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Abstract We examine the phase response properties of
half-center oscillators (HCOs) that are modeled by a pair
of Morris-Lecar-type neurons connected by strong fast
inhibitory synapses. We find that the two basic mechanisms
for half-center oscillations, “release” and “escape”, give
rise to strikingly different phase response curves (PRCs).
Release-type HCOs are most sensitive to perturbations
delivered to cells at times when they are about to tran-
sition from the active to the suppressed state, and PRCs
are dominated by a large negative peak (phase delays)
at corresponding phases. On the other hand, escape-type
HCOs are most sensitive to perturbations delivered to
cells at times when they are about to transition from the
suppressed to the active state, and PRCs are dominated
by a large positive peak (phase advances) at correspond-
ing phases. By analyzing the phase space structure of
Morris-Lecar-type HCO models with fast synaptic dynam-
ics, we identify the dynamical mechanisms underlying the
shapes of the PRCs. To demonstrate the significance of
the different shapes of the PRCs for the release-type and
escape-type HCOs, we link the shapes of the PRCs to the
different frequency modulation properties of release-type
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and escape-type HCOs, and we show that the different
shapes of the PRCs for the release-type and escape-type
HCOs can lead to fundamentally different phase-locking
dynamics.
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1 Introduction

Central pattern generators (CPGs) are specialized neu-
ronal circuits in the central nervous system that produce
rhythmic activity in the absence of afferent feedback or
rhythmic input (Hooper 2001; Marder and Calabrese 1996).
Almost all rhythmic movements of animals (e.g., walking,
swimming, breathing, chewing, etc.) are programmed at
least in part by CPGs. While maintaining rhythmic activ-
ity, CPGs must be able to adjust their activity and respond
appropriately (e.g., shift their phase or regulate their fre-
quency) to input from higher centers and sensory feedback.
Furthermore, behaviors such as locomotion are controlled
by a network of interconnected CPG modules that inter-
act to produce the limb or segmented-body movements
necessary for effective locomotion, and therefore CPG
modules must adjust their phases in response to input
from other modules in order to produce the properly coor-
dinated activity (Mulloney and Smarandache-Wellmann
2012; Cohen et al. 1992; Stein 2007). Thus, a compre-
hensive understanding of CPG activity must include an
understanding of how they respond to input (Skinner et al.
1994; Nadim et al. 2011).
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A useful way to characterize how oscillators respond
to input is through their phase response curves (PRCs)
(Schultheiss et al. 2012). PRCs measure the phase shift of
an oscillator in response to a brief perturbation as a function
of the timing of the input. PRCs in conjunction with coupled
oscillators theory have been widely used in neuroscience
to understand how changes in a neuron’s intrinsic proper-
ties affect its frequency (Schwemmer and Lewis 2011; Ly
and Ermentrout 2011), how neuronal oscillators phase-lock
to external input (Brumberg and Gutkin 2007; Gouwens
et al. 2010), and how networks of neurons synchronize
(e.g., Ermentrout 1984; Hansel 1995; Mancilla 2007). In
almost all cases, the oscillatory units have been taken to
be the individual neurons. Despite the fact that oscillations
in neural systems often arise from network interactions,
there have been very few theoretical studies on the phase
response properties of network-based oscillators (see how-
ever Ko and Ermentrout 2009; Schlichter 2011; Varkonyi
et al. 2008; Jones et al. 2003). Furthermore, while coupled
oscillator theory has been used extensively to study phase-
locking in networks of CPGs, almost all of these studies
have used a highly idealized model for the coupling (inter-
action) function (i.e., the phase model) (Cohen et al. 1992;
Kopell and Ermentrout 1988; Williams et al. 1990; Skin-
ner et al. 1994) rather than PRCs from biophysically-based
models. It remains unclear how the intrinsic properties of
cells and the synaptic coupling combine to produce the
phase response properties of network-based oscillators and
CPGs in particular.

In this article, we begin to explore the response prop-
erties of CPGs by examining the phase response char-
acteristics of an idealized half-center oscillator (HCO)
model. HCOs consist of two neurons (or neuronal popu-
lations) connected by reciprocal inhibition (Brown 1914;
Mulloney and Smarandache 2010). This half-center orga-
nization is integral to many CPG circuits (e.g., Calabrese
1995; Satterlie 1985; Mulloney and Hall 2007; Smith et
al. 2007). The reciprocal inhibition and some form of slow
adaptation leads to antiphase oscillations in which the units
alternate between an active state and a suppressed (inhib-
ited) state. Two basic mechanisms for generating half-center
oscillations have been described (Wang and Rinzel 1992;
Skinner et al. 1994): “release” in which the oscillations
are primarily controlled by the active cell releasing the
suppressed cell from inhibition, and “escape” in which
the oscillations are primarily controlled by the suppressed
cell escaping from inhibition. We find that the release and
escape mechanisms for Morris-Lecar-type HCO models
give rise to strikingly different PRCs. We use geomet-
ric analysis of the phase portrait structure to explain how
release and escape dynamics shape the PRCs, and we then
give examples of how the shapes of the PRCs can lead to
fundamentally different responses to external input.

2 Methods

2.1 Description of half-center oscillator model

The model half-center oscillator (HCO) used in this study
consists of two neurons that are strongly coupled by fast
reciprocal inhibitory synapses. Specifically, we use the
HCO model described by Skinner et al. (1994). The dynam-
ics of each neuron are described by standard current balance
equations based on the Morris-Lecar model (Morris and
Lecar 1981). For the phase portrait arguments and the
numerical simulations presented in the main text, the cells
are taken to be non-oscillatory when isolated. The ionic
currents in the model cells include a rapidly activating
inward current (the “calcium” current), an outward current
with relatively slow activation kinetics (the “potassium” cur-
rent) and a voltage-independent leakage current. The strong
inhibitory synapses are modeled as “fast threshold modu-
lation” synapses (Somers and Kopell 1993). Note that the
model does not include ionic currents that underlie fast
spikes. Therefore, the voltage of the model during the active
state can be interpreted as the actual membrane potential of
a non-spiking cell, or it can be interpreted as the voltage
“envelope” during a burst of action potentials in a spiking
neuron.

The model equations are

C
dVi

dt
=I − gCam∞(Vi)

(
Vi − ECa

) − gKni

(
Vi − EK

)

− gL

(
Vi − EL

) − Isyn,j→i + Iext,i(t), (1)

dni

dt
= εn

τn(Vi)

(
n∞(Vi) − ni

)
, (2)

where Vi is the membrane potential for cell i, and ni is the
gating variable for the potassium current in cell i (i, j =
1, 2; i �= j ). C is the membrane capacitance; gCa, gK and
gL are the maximal conductances, and ECa, EK and EL are
the reversal potentials for the calcium, potassium and leak-
age currents, respectively. I is a bias current (which could be
absorbed into EL), and Iext,i is an external current injected
into cell i. The functions m∞(V ) and n∞(V ) describe
the voltage-dependent steady state activation curves for the
calcium and potassium conductances

m∞(V ) = 1

2

[
1 + tanh

(V − Va

Vb

)]
, (3)

n∞(V ) = 1

2

[
1 + tanh

(V − Vc

Vd

)]
, (4)

and τn(V )
εn

is the time constant for potassium conductance
activation in which

τn(Vi) = cosh−1
(V − Vc

2Vd

)
. (5)
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The activation dynamics for the calcium conductance
(m∞(V )) is taken to be an instantaneous function of the
membrane potential. The level of activation of the potas-
sium conductance (n) is modeled as a dynamic variable
to capture its relatively slow response to changes in the
membrane potential, which can be controlled by scaling the
factor εn.

The fast synaptic current imposed by neuron j onto
neuron i is

Isyn,j→i = gsyns∞(Vj )
(
Vi − Esyn

)
, (6)

where gsyn and Esyn are the maximal conductance and the
reversal potential for the synaptic currents, respectively. The
synaptic conductances are assumed to have fast dynamics
and are taken to be instantaneous functions of the membrane
potential of the presynaptic neuron (Vpre). Specifically, the
level of activation of the synapses is given by the monoton-
ically increasing sigmoid function

s∞(Vpre) = 1

2

[
1 + tanh

(Vpre − ηsyn

ksyn

)]
, (7)

where ηsyn is the membrane potential at which the synaptic
conductance is half-maximal, and ksyn determines the steep-
ness of the synaptic activation curve s∞(Vpre). The synaptic
activation curve is assumed to be steep, i.e., ksyn is small.
Therefore, we interpret ηsyn as the “synaptic threshold”.

All simulations of the Morris-Lecar-based HCO model
were performed using the same parameter values as Skinner
et al. (1994) except for εn and ksyn. (We relax their assump-
tions that the parameters εn and ksyn are extremely small).
Unless otherwise stated, C = 1 μF/cm2, gCa = 0.015
mS/cm2, ECa = 100 mV, gK = 0.020 mS/cm2, EK = −80
mV, gL = 0.005 mS/cm2, EL = −50 mV, gsyn = 0.010
mS/cm2, Esyn = −80 mV, Va = 0 mV, Vb = 15 mV,
Vc = 0 mV, Vd = 15 mV, εn = 0.0005, ksyn = 2 mV,
and ηsyn is defined in each example. Iext,i (t) = 0 (i =
1, 2) except when studying the effects of small pertur-
bations or periodic inputs to the HCO model. The bias
current I = 0.8 μA/cm2, except when it is varied to show
how it affects the phase response properties of the HCO
(see Section 3.3).

The generality of our analysis suggests that our basic
results carry over to all Morris-Lecar-type HCO mod-
els with fast synapses (i.e., the family of models with
similar phase space structure to the Morris-Lecar-based
HCO model described here) and do not depend on the
specific combination of parameters used in our model or
the specific choice of the Morris-Lecar-type models. We
support this claim by presenting the PRCs and phase por-
traits for different cases in the appendices. Appendix A
shows that the results for Morris-Lecar-based HCOs with
intrinsically oscillatory dynamics are similar to those for
Morris-Lecar-based HCOs with intrinsically non-oscillatory

cells presented in the main text. Appendix B shows that
similar results also hold for the Wang-Rinzel (HCO) model
(Wang and Rinzel 1992).

2.2 Phase response curves

A phase response curve (PRC) quantifies the sensitivity of
an oscillator at different phases in its cycle (Schwemmer
and Lewis 2012). Specifically, the PRC of a neuronal oscil-
lator measures its phase shift in response to a brief current
pulse as a function of the phase at which the pulse is
delivered. The convention adopted in this article is that a
phase advance is indicated by a positive value on the PRC,
whereas a phase delay is indicated by a negative value. If the
current pulse amplitude is sufficiently small and its duration
is sufficiently brief, then the phase shift will be propor-
tional to the total charge injected during the pulse. In this
case, when the phase shift is normalized by the total charge
and membrane capacitance, one obtains the “infinitesimal
PRC”, which has units of time per unit membrane potential
(msec/mV). In what follows, we use “PRC” to refer to the
infinitesimal PRC, which we denote by Z(θ) where θ is the
phase of the oscillator (in units of time), and T is the period
of the oscillation.

In neuroscience applications, PRCs typically are deter-
mined for single oscillatory neurons, but they can also be
used to characterize the response properties of neural sys-
tems in which oscillations arise from network properties.
Note that despite the fact that a network-based oscillator
contains more than one cell, the oscillator has a single phase,
θ . However, perturbations can be delivered to each cell in
the network, and hence there is a different PRC for each
neuron. For our HCO model, which consists of two identical
neurons oscillating in anti-phase, the PRCs for each neuron
are identical except for a phase shift of a half-period (0.5T ).
We define the PRC for cell 1 to be Z1(θ) = Z(θ), and then
the PRC for cell 2 is Z2(θ) = Z(θ + 0.5T ).

PRCs for individual neurons and neuronal networks can
be obtained directly by applying brief current pulses at
many different times in the oscillator’s cycle and mea-
suring the subsequent change in timing of the next spike
(e.g., Mancilla et al. 2007; Smarandache et al. 2009; Netoff
et al. 2012). PRCs for mathematical models can also be
computed by solving the adjoint equations for the full
model equations linearized around the system’s T-periodic
limit cycle. The PRCs for the HCO model (Eqs. (1) and
(2)) presented in this article are computed using this so-
called adjoint method as described by Williams and Bowtell
(1997). However, example PRCs were checked against
PRCs that were obtained by using the direct method. See
Appendix C for a comparison of infinitesimal PRC com-
puted using the adjoint method and PRCs computed using
the direct method.
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2.3 Phase models

Besides characterizing the phase-dependent sensitivity of
the HCO, the PRC can be used to examine the oscil-
lator’s phase-locking dynamics in response to periodic
external input. Using the theory of weakly coupled oscil-
lators (Kuramoto 1984; Malkin 1949; Ermentrout 1984),
the dynamics of the HCO can be reduced to the considera-
tion of a “phase model”, in which the state of the oscillator
is described entirely by its phase θ(t). The phase can be
decomposed into two parts: θ(t) = (

t + φ(t)
)

mod T ,
where t describes the change in the phase of the oscillator
in the absence of the external input, and the relative phase
φ(t) quantifies the phase shift that results from the external
input. If the effect of the T-periodic external input on the
phase of the oscillator is relatively small compared to that
of the intrinsic dynamics of the oscillator, then the change
in φ(t) is very small (negligible) over a single period,
i.e., φ(t) is approximately constant over a single period.
However, these small changes in φ(t) can accumulate over
many periods to produce significant phase shifts. This slow-
time evolution of φ(t) for the HCO is captured by the
phase equation

dφ

dt
= H1(φ) + H2(φ) ≡ H(φ), (8)

where

Hi(φ) = 1

T

∫ T

0
Zi(s + φ)

Iext,i (s)

C
ds.

The interaction function Hi(φ) quantifies the average rate
of change of the relative phase of the HCO over a period
T that results from the external input into cell i at any
particular relative phase (φ ≈ constant within a single
period). The phase Eq. (8) is a first-order autonomous dif-
ferential equation that can be easily analyzed. Specifically,
the zeros of H(φ) correspond to the steady states of the
phase model and therefore the phase-locked states of the
oscillator subject to the external T-periodic input Iext,i (t).
These phase-locked states are stable if dH(φ)

dφ
< 0. Note

that the above mathematical framework can be extended to
accommodate the case in which the external forcing is not
strictly T-periodic and to study the phase-locking proper-
ties of coupled oscillator networks. Details of the theory of
weakly coupled oscillators can be found in the recent review
by Schwemmer and Lewis (2012).

3 Results

In this section, we first review the basic dynamics of half-
center oscillations (Wang and Rinzel 1992; Skinner et al.

1994) and show that the phase response curves (PRCs) for
the release-type and the escape-type half-center oscillators
(HCOs) have strikingly different shapes. We then explain
how the shapes of the PRCs arise from the basic dynamics of
the HCO under the release and escape mechanisms. Finally,
we provide examples that demonstrate how the shapes of the
HCO’s PRC can be used to understand the effect of external
constant input on the HCO’s frequency and how the HCO
phase-locks to periodic input.

3.1 PRCs of HCOs under “release” and “escape”
mechanisms have different shapes

3.1.1 The basic dynamics of HCOs

An HCO consists of two non-oscillatory cells that are cou-
pled by mutual inhibition. The fast synaptic inhibition and
the rapid calcium-current kinetics interact with the slow
potassium-current kinetics to produce anti-phase oscilla-
tions in which the cells transition between an active state
and a suppressed (inhibited) state. If the cells’ transition
between the active state and the suppressed state is trig-
gered by changes in the active cell, the underlying mech-
anism is called “release”. If the transition is triggered by
changes in the suppressed cell, it is called “escape”. In this
subsection, we briefly describe the dynamics for these two
types of HCO mechanisms. For simplicity, we present ide-
alized cases in which the cells in the HCO are assumed to
undergo relaxation-oscillator-like dynamics (i.e., relatively
small εn) and the synapses connecting the cells are assumed
to have a sharp threshold for the activation (i.e., small ksyn)
(Skinner et al. 1994). However, we show that the basic
behavior and main conclusions in the article carry over to
less restrictive cases.

Release Mechanism Figure 1a plots the membrane poten-
tials Vi and the gating variables for the outward K+ current
ni as functions of phase for cell 1 and cell 2 during steady
half-center oscillations under the release mechanism. Points
A, B, C, D and A’, B’, C’, D’ indicate landmark points in
the half-center oscillations for cell 1 and cell 2, respectively.
At phase θ = 0, cell 1 has just made a transition from the
suppressed state to the active state. Its membrane potential
V1 is at a maximal value (point A) that is above the synap-
tic threshold ηsyn, and therefore cell 1 is inhibiting cell 2.
Cell 2 has just been driven from the active state to the sup-
pressed state by the inhibition from cell 1, and V2 is at
a minimal membrane potential (point C’), which is well
below ηsyn. As the cycle progresses, the outward K+ cur-
rent slowly activates in cell 1 (i.e., n1 slowly increases in an
exponential fashion), leading to a slow exponential decrease
in V1 (A → B). On the other hand, the outward K+ current
in cell 2 slowly deactivates (i.e., n2 slowly decreases in an
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Fig. 1 Dynamics of HCOs. a A release-type HCO (ηsyn = 20 mV). b
An escape-type HCO (ηsyn = 0 mV). In both (a) and (b), the top fig-
ures show the membrane potential Vi of cell 1 (solid curve) and cell 2
(dashed curve) as functions of the phase (normalized by the period T),
where the horizontal dotted line is the “synaptic threshold” ηsyn, and
the bottom figures show the gating variable ni of cell 1 (solid curve)
and cell 2 (dashed curve) as functions of the phase, where the horizon-
tal dotted line indicates the “escape threshold” nesc. Markers A, B, C
and D indicate landmark points in the half-center oscillations of cell 1,
whereas A’, B’, C’, D’ indicate the corresponding points for cell 2.
These markers are referenced throughout the main text

exponential fashion), leading to a slow exponential depolar-
ization of cell 2 (C’ → D’). If the active cell 1 were isolated,
it would asymptotically approach a depolarized steady state
at V1 = 13 mV, n1 = 0.85. However, as V1 decreases
toward this steady state, it crosses ηsyn immediately before
phase θ = 0.5T (point B), which turns off the inhibitory
synapse from cell 1 to cell 2. Upon its release from inhi-
bition, cell 2’s membrane potential V2 rapidly depolarizes
and rises above ηsyn (D’ → A’). Cell 1 is now inhibited,
and V1 rapidly hyperpolarizes (B → C). Thus, at θ = 0.5T ,
cell 1 and cell 2 have switched states after half of the period;
cell 2 is now in the active state with V2 at a maximal value
(point A’) and cell 1 is now in the suppressed state with
V1 at a minimal value (point C). The second half of the
cycle (θ from 0.5T to T) is identical with the two cells’
roles switched.

Escape Mechanism Figure 1b shows the dynamics of the
HCO under the escape mechanism. At phase θ = 0, cell 1 is
at its maximal membrane potential (point A) and is inhibit-
ing cell 2, which is at its minimal membrane potential (point
C’). As described for the release-type HCO, as the cycle
progresses (θ from 0 to 0.5T ), cell 1 slowly exponentially
repolarizes (A → B), while cell 2 slowly exponentially
depolarizes (C’ → D’). If cell 1 remains uninhibited, it
would asymptotically approach a depolarized steady state at
V1 = 13 mV, n1 = 0.85. However, in the escape-type HCO,
soon before phase θ = 0.5T , the gating variable n2 for the
outward K+ current in cell 2 decreases to a critical value
nesc = 0.13 below which the fast inward current is greater
than the outward current. This leads to the rapid depolariza-
tion of cell 2 (D’ → A’), while it is still inhibited by cell 1.
We refer to the critical value nesc as the “escape threshold”.
Upon its escape from inhibition, cell 2’s membrane potential
V2 rises above the synaptic ηsyn, which turns on the synap-
tic inhibition from cell 2 to cell 1. The inhibition from cell 2
causes cell 1 to rapidly hyperpolarize (B → C), and V1 falls
below ηsyn, turning off the synaptic input from cell 1 to
cell 2. Cell 2 finally reaches the maximal membrane poten-
tial (point A’). Thus, at phase θ = 0.5T , cell 1 and cell 2
have switched states. The second half of the cycle (θ from
0.5T to T) is identical to the first half of the cycle but the
roles of the two cells are switched.

Note that, for the release-type HCO (Fig. 1a), the gat-
ing variable for the slow outward K+ current ni never
falls below the escape threshold nesc. The cells’ transi-
tion between the active and suppressed states does not rely
on the intrinsic dynamics of the suppressed cell. Instead,
the timing of the transition is controlled by the membrane
potential of the active cell falling below the synaptic thresh-
old ηsyn and releasing the suppressed cell from inhibition.
On the other hand, for the escape-type HCO (Fig. 1b),
dynamics of the active cell and the exact value of ηsyn

does not play a role in initiating the transition of the cells
between the active and suppressed states. The timing of
the transition is controlled by the intrinsic properties of
the suppressed cell. Specifically, as the gating variable of
the suppressed cell drops below nesc, the fast inward cur-
rent overcomes the slow outward current, leading to a
rapid depolarization of the suppressed cell and its escape
from inhibition. For more general and detailed descriptions
of HCO dynamics and the release and escape mecha-
nisms, see Wang and Rinzel (1992), Skinner et al. (1994)
and Daun et al. (2009).

3.1.2 PRCs of HCOs

Figures 2a and b show the PRCs and the corresponding
membrane potentials of HCOs under the release and the
escape mechanisms, respectively. Recall that because the
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Fig. 2 PRCs for release-type and escape-type HCOs have strikingly
different shapes. a The PRC of a release-type HCO (ηsyn = 20
mV).b The PRC of an escape-type HCO (ηsyn = 0 mV). In both (a)
and (b), the top figure shows the PRCs of cell 1 (solid curve) and
cell 2 (dashed curve), and the bottom figures shows the corresponding
membrane potential of cell 1 (solid curve) and cell 2 (dashed curve)
as functions of the phase. The horizontal dotted line in the bottom
figures indicates the synaptic threshold ηsyn. At phases when Zi > 0,

the HCO will advance its phase in response to small brief positive cur-
rent pulses delivered to cell i; whereas when Zi < 0, the HCO will
delay its phase in response to these stimuli. The PRC of a release-type
HCO is dominated by a large negative peak late in the first half of
the cycle, whereas the PRC of an escape-type HCO is dominated by a
large positive peak late in the second half of the cycle. Markers A, B,
C, D for cell 1 and A’, B’, C’, D’ are used to indicate landmark points
as in Fig. 1

two cells in the HCO are in anti-phase, the PRC obtained
when cell 1 is perturbed (Z1(θ) = Z(θ)) and the PRC
obtained when cell 2 is perturbed (Z2(θ) = Z(θ + 0.5T ))
are identical except for a half-period phase shift. Therefore,
we will describe only the PRC for cell 1, and refer to it as
“the PRC of the HCO”.

The PRCs for the two half-center oscillation mechanisms
have strikingly different shapes. Most notably, the PRC for
the release mechanism is dominated by a large negative peak
late in the first half of the period, whereas the PRC for the
escape mechanism is dominated by a large positive peak
late in the second half of the period. This implies that a
brief positive applied current pulse delivered to cell 1 (i.e.,
a �V perturbation to V1) late in the first half of the period
will significantly delay the phase of a release-type HCO,
but it will do little to an escape-type HCO. On the other
hand, the same �V perturbation delivered late in the second
half of the period will significantly advance the phase of an
escape-type HCO, but it will have a much smaller effect on
a release-type HCO. Note that, despite their very different
PRCs, HCOs under the release and escape mechanisms can
have very similar membrane potential traces (see the bot-
tom figures in Fig. 2a, b or Fig. 1). This suggests that it is
difficult to predict an HCO’s phase response properties sim-

ply by examining the membrane potential, and it is difficult
to assess whether the release or escape mechanism under-
lies the half-center oscillations by examining the membrane
potential alone (i.e., without knowing the synaptic threshold
and the escape threshold), but the oscillation mechanism is
clear from the shape of the PRC.

The basic shapes of PRCs for the release and escape
mechanisms persist as εn and ksyn vary. The left figure in
Fig. 3 shows the PRCs of escape-type HCOs with several
values of εn and fixed ksyn = 2.0. The dominant posi-
tive peak late in the second half of the period is preserved,
and in fact, it becomes taller and broader as εn increases
(i.e., as the dynamics of the system become less relaxation-
oscillator-like). Note also that the shape of the PRC for
the escape-type HCO is insensitive to changes in ksyn (not
shown), because the escape-type half-center oscillations are
largely controlled by the intrinsic properties of the sup-
pressed cell rather than the synaptic activation threshold (see
Section 3.1; Wang and Rinzel 1992; Skinner et al. 1994).
The middle figure in Fig. 3 shows the PRCs of release-type
HCOs with several values of ksyn and a fixed εn = 0.0005.
The dominant negative peak late in the first half of the
period, which is characteristic of the PRCs for the release
mechanism, is preserved. The right figure in Fig. 3 shows
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Fig. 3 PRCs of HCOs with different values of εn and ksyn. Left figure:
ηsyn = 0 mV (all PRCs), ksyn = 2.0 (all PRCs); εn = 0.0020 (dashed
curve), εn = 0.0005 (solid curve), εn = 0.0002 (dash-dotted curve).
Middle figure: ηsyn = 20 mV (all PRCs), εn = 0.0005 (all PRCs);
ksyn = 4 (dashed curve), ksyn = 2 (solid curve), ksyn = 1 (dash-dotted
curve). Right figure: ηsyn = 20 mV (for all PRCs); εn = 0.0020 and

ksyn = 4 (dashed curve), εn = 0.0005 and ksyn = 2 (solid curve),
εn = 0.0002 and ksyn = 1 (dash-dotted curve). The left figure is based
on the escape-type HCO, whereas the two figures on the right are based
on the release-type HCO. The solid curve in the left figure is the same
PRC shown in Fig. 2b. The solid curves in the two figures on the right
are the same PRC shown in Fig. 2a

the PRCs of release-type HCOs when εn and ksyn are var-
ied simultaneously. Once again, the basic shape of the PRC
is preserved, but larger values of both parameters combine
to make the negative peak broader. Furthermore, the small
“escape-like” positive peak in the second half of the period
increases in size.

Note that the PRCs presented above are infinitesimal
PRCs. With stronger perturbations, the shape of the PRC
may depend on the magnitude and the sign (excitatory or
inhibitory) of the perturbation. In Appendix C, we com-
pare the infinitesimal PRCs for the Morris-Lecar-based
HCOs with the PRCs directly computed by injecting finite
strength delta function perturbations into one of the cells.
We find that the shape of the infinitesimal PRC is very
close to the shapes of PRCs computed using delta-function
perturbations with at least up to 5 mV stimulus strength.

Furthermore, in Appendix A and B, we show that the
PRCs for the Wang-Rinzel (HCO) model and Morris-Lecar-
based HCOs with intrinsically oscillatory cells have the
same basic shapes as those described in this section.

3.2 Mechanisms by which release and escape dynamics
shape the HCO’s PRC

In this subsection, we identify the general dynamical
properties of Morris-Lecar-type HCO models that give
rise to the shapes of the HCOs’ PRCs. Specifically, we
describe how perturbations to cell 1’s membrane potential
�V at different phases θ lead to the changes in the time �t

for the perturbed cell to reach the critical threshold in the
half-center oscillations (i.e., the synaptic threshold ηsyn for
release-type HCOs or the escape threshold nesc for escape-
type HCOs) and ultimately how these changes in timing
result in the asymptotic phase shift �θ of the HCO. Note

that the changes in timing �t as a function of the phase θ

that the perturbation is delivered (normalized by the total
charge of the perturbation over the membrane and the intrin-
sic period of the HCO) is the “first order PRC” (Netoff et al.
2012).

Our explanations use the idealizations of relaxation-
oscillator-like dynamics for the individual neurons (rela-
tively small εn) and a sharp synaptic threshold (small ksyn).
Recall that: (1) The sharp threshold ensures that the active
cell receives no inhibitory synaptic input, whereas the sup-
pressed cell is subject to a maximal constant inhibitory
synaptic conductance. (2) The relaxation-oscillator-like
dynamics ensure that the transitions between the active and
suppressed states are relatively rapid, so cells are almost
always in one of these two states at all times. Note, however,
the basic results hold when these restrictions are relaxed.
Given the assumptions of small εn and ksyn, the only essen-
tial dynamical property that our explanation requires is the
exponential deceleration of the cells’ state as they progress
through the active and suppressed states. This property
is typical for Morris-Lecar-type systems with relaxation-
oscillator-like dynamics (Rinzel and Ermentrout 1989).

To aid the explanation of how the dynamics of HCOs
shape their phase response properties, we use the phase
portraits of the half-center oscillations projected onto the
(V, n) phase plane. Because the two cells in the HCO
model are identical and firing in anti-phase, we can use
the two-dimensional (V, n) phase plane to understand the
dynamics of the 4-dimensional system (Skinner et al. 1994;
Wang and Rinzel 1992; Daun et al. 2009). Figure 4 shows
the (V, n) phase plane for (a) a release-type HCO and (b)
an escape-type HCO. The n-nullcline (n = n∞(V ); dash-
dotted curve) is monotonically increasing in V. Because of
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Fig. 4 HCO dynamics in the (V, n) phase plane. a A release-type
HCO (ηsyn = 20 mV). b An escape-type HCO (ηsyn = 0 mV). Solid
curve: the V-nullcline when a cell is fully inhibited. Dashed curve: the
V-nullcline when a cell is fully uninhibited. dash-dotted curve: the n-
nullcline, which is not dependent on the status of the presynaptic cell.
Solid dots: cell 1’s trajectory evenly spaced in time for the first half
of the cycle. Open circles: cell 1’s trajectory evenly spaced in time
for the second half of the cycle. The vertical dotted line indicates the
synaptic threshold ηsyn. The horizontal dotted line indicates the escape
threshold nesc (the value of the gating variable n at the lower left knee
of the fully inhibited V-nullcline). Markers A, B, C, D indicate the
landmark points for cell 1, which correspond to A, B, C, D in Fig. 1
and Fig. 2

the sharp threshold for synaptic activation, a cell is either
“inhibited” (s∞(Vpre) = 1) or “uninhibited” (s∞(Vpre) =
0), depending on whether the presynaptic cell’s membrane
potential is above or below ηsyn (plotted as a vertical dot-
ted line). Accordingly, the V-nullcline for a cell is either
the lower N-shaped curve (the “inhibited” V-nullcline; the
solid curve) or the upper N-shaped curve (the “uninhib-
ited” V-nullcline; the dashed curve). Note that if uncoupled,
the isolated cells would approach a depolarized steady
state at V1 = 13 mV, n1 = 0.85, as indicated by
the intersection between the n-nullcline and the uninhib-
ited V-nullcline. Because the HCO is assumed to be a
relaxation-like oscillator, dynamics in the V-direction are

much faster than those in the n-direction. This implies that,
if a cell is not near the V-nullcline, the state of the cell
will quickly move to the corresponding stable branch of the
V-nullcline (the branches with negative slopes). The evo-
lution of cell 1’s state that corresponds to the time series
in Fig. 1 is plotted as a trajectory in phase space for a full
period. Points along the trajectory (solid dots for the first
half cycle and open circles for the second half) are plotted
at equal time steps, thus the density of the points along the
trajectory indicate the rates of change of the system. Note
that, in both the release-type and the escape-type half-center
oscillations, the density of points increases as the system
moves along the right branch of the uninhibited V-nullcline
and the left branch of the inhibited V-nullcline. This is the
signature of the exponential deceleration of the cells’ state
as they slowly progress through the active state and the sup-
pressed state. As suggested above, this deceleration plays a
key role in determining the shapes of the PRCs. Cell 2’s tra-
jectory would be identical to cell 1’s trajectory subject to a
half-period phase shift.

In the following explanations, it is important to distin-
guish the effects of perturbations on the state of the cells
in the (V, n) phase space and the effects on the timing of
the release/escape processes. Also note that we use the term
“state” not refer to the active or suppressed state but more
specifically to the exact location of the cell in the (V, n)

phase space.

3.2.1 Mechanisms shaping the PRCs of release-type HCOs

Under the release mechanism, the half-center oscillations
are controlled by the termination of the synaptic inhibi-
tion to the suppressed cell (as described in Section 3.1
and in Wang and Rinzel 1992; Skinner et al. 1994; Daun
et al. 2009). This suggests that the shape of the PRC of
release-type HCOs can be understood by considering how
perturbations �V lead to changes in timing �t for the per-
turbed cell’s membrane potential to drop below the synaptic
threshold ηsyn.

A → B : Perturbations to cell 1 in the active state (phase
θ from 0 to 0.5T ). First consider the effect of a small brief
positive perturbation �V delivered to cell 1 in the active
state as it relaxes from the maximal membrane potential
(point A) toward the synaptic threshold ηsyn (point B) in
the (V, n) phase plane (see schematic Fig. 5a top). The per-
turbation shifts the state of cell 1 and leads to a change in
timing �t for cell 1’s membrane potential to reach the ηsyn.
As cell 1 progresses through the active state (A → B), the
state of cell 1 moves upward closely adhering to the stable
right branch of the uninhibited (s∞ = 0) V-nullcline toward
the n-nullcline (i.e., slow hyperpolarization and increase of
n1). Thus, the dynamics of cell 1 exponentially decelerate
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Fig. 5 Perturbations delivered to HCOs under different mechanisms
and at different phases have fundamentally different effects on the
HCO’s phase shifts. The schematic dynamics of (a) a release-type
HCO and (b) an escape-type HCO in the (V, n) phase plane. In both
(a) and (b), the top figure shows the effect of a perturbation delivered
to a cell in the active state, and the bottom figure shows the effect of a
perturbation delivered to a cell in the suppressed state. The trajectories

of the states of an unperturbed cell and a perturbed cell are plotted
for comparison. The unperturbed cell is indicated by filled circles with
a solid trajectory, and the perturbed cell is indicated by open circles
with a dashed trajectory. The vertical dotted line indicates the synaptic
threshold ηsyn. The horizontal dotted line indicates the escape thresh-
old nesc. Markers A, B, C, D for cell 1 are used to indicate landmark
points as in Fig. 4, which correspond to A, B, C, D in Figs. 1 and 2

as it approaches the stable steady state for the isolated cell,
and there is a corresponding contraction of points in the
(V, n) phase space around cell 1’s trajectory (see A → B
in Fig. 4a). This makes the timing of the HCO more sen-
sitive to perturbations to cell 1 as it approaches ηsyn; the
magnitude of �t in response to a perturbation �V will tend
to increase exponentially as the timing of the perturbation
occurs later in the active state. This implies that the magni-
tude of the first order PRC should increase significantly as θ

approaches the phase at which cell 1’s membrane potential
reaches ηsyn.

The mechanisms underlying this behavior are similar
to those underlying the increased sensitivity of Morris-
Lecar-type relaxation-oscillators as they approach the upper
right knee of the V-nullcline in the “active” state (Izhike-
vich 2000; Coombes 2001; Rinzel and Ermentrout 1989).
Timing delays are typical for Morris-Lecar-type relaxation-
oscillators in response to perturbations at these phases, and
therefore delays are expected for the Morris-Lecar-based
HCO models in response to perturbations near the synap-
tic threshold. Indeed, perturbations delivered at times when
the HCO system is very close to the threshold should

cause delays because the positive perturbation pushes the
active cell away from the threshold. Note however that
there is no guarantee that perturbations delivered early
in the active state will lead to delays (in the Morris-
Lecar-based HCO model and the single cell Morris-Lecar-
type relaxation-oscillator). Timing advances can sometimes
occur due to the dynamical interactions between the change
in the membrane potential V and the gating variable n.
In any case, the timing shifts of the HCO due to per-
turbations to cells early in the active state will be rela-
tively small due to the lack of sensitivity of the system at
these states.

B → C : Perturbations to cell 1 during the transition from
the active state to the suppressed state (phase θ ∼ 0.5T ).
Cell 1 eventually crosses the synaptic threshold ηsyn shortly
before phase 0.5T. This turns off the synaptic input from
cell 1 to cell 2. Cell 2 then rapidly depolarizes and turns on
the inhibition to cell 1, which ultimately leads to the rapid
hyperpolarization of cell 1 (B → C in Fig. 4a). Because
voltage is changing rapidly during the transition from the
active to the suppressed state, �V perturbations during this
transition should have negligible effects.
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C → D : Perturbations to cell 1 in the suppressed state
(phase θ from 0.5T to T). Now consider the effects of per-
turbations �V to cell 1 in the suppressed state (schematic
Fig. 5a bottom). At phase θ = 0.5T , cell 1 is suppressed
by inhibition from cell 2 and is at the minimal membrane
potential (point C). As cell 1 progresses through the sup-
pressed state, its state moves downward in the (V, n) phase
plane along the stable left branch of the inhibited (s∞ = 1)
V-nullcline toward the n-nullcline (i.e., slow depolarization
and decrease of n1; C → D). Similar to the dynamics in the
active state, the dynamics of cell 1 during the suppressed
state exponentially decelerate, and there is a contraction of
points in phase space around cell 1’s trajectory (see C → D
in Fig. 4a). When cell 1 is perturbed, the state of cell 1 will
be altered, and in general there will be a shift in timing of
cell 1 within the suppressed state (as shown in Fig. 5a bot-
tom near D). However, this shift in timing of cell 1 is only
transient. The perturbation to cell 1 does not affect the time
at which cell 2 reaches the synaptic threshold and releases
cell 1 from inhibition; this is controlled entirely by the
intrinsic dynamics of the uninhibited cell 2. Furthermore,
while the perturbation to cell 1 could in principle affect the
time at which cell 1 reaches the synaptic threshold on the
second half of the cycle and lead to a timing shift of the
HCO �t , this effect is negligible. Because of the contrac-
tion of points around cell 1’s trajectory, the change in state
of the suppressed cell 1 due to the perturbation, which was
small immediately after the perturbation, gets even smaller
before cell 1 is released from inhibition (see Fig. 5a). When
cell 1 jumps to the active state, the magnitude of the change
in state due to the perturbation is preserved and therefore
remains very small. As explained above, cells at the begin-
ning of the active state are insensitive to small changes in
the state. Thus, perturbations’ effect on the timing change
�t for cell 1 to reach ηsyn will be insignificant, and the first-
order PRC of the HCO should be close to zero for phases
0.5T to T.

D → A : Perturbations to cell 1 during the transition
from the suppressed state to the active state (phase θ ∼ T ).
When cell 2 crosses ηsyn, it releases cell 1 from inhibi-
tion and cell 1 rapidly depolarizes (D → A in Fig. 4a).
As was the case for the active to suppressed state transi-
tion, the effects of perturbations during this fast transition
will be negligible. At phase θ = T , cell 1 returns to
the initial active state (point A in Fig. 4a), and the cycle
begins again.

The thick solid curve in Fig. 6a plots the first
order PRC of the release-type HCO, demonstrating
that it takes the shape described above. In addition,
Fig. 6a shows that the first order PRC of the release-
type HCO is indistinguishable from its asymptotic PRC
(the thin dashed curve). This illustrates that the timing shifts
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Fig. 6 The first order PRCs of (a) a release-type HCO and (b) an
escape-type HCO (thick solid curves). The thin dashed curve repre-
sents the (infinitesimal) PRC calculated using the adjoint method. Note
that the first order PRC and the PRC are virtually indistinguishable

due to the perturbation are essentially complete within a sin-
gle cycle, and that the mechanisms shaping the asymptotic
PRC are those that shape the first order PRC as described
above. Why are there no substantial higher order effects
of the perturbation on the changes in transition times �t

(i.e., why are the first-order PRC and the asymptotic PRC
virtually identical)? A perturbation to cell 1 in the sup-
pressed phase has little effect on the first full cycle and
therefore cannot have any substantial effect on the fol-
lowing cycles. A perturbation to cell 1 when it is in the
active state alters the time at which the suppressed cell 2
is released from inhibition and therefore alters the state
of the cell 2 when it is released. However, because the
dynamics are relatively slow near the end of the suppressed
state, this change in state of cell 2 will be small. This in
turn implies that change in state of cell 2 at the begin-
ning of active state will be small. As mentioned above,
because dynamics are relatively fast at the beginning of the
active state, this change in state of cell 2 will have very
little effect on the time at which it reaches threshold and
releases cell 1. Thus, any subsequent changes in timing will
be negligible.

Summary for release-type HCOs The timing of a release-
type HCO is controlled by the event that the active cell’s
membrane potential falls below the synaptic threshold.
Therefore, if the active cell is perturbed, the change in its
timing will directly translate into the phase shift of the HCO,
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and thus the phase response properties of the HCO is inher-
ited from the active cell’s dynamics. Because dynamics of
the cells undergo exponential deceleration during the active
state, cells are relatively insensitive to perturbations early
in the active state and respond with exponentially growing
delays as the active phase progresses. On the other hand,
if the suppressed cell is perturbed, any change in its tim-
ing will be nullified when the cell jumps to the active state
due to the exponential deceleration of the dynamics in the
suppressed state and the insensitivity of the HCO to per-
turbations to cells at the beginning of the active state. This
implies that the PRCs for release-type HCOs are dominated
by a negative peak late in the first half of the cycle followed
by a portion with insignificant phase shifts in the second
half of the cycle.

3.2.2 Mechanisms shaping the PRCs of escape-type HCOs

A similar analysis can be used to uncover the mecha-
nisms shaping the PRCs for escape-type HCOs. In fact,
by noting (1) the similarities between dynamics of the
escape and release mechanisms in phase space (i.e., the
same nullcline structure and the exponential decelera-
tion of the cells’ states during the active and suppressed
states) and (2) that the escape threshold nesc plays the
role that the synaptic threshold ηsyn played in the release
mechanism, we expect that very similar mechanisms are
at work.

C → D : Perturbations to cell 1 in the suppressed state
(phase θ from 0.5T to T) First consider the effect of a small
brief positive perturbation �V on the inhibited suppressed
cell 1 during phases θ from 0.5T to T (see schematic Fig. 5b
bottom). At phase θ = 0.5T , cell 1 is suppressed by inhi-
bition from cell 2 and has a minimum membrane potential
(point C). The perturbation will shift the state of cell 1 and
lead to a change in timing �t for cell 1 to reach the escape
threshold nesc (point D). As cell 1 progresses through the
suppressed state in the (V, n) phase plane, it moves slowly
downward along the stable left branch of the inhibited
V-nullcline toward the lower left knee of this nullcline
(C → D), and there is a contraction of points in phase space
around the suppressed cell 1’s trajectory (see Fig. 4b). Thus,
the timing of the HCO becomes more sensitive to pertur-
bations to cell 1 as its state approaches the lower left knee
of the inhibited V-nullcline, reaching a maximal sensitivity
around the knee. The typical response properties of single-
cell Morris-Lecar oscillators suggest that timing advances
should arise for the escape-type HCO in response to pertur-
bations near the lower knee of the left branch of the inhibited
V-nullcline. This implies that the first order PRC should
increase as cell 1 progresses through the suppressed state,
reaching a maximum near θ ∼ T .

D → A : Perturbations to cell 1 during the transition
from the suppressed state to the active state (phase θ ∼ T ).
Immediately before phase θ = T , cell 1 reaches the lower
left knee of the inhibited V-nullcline. This ultimately leads
to the rapid transition of cell 1 from the suppressed state
to the active state. Perturbations delivered during this fast
transition will have negligible effects.

A → B : Perturbations to cell 1 in the active state (phase
θ from 0 to 0.5T ). Now consider the effects of perturbations
�V to cell 1 in the active state (schematic Fig. 5b top). At
phase θ = 0, cell 1 is active, uninhibited and has a maximal
membrane potential (point A). As described for the release
case, as cell 1 progresses through its active state in the
(V, n) phase plane, it approaches a steady state for the iso-
lated cell, and there is a contraction of points in phase space
around cell 1’s trajectory. However, in the escape mecha-
nism, cell 1 does not make a transition to the suppressed
state until the suppressed cell 2 escapes from inhibition.
Because cell 1 approaches a steady state, the changes in
the active cell’s state due to perturbations will exponen-
tially decrease as the cell progresses through the active state.
Therefore, when the cell eventually jumps to the suppressed
state, any changes in the cell’s state due to perturbations
will be very small. Because cells are insensitive to changes
in state at the beginning of the suppressed state, the small
change in cell 1’s state due to the perturbation will have an
insignificant effect on the change in time �t for the cell to
reach the lower left knee of the inhibited V-nullcline. This
implies that the first-order PRC of the HCO should be close
to zero for phases from 0 to 0.5T .

B → C : Perturbations to cell 1 during the transition from
the active state to the suppressed state (phase θ ∼ 0.5T ).
As cell 2 escapes from inhibition and turns on the inhibi-
tion to cell 1, cell 1 rapidly jumps to the stable left branch
of the inhibited V-nullcline. The rapid changes in voltage
ensure that the effects on �t from perturbations �V deliv-
ered during this fast transition are negligible. At phase θ =
0.5T , cell 1 returns to the state with a minimal membrane
potential (point C).

Figure 6b shows that the first order PRC (the thick solid
curve) matches the shape of the PRC (the thin dashed
curve), i.e., there are no higher order effects. The explana-
tion for the lack of higher order effects of perturbations on
the changes in timing �t for the escape case is very similar
to that for the release case.

Summary for escape-type HCOs The timing of an escape-
type HCO is controlled by the event that the suppressed
cell’s gating variable falls below the escape threshold.
Therefore, if the suppressed cell is perturbed, the change in
its timing will directly translate into the phase shift of the
HCO, and thus the phase response properties of the HCO
is inherited from the suppressed cell’s dynamics. Because
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dynamics of the cells undergo exponential deceleration dur-
ing the suppressed state, cells are relatively insensitive to
perturbations early in the suppressed state and respond with
exponentially growing advances as the suppressed phase
progresses. On the other hand, if the active cell is per-
turbed, any change in its timing will be nullified when
the cell jumps to the suppressed state due to the exponen-
tial deceleration of the dynamics in the active state and
the insensitivity of the HCO to perturbations to cells at
the beginning of the suppressed state. This implies that the
PRCs for escape-type HCOs will be dominated by a pos-
itive peak in the second half of the cycle preceded by a
portion with insignificant phase shifts in the first half of
the cycle.

3.3 Half-center oscillations involving both release
and escape mechanisms

In the previous subsections, half-center oscillations were
described as being generated by either the release or escape
mechanism. However, not every HCO can be classified as
being distinctly release-type or escape-type. In fact, contin-
uous changes in parameters can lead to smooth transition
between release and escape (Shpiro et al. 2007). Thus,
dynamics of an HCO may involve elements from both the
release and escape mechanisms, and therefore the PRC of
an HCO may have both a negative peak late in the first
half of the cycle and a positive peak late in the second half
of the cycle. Nevertheless, the explanations presented in
Section 3.2 can still be used to understand shapes of PRCs
for these less distinct cases.

The PRCs of release-type HCOs in Fig. 3b and c show
that, when the synaptic activation curve is less steep (larger
ksyn), the large negative peak late in the first half of the cycle
persists, but the small escape-like positive peak late in the
second half of the cycle increases in size. If the synaptic
threshold is infinitely sharp (ksyn ≈ 0), then the synap-
tic inhibition was either fully on (s∞ = 1) or fully off
(s∞ = 0). However, with a larger ksyn, the level of synaptic
inhibition changes smoothly with the presynaptic membrane
potential (i.e., ηsyn can no longer be thought of as an all-
or-none “threshold”). This leads to a gradual increase in the
escape threshold nesc during the waning of the inhibition. In
the (V, n) phase plane, this gradual increase in nesc during
the release process corresponds to the lower left knee of the
inhibited V-nullcline continuously shifting upward toward
the uninhibited V-nullcline (see the online supplemental
material for animated phase plane movies). Compared to the
idealized case where the suppressed cell cannot reach the
lower left knee of its V-nullcline because the knee is too
low (see Fig. 5a bottom and descriptions in Section 3.2.1
for C → D), in the case where the synaptic activation
is smoother, the lower left knee gradually rises during

the release process and becomes within the reach of the
suppressed cell. In this scenario, perturbations to the sup-
pressed cell could have timing shifts similar to those in
escape-type HCOs (see Fig. 5b bottom and descriptions
in Section 3.2.2 for C → D). Therefore, brief positive
perturbations delivered to the suppressed cell just before
it escapes can have a significant phase advancing effect
on the full HCO, and hence lead to the escape-like pos-
itive peak (late in the second half of the cycle) in addi-
tion to the large negative peak (late in the first half
of the cycle).

Parameters other than ksyn can also affect the oscillation
mechanism underlying an HCO and hence the shape of its
PRC. As an example, Fig. 7a depicts the PRCs of an HCO
with a varying bias current in both cells in the HCO, I.
As I increases, there is a smooth transition from release to
escape. Initially at I = 0.85 μA/cm2, the PRC has a dom-
inant negative peak late in the first half of period, which is
the signature of the release mechanism. As I increases, the
HCO and its PRC become less release-like and more escape-
like. That is, the large negative peak becomes smaller, while
a positive peak late in the second half of the period devel-
ops and grows larger. At an intermediate value I = 0.95
μA/cm2, the PRC’s positive and negative peaks are approxi-
mately equal in size, which implies that the two mechanisms
play equally weighted roles in generating phase response
properties. As I further increases to I = 1.05 μA/cm2,
the HCO becomes distinctly escape-type with a dominant
positive peak late in the second half of the period. The
transition from release to escape is reflected in the average
of the PRC over a period (〈Z〉 = 1

T

∫ T

0 Z(θ)dθ ), which
is plotted as a function of I in Fig. 7b (solid curve, nor-
malized by the period T). As I increases, 〈Z〉 smoothly
increases from a negative value reflecting the dominant
negative peak in release-type HCOs’ PRCs to a positive
value reflecting the dominant positive peak in escape-type
HCOs’ PRCs.

3.4 Applications of PRCs

3.4.1 Effects of changes in bias currents on the frequency
of half-center oscillations

Figure 7b shows that the frequency vs. bias current (f -I)
curve of the HCO is non-monotonic. When the HCO
exhibits release-type behavior at lower values of I, f
decreases with I; when the HCO exhibits escape-type
behavior at higher values of I, f increases with I. This
dependence of the f -I curve of HCOs on the mechanism of
oscillation was pointed out in Shpiro et al. (2007), Curtu
et al. (2008) and Daun et al. (2009).

The link between the HCO mechanism and the frequency
dependence on the bias currents can be readily understood
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Fig. 7 The link between the PRC and the f -I curve. a The
PRCs of HCOs with different values of the bias current to both
cells. As I increases, there is a smooth transition from a release-
type PRC to an escape-type PRC. b Average of the PRC and
frequency of oscillation as functions of I. Solid curve: the aver-
age of the PRC over a period, denoted by 〈Z〉, normalized

by T. When the PRC has a dominant negative peak, which is a sig-
nature of the release mechanism, 〈Z〉 is negative; whereas when the
PRC has a dominant negative peak, which is a signature of the release
mechanism, 〈Z〉 is positive. Dashed curve: the frequency of the half-
center oscillations (f ). f decreases when 〈Z〉 < 0, and increases when
〈Z〉 > 0

in terms of the PRCs. According to the phase model for the
HCO (Eq. (8) in Section 2.3), 1

T
dφ
dt

, and therefore 1
T

H(φ),
is the change in instantaneous frequency of an oscillator that
results from the perturbation Iext. If the perturbation is taken
to be a small constant change in the bias current in both cells
of the HCO (i.e., Iext,i = �I , i = 1, 2), then the change in
HCO’s frequency is

�f = 1

T
H(φ) = 1

T

2∑

i=1

1

T

∫ T

0
Zi(s + φ)

�I

C
ds

= 2

CT
〈Z〉�I.

Taking the limit �I → 0, we see that

df

dI
=

( 2

CT

)
〈Z〉. (9)

That is, the instantaneous slope of the HCO’s f -I curve
is proportional to the average value of the PRC 〈Z〉
(Schwemmer and Lewis 2011). This relationship links the f -
I curves, the PRCs and the oscillation mechanisms of HCOs.
A release-type HCO has a negative average value of its PRC,
which leads to the negative slope in the f -I curve; whereas
an escape-type HCO has a positive average value of its PRC,
which leads to a positive slope in the f -I curve.

3.4.2 The phase-locking property of a forced HCO

Given a particular PRC Z(θ), the phase model Eq. (8)
can be used to determine the phase-locking property of
an HCO forced by a T-periodic external input. Here, we
demonstrate that release-type HCOs and escape-type HCOs
support very different phase-locking dynamics. Figure 8a
plots the functions H(φ) for both the release-type HCO
and the escape-type HCO (as defined in Fig. 1a and 1b,
respectively) when cell 1 is subject to a weak periodic
inhibitory input. The input to cell 1 is Iext,1(t) = −εH(

(t

mod T ) − 0.25T
)
, where H is the Heaviside function

and ε is the strength of the forcing. Recall that the zero
crossings of H(φ) with negative slope correspond to the
stable phase-locked states. We see that the release-type
HCO is stably phase-locked to the periodic input Iext with
a 19 %-period advance relative to the stimulus, whereas
the escape-type HCO is stably phase-locked to Iext with a
7 %-period phase delay.

Figure 8b shows how the T-periodically forced HCO’s
phase-locked states change as the bias current I changes.
The solid curve plots the stable phase-locked states (zero
crossings of H with a negative slope), and the dashed
curve plots the unstable phase-locked states (zero cross-
ings with a positive slope). At low values of bias current
(I ∼ 0.6 μA/cm2), the HCO has one stable phase-locked
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Fig. 8 Phase-locking of HCOs to periodic input. a The interaction
functions H for two HCOs subjected to periodic forcing to cell 1. Solid
curve: H function for the release-type HCO (from Fig. 1a). Dashed
curve: H function for the escape-type HCO (from Fig. 1b). The arrow
on the left points to the stable phase-locked state (at 0.19T) of the
release-type HCO, and the arrow on the right points to the stable
phase-locked state (at 0.93T or -0.07T) of the escape-type HCO. b The
phase-locked states of periodically forced HCOs with different values
of the bias current to both cells I (bifurcation diagram). Solid curve:
the stable phase-locked states with different values of I. Dashed curve:
unstable phase-locked states at different values of I. Parameters are the
same as those in (a) except that I is varied

state around 20 %-period and one unstable phase-locked
state around 40 %-period. As I increases, the stable phase-
locked state remains around 20 %-period until I reaches
∼0.97 μA/cm2, at which point the stable phase-locked state
quickly changes to approximately 90 %-period. Around this
point, a pair of saddle node bifurcation associated with the
unstable phase-locked state leads to region of bistability,
but this bistability only exists for a very narrow range of I.
It is important to note that the critical region in parameter
space around I ∼ 0.97 μA/cm2 corresponds to the HCO’s
transition from release to escape: when below I ∼ 0.97
μA/cm2, the HCO is release-dominated (as illustrated in
Fig. 7b), and a stable phase-locked state exists at around
20 %-period; whereas when above I ∼ 0.97 μA/cm2,
the HCO is escape-dominated, and a stable phase-locked
state exists at around 90 %-period. This shows that differ-
ent half-center oscillation mechanisms can lead to strikingly
different phase-locked states for forced HCOs.

4 Discussion

A phase response curve (PRC) describes the phase shifts
of an oscillator as a function of the phase at which a per-
turbation is given in an oscillation cycle. In neuroscience,
PRCs are widely used to quantify the response properties
of neural oscillators and predict phase-locking in neural
systems. Typically, each neural oscillator is viewed as an
intrinsically oscillatory neuron, and hence PRCs are usually
computed for single cells. However, oscillations in neural
systems often arise from network interactions, as in the case
of half-center oscillators (HCOs). Despite this fact, there
have been few theoretical studies that analyze the phase
response properties of network-based oscillators.

In this manuscript, we examine the phase response prop-
erties of HCOs that consist of two non-oscillatory Morris-
Lecar cells connected by fast inhibitory synapses. By ana-
lyzing the phase space structure of Morris-Lecar-type HCO
models, we show how the two basic mechanisms for half-
center oscillations, “release” and “escape”, lead to strikingly
different phase response properties. The timing of an HCO
is controlled by a trigger event that switches the direction
of inhibition between the two cells and leads to the transi-
tion of the cells between the active and suppressed states.
When the HCO is not undergoing transition, only one of
the cells in the HCO is in control of the timing of the sys-
tem. If the cell in control of the trigger event is perturbed,
the change in timing of this cell will directly translate into
the phase shift of the HCO. If the other cell is perturbed,
any transient change in timing of this cell will be elimi-
nated when the cell makes the next transition. This is due to
the exponential deceleration of the cell’s dynamics before
its transition and the initial insensitivity of the HCO to per-
turbations delivered to a cell soon after its transition. The
trigger event of a release-type HCO occurs when the active
cell’s membrane potential falls below the synaptic thresh-
old. Therefore, the effects of perturbations delivered to the
active cell will be manifested in the PRC by a large negative
peak (delay) late in the active phase, whereas perturbations
delivered to the suppressed cell will not lead to signifi-
cant phase shifts. On the other hand, the trigger event of an
escape-type HCO occurs when the suppressed cell’s gating
variable drops below the escape threshold. Therefore, the
effects of perturbations delivered to the suppressed cell will
be manifested in a dominant advance portion of the PRC
late in the suppressed phase, whereas perturbations deliv-
ered to the active cell will not lead to significant phase shifts.
Note that, given the structure of the Morris-Lecar-type HCO
model considered here (i.e., fast synapses and relaxation-
like dynamics), not only do the release and escape mecha-
nisms determine the shape of the HCOs’ PRCs, the shape
of an HCO’s PRC can also be used to determine the HCO’s
underlying mechanism.



J Comput Neurosci (2013) 35:55–74 69

For our analysis, we place some idealizations on the
Morris-Lecar-type HCO model (Skinner et al. 1994): εn is
relatively small, i.e., the HCO has a relaxation-oscillator-
like dynamics, and ksyn is small, i.e., the synaptic activation
is steep. Despite these idealizations, the qualitative aspects
of our results hold for larger εn and/or ksyn. As illustrated
in Fig. 3, the basic shape of the PRC is unchanged with
small changes in εn and ksyn. In general, if HCOs have a
less relaxation-oscillator-like dynamics (i.e., a larger εn),
their PRCs will be smoother and less peaked. On the other
hand, less steep thresholds for the synaptic activation (i.e.,
a larger ksyn) will lead to HCOs in which both the release
and escape mechanisms contribute to their half-center oscil-
lation, and therefore PRCs will have both a negative peak
late in the active phase and a positive peak late in the
suppressed phase.

It is important to note that even though changes in bio-
physical parameters can lead to changes in the shape of
the HCO’s PRC, the link between the PRC’s shape and the
HCO’s mechanism is unchanged. For example, by increas-
ing ksyn, the boundary between the release and escape
mechanisms blurs. Nevertheless, a negative peak late in the
first half of the cycle of the PRC indicates the existence of
a release mechanism (i.e., the timing of the cells’ transition
between the active and suppressed states is sensitive to per-
turbations delivered to the active cell late in the first half
of the cycle), and a positive peak late in the second half of
the cycle of the PRC indicates the existence of an escape
mechanism (i.e., the timing of the cells’ transition is sensi-
tive to perturbations delivered to the suppressed cell late in
the second half of the cycle).

As Skinner et al. (1994), LoFaro et al. (1994) and Rowat
and Selverston (1993) demonstrated, the release and escape
mechanisms of HCOs can be generated by several dif-
ferent ionic mechanisms. Wang and Rinzel (1992) first
characterized the release and escape mechanisms based
on a minimal ionic model in which the oscillations are
driven by a post-inhibitory rebound current. Skinner et al.
(1994) refined and generalized Wang and Rinzel’s results
using a Morris-Lecar-based model (as we used here) to
explore cases where the cells are either intrinsically quies-
cent or intrinsically oscillatory. Daun et al. (2009) studied
three different HCO models based on different ionic cur-
rents: a slowly inactivating persistent sodium current, a
slowly activating calcium-dependent potassium current and
a post-inhibitory rebound current. Although the underly-
ing biophysical mechanisms were different, the dynamical
mechanisms for these models are all based on fast-slow
cellular (relaxation-oscillator-like) dynamics similar to the
Morris-Lecar-based model with fast inhibitory synapses.
In fact, Rowat and Selverston (1997) further demonstrated
that the release and escape mechanisms are sufficient to
produce oscillatory behavior in all cases of reciprocal

inhibition in an HCO model where each cell is modeled by a
2-dimensional fast-slow system with fast synaptic coupling.
This suggests that our basic results on how the release and
escape mechanisms shape the HCO’s PRC can apply to a
wide variety of HCOs models that share similar dynami-
cal properties. Note that this family of models also includes
population or competition models such as the binocular
rivalry models examined in Shpiro et al. (2007), Curtu et al.
(2008) and Seely and Chow (2011) and the spike-rate-based
CPG model in Varkonyi et al. (2008). Indeed, in Appendix
A and B, we show that the PRCs for Morris-Lecar-based
HCOs with intrinsically oscillatory cells (Skinner et al.
1994) and the Wang-Rinzel model for the release and
escape mechanisms have the same basic shapes as those
described here.

Ko and Ermentrout (2009) and Schlichter (2011) previ-
ously studied how the PRCs of HCOs, which were modeled
by two weakly coupled phase oscillators, were shaped by
the PRCs of the individual oscillators. Our work fundamen-
tally differs from this previous work in that we considered
an HCO consisting of two conductance-based model neu-
rons that are strongly coupled. Nadim et al. (2011) mod-
eled an HCO in the crustacean pyloric circuit by using
a single intrinsically oscillatory Morris-Lecar-type neuron
with delayed inhibitory feedback. They showed the delayed
inhibitory feedback decreased the overall magnitude of the
oscillator’s PRC, and therefore promoted the stability of
the oscillation. This suggests that the HCO circuit struc-
ture may promote stable oscillations. Similar to the analysis
in Section 3.2, Nadim et al. used phase plane arguments
to show that the delayed inhibition sped up the dynam-
ics of the system at particular phases, making the system
less sensitive to perturbations at these phases. This mech-
anism for shaping PRCs appears to be different than the
mechanisms that we described for our HCO model. This dif-
ference is likely due to the different modeling assumptions,
e.g., single-cell model vs. two-cell model, smoother dynam-
ics vs. relaxation-oscillator-like dynamics. More work is
required to coherently link these two PRC-shaping mecha-
nisms suggested by the two different models.

Our idealized model does not include many biophysical
features of real HCOs or biophysically detailed HCO mod-
els, such as fast spiking dynamics, heterogeneity of cells
and more realistic synaptic dynamics. Clewley (2011) com-
puted the first and second order PRCs for a 38-dimensional
leech heart HCO model consisting of two mutually coupled
single-compartment cells with fast spiking dynamics dur-
ing the cells’ active state. Many aspects of the PRCs of the
detailed model agree with our findings for the Morris-Lecar-
based HCO model. Specifically, the PRCs of the detailed
model showed an insensitivity of the HCO to perturbations
at initial phases of both the active and suppressed states,
and sometimes a high sensitivity near the end of the active
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and/or suppressed states. Furthermore, some PRCs of the
detailed model had shapes consistent with the release-type
delays and escape-type advances. On the other hand, the
detailed model’s PRCs sometimes had bi-phasic or multi-
phasic responses in the sensitive phases and high-frequency
oscillations throughout the cycle (seemingly uncorrelated
with the fast spikes). This suggests the detailed model
has more complicated phase response properties than the
Morris-Lecar-based model. We note, however, that the sec-
ond order PRCs of the detailed model closely resemble the
first order PRCs, indicating there are minimal higher order
effects, as is the case in our Morris-Lecar-based model.

Nadim et al. (2011) measured a PRC for the central pat-
tern generator (CPG) of the crustacean pyloric circuit, and
Smarandache et al. (2009) measured the CPG underlying a
segment of the crayfish swimmeret system. Both of these
circuits are composed, at least partially, of HCO structures.
The PRC for the pyloric CPG circuit showed increased sen-
sitivity during the suppressed state and near the beginning
of the transition to the active state, exhibiting a large escape-
type advancing portion. The system also showed a small
release-type delaying portion of the PRC. However, the PRC
was much smoother than the PRCs for our Morris-Lecar-
based HCO model. This is likely due to smoother dynamics
in the pyloric rhythm generating circuit (i.e., less relaxation-
oscillator-like dynamics) and possibly the longer stimulus
duration used in generating the pyloric PRC. The PRC of
the crayfish swimmeret system CPG showed both a large
delaying portion during the active state and a large advanc-
ing portion during the suppressed state, and they were even
smoother than the pyloric PRC. Again, this smoothness is
at least partially due to the long stimulus (about 40 % of the
period) used to obtain the swimmeret PRC, and it could also
be due to the fact that the swimmeret CPG was indirectly
stimulated through a coordinating interneuron. The simi-
larities between these experimentally measured PRCs and
the PRCs of the Morris-Lecar-type HCO models suggest
that both the pyloric and the swimmeret CPGs’ oscillations
involve both the release and the escape mechanisms, as
described in Sections 3.2 and 3.3. However, more evidence
is needed to strengthen this hypothesis. For instance, the
influence of modulating the CPG dynamics on the PRCs’
shape could be examined. The phase space structure of
the Morris-Lecar-based model predicts that pharmacologi-
cally depolarizing the cells or partially blocking the synaptic
inhibition should promote escape-type dynamics, and thus
would lead to a larger positive bump at phases late in the
active state, e.g., see Fig. 7.

Despite the generality of our results, there are still sev-
eral caveats and open questions that need to be pointed out.
(i) Models that we consider, e.g., the Morris-Lecar-based
HCO model (Skinner et al. 1994) and the Wang-Rinzel
model (Wang and Rinzel 1992), only describe the envelop

of bursts or non-bursting dynamics. Explicitly including
spikes in a bursting model will result in more complicated
phase response properties (Sherwood and Guckenheimer
2010). Some of the basic PRC properties appear to per-
sist in biophysically detailed models that include bursting
dynamics (Clewley 2011). However, a better understanding
of the similarities and differences in the idealized and the
detailed models is necessary. (ii) The two neurons in our
HCO model are assumed to be identical. If the heterogene-
ity between the two neurons is sufficiently small, the shape
of the PRC will be similar to the case for the HCO with
identical neurons. If the heterogeneity is large, then the PRC
may be different. However, the PRC’s shape may still be
understood based on the ideas presented in this article. (iii)
The synaptic connections in our HCO model are simulated
by using the fast threshold modulation model. Although this
instantaneous synapse model can be a good approximation
to sufficiently fast synapses, it cannot capture the dynam-
ics arising from slower synapses (Schlichter 2011; Clewley
2011). Furthermore, incorporating synaptic plasticity (for
example, the central pattern generator (CPG) model with
synaptic depression studied by Taylor et al. (2002) may
further complicate the half-center oscillation mechanisms
and the shape of the PRCs. (iv) Our HCO model consists
of two neurons coupled by mutual inhibition. However,
many biological CPGs contain more than two populations
of neurons (Grillner 2003; Kiehn 2006; Kristan et al. 2005;
Varkonyi et al. 2008; Smith et al. 2007). A different analy-
sis may be required to study the phase response properties
of these CPGs. Nevertheless, because half-center structure
is integral to many CPGs, we expect that some of our results
of HCOs will carry over to these more complicated CPGs.
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Appendix A: PRCs under the “intrinsic release”
and “synaptic release” mechanisms
for the Morris-Lecar-based HCO model

Skinner et al. (1994) used a Morris-Lecar-based HCO
model to show that the release and escape mechanisms
can be further categorized into “intrinsic release”, “synaptic
release”, “intrinsic escape” and “synaptic escape”, depend-
ing on whether the cells’ transitions between the active and
suppressed states are due to synaptic dynamics or cells’
intrinsic dynamics. Synaptic and intrinsic mechanisms can
lead to different biophysical properties of HCOs. For exam-
ple, in the synaptic release mechanism, the frequency of
oscillation is sensitive to the synaptic threshold (ηsyn),
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whereas in the intrinsic release mechanism, the frequency
is robust against changes in the synaptic threshold. In the
cases presented in the main text, the release-type HCOs
are under the synaptic release mechanism and the escape-
type HCOs are under the intrinsic escape mechanism, as in
Wang and Rinzel (1992).

Using arguments similar to those in Section 3.2, it can be
readily shown that the PRCs for both the synaptic and intrin-
sic release mechanisms have the same basic characteristics,
and the same for the escape case. Parameters used in our
Morris-Lecar-based HCO model in the main text correspond
to the synaptic release and the intrinsic escape mechanisms,
where the cells are not intrinsic oscillators. Figures 9 and 10
show the PRCs of the Morris-Lecar-based HCOs under the
intrinsic release mechanism and the synaptic escape mech-
anism, respectively, as defined in Skinner et al. (1994).
Despite the biophysical differences between the intrin-
sic and synaptic mechanisms, both intrinsic and synaptic
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Fig. 9 Dynamics and the PRC of a Morris-Lecar-based HCO under
the intrinsic release mechanism. gsyn = 0.006 mS/cm2, ηsyn = 0
mV and I = 0.4 μA/cm2. Top figure: (V, n) phase plane. Solid
curve: the V-nullcline when a cell is fully inhibited. Dashed curve: the
V-nullcline when a cell is fully uninhibited. Dash-dotted curve: the n-
nullcline, which is not dependent on the status of the presynaptic cell.
Dots: cell 1’s (or cell 2’s) trajectory evenly spaced in time for a full
cycle. The vertical dotted line indicates the synaptic threshold ηsyn.
Middle figure: membrane potential Vi of cell 1 (solid curve) and cell 2
(dashed curve) as functions of the phase (normalized by the period T).
The horizontal dotted line is ηsyn. Bottom figure: the PRCs of cell 1
(solid curve) and cell 2 (dashed curve). In the intrinsic release mecha-
nism, the active cell’s membrane potential is always above the synaptic
threshold. The transition between the active and the suppressed states
is triggered by the active cell’s intrinsic properties
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Fig. 10 Dynamics and the PRC of a Morris-Lecar-based HCO under
the synaptic escape mechanism. ηsyn = −30 mV. Same notations as in
Fig. 9. In the synaptic escape mechanism, the transition between the
active and the suppressed states is triggered by the suppressed cell’s
membrane potential rising above the synaptic threshold, and hence
turning on the inhibition to the active cell

release-type HCOs have PRCs with a dominant negative
peak late in the first half of the cycle (compare Fig. 9
with Fig. 2a), whereas both intrinsic and synaptic escape-
type HCOs have PRCs with a dominant positive peak late
in the second half of the cycle (compare Fig. 2b with
Fig. 10).

Appendix B: PRCs for the Wang-Rinzel (HCO) model

Wang and Rinzel (1992) described the release and escape
mechanisms in a minimal ionic model for half-center
oscillations involving a post-inhibitory rebound current.
Figures 11 and 12 show the PRCs for the Wang-Rinzel
model under the release and the escape mechanisms, respec-
tively. As argued in the discussion section, the basic results
of our work do not specifically rely on a particular choice of
models. HCOs modeled using the Wang-Rinzel model have
the same basic dynamics in terms of their phase portraits as
the Morris-Lecar-type HCO models. Therefore, they have
the same basic phase response properties as the HCO model
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Fig. 11 The PRC of an HCO under the release mechanism using
the Wang-Rinzel model. Same parameters as defined by Wang and
Rinzel (1992). Top figure: The PRCs of cell 1 (solid curve) and cell 2
(dashed curve). Bottom figure: Membrane potential Vi of cell 1 (solid
curve) and cell 2 (dashed curve) as functions of the phase (normalized
by the period T). The horizontal dotted line is the synaptic threshold
(ηsyn as defined in Wang and Rinzel (1992))

in our article (compare Fig. 11 with Fig. 2a for the release
mechanism, and compare Fig. 12 with Fig. 2b for the escape
mechanism).
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Fig. 12 The PRC of an HCO under the escape mechanism using
the Wang-Rinzel model. Same parameters as defined by Wang and
Rinzel (1992). Same notations as in Fig. 11
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Fig. 13 The effects of perturbation strength on the PRC of a release-
type HCO. The thickest solid line is the infinitesimal PRC as shown
in Fig. 2a. The thinner solid lines are the PRCs computed using delta
function stimuli resulting in 1 mV and 5 mV perturbations. The thin-
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Fig. 14 The effects of perturbation strength on the PRC of a escape-
type HCO. The thickest solid line is the infinitesimal PRC as shown
in Fig. 2b. The thinner solid lines are the PRCs computed using delta
function stimuli resulting in 1 mV and 5 mV perturbations. The thin-
ner dashed lines are the PRCs computed using delta function stimuli
resulting in -1 mV and -5 mV perturbations. As the stimulus strength
decreases, the directly computed PRCs approach the infinitesimal PRC

Appendix C: PRCs computed using the direct method

In general, the directly measured PRC depends on the
strength of the perturbation and its sign (i.e., excitatory vs.
inhibitory). However, for sufficiently small perturbations,
the PRC would remain unchanged when it is normalized
by the amplitude of the perturbation with its sign and
would be indistinguishable from the infinitesimal PRC.
Figures 13 and 14 compare the PRCs for the release-type
HCO and escape-type HCO of the Morris-Lecar-based
model for different stimulus strengths. These two figures
show that the shape of the infinitesimal PRCs that are
directly computed using the adjoint method greatly resem-
ble that of the directly computed PRCs using delta function
stimuli that generate up to 5 mV (and possibly beyond)
perturbations to the membrane potential.
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