ỹ, y⟩H1

∣∣ ≤ |∂
1
N
θ ỹ − ∂θỹ|L2|∂

1
N
θ y|L2 + |∂θỹ|L2|∂

1
N
θ y − ∂θy|L2
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+ |∂θỹ|L2|(Q− id)∂θy|L2 .

This yields estimate (2.6.5) once we establish the following estimates:

|∂
1
N
θ y|L2 ≤ |∂θy|L2 , (2.6.9)

|∂
1
N
θ y − ∂θy|L2 ≤ 1

N
|∂2θy|L2 , (2.6.10)

|(Q− id)∂θy|L2 ≲
1

N
|∂2θy|L2 . (2.6.11)

Argument for (2.6.9): Observe that

∂
1
N
θ y(θ) = N

∫ θ+ 1
N

θ

∂θy(s)ds. (2.6.12)

By Cauchy-Schwarz,∫ 1

0

∣∣∣∂ 1
N
θ y
∣∣∣2 dθ ≤ ∫ 1

0

N2

N

∫ θ+ 1
N

θ

|∂θy (s)|2 dsdθ =
∫ 1

0

|∂θy (s)|2 ds.

Argument for (2.6.10): By mean value theorem, for some s̃ ∈ (θ, θ + 1
N
),∣∣∣∂ 1

N
θ y − ∂θy

∣∣∣ = |∂θy(s̃)− ∂θy(θ)| =
∣∣∣∣∫ s̃

θ

∂2θy(s)ds

∣∣∣∣ ≤ ∫ θ+ 1
N

θ

|∂2θy(s)|ds.

By Cauchy-Schwarz,∫ 1

0

∣∣∣∂ 1
N
θ y − ∂θy

∣∣∣2 dθ ≤ ∫ 1

0

1

N

∫ θ+ 1
N

θ

∣∣∂2θy(s)∣∣2 dsdθ = 1

N2

∫ 1

0

∣∣∂2θy(s)∣∣2 ds.
Argument for (2.6.11): This follows from applying a Poincaré inequality on each of the

intervals ( i−1
N
, i
N
) to the function ∂θy.

Proof of Lemma 2.4.14. It su�ces to show

σ|ANP t|L2 ≤ |PANP ty|L2 . (2.6.13)

Let z = ANP ty. By Lemma 2.6.4,

z = DtDQy = DtQ∂
1
N
θ y = −Q∂−

1
N

θ ∂
1
N
θ y.
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Using the integral representation formula (2.6.12), we compute

zn = −N
∫ n

N

n−1
N

∂
− 1

N
θ ∂

1
N
θ y(θ)dθ

= −N
∫ n

N

n−1
N

N

∫ θ

θ− 1
N

∂θ∂
1
N
θ y(s)dsdθ

= −N
∫ n

N

n−1
N

N

∫ θ

θ− 1
N

N

∫ s+ 1
N

s

∂2θy(t)dtdsdθ

= −
∫ 1

0

∫ 1

0

∫ 1

0

∂2θy

(
n− u− v + w

N

)
dwdvdu. (2.6.14)

By de�nition of the spline space, on each interval ( j−1
M
, j
M
),

∂2θy(θ) = αj (2.6.15)

for some constants αj ∈ R. Then evaluating the integral (2.6.14) gives

zi = −αj, for i = (j − 1)K + 2, ..., jK − 1, (2.6.16)

z(j−1)K+1 = −αj +
1

6
(αj − αj−1), zjK = αj +

1

6
(αj − αj+1). (2.6.17)

Thus the function z = ANP ty is almost piecewise constant on blocks of K. This motivates

us to de�ne a spline interpolation for z,

I(z) :=
M∑
j=1

−αj Bj,

where Bj are the B-spline basis of YM . We will show that there is a universal constant σ > 0,

such that
⟨z, I(z)⟩L2

|z|L2|I(z)|L2

≥ σ. (2.6.18)

This implies (2.6.13) by

|Pz|L2 |I(z)|L2 ≥ ⟨Pz, I(z)⟩L2 = ⟨z, I(z)⟩L2 ≥ σ|z|L2|I(z)|L2 .

Argument for (2.6.18): It follows from (2.6.16) and (2.6.17) that

|z|2L2 =
1

N
|z|2 ≤ K

N

M∑
j=1

α2
j .

54



Using (2.6.2), we can compute |I(z)|L2 :

|I(z)|2L2 =
M∑
j=1

αjαk⟨Bj, Bk⟩L2 =
1

M
⟨α,Bα⟩RM ≤ 1

M

M∑
j=1

α2
j ,

where B is the symmetric matrix

Bjk =
11

20
δj=k +

13

60
δ|j−k|=1 +

1

120
δ|j−k|=2

and the last inequality follows from ∥B∥ ≤ 1. Finally, we compute ⟨z, I(z)⟩L2 :

⟨z, I(z)⟩L2 =
M∑
j=1

−αj ⟨z, Bj⟩L2

=
M∑

j,k=1

αjαk

∫ k
M

k−1
M

Bj −
M∑

j,k=1

1

6
αj(αk − αk−1)

∫ k−1
M

+ 1
N

k−1
M

Bj

−
M∑

j,k=1

1

6
αj(αk − αk+1)

∫ k
M

k
M

− 1
N

Bj

=
1

M
⟨α,Eα⟩RM +O

(
1

N

)
|α|2RM ≥ c

M

M∑
j=1

α2
j ,

where E is the symmetric matrix

Ejk =
2

3
δj=k +

1

6
δ|j−k|=1

and the last inequality follows from the strict diagonal dominance of E, once K is large

enough, for some universal constant c > 0. Putting everything together, we arrive at (2.6.18):

⟨z, I(z)⟩2L2

|z|2L2 |I(z)|2L2

≥ c2

M2
M

N

CK
=
c2

C
.

Proof of Lemma 2.5.3. Argument for (2.5.4): By (2.6.15), (2.6.16), and (2.6.17),

|(−∂2θy)− ANP ty|2L2 =
M∑
j=1

1

N

1

62
(αj−1 − αj)

2 +
1

N

1

62
(αj+1 − αj)

2

≲
M∑
j=1

1

N
|αj|2 =

1

K
| − ∂2θy|2L2 .
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It follows that

| − ∂2θy|L2 ≤
(
1 +O

(
K− 1

2

))
|ANP ty|L2

(2.6.13)

≲ |PANP ty|L2 .

Argument for (2.5.5): we apply Lemma 2.6.3 to Ā−1y, ỹ:

|⟨ỹ, y⟩L2 − ⟨ỹ,−∂2θ Ā−1y⟩L2| = |⟨ỹ, Ā(Ā−1y)⟩L2 − ⟨ỹ, Ā−1y⟩H1|
(2.6.5)

≲
1

K
|Ā−1y|H1|ỹ|H1

(2.3.5)

≲
1

K
|y|H−1|ỹ|H1 .

2.7 Uniform strong convexity of the coarse-grained Hamil-

tonian

This section is devoted to the proof of Theorem 2.3.6. As mentioned in Remark 2.3.7, because

the spline functions in YM are non-local due to continuity requirements (for L ≥ 1), we will

instead work with an intermediate space Y DG
M ⊃ YM of discontinuous Galerkin functions,

prove the analogue of Theorem 2.3.6 for Y DG
M and then transfer the result to YM .

De�nition 2.7.1 (The space of discontinuous Galerkin functions Y DG
M ). The space of dis-

continuous Galerkin functions of degree L ∈ N is de�ned as

Y DG
M :=

{
y ∈ L2(T)| ∀m ∈ [M ] : y|(m−1

M
,m
M ) polynomial of degree ≤ L

}
. (2.7.1)

We endow Y DG
M with the inner product inherited from L2(T).

De�nition 2.7.2 (The coarse-graining operator QM). Let QM : L2(T) → Y DG
M be the

orthogonal projection onto Y DG
M in L2(T). We also de�ne Qt

M : Y DG
M → RN to be the

operator such that

⟨QMx, y⟩L2 = x ·Qt
My ∀x ∈ RN , y ∈ Y DG

M ,
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i.e. NQt
M : Y DG

M → XN is the L2-orthogonal projection of Y DG
M onto RN , when RN is

embedded into L2(T) as a space of step functions.

It follows that the coarse-graining operator QM is related to the coarse-graining operator

P onto splines (see De�nition 2.3.1) via P = PQM on L2(T) and NP t = NQt
M on YM .

Consequently, the approximation property of splines in Lemma 2.3.3 is a direct consequence

of the following analogous approximation property of the discontinuous Galerkin functions.

Lemma 2.7.3. It holds that

∥QMNQ
t
M − idY DG

M
∥ ≲

1

K2
. (2.7.2)

The proof of Lemma 2.7.3 is deferred to Section 2.7.2. From now on, we assume K is large

enough so that QMNQ
t
M : Y DG

M → Y DG
M is invertible. In particular, this means the coarse-

graining operator QM : XN → YM is onto and the orthogonal projection NQt
M : YM → XN

is one-to-one.

De�nition 2.7.4 (The coarse-grained Hamiltonian H̄Y DG
M

). The coarse-grained Hamiltonian

H̄Y DG
M

: Y DG
M → R associated to QM is given by

H̄Y DG
M

(y) := − 1

N
log

∫
{x∈RN :QMx=y}

exp (−HN(x)) dx. (2.7.3)

Theorem 2.7.5 (Uniform strong convexity of H̄Y DG
M

). There are constants 0 < λ,Λ, K∗ <∞

such that for all K ≥ K∗, M and all y ∈ Y DG
M it holds

2λ idY DG
M

≤ HessY DG
M

H̄Y DG
M

(y) ≤ 2Λ idY DG
M

in the sense of quadratic forms.

Our �rst step towards proving Theorem 2.7.5 is reducing it to the case M = 1. Since

the blocks are independent for functions in Y DG
M , the space Y DG

M canonically factors as an

orthogonal direct sum:

Y DG
M ∋ α := ⊕M

m=1α
(m) ∈

M⊕
m=1

Y DG
1 , (2.7.4)
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where α(m) ∈ Y DG
1 is obtained by restricting α to the subinterval (m−1

M
, m
M
). Under this

identi�cation, the Euclidean structure on Y DG
M also factors:

⟨α, β⟩Y DG
M

=
1

M

M∑
m=1

⟨α(m), β(m)⟩Y DG
1
. (2.7.5)

Given x ∈ RN , for 1 ≤ m ≤ M , denote x(m) := (x(m−1)K+1 , ... , xmK) ∈ RK . Then in the

sense of (2.7.4), the coarse-grained operator QM decomposes as

QMx = ⊕M
m=1Q1x

(m).

Consequently, the coarse-grained Hamiltonian H̄Y DG
M

also decomposes:

Lemma 2.7.6. For β ∈ Y DG
1 we de�ne

ψJ(β) = − 1

J
log

∫
{x∈RJ :Q1x=β}

exp(−HJ(x)) dx. (2.7.6)

Then it holds that for α ∈ Y DG
M

H̄Y DG
M

(α) =
1

M

M∑
m=1

ψK(α
(m)). (2.7.7)

In light of (2.7.7), proving Theorem 2.7.5 reduces to proving the following:

Theorem 2.7.7. There are constants 0 < λ,Λ, J∗ < ∞ such that for all J ≥ J∗, and

all β ∈ Y DG
1 it holds

2λ idY DG
1

≤ HessY DG
1

ψJ(β) ≤ 2Λ idY DG
1
, (2.7.8)

in the sense of quadratic forms.

Proof of Theorem 2.7.5. By (2.7.7), for all y ∈ Y DG
M

DkH̄Y DG
M

(y) =
1

M

M⊕
m=1

DkψK(y
(m)),

where Dk denotes the k-th derivative as a multilinear form. Setting k = 2 and taking account

of the di�erent inner product structures by using (2.7.5) , (2.7.8) yields for large enough K

the desired estimate

2λ idY DG
M

≤ HessY DG
M

H̄Y DG
M

(y) ≤ 2Λ idY DG
M

.
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We prove Theorem 2.7.7 in Section 2.7.1. The argument is quite technical, making up

the bulk of the proof of Theorem 2.3.6. We follow a similar approach as in [GOVW09]: a

local Cramér theorem and a local central limit theorem (CLT). The main di�erence here

is that the local Cramér theorem has to be extended to canonical ensembles with multiple

constraints, which means that we will have to use a multivariate CLT instead of a univariate

CLT.

To �nish the proof of Theorem 2.3.6, we need to transfer the strong convexity from H̄Y DG
M

to H̄. Since H̄Y DG
M

and H̄ are coarse-grained versions of H on the levels of Y DG
M and YM ,

respectively, and YM ⊂ Y DG
M , H̄ is itself a coarse-grained version of H̄Y DG

M
, i.e.

NH̄(y) = − log

∫
z∈Y ⊥

M

exp(−NH̄Y DG
M

(y + z))N
LM+1

2 LLM+1(dz), (2.7.9)

where Y ⊥
M := {y ∈ Y DG

M : Py = 0} and dimY ⊥
M = LM + 1. (The factor N

LM+1
2 is due to the

di�erent Euclidean structures on RN .)

Lemma 2.7.8. Let W ⊕Z be an orthogonal decomposition of a �nite dimensional Euclidean

space. Suppose F : W ⊕ Z → R is a C2 function such that
∫
W⊕Z

exp(−F ) < ∞. Let

F̄ (z) := − log
∫
W
exp(−F (w, z)) dw. Let c > 0, then it holds that

HessW⊕Z F ≥ c idW⊕Z ⇒ HessZ F̄ ≥ c idZ , (2.7.10)

HessW⊕Z F ≤ c idW⊕Z ⇒ HessZ F̄ ≤ c idZ . (2.7.11)

In [BL76], it was shown in a very neat way that statement (2.7.10) in Lemma 2.7.8 is

simple consequence of the well-known Brascamp-Lieb inequality. Statement (2.7.11) follows

from a straightforward computation.

Proof of Theorem 2.3.6. We apply Lemma 2.7.8 with Z = YM , W = Y ⊥
M , and F = NH̄Y DG

M
.

The hypotheses of (2.7.10) and (2.7.11) are satis�ed due to Theorem 2.7.5. This yields the

statement of Theorem 2.3.6.

59



2.7.1 Proof of Theorem 2.7.7: a multivariate local Cramér theorem:

The rest of this section is devoted to the proof of Theorem 2.7.7. We prove uniform strong

convexity of ψJ for large J by showing that ψJ converges as J → ∞ in the uniform C2-

topology to a uniformly strongly convex function. Namely, this will be the Legendre trans-

form of the function which, to each β ∈ Y DG
1 , associates the speci�c free energy of a modi�ed

grand canonical ensemble which makes the conditioning Q1x = β a typical event.

Before we enter into the details, we give a sketch of the argument, which closely follows the

argument in [GOVW09]. Using Cramér's trick of exponential shift of measure, we construct

for each β a product measure νJ,β on RJ such that

� the law of each spin is an �exponential shift" of the single-site measure (a perturbed

standard Gaussian),

� the expectation of Q1x under νJ,β is equal to β, i.e. the conditioning Q1x = β is a

�typical" event.

We refer to the product measure νJ,β as the modi�ed grand canonical ensemble for β. The

required shifts of spins can be parameterized by a variable β̂ that is dual to β.

Because the single-site potential ψ is quadratic plus a perturbation that is bounded in

C2(R), it follows that the speci�c free energy ψ̄∗
J(β̂) of νJ,β is convex in β̂ for large J and

its Hessian is uniformly bounded from above and from below. Consequently, the Legendre

transform ψ̄J(β) of ψ̄∗
J(β̂) is uniformly strongly convex. Moreover, the di�erence ψ̄J(β) −

ψJ(β) can be interpreted as the di�erence between the speci�c free energies of νJ,β and its

restriction to the hyperplane determined by Q1x = β (which is the �typical event�). Hence,

we expect that this di�erence goes to zero as J grows large.

To verify that this di�erence indeed converges to zero in the uniform C2-topology, we �rst

relate it through a Cramér-type representation formula with the evaluation at 0 ∈ Y DG
1 of

the density of the distribution of J
1
2 (Q1x − β) under νJ,β. This is done in Lemma 2.7.12.

We then establish a kind of uniform C2 local central limit theorem assuring that this eval-
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uated density is bounded from above and from below uniformly in β and that moreover, it

is bounded in C2 as a function of β. These estimates are stated in Proposition 2.7.14 below

and constitute the core of our proof. Then, combining the statements of Lemma 2.7.12 and

Proposition 2.7.14 allow us to deduce Theorem 2.7.7.

Construction of the modi�ed grand canonical ensembles νJ,β

We begin by introducing a family of �exponential shifts� of the law of a single spin. For each

m ∈ R, let µm be the probability measure on R given by the Lebesgue density

dµm

dz
= exp(−ψ∗(ẑm) + ẑmz − ψ(z)), (2.7.12)

where ψ∗ is the log partition function de�ned in (2.2.17) and ẑm ∈ R is chosen so that µm

has mean m, i.e. ∫
R
zµm(dz) = (ψ∗)′(ẑm) = m.

We will use the fact that the function ψ∗ is uniformly strongly convex and its 2nd and 3rd

derivatives are uniformly bounded.

Lemma 2.7.9. There are 0 < c < C <∞ such that it holds that:

0 < 4c < inf
m∈R

Var(µm) ≤ (ψ∗)′′(ẑ) ≤ sup
m∈R

Var(µm) <
C

2
<∞, (2.7.13)

|(ψ∗)′′′(ẑ)| ≤ sup
m∈R

∣∣∣∣∫ (z −m)3µm(dz)

∣∣∣∣ < C

2
<∞. (2.7.14)

where Var(µm) denotes the variance of µm.

We omit the proof of this result. It is contained in Lemma 41 in [GOVW09].

To construct νj,β, we need to �nd a suitable dual variable β̂ ∈ Y DG
1 and exponentially

shift the law of the J spins according to the J-dimensional vector JQt
1β̂, which is the L2
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orthogonal projection of β̂ onto RJ (cf. De�nition 2.7.2). Let ψ∗
J : RJ → R be the sum of

the log partition function ψ∗ for J sites,

ψ∗
J(x) :=

J∑
j=1

ψ∗(xj),

and let ψ̄∗
J : Y DG

1 → R be the function

ψ̄∗
J(β̂) :=

1

J
ψ∗
J(JQ

t
1β̂) =

1

J

J∑
j=1

ψ∗
(
(JQt

1β̂)j

)
, (2.7.15)

which will be interpreted as the speci�c free energy of νj,β for the right choice of β̂. After

dealing with the approximation error, property (2.7.13) translates into convexity estimates

for the function ψ̄∗
J(β̂).

Lemma 2.7.10. Let c and C be as in Lemma 2.7.9. Then there is J1 ∈ N such that for all

J ≥ J1 and β̂, η̂, γ̂ ∈ Y DG
1 :

2c ≤ ∥Hess ψ̄∗
J(β̂)∥ ≤ C , (2.7.16)

∥D3ψ̄∗
J(β̂) ∥ ≤ C. (2.7.17)

We postpone the proof of this result to Section 2.7.2.

By standard convex analysis, the bounds (2.7.16) and (2.7.17) imply that for J ≥ J1, the

Legendre transform of ψ̄∗
J ,

ψ̄J(β) := sup
β̂∈Y DG

1

(
⟨β, β̂⟩ − ψ̄∗

J(β̂)
)
, (2.7.18)

is uniformly strongly convex and its Hessian and 3rd derivative are uniformly bounded, and

the unique maximizer β̂max(β) of (2.7.18) satis�es

β = ∇ ψ̄∗
J(β̂

max), β̂max = ∇ ψ̄J(β). (2.7.19)

The vector β̂max serves to construct νJ,β. Set

m̂β := JQt
1β̂

max, m̂j,β := (m̂β)j, (2.7.20)
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mβ := ∇ψ∗
J(m̂β), mj,β := (mβ)j, (2.7.21)

and de�ne a product measure on RJ (cf. (2.7.12))

dνJ,β
dx

(x) :=
J∏

j=1

dµmj,β

dxj
(xj). (2.7.22)

Then the expected value of Q1x under νJ,β is equal to β:∫
Q1x dνJ,β

(2.7.22)
= Q1mβ

(2.7.21)
= Q1∇ψ∗

J(JQ
t
1β̂

max)
(2.7.15)
= ∇ψ̄∗

J(β̂
max)

(2.7.19)
= β.

This completes the construction of the modi�ed grand canonical ensemble νJ,β.

Uniform C2 convergence of ψ̄J − ψJ to zero

For a given β, the speci�c free energy of the modi�ed grand canonical ensemble νJ,β is just

ψ̄∗
J(β̂

max) = ⟨β, β̂max⟩ − ψ̄J(β). On the other hand, the speci�c free energy of the canonical

ensemble associated with the restriction of νJ,β to the hyperplane {x |Q1x = β}, where

it is highly concentrated anyway for large J , is given by ⟨β, β̂max⟩ − ψJ(β) (we leave the

calculation to the reader as an exercise). Consequently, ψ̄J(β)−ψJ(β)measures the di�erence

in free energies and hence we expect it to converge to zero in some sense as J → ∞. As we

indicated above, the proof that it converges strong enough for our purposes, i.e. in C2, begins

with a Cramér-type representation formula for the density in 0 ∈ Y DG
1 of the distribution

of J
1
2 (Q1x − β) under νJ,β, which is a centered (L + 1)-dimensional vector of �suitably

weighted"´ sums of independent random variables. (Cf. equation (125) in [GOVW09])

De�nition 2.7.11. Fix once for all an orthonormal basis {fl}l=0,1,··· ,L on Y DG
1 (which are

polynomials of degree ≤ L). From now on we will identify Y DG
1 with RL+1 using this basis.

Lemma 2.7.12. Denote by gJ,β the law of the RL+1-valued random variable J
1
2 (Q1x − β)

where x follows the law νJ,β and let JQ := (detQ1Q
t
1)

1
2 . The density of gJ,β at 0 ∈ RL+1

with respect to Lebesgue measure can be represented as follows:

gJ,β(0) :=
dgJ,β
dLL+1

(0) = (J
L+1
2 JQ)−1 exp [J (ψ̄J(β)− ψJ(β))]. (2.7.23)
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We postpone the proof of Lemma 2.7.12 to Section 2.7.2. Formula (2.7.23) allows us to

transfer the strong convexity of ψ̄J to the function ψJ , once we have the following esti-

mates on the Jacobian (J
L+1
2 JQ)−1 (appearing on the right hand side of (2.7.23)) and the

density gJ,β(0) (appearing on left hand side of (2.7.23)).

Lemma 2.7.13. There is a positive integer J∗ ∈ N such that for J ≥ J∗:

1

C
≤ J

L+1
2 JQ ≤ C. (2.7.24)

This follows from estimate (2.7.32).

Proposition 2.7.14. There exist a constant C < ∞ and a positive integer J2 such that for

all J ≥ J2 and all β ∈ RL+1:

1

C
≤ gJ,β(0) ≤ C, (2.7.25)

∥∇ gJ,β(0)∥ ≤ C, (2.7.26)

∥Hess gJ,β(0)∥ ≤ C. (2.7.27)

This result was proven in [GOVW09] for the case L = 0 (cf. equation (126) in [GOVW09]).

In the general case considered here, establishing the estimates becomes somewhat more

subtle. In particular, a geometric property due to the independence of basis polynomials fl

enters as a new ingredient. The proof also shares some similarities to the proof of the local

Cramér theorem in [Men11]. As the proof as a whole becomes quite long we postpone it

to the end of this chapter (see Section 2.10). We conclude this section with a derivation of

Theorem 2.7.7 from these results.

Proof of Theorem 2.7.7. Rewrite formula (2.7.23) as:

ψ̄J(β)− ψJ(β) =
1

J

[
log (J

L+1
2 JQ) + log gJ,β(0)

]
. (2.7.28)

For J ≥ max{J∗, J2}, the estimates and (2.7.25) and (2.7.24) thus yield

|(ψ̄J − ψJ)(β)| ≤
logC + logC

J
(2.7.29)
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∥∇(ψ̄J − ψJ)(β)∥
(2.7.28)
=

1

J
(gJ,β(0))

−1 ∥∇gJ,β(0)∥
(2.7.25),(2.7.26)

≤ C2

J
(2.7.30)

∥(Hess(ψ̄J − ψJ)(β)∥
(2.7.28)

≤ 1

J
(gJ,β(0))

−1 ∥Hess gJ,β(0)∥

+
1

J
(gJ,β(0))

−2 ∥∇gJ,β(0) ⊗ ∇gJ,β(0) ∥
(2.7.25),(2.7.26),(2.7.27)

≤ C2

J
+
C4

J
. (2.7.31)

This proves convergence of ψJ − ψ̄J to zero in C2(RL+1), indeed with di�erence of order J−1

as J → ∞. Since ψ̄J is uniformly strongly convex and its Hessian is uniformly bounded if

J ≥ J1, this proves Theorem 2.7.7.

2.7.2 Proofs of auxiliary results.

We need two facts of approximation. The �rst fact is that the operator Q1JQ
t
1 is close to

the identity for large J .

Lemma 2.7.15. It holds (with implicit constants depending on L):

∥Q1JQ
t
1 − idY DG

1
∥ ≲

1

J2
. (2.7.32)

Proof of Lemma 2.7.15. Since JQt
1 : Y DG

1 → RJ is an L2-orthogonal projection onto piece-

wise constant functions, for any f ∈ Y DG
1

⟨(id−Q1JQ
t
1)f, f⟩L2 = ⟨f, f⟩L2 − ⟨JQt

1f, JQ
t
1f⟩L2

= |f − JQt
1f |2L2 ≲

1

J2
|f ′|2L2 ≲

1

J2
|f |2L2 ,

where we used a Poincaré inequality on interval of length 1
J
for each interval [ j−1

J
, j
J
], and in

the last step we used the fact that norms on a �nite dimensional space are equivalent (this

is where L comes into the implicit constant).

The second fact we need is that the vectors γj ∈ RL+1, j = 1, 2, · · · , J , de�ned by

(JQt
1y)j = y · γj for all y ∈ Y DG

1 = RL+1,
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form a piecewise constant approximation of the smooth curve

γ : [0, 1] → RL+1 , γ(t) = (f0(t), f1(t), · · · , fL(t)). (2.7.33)

Lemma 2.7.16. ∀J ∈ N (with implicit constants depending on L),

max
1≤j≤J

sup
t∈[ j−1

J
, j
J
]

|γj − γ(t)| ≲ 1

J
and max

1≤j≤J
|γj| ≲ 1. (2.7.34)

Proof. The proof of (2.7.34) is similar to that of (2.7.32). Note that

γjl = (JQt
1fl)j = J

∫ j
J

j−1
J

fl(θ)dθ

is the average of fl over the interval [ j−1
J
, j
J
]. Thus, for each 1 ≤ j ≤ J , and t ∈ [ j−1

J
, j
J
],

|γ(t)− γj|2 =
L∑
l=0

|fl(t)− γjl |
2 ≲

L∑
l=0

1

J2
|f ′

l |2L∞ ≲
1

J2
,

where we used mean value theorem. This implies the �rst bound in (2.7.34), from which the

second bound follows.

Let us now begin proving the auxiliary results in the previous sections.

Proof of Lemma 2.7.3. Because Y DG
M = ⊕M

m=1Y
DG
1 (cf. (2.7.4)), Lemma 2.7.3 follows directly

from Lemma 2.7.15.

Proof of Lemma 2.7.10. For η̂ ∈ RL+1 we have:

⟨η̂,Hess ψ̄∗
J(β̂) η̂⟩ =

1

J

J∑
j=1

(ψ∗)′′
(
(JQt

1β̂)j

) [
(JQt

1η̂)j
]2
.

Using (2.7.13) we obtain:

4c

J
|JQt

1η̂|2 ≤ ⟨η̂,Hess ψ̄∗
J(β̂) η̂⟩ ≤

C

2J
|JQt

1η̂|2.

By the approximation of Lemma 2.7.15,

1

J
|JQt

1η̂|2 = ⟨JQt
1η̂, JQ

t
1η̂⟩L2 = ⟨Q1JQ

t
1η̂, η̂⟩L2

(2.7.32)
=

(
1 +O

(
1

J2

))
|η̂|2.

66



This shows (2.7.16) for large J . Concerning (2.7.17), we �nd for η̂ ∈ RL+1:

|D3ψ̄∗
J(β̂)(η̂, η̂, η̂) | =

∣∣∣∣∣ 1J
J∑

j=1

(ψ∗)′′′
(
(JQt

1β̂)j

) [
(JQt

1η̂)j
]3∣∣∣∣∣

≤ max
j=1,...,J

∣∣η̂ · γj∣∣ 1
J

J∑
j=1

∣∣∣(ψ∗)′′′
(
(JQt

1β̂)j

)∣∣∣ [(JQt
1η̂)j

]2
.

We then appeal to (2.7.14) and the uniform bound (2.7.34) and proceed just as above.

Proof of Lemma 2.7.12. So far it has always been understood that by dx, etc. we mean

the Hausdor� measure of appropriate dimension. We will be a bit more careful during the

next computation and write out the measures in detail where it seems helpful. Let ζ be a

measurable test function de�ned on RL+1. The proof of identity (2.7.23) essentially boils

down to an application of the co-area formula for Q1.∫
RL+1

ζ(u)
dgJ,β
dLL+1

(u)LL+1(du) =

∫
RJ

ζ
(
J

1
2 (Q1x− β)

) dνJ,β
dLJ

(x)LJ(dx)

=

∫
RL+1

(JQ)−1ζ
(
J

1
2 (β̃ − β)

)∫
RJ
1,β̃

dνJ,β
dLJ

(x)HJ−L−1(dx)LL+1(dβ̃)

(2.7.22)
=

∫
RL+1

(JQ)−1ζ
(
J

1
2 (β̃ − β)

)
∫
RJ
1,β̃

exp

(
−

J∑
j=1

ψ∗(m̂j,β) +
J∑

j=1

m̂j,βxj −HJ(x)

)
H(dx)L(dβ̃)

(2.7.15),(2.7.20)
=

∫
RL+1

(JQ)−1 ζ
(
J

1
2 (β̃ − β)

)
∫
RJ
1,β̃

exp
(
−Jψ̄∗

J(β̂
max) + J ⟨β̃, β̂max⟩ −HJ(x)

)
H(dx)L(dβ̃)

(2.7.18),(2.7.6)
=

∫
RL+1

(JQ)−1 ζ
(
J

1
2 (β̃ − β)

)
exp

(
J
(
ψ̄J(β)− ψJ(β̃) + ⟨β̃ − β, β̂max⟩

))
LL+1(dβ̃)

=

∫
RL+1

ζ(u)
(
J

L+1
2 JQ

)−1

exp
(
J
(
ψ̄J(β)− ψJ(J

− 1
2u+ β) + ⟨J− 1

2u, β̂max⟩
))

LL+1(du).

The identity (2.7.23) now follows from approximating the Dirac mass δ0 in RL+1 by contin-

uous test functions ζi.
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Proof of Lemma 2.7.13. We note that J
L+1
2 JQ = (detQ1JQ

t
1)

1
2 . Estimate (2.7.32) implies

that there is J∗ ∈ N such that for J ≥ J∗:

1

C
≤ J

L+1
2 JQ ≤ C.

2.8 A uniform log-Sobolev inequality for conditional mea-

sures

The purpose of this section is to deduce Theorem 2.4.12, which states that the conditional

measures µ(dx|Px = y) satis�es a uniform logarithmic Sobolev inequality (LSI). The loga-

rithmic Sobolev inequality was �rst discovered by Gross [Gro75]. It characterizes the speed

of convergence to equilibrium of the natural associated drift di�usion process. For more

facts about the LSI we refer to the books [Roy99, BGL14] and survey article [Led01]. In

Section 2.8.1, we state some basic principles of the LSI and introduce the two-scale cri-

terion which is the key to our argument for deducing Theorem 2.4.12. In Section 2.8.2,

we explain how those principles are applied to deduce the uniform LSI for the conditional

measure µ(dx|Px = y).

2.8.1 Basic principles for the LSI

Four di�erent principles underlie our proofs of logarithmic Sobolev inequalities in Sec-

tion 2.8.2. Three of these are standard results that have proven to be useful for establishing

LSI in many cases and that have been known for a long time. The fourth principle is a more

specialized criterion that has been successfully applied for deducing LSI for spin systems.

It will guide our main strategy of proof while the other results are needed to verify the

assumptions of the criterion. Let us forget for a moment the precise de�nitions of XN and

H and present the basic principles of the LSI in the setting of Euclidean spaces. Let X be
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an Euclidean space or a�ne subspaces of some Euclidean space. With ∇ and | · | we denote

the gradient and norm that is derived from the Euclidean structure of X. We write P(X)

for the space of Borel probability measures on X.

De�nition 2.8.1 (LSI). Let Φ(z) := z log z. We say that ν ∈ P(X) satis�es a logarithmic

Sobolev inequality (LSI) with constant ρ > 0 if for all smooth functions h : X → R+ it holds

that

Ent(hν|ν) :=
∫

Φ(h) ν(dx) − Φ

(∫
h ν(dx)

)
≤ 1

ρ

∫
1

2h
|∇h|2 ν(dx).

In this case, we also use the notation LSI(ν) ≥ ρ.

The following tensorization principle has been known ever since the notion of LSI came up

(see [Gro75]). It is the basic reason for why LSI is well-suited for high-dimensional systems.

Lemma 2.8.2 (Tensorization principle). Given νn ∈ P(XN) for n = 1, ..., N . Then

LSI(νn) ≥ ρn for all n = 1, ..., N implies:

LSI

(
N⊗

n=1

νn

)
≥ min

n
ρn.

We next recall two fundamental criteria for proving logarithmic Sobolev inequalities. The

�rst one is a simple perturbation result due to Holley and Stroock [HS87].

Lemma 2.8.3 (Holley-Stroock). We assume that ν ∈ P(X) satis�es LSI(ν) ≥ ρ. For a

bounded function δψ : X → R, de�ne a measure ν̃ ∈ P(X) that is absolutely continuous

with respect to ν via

dν̃

dν
(x) =

1

Z
exp[−δψ(x)].

Then LSI(ν̃) ≥ ρ exp [−2 osc(δψ)]. Here osc(δψ) = supX δψ − infX δψ stands for the total

oscillation of the perturbation.

The second criterion is due to Bakry and Émery [BÉ85]. It says that a uniformly strongly

convex Hamiltonian implies LSI.
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Lemma 2.8.4 (Bakry-Émery). Let ν ∈ P(X) be absolutely continuous with respect to the

Hausdor� measure H on X. If the Hamiltonian H of the measure ν, given by

H(x) := − log
dν

dH
(x),

is twice continuously di�erentiable and uniformly strongly convex with lower bound λ, i.e.

∀x ∈ X ∀ v ∈ TxX ⟨v,HessH(x) v⟩TxX ≥ λ |v|2TxX ,

then LSI(ν) ≥ λ.

Proofs of the facts mentioned so far can be found for example in [GZ03] or in the nice

introduction to both spectral gap and logarithmic Sobolev inequalities [Led01]. As pointed

out above, we will in addition need the two-scale criterion that was presented in [OR07] and

which is also contained, in a slightly di�erent formulation, in [GOVW09]. We �rst de�ne a

decomposition of measures analogous to De�nition 2.3.4 in the setting of a product space.

De�nition 2.8.5. Let ν ∈ P(X1×X2) be a measure with smooth positive probability density

function with respect to Hausdor� measure. We decompose ν into a family of conditional

measures {ν(dx1|x2)}x2∈X2 ⊂ P(X1) and the corresponding marginal measure ν̄ ∈ P(X2).

This decomposition is such that for all measurable h : X1 ×X2 → R:∫
X1×X2

h dν =

∫
X2

∫
X1

h(x1, x2) ν(dx1|x2) ν̄(dx2).

The two-scale criterion reads as follows.

Lemma 2.8.6 (Two-scale criterion for LSI). Let ν ∈ P(X1 × X2) be a measure with twice

continuously di�erentiable Hamiltonian H. Assume that there exist constants ρ1, ρ2 > 0 such

that

LSI(ν(dx1|x2)) ≥ ρ1 for all x2 ∈ X2,

LSI(ν̄) ≥ ρ2.
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Moreover, assume that

1

ρ1

1

ρ2
sup

X1×X2

|∇X1∇X2H(x)|2 = κ <∞. (2.8.1)

Here

|∇X1∇X2H(x)| = sup {⟨HessH(x)u, v⟩|u ∈ TxX1, v ∈ TxX2, |u| = |v| = 1},

which is �nite if HessH is bounded. Then

LSI(ν) ≥ 1

2

(
ρ1 + (1 + κ)ρ2 −

√
(ρ1 + (1 + κ)ρ2)2 − 4ρ1ρ2

)
.

Lemma 2.8.6 says that LSI for conditional measures and corresponding marginal may -

under the coupling assumption (2.8.1) - be combined to yield a LSI for the full measure. A

proof of the two-scale criterion can be found in [OR07] where it is stated as Theorem 2.

2.8.2 Uniform LSI for conditional measures

In this section we explain how the basic principles of Section 2.8.1 are used to deduce

Theorem 2.4.12. The proof adapts the strategy in [GOVW09], which covered the case for

L = 0, when YM is the space of piecewise constant functions. However, for L ≥ 1, due to

the non-locality of the spline functions in YM , we need to modify the strategy in [GOVW09]

by introducing an intermediate step. Namely, we �rst deduce a uniform LSI on the level of

Y DG
M , the space of piecewise polynomials (which have the important property of being local),

and then apply two-scale criterion to get back a uniform LSI on the level of YM .

Theorem 2.8.7 (Uniform LSI for µ(dx|QMx = y)). Let Y DG
M be the space of piecewise poly-

nomials (see (2.7.1) or De�nition 2.7.1). Let QM : L2(T) → Y DG
M denote the orthogonal pro-

jection onto Y DG
M in L2(T). Then the conditional measures µ(dx|QMx = y) satisfy LSI(ϱQ)

with a constant ϱQ > 0 uniform in N,M and y ∈ Y DG
M .

Remark 2.8.8. Both in Theorem 2.4.12 and in Theorem 2.8.7, the case L = 0 corresponds

to the result in [GOVW09]. In Theorem 2.8.7, the space of observables is of course of

dimension (L+ 1)M , not M .
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Proof of Theorem 2.8.7. Because the coarse-graining operator QM is local and the Hamilto-

nian H has no interaction between di�erent sites, the conditional measure µ(dx|QMx = y)

factors as

µN(dx|QMx = α) =
M⊗

m=1

µK(dx(m)|Q1x
(m) = α(m)),

where for clarity we denote µN instead of µ the Gibbs measure on RN . (Cf. Section 2.7.1

for the notation x(m), α(m)). By the tensorization principle (cf. Lemma 2.8.2) it su�ces to

show that the conditional measure

µK
α (dx) := µK(dx|Q1x = α)

satisfy a uniform LSI for K large enough. The strategy now is to apply the two-scale cri-

terion for LSI (cf. Lemma 2.8.6), which requires us to decompose the state space as an

orthogonal sum of two spaces, one describing the mesoscopic pro�le and the other describing

the �uctuations around the pro�le.

From now on we assume that K is of the form K = RJ , where J ∈ N is large but �xed

and R ∈ N is arbitrary. The key observation here is that Y DG
1 is a linear subspace of Y DG

R .

This gives an orthogonal decomposition of the state space Q−1
1 (α) as

Q−1
1 (α) ∋ x = x∥ ⊕ x⊥ ∈ V ⊕Wα,

where

V := kerQR ∩ RK , Wα := imKQt
R ∩Q−1

1 (α).

Now, following De�nition 2.8.5 we decompose µK
α with respect to the factorization (2.8.7) into

the family of conditional measures
{
µK
α (dx∥|x⊥)

}
x⊥

⊂ P(V ) and the marginal µ̄K
α (dx⊥) ∈

P(Wα). In order to apply the two-scale criterion, it remains to show that there are ρ1, ρ2 > 0,

independent of R (and hence K) and α, such that

∀x⊥ ∈ Wα : LSI(µK
α (dx∥|x⊥)) ≥ ρ1, (2.8.2)
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and

LSI(µ̄K
α (dx⊥)) ≥ ρ2. (2.8.3)

Additionally, we have to show that

1

ρ1

1

ρ2
sup

Q−1
1 (α)

|∇V∇WαHK |2 ≤ κ < ∞, (2.8.4)

for some constant κ that is independent of K and α.

Argument for (2.8.2): Let β = QRx⊥, then µK
α (dx∥|x⊥) factors as

µK
α (dx∥|x⊥) = µK(dx|QRx = β) =

R⊗
r=1

µJ(dx(r)|Q1x
(r) = β(r)).

The Hamiltonian of the conditional measure µJ(dx(r)|Q1x
(r) = β(r)) is just a restriction of

the Hamiltonian HJ given in (2.2.1). From the explicit form of HJ , we get by a combination

of Holley-Stroock (cf. Lemma 2.8.3) and Bakry-Émery (cf. Lemma 2.8.4) that

LSI
(
µJ(dx(r)|Q1x

(r) = β(r))
)
≥ exp (−2J osc(δψ)) =: ρ1 > 0.

Then tensorization principle yields (2.8.2).

Argument for (2.8.3): The strategy is to show that the Hamiltonian of the marginal

measure µ̄K
α (dx⊥) is uniformly strongly convex. The desired statement (2.8.3) follows then

from the Bakry-Émery criterion. We will need the following approximation result, which we

will verify at the end of this argument.

Lemma 2.8.9. For all u ∈ imNQt
M ,

|QMu|2L2 =

(
1 +O

(
1

K2

))
|u|2L2 . (2.8.5)

We start with observing the the Hamiltonian ĤWα of the measure µ̄K
α (dx⊥) is given by

ĤWα(x⊥) := − log
dµ̄K

α

dx⊥
(x⊥) = − log

1

Z

∫
V

exp(−HK(x∥ + x⊥))dx∥.
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Here as usual, dx∥ is the Hausdor� measure of appropriate dimension on V . Using de�ni-

tion (2.7.3) of H̄Y DG
R

, the last identity yields

ĤWα(x⊥) = KH̄Y DG
R

(QRx⊥) + logZ, (2.8.6)

where Z is a constant that accounts for di�erent normalization constants. From Theo-

rem 2.7.5, we know that H̄Y DG
R

is uniformly strongly convex, provided J is large enough. Now,

using (2.8.6) we will transfer the convexity from H̄Y DG
R

to ĤWα . Applying Theorem 2.7.5, we

get by the chain rule that for J ≥ J∗ and arbitrary u ∈ Tx⊥Wα ⊂ imKQt
R,

⟨u,Hess ĤWα(x⊥)u⟩Tx⊥Wα = K⟨QRu,Hess H̄Y DG
R

(QRx⊥)QRu⟩L2

≥ 2Kλ|QRu|2L2

(2.8.5)
= 2Kλ

(
1 +O

(
1

J2

))
|u|2L2

= 2λ

(
1 +O

(
1

J2

))
|u|2Tx⊥Wα

,

where we used estimate (2.8.5) with K = RJ in place of N =MK. This yields the uniform

strong convexity of ĤWα . Thus, the Bakry-Émery criterion (cf. Lemma 2.8.4) implies (2.8.3)

with constant ρ2 := λ.

Proof of Lemma 2.8.9. By assumption u = NQt
Mβ for some β ∈ Y DG

M , so

NQt
M(QMNQ

t
M)−1QMu = NQt

Mβ = u.

Using this and (2.7.2), we get

⟨QMu,QMu⟩L2

= ⟨(QMNQ
t
M)−1QMu,QMu⟩L2 + ⟨(idY DG

M
−(QMNQ

t
M)−1)QMu,QMu⟩L2

≥ ⟨NQt
M(QMNQ

t
M)−1QMu, u⟩L2 − ∥ idY DG

M
−(QMNQ

t
M)−1∥|QMu|2L2

≥ ⟨u, u⟩L2 −O

(
1

K2

)
|u|2L2 =

(
1 +O

(
1

K2

))
|u|2L2 .

The reverse inequality is obvious.
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Argument for (2.8.4): This follows from the uniform C2 bound of HK .

Overall, we may hence apply Lemma 2.8.6 which yields that for J ≥ J∗:

LSI(µK
α ) ≥

1

2

(
ρ1 + (1 + κ)λ −

√
(ρ1 + (1 + κ)λ)2 − 4ρ1λ

)
,

which is bounded from below uniformly in K.

With Theorem 2.8.7 at hand, the proof of Theorem 2.4.12 consists of another application

of the two-scale criterion (see Lemma 2.8.6), which is very similar to the one in proof of

Theorem 2.8.7: there we introduced an intermediate level by prescribing a global polynomial

as the constraint, here we will introduce an intermediate level by prescribing a spline on the

same mesh as the constraint.

Proof of Theorem 2.4.12. The key observation here is that YM is a linear subspace of Y DG
M ,

which gives the orthogonal decomposition of the state space P−1(y) ⊂ XN as

P−1(y) ∋ x = x∥ ⊕ x⊥ ∈ V ⊕Wy, (2.8.7)

where

V := kerQM ∩XN , Wy := imNQt
M ∩ P−1(y).

Now, following De�nition 2.8.5 we decompose µN(dx|Px = y) with respect to the factor-

ization (2.8.7) into the family of conditional measures
{
µN(dx∥|x⊥)

}
x⊥

⊂ P(V ) and the

marginal µ̄N(dx⊥|Px⊥ = y) ∈ P(Wy). In order to apply the two-scale criterion, it remains

to show that there are ρDG, ρ̄ > 0, independent of M (and hence N) and y, such that

∀x⊥ ∈ Wy : LSI(µN(dx∥|x⊥)) ≥ ρDG, (2.8.8)

and

LSI(µ̄N(dx⊥|Px⊥ = y)) ≥ ρ̄. (2.8.9)
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Additionally, we have to show that

1

ρDG

1

ρ̄
sup

P−1(y)

|∇V∇WyHN |2 ≤ κ < ∞, (2.8.10)

for some constant κ that is independent of N and y.

Argument for (2.8.8): This follows from Theorem 2.8.7 and the representation

µN(dx∥|x⊥) = µN(dx|QMx = QMx⊥).

Argument for (2.8.9): The proof follows the same strategy of the proof of (2.8.3) in the

proof of Theorem 2.8.7: compute the Hamiltonian ĤWy of the measure µ̄N(dx⊥|Px⊥ = y),

relate it to H̄Y DG
M

, transfer the uniform strong convexity of the latter to the former, and

apply Bakry-Émery criterion to get the desired statement with ρ̄ := λ. We leave the details

as an exercise.

Argument for (2.8.10): This follows from the uniform C2 bound of HN .

Overall, we may hence apply Lemma 2.8.6 which yields that for K ≥ K∗:

LSI(µN(dx|Px = y)) ≥ ρ,

where the constant

ρ :=
1

2

(
ρDG + (1 + κ)λ −

√
(ρDG + (1 + κ)λ)2 − 4ρDGλ

)
.

is uniformly bounded from below in N .
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2.9 Closeness of the gradients of the coarse-grained Hamil-

tonian and the macroscopic free energy

Our goal is to show that the gradient of the coarse-grained Hamiltonian H̄YM
: YM → R

in (2.3.3) converges to the gradient of the macroscopic free energy H : L2(T) → R in

(2.2.14). As in the proofs of Theorems 2.3.6 and 2.4.12, the argument will go through the

intermediate space Y DG
M in (2.7.1). The argument will involve approximations by several

mesoscopic free energies on the spaces YM and Y DG
M introduced in this section. We begin

with the observation that the macroscopic Hamiltonian H has the dual formulation:

H(y) = sup
ŷ∈L2(T)

(
⟨y, ŷ⟩L2 − φ∗(ŷ)

)
,

where φ∗ : L2(T) → R is the function given by

φ∗(ŷ) :=

∫ 1

0

ψ∗(ŷ(θ))dθ (2.9.1)

and the supremum is attained by ŷ = φ′(y).

This motivates the following de�nition of the mesoscopic free energy HY DG
M

on the space

Y DG
M .

De�nition 2.9.1. Let HY DG
M

: Y DG
M → R be the function given by

HY DG
M

(z) := sup
ẑ∈Y DG

M

(⟨z, ẑ⟩L2 − φ∗
N(ẑ)) ,

where the function φ∗
N : Y DG

M → R is a discretized version of φ∗ in (2.9.1), given by

φ∗
N(ẑ) :=

1

N

N∑
i=1

ψ∗

(
N

∫ i
N

i−1
N

ẑ(s)ds

)
(2.7.15)
=

1

M

M∑
m=1

ψ̄∗
K(ẑ

(m)), (2.9.2)

where ẑ(m) ∈ Y DG
1 ,m = 1, · · · ,M, are obtained by restricting ẑ ∈ Y DG

M to subintervals (cf.

(2.7.4)).

The main ingredient of the proof is Lemma 2.9.2 below which states that H̄Y DG
M

is close

to HY DG
M

in C2 for large K, which has been essentially established in Section 2.7. The rest

77



of the proof consists of arguing that H̄YM
is close to H̄Y DG

M
and H is close to HY DG

M
. The fact

that H̄ is close to H̄Y DG
M

follows from formula (2.7.9),

H̄(y) = − 1

N
log

∫
Y ⊥
M

exp(−NH̄Y DG
M

(y + z))N
LM+1

2 LLM+1(dz),

and the fact that H̄Y DG
M

is uniformly strongly convex (see Lemma 2.9.3), and so the integral

on the right hand side concentrates around the minimum of H̄Y DG
M

for large K. The fact

that H is close to HY DG
M

follows from the observation that as N → ∞ the function φ∗
N given

by (2.9.2) converges to the function φ∗ and that as M → ∞ the spline space YM ⊂ L2(T)

approximates the full space L2(T). In the next section we collect the technical details for

this argument.

2.9.1 Auxiliary results

The �rst auxiliary result is that H̄Y DG
M

converges to HY DG
M

in C2 as K → ∞:

Lemma 2.9.2. There exists K∗ such that for K ≥ K∗ and for all M and z ∈ Y DG
M ,∣∣∣H̄Y DG

M
(z)−HY DG

M
(z)
∣∣∣ ≲ 1

K
, (2.9.3)∥∥∥∇H̄Y DG

M
(z)−∇HY DG

M
(z)
∥∥∥ ≲

1

K
, (2.9.4)

∥Hess H̄Y DG
M

(z)− HessHY DG
M

(z)∥ ≲
1

K
. (2.9.5)

Proof of Lemma 2.9.2. By Lemma 2.7.6 and De�nition 2.9.1,

H̄Y DG
M

(z) =
1

M

M∑
m=1

ψK(z
(m)), HY DG

M
(z) =

1

M

M∑
m=1

ψ̄K(z
(m)).

Taking into account the di�erent Euclidean structures on Y DG
M and Y DG

1 as in the proof of

Theorem 2.7.5, we see that the estimate (2.9.3) follows from (2.7.29), the estimate (2.9.4)

follows from (2.7.30) and the estimate (2.9.5) follows from (2.7.31).

The next auxiliary result is that the coarse-grained Hamiltonians H̄YM
and H̄Y DG

M
and the

free energies HY DG
M

and H are uniformly strongly convex. We summarize those results in the

following lemma.
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Lemma 2.9.3. There are constants 0 < λ < Λ < ∞ and K0 such that if K ≥ K0 then for

all z ∈ Y DG
M ,

λ idY DG
M

≤ Hess H̄Y DG
M

(z) ≤ Λ idY DG
M
, (2.9.6)

λ idY DG
M

≤ HessHY DG
M

(z) ≤ Λ idY DG
M
, (2.9.7)

λ idY DG
M

≤ Hessφ∗
N(z) ≤ Λ idY DG

M
. (2.9.8)

Under the same conditions, for all z ∈ YM ,

λ idYM
≤ Hess H̄YM

(z) ≤ Λ idYM
. (2.9.9)

Finally, for all z ∈ L2(T),

λ idL2 ≤ Hessφ∗(z) ≤ Λ idL2 , (2.9.10)

λ idL2 ≤ HessH(z) ≤ Λ idL2 . (2.9.11)

All inequalities are in the sense of quadratic forms.

Proof of Lemma 2.9.3. The estimate (2.9.6) is given by Theorem 2.7.5. The estimate (2.9.8)

follows from (2.7.16), from which the estimate (2.9.7) follows by basic properties of Legen-

dre transform. The estimate (2.9.9) is given by Theorem 2.3.6. The estimates (2.9.10)

and (2.9.11) follow from the uniform strong convexity of ψ∗, φ∗ and uniform bound of

(ψ∗)′′, (φ∗)′′ (cf. (2.7.13)).

The next auxiliary statement shows a nice relation between the Hamiltonians H̄YM
and H̄Y DG

M
.

Recall that Y ⊥
M :=

{
z ∈ Y DG

M : Pz = 0
}
.

Lemma 2.9.4. For each y ∈ YM , there is a unique z̄∗ ∈ Y ⊥
M such that

H̄Y DG
M

(y + z̄∗) = inf
z∈Y ⊥

M

H̄Y DG
M

(y + z). (2.9.12)

It follows that ∇H̄Y DG
M

(y + z̄∗) ∈ YM . Moreover,

|∇H̄(y)− P∇H̄Y DG
M

(y + z̄∗)|L2 ≲
1

K
1
2

. (2.9.13)
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Proof of Lemma 2.9.4. The statement (2.9.12) follows from the strong convexity (2.9.6)

of H̄Y DG
M

, applied to the a�ne subspace y + Y ⊥
M , and the second statement then follows

directly from this variational characterization of z̄∗. Let us now turn to the veri�cation

of (2.9.13). Taking gradient in (2.7.9) yields that

∇H̄(y) =

∫
Y ⊥
M

P∇H̄Y DG
M

(y + z)ν(dz|y),

where {ν(·|y)} is the family of probability measures on Y ⊥
M given by

ν(dz|y) = 1

Zy

exp
(
−NH̄Y DG

M
(y + z)

)
LLM+1(dz)

for some normalization constant Zy. Now, the convexity bound (2.9.6) implies that

∣∣∣P∇H̄Y DG
M

(y + z)− P∇H̄Y DG
M

(y + z̄∗)
∣∣∣2 ≤ Λ2 |z − z̄∗|2

≤ Λ2

λ
⟨z − z̄∗,∇H̄Y DG

M
(y + z)−∇HY DG

M
(y + z̄∗)⟩L2

=
Λ2

λ
⟨z − z̄∗,∇zH̄Y DG

M
(y + z)⟩L2 ,

where we used ∇HY DG
M

(y + z̄∗) ∈ YM in the last step. Thus, by Cauchy-Schwarz and inte-

gration by parts,

|∇H̄(y)− P∇H̄Y DG
M

(y + z̄∗)|2 ≤
∫
Y ⊥
M

∣∣∣P∇yH̄Y DG
M

(y + z)− P∇yH̄Y DG
M

(y + z̄∗)
∣∣∣2 ν(dz|y)

≲
∫
Y ⊥
M

⟨z − z̄∗,∇zH̄Y DG
M

(y + z)⟩L2 ν(dz|y)

= − 1

N

1

Zy

∫
Y ⊥
M

⟨z − z̄∗,∇z exp(−NH̄Y DG
M

(y + z))⟩L2LLM+1(dz)

=
1

N

∫
Y ⊥
M

∇ · (z − z̄∗) ν(dz|y)

=
dimY ⊥

M

N
=
LM + 1

N
,

which implies the desired estimate (2.9.13).

Let us introduce a mesoscopic free energy HYM
on the spline space YM .
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De�nition 2.9.5. Let HYM
: YM → R be the function given by

HYM
(y) = sup

ŷ∈YM

(⟨y, ŷ⟩L2 − φ∗
N(ŷ)) ,

where φ∗
N(ŷ) is given by (2.9.2).

The next auxiliary statement shows a nice relation between the mesoscopic free ener-

gies HYM
and HY DG

M
.

Lemma 2.9.6. For each y ∈ YM , there is a unique z∗ ∈ Y ⊥
M such that

HY DG
M

(y + z∗) = inf
z∈Y ⊥

M

HY DG
M

(y + z). (2.9.14)

It follows that ∇HY DG
M

(y + z∗) ∈ YM . Moreover,

HYM
(y) = HY DG

M
(y + z∗) and ∇HYM

(y) = ∇HY DG
M

(y + z∗). (2.9.15)

Proof of Lemma 2.9.6. The unique existence of z∗ follows directly from the strong convexity

ofHY DG
M

, and the second statement then follows directly from this variational characterization

of z∗. Moreover, HY DG
M

and HYM
are de�ned as Legendre transforms of the same free energy

φ∗
N in di�erent mesoscopic spaces:

HY DG
M

(y + z∗) = sup
ẑ∈Y DG

M

⟨y + z∗, ẑ⟩L2 − φ∗
N(ẑ)

≥ sup
ẑ∈YM

⟨y, ẑ⟩L2 − φ∗
N(ẑ) = HYM

(y).

By basic properties of Legendre transform, the maximization problem in the �rst line has

the unique solution ẑ = ∇HY DG
M

(y + z∗) and the maximization problem in the second line

has the unique solution ẑ = ∇HYM
(y). But since ∇HY DG

M
(y + z∗) ∈ YM , it must also solve

the maximization problem in the second line. This veri�es (2.9.15).

As a consequence of the results above, we deduce the following nice relation between the

mesoscopic free energies H̄Y DG
M

and HY DG
M

.
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Corollary 2.9.7. Let z̄∗ be as in (2.9.12) and z̄ as in (2.9.14), then

|z̄∗ − z∗|L2 ≲
1

K
, (2.9.16)

and

|∇H̄Y DG
M

(y + z̄∗)−∇HY DG
M

(y + z∗)|L2 ≲
1

K
. (2.9.17)

Proof. Argument for (2.9.16): Using the convexity bound (2.9.6) of H̄Y DG
M

, the fact that

∇H̄Y DG
M

(y + z̄∗) ∈ YM and ∇HY DG
M

(y + z∗) ∈ YM (cf. Lemmas 2.9.4 and 2.9.6), and the

closeness between H̄Y DG
M

and HY DG
M

in C2 (cf. Lemma 2.9.2) , we obtain

|z̄∗ − z∗|2L2 ≤
1

λ
⟨∇H̄Y DG

M
(y + z̄∗)−∇H̄Y DG

M
(y + z∗), z̄∗ − z∗⟩L2

=
1

λ
⟨∇HY DG

M
(y + z∗)−∇H̄Y DG

M
(y + z∗), z̄∗ − z∗⟩L2

(2.9.4)

≲
1

λ

1

K
|z̄∗ − z∗|L2 ,

which yields the desired estimate.

Argument for (2.9.17): This follows from

|∇H̄Y DG
M

(y + z̄∗)−∇H̄Y DG
M

(y + z∗)|L2

(2.9.6)

≤ Λ|z̄∗ − z∗|L2

(2.9.16)

≲
1

K
,

|∇H̄Y DG
M

(y + z∗)−∇HY DG
M

(y + z∗)|L2

(2.9.4)

≲
1

K
.

Let us now introduce another mesoscopic free energy ĤYM
on the spline space YM .

De�nition 2.9.8. Let ĤYM
: YM → R be the function given by

ĤYM
(y) = sup

ŷ∈YM

(⟨y, ŷ⟩L2 − φ∗(ŷ)) ,

where φ∗(ŷ) is de�ned in (2.9.1).

The next auxiliary result shows that ∇HYM
and ∇ĤYM

are close.
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Lemma 2.9.9. It holds that for any y ∈ YM

|∇HYM
(y)−∇ĤYM

(y)|L2 ≲
1

K
|y|L2 . (2.9.18)

Proof. By basic properties of the Legendre transform, we have the duality relations

∇HYM
(y) = ŷN ∈ YM and P (∇φ∗

N) (ŷN) = y, (2.9.19)

∇ĤYM
(y) = ŷ ∈ YM and P (∇φ∗) (ŷ) = y,

In particular, ŷN − ŷ ∈ YM and ∇φ∗
N(ŷN) − ∇φ∗(ŷ) ⊥ YM . Together with the convexity

bound (2.9.10) of φ∗, this gives

λ|ŷN − ŷ|2L2 ≤ ⟨∇φ∗(ŷN)−∇φ∗(ŷ), ŷN − ŷ⟩L2

= ⟨∇φ∗(ŷN)−∇φ∗
N(ŷN), ŷN − ŷ⟩L2

≤ |∇φ∗(ŷN)−∇φ∗
N(ŷN)|L2|ŷN − ŷ|L2 . (2.9.20)

Using the de�nitions (2.9.1) and (2.9.2) of φ∗ and φ∗
N , we �nd

|∇φ∗(ŷN)−∇φ∗
N(ŷN)|2L2 (2.9.21)

=
N∑
i=1

∫ i
N

i−1
N

∣∣∣∣∣(ψ∗)′(ŷN(θ))− (ψ∗)′

(
N

∫ i
N

i−1
N

ŷN(s)ds

)∣∣∣∣∣
2

dθ (2.9.22)

(2.7.13)

≲
N∑
i=1

∫ i
N

i−1
N

∣∣∣∣∣ŷN(θ)−N

∫ i
N

i−1
N

ŷN(s)ds

∣∣∣∣∣
2

dθ (2.9.23)

≲
1

N2

N∑
i=1

∫ i
N

i−1
N

|ŷ′N(θ)|
2
dθ (2.9.24)

=
1

N2
|ŷN |2H1

(2.6.1)

≲
M2

N2
|ŷN |2L2 , (2.9.25)

where we used a Poincaré inequality on an interval of length 1
N
and then an inverse Sobolev

inequality (2.6.1) on YM from Section 2.6. By the convexity bound (2.9.8) of φ∗
N and the

fact that ∇φ∗
N(0) = (ψ∗)′(0) = 0 (see the discussion preceding Assumption 1),

λ |ŷN |2L2 ≤ ⟨∇φ∗
N(ŷN)−∇φ∗

N(0), ŷN⟩L2

= ⟨P∇φ∗
N(ŷN), ŷN⟩L2
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(2.9.19)
= ⟨y, ŷN⟩L2 ≤ |y|L2|ŷN |L2 ,

and hence |ŷN |L2 ≲ |y|L2 ≤ |x|L2 . Combining this with (2.9.20) yields the desired estimate.

The last auxiliary result shows that ∇ĤYM
and ∇H are close.

Lemma 2.9.10. It holds that for any x ∈ L2
0(T)

|∇ĤYM
(Px)−∇H(x)|L2 ≲

1

M
|x|H1 . (2.9.26)

Proof of Lemma 2.9.10. By basic properties of the Legendre transform, we have the duality

relations

∇ĤYM
(Px) = ŷ ∈ YM and P (∇φ∗) (ŷ) = Px,

∇H(x) = x̂ ∈ L2 and (∇φ∗) (x̂) = x.

In particular, ŷ − Px̂ ∈ YM and ∇φ∗(ŷ) − ∇φ∗(x̂) ⊥ YM . Together with the convexity

bound (2.9.10), this gives

λ|ŷ − x̂|2L2 ≤ ⟨∇φ∗(ŷ)−∇φ∗(x̂), ŷ − x̂⟩L2

= ⟨∇φ∗(ŷ)−∇φ∗(x̂), P x̂− x̂⟩L2

≤ Λ|ŷ − x̂|L2|x̂− Px̂|L2 . (2.9.27)

Now, by (2.6.3) from Section 2.6 and the uniform bound on φ′′,

|x̂− Px̂|L2 ≲
1

M
|x̂|H1 =

1

M
|∇H(x)|H1

≲
1

M
|∂θx|L2 =

1

M
|x|H1 ,

since |∇H(x)|H1 = |φ′(x)|H1 = |∂θφ′(x)|L2 = |φ′′(x)∂θx|L2 . Combined with (2.9.27), this

gives the desired estimate.
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2.9.2 Proof of Lemma 2.5.2

Using the auxiliary results that were provided in Section 2.9.1, Theorem 2.5.2 is straightfor-

ward to prove.

Proof of Theorem 2.5.2. For any ζ ∈ L2
0(T) and y = Pζ,

|∇H̄(Pζ)−∇H(ζ)|L2 ≤ |∇H̄(y)− P∇H̄Y DG
M

(y + z̄∗)|L2

+ |P∇H̄Y DG
M

(y + z̄∗)− P∇HY DG
M

(y + z∗)|L2

+ |P∇HY DG
M

(y + z∗)−∇HYM
(y)|L2

+ |∇HYM
(y)−∇ĤYM

(y)|L2

+ |∇ĤYM
(y)−∇H(ζ)|L2 .

The �rst term on the right hand side is estimated by (2.9.13). The second term is estimated

by (2.9.17). The third term vanishes by (2.9.15). The fourth term is estimated by (2.9.18).

The �fth term is estimated by (2.9.26). Summing up yields the desired estimate (2.5.3).

2.10 Proof of Proposition 2.7.14: a multivariate local

CLT

We now begin with the rather long and technical proof of Proposition 2.7.14. We recommend

the interested reader to �rst read the proof of Proposition 31 in [GOVW09]. As in the usual

proof of the (local) central limit theorem, we use independence and the Fourier transform to

obtain an explicit formula for gJ,β(0). This is the starting point of our further analysis.

Lemma 2.10.1. Let

h(m, z) := e−imz

∫
R
eizx µm(dx) (2.10.1)

be the characteristic function of the centered version of the measure µm given by (2.7.12).
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Then gJ,β(0) can be represented as

gJ,β(0) =

(
1

2π

)L+1 ∫
RL+1

J∏
j=1

h(mj,β , J
− 1

2 ξ · γj) dξ. (2.10.2)

Proof of Lemma 2.10.1. Applying Fourier transform,

(2π)L+1gJ,β(0) =

∫
RL+1

∫
RL+1

exp (i ξ · u) gJ,β(u) du dξ

=

∫
RL+1

∫
RJ

exp
(
i ξ · J

1
2 (Q1x− β)

)
νJ,β(dx) dξ

=

∫
RL+1

∫
RJ

exp

(
i ξ · J

1
2 (Q1x−

∫
Q1x̃νJ,β(dx̃))

)
νJ,β(dx) dξ

(2.7.22)
=

∫
RL+1

J∏
j=1

∫
R
exp

(
i J− 1

2 (JQt
1ξ)j (xj −mj,β)

)
µmj,β

(dxj) dξ

(2.10.1)
=

∫
RL+1

J∏
j=1

h(mj,β , J
− 1

2 ξ · γj) dξ,

as desired.

To continue from formula (2.10.2) we need two ingredients. The �rst ingredient is a

collection of elementary properties of the function h.

Lemma 2.10.2. We have the following bounds and decay properties for the function h and

its derivatives:

|h(m, z)| ≤ 1. (2.10.3)

Given ε > 0, there is Cε <∞ (uniform in m), such that for |z| ≥ ε:

|h(m, z)| ≤ 1

1 + |z|C−1
ε

. (2.10.4)

For all z ∈ R, m ∈ R:∣∣∣∣ ∂h∂m(m, z)

∣∣∣∣ ≤ C(1 + |z|),
∣∣∣∣ ∂2h∂m2

(m, z)

∣∣∣∣ ≤ C(1 + |z|2). (2.10.5)

There is δ0 > 0 such that for z ∈ [−δ0, δ0], m ∈ R, we can express h as

h(m, z) = exp(−z2 h2(m, z)). (2.10.6)
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Here, h2 is a (complex-valued) function satisfying

h2(m, 0) =
Var(µm)

2
, 0 < c ≤ Re h2(m, z) ≤ C ∀z ∈ [−δ0, δ0], (2.10.7)∣∣∣∣∂h2∂z

(m, z)

∣∣∣∣ ≤ C,

∣∣∣∣∂h2∂m
(m, z)

∣∣∣∣ ≤ C,

∣∣∣∣∂2h2∂m2
(m, z)

∣∣∣∣ ≤ C. (2.10.8)

The estimates of Lemma (2.10.2) should not be surprising as h(m, ·) is just the Fourier

transform of µm which belongs to the exponential family of a perturbed standard Gaussian

measure. For the proofs, we refer the reader to [GOVW09].

The second ingredient for the proof of Proposition 2.7.14 is a lower bound on the in-

ner products ξ · γj which enter into the second argument of h. This is new compared

to [GOVW09].

Lemma 2.10.3. Fix L+ 1 disjoint closed subintervals of [0, 1] of length 1/(L+ 2), denoted

Ik, 1 ≤ k ≤ L + 1. There exists a constant cγ > 0 and an integer Jγ such that for J ≥ Jγ,

each subinterval Ik contains at least J/(L+ 2) spins and, for every ξ ∈ RL+1, there exists a

subinterval Ik(ξ) on which

|ξ · γj| ≥ cγ|ξ| for every spin
j

J
∈ Ik(ξ). (2.10.9)

The proof is postponed to the end of this section. The strategy for the rest of the proof is

to split the integral on the right hand side of (2.10.2) into an inner and an outer part. We

will show that for su�ciently small δ and for su�ciently large J (depending on δ)

lim
J→∞

∫
{
|ξ|>J

1
2 δ

}
J∏

j=1

|h(mj,β , J
− 1

2 ξ · γj)| dξ = 0, (2.10.10)

∫
{
|ξ|≤J

1
2 δ

}
J∏

j=1

|h(mj,β , J
− 1

2 ξ · γj)| dξ ≤ C, (2.10.11)∣∣∣∣∣
∫
{
|ξ|≤J

1
2 δ

}
J∏

j=1

h(mj,β , J
− 1

2 ξ · γj) dξ

∣∣∣∣∣ ≥ 1

C
, (2.10.12)

lim
J→∞

∥∥∥∥∥Hess
∫
{
|ξ|>J

1
2 δ

}
J∏

j=1

h(mj,β , J
− 1

2 ξ · γj) dξ

∥∥∥∥∥ = 0, (2.10.13)
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∥∥∥∥∥Hess
∫
{
|ξ|≤J

1
2 δ

}
J∏

j=1

h(mj,β , J
− 1

2 ξ · γj) dξ

∥∥∥∥∥ ≤ C. (2.10.14)

The bounds for gJ,β(0) in (2.7.25) follows from (2.10.10) - (2.10.12). The bounds for the

Hessian in (2.7.27) follows from (2.10.13) and (2.10.14). The bounds for the gradient in

(2.7.26) is then immediate from interpolation.

Let us assume for the rest of the proof that J ≥ Jγ. First consider the outer integral from

(2.10.10). Recall that the interval Ik(ξ) contains at least J/(L+2) spins (cf. Lemma 2.10.3).

With this and the decay property (2.10.4) of h in mind, we set ε := δ cγ and compute:∫
{
|ξ|>J

1
2 δ

}
J∏

j=1

|h(mj,β , J
− 1

2 ξ · γj)| dξ

(2.10.3)

≤
∫
{
|ξ|>J

1
2 δ

} ∏
j: j

J
∈Ik(ξ)

|h(mj,β , J
− 1

2 ξ · γj)| dξ

(2.10.4),(2.10.9)

≤
∫
{
|ξ|>J

1
2 δ

} ∏
j: j

J
∈Ik(ξ)

1

1 + J− 1
2 |ξ · γj|C−1

ε

dξ

(2.10.9)

≤
(

1

1 + εC−1
ε

) J
L+2

−L−2

J
L+1
2

∫
{|ξ|>δ}

(
1

1 + cγC−1
ε |ξ|

)L+2

dξ.

This goes to 0 as J → ∞.

For the inner integral from (2.10.11) we use the representation of h via h2 in Lemma 2.10.2.

For this purpose, we assume from now on that

δ ≤ δ0 and δ max
j=1,...,J

|γj| ≤ δ0. (2.10.15)

We compute :∫
{
|ξ| ≤ J

1
2 δ

}
J∏

j=1

|h(mj,β , J
− 1

2 ξ · γj)| dξ

(2.10.6),(2.10.15)
=

∫
{
|ξ| ≤ J

1
2 δ

}
J∏

j=1

| exp (− (J− 1
2 ξ · γj)2 h2(mj,β , J

− 1
2 ξ · γj))| dξ

(2.10.9),(2.10.3),(2.10.7)

≤
∫
{
|ξ| ≤ J

1
2 δ

} ∏
{j | j

J
∈ Ik(ξ)}

exp
(
−c (J− 1

2 cγ|ξ|)2
)
dξ
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=

∫
{
|ξ| ≤ J

1
2 δ

} exp

(
− c J−1 J

L+ 2
c2γ |ξ|2

)
dξ

≤
∫
RL+1

exp

(
− c

1

L+ 2
c2γ |ξ|2

)
dξ,

which is �nite. Note that here we really need that the number of spins in Ik(ξ) is of order J ,

whereas arbitrary growth to in�nity of this number su�ces for the previous estimate.

We next turn to the lower bound (2.10.12):∣∣∣∣∣
∫
{
|ξ|≤J

1
2 δ

}
J∏

j=1

h(mj,β, J
− 1

2 ξ · γj) dξ

∣∣∣∣∣
=

∣∣∣∣∣
∫
{
|ξ|≤J

1
2 δ

} exp

(
−

J∑
j=1

(J− 1
2 ξ · γj)2 h2(mj,β, J

− 1
2 ξ · γj)

)
dξ

∣∣∣∣∣
(2.10.7)

≥
∫
{
|ξ|≤J

1
2 δ

} exp
(
−

J∑
j=1

(J− 1
2 ξ · γj)2 h2(mj,β, 0)

)
︸ ︷︷ ︸

S1

dξ

−
∫
{
|ξ|≤J

1
2 δ

} exp
(
−

J∑
j=1

(J− 1
2 ξ · γj)2 h2(mj,β, 0)

)
∣∣∣∣∣ exp

(
−

J∑
j=1

(J− 1
2 ξ · γj)2 [h2(mj,β, J

− 1
2 ξ · γj)− h2(mj,β, 0)]

)
− 1

∣∣∣∣∣︸ ︷︷ ︸
S2

dξ.

We estimate the terms S1, S2 as (using | exp(z)− 1| ≤ exp(|z|)− 1):

exp

(
−C max

j
|γj|2|ξ|2

)
(2.10.7)

≤ S1

(2.10.7),(2.10.9)

≤ exp

(
−c 1

L+ 2
c2γ |ξ|2

)
,

S2

(2.10.8),(2.10.15)

≤ exp (|ξ|2max
j

|γj|2Cδ0)− 1.

Set C1 := c 1
L+2

c2γ and C2 := maxj |γj|2C. We thus �nd:∫
{
|ξ|≤J

1
2 δ

} S1dξ −
∫
{
|ξ|≤J

1
2 δ

} S1S2dξ

≥
∫
{
|ξ|≤J

1
2 δ

} e−C2|ξ|2 dξ −
∫
RL+1

e−C1|ξ|2
(
eC2δ0|ξ|2 − 1

)
dξ.

Now, we choose δ0 (and accordingly δ) small enough to ensure that the �rst integral dom-

inates the second integral for large J . This implies (2.10.12) for all su�ciently large J .
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Let us now turn to the terms that involve derivatives with respect to β. We �rst compute

∇ gJ,β(0) and Hess gJ,β(0) starting from (2.10.2). The interchange of di�erentiation and

integration will be justi�ed by the bounds developed below, relying on pointwise bounds for

the integrands. From now on, we write [j] := (mj,β, J
− 1

2 ξ · γj) for short. We have:

(2 π)L+1∇gJ,β(0) =
∫
RL+1

J∑
j=1

∂h

∂m
[j]
∏
n̸=j

h[j] ∇mj,β dξ

and

(2π)L+1 Hess gJ,β(0) (2.10.16)

=

∫
RL+1

J∑
j=1

∂2h

∂m2
[j]
∏
n̸=j

h[n] ∇mj,β ⊗∇mj,β dξ

+

∫
RL+1

J∑
j=1

∑
p ̸=j

∂h

∂m
[j]

∂h

∂m
[p]
∏
n̸=j,p

h[n] ∇mj,β ⊗∇mp,β dξ

+

∫
RL+1

J∑
j=1

∂h

∂m
[j]
∏
n̸=j

h[n] Hessmj,β dξ.

We will need the following auxiliary statement.

Lemma 2.10.4. It holds uniformly in j = 1, ..., J and β that

∥∇mj,β∥ ≤ C, (2.10.17)

∥Hessmj,β∥ ≤ C. (2.10.18)

The proof is postponed to the end of this section. From now on we write ξ̄j := J− 1
2 ξ · γj

for short. Denote O :=
{
|ξ| > J

1
2 δ
}
. The outer integral of (2.10.13) becomes∥∥∥∥∥Hess

∫
O

J∏
j=1

h(mj,β, J
− 1

2 ξ · γj) dξ

∥∥∥∥∥
(2.10.16)−(2.10.18)

≲
∫
O

J∑
j=1

∣∣∣∣ ∂2h∂m2
[j]

∣∣∣∣ ∏
n̸=j

|h[n]| dξ +
∫
O

J∑
j=1

∣∣∣∣ ∂h∂m [j]

∣∣∣∣ ∏
n ̸=j

|h[n]| dξ

+

∫
O

J∑
j=1

∑
p ̸=j

∣∣∣∣ ∂h∂m [j]

∣∣∣∣ ∣∣∣∣ ∂h∂m [p]

∣∣∣∣ ∏
n̸=j,p

|h[n]| dξ
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(2.10.3)−(2.10.5)

≲
∫
O

J∑
j=1

∏
n̸=j:n

J
∈Ik(ξ)

1 + |ξ̄j|2

1 + |ξ̄n|C−1
ε

dξ +

∫
O

J∑
j=1

∏
n̸=j:n

J
∈Ik(ξ)

1 + |ξ̄j|
1 + |ξ̄n|C−1

ε

dξ

+

∫
O

J∑
j=1

∑
p ̸=j

∏
n ̸=j,p:n

J
∈Ik(ξ)

(1 + |ξ̄j|)(1 + |ξ̄p|)
1 + |ξ̄n|C−1

ε

dξ

(2.10.9)

≲ JA
J

L+2
−L−3

∫
O

B(ξ)L+2 dξ +max
j

|γj|2A
J

L+2
−L−5

∫
O

|ξ|2B(ξ)L+4 dξ

+ J2A
J

L+2
−L−4

∫
O

B(ξ)L+2 dξ + J max
j

|γj|2A
J

L+2
−L−6

∫
O

|ξ|2B(ξ)L+4 dξ

+ J
1
2 max

j
|γj|A

J
L+2

−L−4

∫
O

|ξ|B(ξ)L+3 dξ,

where we write for short

A :=
1

1 + εC−1
ε

, B(ξ) :=
1

1 + J− 1
2 |ξ| cγ C−1

ε

.

In the last step, we have collected like terms after application of the estimate (2.10.9). We

also used Young's inequality once. Observe that we always left exactly enough of the factors

that were at our disposal, i.e. J/(L+2)−1 and J/(L+2)−2 respectively, inside the integral

to ensure integrability. Performing a change of variables just as in the last step of the proof

for (2.10.10), we �nd that the right hand side goes to zero as J → ∞ because exponential

decay beats polynomial growth. This proves (2.10.13).

For the inner integral of (2.10.14), we again use the representation via h2 from (2.10.6).

In this case, we have the following formulas for the derivatives with respect to m:

∂h

∂m
(m, z) = −z2 ∂h2

∂m
(m, z)h(m, z),

∂2h

∂m2
(m, z) =

(
−z2 ∂

2h2
∂m2

(m, z) + z4
(
∂h2
∂m

(m, z)

)2
)
h(m, z).

Denote I :=
{
|ξ| ≤ J

1
2 δ
}
. Using the bounds from (2.10.8), we �nd∥∥∥∥∥Hess

∫
I

J∏
j=1

h(mj,β , J
− 1

2 ξ · γj) dξ

∥∥∥∥∥
(2.10.16)−(2.10.18)

≲
∫
I

J∑
j=1

(
ξ̄2j

∣∣∣∣∂2h2∂m2
[j]

∣∣∣∣+ ξ̄4j

∣∣∣∣∂h2∂m
[j]

∣∣∣∣2) J∏
n=1

| exp(−ξ̄2nh2[n])| dξ
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+

∫
I

J∑
j=1

∑
p ̸=j

ξ̄2j ξ̄
2
p

∣∣∣∣∂h2∂m
[j]

∣∣∣∣ ∣∣∣∣∂h2∂m
[p]

∣∣∣∣ J∏
n=1

| exp(−ξ̄2nh2[n])| dξ

+

∫
I

J∑
j=1

ξ̄2j

∣∣∣∣∂h2∂m
[j]

∣∣∣∣ J∏
n=1

| exp(−ξ̄2nh2[n])| dξ

(2.10.8),(2.10.7)

≲ max
j

|γj|2
∫
I

|ξ|2 exp

−cJ−1
∑

n:n
J
∈ Ik(ξ)

|ξ|2 c2γ

 dξ

+ (1 + J−1) max
j

|γj|4
∫
I

|ξ|4 exp

−cJ−1
∑

n:n
J
∈ Ik(ξ)

|ξ|2 c2γ

 dξ

≲
∫
RL+1

(|ξ|2 + |ξ|4) exp
(
−c c2γ

1

L+ 2
|ξ|2

)
dξ,

which is �nite. This completes the proof of Proposition 2.7.14, up to the veri�cation of

Lemma 2.10.3 and Lemma 2.10.4.

Proof of Lemma 2.10.3. After approximation of (2.7.34), this reduces to the following ele-

mentary geometric property of the curve γ de�ned in (2.7.33): for ξ ∈ RL+1, de�ne

ωk(ξ) := inf
t∈Ik

|ξ · γ(t)|,

then there exists a constant cγ > 0 such that for all ξ ∈ SL,

max
k=1,...,L+2

ωk(ξ) ≥ 2 cγ, (2.10.19)

where SL denotes the unit sphere in RL+1.

Argument for (2.10.19): The function ωk : RL+1 → R is continuous for all k = 1, ..., L+1,

so the same is true for ω := maxk ωk. As SL is compact, for (2.10.19) it only remains to

show that ω is strictly positive on SL. But for ξ ∈ SL, ξ · γ is a polynomial of degree ≤ L

that is not identically zero by independence of the basis polynomials fl. Hence, it has at

most L zeros in [0, 1], which implies ω(ξ) > 0 by pigeonhole principle.

Proof of Lemma 2.10.4. We recall that

mj,β =

∫
R
z exp(−ψ∗(m̂j,β) + m̂j,βz − ψ(z)) dz.
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Standard calculation yields

∇mj,β
(2.7.21)
= Var(µmj,β

) ∇m̂j,β,

Hessmj,β = Var(µmj,β
) Hess m̂j,β +

(∫
(z −mj,β)

3 µmj,β
(dz)

)
∇m̂j,β ⊗ ∇m̂j,β.

By the uniform estimates on Var(µm) and
∫
(z − m)3 µm(dz) in (2.7.13) and (2.7.14), it

remains to bound ∇m̂j,β and Hess m̂j,β. Note that

m̂j,β
(2.7.20)
= ⟨β̂max, γj⟩ (2.7.19)

= ⟨∇ψ̄J(β), γ
j⟩ = ∂γj ψ̄J(β),

where ∂η denotes η-directional derivative. Thus for any η ∈ RL+1:

⟨∇m̂j,β, η⟩ = ∂η∂γj ψ̄J(β) ≤ ∥Hess ψ̄J∥|η||γj|,

⟨Hess m̂j,βη, η⟩ = ∂2η∂γj ψ̄J(β) ≤ ∥D3ψ̄J∥|η|2|γj|.

Since |γj| is uniformly bounded (cf. (2.7.34)) and the Hessian and 3rd derivative of ψ̄J are

uniformly bounded, this concludes the proof of (2.10.17) and (2.10.18).
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Chapter 3

Ergodicity of the in�nite swapping

algorithm

Sampling Gibbs measures at low temperatures is an important but computationally chal-

lenging task. Numerical evidence suggests that the in�nite-swapping algorithm (isa) is a

promising method. The isa can be seen as an improvement of the replica methods. We

rigorously analyze the ergodic properties of the isa in the low temperature regime, deducing

an Eyring-Kramers formula for the spectral gap (or Poincaré constant) and an estimate for

the log-Sobolev constant. Our main results indicate that the e�ective energy barrier can be

reduced drastically using the isa compared to the classical overdamped Langevin dynamics.

As a corollary, we derive a deviation inequality showing that sampling is also improved by

an exponential factor. Finally, we study simulated annealing for the isa and prove that the

isa again outperforms the overdamped Langevin dynamics.

3.1 Introduction

Sampling from Gibbs measures at low temperatures is important in science and engineering.

It has a variety of applications including molecular dynamics [And80, CS11] and Bayesian

inference [RC05, GSC+13]. Usually, sampling at low temperatures is slow due to the fact

that at low temperatures energy barriers in the underlying energy landscape are large. This
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traps the stochastic sampling process and slows down sampling.

A lot of e�ort has been made to accelerate sampling at low temperatures and there are

many competing methods. One of them is the replica exchange method which is also known

as parallel tempering. In the simplest version of a replica exchange method, one considers

two independent copies of the underlying dynamics. One copy evolves at the desired low

temperature τ1 > 0 and the other copy with a higher temperature 1 ≫ τ2 ≫ τ1. At random

times the positions of both particles are swapped. This approach has the advantage that the

particle at a low temperature correctly samples the low temperature Gibbs measure whereas

the particle at a high temperature can explore the full state space discovering the relevant

states of the system.

Replica exchange methods and parallel tempering have been applied successfully in many

di�erent situations and they seem to accelerate sampling in low-temperature situations quite

well. To the best of our knowledge, almost all evaluations of the performance of those

methods are empirical and numerical. In an attempt to study the sampling performance

of parallel tempering via large deviations, it was discovered that the large deviation rate

function is a monotone function of the swapping rate (see [DLPD12]). It means that sampling

can only improve as the swapping rate increases. This led to the discovery of the in�nite

swapping algorithm/process (isa), which can be interpreted as the limit of parallel tempering

when swapping the particles in�nitely fast (see [DLPD12], or Section 3.2.1 for details).

Formally, given the underlying energy landscape H : Rn → R, the isa is de�ned as the

evolution of two particles X1
t and X2

t varying between two di�erent temperatures 0 < τ1 ≪

τ2, given by the stochastic di�erential equations (SDEs): dX1
t = −∇H(X1

t ) dt+
√
2τ1ρ(X1

t , X
2
t ) + 2τ2ρ(X2

t , X
1
t ) dB

1
t ,

dX2
t = −∇H(X2

t ) dt+
√

2τ2ρ(X1
t , X

2
t ) + 2τ1ρ(X2

t , X
1
t ) dB

2
t ,

(3.1.1)

with

ρ(x1, x2) :=
π(x1, x2)

π(x1, x2) + π(x2, x1)
and π(x1, x2) :=

1

Z
exp

(
−H(x1)

τ1
− H(x2)

τ2

)
,
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where Z is the normalizing constant making π a probability measure. Numerical and heuristic

studies [DDN17] indicate that there is an exponential gain when using the isa for sampling

instead of the classical overdamped Langevin dynamics. However, no rigorous result has

been established so far.

In this work we take the analysis of [DDN17] to the next level. We carry out the �rst

rigorous study of the ergodic properties of the isa at low temperatures. Under standard

non-degeneracy assumptions, we deduce the low-temperature asymptotics for the Poincaré

constant and a good estimate for the log-Sobolev constant of the isa (see Theorem 3.2.3 and

Theorem 3.2.4 below). In the context of metastability, those type of formulas are also known

as Eyring-Kramers formulas. Comparing our results to the Eyring-Kramers formula for the

overdamped Langevin dynamics (see e.g. [BEGK04, BGK05, MS14]) we have an exponential

gain: the e�ective energy barrier of the underlying energy landscape H only sees the higher

temperature τ2. We also give indications that the result of Theorem 3.2.3 is optimal.

To the best of our knowledge, this is the �rst time that an Eyring-Kramers formula was

derived for inhomogeneous di�usions. The reason is that usually, if the di�usion coe�-

cient σ is inhomogeneous, the stationary and ergodic distribution µ is unknown. But for

the isa (3.1.1), the ergodic distribution µ is explicitly known. It is given by µ(x1, x2) =

1
2
(π(x1, x2) + π(x2, x1)). This makes a rigorous analysis of (3.1.1) feasible.

For the proof of Theorem 3.2.3 and Theorem 3.2.4, we follow the transportation approach

of [MS14]. There are several other methods which could be used to deduce the Eyring-

Kramers formula for the Poincaré constant. For example, one could consider to adapt the

potential theoretic approach (see [BEGK04, BGK05]) or the approach using semiclassical

analysis (see [HKN04, HN05, HN06]). However, it seems that only the approach of [MS14]

is robust enough to deduce good estimates for the log-Sobolev constant. This is important

for our applications to sampling and simulated annealing.

In the �rst application, we apply the main results to study the sampling properties of

the isa and compare it to the overdamped Langevin dynamics. It is well known that the
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Poincaré and log-Sobolev constants characterize the rate of convergence to equilibrium of

the underlying process. It is also known that Poincaré and log-Sobolev inequalities yield

deviation inequalities (see [CG08, WY08] and references therein). Hence, our main results

yield a precise quantitative control on the convergence of the time average to the ensemble

average, quantifying the ergodic theorem. As a consequence, we conclude that sampling

at low temperatures using isa is exponentially faster than using the overdamped Langevin

dynamics.

In the second application, we study simulated annealing for the isa and compare it to

simulated annealing for the overdamped Langevin dynamics. Simulated annealing (SA) is

an umbrella term denoting a particular set of stochastic optimization methods. SA can be

used to �nd the global extremum of a function H : Rn → R, in particular when H is non-

convex and n is large. Those methods have many applications in di�erent �elds, for example

in physics, chemistry and operations research (see e.g. [vLA87, KAJ94, Nar99]). The name

and inspiration comes from annealing in metallurgy. It is a process that aims to increase the

size of the crystals by a process involving heating and controlled cooling. The SA mimics

this procedure mathematically. The stochastic version of SA was independently described

by Kirkpatrick, Gelatt and Vecchi [KGV83] and �erný [�85]. See Section 3.4.2 for details

on simulated annealing.

Replica exchange and parallel tempering have been successfully applied to simulated an-

nealing (see e.g. [KZ09, LPA+09]). Because the isa has better ergodic properties than parallel

tempering, there is big hope that the isa can produce even better results. Additionally, our

main results show that the isa mixes much faster than the overdamped Langevin dynamics.

Therefore, one expects that the isa also outperforms the overdamped Langevin dynamics for

simulated annealing. In this work, we show that this is indeed the case, though it is unclear

from our theoretical study whether the isa could compete in practice with state-of-the-art

methods for simulated annealing, e.g. methods based on Lévy �ights [Pav07] or Cuckoo's

search [YD09].
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3.2 Setting and main results

We start by discussing how the isa emerges as the weak limit from parallel tempering. Then

we introduce the precise setting and non-degeneracy assumptions. After this we present the

main results of this work, the Eyring-Kramers formula for the Poincaré constant and a good

estimate for the log-Sobolev constant for the isa. We also give indications that the Poincaré

constant is optimal. We close this section by discussing two applications: sampling Gibbs

measures at low temperatures and simulated annealing.

3.2.1 In�nite-swapping as the weak limit of parallel tempering

Before describing parallel tempering, let us consider a simpler situation: a single di�usion

on an energy landscape given by a su�ciently smooth, non-convex Hamiltonian function

H : Rn → R at a single temperature τ > 0, given by the SDE

dξt = −∇H(ξt)dt+
√
2τdBt,

where Bt is a standard Brownian motion on Rn. The generator of the di�usion is

Lτ := τ∆−∇H · ∇.

The associated Dirichlet form is

Eντ (f) :=
∫
Rn

(−Lτf)fdν
τ =

∫
Rn

τ |∇f |2dντ

and the Fisher information is

Iντ (f
2) := 2Eντ (f).

Under some growth assumptions on H (e.g. those of [MS14, Section 1.2]), this process

(known as the overdamped Langevin dynamics) has an invariant measure given by

ντ (x) :=
1

Zτ
exp

(
−H(x)

τ

)
, (3.2.1)
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where Zτ is the normalization constant. Due to the non-convexity of H, this process shows

metastable behavior at low temperatures τ in the sense of a separation of time scales:

� In the short run, the process converges fast to a local minimum of the energy landscape.

� In the long run, the process stays near a local minimum for an exponentially long time

before it jumps to another local minimum.

In the previous work of [MS14], this behavior is captured by explicit, low-temperature asymp-

totic formulas (known as Eyring-Kramers formulas) for the two constants ρ, α > 0 appearing

in the following two functional inequalities for the invariant measure ντ : the Poincaré in-

equality (PI(ρ))

Varντ (f) :=

∫
(f −

∫
fdντ )2dντ ≤ 1

ρ
Eντ (f)

and the log-Sobolev inequality (LSI(α))

Entντ (f
2) :=

∫
f 2 log

f 2∫
f 2dντ

dντ ≤ 1

α
Iντ (f)

holding all smooth functions f : Rn → R.

In the present work, we extend these results to a non-homogeneous di�usion, the �in�nite

swapping process�. It arises from parallel tempering, which we now introduce. Given two

temperatures 0 < τ1 < τ2 ≪ 1, τ2 > Kτ1 for some K > 1, de�ne two product measures on

Rn × Rn

π+(x1, x2) := ντ1(x1)ν
τ2(x2), π

−(x1, x2) := ντ2(x1)ν
τ1(x2).

Let us identify the symbol σ = +,− with the identity and swap permutation on {1, 2},

respectively. Then πσ is the invariant measure of the following SDE: dX1 = −∇H(X1) dt+
√
2τσ(1) dB1 ,

dX2 = −∇H(X2) dt+
√
2τσ(2) dB2 ,

where B := (B1, B2) is a standard Brownian motion in Rn × Rn. Its generator is

Lσ := Lx1
τσ(1)

+ Lx2
τσ(2)
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and the associated Dirichlet form is

Eπσ(f) :=

∫
Rn×Rn

(−Lσf)fdπ
σ

= Ex1

ν
τσ(1)Ex2

ν
τσ(2) (f) + Ex2

ν
τσ(2)Ex1

ν
τσ(1) (f)

= Eπσ(τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2).

The idea of parallel tempering is to swap between the positions of X1 and X2. At random

times X1 is moved to the position of X2 and vice-versa, so the resulting process is a Markov

process with jumps. To guarantee that the invariant measure remains the same, the jump

intensity is of the Metropolis form a g(x1, x2), where the constant `a' is the swapping rate

of the parallel tempering and g = min (1, π−/π+). The resulting process is denoted by

(Xa
1 (t), X

a
2 (t)).

Intuitively, larger values of `a' lead to faster convergence to equilibrium. However, the

process (Xa
1 (t), X

a
2 (t)) is not tight so it does not converge weakly as a → ∞. The key idea

of [DLPD12] is to swap the `temperatures' of (X1, X2) instead of swapping the positions.

Precisely, they consider the following process dX
a

1 = −∇H(X1) dt+
√
2τ11Za=0 + 2τ21Za=1 dB1 ,

dX2 = −∇H(X2) dt+
√
2τ21Za=0 + 2τ11Za=1 dB2 ,

where Za is a jump process which switches from state 0 to state 1 with intensity a g(X
a

1, X
a

2),

and from state 1 to state 0 with intensity a g(X
a

2, X
a

1). It was shown in [DLPD12] that as

a→ ∞, the process (X
a

1(t), X
a

2(t) converges weakly to the in�nite swapping process, whose

dynamics is governed by the SDE: dX1 = −∇H(X1) dt+
√

2a1(X1, X2) dB1 ,

dX2 = −∇H(X2) dt+
√
2a2(X1, X2) dB2 ,

(3.2.2)

where the di�usion coe�cients a1, a2 are given by

a1 := τ1ρ
+ + τ2ρ

− and a2 := τ2ρ
+ + τ1ρ

−,
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where ρ+ :=
π+

π+ + π− and ρ− :=
π−

π+ + π− .

The invariant measure of this process is the symmetric measure

µ := 1
2
(π+ + π−). (3.2.3)

The generator of this process is

L := ρ+L+ + ρ−L− = −∇H(x1) · ∇x1 −∇H(x2) · ∇x2 + a1∆x1 + a2∆x2 .

The associated Dirichlet form is

Eµ(f) :=
∫

(−Lf)fdµ =
1

2
Eπ+(f) +

1

2
Eπ−(f) =

∫ 2∑
k=1

ak|∇xk
f |2dµ

and the Fisher information is

Iµ(f
2) := 2Eµ(f). (3.2.4)

3.2.2 Growth and non-degeneracy assumptions

In this work, we use the same assumptions on the potential H as in [MS14, Section 1.2].

These assumptions are standard in the study of metastability (see e.g. [BEGK04, BGK05]).

De�nition 3.2.1 (Morse function). A smooth function H : Rn → R is a Morse function,

if the Hessian ∇2H of H is non-degenerate on the set of critical points. That is, for some

1 ≤ CH <∞ holds

∀x ∈ S :=
{
x ∈ Rn : ∇H = 0

}
:
|ξ|
CH

≤
∣∣∇2H(x)ξ| ≤ CH |ξ|. (3.2.5)

We also make the following growth assumptions on the potential H to ensure the existence

of PI and LSI.

Assumption 2 (PI). H ∈ C3(Rn,R) is a nonnegative Morse function, such that for some

constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H| ≥ CH , (3.2.6)

lim inf
|x|→∞

(
|∇H|2 −∆H

)
≥ −KH . (3.2.7)
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Assumption 3 (LSI). H ∈ C3(Rn,R) is a nonnegative Morse function, such that for some

constants CH > 0 and KH ≥ 0 holds

lim inf
|x|→∞

|∇H(x)|2 −∆H(x)

|x|2
≥ CH ,

inf
x
∇2H(x) ≥ −KH .

Remark 3.2.2. Assumption 2 has the following consequences for the potential H:

� The condition (3.2.6) and H(x) ≥ 0 ensures that e−
H
τ is integrable and can be normal-

ized to a probability measure on Rn (see [MS14, Lemma 3.14]). Hence, the probability

measures ντ (and therefore π+, π− and µ) are well de�ned.

� The Morse condition (3.2.5) together with the growth condition (3.2.6) ensures that the

set S of critical points is discrete and �nite. In particular, it follows that the set of

local minima is a �nite set M = {m1, . . . ,mN}.

� Together with the rest of Assumption 2, the Lyapunov-type condition (3.2.7) leads to a

local PI for the Gibbs measures ντ (see [MS14, Theorem 2.9]).

Similarly, Assumption 3 yields the following consequences for the potential H.

� It leads to a local LSI for the Gibbs measures ντ (see [MS14, Theorem 2.10]).

� Assumption 3 implies Assumption 2, which is an indication that LSI is stronger than

PI.

To keep the presentation clear, we also make some non-degeneracy assumptions on the

potential H. The saddle height Ĥ(mi,mj) between two local minima mi,mj is de�ned by

Ĥ(mi,mj) := inf

{
max
s∈[0,1]

H(γ(s)) : γ ∈ C[0, 1], γ(0) = mi, γ(1) = mj

}
.

Assumption 4. Let m1, · · · ,mN be the positions of the local minima of H.

(i) m1 is the unique global minimum of H, and m1, . . . ,mN are ordered in the sense that

there exists δ > 0 such that

H(mN) ≥ H(mN−1) ≥ · · · ≥ H(m2) ≥ δ and H(m1) = 0. (3.2.8)
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(ii) For each i, j ∈ [N ] := {1, . . . , N}, the saddle height between mi,mj is attained at a

unique critical point sij of index one. That is, H(sij) = Ĥ(mi,mj), and if {λ1, . . . , λn}

are the eigenvalues of ∇2H(sij), then λ1 =: λ− < 0 and λi > 0 for i ∈ {2, . . . , n}. The

point sij is called the communicating saddle point between the minima mi and mj.

(iii) There exists p ∈ [N ] such that the energy barrier H(sp1) − H(mp) dominates all the

others. That is, there exists δ > 0 such that for all i ∈ [N ] \ {p},

E∗ := H(sp1)−H(mp) ≥ H(si1)−H(mi) + δ.

The dominating energy barrier E∗ is called the critical depth.

3.2.3 The Eyring-Kramers formula

Our main results are the Eyring-Kramers formula for the Poincaré constant and a good

estimate for log-Sobolev constant for the isa. Here a crucial new feature occurs in comparison

to the usual overdamped Langevin dynamic. The lower temperature cannot be arbitrarily

small and there is an e�ective restriction on the ratio between the two temperatures τ1 and

τ2. We comment on this observation in Subsection 3.2.4.

Theorem 3.2.3 (Eyring-Kramers formula for the Poincaré constant for the isa). Assume

that τ2 ≥ Kτ1 for some constant K > 1. Let µ be the invariant measure of the in�nite

swapping process de�ned by (3.2.3). Suppose that the potential H satis�es Assumptions 2

and 4. Then the Gibbs measure µ satis�es the Poincaré inequality

Varµ(f) ≤
1

ρ
Eµ(f),

with the constant ρ satisfying

1

ρ
≤ 1√

| det∇2H(mp)|
2π
√

| det∇2H(sp1)|
|λ−(sp1)|

× exp

(
H(sp1)−H(mp)

τ2

)(
1 +O(

√
τ2 |log τ2|

3
2 )
)
+O(1)Φn

(
τ2
τ1

)
. (3.2.9)
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Here λ−(sp1) is the negative eigenvalue of the Hessian ∇2H(sp1) at the communicating saddle

point sp1, and Φn : [1,∞) → [0,∞) is the function

Φn(x) =


1 for n = 1,

1 + log x for n = 2,

1 + x(n−2)/2 for n ≥ 3.

(3.2.10)

Theorem 3.2.4 (Estimate for the log-Sobolev constant of the isa). Assume that τ2 ≥ Kτ1

for some constant K > 1. Let µ be the invariant measure of the in�nite swapping process

de�ned by (3.2.3). Suppose that the potential H satis�es Assumptions 3 and 4. Then the

Gibbs measure µ satis�es the log-Sobolev inequality

Entµ(f) ≤
1

α
Iµ(f), (3.2.11)

with

2

α
≤ 2N2

(
H(mp)

τ1
+
H(mp)

τ2

)
1√

| det∇2H(mp)|
2π
√

| det∇2H(sp1)|
|λ−(sp1)|

× exp

(
H(sp1)−H(mp)

τ2

)(
1 +O(

√
τ2 |log τ2|

3
2 )
)
+O(τ−1

1 )Φn

(
τ2
τ1

)
. (3.2.12)

Here, N is the number of local minima of H, λ−(sp1) is the negative eigenvalue of the Hessian

∇2H(sp1) at the communicating saddle point sp1, and Φn is the function de�ned in (3.2.10).

Remark 3.2.5. If we can ensure that τ1 is not too low compared to τ2, e.g. imposing a

condition like

τ1 ≥ e
−o

(
1
τ2

)
,

then the error terms involving Φn

(
τ2
τ1

)
in (3.2.9) and (3.2.12) become negligible, as can be

seen from the form of the function Φn. (In fact, this restriction can be entirely dropped in

dimension n = 1, and relaxed to τ1 ≥ e−e
o( 1

τ2 ) in dimension n = 2.) Then in this regime

of temperatures τ1, τ2, the estimates (3.2.9) and (3.2.12) for the isa essentially reduce to

the corresponding Eyring-Kramers formulas for the overdamped Langevin dynamics at the

higher temperature τ2, given in [MS14, Corollary 2.18]. For the Poincaré constant this is

true to the exact pre-factor, and for the LSI constant this is true to the leading exponential
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order. Because we choose τ2 ≥ Kτ1, this means that the e�ective energy barrier H(mp) −

H(m1) is reduced by a factor of K > 1.

More precisely, the estimate we give for the LSI constant di�ers from the one in [MS14,

Corollary 2.18] (with temperature set to be τ2) by two additional factors: �rst, we have

H(mp)/τ1 instead of H(mp)/τ2 in the pre-factor, which amounts to an additional factor of

τ2/τ1; and second, we also have a combinatorial factor on the order of N2. Below, we show

the change from H(mp)/τ2 to H(mp)/τ1 is necessary in a generic one-dimensional case.

However, presently we do not know whether the combinatorial factor is necessary. It would

be interesting to study whether this factor of N2 can be removed from the LSI constant.

3.2.4 Dependence on the ratio between temperatures

The following proposition shows that the dependence on τ2/τ1 in the Poincaré and LSI

constants of the isa is necessary and the formula of Φn that describes this dependence is

close to being optimal.

Proposition 3.2.6. If τ2, τ1/τ2 are su�ciently small, then for every η > 0, there exists a

constant Cη > 0 such that

sup
f∈H1(µ)

Varµ(f)

Eµ(f)
≳

{
Cη(τ2/τ1)

(1−η)(n−2)/2 for n ≥ 3,

log(τ2/τ1) for n = 2.

3.2.5 Optimality of the Eyring-Kramers formula in dimension one

For the overdamped Langevin dynamics, the corresponding Eyring-Kramers formula for

Poincaré inequality has been shown to be optimal. For the isa, the Poincaré constant of

(3.2.9) is optimal in a generic one-dimensional case. This gives a strong indication of opti-

mality in higher dimensions.

Proposition 3.2.7. Assume that τ2 ≥ Kτ1 for some constant K > 1. Assume n = 1, and

H has three critical points: two minima m1 < m2 with H(m1) = 0 < δ ≤ H(m2) and a local
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maximum s in between. Then

inf
f∈H1(µ)

Eµ(f)
Varµ(f)

≤ ρ,

where ρ is given by the asymptotic formula (3.2.9).

For the overdamped Langevin dynamics, the corresponding Eyring-Kramers formula for

LSI inequality has been shown to be optimal in the one-dimensional case. For the isa, we do

not expect the LSI constant of (3.2.12) to be optimal. However, up to some combinatorial

factor in N , it has the asymptotic behavior for a generic one-dimensional case.

Proposition 3.2.8. Assume that τ2 ≥ Kτ1 for some constant K > 1. Assume n = 1, and

H has three critical points: two minima m1 < m2 with H(m1) = 0 < δ ≤ H(m2) and a local

maximum s in between. Then

inf
f∈H1(µ)

Iµ(f
2)

Entµ(f 2)
≲N α,

where α is given by the asymptotic formulas (3.2.12).

3.3 Proofs of main results

3.3.1 A two-time-scale approach to Poincaré and log-Sobolev in-

equalities

Our overall approach follows that of [MS14], which was via a decomposition of the state

space Rn into an �admissible partition� of metastable regions {Ωi}Ni=1 for the Gibbs measure

ντ de�ned in (3.2.1), as described below.

De�nition 3.3.1 (Admissible partition). The family {Ωi}Ni=1 with Ωi open and connected is

called an admissible partition for H if

(i) for each i ∈ [N ], the local minimum mi ∈ Ωi,
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(ii) {Ωi}Ni=1 forms a partition of Rn up to sets of Lebesgue measure zero,

(iii) The partition sum of Ωi is approximately Gaussian. That is, there exists τ0 > 0 such

that for all τ < τ0, for i ∈ [N ],

ντ (Ωi)Z
τ :=

∫
Ωi

exp

(
−H(x)

τ

)
dx

=
(2πτ)n/2√
det∇2H(mi)

exp

(
−H(mi)

τ

)
(1 +O(

√
τ | log τ |3/2)). (3.3.1)

Remark 3.3.2. A canonical way to obtain an admissible partition for H is to associate to

each local minimum mi for i ∈ [N ] its basin of attraction with respect to the gradient �ow

of H. That is,

Ωi =

{
y ∈ RN : lim

t→∞
yt = mi,

dyt
dt

= −∇H(yt), y0 = y

}
.

However, as in [MS14], to facilitate the proof, we choose instead the basins of attraction for

the gradient �ow of a suitable perturbation of H (see Section 3.3.2).

Suppose {Ωi}Ni=1 is an admissible partition in the sense of De�nition 3.3.1. De�ne local

measures on Rn

ντi (x) :=
1

Zτ
i

ντ (x)|Ωi
, (3.3.2)

Zτ
i := ντ (Ωi) =

√
det∇2H(m1)√
det∇2H(mi)

exp

(
−H(mi)

τ

)
(1 +O(

√
τ | log τ |3/2)).

This induces a decomposition of the measure µ on Rn × Rn as

µ =
1

2
(π+ + π−) =

∑
(i,j)

1

2
Z+

ijπ
+
ij +

∑
(i,j)

1

2
Z−

ijπ
−
ij , (3.3.3)

where Z+
ij := Zτ1

i Z
τ2
j , Z

−
ij := Zτ2

i Z
τ1
j and

π+
ij(x1, x2) :=

1

Z+
ij

π+(x1, x2)|Ωi×Ωj
= ντ1i (x1)ν

τ2
j (x2),

π−
ij(x1, x2) :=

1

Z−
ij

π−(x1, x2)|Ωi×Ωj
= ντ2i (x1)ν

τ1
j (x2).

The following results are read from [MS14, Lemma 2.4 and Corollary 2.8].
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Lemma 3.3.3 (Decomposition of variance). For the mixture representation (3.3.3) of the

Gibbs measure µ, and a smooth function f : Rn × Rn → R, it holds

Varµ(f) =
1

2

∑
(i,j)

Z+
ij Varπ+

ij
(f) +

1

2

∑
(i,j)

Z−
ij Varπ−

ij
(f) (3.3.4)

+
1

4

∑
Z+

ijZ
+
kl(Eπ+

ij
(f)− Eπ+

kl
(f))2 +

1

4

∑
Z−

ijZ
−
kl(Eπ−

ij
(f)− Eπ−

kl
(f))2 (3.3.5)

+
1

4

∑
Z+

ijZ
−
kl(Eπ+

ij
(f)− Eπ−

kl
(f))2, (3.3.6)

where the second line is summing over unordered pairs (i, j) ̸= (k, l) and the last line is

summing over ordered pairs ((i, j), (k, l)).

Lemma 3.3.4 (Decomposition of entropy). For the mixture representation (3.3.3) of the

Gibbs measure µ, and a smooth function f : Rn × Rn → R, it holds

Entµ(f
2) ≤ 1

2

∑
(i,j)

Z+
ij Entπ+

ij
(f 2) +

1

2

∑
(i,j)

Z−
ij Entπ−

ij
(f 2) (3.3.7)

+
1

2

∑
(i,j)

 ∑
(k,l)̸=(i,j)

Z+
kl

Λ(Z+
ij , Z

+
kl)

+
∑
(k,l)

Z−
kl

Λ(Z+
ij , Z

−
kl)

Z+
ij Varπ+

ij
(f) (3.3.8)

+
1

2

∑
(i,j)

 ∑
(k,l)̸=(i,j)

Z−
kl

Λ(Z−
ij , Z

−
kl)

+
∑
(k,l)

Z+
kl

Λ(Z−
ij , Z

+
kl)

Z−
ij Varπ−

ij
(f) (3.3.9)

+
1

2

∑ Z+
ijZ

+
kl

Λ(Z+
ij , Z

+
kl)

(Eπ+
ij
(f)− Eπ+

kl
(f))2 (3.3.10)

+
1

2

∑ Z−
ijZ

−
kl

Λ(Z−
ij , Z

−
kl)

(Eπ−
ij
(f)− Eπ−

kl
(f))2 (3.3.11)

+
1

2

∑ Z+
ijZ

−
kl

Λ(Z+
ij , Z

−
kl)

(Eπ+
ij
(f)− Eπ−

kl
(f))2, (3.3.12)

where the second to last line and the third to last line are summing over unordered pairs

(i, j) ̸= (k, l) and the last line is summing over ordered pairs ((i, j), (k, l)).

The local variances appearing in (3.3.4), (3.3.8) and (3.3.9) and the local entropies ap-

pearing in (3.3.7) are dealt with by Poincaré and log-Sobolev inequalities for local product

measures.
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Lemma 3.3.5 (Local PI for πσ
ij). Under Assumption 2, given τ2 small enough, there exists

an admissible partition {Ωi}Ni=1 such that for all τ ≤ τ2, , for all smooth functions f :

Rn × Rn → R

Varπσ
ij
(f)

(3.3.18)

≤ O(1)Eπσ
ij
(τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2).

Lemma 3.3.6 (Local LSI for πσ
ij). Under Assumption 3, for all smooth functions f : Rn ×

Rn → R

Entπσ
ij
(f 2)

(3.3.19)

≤ O(1)Eπσ
ij
(|∇x1f |2 + |∇x2f |2).

We defer the details of the proof of Lemmas 3.3.5 and 3.3.6 to Section 3.3. They are based

on the simple product structure of the measures πσ
ij and an adaption of the local Poincaré

inequality [MS14, Theorem 2.9] and the local LSI inequality [MS14, Theorem 2.10]. It follows

that

Zσ
ij Varπσ

ij
(f) ≤ O(1)Eπσ(f)[Ωi × Ωj], (3.3.13)

Zσ
ij Entπσ

ij
(f) ≤ O(τ−1

1 )Eπσ(f)[Ωi × Ωj].

Here and below, for a Dirichlet form E(f), we denote E(f)[Ω] to be the Dirichlet integral

with region of integration restricted to Ω.

To deal with the mean-di�erences appearing in (3.3.5) and (3.3.10) - (3.3.11), we will apply

the mean-di�erence estimate from [MS14, Theorem 2.12], which allows us to transport in one

of the variables x1, x2 at a time from one metastable region Ωj to another metastable region

Ωk. However, in order to ensure we only get exponential dependence on 1/τ2 rather than

1/τ1 in the Eyring-Kramers formula, we can only transport in the high-temperature variable,

and not in the low-temperature variable. This allows us to deal with mean-di�erences of the

type between π+
ij and π

+
ik, or the type between π

−
ji and π

−
ki.

Lemma 3.3.7 (Mean-di�erence estimates for π+
ij , π

+
ik and for π−

ji, π
−
ki).

Z+
ik(Eπ+

ij
f − Eπ+

ik
f)2 ⪅ Cτ2

kj · Eπ+(f)[Ωi × Rn], (3.3.14)
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Z−
ki(Eπ−

ji
f − Eπ−

ki
f)2 ⪅ Cτ2

kj · Eπ−(f)[Rn × Ωi], (3.3.15)

where

Cτ2
kj :=

1√
det∇2H(mk)

2π
√
det∇2H(skj)

|λ−(skj)|
exp

(
H(skj)−H(mk)

τ2

)
.

Here and below, ≈ (resp. ⪅) means equality (resp. less than or equal) up to a multiplica-

tive factor of 1 +O(
√
τ2| log τ2|3/2).

Proof. For the �rst estimate, applying Cauchy-Schwarz and [MS14, Theorem 2.12], we get

Z+
ik(Eπ+

ij
f − Eπ+

ik
f)2 ≤ Zτ1

i Z
τ2
k Ex1

ν
τ1
i

(Ex2

ν
τ2
j

f − Ex2

ν
τ2
k

f)2

⪅ Zτ1
i Ex1

ν
τ1
i

Cτ2
kj

∫
τ2|∇x2f |2dντ2(x2)

≤ Cτ2
kj · Eπ+(f)[Ωi × Rn].

The second estimate is completely analogous.

To deal with the remaining mean-di�erences in (3.3.5) - (3.3.6) and (3.3.10) - (3.3.12), we

have another move available, which is to swap the temperatures of the two variables, i.e. to

swap between π+
ij and π−

ij . This is the main new technical ingredient compared to [MS14],

which come at a cost that is polynomial in the ratio of the higher temperature to the lower

temperature, τ2/τ1.

Lemma 3.3.8 (Mean-di�erence estimate for π+
ij , π

−
ij). In the same setting as Lemma 3.3.13,

(Eπ+
ij
f − Eπ−

ij
f)2 ≤ Φn

(
τ2
τ1

)
O(τ2)(Eπ+

ij
|∇x2f |2 + Eπ−

ij
|∇x1f |2)

+ ω(τ2)
∑

σ∈{+,−}

Eπσ
ij
(τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2)

for any smooth function f : Rn × Rn → R, where Φn : [1,∞) → [0,∞) is the function

Φn(x) =


1 for n = 1,

1 + log x for n = 2,

1 + x(n−2)/2 for n ≥ 3,

and ω(τ2) := O(
√
τ2| log τ2|3/2).
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We defer the proof of this lemma to the next two sections. It follows that

min(Z+
ij , Z

−
ij )(Eπ+

ij
f − Eπ−

ij
f)2 ≤ Φn

(
τ2
τ1

)
O(1)Eµ(f)[Ωi × Ωj]. (3.3.16)

Using these estimates, we will show that the dominating terms in Lemma 3.3.3 are the

mean-di�erences between π+
ip, π

+
11 and between π−

pj, π
−
11 where i, j are arbitrary and p is the

local minimum with the dominating energy barrier.

Lemma 3.3.9. Let p be the local minimum with the dominating energy barrier. Then for

any i, j ∈ [N ], and σ ∈ {+,−}

Z+
ipZ

σ
11(Eπ+

ip
(f)− Eπσ

11
(f))2 ⪅ Cτ2

p1 · Eπ+(f)[Ωi × Rn] + Φn

(
τ2
τ1

)
O(1)Eµ(f),

Z−
pjZ

σ
11(Eπ−

pj
(f)− Eπσ

11
(f))2 ⪅ Cτ2

p1 · Eπ−(f)[Rn × Ωj] + Φn

(
τ2
τ1

)
O(1)Eµ(f).

Moreover, if {(i, j)σ1 , (k, l)σ2} is one of the following forms

{(i, 1)+, (1, 1)+}, {(1, j)−, (1, 1)−}, {(i, 1)+, (1, 1)−}, {(1, 1)+, (1, l)−},

then

Zσ1
ij Z

σ2
kl (Eπ

σ1
ij
(f)− Eπ

σ2
kl
(f))2 ≤ Φn

(
τ2
τ1

)
O(1)Eµ(f).

Finally, for any other {(i, j)σ1 , (k, l)σ2}, the term Zσ1
ij Z

σ2
kl (Eπ

σ1
ij
(f)−Eπ

σ2
kl
(f))2 is negligible in

the sense of being exponentially smaller in 1/τ2 compared to one of the terms above on the

right hand side.

Proof. Let Γ be the graph whose vertices are labeled ·σij and have three kinds of edges:

� �vertical� edges between ·+ij, ·+ik;

� �horizontal� edges between ·−ij, ·−kj; and

� �swapping� edges between ·+ij, ·−ij.

We decompose the mean-di�erence between any two measures π+
ij , π

−
kl as a sum of mean-

di�erences of the types in (3.3.14), (3.3.15), and (3.3.16), corresponding to a sequence of
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�moves� on the graph Γ. Given any sequence of moves v0 → v1 → · · · → vm on graph Γ, we

have

Zv0Zvm(Eπv0
f − Eπvm

f)2 = Zv0Zvm

(
m∑
t=1

√
ωt

1
√
ωt

(Eπvt−1
f − Eπvt

f)

)2

=
m∑
t=1

1

ωt

Zv0Zvm(Eπvt−1
f − Eπvt

f)2 (3.3.17)

for any ωt > 0,
∑m

t=1 ωt = 1. After taking into account the weights Z+
ij , Z

−
kl, this leads to

the choice of the following three types of sequences of moves for the three types of mean-

di�erences occurring in Lemma 3.3.3:

� Type I sequence: ·+ij → ·+i1 → ·−i1 → ·−11 → ·−k1 → ·+k1 → ·+kl;

� Type II sequence: ·−ij → ·−1j → ·+1j → ·+11 → ·+1l → ·−1l → ·−kl; and

� Type III sequence: ·+ij → ·+i1 → ·−i1 → ·−11 → ·+11 → ·+1l → ·−1l → ·−kl.

Let us �rst look at the decomposition (3.3.17) for a Type I sequence. For the 1st move,

Z+
ijZ

+
kl(Eπ+

ij
(f)− Eπ+

i1
(f))2 ⪅ Z+

klC
τ2
j1 · Eπ+(f)[Ωi × Rn],

which is negligible unless j = p, k = l = 1. For the 2nd move,

Z+
ijZ

+
kl(Eπ+

i1
(f)− Eπ−

i1
(f))2 ≤ Zτ2

j Z
+
kl · Φn

(
τ2
τ1

)
O(1)Eµ(f),

which is negligible unless j = k = l = 1. For the 3rd move,

Z+
ijZ

+
kl(Eπ−

i1
(f)− Eπ−

11
(f))2 ⪅ exp

(
−H(mi)

(
1

τ1
− 1

τ2

))
Zτ2

j Z
+
klC

τ2
i1 · Eπ−(f)[Rn × Ω1],

which is always negligible. The analysis for the remaining three moves are completely sym-

metric: the 4th move is always negligible, the 5th move is negligible unless i = j = l = 1,

and the 6th move is negligible unless l = p, i = j = 1.

Overall, if (i, j), (k, l) is not one of the exceptions mentioned, we can just assign ω1 = ω1 =

· · · = ω6 = 1/6, then the overall sum is negligible. This choice of (ωt)
6
t=1 also works in the

exceptional cases k = j = l = 1 and i = j = l = 1 (since we can a�ord to lose a constant

factor because of the O(1)).
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Lastly, in the exceptional case j = p, k = l = 1, we consider a shortened 2-move sequence

·+ip → ·+i1 → ·+11. For the 1st move in this sequence,

Z+
ipZ

+
11(Eπ+

ij
(f)− Eπ+

i1
(f))2 ⪅ Cτ2

p1 · Eπ+(f)[Ωi × Rn],

and for the 2nd move in this sequence,

Z+
ipZ

+
11(Eπ+

i1
(f)− Eπ+

11
(f))2 ≈ Zτ2

p · Z+
i1Z

+
11(Eπ+

i1
(f)− Eπ+

11
(f))2

⪅ Zτ2
p · Φn

(
τ2
τ1

)
O(1)Eµ(f).

Thus, for this sequence, we can assign ω1 = 1 − Zτ2
p ≈ 1, ω2 = Zτ2

p , then the overall sum is

as claimed. The exceptional case l = p, i = j = 1 is completely symmetric.

The analysis for Type II and Type III sequences are completely analogous.

We can adapt this approach to estimate the terms in Lemma 3.3.4.

Lemma 3.3.10. Let p be the local minimum with the dominating energy barrier. Then for

i, k, l ∈ [N ] and σ ∈ {+,−} such that

H(mi) < H(mp) or i = p, and
H(mi)

τ1
+
H(mp)

τ2
≥ H(mk)

τσ(1)
+
H(ml)

τσ(2)
,

it holds that

Z+
ipZ

σ
kl

Λ(Z+
ip, Z

σ
kl)

(Eπ+
ip
(f)− Eπσ

kl
(f))2 ⪅

1

Λ
(

Z+
ip

Zσ
kl
, 1
) (Cτ2

p1Eπ+(f)[Ωi × Rn] + Φn

(
τ2
τ1

)
O(1)Eµ(f)

)
,

Z−
piZ

σ
kl

Λ(Z−
pi, Z

σ
kl)

(Eπ−
pi
(f)− Eπσ

kl
(f))2 ⪅

1

Λ
(

Z−
pi

Zσ
kl
, 1
) (Cτ2

p1Eπ−(f)[Rn × Ωi] + Φn

(
τ2
τ1

)
O(1)Eµ(f)

)
.

Finally, for any other {(i, j)σ1 , (k, l)σ2}, the term
Zσ1

ij Z
σ2
kl

Λ(Zσ1
ij , Z

σ2
kl )

(Eπ
σ1
ij
(f)− Eπ

σ2
kl
(f))2 is negli-

gible in the sense of being exponentially smaller in 1/τ2 compared to one of the terms above

on the right hand side.
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Proof. The analysis is similar as in the previous lemma, but now we have to take into account

the logarithmic mean, using the estimate

ab

Λ(a, b)
= a · b

Λ(a/b, 1)
⪅ a log(1/a)

for b ⪅ 1, a ≪ 1. The main di�erence is that we now need to be more careful to show the

transport from ·+ip to ·+11 is negligible if H(mi) ≥ H(mp) and i ̸= p by choosing the alternative

path: ·+ip → ·−ip → ·−1p → ·+1p → ·+11.

Proof of Theorem 3.2.3. Combining Lemma 3.3.3, (3.3.13) and Lemma 3.3.9, we get

Varµ(f) ⪅
1

2

∑
i,j

O(1)Eπ+(f)[Ωi × Ωj] +
1

2

∑
(i,j)

O(1)Eπ−(f)[Ωi × Ωj]

+ 2 · 1
4

∑
i

Cτ2
p1 · Eπ+(f)[Ωi × Rn] + 2 · 1

4

∑
j

Cτ2
p1 · Eπ−(f)[Rn × Ωj]

+ Φn

(
τ2
τ1

)
O(1)Eµ(f)

≤
(
O(1) + Cτ2

1p + Φn

(
τ2
τ1

)
O(1)

)
Eµ(f),

as desired.

Proof of Theorem 3.2.4. Combining Lemma 3.3.4, (3.3.13), (3.3.13) and Lemma 3.3.10, we

get

Entµ(f) ⪅
1

2

∑
(i,j)

O(τ−1
1 )Eπ+(f)[Ωi × Ωj] +

1

2

∑
(i,j)

O(τ−1
1 )Eπ−(f)[Ωi × Ωj]

+
1

2

∑
(i,j)

2N2O(τ−1
1 )Eπ+(f)[Ωi × Ωj] +

1

2

∑
(i,j)

2N2O(τ−1
1 )Eπ−(f)[Ωi × Ωj]

+
1

2

∑
i≤p

∑
(k,l)σ

1

Λ
(

Z+
ip

Zσ
kl
, 1
)
(Cτ2

p1 · Eπ+(f)[Ωi × Rn] + Φn

(
τ2
τ1

)
O(1)Eµ(f)

)

+
1

2

∑
i≤p

∑
(k,l)σ

1

Λ
(

Z−
pi

Zσ
kl
, 1
)
(Cτ2

p1 · Eπ−(f)[Rn × Ωj] + Φn

(
τ2
τ1

)
O(1)Eµ(f)

)
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≤ 2N2

(
O(τ−1

1 ) +H(mp)(τ
−1
1 + τ−1

2 )Cτ2
p1 +O(τ−1

1 )Φn

(
τ2
τ1

))
Eµ(f),

as desired.

3.3.2 Local Poincaré and log-Sobolev inequalities: proofs of Lem-

mas 3.3.5 and 3.3.6

The following decomposition of variance and entropy for a product measure reduces proving

Lemmas 3.3.5 and 3.3.6 to proving corresponding estimates for the component measures ντi .

It may be veri�ed by basic properties of variance and entropy.

Lemma 3.3.11 (Variance and entropy for product measure). Let π = νi⊗νj be a product of

two probability measures on open subsets of Rn. For any smooth function f : Rn × Rn → R

Varπ(f) = Ex2
νj

(
Varx1

νi
(f)
)
+Varx2

νj

(
Ex1

νi
(f)
)
≤ Ex2

νj

(
Varx1

νi
(f)
)
+ Ex1

νi

(
Varx2

νj
(f)
)
. (3.3.18)

For any smooth function g : Rn × Rn → R>0,

Entπ(g) = Ex2
νj

(
Entx1

νi
(g)
)
+ Entx2

νj

(
Ex1

νi
(g)
)
≤ Ex2

νj

(
Entx1

νi
(g)
)
+ Ex1

νi

(
Entx2

νj
(g)
)
. (3.3.19)

De�nition 3.3.12 (Local PI and LSI for ντi ). We say the local Gibbs measure ντi satis�es a

Poincaré inequality with constant ρ if for all smooth functions f : Rn → R

Varντi (f) ≤
1

ρ
Eντi

|∇f |2,

which we denote PI(ρ). We say ντi satis�es a log-Sobolev inequality with constant α if for all

smooth functions f : Rn → R

Entντi (f
2) ≤ 2

α
Eντi

|∇f |2,

which we denote LSI(α).

Lemma 3.3.13 (Local PI for ντi ). Under Assumption 2, given τ2 small enough, there exists

an admissible partition {Ωi}Ni=1 such that for all τ ≤ τ2, the local Gibbs measures ντi satisfy

PI(ρ) with ρ−1 = O(τ).
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Lemma 3.3.14 (Local LSI for ντi ). Under Assumption 3, given τ2 small enough, for the

same admissible partition {Ωi}Ni=1, for all τ ≤ τ2, the local Gibbs measures ντi satisfy LSI(α)

with α−1 = O(1).

Lemmas 3.3.13 and 3.3.14 are very similar to [MS14, Theorem 2.9] and [MS14, Theorem

2.10], except now that we have two temperatures τ1 < τ2, we want the regions Ωi in the

admissible partition only depend on the higher temperature τ2 but not the lower temperature

τ1, so that we can get PI and LSI for the local Gibbs measures ντ1i , ν
τ2
i de�ned on the same

regions Ωi.

This can be shown by making a small modi�cation to the proof of [MS14, Theorem 2.9,

2.10], which is based on constructing a Lyapunov function. Let us recall the de�nition of a

Lyapunov function and the criterion for PI based on it from [MS14].

De�nition 3.3.15 (Lyapunov function, De�nition 3.7 in [MS14]). A smooth function Wτ :

Ωi → (0,∞) is a Lyapunov function for ντi if the following hold for Lτ := τ∆−∇H · ∇:

(i) There exists an open set Ui ⊂ Ωi and constants b > 0, λ > 0 such that

LτWτ

Wτ

≤ −λ+ b1Ui
∀x ∈ Ωi. (3.3.20)

(ii) Wτ satis�es Neumann boundary condition on Ωi in the sense that it satis�es the inte-

gration by parts formula∫
Ωi

(−LτWτ )gdν
τ
i =

∫
Ωi

∇g · ∇Wτdν
τ
i . (3.3.21)

Lemma 3.3.16 (Lyapunov condition for local PI, Theorem 3.8 in [MS14]). If there exists

a Lyapunov function for ντi in the sense of De�nition 3.3.15 and that the truncated Gibbs

measure ντi |Ui
satis�es PI(ρUi

), then the local Gibbs measure ντi satis�es PI(ρ) with

ρ−1 ≤ b

λ
ρ−1
Ui

+
1

λ
τ.

We choose Ui to be a ball centered at the local minimum mi with a small, �xed radius

R0 such that H is strongly convex on Ui. Then the Bakry-Émery criterion provides the

following result.
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Lemma 3.3.17 (PI for truncated Gibbs measure, Lemma 3.6 in [MS14]). The measures

ντi |Ui
satisfy PI(ρUi

) with ρ−1
Ui

= O(τ).

In [MS14], the candidate for the Lyapunov function is Wτ = exp
(
H
2τ

)
, so that (see [MS14,

equation (3.9)])

LτWτ

Wτ

=
1

2
∆H(x)− 1

4τ
|∇H(x)|2.

In order to satisfy the condition (3.3.20), the Hamiltonian H was replace by a perturbed one

Hτ such that ∥H−Hτ∥∞ = O(τ). In order to satisfy the condition (3.3.21), Ωi is then chosen

to be a basin of attraction with respect to the gradient �ow of this perturbed HamiltonianHτ .

Consequently, the local PI was �rst deduced for the perturbed Gibbs measure 1
Z
exp Hτ

2τ
on

Ωi, which then implies PI for the original measure via Holley-Stroock perturbation principle.

One side e�ect of this approach is that the region Ωi depends on the temperature τ , which

is unsuitable in our setting with two di�erent temperatures.

We modify this approach as follows: instead of perturbing the Hamiltonian in the Gibbs

measure, we only perturb the Hamiltonian in the Lyapunov function. Given τ2 = ε small

enough, we will choose a perturbation Hε = H + Vε where Vε = O(ε), and choose Ωi to

be the basin of attraction with respect to the gradient �ow of Hε. Then, for every τ ≤ ε,

we choose the Lyapunov function to be Wτ = exp Hε

2τ
. Then (3.3.21) is satis�ed by [MS14,

Theorem B.1] and

LτWτ

Wτ

= −∇H · ∇Hε

2τ
+ τ

(
∆Hε

2τ
+

|∇Hε|2

4τ 2

)
=

1

2
∆Hε −

1

4τ

(
|∇H|2 − |∇Vε|2

)
≤ LεWε

Wε

,

where the last inequality holds as long as |∇Vε| ≤ |∇H|. Then once (3.3.20) is veri�ed for

τ = ε, PI for ντi follows for every τ ≤ ε on the same region Ωi.

It turns out the same perturbation used in [MS14] works here. Let S be the set of critical

points of H and M = {m1,m2, . . . ,mN} be the set of local minima of H.
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Lemma 3.3.18 (ε-modi�cation). Given a function H satisfying Assumption 2, there exist

constants ε0, λ0, a, C ∈ (0,∞) and a family of C3 functions {Vε}0<ε<ε0 such that for Hε :=

H + Vε the following hold:

(i) Vε is supported on
⋃

s∈S\MBa
√
ε(s) and |Vε(x)| ≤ Cε for all x.

(ii) Lyapunov-type condition: |∇Vε(x)| ≤ |∇H(x)| for all x and

1

2
∆Hε −

1

4ε
(|∇H|2 − |∇Vε|2) ≤ −λ0 for all x /∈

⋃
m∈M

Ba
√
ε(m). (3.3.22)

Proof. The proof of Lemma 3.3.18 will closely follow that of [MS14, Lemma 3.12]. By [MS14,

Lemma 3.11], there exist constants ε0, λ0, a ∈ (0,∞) such that for all ε < ε0,

∆H − 1

2ε
|∇H|2 ≤ −λ0 for all x /∈

⋃
m∈S

Ba
√
ε(s).

Thus, it su�ces to construct Vε satisfying (i), (ii) such that (iii) holds for all x ∈
⋃

s∈S\MBa
√
ε(s).

Moreover, it su�ces to construct Vε separately near each saddle point s. By translation and

rotational/re�ection symmetry, we may assume WLOG s = 0 and ∇2H(0) is a diagonal

matrix with nonzero eigenvalues in increasing order λ1 ≤ · · · ≤ λl < 0 < λl+1 ≤ · · · ≤ λn,

where 1 ≤ l ≤ n. If l = n, then all eigenvalues are negative, so no perturbation is necessary,

and we can just set Vε = 0 in Ba
√
ε(0).

From now on we assume l < n. Choose a constant δ > 0 small enough such that

− δ̃ := (n− 2l)δ +
l∑

i=1

λi < 0, and δ ≤ 1

2
min
1≤i≤n

(|λi|).

We introduce a norm | · |δ on Rn by

|x|2δ :=
l∑

i=1

1

2
δx2i +

n∑
i=l+1

1

2
(λi − δ)x2i =:

1

2
⟨x,Qδx⟩,

where Qδ is the positive de�nite symmetric matrix inducing the norm | · |δ. It is a diagonal

matrix with �rst l eigenvalues all equal to δ and the last n − l eigenvalues equal to λi − δ,

for i = l + 1, · · · , n. The norm | · |δ is equivalent to the Euclidean norm | · | and satis�es

δ

4
|x|2 ≤ |x|2δ ≤

λn − δ

2
|x|2 ≤ λn

2
|x|2.
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The last ingredient for the construction of Vε is a smooth cuto� function ξ : [0,∞) → R

satisfying for a > 0 to be speci�ed later

0 ≤ ξ(0) ≤ a2ε, ξ(r) = 0 for r ≥ a2ε,

ξ′(r) = −1 for r ≤ 1

4
a2ε, −1 ≤ ξ′(r) ≤ 0 for r ≥ 1

4
a2ε,

0 ≤ ξ′′(r) ≤ 2

a2ε
.

(For example, let 0 ≤ η ≤ 2 be a smooth function supported on [1
4
, 1] with total integral

equal to 1 and then choose ξ to be the function satisfying ξ(a2ε) = 0, ξ′(a2ε) = 0 and

ξ′′(x) = 1
a2ε
η
(

x
a2ε

)
.)

Now, we de�ne the ε-perturbation at s = 0

Vε(x) := ξ(|x|2δ), and Hε(x) = H(x) + Vε(x).

Then condition (i) and (ii) holds. It remains to check (iii) holds for Ba
√
ε(0). It is enough

to establish the following estimates: for ε small enough and a large enough, there exists

constant λ0 ∈ (0,∞) such that for all x ∈ Ba
2

√
ε(0),

∆Hε(x) ≤
λ0
2
, (3.3.23)

and there exist constants R0, C∆, c∇ ∈ (0,∞) such that for all x ∈ BR0(0),

∆Hε(x) ≤ C∆ (3.3.24)

|∇H(x)|2 − |∇Vε(x)|2 ≥ c∇|x|2. (3.3.25)

Let's verify (iii) assuming these estimates. By (3.3.25), |∇Vε| ≤ |∇H(x)| in Ba
√
ε(0). For

x ∈ Ba
2

√
ε(0), (3.3.23) implies (3.3.22). For x ∈ Ba

√
ε(0) \ Ba

2

√
ε(0), (3.3.24) and (3.3.25)

imply that

∆Hε(x) ≤ C∆, |∇H(x)|2 − |∇Vε(x)|2 ≥ c∇
a2

4
ε.

Choosing a2 ≥ 8(C∆+λ0)
c∇

gives (3.3.22).
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It remains to derive the estimates (3.3.23)-(3.3.25). Compared to the proof of [MS14,

Lemma 3.12] (cf. equation (3.22), (3.24)), the only di�erence is (3.3.25). We will make use

of the explicit form of the perturbation Vε:

∇Vε(x) = ξ′(|x|2δ)Qδx,

∇2Vε(x) = ξ′′(|x|2δ)Qδx⊗Qδx+ ξ′(|x|2δ)Qδ.

Derivation of (3.3.23): for |x|δ ≤ a
2

√
ε, ξ′(|x|2δ) = −1, so by Taylor expansion we get

∆Hε(x) = ∆H(0)− trQδ +O(|x|) = −δ̃ +O(
√
ε) ≤ − δ̃

2

for ε small enough.

Derivation of (3.3.24): By Taylor expansion,

∆Hε(x) = ∆H(0) + (∆H(x)−∆H(0)) + ξ′′(|x|2δ)|Qδx|2 + ξ′(|x|2δ) trQδ

≤ ∆H(0) +O(|x|) + 2

a2ε
1|x|2δ≤a

√
ε · 2λn|x|2δ − 0

≤ ∆H(0) +O(|x|) + 4λn.

Choosing R0 small enough, then for x ∈ BR0(0), we get (3.3.24).

Derivation of (3.3.25): By Taylor expansion, |∇H(x)−∇2H(0)x| = O(|x|2), so

|∇H(x)|2 ≥ (|∇2H(0)x| − |∇H(x)−∇2H(0)x|)2 ≥ |∇2H(0)x|2 −O(|x|3).

Moreover, since −1 ≤ ξ′ ≤ 0,

|∇Vε(x)|2 = ξ′(|x|2δ)2|Qδx|2 ≤ |Qδx|2.

Thus,

|∇H(x)|2 − |∇Vε(x)|2 ≥ ⟨x, (∇2H(0)2 −Q2
δ)x⟩ −O(|x|3)

≥ c̃|x|2 −O(|x|3),
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where c̃ is the constant

c̃ = min

(
min
1≤i≤l

(λ2i − δ2), min
l+1≤j≤n

(λ2j − (λj − δ)2)

)
> 0.

Choosing R0 small enough, then for x ∈ BR0(0), we get (3.3.25).

We call a family {Hε}0<ε<ε0 having properties (i)-(v) of Lemma 3.3.18 a family of ε-

modi�cations of H, and from now on we will �x one such family.

Lemma 3.3.19. For any ε < ε0, the set of local minima of Hε is M.

Proof. Property (iii) of Lemma 3.3.18 implies |∇Hε| ≠ 0 or∆Hε < 0 outside
⋃

m∈MBa
√
ε(m),

so Hε has no local minima there. Property (ii) of Lemma 3.3.18 implies that inside BR0(m),

Hε = H and therefore has a unique local minimum at m for each m ∈ M.

For each local minimum mi of H, let Ωi = Ωτ2
i be the associated basin of attraction w.r.t.

the deterministic gradient �ow de�ned by Hτ2 , that is

Ωi :=

{
y ∈ Rn : lim

t→∞
yt = mi,

dyt
dt

= −∇Hτ2(yt), y0 = y

}
.

Then (Ωi)
N
i=1 is a partition of Rn up to Lebesgue null sets. The preceding shows ντi de�ned

by (3.3.2)satis�es PI(ρ) with ρ−1 = O(τ) for all τ ≤ τ2.

Equipped with the Poincaré inequality for ντi , the log-Sobolev inequality for ντi is now a

simple consequence of the following criterion from [MS14].

Lemma 3.3.20 (Lyapunov condition for local LSI, Theorem 3.15 in [MS14]). Assume that

(i) There exists a smooth function Wτ : Ωi → (0,∞) and constants λ, b > 0 such that for

Lτ := τ∆−∇H · ∇
LτWτ

Wτ

≤ −λ|x|2 + b ∀x ∈ Ωi.

(ii) ∇2H ≥ −KH for some KH > 0 and ντi satis�es PI(ρ).

(iii) Wτ satis�es Neumann boundary condition on Ωi (see (3.3.21)).
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Then ντi satis�es LSI(α) with

α−1 ≤ 2

√
τ

λ

(
1

2
+
b+ λντi (|x|2)

ρτ

)
+
KH

λ

(
1

2
+
b+ λντi (|x|2)

ρτ

)
+

2

ρ
,

where ντi (|x|2) denotes the second moment of ντi .

Choosing Wτ to be the same we chose for the PI, it is straightforward to check the con-

ditions (i)-(iii) holds and check the second moment ντi (|x|2) is uniformly bounded. Indeed,

the veri�cation of these facts is virtually identical to the counterpart in [MS14] (cf. Lemmas

3.17-3.19). Finally, ρ−1 = O(τ) yields α−1 = O(1).

This establishes Lemma 3.3.13 and Lemma 3.3.14 up to the veri�cation that (Ωi)
N
i=1 is an

admissible partition, which we now show.

Lemma 3.3.21. For any ε < ε0, let Ω
ε
i be the basin of attraction associated to the minimum

mi w.r.t. the deterministic gradient �ow de�ned by the ε-modi�ed potential Hε, i.e.

Ωε
i :=

{
y ∈ Rn : lim

t→∞
yt = mi,

dyt
dt

= −∇Hε(yt), y0 = y

}
.

Then there exists τ0 > 0 such that for all τ < τ0 and all ε < ε0,∫
Ωε

i

exp

(
−H(x)

τ

)
dx =

(2πτ)n/2√
det∇2H(mi)

exp

(
−H(mi)

τ

)
(1 + ω(τ)).

This result is essentially shown in [MS14, Lemma 3.12]. The only change is that we modify

the proof to get a result independent of the perturbation size ε, which is needed here due to

the presence of two temperatures.

Proof. By property (ii) of Lemma 3.3.18 and Assumption, there exists R0 small enough such

that Hε = H on BR0(mi) and H is strongly convex on BR0(mi):

∇2H(x) ≥ c id for all x ∈ BR0(mi)

for some constant c > 0. Then BR0(mi) ⊂ Ωε
i . De�ne for r0 > 0 speci�ed later the ellipsoid

Ei := {x ∈ Rn : |∇2H(mi)
1/2(x−mi)| ≤

√
2r0τ | log τ |}.
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For τ small enough, Ei ⊂ BR0(mi) ⊂ Ωε
i . Moreover, there is a constant κ > 0 such that

B√
2κr0τ | log τ |

(mi) ⊂ Ei.

We split the integral into∫
Ωε

i

exp

(
−H(x)

τ

)
dx =

∫
Ei

exp

(
−H(x)

τ

)
dx︸ ︷︷ ︸

:=I1

+

∫
Ωε

i \Ei

exp

(
−H(x)

τ

)
dx︸ ︷︷ ︸

:=I2

The main contribution is from the term I1. By a straightforward calculation (cf. the proof

of [MS14, Lemma 3.12]), I1 has the asymptotic expansion

I1 =
(2πτ)n/2√
det∇2H(mi)

exp

(
−H(mi)

τ

)(
1− Γ(n/2, r0| log τ |)

Γ(n/2)

)
expO(

√
τ | log τ |3/2),

where Γ(s, x) :=
∫∞
x
rs−1xrdr is the incomplete Gamma function. Note that

Γ(n/2, r0| log τ |) =
∫ ∞

r0| log τ |
r

n
2
−1e−rdr = o(τ)

∫ ∞

r0| log τ |
e−r/2dr = O(τ r0/2).

Thus, for r0 ≥ 1,

I1 =
(2πτ)n/2√
det∇2H(mi)

exp

(
−H(mi)

τ

)
(1 + ω(τ)).

Thus, it remains to show I2 is small enough in comparison, e.g. I2 = exp
(
−H(mi)

τ

)
O(τ (n+1)/2).

By [MS14, Lemma 3.14], the growth condition 3.2.6 implies there exists cH > 0 such that

for R large enough

H(x) ≥ min
|z|=R

H(z) + cH(|x| −R) for all |x| ≥ R.

By choosing R large enough,

H(x) ≥ H(mi) + 1 + cH(|x| −R) for all |x| ≥ R.

We split I2 into

I2 =

∫
(Ωε

i \Ei)∩BR(0)

exp

(
−H(x)

τ

)
dx︸ ︷︷ ︸

:=I3

+

∫
Ωε

i \BR(0)

exp

(
−H(x)

τ

)
dx︸ ︷︷ ︸

:=I4

.
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Estimate of I3: We obtain a pointwise bound for the integrand by dividing into two cases.

Case 1: x ∈ Ωε
i \ BR0(mi), the gradient �ow associated to Hε starting at x must hit

∂BR0(mi). By strong convexity of Hε = H on BR0(mi),

Hε(x) ≥ min
z∈∂BR0

(mi)
Hε(z) ≥ min

z∈∂BR0
(mi)

c

2
|z −mi|2 +H(mi) =

cR2
0

2
+H(mi).

Thus, by property (i) of Lemma 3.3.18, for ε small enough,

H(x) ≥ cR2
0

2
− Cε+H(mi) ≥

cR2
0

4
+H(mi).

Case 2: x ∈ BR0(mi) \ Ei, then Hε(x) = H(x) and the gradient �ow associated to H

starting at x must hit ∂Ei. By strong convexity of H on BR0(mi),

H(x) ≥ min
z∈∂Ei

H(z) ≥ min
z∈∂Ei

c

2
|z −mi|2 +H(mi) ≥ cκr0τ | log τ |+H(mi).

Thus, for τ small enough,

I3 ≤ exp

[
−cκr0| log τ | −

H(mi)

τ

]
|BR(0)| = exp

(
−H(mi)

τ

)
O(τ cκr0).

Lastly, I4 is estimated as

I4 ≤ exp

(
−H(mi) + 1

τ

)∫
|x|>R

exp

(
−cH

|x| −R

τ

)
dx

= exp

(
−H(mi)

τ

)
exp

(
−1

τ

)
O(τ).

For r0 ≥ n+1
2cκ

, I2 = I3 + I4 = exp
(
−H(mi)

τ

)
O(τ (n+1)/2), so we are done.

3.3.3 Cost of exchanging temperatures: proof of Lemma 3.3.8

In order to prove Lemma 3.3.8, we observe that the local Gibbs measures ντi are close to

a class of truncated Gaussian measures in the sense of mean-di�erence (cf. [MS14, Lemma

4.6]).
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De�nition 3.3.22 (Truncated Gaussian measure). Given m ∈ Rn, Σ a symmetric positive

de�nite n× n matrix, R > 0, consider the ellipsoid

Eτ
i := {x ∈ Rn : (x−m) · Σ−1(x−m) ≤ R2τ}.

The truncated Gaussian measure γτ at temperature τ with mean m and covariance Σ on

scale R is de�ned to be

γτ (x) :=
exp

(
− 1

2τ
(x−m) · Σ−1(x−m)

)
ZR

√
τ
n√

detΣ
1Eτ ,

where ZR :=
∫
BR(0)

exp (−|x|2/2)dx =
√
2π

n
(1−O(e−R2

Rn−2)).

Lemma 3.3.23 (Approximation by truncated Gaussian). For τ ≤ τ2, let γ
τ
i be the truncated

Gaussian measure at temperature τ with mean mi and covariance Σi = (∇H2(mi))
−1 on scale

R(τ2) = | log τ2|1/2. Then
dγτi
dντi

(x) = 1 + ω(τ2), (3.3.26)

uniformly in the support of γτi , and for any smooth function f : Rn → R

(Eντi
f − Eγτ

i
f)2 ≤ Varντi

(
dγτi
dντi

)
Varντi (f) ≤ ω(τ2)τEντi

|∇f |2,

where ω(τ2) := O(
√
τ2| log τ2|3/2).

We omit the proof of Lemma 3.3.23, which is the same as [MS14, Lemma 4.6] with only

minor changes.

Corollary 3.3.24. For any smooth function f : Rn × Rn → R(
Eπσ

ij
f − E

γ
τσ(1)
i ⊗γ

τσ(2)
j

f
)2 ≤ ω(τ2)Eπσ

ij

(
τσ(1)|∇x1f |2 + τσ(2)|∇x2f |2

)
,

where ω(τ2) := O(
√
τ2| log τ2|3/2).

Proof. This follows from the previous lemma by writing

Eπσ
ij
f − E

γ
τσ(1)
i ⊗γ

τσ(2)
j

f =
(
E

ν
τσ(1)
i ⊗ν

τσ(2)
j

f − E
γ
τσ(1)
i ⊗ν

τσ(2)
j

f
)

+
(
E

γ
τσ(1)
i ⊗ν

τσ(2)
j

f − E
γ
τσ(1)
i ⊗γ

τσ(2)
j

f
)
.
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This reduces our task to proving mean-di�erence estimate for truncated Gaussian.

Lemma 3.3.25 (Mean-di�erence estimate for truncated Gaussians at two temperatures).

For any smooth function f : Rn → R

(Eγ
τ2
i
f − Eγ

τ1
i
f)2 ≤ Cn∥Σi∥

(
1 + Φn

(
τ2
τ1

))
τ2Eγ

τ2
i
|∇f |2,

where the function Φn is given by (3.2.10), and Cn is a constant only depending on n.

Proof. By change of variables, it su�ces to show the �rst inequality formi = 0,Σi = id. From

the Cauchy-Schwarz inequality and the fundamental theorem of calculus, we can deduce

(Eγ
τ2
i
f − Eγ

τ1
i
f)2 ≤ Eγ1

i

(
f(
√
τ2X)− f(

√
τ1X)

)2
≤
∫
Sn−1

dω

∫ R

0

(∫ √
τ2r

√
τ1r

|∇f(sω)|ds

)2
e−

r2

2

ZR

rn−1dr

≤ 2(I1 + I2),

where, for some 0 < κ ≤ R to be speci�ed later,

I1 :=

∫
Sn−1

dω

∫ R

0

(∫ √
τ2r

√
τ1r

|∇f(sω)|1s≤κ
√
τ2ds

)2
e−

r2

2

ZR

rn−1dr,

I2 :=

∫
Sn−1

dω

∫ R

0

(∫ √
τ2r

√
τ1r

|∇f(sω)|1s>κ
√
τ2ds

)2
e−

r2

2

ZR

rn−1dr.

Estimate for I2: By Cauchy-Schwarz,

I2 ≤
∫
Sn−1

dω

∫ R

0

(
√
τ2r −

√
τ1r)

(∫ R
√
τ2

κ
√
τ2

|∇f(sω)|21s≤r
√
τ2ds

)
e−

r2

2

ZR

rn−1dr

≤
√
τ2

∫
Sn−1

dω

∫ R
√
τ2

κ
√
τ2

|∇f(sω)|2
(∫ R

s√
τ2

e−
r2

2

ZR

rndr

)
ds.

Using integration by parts and standard Gaussian tail bound, for s ≥ κ
√
τ2,∫ R

s√
τ2

e−
r2

2 rndr ≤ Cn(1 + κ−(n−1))e
− s2

2τ2

(
s2

τ2

)n−1
2

,

where Cn is a constant only depending on n. This gives

I2 ≤ Cn(1 + κ−(n−1))τ2Eγ
τ2
i
|∇f |2.
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Estimate for I1: By Cauchy-Schwarz

I1 ≤
∫
Sn−1

dω

∫ R

0

(∫ κ
√
τ2

0

|∇f(sω)|2sn−1ds

)(∫ √
τ2r

√
τ1r

s−(n−1)ds

)
e−

r2

2

ZR

rn−1dr

=
1

ZR

∥∇f∥2L2(Bκ
√

τ2
(0))

∫ R

0

(∫ √
τ2

√
τ1

u−(n−1)du

)
re−

r2

2 dr

≤ Cne
κ2

2 τ2Eγ
τ2
i
|∇f |2 · Φn

(
τ2
τ1

)
,

where Cn is a constant only depending on n. The conclusion now follows if we choose κ = R

when R < 1 and κ = 1 when R ≥ 1.

Corollary 3.3.26. For any smooth function f : Rn × Rn → R

(Eγ
τ1
i ⊗γ

τ2
j
f − Eγ

τ2
i ⊗γ

τ1
j
f)2 ≤

(
1 + Φn

(
τ2
τ1

))
O(τ2)

(
Eπ+

ij
|∇x2f |2 + Eπ−

ij
|∇x1f |2

)
.

Proof. This follows from the previous lemma and (3.3.26) by writing

Eγ
τ1
i ⊗γ

τ2
j
f − Eγ

τ2
i ⊗γ

τ1
j
f = (Eγ

τ1
i ⊗γ

τ2
j
f − Eγ

τ1
i ⊗γ

γ1
j
f) + (Eγ

τ1
i ⊗γ

τ1
j
f − Eγ

τ2
i ⊗γ

τ1
j
f).

Lemma 3.3.8 follows from Corollary 3.3.24 and 3.3.26.

Remark 3.3.27. One can show a weaker version of Lemma 3.3.8 by a simpler approach:

First we split the mean-di�erence as

(Eπ+
ij
f − Eπ−

ij
f)2 = (Eπ+

ij
f − Eν

τ1
i ⊗ν

τ1
j
f + Eν

τ1
i ⊗ν

τ1
j
f − Eπ−

ij
f)2

≤ 2Ex1

ν
τ1
i

(Ex2

ν
τ2
j

f − Ex2

ν
τ1
j

f)2 + 2Ex2

ν
τ1
j

(Ex1

ν
τ1
i

f − Ex1

ν
τ2
i

f)2.

Now, using the covariance representation of mean-di�erence and Cauchy-Schwarz

(Eν
τ2
k
g − Eν

τ1
k
g)2 =

(
Eν

τ2
k
g − Eν

τ2
k
g
dντ1k
dντ2k

)2

= Covντ2k

(
g,
dντ1k
dντ2k

)2

≤ Varντ2k (g)Varντ2k

(
dντ1k
dντ2k

)
≤ O(τ2)Eν

τ2
k
|∇g|2Eν

τ1
k

(
dντ1k
dντ2k

)
.

127



Finally, using the partition size given in (3.3.1) we have a uniform estimate on the relative

density

dντ1k
dντ2k

=
ντ2k (Ωk)

ντ1k (Ωk)
e−H(x)(τ−1

1 −τ−1
2 ) ≤ ντ2k (Ωk)

ντ1k (Ωk)
≤
(
τ2
τ1

)n
2

(1 +O(
√
τ2| log τ2|3/2)).

Applying the preceding with k = j, g(·) = f(x1, ·) and k = i, g(·) = f(·, x2), respectively, we

obtain the estimate

(Eπ+
ij
f − Eπ−

ij
f)2 ≤

(
τ2
τ1

)n
2

O(τ2)(Eπ+
ij
|∇x2f |2 + Eπ−

ij
|∇x1f |2).

In comparison to Lemma 3.3.8, the dependence in the ratio τ2/τ1 appearing in front of the

Dirichlet form is about one order worse in exponent.

3.3.4 Optimality of dependence on temperature ratio: proof of

Proposition 3.2.6

It su�ces to consider test functions of the form f(x, y) = f(x). This is equivalent to replacing

µ by its �rst marginal, which is µ̄ = 1
2
(ντ1 + ντ2). In this case, Varµ(f) and Eµ(f) reduces to

Varµ̄(f) =
1

2
(Varντ1 (f) + Varντ2 (f)) +

1

4
(Eντ1f − Eντ2f)

2,

Eµ̄(f) =
1

2
(τ1Eντ1 |∇f |2 + τ2Eντ2 |∇f |2).

We further restrict f to Cc(Ω1). By (3.3.1) and (3.2.8), ντ1(Ω1), ν
τ2(Ω1) ≈ 1 once τ1, τ2 are

small enough, so dν
τ1
1

dντ1
,
dν

τ2
1

dντ2
≈ 1 on Ω1 (see equation (3.3.2)). Then by applying Young's

inequality

Varµ̄(f) ≳ (Eντ1f)
2 − 4(Eντ2f)

2 ≳ (Eν
τ1
1
f)2 − 5(Eν

τ2
1
f)2,

Eµ̄(f) ≲ τ1Eν
τ1
1
|∇f |2 + τ2Eν

τ2
1
|∇f |2.

By change of variables, we may assume m1 = 0,Σ1 = (∇2H(m1))
−1 = id. We consider a

test function of the form

f(x) = fε(x) = h(|x|/
√
ε),
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where h ≥ 0 is a compactly supported, absolutely continuous function and τ1 ≤ ε ≤ τ2 is

a scaling parameter, both to be speci�ed later. As in the proof of Lemma 3.3.8, we will

approximate by truncated Gaussian measures (see De�nition 3.3.22). Since ε ≤ τ2, fε is

supported in the support of γτ21 . By Lemma 3.3.23,

Varµ̄(f) ≳ (Eγ
τ1
1
fε)

2 − 6(Eγ
τ2
1
fε)

2, (3.3.27)

Eµ̄(f) ≲ τ1Eν
τ1
1
|∇fε|2 + τ2Eγ

τ2
1
|∇fε|2, (3.3.28)

if τ2 is small enough. We have:

τ1Eν
τ1
1
|∇fε|2 =

τ1
ε
E

ν
τ1
ε

1

|∇f1|2, (3.3.29)

τ2Eγ
τ2
1
|∇fε|2 =

τ2
ε
E

γ
τ2
ε

1

|∇f1|2 ≤
1√
2π

n (ε/τ2)
(n−2)/2∥∇f1∥2L2 , (3.3.30)

Eγ
τ2
1
fε = E

γ
τ2
ε

1

f1 ≤
1√
2π

n (ε/τ2)
n/2∥f1∥L1 , (3.3.31)

and for any r ≥ 0,

Eγ
τ1
1
fε = E

γ
τ1
ε

1

f1 ≥ P
γ

τ1
ε

1

(|X| ≤ r) · inf
|x|≤r

f1 ≥
(
1− n exp

(
− r2

2n

ε

τ1

))
· inf
[0,r]

h. (3.3.32)

In the following Rn > 0 is the number such that exp
(
−R2

n

2n

)
= 1

2
.

Case 1: n ≥ 3. We choose h to be a compactly supported smooth function such that h = 1

on [0, Rn], decreases to 0 on [Rn, 2Rn] and is 0 outside [0, 2Rn]. Then

τ2Eγ
τ2
1
|∇fε|2

(3.3.30)

≲ (ε/τ2)
(n−2)/2, Eγ

τ2
1
fε

(3.3.31)

≲ (ε/τ2)
n/2, Eγ

τ1
1
fε

(3.3.32)

≥ 1

2
,

where the implicit constants only depend on the dimension n and the function h. Since

h′ = 0 on [0, Rn]

τ1Eν
τ1
1
|∇fε|2

(3.3.29)

≤ τ1
ε
∥h′∥2L∞P

ν
τ1
ε

1

(|X| ≥ Rn) ≤
τ1
ε
∥h′∥2L∞CHe

−cH
ε
τ1 ≲m (τ1/ε)

m,

for every positive integerm, where the constants cH , CH > 0 only depend on the Hamiltonian

H. The second inequality is a consequence of Assumption 2 (see [MS14, Lemma 3.13]). Now,
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for any 0 < η < 1
2
, set ε = τ 1−η

1 τ η2 , and choose m large enough so that ηm ≥ (1−η)(n−2)/2,

we obtain

Eµ̄(f)
(3.3.28)

≲η (τ1/τ2)
(1−η)(n−2)/2, Varµ̄(f)

(3.3.27)

≳η (τ2/τ1)
(1−η)(n−2)/2Eµ̄(f),

if τ2, τ1/τ2 are both small enough.

Case 2: n = 2. Let h be the function given by

h(r) =


1 for 0 ≤ r ≤ r0,

2(1− rα) for r0 ≤ r ≤ 1,

0 for r ≥ 1,

for parameters 0 < α < 1, 0 < r0 < 1 satisfying rα0 = 1
2
, to be speci�ed later. Then h is

absolutely continuous, h′ = 0 on [0, r0], and by direct computation

∥f1∥L1 ≤ πα, ∥∇f1∥2L∞ = α2r−2
0 , ∥∇f1∥2L2 = 3πα.

We choose ε = τ2 and r20
τ2
τ1

= R2
2 (which is possible once τ1/τ2 is small enough). Then:

Eγ
τ2
1
fε

(3.3.31)

≤ 1

2π

ε

τ2
∥f1∥L1 ≤ α

2
, Eγ

τ1
1
fε

(3.3.32)

≥ 1

2
,

τ1Eν
τ1
1
|∇fε|2

(3.3.29)

≤ τ1
ε
∥∇f1∥2L∞ ≤ α2

R2
2

, τ2Eγ
τ2
1
|∇fε|2

(3.3.30)

≤ 1

2π
∥∇f1∥2L2 =

3α

2
.

Since rα0 = 1
2
, 1

α
= 1

2 log 2
log
(

τ2
τ1R2

2

)
. Thus

Eµ̄(f)
(3.3.28)

≲
α2

R2
2

+
3α

2
, Varµ̄(f)

(3.3.27)

≳
1

α
Eµ̄(f) ≳ log

(
τ2
τ1

)
Eµ̄(f),

if τ2, τ1/τ2 are both small enough.

3.3.5 Optimality in one dimension: proofs of Proposition 3.2.7 and

Proposition 3.2.8

It su�ces to consider test functions of the form f(x, y) = g(x)g(y). This is equivalent to

replacing µ by π = ντ1 ⊗ ντ2 . In this case, Varµ(f),Entµ(f 2), Eµ(f), Iµ(f) reduce to

Varπ(f) = Eντ1g
2Eντ2g

2 − (Eντ1g)
2(Eντ2g)

2,
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Entπ(f) = Eντ1g
2 Entντ2 g

2 + Eντ2g
2 Entντ1 g

2,

1

2
Iπ(f

2) = Eπ(f) = τ1Eντ1 (g
′)2Eντ2g

2 + τ2Eντ1g
2Eντ2 (g

′)2.

We represent ντi as the mixture

ντi = Zτi
1 ν

τi
1 + Zτi

2 ν
τi
2 where ντi1 := ντi|Ω1 , ν

τi
2 := ντi |Ω2 ,

where Ω1 := (−∞, s),Ω2 := (s,∞). Denote

Zτi
1 = ντi(Ω1) ≈ 1, Zτi

2 = ντi(Ω2) ≈
√
H ′′(m1)√
H ′′(m2)

e−H(m2)/τi .

Here and below, ≈ (resp. ⪅) means equality (resp. less than or equal) up to a multiplicative

factor of 1 +O(
√
τ2| log τ2|3/2).

Proof of Proposition 3.2.7: Imposing Eντ1g = 0, we get

Eπ(f)
Varπ(f)

= τ1
Eντ1 (g

′)2

Eντ1g2
+ τ2

Eντ2 (g
′)2

Eντ2g2
.

We make the following ansatz for g:

g(x) =


g(m1) for x ≤ s− δ

g(m1) +
g(m2)−g(m1)√

2πστ2
· κ
∫ x

s−δ
e−(y−s)2/(2στ2)dy for s− δ < x < s+ δ

g(m2) for x > s+ δ,

where σ is a positive constant to be speci�ed later, δ =
√

2r0τ2| log τ2| for some positive

constant r0 to be chosen later, and κ is chosen so that g is continuous at s+ δ. (This is the

same kind of ansatz used in [MS14, Section 2.4].) Then κ = 1 + O(τ
−r0/σ
2 ) ≈ 1 once r0 is

large enough. Fix such a choice of r0. For τ2 small enough, δ is small enough so that

Eντig ≈ g(m1)Z
τi
1 + g(m2)Z

τi
2 .

This motivates the choice

g(m1) ≈ −1, g(m2) ≈ 1/Zτ1
2 ,

such that Eντ1g = 0. Then

Eντ2g
2 ≈ Zτ2

1 g(m1)
2 + Zτ2

2 g(m2)
2 ≈ g(m2)

2Zτ2
2 ,
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Eντ1g
2 ≈ Zτ1

1 g(m1)
2 + Zτ1

2 g(m2)
2 ≈ g(m2)

2Zτ1
2 .

Finally, we compute the Dirichlet forms. By Taylor expansion of H around s

Eντ2 (g
′)2 ≈ g(m2)

2

2πστ2

1

Zτ2

∫
Bδ(s)

e−(x−s)2/(στ2)−H(x)/τ2dx

≈ g(m2)
2

2πστ2

√
H ′′(m1)√
2πτ2

e−H(s)/τ2

∫
Bδ(s)

e−(x−s)2/(2τ2)(2/σ+H′′(s))dx

≈ g(m2)
2

√
H ′′(m1)

2πτ2
e−H(s)/τ2

√
|H ′′(s)|,

where we set σ = 1/|H ′′(s)| = −1/H ′′(s). This implies

τ2
Eντ2 (g

′)2

Eντ2g2
≈
√
H ′′(m2)|H ′′(s)|

2π
e(H(m2)−H(s))/τ2 ≈ ρ.

It remains to show the other term is asymptotically negligible:

Eντ1
(g′)2 ⪅

g(m2)
2

2πστ2

1

Zτ1

∫
Bδ(s)

e−(x−s)2/(στ2)dx · sup
x∈Bδ(s)

e−H(x)/τ1

⪅
g(m2)

2

2π

√
H ′′(m1)|H ′′(s)|√

2τ1τ2
e−(1−η)H(s)/τ1 ,

where η = O(δ2). Since τ2 > Kτ1 for a constant K > 1, choosing δ su�ciently small, this

implies τ1
Eντ1 (g

′)2

Eντ1 g
2 is asymptotically negligible compared to ρ.

Proof of Proposition 3.2.8: In the same set-up as above, imposing Eντ1g
2 = 1, we get

1

2

Iπ(f
2)

Entπ(f)
≤ τ1

Eντ1 (g
′)2

Entντ1 g2
+ τ2

Eντ2 (g
′)2

Entντ1 g2Eντ2g2
.

We use the same form of ansatz as before with

g(m1)
2 ≈ Zτ1

2

Zτ1
1

≈
√
H ′′(m1)√
H ′′(m2)

e−H(m2)/τ1 , g(m2)
2 =

1

g(m1)2

such that Eντ1g
2 = 1. Then

Eντ2g
2 ≈ Zτ2

1 g(m1)
2 + Zτ2

2 g(m2)
2 ≈ Zτ2

2 g(m2)
2,

Entντ1 g
2 ≈ Zτ1

1 g(m1)
2 log g(m1)

2 + Zτ1
2 g(m2)

2 log g(m2)
2 ≈ log g(m2)

2 ≈ H(m2)

τ1
,
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and the same computation as before shows

Eντ1 (g
′)2 ⪅ g(m2)

2

√
H ′′(m1)|H ′′(s)|
2π

√
2τ1τ2

e−(1−η)H(s)/τ1 ,

Eντ2 (g
′)2 ≈ g(m2)

2

√
H ′′(m1)|H ′′(s)|

2πτ2
e−H(s)/τ2 ,

where η = O(δ2). This implies

τ2
Eντ2 (g

′)2

Entντ1 g2Eντ2g2
≈ τ1

√
H ′′(m2)|H ′′(s)|
2πH(m2)

e(H(m2)−H(s))/τ2 ≲ α,

and that τ1
Eντ1 (g

′)2

Entντ1 g2
is asymptotically negligible compared to α.

3.4 Applications of main results

3.4.1 Application to sampling

It is well known that estimates on the Poincaré and log-Sobolev constant yield estimates of

the rate of convergence to equilibrium of the underlying process. Applying to the isa, we

obtain the following direct consequence of Theorem 3.2.3 and Theorem 3.2.4. We refer to

[Sch12, Theorem 1.7] for a proof in the setting of the overdamped Langevin dynamics. The

argument directly carries over to the isa.

Corollary 3.4.1. Let ft be the relative density of the in�nite swapping process (3.2.2) at

time t. Under the same assumptions as in Theorem 3.2.3 it holds that

Varµ(ft) ≤ e−2ρtVarµ(f0),

where ρ satis�es the estimate (3.2.9). Under the same assumptions as in Theorem (3.2.4) it

holds that

Entµ(ft) ≤ e−2αt Entµ(f0),

where α satis�es the estimate (3.2.12).
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Another well-known consequence is that the Poincaré or log-Sobolev constant allows one

to quantify the ergodic theorem i.e. to estimate speed of convergence of the time average to

the ensemble mean. See [CG08, Proposition 1.2.] and [Wu00, Corollary 4] for a proof in the

setting of the overdamped Langevin dynamics. The same argument carries over to the isa.

Corollary 3.4.2. Let ν denote the initial law of the isa Xt. Under the same assumptions

as in Theorem 3.2.3 it holds that for all functions f : RN × RN → R such that sup |f | = 1,

all 0 < R ≤ 1 and all t > 0

Pν

(
1

t

∫ t

0

f(Xs) ds−
∫
f dµ ≥ R

)
≤
∥∥∥∥dνdµ

∥∥∥∥
L2

exp

(
− tR2ρ

8Varµ(f)

)
,

where ρ satis�es the estimate (3.2.9).

Under the same assumptions as in Theorem 3.2.4 it holds that for all functions f ∈ L1(µ)

and all R, t > 0

Pν

(
1

t

∫ t

0

f(Xs)ds−
∫
fdµ ≥ R

)
≤
∥∥∥∥dνdµ

∥∥∥∥
L2

exp
(
−tαH∗(R)

)
,

where α satis�es the estimate (3.2.12) and

H∗(R) := sup
λ∈R

{
λR− log

∫
exp

(
λ
(
f −

∫
f dµ

))
dµ

}
.

One consequence of Corollary 3.4.2 is that the isa has an exponential gain compared to the

overdamped Langevin dynamics for sampling (see also Remark 3.2.5). See [DLPD12] for the

details on the use of the isa to sample from the Gibbs measure 1
Z
exp
(
−H

τ1

)
at temperature

τ1.

3.4.2 Application to simulated annealing

In this section, we apply the log-Sobolev inequality of Theorem 3.2.4 to the simulated an-

nealing of the isa.

The goal of simulated annealing is to �nd the global minimum of a function H : RN → R

that is potentially non-convex and lives in a high-dimensional space. Let us explain the main
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idea of the stochastic version of simulated annealing. One considers a stochastic process onH

that is subject to thermal noise. When simulating this process one lowers the temperature

slowly over time. Hereby, the stochastic process gets trapped. Now, the goal is to show that

the trapped process converges to the global minimum of H with high probability. This is

typically true if the cooling is slow enough. Hence, another goal is to �nd the best stochastic

process with the fastest possible cooling schedule that still allows one to �nd the global

minimum.

Simulated annealing for the overdamped Langevin dynamics was studied in [GH86, Mic92].

As we will see below, the cooling schedule has to be logarithmically slow. This implies long

computation times in order to �nd the global minimum. There are many ways to improve

this behavior. Luckily, one has the freedom to choose the underlying stochastic process

which is used for simulated annealing. One of the most e�cient approach is called Cuckoo

search and is based on Lévy �ights (see [Pav07, YD09]). Those methods are able to �nd the

global minimum in certain situations with a polynomial cooling schedule. An alternative

is to use replica exchange or parallel tempering. As we know from [DLPD12], mixing can

only improve when particles are swapped faster, which makes the isa a natural candidate for

simulated annealing.

In [Mic92] it was shown that for the overdamped Langevin dynamics the fastest successful

cooling schedule is characterized by the Eyring-Kramers formula for the log-Sobolev con-

stant. However, at that time no estimates on the associated log-Sobolev constant for low

temperatures were known at that time. Hence, more sophisticated arguments were applied

by [HKS89] to replace the log-Sobolev constant by the Poincaré constant showing that the

fastest successful cooling schedule is characterized by the critical depth E∗ = H(s1p)−H(mp).

Only in 2014, the Eyring-Kramers formula for the log-Sobolev constant was derived in [MS14]

which leads to a more direct proof of the same result. This formula was then used by [Mon18]

to study simulated annealing for the underdamped Langevin dynamics, showing that the

Langevin dynamics is at least as good as the overdamped Langevin dynamics for simulated
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annealing. The main result of [HKS89] (see also [Mon18]) is stated as follows.

Theorem 3.4.3 ([HKS89, Mic92]). Let Xt be given by the classical overdamped Langevin

dynamics

dXt = −∇H(Xt) dt+
√
2τ(t) dBt. (3.4.1)

Let E∗ := H(s1p)−H(mp) denote the critical depth of the potential H. Then:

If τ(t) ≥ E
log t

for t large enough with E > E∗, then for all δ > 0

P
(
H(Xt) ≤ H(m1) + δ

)
→

t→∞
1.

If τ(t) ≤ E
log t

for t large enough with 0 < E < E∗, then for δ small enough

lim sup
t→∞

P
(
H(Xt) ≤ H(m1) + δ

)
< 1.

In this section we study simulated annealing for the in�nite swapping dynamics given by

the following SDE dX1 = −∇H(X1) dt+
√

2 τ1(t) ρ(X1, X2) + 2 τ2(t) ρ(X2, X1) dB1 ,

dX2 = −∇H(X2) dt+
√

2 τ2(t) ρ(X1, X2) + 2 τ1(t) ρ(X2, X1) dB2 .
(3.4.2)

We require that for some �xed constant K > 1

τ2(t) = Kτ1(t) and τ1(t) ↓ 0 .

In Theorem 3.2.3 and Theorem 3.2.4, we showed that the in�nite swapping dynamics mixes

faster than the overdamped Langevin dynamics. Choosing τ2 = Kτ1, the e�ective critical

depth of the potential H is E∗
K

compared to E∗ for the classical overdamped Langevin dynam-

ics given by (3.4.1). This indicates that the in�nite swapping dynamics could outperform

the overdamped Langevin dynamics for simulated annealing. The main result of this section

shows that this is true.
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Theorem 3.4.4. Assume that the potential H satis�es Assumptions 3 and 4. Let E∗ :=

H(sp1)−H(mp) be the critical depth of the potential H. For K > 1 and E > E∗
K
, let

τ1(t) =
E

log(2 + t)
and τ2(t) =

KE

log(2 + t)
. (3.4.3)

Let X1, X2 be given by (3.4.2) with initial distribution m. Let mt(x1, x2) be the probability

density of (X1(t), X2(t)). Assume the following moment condition for the initial distribution

m: for every p ≥ 1, there exists a constant Cp such that∫ (
H(x1) +H(x2)

)p
dm(x1, x2) ≤ Cp. (3.4.4)

Then for all δ > 0, ε > 0

P(min{H(X1(t)), H(X2(t))} > δ) ≲

(
1

1 + t

)min( δ
E
, 1
2
− E∗

2KE )−ε

. (3.4.5)

3.4.3 Proof of Theorem 3.4.4

With the help of Theorem 3.2.4, i.e. the low-temperature asymptotics of the log-Sobolev

constant, the proof of Theorem 3.4.4 follows the arguments in [Mic92, Mon18].

For each t > 0, let µt be the probability measure given in (3.2.3) at temperatures τ1 =

τ1(t), τ2 = τ2(t) as de�ned in (3.4.3), i.e. µt(x1, x2) =
1
2
(πt(x1, x2) + πt(x2, x1)), with

πt(x1, x2) :=
1

Zt

exp

(
−H(x1)

τ1(t)
− H(x2)

τ2(t)

)
,

where Zt is the normalizing constant making πt a probability measure. Our �rst observation

is that the mass of the instantaneous equilibrium µt concentrates around the global minimum

minH = 0 as t→ ∞.

Lemma 3.4.5. If (X̃1(t), X̃2(t)) has law µt, then for every 0 < ε < δ, there exists constant

C such that

P(min{H(X̃1(t)), H(X̃2(t))} > δ) ≤ Ce
− δ−ε

τ1(t) ≤ C(2 + t)−
δ−ε
E .
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Proof. Since µt(x1, x2) =
1
2
(πt(x1, x2) + πt(x2, x1)) and minH(x1, x2) is symmetric,

P(min{H(X̃1(t)), H(X̃2(t))} > δ) = P(min{H(Ỹ1), H(Ỹ2)} > δ)

= P(H(Ỹ1) > δ)P(H(Ỹ2) > δ)

≤ P(H(Ỹ1) > δ),

where (Ỹ1, Ỹ2) has law πt, and Ỹ1, Ỹ2 are independent. It remains to bound

P(H(Ỹ1) > δ) =

∫
H(x)>δ

e
−H(x)

τ1 dx∫
e
−H(x)

τ1 dx
.

Under Assumption 3, [MS14, Lemma 3.14] applies and shows H has linear growth at in�nity.

More speci�cally, there exists a constant CH such that for all su�ciently large R,

H(x) ≥ min
|z|=R

H(z) + C(|x| −R) for |x| > R.

In the above, we can choose R large enough so that min|z|=RH(z) > δ. Then∫
H(x)>δ

e
−H(x)

τ1 dx =

∫
H(x)>δ,|x|<R

e
−H(x)

τ1 dx+

∫
|x|>R

e
−H(x)

τ1 dx

≤ e
− δ

τ1

(
|BR(0)|+

∫
|x|>R

e
−C(|x|−R)

τ1 dx

)
≤ e

− δ
τ1 (|BR(0)|+O(τ1)).

On the other hand, there exists r > 0 such that H(x) < ε when |x| < r. Then∫
e
−H(x)

τ1 dx >

∫
|x|<r

e
−H(x)

τ1 dx > e
− ε

τ1 |Br(0)|.

Combining these gives the desired estimate.

Let (X̃1(t), X̃2(t)) be a random vector with law µt. By Lemma 3.4.5 and Pinsker's in-

equality, we have

P(min{H(X1(t)), H(X2(t))} > δ) ≤ P(min{H(X̃1(t)), H(X̃2(t))} > δ) + dTV (µt,mt)

≤ C(2 + t)−
δ−ε
E +

√
2Ent(mt|µt), (3.4.6)
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where

Ent(mt|µt) :=

∫
mt

µt

log

(
mt

µt

)
dµt

is the relative entropy of mt with respect to µt. Thus, it remains to bound Ent(mt|µt). The

following lemma gives an estimate of d
dt
Ent(mt|µt), the proof of which is in the same spirit

of [Mic92, Proposition 3].

Lemma 3.4.6.

d

dt
Ent(mt|µt) ≤ −2Iµt

(
mt

µt

)
+
d

dt

(
1

τ1(t)
+

1

τ2(t)

)
E[H(X1(t)) +H(X2(t))]. (3.4.7)

Proof. First note that

d

dt
Ent(mt|µt) =

∫
dmt

dt
log

(
mt

µt

)
dx+

∫
mt

d

dt
log

(
mt

µt

)
dx

=

∫
dmt

dt
log

(
mt

µt

)
dx+

∫
dmt

dt
dx−

∫
mt

µt

dµt

dt
dx

=

∫
dmt

dt
log

(
mt

µt

)
dx−

∫
d log(µt)

dt
dmt. (3.4.8)

We consider the �rst term in (3.4.8). Observe that mt satis�es the Fokker-Planck equation

dmt

dt
= ∇x1 · (mt∇x1H) +∇x2 · (mt∇x2H) + ∆x1(a1mt) + ∆x2(a2mt).

Combining this with the identity ∇xi
(aiµt) = −µt∇xi

H, we get

dmt

dt
= ∇x1 ·

(
a1µt∇x1

(
mt

µt

))
+∇x2 ·

(
a2µt∇x2

(
mt

µt

))
.

Integrating by parts, we have∫
dmt

dt
log

(
mt

µt

)
dx = −

∫ (
a1

∣∣∣∣∇x1

(
mt

µt

)∣∣∣∣2 + a2

∣∣∣∣∇x2

(
mt

µt

)∣∣∣∣2
)
µt

mt

dµt

= −2Iµt

(
mt

µt

)
, (3.4.9)

where Iµt is the Fisher information de�ned in (3.2.4) for µ = µt. Next we consider the second

term in (3.4.8). Using that minH = 0 and that τ1(t), τ2(t) are decreasing, direct calculation

yields

−d log(µt)

dt
≤ d

dt

(
1

τ1(t)

)(
H(x1)ρ(x1, x2) +H(x2)ρ(x2, x1)

)
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+
d

dt

(
1

τ2(t)

)(
H(x1)ρ(x2, x1) +H(x2)ρ(x1, x2)

)
≤ d

dt

(
1

τ1(t)
+

1

τ2(t)

)(
H(x1) +H(x2)

)
.

Integrating this against dmt and combining it with (3.4.9) yields (3.4.7).

The second term on the right hand side of (3.4.7) are controlled via the following lemma.

Lemma 3.4.7. For any ε > 0, there exists a constant C such that

E
[
H(X1(t)) +H(X2(t))

]
≤ C(1 + t)ε.

We omit the proof of Lemma 3.4.7, which closely follows that of [Mic92, Lemma 2],

using the moment assumptions on the initial distribution m given in (3.4.4) and growth

assumptions on the potential H in Assumption 3.

Lemma 3.4.8. For any ε > 0, there exists C such that

Ent(mt|µt) ≤ C

(
1

t

)1− E∗
KE

−ε

.

Proof. Using the log-Sobolev inequality in Theorem 3.2.4, the estimate (3.4.7) becomes

d

dt
Ent(mt|µt) ≤ −2αt Ent(mt|µt) +

2

E
(2 + t)−1E[H(X1(t)) +H(X2(t))],

where αt is the LSI constant in (3.2.11) for µ = µt. From (3.2.12) we see that for any ε > 0,

there exists t0 > 0 and C1 > 0 such that for t > t0,

2αt ≥ C1(2 + t)−
E∗
KE

−ε.

Together with Lemma 3.4.7, we get that for t > t0,

d

dt
Ent(mt|µt) ≤ −C1(1 + t)−

E∗
E

−ε Ent(mt|µt) + C2(1 + t)−1+ε.

A standard Gronwall-type argument as in the proof of [Mon18, Lemma 19] then �nishes o�

the estimate: for 0 < ε < 1
2

(
1− E∗

KE

)
, let

Q(t) = Ent(mt|µt)−
2C2

C1

(1 + t)−1+ E∗
KE

+2ε.
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Then for t0 large enough and t > t0,

d

dt
Q(t) ≤ −C1(1 + t)−

E∗
KE

−εQ(t),

Q(t) ≤ Q(t0)e
−C1

∫ t
t0
(1+t)−

E∗
KE

+ε

,

Ent(mt|µt) ≤
2C2

C1

(1 + t)−1+ E∗
KE

+2ε + Ent(mt0|µt0)e
−C1

ν
((1+t)ν−(1+t0)ν),

where ν = 1− E∗
KE

− ε > 0, and the conclusion follows.

Combining (3.4.6) and Lemma 3.4.8, we get that for any δ > 0, ε > 0, there exists a

constant C such that

P
(
min

{
H(X1(t)), H(X2(t))

}
> δ
)
≤ C

((
1

1 + t

) (δ−ε)
E

+

(
1

1 + t

) 1− E∗
KE

−ε

2

)
,

which implies (3.4.5).
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Chapter 4

Diameter of a long-range percolation

graph

Many real-world networks exhibit the small-world phenomenon: their typical distances are

much smaller than their sizes. One way to model this phenomenon is a long-range percolation

graph on the d-dimensional hypercube {0, 1, · · · , N}d, in which edges are added between far-

away vertices with probability falling o� as a power of the Euclidean distance. A natural

question of long range percolation is how the resulting diameter of the box of size N in

graph-theoretical distance scales with N . This question has been intensely studied in the

past and the answer depends on the exponent s in the connection probabilities (see e.g.

[BKPS04], [CGS02], [Bis04], [Bis11], [Ber04], and [DS13]). In this work we focus on the

critical regime s = d studied earlier by [CGS02] and improve the results from bounds to a

sharp leading-order asymptotic.

4.1 Model and Current Result

We consider a random graph G(N) on the hypercube [N ]d ≡ {0, 1, · · · , N}d. Let ∥x∥ denote

the L1 norm of x ∈ Zd. Independently from each other, every pair of sites x, y ∈ [N ]d is

connected with probability{
1 if ∥x− y∥ = 1,

1− exp
(
− β

∥x−y∥d

)
otherwise,
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where β > 0 is some �xed parameter. Let D(x, y) denote the graph-theoretical distance

between x, y in G(N) and let DN denote the associated diameter of G(N). The authors of

[CGS02] proved the following result:

Theorem 4.1.1. There exist constants C1, C2 (which may depend on β, d) such that

lim
N→∞

P
(
C1 logN

log logN
≤ DN ≤ C2 logN

log logN

)
= 1.

Here is a heuristic explanation of this result. The critical exponent s = d in the connection

probabilities means that a typical site x in G(N) has Θ(logN) neighbors with high proba-

bility. This suggests that as m increments, the set Bm(x) grows like a tree with branching

degree Θ(logN), ignoring any overlap with previously reached sites. Therefore, starting from

x, in m steps we should be able to reach (Θ(logN))m sites. At m = d logN/ log logN , this

amounts to Θ(Nd) sites. This suggests the constants C1, C2 can be brought arbitrarily close

to d. The arguments in [CGS02] already show that C1 = d− ε for any ε > 0, but the value

of C2 is much bigger than d. In this work we show that we can also take C2 = d+ ε for any

ε > 0:

Theorem 4.1.2. For any ε > 0,

lim
N→∞

P
(
DN ≤ (d+ ε) logN

log logN

)
= 1.

In particular, DN
log logN
logN

→ d as N → ∞ in probability.

4.2 Proof of Theorem 4.1.2

The main idea of the proof is quite simple. Given a site x ∈ [N ]d, let Bm(x) be the set of

sites in [N ]d reachable from x in m steps. We want to �nd some natural numbers m1,m2

such that for any two sites x, y, the set Bm1(x) is connected to the set Bm2(y) with high

probability. The sum m1+m2 then provides an upper bound on the graph distance between

x and y in G(N) and we show it can be chosen to be at most (d+ ε) logN/ log logN .
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To do this, we will use a counting argument for the sizes of the sets Bm1(x), Bm2(y). The

basic principle is that for any two sets A1, A2 ⊂ [N ]d, there are |A1||A2| many ways for them

to be connected, in correspondence to the pairs (x1, x2) ∈ A1 × A2. If the sites in A1 are

separated by distance R from the sites in A2, then the connection probability for each pair

(x1, x2) ∈ A1 × A2 is about 1 − exp
(
−Θ(R−d)

)
. Under the assumption of independence,

the total connection probability between A1 and A2 is then about 1− exp
(
−Θ

(
|A1||A2|

Rd

))
.

Therefore, the two sets will almost certainly be connected if |A1||A2| ≫ Rd and will almost

certainly fail to be connected if |A1||A2| ≪ Rd. Since the distance between any two sites in

[N ]d is at most Θ(N), this leads us to show that

|Bm1(x)| · |Bm2(y)| ≥ Θ(Nd+ε).

Recall our �tree� heuristic from the previous section that says |Bm(x)| = (Θ(logN))m. Tak-

ing logarithms on both sides of the inequality above, this suggests that we take mi =

αid logN/ log logN , for some αi ∈ (0, 1) with α1 + α2 > 1, and show our heuristic lower

bound

|Bm(x)| ≥ [Θ(logN)]m

holds with high probability. Moreover, our �tree� heuristic also suggests that we establish

this by showing the iterative bound

|Bm+1(x)| ≥ Θ(logN) · |Bm(x)|

holds with high probability.

Let us now proceed with the rigorous proof. The �rst ingredient is a spatial decomposition

of the hypercube [N ]d.

De�nition 4.2.1. Given a site x ∈ [N ]d, and an integer 1 < k ≤ ⌊log2N⌋, the k-th dyadic

annulus centered at x is the set

Hk(x) := {y ∈ [N ]d : 2k−1 ≤ ∥y − x∥ < 2k}.
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Note that for each site x, the dyadic annuli Hk(x) are disjoint from each other, and for

each integer k between 1 and log2N , |Hk(x)| ≥ Cd · 2kd for some constant Cd > 0.

De�nition 4.2.2. A set U ⊂ [N ]d is well-mixed if there exists some constant CU > 0 such

that for all x ∈ [N ]d, |Hk(x) ∩ UN |, |Hk(x) ∩ U c
N | ≥ CU · 2kd for 1 < k ≤ log2N .

For example, both the lattice UN := {z ∈ [N ]d : ∥z∥ is even} and its complement U c
N =

[N ]d \ UN are well-mixed.

Given two sites x, y ∈ [N ]d, our strategy is to iteratively build two sets B̃m1(x) ⊂ UN and

B̃m2(y) ⊂ U c
N by progressively revealing the edge connections in G(N). Roughly speaking,

B̃m1(x) and B̃m2(y) will be �truncated� versions of the �trees� Bm1(x) and Bm2(y) de�ned

earlier, in which a fraction of the edge connections are systematically removed from consid-

eration at each step of branching out. This procedure of truncated growth is a workaround

for having to deal with the overlapping of the full �tree� with itself as it branches out. It

results in a non-negligible undercounting of site connections but still su�ces for obtaining

the leading order asymptotic of the graph distance.

We focus only on the construction of B̃m1(x), as the construction for B̃m2(y) is completely

analogous. Before giving the details of the construction procedure, let us �x the following

parameters:

� some α1, α2 ∈ (0, 1) such that α1 + α2 > 1;

� some α̃ ∈ (0, 1) such that α̃ > α1, α2;

� some total order on the sites of [N ]d;

� some positive integer M .

We begin with de�ning

∂B̃0 := B̃0 := {z ∈ UN : ∥z − x∥ ≤ 2M}.

The set B̃0 is to be thought of as our �tree� in step 0 and the parameter M controls this

initial size. The alternative notation ∂B̃0 for this set suggests it can also be thought of as

145



the set of �new sites� added to our �tree� in step 0. Now, suppose our �tree� has been grown

to step m ≥ 0, i.e. we have constructed

� a nested sequence of sets B̃0 ⊂ B̃1 ⊂ · · · B̃m representing the �tree� after step 0, 1, · · · ,m;

� and the corresponding mutually disjoint sets ∂B̃0, ∂B̃1, · · · , ∂B̃m representing the col-

lections of �new sites� added to our �tree� in step 0, 1, · · · ,m.

We then construct a random set ∂B̃m+1 as follows:

� Arrange the sites in ∂B̃m in ascending order as x1, x2, · · · , x|∂B̃m|.

� For each xi ∈ ∂B̃m, we construct an auxiliary random set ∂Si that consists of a

fraction of the �new sites� connected to xi in the current step. The set ∂B̃m+1 will then

constructed as the union of all the ∂Si.

� The random sets ∂Si are constructed sequentially by selecting at most one �new site�

from each of the dyadic annuli Hk(xi). This is where truncation happens.

In more detail, the auxiliary random sets ∂Si are constructed by the following algorithm.

After ∂S1, · · · , ∂Si−1 have been constructed for 1 ≤ i ≤ |∂B̃0|, ∂Si is constructed as follows:

� De�ne Si−1 :=
i−1⋃
j=1

∂Sj. (This means S0 = ∅.)

� Let H̃k(xi) := (Hk(xi) ∩ UN) \ (B̃0 ⊔ Si−1).

� For α̃ log2N ≤ k < log2N , if H̃k(xi) is connected to xi, let zi,k be the minimal element

of H̃k(xi) that is connected to xi.

� Let ∂Si be the collection of these zi,k's.

This completes the discussion for the construction of ∂B̃m+1. We then de�ne B̃m+1 :=

B̃m ⊔ ∂B̃m+1 as the �truncated tree� after step m + 1. Moreover, in order to keep track of

the information revealed at each stage of the construction, we de�ne

Bm := (B̃0, B̃1, · · · , B̃m) and Si := (Bm, S0, S1, · · · , Si).

With the set-up above, the key fact driving the proof of Theorem 4.1.2 is the following

iterative bound:
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Lemma 4.2.3. There exist some constants c1, c2 > 0 (which may depend on β, d, α̃) such

that in the procedure above,

P
(
|∂B̃m+1| ≥ c1 log2N · |∂B̃m|

∣∣∣∣Bm

)
≥ 1− exp (−c2 log2N · |∂B̃m|)

on the event that |B̃m| ≤ Nα1d+o(1).

Remark 4.2.4. Note that the requirement |B̃m| ≤ Nα1d+o(1) is satis�ed as long as m ≤

α1d logN/ log logN .

By construction, we have that

|∂B̃m+1| =
|∂B̃m|∑
i=1

|∂Si|, |∂Si| =
∑

α̃ log2 N≤k<log2 N

1H̃k(xi)∼xi
,

where the expression S ∼ x means the set S is connected to the site x. The construction

with dyadic annuli give the following uniform lower bound on the probabilities of the events

{H̃k(xi) ∼ xi}.

Lemma 4.2.5. Consider step m in the construction procedure above. There exists some

constant p > 0 (which may depend on β, d) such that

P(H̃k(xi) ∼ xi|Si−1) ≥ p

for α̃ log2N ≤ k < log2N .

Proof. By de�nition of H̃k(xi), we have that

|H̃k(xi)| ≥ |Hk(xi) ∩ UN | − (|B̃m|+ |Si−1|)

≥ CU · 2kd − (|B̃m|+ |∂B̃m| · (1− α̃) log2N)

≥ CU · 2kd −Nα1d+o(1)

≥ CU(1 + o(1)) · 2kd,

where we used the conditions k ≥ α̃ log2N and α̃ > α1. Thus, for α̃ log2N ≤ k ≤ log2N ,

P(H̃k(xi) ∼ xi|Si−1) ≥ 1− exp
(
−β · 2−kd · |H̃k(xi)|

)
≥ 1− e−βCU (1+o(1)) =: p.
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Before proving Lemma 4.2.3, we need one more fact about stochastic domination of random

variables. Here and below
d

≥ denotes stochastic domination.

Lemma 4.2.6. Suppose X, Y, Z are discrete random variables, Z is independent from X,

and Y
d

≥ Z conditioned on X. Then X + Y
d

≥ X + Z.

Proof. Conditioned on X = x, we couple a copy Z(x) of Z such that conditioned on X = x,

Y ≥ Z(x) almost surely. De�ne Z ′ = Z(x) when X = x. Then Z ′ is independent from X

and a.s. X + Y ≥ X + Z ′ d
= X + Z.

Proof of Lemma 4.2.3. Conditioned on Si−1, the events {H̃k(xi) ∼ xi}, where the index

k ranges over [α̃ log2N, log2N), are mutually independent. Moreover, each of them has

probability at least p by Lemma 4.2.5. Let Yi,k be i.i.d. Bernoulli(p) random variables,

independent from the random graph G(N). Then conditioned on Si−1,

∂Si

d

≥ Yi :=
∑

α̃ log2 N≤k≤log2 N

Yi,k.

By Lemma 4.2.6, this implies that conditioned on Bm,

|Si−1|+ |∂Si|
d

≥ |Si−1|+ Yi.

Iterating this backwards for 1 ≤ i ≤ |∂B̃m|, we get that conditioned on Bm,

|∂B̃m|∑
i=1

|∂Si|
d

≥
|∂B̃m|∑
i=1

Yi =

|∂B̃m|∑
i=1

∑
α̃ log2 N≤k≤log2 N

Yi,k.

Applying the Cherno� bound for i.i.d. sum of Bernoulli random variables, we get

P
(
|∂B̃m+1| ≤ (1− δ)p · (1− α̃) log2N · |∂B̃m|

∣∣∣∣Bm

)
≤ exp

(
−δ

2

2
p · (1− α̃) log2N · |∂B̃m|

)
.

Now take c1 = (1− δ)p · (1− α̃), c2 =
δ2

2
p · (1− α̃).

Suppose m ≤ α1d logN/ log logN . Let Em be the event that |∂B̃m| ≥ c1 log2N · |∂B̃m−1|.

Then on the event
⋂m

i=1 Ei, |∂B̃m| ≥ (c1 log2N)m|B̃0|. By Lemma 4.2.3,

P

(
m⋂
i=1

Ei

)
≥ 1−

m∑
i=1

P

(
Ec
i

∣∣∣∣ i−1⋂
j=1

Ei

)
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≥ 1−
m∑
i=1

exp

(
−c2
c1
(c1 log2N)i|B̃0|

)
≥ 1− exp

(
−c2
c1
(c1 log2N)1|B̃0|

)
(1 + o(1)).

Since |B̃0| ≥ CU · 2Md, we get

P(|B̃m| ≥ (c1 log2N)m) ≥ 1−N−|B̃0|·c2/ log 2(1 + o(1)) ≥ 1−N−Θ(2Md).

In conclusion, for m1 = α1d logN/ log logN , if we de�ne B̃m1(x) to be the set of sites in

UN reachable from B̃0(x) := {z ∈ UN : ∥z − x∥ ≤ 2M} with paths inside UN in m1 steps,

then |B̃m1(x)| ≥ (c1 log2N)m1 ≥ Nα1d−o(1) with probability at least 1−N−Θ(2Md).

By the same argument, for m2 = α2d logN/ log logN , if we de�ne B̃m2(y) to be the set of

sites in U c
N reachable from B̃0(y) := {z ∈ UN : ∥z − y∥ ≤ 2M} with paths inside U c

N in m2

steps, then |B̃m2(y)| ≥ Nα2d−o(1) with probability at least 1−N−Θ(2Md).

Conditioned on these two events, namely that |B̃m1(x)| ≥ Nα1d−o(1) and |B̃m2(y)| ≥

Nα2d−o(1), the probability B̃m1(x) is connected to B̃m2(y) is at least

1− exp
(
−Θ(N (α1+α2−1)d−o(1))

)
= 1− exp (−Θ(N ε1)),

where 0 < ε1 < ε := (α1 + α2 − 1)d. Moreover, B̃0(x), B̃0(y) are reachable from x, y,

respectively, in 2M steps using nearest-neighbor edges. Thus, the overall probability that x

and y is connected by a path of at most

2M +m1 + 1 +m2 + 2M = 1 + 2M+1 +
(d+ ε) logN

log logN

is at least

1−N−Θ(2Md) − exp (−Θ(N ε1)) = 1−N−Θ(2Md).

Thus, union bound gives

P
(
DN ≤ 1 + 2M+1 +

(d+ ε) logN

log logN

)
≥ 1−N2d ·N−Θ(2Md).

Choosing M large enough (but constant), the right hand side tends to 1 as N tends to

in�nity.
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4.3 Beyond the leading order

Let us now make an additional assumption to slightly simplify the model, namely that we

assume the hypercube [N ]d has periodic boundary condition, so that every site now �looks

the same�. Following the construction used in the previous section, we de�ne Bm to be the

ball of radiusm in graph-theoretical distance centered at 0, and ∂Bm := Bm\Bm−1. We may

realize the random graph as the growth of a random �tree� starting from 0. To keep track of

the information revealed at each level of the �tree�, let us denote Bm := (B1, B2, · · · , Bm).

We write EBm [·] for E[·|Bm] and PBm [·] for P[·|Bm]. As before, we write x ∼ y to mean the

site x is connected to the site y and x ∼ S to mean the site x is connected to some site

belonging to S.

Lemma 4.3.1 (Concentration of |∂Bm|). For 0 ≤ δ ≤ 1,

P
(
1− δ ≤ |∂B1|

E|∂B1|
≤ 1 + δ

)
≥ 1− 2 exp

(
−δ

2

3
E|∂B1|

)
and for m ≥ 1,

PBm

(
1− δ ≤ |∂Bm+1|

EBm|∂Bm+1|
≤ 1 + δ

)
≥ 1− 2 exp

(
−δ

2

3
EBm|∂Bm+1|

)
.

Proof. Conditioned on Bm,

|∂Bm+1| =
∑
y/∈Bm

1y∼∂Bm

is a sum of independent (but not identically distributed) Bernoulli random variables. The

inequalities then follow from the multiplicative form of Cherno� bound for independent sums

of Bernoulli random variables.

In the previous section, we showed by a rough under-counting argument that for m <

αd logN/ log logN , where 0 < α < 1

EBm|∂Bm+1| ≥ (Θ(logN))m+1,

with high probability. This means the concentration in Lemma 4.3.1 gets exponentially better

with the increment of m, so the main source of �uctuations is in the very �rst step, |∂B1|.
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This allows us to choose δ (perhaps di�erently for each m) so that the overall probability

of deviation from the �typical� situation in Lemma 4.3.1 is exponentially small in logN for

m = 0 and super-exponentially small in logN for m ≥ 1, so that the overall error probability

is less than N−c0 for some c0 > 0. Moreover, if instead of starting from a single site 0, we

start from some constant radius ball in L1-distance centered at 0, the exponent c0 could be

improved to any prescribed c > 0, while keeping |∂Bm| within a constant factor and the

graph distance m within an additive constant.

This concentration result naturally raises the question: what is the value of EBm |∂Bm+1|?

A more precise answer to this question would lead to a sharper asymptotic for the graph

distance. The iterative construction implies the following simple upper bound

EBm|∂Bm+1| ≤ |∂Bm| · E|∂B1|.

There are two sources of overcounting in this upper bound:

� Recoil: some sites x ∈ Bm are revisited.

� Redundancy: some sites y ∈ Bc
m are multiply connected to ∂Bm.

To better understand the redundancy phenomenon, we introduce the following quantity.

De�nition 4.3.2 (Weight of a site relative to a region). Given a site y ∈ [N ]d and a region

S ⊂ [N ]d, we de�ne the weight of y relative to S to be

ρS(y) :=
∑

x∈S,x̸=y

β

|x− y|d
.

It follows that P(y ∼ S) = 1− e−ρS(y) for y /∈ S. The elementary inequality

(x ∧ 1)(1− x ∧ 1) ≤ 1− e−x ≤ x ∧ 1

means that for sites of vanishing weight, i.e. ρS(y) = o(1), the connection probability

essentially equals to the weight:

P(y ∼ S) = ρS(y)(1− o(1)).
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On the other hand, for sites of heavy weight, the connection probability no longer behaves

like a linear function of the weight. Indeed, for regions S that are �expanding away from y�,

the weight ρS(y) essentially equals to the expected degree of y in S,

E[|{x ∼ y : x ∈ S}|] =
∑
x∈S

(
1− exp

(
− β

|x− y|d

))
≈

∑
x∈S,x̸=y

β

|x− y|d
=: ρS(y).

which only approximately equals to the connection probability P(y ∼ S) when it is small

enough. Thus, the weight serves to identify the �hot spots� for redundant connections.

We are therefore interested in the weight distribution of sites outside Bm relative to ∂Bm.

As a start, the additive de�nition of the weight makes an easy counting argument available.

By Fubini theorem for sums,

∑
y∈Bc

m

ρ∂Bm(y) =
∑

x∈∂Bm

ρBc
m
(x) ≤ |∂Bm| · E|∂B1| · (1 + o(1)).

By the pigeonhole principle, this implies

|{y ∈ Bc
m : ρ∂Bm(y) ≥ ωm}| ≤

∑
y∈Bc

m

ρ∂Bm(y)

ωm

≤ (E|∂B1|)m+Θ(1),

where we choose the threshold ωm to be Θ((logN)−c) for some constant c > 0. Together

with the bound |Bm| ≤ (E|∂B1|)m, this means that as long as m < d logN
logE|∂B1| −Θ(1), most of

the sites [N ]d are outside Bm and have vanishing weights relative to ∂Bm, namely in the set

Vm := {y ∈ Bc
m : ρ∂Bm(y) < ωm}.

This suggests a lower bound strategy of only connecting ∂Bm to sites in Vm. Using the

decomposition |∂Bm+1 ∩ Vm| =
∑

y∈Vm
1y∼∂Bm , we have

EBm|∂Bm+1 ∩ Vm| =
∑
y∈Vm

P(y ∼ ∂Bm) ≥
∑
y∈Vm

ρ∂Bm(y)(1− ωm) =
∑

x∈∂Bm

ρVm(x)(1− ωm),

where we used Fubini theorem for sums again. For each x ∈ ∂Bm,

ρVm(x) = ρ[N ]d(x)− ρV c
m
(x) = E|∂B1| − ρV c

m
(x).
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It remains to estimate ρV c
m
(x). The �worst-case� scenario is that V c

m is tightly clustered

around x like a small hypercube, in which case

ρV c
m
(x) = Θ

(
log |V c

m|1/d
)
=

Θ(m)

d
logE|∂B1|.

Hypothetically, this worst-case scenario could be achieved uniformly over x ∈ ∂Bm if the

region ∂Bm itself is tightly clustered like a small hypercube. Without further analysis of

the spatial distribution of ∂Bm, this crude bound yields that as long as |Bm| = N o(1), or

m = o(logN/ log logN),

EBm|∂Bm+1 ∩ Vm| ≥ |∂Bm| · E|∂B1| · (1− o(1)).

This is not quite enough to carry the lower bound strategy all the way through. However,

intuition suggests that the �tree� Bm should be quite homogeneously distributed in the

hypercube [N ]d until a positive fraction of it is �lled, and under that assumption, the weight

ρV c
m
(x) should be substantially smaller, so one would expect the lower bound strategy can be

continued until the �penultimate steps�. These considerations lead us to make the following

conjecture:

Conjecture 4.3.3. There exists constant integer c such that

lim
N→∞

P
(∣∣∣∣DN − d logN

logE|∂B1|

∣∣∣∣ ≤ c

)
= 1.
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