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Abstract: 

Na metal is an attractive anode material for rechargeable Na ion batteries, however, the dendritic 

growth of Na can cause serious safety issues. Along with modifications of solid-electrolyte 

interphase (SEI), engineering the electrode has been reported to be effective in suppressing Na 

dendritic growth, likely by reducing localized current density accumulation. However, 

fundamental understanding of Na growth at the nanoscale is still limited. Here, we report an in-

situ study of Na electrodeposition in electrochemical liquid cells with the electrodes in different 

surface roughness, e.g., flat or sharp curvature. Real time observation using transmission electron 

microscopy (TEM) reveals the Na electrodeposition with remarkable details. Relatively large Na 

grains (in the micrometer scale) are achieved on the flat electrode surface. The local SEI thickness 

variations impact the growth rate, thus the morphology of individual grains. In contrast, small Na 

grains (in tens of nanometers) grow explosively on the electrode at the point with sharp curvature. 

The newly formed Na grains preferentially deposit at the base of existing grains close to the 

electrode. Further studies using continuum-based computational modeling suggest that the growth 

mode of an alkali metal (e.g. Na) is strongly influenced by the transport properties of SEI. Our 

direct observation of Na deposition in combination with the theoretical modeling provides insights 

for comprehensive understanding of electrode roughness and SEI effects on Na electrochemical 

deposition. 

  



Page 3 of 23 

 

1. Introduction 

The ever-increasing demand for batteries and capacitors with better performance and low cost 

has spurred intense interests on various research themes, such as, the exploration of alternative 

chemistry beyond lithium, effective electrode materials, and in-situ diagnostic methods to analyze 

the performance of electrochemical devices [1-5]. Na-ion batteries with the earth abundant element 

have attracted wide attention for large-scale energy storage applications [6-10]. Na metal is an 

attractive anode material for rechargeable Na-based batteries due to its high specific capacity 

(1165 mAhg-1) and low working potential compared to other anode materials. Nevertheless, the 

dendritic growth of Na metal can result in premature cell failure [11].  

The dendritic growth of Na is often considered as an issue analogous to that of Li. However, 

recent reports have acknowledged the fundamental differences. For example, Na has a much larger 

radius (by more than 30%), a greater mass (by more than 3 times), a different reduction potential 

(∼0.33 V vs Li/Li+), different mechanical properties, etc. [6, 12, 13]. In addition, Na metal is more 

reactive than Li and it reacts with carbonate electrolytes in different ways from how Li metal does 

[14, 15]. Therefore, the study of Na electrodeposition to suppress the dendritic (or mossy) growth 

arises as a topic with excitement and novelty [12, 16]. 

Electrode engineering has been explored to suppress Na dendrite formation [12]. For example, 

it was found that highly porous materials are effective and the suppression of dendritic growth was 

attributed to the reduced effective current density by their large surface area [17-19]. In addition, 

the high surface area may also enhance the nucleation of Na and refine the growth front [12, 19, 

20]. However, it still lacks fundamental understanding on the impacts of electrode roughness and 

local current density variations on Na electrodeposition. For example, it was considered that a 

rough Na metal leads to uneven solid-electrolyte interphase (SEI), thus the ion flux becomes more 
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concentrated at the protuberance, eventually generating a dendrite [12, 21]. On the contrary, other 

studies claimed that a geometrically non-uniform metal surface is insignificant to dendrite 

formation since SEI is intrinsically heterogeneous [12, 22]. There also have been reports that the 

current collector non-uniformity, which may be introduced by mechanical scratches from 

processing, dislocation termination on the surfaces, grain boundaries, etc., plays an important role 

in dendrite formation [12, 21, 23, 24]. 

Here, we investigate the electrochemical deposition of Na using in-situ electrochemical liquid 

cell transmission electron microscopy (TEM) by simply patterning the electrodes with different 

curvatures. We compare the electrochemical deposition of Na on the flat and the sharp curved 

electrodes to explore the impact of electrode surface roughness on the growth dynamics of Na at 

the nanoscale. The development of electrochemical cells for TEM has enabled the direct 

observation of many electrochemical processes of Li previously [25-27]. For instance, 

inhomogeneous nucleation, dynamic growth of Li dendrites, gas bubble generation from 

electrolyte decomposition, and Li SEI formation in a nano-battery cell have been revealed [27-

29]. However, in-situ studies of Na electrodeposition using liquid cell TEM have not been achieved 

so far. Our in-situ experiments combined with continuum-based calculations allow for 

fundamental understanding of Na growth behavior on electrodes with different surface roughness. 

The finding may assist the future electrode engineering to induce homogeneous Na growth. 

 

2. Materials and Methods 

2.1. Electrochemical liquid TEM cell fabrication 

As shown in Fig. 1, we developed electrochemical liquid cells, in which the electrodes were 

made with different surface roughness. The electrochemical liquid cells were fabricated using Si 
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wafers with 25 nm thick low stress silicon nitride film as the membrane for imaging. The overall 

dimensions of a cell are ~3 mm × 3 mm × 400 μm (L× W× H). Two 90 nm-thick Ti electrodes 

were deposited on the bottom chip of a liquid cell with a face-to-face distance of 20 μm. Due to 

the limited space inside the liquid cell, it lacks a reference electrode and thus the counter electrode 

also worked as the reference electrode. 1M sodium hexafluorophosphate (NaPF6) dissolved in 

propylene carbonate (PC) was used as the electrolyte. The liquid electrolyte was loaded into one 

of the reservoirs using a syringe inside a glovebox. The electrolyte flowed into the viewing window 

by capillary force. The liquid cell was sealed using Cu foil and epoxy. Such a self-contained nano-

battery cell was put into a custom-made TEM holder for in-situ TEM experiments. The working 

and counter electrodes were bonded with aluminum wires connecting with the TEM holder 

tip/electrochemical workstation for in-situ TEM experiments.  

 

2.2. In-situ TEM measurement 

JEOL 2100 TEM microscope operated at 200 kV was used for in-situ TEM experiments, which 

was equipped with a Gatan Orius camera facilitated frame rates of 30 fps and a Direct Electron 

detector with frame rate up to 400 fps (DE-12, provided by Direct Electron, LP at San Diego, CA). 

The electrochemical process was controlled by an electrochemical workstation (CH Instruments: 

Model 660D series). HAADF-STEM images were acquired using an FEI Titan microscope 

operated at 300 kV with a convergence semi-angle of 10 mrad and an inner half collection angle 

of 63 mrad. EDS spectra were collected using the FEI Super-X Quad windowless EDS detector 

with silicon drift technology and a solid angle of 0.7 steradian. A beam current of 600 pA was 

maintained. Experimental details of in-situ x-ray absorption spectroscopy (XAS) and methodology 

of theoretical continuum analysis are described in Supplementary Materials.  
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3. Results and Discussion 

3.1. Na electrodeposition on a flat electrode 

We trace the nucleation and growth of Na frame-by-frame from the in-situ movies. The size 

and shape evolution of Na grains during deposition and dissolution on an electrode with flat 

curvature is shown in Fig. 2A (also see Movie S1). A low electron dose (<1e·Å-2·s-1) was used 

during imaging to reduce beam-sample interactions. The corresponding applied electrical potential 

and measured electrical current are plotted in Fig. 2B. Initially, we observe a smooth interface 

between the Ti electrode and the electrolyte. When a negative potential in cyclic voltammetry is 

applied on the Ti working electrode, a Na grain (marked as I) nucleates at the edge of the electrode. 

Concurrently, gas bubbles emerge along the edge of the Ti electrode (at 8.50 s). The bubbles appear 

to be the gaseous products, such as CO2 [30, 31] and PF5, from the electrolyte reduction reactions 

at the electrode (more discussions are provided in Supplementary Materials). During the gas 

evolution, we did not encounter any issue of electrolyte leaking into the vacuum, which probably 

benefits from that the electrochemical cell design has two large reservoirs (see Supplementary 

Materials). The Na grain grows rapidly and spreads out on the electrode surface. When the applied 

voltage reaches -1.57 V (at 31.5 s), another Na grain (marked as II) forms while the radius of the 

first Na grain reaches 800 nm. The electrolyte decomposition at the edge of electrode may lead to 

SEI formation, as indicated by the white arrows in the frame at 77.5 s. At 78 s, a third Na grain 

(marked as III) nucleates on the electrode.  

During the reverse voltage scan from -4 V to -2.63 V, the three Na grains remain on the 

electrode. When the voltage changes from negative to positive, the Na grains start to dissolve. At 

+ 0.8 V (186 s), vigorous dissolution occurs, and all Na grains and deposits disappear by 224 s. 
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The size evolution of three Na grains as a function of time is plotted in Fig. 2C. The period for the 

nucleation and growth of each grain is (I) 8.5-28.5 s, (II) 31.5-59.5 s and (III) 78-102.5 s 

respectively, indicating the sequential formation behavior. While all three grains are dissolved 

under positive bias in approximately the same time within 178.5-189.5 s. 

We quantify the SEI effects on the kinetics of Na deposition. The SEI layer on a Na grain is 

darker compared to surrounding materials, since the SEI consists of inorganic compounds (such 

as Na2CO3, NaF, NaOH, Na2O) [6, 32] with density higher than Na metal (more information on 

SEI and Na metal is shown later). We trace the growth rate of a Na grain along different directions 

where the SEI thickness varies (Fig. 3, also see Movie S2). When the SEI layer is thin, fast growth 

is observed. As the SEI thickness increases, Na deposition slows down. When the SEI thickness 

reaches about 130 nm, the Na grain almost stops growing. These observations suggest that Na+ 

ions can penetrate through a thin SEI layer up to a certain thickness. Eventually, the Na grain 

develops asymmetrically when the SEI layer thickness on the Na grain is not uniform. Although 

the plots of “growth rate vs SEI thickness” vary for different Na grains, they show a similar trend 

(Fig. S1 and S2, also see Movie S2, S3). Therefore, SEI has significant impact on the behavior of 

Na deposition. 

 

3.2. Na electrodeposition on an electrode with sharp curvature 

Nucleation and growth of Na grains on the Ti electrode with sharp surface curvature are 

demonstrated in Fig. 4 (also see Movie S4 and Fig. S3). The electrode regions of high curvature 

produce an enhanced electric field [33], which can affect the local ion distribution. Thus, 

characteristics of Na deposition on the electrode with sharp surface curvatures are more dramatic. 

As shown in Fig. 4A, the surface of the nodule is smooth at the beginning. As the voltage reaches 
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-2.17 V (43.5 s), a Na grain emerges on the nodule and subsequently grows into an agglomeration 

of several grains. Individual Na grains are much smaller than the grains grown on the flat electrode. 

Dendrites (branches) on top of the grains are also observed. The Na deposition proceeds rapidly 

and the newly deposited Na accumulates mostly at the base of existing grains close to the electrode 

(“base growth”) leading to an explosive growth behavior (Movie S4). Na deposits not only grow 

in the vertical direction but also expand in the lateral direction which is accompanied by grains 

merging together (81.5 s). The growth on the side of electrode is slower due to a weaker local 

electric field.  

At 89.5 s, simultaneous with Na deposition, the outer layer of the Na deposits starts to dissolve 

(marked with yellow dashed circles). It is interesting that dissolution of Na may occur under a 

negative potential (-3.54 V) while Na deposition maintains. We consider that since each Na grain 

is covered with an SEI layer, the electron conductivity of the agglomerated Na grains is poor. 

Thus, the electric potential at the top of agglomerated Na grains may decrease significantly. 

Additionally, the base growth of Na grains constantly pushes the existing Na grains up, which may 

induce mechanical stress and breakdown of the SEI [34-36] thus exposing fresh Na directly to the 

electrolyte. The high reactivity of Na metal may also lead to Na reacting with electrolyte [14, 34]. 

The concurrence of dissolution (reaction) and deposition may result in a battery with lower 

capacity than the theoretical value. As the voltage reaches close to 0 V, no further deposition can 

be observed and the Na grains start to collapse (marked with yellow arrows indicating the 

collapsing direction at 119.50 s). Fig. 4B shows more details of the early stage deposition of Na 

grains on another nodule, which also shows “base growth” behavior. The corresponding applied 

electrical potential and the measured electrical current over time are shown in Fig. 4C. And, the 
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trajectories of growth and dissolution of the electrodeposited Na aggregates are plotted as a 

function of time on both nodules in Fig. 4D. 

 

3.3. Evaluation of electron beam effects 

To confirm that Na deposition is not caused by e-beam irradiation, we have conducted control 

experiments with the same low electron beam dose (< 1 eÅ-2s-1) without applying a cyclic 

voltammetry. No reaction occurs under such a low beam intensity even for an extended period of 

time. Furthermore, we did experiments by periodically blocking the beam and no obvious 

difference in the Na deposition behavior was observed. For more quantitative understanding of the 

electron beam interaction with the electrolyte and its impacts on the electrodeposition, systematic 

study of the Na growth under various high electron dose is needed. However, based on our 

controlled experiments, we can conclude that the electron beam effect under such low dose 

conditions is insignificant. 

 

3.4. Chemical analysis of Na deposits and SEI 

We examine the Na deposits by high angle annular dark field (HAADF) scanning TEM 

(STEM) imaging and EDS elemental mapping. For these measurements, we stop the reaction 

before the Na grains are completely dissolved and dry the electrochemical cell without exposing 

the Na deposits to air. As shown in Fig. 4E, a strong Na signal is observed and other species, such 

as C, F and P, are also seen. The EDS line scan spectra (Fig. S4) indicate the distribution of F is 

similar to that of Na, while there are more C and P in the outer layer of the deposits (probably 

induced by the process of electrolyte drying). Such elemental analysis results are consistent with 

the granular structure of Na deposits. It is noted that the resolution of EDS maps does not allow 
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us to distinguish the details of SEI in an individual Na grain. However, the distributions of Na, C 

and F within the deposits are consistent with the fact that the deposits contain both Na metal and 

the SEI consists of organic/inorganic compounds, such as organic species of ROCO2Na, CH3ONa, 

(CH2OCO2Na)2 and inorganic species of Na2CO3, NaF, NaOH, Na2O [6, 32, 37]. This is further 

confirmed by in-situ x-ray absorption spectroscopy (XAS). By monitoring the chemical state 

changes of Na during electrochemical deposition of Na, characteristic features of both Na metal 

and Na complex in Na K-edge XAS are observed (Fig. S5).  

 

3.5. Effects of electrode surface roughness and SEI 

The above experiments demonstrate that both electrode surface roughness and SEI strongly 

influence the Na electrodeposition. Fig. 5A-C highlights the base growth behavior of Na grain 

growth on the sharp curved electrode. Nano-sized Na grains are explosively grown at the tip of 

the sharp electrode. Once a Na grain is deposited, it reacts with the electrolyte [38] and an SEI 

layer is formed on the surface. As the SEI layer thickens, the Na grain growth slows down. Further 

deposition of Na proceeds through Na ion diffusion from the electrolyte solution to the electrode, 

resulting in the growth of new Na grains. The emerging Na grains push the existing Na grains up 

to form base growth, especially when the electric field is localized. We consider the growth 

behavior of Na on the electrode with sharp curvature is directed by the local accumulated current 

density. The high current density introduces more nucleation of Na. However, the underlying 

mechanisms of SEI impacts on the observed based growth behavior is not obvious. In the 

following, we evaluate the transport limitations observed in the SEI associated with Na metal 

deposition using a continuum-based computational model. 
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We develop a continuum-based computational model by considering the conduction of metal 

ions and diffusion of electrolyte salt [39, 40]. This model captures the movement of metal ions in 

both the electrolyte and SEI layers. The equations used for modeling the migration of metal ions 

and diffusion of electrolyte salt is derived based on the Concentrated Solution Theory (CST), 

pioneered by John Newman and coworkers [39, 41]. The oxidation/reduction reaction is assumed 

to occur at the electrode/electrolyte or electrode/SEI interface. The reaction current is estimated 

based on the highly nonlinear Butler-Volmer equation [39]. The developed model (see details in 

Supplementary Materials) is used to understand the current density at the tip (𝑖𝑡𝑖𝑝) and base 

(𝑖𝑏𝑎𝑠𝑒) of metal deposits. If the magnitude of reaction current at the tip is larger than that at the 

base (𝑖𝑡𝑖𝑝 > 𝑖𝑏𝑎𝑠𝑒), tip growth of metallic deposits is expected to occur. Whereas, if the reaction 

current at the base is larger in magnitude than the tip region (𝑖𝑏𝑎𝑠𝑒 > 𝑖𝑡𝑖𝑝) , base growth is 

favorable.  

A schematic diagram of a metal deposit, and the corresponding SEI layer is demonstrated in 

Fig. 6A. The two electrodes are located at the bottom and top of the computational domain with a 

fixed distance apart from each other. Metal deposition occurs at the top electrode while dissolution 

happens at the bottom electrode. Based on the experimental observations, we assume the average 

SEI thickness of 80 𝑛𝑚 in the schematic diagram shown in Fig. 6A. And, a layered SEI structure 

[31, 39, 42] with a dense inorganic layer (15%) adjacent to the electrode and a porous organic 

layer (85%) residing close to the electrolyte is proposed for the calculation (see more details in 

Supplementary Materials). Additionally, a current density of 100 𝐴 𝑚2⁄  is applied at the bottom 

electrode (Supplementary Materials). The current density at the top electrode is smaller than that 

applied at the bottom and it varies when different diffusion coefficient is incorporated (Fig. 6B 

and 6C). For example, if the metal ion diffusivity within the SEI layer is one order of magnitude 
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smaller than that in the liquid electrolyte, the SEI layer does not impart a large resistance to the 

transport of metal cations, and enhanced deposition at the tip of the protrusion is still possible, as 

demonstrated in Fig. 6B. However, if metal ion diffusivity within the SEI layer is six orders of 

magnitude smaller than the liquid electrolyte, it is evident from Fig. 6C that due to enhanced 

transport limitations, deposition at the base is preferred. Thus, a transition of metal deposition from 

tip to base can be observed by increasing the transport limitations of metal ions through the SEI 

layer.  

To elucidate the combined effects of thickness and transport properties of the SEI layer on the 

Na metal deposition process, a phase map is developed (Fig. 6D), where the ratio of the reaction 

current between the tip and base (𝑖𝑡𝑖𝑝 𝑖𝑏𝑎𝑠𝑒⁄ ) is plotted as a function of “SEI thickness” and “SEI 

diffusivity”. The metal ion diffusion coefficient through the SEI layer is normalized by dividing 

the metal ion diffusivity in the SEI layer by that in the liquid electrolyte (𝐷𝑆𝐸𝐼 𝐷𝐸𝑙𝑒𝑐⁄ ). As SEI 

consists of a dense inorganic layer and a porous organic layer [31, 39], and the diffusion coefficient 

through SEI is modified for preparing the phase map (see Supplementary Materials). As shown in 

Fig. 6D, the yellow region under high SEI diffusivities and thin SEI thickness indicates the 

combination of parameters where tip deposition is favorable. The green/blue region observed 

under low diffusion coefficients and thick SEI layers indicates conditions where base deposition 

is favorable. Diffusion coefficient of lithium through the SEI layer can be assumed to be around 

five to six orders of magnitude smaller than that within liquid electrolytes [43] 

((𝐷𝑆𝐸𝐼 𝐷𝐸𝑙𝑒𝑐⁄ )~10−5 − 10−6) . The diffusion coefficient of Na through the SEI layer is an 

unknown quantity, which can be higher [44] (due to smaller solvation shell) or lower (due to larger 

atomic radius) than that observed for Li. If we assume the similar diffusivity of Na through the 

SEI layer as that of Li, the thick SEI layer on Na deposits may lead to difficulties of Na ions 
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transport within the Na-SEI layer and thus the base growth behavior. In addition, the variation on 

electrode’s radius of curvature can also affect the Na deposition behavior, as compared with Fig.4A 

and Fig.2A, which is closely related with the current density (Fig. S6). Another interesting 

phenomenon is the asymmetric deposition and nonuniform growth of the deposit (Fig. 3), the 

simulation indicates it is attributed to the local SEI thickness variation (Fig. S7). 

The transition from tip growth to base deposition can be characterized by “stability limit”, as 

shown in Fig. S8. In the phase map (Fig. 6D), layered SEI with 15% the dense inorganic layer and 

85% porous organic layer is used [42]. Changing the relative amount of dense inorganic layer can 

significantly alter the stability limit. This aspect has been clearly demonstrated in Fig. S8 by 

comparing the stability limits for 15-85 and 40-60 divisions of the inorganic-organic layers [42]. 

The 15% inorganic and 85% organic components that are adopted in Fig. 6D provides the best 

correlation with experimental observations of base deposition within thick Na-SEI layers. Future 

high-resolution structural characterization of the Na SEI layers on individual Na grains will be 

valuable.  

 

4. Conclusions 

In conclusion, we have investigated the effects of electrode surface roughness on the Na 

electrodeposition. Our study using in-situ liquid phase TEM in combination with other 

complementary methods and continuum-based computational modelling reveals the contribution 

of the electrode surface roughness to the different dynamic growth behavior of Na and grain 

morphology, where SEI on each individual grain plays an important role. The non-uniform 

thickness of SEI on a single Na grain leads to different local growth rates and uneven surface 

morphology. The drastic “base growth” of Na with smaller grains is distinct on the sharp curved 
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electrode, where the concurrence of Na dissolution with the Na deposition has also been observed. 

Given the explosive Na deposition on the rough electrode surface compared to that on the flat 

electrode, microscopic smooth electrode surface is preferred to limit the inhomogeneous Na 

growth or dendrite formation. Unveiling the electrochemical deposition behaviors of Na on the 

different electrode roughness and SEI effects opens the opportunity for future electrode 

engineering with improved device performance. 
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Fig. 1. A schematic of the experimental setup for in-situ TEM study of Na electrochemical 

deposition. (A) A custom-made electrochemical TEM sample stage. (B) An electrochemical 

liquid cell that fits the sample stage in (A). (C) An electrochemical program is applied to the 

electrochemical cell using an electrochemical workstation. (D) In-situ imaging of the 

electrochemical deposition of Na on the Ti electrode with different configurations composing of 

flat (I) or sharp (II) curvature. 
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Fig. 2. Nucleation and growth of Na on a flat Ti electrode, where size and shape evolution of 

three Na grains during a charge cycle is highlighted. (A) Sequential TEM images show the 

nucleation and growth of Na grains under a negative potential (from the initial frame to the frame 

marked with 175.50 s) and the dissolution of Na grains (frame 186.00 s and after). (B) The applied 

electric potential and measured electric current corresponding to (A). (C) The projected area of 

individual Na metal grains (as labeled in (A)) as a function of time during cyclic voltammetry in 

the voltage range of 0 to -4 V at scan rate of 0.05 V/s.  
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Fig. 3. Na grain growth rate versus SEI thickness. (A) Sequential images show the growth of a 

Na grain. (B) Growth rate of the Na grain as a function of SEI layer thickness. The growth rate 

and SEI thickness were estimated at different locations of the Na grain (see more details of the 

measurements in Fig. S1 and S2). 
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Fig. 4. Nucleation and growth of Na on Ti electrode with sharp curvature. (A) Sequential 

TEM images show the base-growth of Na on a nodule of Ti electrode, where the growth is focused 

at the point with highest curvature. The blue arrows correspond to the moving direction of Na 

grains during deposition, the yellow circles correspond to the dissolution of Na, and the yellow 

arrows correspond to the direction of collapsing Na grains. (B) The initial deposition of Na grains 

on another nodule on Ti electrode with high curvature indicating the base growth behavior. (C) 

The applied electric potential and measured electric current. (D) Whole area evolution of Na grain 

aggregates labeled in (A) and (B) as a function of time during cyclic voltammetry in the voltage 

range of 0 to -3 V with a scan rate of 0.05 V/s. (E) HAADF image and EDS elemental maps 

showing Ti, Na, C, F and P distribution, which were obtained from the same electrochemical cell 

after drying under inert conditions.  
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Fig. 5. Schematic illustrations of Na growth behaviors on the sharp curved electrode. (A-C) 

The newly formed Na grains prefer to nucleate at the base close to the electrode. The sequential 

deposition of Na grains and the later stage dissolution at the top of deposit are demonstrated. The 

SEI layer on each individual Na grain (yellow) is highlighted in blue. 
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Fig. 6. Computational analysis demonstrating the SEI effects on the electrodeposition of 

alkali metal. (A) A schematic diagram of the computational domain adopted for the analysis. The 

metal deposit is denoted by the black color, and the SEI layer is depicted by red. The bottom and 

top electrodes (thick black lines) are 2.0 𝜇𝑚 from each other. (B) Metal deposition occurs at the 

tip of protrusion when metal ion transport through the SEI layer is fast. SEI diffusivity is one order 

of magnitude smaller than that observed in electrolyte (𝐷𝑆𝐸𝐼/𝐷𝐸𝑙𝑒𝑐 ~10−1). (C) Metal deposition 

is preferred at the base when ion transport through the SEI layer is slow. SEI diffusivity is six 

orders of magnitude smaller than that observed in liquid electrolyte (𝐷𝑆𝐸𝐼/𝐷𝐸𝑙𝑒𝑐 ~10−6). (D) A 

phase map between “SEI thickness” and “SEI diffusivity” (normalized as the ratio of diffusivity 

between SEI and electrolyte (𝐷𝑆𝐸𝐼 𝐷𝐸𝑙𝑒𝑐⁄ )) demonstrates the regions where enhanced deposition 

should occur at the tip (yellow region), and where metal should be plated at the base (green/blue 

portion). For Na deposition, thickness of the SEI layer range between 100-140 nm, but diffusivity 

of Na through the SEI layer is unknown. Under the assumption of similar Na diffusivities through 

the SEI layer with Li ((𝐷𝑆𝐸𝐼 𝐷𝐸𝑙𝑒𝑐⁄ )~10−5 − 10−6), base growth for Na deposition is favorable.  




