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ABSTRACT OF THE DISSERTATION

Privacy, Security, and Flexibility in Distributed Computing

By

Zhen Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2021

Assistant Professor Zhiying Wang, Chair
Chancellor’s Professor Syed Ali Jafar, Chair

The modern information age is heralded by exciting paradigms that generate a tremendous amount

of data, such as health records, financial transactions, and social media user information. As infor-

mation becomes increasingly available, distributed computing becomes more and more important,

especially in information retrieval, search, and computation. The high demand for distributed com-

puting brings many new challenges and concerns. This dissertation focuses on privacy, security,

and flexibility issues in distributed computing from an information-theoretic perspective. Specif-

ically, we study the privacy problem via private information retrieval (PIR) with a focus on the

scenarios with available side information and private search. The security and flexibility problems

are investigated via coded distributed computing. Two settings for matrix multiplication are stud-

ied: the secure multi-party computation and the distributed computation with a flexible number of

available servers.

PIR allows a user to retrieve one message from databases while preserving the privacy of the de-

sired message index. We investigate the role of side information in PIR, meaning a subset of the

messages known by the user. Assume T is the number of possible colluding databases, despite

which the privacy of the desired message and the side information should still be maintained. We

focus on T -Private Information Retrieval with Private Side Information (TPIR-PSI) and character-

xi



ize its capacity. A novel achievable scheme is proposed. As a special case obtained by setting T =

1, our result settles the capacity of PIR-PSI, an open problem previously noted by Kadhe et al. We

extend our results to the problem of symmetric-TPIR with private side information (STPIR-PSI).

Then, we consider private search, where a user searches for all records matching a symbol from the

servers, without revealing any information about the queried symbol. Private search is shown to

be highly related to PIR with arbitrarily dependent messages. A new converse bound is presented

for PIR with arbitrary dependence. Based on the asymptotic behavior of the new converse bound,

the asymptotic capacity of private search is characterized. Our result is further generalized to OR

search, AND search, NOT search and sequence search.

As the next step, we consider secure multi-party batch matrix multiplication (SMBMM). Two

batches of matrices are individually coded and transmitted to the computation servers, who com-

municate with each other and a master such that the product of the matrices is decoded at the

master. The matrices are kept secure from the servers and the master, except that the master ob-

tains the final product. A solution called Generalized Cross Subspace Alignment codes with Noise

Alignment (GCSA-NA) is proposed based on cross-subspace alignment codes. Compared to the

state-of-art solution, polynomial sharing, GCSA-NA outperforms it in several key aspects — more

efficient and secure inter-server communication, lower latency, flexible inter-server network topol-

ogy, efficient batch processing, and tolerance to stragglers. Moreover, the idea of noise alignment

can be applied to symmetric secure private information retrieval to achieve the asymptotic capacity.

Finally, we focus on the flexibility of the coded distributed matrix multiplication. The goal is also to

compute the matrix product from distributed servers. However, servers do not communicate among

themselves and the number of stragglers (slow servers) is not known a priori. A novel flexible

construction is proposed to fully utilize the computation capability of available servers. The main

idea is to require non-straggler servers to finish more sub-tasks to compensate for the effect of

the stragglers. The fundamental trade-off between server storage capacity and computation load is

investigated.

xii



Chapter 1

Introduction

1.1 Background

In the era of big data, large-scale learning, and the Internet of things, the rapid increase in the

amount of information and computation motivates distributed computing to take center-stage. In

distributed computing, a large number of devices are involved, and a problem is divided into many

tasks, each solved by one or more devices which communicate with each other. Compared to large

centralized systems, distributed computing has many advantages, such as scalability growth, fault

tolerance, and cost effectiveness.

However, distributed computing also brings many new challenges and concerns, including user

privacy and data security for sensitive data such as medical and financial records, computation effi-

ciency under limited resources and/or massive computation load, and flexibility with unknown sys-

tem parameters. Efficient solutions to the above challenges are essential in promoting distributed

computing in the above scenarios, and have been extensively studied in recent decades. For exam-

ple, introduced in 1995 by Chor, Kushilevitz, Goldreich and Sudan [22, 23], the private information

retrieval problem seeks the most efficient way for a user to retrieve a desired message out of K
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messages from N distributed servers, each of which stores all the messages, without revealing

any information about the identity of the desired message to any individual server. For another

example, private search aims to find a solution that efficiently searches for all records, stored in

distributed servers, that match a user’s privately chosen value such that any server learns nothing

about the chosen value. Secure multi-party computation [121] and secure coded distributed com-

puting (CDC) [125] are examples with the goal of creating methods for servers to jointly compute

a function while keeping input data secure. And flexible schemes for varying number of avail-

able servers are investigated ranging from communication efficient secret sharing [51], adaptive

gradient codes [78], private information retrieval [12] to coded distributed computing [91].

The focus of this dissertation is the fundamental understanding of the trade-offs among privacy,

security, flexibility, and efficiency of distributed computing. The schemes and converse of several

distributed computing scenarios are investigated, including private information retrieval, private

search, secure and flexible distributed matrix multiplication.

1.2 Overview of the Dissertation

Chapter 2 considers the problem of T -Private Information Retrieval with private side information.

In this problem,N replicated databases storeK independent messages, and a user, equipped with a

local cache that holds M messages as side information, wishes to retrieve one of the other K −M

messages. The desired message index and the side information must remain jointly private even

if any T of the N databases collude. The capacity is defined as the maximum number of bits of

the desired message per downloaded bit from the servers to the user. We show that the capacity

of TPIR-PSI is
(

1 + T
N

+ · · ·+
(
T
N

)K−M−1)−1. As a special case obtained by setting T = 1,

this result settles the capacity of PIR-PSI, an open problem proposed by Kadhe et al. We also

consider the problem of symmetric-TPIR with private side information, where the answers from

all N databases reveal no information about any other message besides the desired message. We

2



show that the capacity of STPIR-PSI is 1− T
N

if the databases have access to common randomness

(not available to the user) that is independent of the messages, in an amount that is at least T
N−T

bits per desired message bit. Otherwise, the capacity of STPIR-PSI is zero.

In Chapter 3, the private search problem is introduced, where a dataset comprised ofL i.i.d. records

is replicated acrossN non-colluding servers, and a user wishes to search for all records that match a

privately chosen value, without revealing any information about the chosen value to any individual

server. Each record contains P symbols, and each symbol takes values uniformly and indepen-

dently from an alphabet of size K. Considering the large number of records in modern datasets,

it is assumed that L is much larger than the alphabet size K. The capacity of private search is the

maximum number of bits of desired information that can be retrieved per bit of download. The

asymptotic (large K) capacity of private search is shown to be 1 − 1/N , even when the scope of

private search is further generalized to allow OR search, AND search, NOT search and sequence

search. The results are based on the asymptotic behavior of a new converse bound for private infor-

mation retrieval with arbitrarily dependent messages. The asymptotic behavior is also applicable

to T -colluding servers or (N, T )-MDS coded servers.

As the next step in expanding the scope of distributed computing, in Chapter 4 a secure multi-party

batch matrix multiplication problem is considered, where the goal is to allow a master to efficiently

compute the pairwise products of two batches of massive matrices, by distributing the computa-

tion across S servers. Any X colluding servers gain no information about the input, and the master

gains no additional information about the input beyond the product. A solution called General-

ized Cross Subspace Alignment codes with Noise Alignment is proposed in this chapter, based

on cross-subspace alignment codes. The state of the art solution to SMBMM is a coding scheme

called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali [83]. GCSA-NA

outperforms PS codes in several key aspects — more efficient and secure inter-server communica-

tion, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance

to stragglers.

3



Chapter 5 concentrates on the flexibility of distributed computing. The distributed matrix multipli-

cation problem with an unknown number of stragglers is considered, where the goal is to efficiently

and flexibly obtain the product of two massive matrices by distributing the computation across N

servers. There are up to N − R stragglers but the exact number is not known a priori. Motivated

by reducing the computation load of each server, a flexible solution is proposed to fully utilize the

computation capability of available servers. The computing task for each server is separated into

several subtasks, constructed based on Entangled Polynomial codes by Yu et al [128]. The final re-

sults can be obtained from either a larger number of servers with a smaller amount of computation

completed per server or a smaller number of servers with a larger amount of computation com-

pleted per server. The required finite field size of the proposed solution is less than 2N . Moreover,

the optimal design parameters such as the partitioning of the input matrices is discussed. Our con-

structions can also be generalized to other settings such as batch distributed matrix multiplication

and secure distributed matrix multiplication. Finally, we conclude this dissertation in Chapter 6.

4



Chapter 2

The Capacity of T -Private Information

Retrieval with Private Side Information

2.1 Introduction

The private information retrieval (PIR) problem investigates the privacy of the contents down-

loaded from public databases. In the classical form of PIR [23], a user wishes to, as efficiently as

possible, retrieve one of K messages that are replicated across N non-colluding databases while

preserving the privacy of the desired message index. Since its first formulation by Chor et al.

in [23], the PIR problem has been studied extensively in computer science and cryptography un-

der both information-theoretic and computational privacy constraints [9, 38, 41, 89, 123]. While

studies of PIR typically seek to optimize both the upload and download costs, recently there has

been a burst of activity aimed at capacity characterizations for information-theoretic PIR under

the assumption of large message sizes, so that the communication cost is dominated by the down-

load cost [7, 16, 96, 101, 102, 107]. The capacity of PIR was defined in [102] as the maximum

number of bits of the desired message that can be privately obtained per bit of total downloaded

5



information from all the servers. In order to summarize some of the capacity results for PIR, let

us define the function Ψ(A,B) =
(
1 + A+ A2 + · · ·+ AB−1

)−1 for positive real number A and

positive integer B. Correspondingly, Ψ(A,∞) = 1 − A for A < 1. The capacity of PIR was

characterized in [102] as CPIR = Ψ(1/N,K). The capacity of T -PIR, where the privacy of the

user’s desired message index must be protected against collusion among any set of up to T servers,

was characterized in [105] as CTPIR = Ψ(T/N,K). The capacity of symmetric PIR (SPIR), where

the user learns nothing about the database besides his desired message, was shown in [103] to

be CSPIR = Ψ(1/N,∞), and the capacity of STPIR, with both symmetric privacy and robustness

against collusion among any T servers, was characterized in [114] as CSTPIR = Ψ(T/N,∞). A

number of other variants of PIR have also been investigated, such as PIR with MDS coded storage

[7], multi-message PIR [5], multi-round PIR [104], secure PIR [59], and PIR with side information

[47, 48, 49, 50, 61, 64, 73, 74, 108, 117, 119]. Especially relevant to the work in this chapter is the

problem of PIR with side information.

The recent focus on the capacity of PIR with side information started with the work on cache-aided

PIR by Tandon [108], where the user has enough local cache memory to store a fraction r of all

messages as side information. In this model, the side information can be any function of the K

messages (subject to the storage constraint) and is globally known to both the user and all the

databases. The capacity for this setting is characterized in [108] as Ψ(1/N,K)/(1− r).

Different from [108] which allows side information to be an arbitrary function of the messages,

the side information in [61] (and in this paper) can only take the form of M full messages cached

by the user. Within this model there are several interesting variations depending on the constraints

on the privacy of the side information.

• PIR-GSI, or PIR with global side information, implies that the side information is globally

known.

• PIR-SI, i.e., PIR with (non-private) side information, corresponds to the case that the side
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information is not globally known, but the privacy of the side information need not be pre-

served.

• PIR-PSI, or PIR with private side information, refers to the setting where the joint privacy

of both the desired message and the side information must be preserved. This is the focus of

the paper.

• PIR-SPSI, or PIR with separately private side information, refers to the setting where the

privacy of the desired message and the privacy of side information must each be separately

preserved (although their joint privacy need not be preserved). In Appendix 2.6 we provide

some insights into the capacity of PIR-SPSI.

Out of these four settings, PIR-GSI is rather trivial, and PIR-SPSI has not been studied at all,

perhaps because there is insufficient practical motivation for such an assumption. However, the

remaining two variants, PIR-PSI and PIR-SI, have indeed drawn much attention, starting with the

work of Kadhe et al. in [61].

For PIR-SI with a single database (N = 1), Kadhe et al. showed in [61] that the ca-

pacity is d K
M+1
e−1. The single-database setting has seen rapid progress in various directions

[47, 48, 49, 50, 64, 73, 74]. However, PIR-SI with multiple databases turns out to be considerably

more challenging. In [61], Kadhe et al. provided an achievable scheme for PIR-SI with multiple

databases (N > 1), which achieves the rate Ψ(1/N, dK/(M + 1)e). In spite of some progress in

this direction [73], the capacity of PIR-SI generally remains open1 for multiple databases. In addi-

tion, the works in [117, 119] consider a different form of side information instead of full messages.

For PIR-PSI with a single database, Kadhe et al. found in [61] that the capacity is (K−M)−1. The

capacity of PIR-PSI with more than one database was left as an open problem in [61]. Remarkably,

neither a general achievable scheme nor a converse was known in this case. It is this open problem

1The converse in [73] does not cover the scope of PIR-SI, because the privacy condition assumed in [73] is not a
necessary condition for PIR-SI schemes.
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that motivates this work.

The first contribution of this chapter is to show that the capacity of PIR-PSI is CPIR-PSI =

Ψ(1/N,K −M), for an arbitrary number of databases N , thus settling this open problem. This

allows us to completely order2 the four variants of PIR with side information that are listed above,

in terms of their capacities as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-GSI. Remarkably, all the

inequalities can be strict for certain parameters.

As a generalization, we show that the capacity of TPIR-PSI, i.e., PIR-PSI where up to T databases

may collude, is CTPIR-PSI = Ψ(T/N,K −M). Evidently, the effect of private side information on

capacity is the same as if the number of messages in TPIR was reduced from K to K −M [105].

Similar to the case with non-colluding databases, this is also the capacity if the side information is

globally known to all databases as well.

As the second contribution of this chapter, we characterize the capacity of STPIR-PSI, i.e., PIR

with private side information with symmetric privacy and robustness against any T -colluding

servers. We show CTPIR-PSI = Ψ(T/N,∞), provided that the databases have access to common

randomness (not available to the user) in the amount that is at least T/(N − T ) bits per queried

message bit. Otherwise, the capacity of STPIR-PSI is zero. Note that this is identical to the capac-

ity of STPIR with no side information [114].

The remainder of this chapter is organized as follows. Section 2.2 presents the problem state-

ments. Section 3.3 presents the main results, i.e., the capacity characterizations of TPIR-PSI and

STPIR-PSI. The proofs of the capacity results are presented in Section 2.4 and Section 2.5, and we

conclude with Section 3.5.

Notation: We use bold font for random variables to distinguish them from deterministic variables,

that are shown in normal font. For integers z1 < z2, [z1 : z2] represents the set {z1, z1 + 1, · · · , z2}
2Based on progressively tighter privacy constraints, it is already immediately obvious that in terms of their capac-

ities, the settings can be partially ordered as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI, and PIR-SI≥ PIR-GSI. The main result
of this chapter shows that PIR-PSI has the same capacity as PIR-GSI, thus allowing a complete ordering.
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and (z1 : z2) represents the vector (z1, z1 + 1, · · · , z2). The compact notation [z] represents

[1 : z] for positive integer z. For random variables Wi, i = 1, 2, . . . , and a set of positive in-

tegers S = {s1, s2, · · · , sn}, where s1 < s2 < · · · < sn, the notation W S represents the vector

(Ws1 ,Ws2 , · · · ,Wsn). For a matrixG and a vector S, the notationG[S, :] represents the submatrix

ofG formed by retaining only the rows corresponding to the elements of the vector S. For a matrix

G, its transpose is denoted as G′. Fq represents the finite field of size q.

2.2 Problem Statements

2.2.1 TPIR-PSI: T -Private Information Retrieval with Private Side Infor-

mation

The TPIR-PSI problem is parametrized by (K,M,N, T ). Consider K independent messages

W [K] = (W1, · · · ,WK), each containing L independent and uniform bits, i.e., their entropy sat-

isfies

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (2.1)

H(W1) = · · · = H(WK) = L. (2.2)

There are N databases and each database stores all K messages W1, · · · ,WK . A user is equipped

with a local cache and has M (M < K) messages as side information. Let S = {i1, i2, · · · , iM}

be M distinct indices chosen uniformly from [K]. These M cached messages are represented as

W S = (Wi1 , · · · ,WiM ). S is not known to the databases. A user wishes to retrieve WΘ, where

Θ is a message index uniformly chosen from [K] \ S, as efficiently as possible, while revealing

no information about (Θ,S) to any colluding subsets of up to T out of the N databases. Note the
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following independence,

H(Θ,S,W1, · · · ,WK) = H(Θ,S) +
K∑

i=1

H(Wi). (2.3)

In order to retrieve WΘ, the user generates N queries Q
[Θ,S]
1 , · · · ,Q[Θ,S]

N with the knowledge of

(Θ,S,WS). Since the queries are generated with no knowledge of the other K −M messages,

the queries must be independent of them,

I
(
Θ, S,WS,Q

[Θ,S]
1 , · · · ,Q[Θ,S]

N ;W [K]\S

)
= 0. (2.4)

The user sends query Q
[Θ,S]
n to the nth database and in response, the nth database returns an answer

A
[Θ,S]
n which is a deterministic function of Q[Θ,S]

n and W [K],

H
(
A[Θ,S]
n | Q[Θ,S]

n ,W1, · · · ,WK

)
= 0. (2.5)

Upon collecting the answers from all N databases, the user must be able to decode the desired

message WΘ based on the queries and side information,

[Correctness] H
(
WΘ | A[Θ,S]

[N ] ,Q
[Θ,S]
[N ] ,W S,S,Θ

)
= 0. (2.6)

To satisfy the user-privacy constraint that any T colluding databases learn nothing about (Θ,S),

the information available to any T databases (queries, answers and stored messages) must be in-

dependent of (Θ,S). 3 Let T be any subset of [1 : N ], of cardinality |T |= T . Q
[Θ,S]
T rep-

resents the vector of queries corresponding to Q
[Θ,S]
n , n ∈ T . A

[Θ,S]
T is defined as the answer

vector corresponding to A
[Θ,S]
n , n ∈ T . To satisfy the T -privacy requirement we must have

3Note that the joint privacy of (Θ, S) is a stronger constraint than the marginal privacy of each of
Θ and S, i.e., I(Θ, S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0 implies both I(Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0 and

I(S;Q
[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0. However, the reverse is not true, i.e., even if both I(Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) =

0 and I(S;Q
[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0, this does not imply that I(Θ, S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]) = 0.
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∀T ⊂ [1 : N ], |T |= T ,

[User privacy] I
(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]

)
= 0. (2.7)

A TPIR-PSI scheme is called feasible if it satisfies the correctness constraint (2.6) and the user-

privacy constraint (2.7). For a feasible scheme, the TPIR-PSI rate indicates asymptotically how

many bits of desired information are retrieved per downloaded bit, and is defined as follows.

RTPIR-PSI , lim
L→∞

L

D
, (2.8)

whereD is the expected (over all Θ, S, W[K] and random queries) total number of bits downloaded

by the user from all the databases. The capacity, CTPIR-PSI, is the supremum of RTPIR-PSI over all

feasible schemes.

2.2.2 STPIR-PSI: Symmetric T -Private Information Retrieval with Private

Side Information

In symmetric T -colluding private information retrieval, an additional constraint is imposed:

database privacy, which means that the user does not learn any information about W[K] beyond

the retrieved message, WΘ, and the side information, WS . To facilitate database privacy, suppose

the databases share a common random variable U that is not known to the user. It has been shown

that without such common randomness, symmetric PIR is not feasible when there is more than one

message [41, 103]. The common randomness is independent of the messages, the desired messages

index, and the side information index, so that

H (Θ,S,W1, · · · ,WK ,U) = H (Θ,S) +
K∑

i=1

H (Wi) +H(U). (2.9)
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The answering string A
[Θ,S]
n is a deterministic function of Q[Θ,S]

n , W [K] and common randomness

U ,

H
(
A[Θ,S]
n | Q[Θ,S]

n ,W1, · · · ,WK ,U
)

= 0. (2.10)

The correctness condition is the same as (2.6). The user-privacy condition is ∀T ⊂ [1 : N ], |T |=

T ,

[User privacy] I
(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W[K],U

)
= 0. (2.11)

Database privacy requires that the user learns nothing about W (Θ,S) = W [K]\({Θ}∪S), i.e., mes-

sages other than his desired message and the side information. Therefore,

[DB privacy] I
(
W

(Θ,S)
;Q

[Θ,S]
[N ] ,A

[Θ,S]
[N ] ,Θ,S,WS

)
= 0. (2.12)

An STPIR-PSI scheme is called feasible if it satisifes the correctness constraint (2.6), the user-

privacy constraint (2.11) and the database-privacy constraint (2.12). For a feasible scheme, the

STPIR-PSI rate indicates how many bits of desired information are retrieved per downloaded bit.

The capacity, CSTPIR-PSI, is the supremum of rates over all feasible STPIR-PSI schemes.

2.3 Main Results

The following theorem presents our first result, the capacity of TPIR-PSI.

THEOREM 2.1. For the TPIR-PSI problem with K messages, N databases and M (M < K) side

information messages, the capacity is

CTPIR-PSI =

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
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= Ψ(T/N,K −M), (2.13)

where Ψ(A,B) =
(
1 + A+ A2 + · · ·+ AB−1

)−1.

The following observations place Theorem 2.1 in perspective.

REMARK 2.1. The expression CTPIR-PSI equals the capacity of TPIR with K −M messages [105].

Evidently, the impact of private side information is equivalent to reducing the effective number of

messages from K to K −M .

REMARK 2.2. Remarkably, the capacity expression in (2.13) matches the capacity for the set-

ting where the side information is assumed to be globally known, i.e., if the M side information

messages are globally known, then the capacity is also CTPIR-GSI = Ψ(T/N,K − M). This can

be seen as follows. The achievable scheme is the TPIR scheme of [105] after the cached mes-

sages are eliminated. To prove the converse by contradiction, suppose the capacity is greater than

Ψ(T/N,K −M). Then there is a scheme Π that achieves a larger rate than Ψ(T/N,K −M)

in the presence of the M globally known messages. Consider a TPIR problem with K −M mes-

sages and no side information. From [105] we know that its capacity is Ψ(T/N,K − M). It

can be assumed that there are M globally known dummy messages. With this globally known side

information, the user can use scheme Π to retrieve the desired message while achieving a rate

larger than Ψ(T/N,K −M), thus exceeding the capacity of TPIR, i.e., creating a contradiction.

Therefore, the capacity of TPIR with globally known side information is Ψ(T/N,K −M).

REMARK 2.3. It is worthwhile to place the previous remark in perspective with the capacity results

in [108], where it is also assumed that the side information is globally available. CTPIR-GSI is in

general less than the capacity expression found in [108]. The reason is that CTPIR-GSI is the capacity

for a setting where the side information can only be M full messages (excluding the desired one).

However, in [108], the side information is allowed to be any function of all messages. The relaxed

setting of [108] should allow a higher capacity in general. For example, if T = 1 and the amount

of side information is ML bits, then the capacity result of [108] corresponds to the expression
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Ψ(1/N,K)/
(
1− M

K

)
. It is easy to verify that CTPIR-GSI = Ψ(1/N,K−M) < Ψ(1/N,K)/

(
1− M

K

)

when N ≥ 2, K ≥ 2,M ∈ [K − 1]. Aside from this superficial distinction, it is notable that the

essential insight in both settings is the same. The best strategy in the setting of [108] is to cache

M
K

portion of each message and use the protocol of the original PIR scheme [102] to download

the uncached portion. What this means is that if the side information is globally known, then there

is nothing better than removing the side information from the effective messages. The expression

for CTPIR-GSI reflects the same insight — the role of globally known side information is to reduce the

effective number of messages by M . The authors of [117] also give a similar explanation for the

scheme in [108].

REMARK 2.4. Now we can completely order the four variants of PIR with side information, in

terms of their capacities as PIR-SI ≥ PIR-SPSI ≥ PIR-PSI = PIR-GSI. Remarkably, all the in-

equalities can be strict for certain parameters. For example, as will be shown in Appendix 2.6,

suppose we have K = 6 messages stored at N = 1 database, and M = 2 of these messages are

available to the user as side-information. Then for this example, the capacity of PIR-SI is 1/2

while the capacity of PIR-SPSI is no more than 1/3, so that PIR-SI > PIR-SPSI. Now suppose we

have K = 6 messages stored at N = 1 database, and M = 1 of these messages is available to the

user as side-information. Then for this example, the capacity of PIR-SPSI is 1/3 while the capacity

of PIR-PSI is only 1/5, so that PIR-SPSI > PIR-PSI.

Our second result is the capacity of STPIR-PSI, presented in the following theorem.

THEOREM 2.2. For the STPIR-PSI problem withK ≥ 2 messages,N databases andM (M < K)

side information messages, the capacity is

CSTPIR-PSI =





1, if M = K − 1,

1− T
N
, if M < K − 1 and ρ ≥ T

N−T ,

0, otherwise,

(2.14)
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where ρ = H(U)
L

is the amount of common randomness available to the databases, normalized by

the message size.

The following observations are in order.

REMARK 2.5. When there is onlyK = 1 message, or when there areM = K−1 side information

messages, the database-privacy constraint is satisfied trivially, so STPIR reduces to the TPIR set-

ting and the capacity is 1. Note that for symmetric PIR without side information, when K ≥ 2, the

common randomness is necessary for feasibility. However, for STPIR-PSI, if there are M = K−1

side information messages, then common randomness is not needed.

REMARK 2.6. When K ≥ 2 and M < K − 1, then CSTPIR-PSI only depends on the number of

databases N , the colluding parameter T , and the amount of common randomness. It is indepen-

dent of the number of messages K and the number of side information messages M .

REMARK 2.7. The capacity of STPIR-PSI is strictly smaller than the capacity of TPIR-PSI, which

means that the additional requirement of preserving database privacy strictly penalizes the capac-

ity. However, the penalty vanishes in the regime of large number of messages, i.e.,CTPIR-PSI > CSTPIR-PSI

for any finite K and CTPIR-PSI → CSTPIR-PSI when K → ∞. This observation also holds for the case

without side information.

REMARK 2.8. CSTPIR-PSI is equal to the capacity of STPIR without side information, which is char-

acterized in [112]. Furthermore, the capacity result remains the same even if the side information

is globally known.4 Thus, utilizing the private or globally known side information does not help

improve the capacity.

2.4 Proof of Theorem 2.1

4The explanation is similar to that for TPIR with globally known side information as in Remark 2.
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2.4.1 Achievability

The backbone of the achievable scheme for TPIR-PSI with parameters (K,M,N, T ) is the achiev-

able scheme of TPIR [105]. We inherit the steps of the query structure construction and query

specialization. The novel element of the achievable scheme is query redundancy removal based

on the side information. To illustrate how this idea works, we present one toy example with

(K,M,N, T ) = (3, 2, 3, 2), and then generalize it to arbitrary (K,M,N, T ).

Example with (K,M,N, T ) = (3, 2, 3, 2)

Let us start with the case without side information (K,M,N, T ) = (3, 0, 3, 2), i.e., there are 3

messages, 3 databases and any 2 of them can collude. Following the construction of [105], let each

message consist of L = NK = 27 symbols from a finite field Fq that is large enough so that a

systematic (28, 19) maximum distance separable (MDS) code exists. The MDS property implies

that any 19 out of the 28 codeword symbols is sufficient to recover all 19 information symbols. A

systematic code is a code in which the information symbols are embedded in the codeword symbols

[77]. According to the query structure construction and query specialization for TPIR [105], the

messages W1,W2,W3 ∈ F27
q are 27 × 1 column vectors and let Y1,Y2,Y3 ∈ F27×27

q represent

random matrices chosen privately by the user, independently and uniformly from all 27× 27 full-

rank matrices over Fq. Let Ge×f denote the generator matrix of an (e, f) MDS code (e.g., a Reed

Solomon code), for some integers e, f . The generator matrices need not be systematic or random,

and may be globally known. Define the 27 × 1 column vectors a(1:27), b(1:27), c(1:27) ∈ F27
q as

follows.

a(1:27) = Y1W1, (2.15)

b(1:18) = G18×12Y2[(1 : 12), :]W2, (2.16)

c(1:18) = G18×12Y3[(1 : 12), :]W3, (2.17)
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b(19:27) = G9×6Y2[(13 : 18), :]W2, (2.18)

c(19:27) = G9×6Y3[(13 : 18), :]W3, (2.19)

where Y2[(1 : 18), :] and Y3[(1 : 18), :] are 18 × 27 matrices comprised of the first 18 rows of Y2

and Y3, respectively. Note that the same generator matrix G18×12 is used in (2.16) and (2.17), and

the same generator matrix G9×6 is used in (2.18) and (2.19).

The downloaded symbols from each database are represented in Table 2.1. We use DBi to represent

the ith database. It correctly recovers the queried message and maintains user privacy even if 2

databases collude. The achieved rate is RTPIR = 9/19, namely, in this scheme the user recovers 9

desired symbols from a total of 19 downloads symbols from each database.

Table 2.1: Achievable scheme of TPIR [105]

DB1 DB2 DB3

a1,a2,a3,a4 a5,a6,a7,a8 a9,a10,a11,a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Now let us consider the case with side information (K,M,N, T ) = (3, 2, 3, 2), i.e., 2 of the

messages are known to the user as side information. Assume the user knows W2 and W3 as

side information and wishes to retrieve W1. He does not need to download individual symbols of

W2,W3, or the linear combinations comprised of only W2,W3 symbols, i.e., bi, ci, 1 ≤ i ≤ 12

and bj+cj, 19 ≤ j ≤ 24 in Table 2.1. Therefore, 10 redundant symbols may be reduced from each

database. Let us take the step of query redundancy removal. The idea is that the user asks each

database to encode the 19 original downloaded symbols with a systematic (28, 19) MDS code and
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downloads only the 9 linear combinations corresponding to the non-systematic part, called parity

symbols. Formally, let Gs
e×f denote the generator matrix of a systematic (e, f) MDS code. The

generator matrix does not need to be random, and it may be globally known. For i = 1, 2, 3, denote

by vector Xi ∈ F19
q the symbols downloaded from DBi after the query structure construction and

query specialization (symbols in the DBi column in Table 2.1). The user asks each database to

encode Xi with a systematic (28, 19) MDS code generator matrix Gs
28×19 = [V19×9 | I19×19]′,

where I19×19 is the identity matrix, and downloads only the 9 linear combinations corresponding

to the parity part, V ′19×9Xi.

The correctness constraint is satisfied because of the property of MDS code and the correctness

of the original TPIR scheme. Given (bi)i∈[12], (ci)i∈[12], (bi + ci)i∈[19:24], V ′19×9X1, V ′19×9X2 and

V ′19×9X3, the user is able to decode X1, X2 and X3, which constitute the original TPIR scheme.

The privacy is essentially inherited from the original PIR scheme and the fact that the MDS code

is fixed a priori, i.e., it does not depend on (Θ,S). Thus, the rate achieved with private side

information is RTPIR-PSI = 27/27 = 1 which gives a lower bound on the capacity.

Arbitrary (K,M,N, T )

Scheme description. For the sake of completeness, let us briefly introduce the original TPIR

achievable scheme in [105]. In this scheme, the message is L = NK symbols from a large enough

finite field Fq, and the normalized total download is 1 + T
N

+ · · · + ( T
N

)K−1. It has two key steps:

1) query structure construction and 2) query specialization.

1) Query Structure Construction: Construct the query structure. After this step, the query of each

database is comprised ofK layers. Over the kth layer, the query symbols are in the form of sums of

k message symbols, each from one distinct message, called k-sum. There are
(
K
k

)
possible “types"

of k-sums and (N − T )k−1TK−k distinct instances5 of each type of k-sum in kth layer. So, the

5The term (N−T )k−1TK−k comes from the undesired message exploitation step (Step 4) of achievability in [105]
and can be verified recursively. A detailed analysis of a similar flavor can be found in [102].
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total number of elements contained in layer k is
(
K
k

)
(N−T )k−1TK−k. Therefore, the total number

of symbols to be downloaded from each database is
∑K

k=1

(
K
k

)
(N − T )k−1TK−k. This structure

has two properties: symmetry across databases and message symmetry within the query from each

database. Symmetry across databases means that the queries among the databases have the same

structure (i.e., the same form of k-sums). Message symmetry implies that within the query of each

database, any set of M messages determines the same number of k-sums, 1 ≤ k ≤M .

2) Query Specialization: Map the message symbols to the symbols in the query structure. This

step is to ensure the correctness and privacy.

Now we are ready to present the achievable scheme for arbitrary (K,M,N, T ). First do query

structure construction and query specialization without considering the side information, and de-

note the scheme by Π. Then do query redundancy removal based on the side information. Due

to symmetry across databases and message symmetry within the query from each database, re-

gardless of the realization of side information, the number of queried symbols and the number of

known symbols (based on the side information) in each query are constants. For each database, let

p1 denote the number of symbols to be downloaded in Π. Out of these p1 symbols, let p2 (p2 < p1)

denote the number of user known symbols. Denote by vector Xi ∈ Fp1q the symbols downloaded

from DBi in Π. For each database, use a systematic (2p1−p2, p1) MDS code with generator matrix

Gs
(2p1−p2)×p1 =

[
Vp1×(p1−p2) | Ip1×p1

]′ to encode the p1 symbols into 2p1 − p2 symbols, of which

p1 are systematic, and download only the p1 − p2 parity symbols, V ′p1×(p1−p2)Xi.

Note that the user does not need to know the realization of side information S or WS in order to

construct the queries. This is because the systematic MDS code in the query redundancy removal

does not depend on S or WS . During the decoding, S and WS are only used after the answers

from the databases are collected. Therefore, the privacy of this TPIR-PSI scheme is inherited from

the privacy of the original TPIR scheme. Correctness follows from the MDS property because in

addition to the p1 − p2 downloaded symbols from DBi, i.e., V ′p1×(2p1−p2)Xi, the user provides the

p2 symbols that he already knows, to obtain a total of p1 symbols from the MDS code. Since any p1
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symbols from an MDS code suffice to recover the original p1 symbols, the user recovers Xi. Then

the correctness is inherited from the correctness of the original TPIR scheme. All that remains is

to calculate the rate achieved by this scheme.

Rate calculation. Consider the scheme Π, the total downloaded symbols from each database p1 =
∑K

k=1

(
K
k

)
(N − T )k−1TK−k. The next step is to calculate, out of these p1 symbols, how many are

already known to the user based on his side information. Suppose the user knows the M messages

Wi1 , · · · ,WiM , {i1, · · · , iM} ∈ [K] as side information beforehand. Thus the user knows all linear

combinations that are comprised of symbols from theseM messages. In terms of layer k (k ≤M),

the user knows all the instances of k-sum that contain only symbols Wj1 ,Wj2 , · · · ,Wjk , where

{j1, j2, · · · , jk} ⊂ {i1, · · · , iM}. So the total number of symbols known to the user corresponding

to each database is p2 =
∑M

k=1

(
M
k

)
(N − T )k−1TK−k. Notice that p1 can be simplified as,

p1 =
K∑

k=1

(N − T )k−1TK−k
(
K

k

)
(2.20)

=

∑K
k=0(N − T )kTK−k

(
K
k

)
− TK

N − T (2.21)

=
NK − TK
N − T . (2.22)

And p2 can be simplified as,

p2 =
M∑

k=1

(N − T )k−1TK−k
(
M

k

)
(2.23)

= TK−M
M∑

k=1

(N − T )k−1TM−k
(
M

k

)
(2.24)

=
TK−M(NM − TM)

N − T . (2.25)

From each database the number of downloaded symbols of desired messages can be calculated as,

m =
K∑

k=1

(N − T )k−1TK−k
(
K − 1

k − 1

)
= NK−1. (2.26)
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Therefore, the rate achieved is

RTPIR-PSI =
Nm

N(p1 − p2)
(2.27)

=
NK−1(N − T )

(NK − TK)− TK−M(NM − TM)
(2.28)

=
1− T

N

1− ( T
N

)K−M
(2.29)

=

(
1 +

T

N
+ · · ·+

(
T

N

)K−M−1)−1
. (2.30)

This gives a lower bound on the capacity of TPIR-PSI, thus completing the proof of achievability

for Theorem 2.1.

2.4.2 Converse

Let S be a set whose elements are all possible realizations of S, i.e., S = {S | S ⊂ [K], |S|= M}.

We will need the following lemmas.

LEMMA 2.1. For all S1 ∈ S, θ ∈ [K] \ S1, S2 ⊆ [K] \ S1, and T ⊂ [N ], |T |= T , given

S = S1,Θ = θ, A[Θ,S]
T ↔

(
Q

[Θ,S]
T ,WS1∪S2

)
↔ Q

[Θ,S]
[N ]\T is a Markov chain.

Proof. In this proof, to be convenient, denote E1 = S1∪S2 and E2 = [K]\(S1∪S2). It is equivalent

to prove

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= 0.

By the chain rule of mutual information,

I
(
A

[Θ,S]
T ,WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

= I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
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+ I
(
WE2 ;Q

[Θ,S]
[N ]\T | A

[Θ,S]
T ,Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

= I
(
WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

+ I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,W[K],Θ = θ,S = S1

)
.

Therefore,

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

= I
(
WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

+ I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,W[K],Θ = θ,S = S1

)

− I
(
WE2 ;Q

[Θ,S]
[N ]\T | A

[Θ,S]
T ,Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
. (2.31)

Consider the first RHS mutual information term in (2.31),

I
(
WE2 ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)

= I
(
WE2 ;Q

[Θ,S]
[N ] ,WS1∪S2 ,Θ = θ,S = S1

)

− I
(
W[K]\(S1∪S2);Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
(2.32)

= 0, (2.33)

where (2.33) holds because of (2.1) and (2.4). The second RHS mutual information term in (2.31)

satisfies

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,W[K],Θ = θ,S = S1

)
= 0

because of (2.5). At last, the RHS negative mutual information term in (2.31) must also be zero

because the LHS mutual information cannot be negative. Thus

I
(
A

[Θ,S]
T ;Q

[Θ,S]
[N ]\T | Q

[Θ,S]
T ,WE1 ,Θ = θ,S = S1

)
= 0.
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LEMMA 2.2. For all S ∈ S, θ, θ′ ∈ [K] \ S, and T ⊂ [N ], |T |= T ,

H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WΘ,WS,Θ = θ,S = S
)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WΘ,WS,Θ = θ′,S = S
)
, (2.34)

H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Θ = θ,S = S
)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Θ = θ′,S = S
)
. (2.35)

Proof. It follows from the user-privacy constraint (2.11) and the non-negativity of mutual infor-

mation, that for all S ∈ S, T ⊂ [N ], |T |= T

I
(
Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W[K] | S = S

)
= 0, (2.36)

which implies that ∀θ, θ′ ∈ [K] \ S,

H
(
Q

[Θ,S]
T ,A

[Θ,S]
T ,Wθ,WS | Θ = θ,S = S

)

= H
(
Q

[Θ,S]
T ,A

[Θ,S]
T ,Wθ,WS | Θ = θ′,S = S

)
, (2.37)

H
(
Q

[Θ,S]
T ,Wθ,WS | Θ = θ,S = S

)

= H
(
Q

[Θ,S]
T ,Wθ,WS | Θ = θ′,S = S

)
. (2.38)

Subtracting (2.38) from (2.37) yields (2.34). Equation (2.35) is similarly obtained.

Before presenting the general converse, let us start with a simple example (K,M,N, T ) =

(3, 1, 3, 2) for ease of exposition.
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Converse for (K,M,N, T ) = (3, 1, 3, 2)

The total download is bounded as,

D ≥ H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W S,Θ,S) (2.39)

≥ min
S∈S

θ∈[K]\S

H(A
[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W S,Θ = θ,S = S). (2.40)

We will derive a lower bound on the entropy in (2.40) that holds for all (θ, S).

For (K,M,N, T ) = (3, 1, 3, 2), without loss of generality suppose message W1 is known as side

information and W2 is desired. Let S = {1}. We bound the total download as,

D ≥ H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

(2.41)

(2.6)
= H

(
A

[Θ,S]
[3] ,W2 | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

(2.42)

= H
(
W2 | Q[Θ,S]

[3] ,W1,Θ = 2,S = S
)

+H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W[2],Θ = 2,S = S
)

(2.43)

≥ L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[3] ,W[2],Θ = 2,S = S
)

(2.44)

= L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[2] ,W[2],Θ = 2,S = S
)

(2.45)

= L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[2] ,W[2],Θ = 3,S = S
)

(2.46)

≥ L+H
(
A

[Θ,S]
[2] | Q[Θ,S]

[3] ,W[2],Θ = 3,S = S
)

(2.47)

where (2.44) holds because of (2.2), (2.4), the chain rule and non-negativity of entropy. Equation

(2.45) holds due to Lemma 2.1. Equation (2.46) holds because of Lemma 2.2. Similarly,

D ≥ L+H
(
A

[Θ,S]
{2,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
, (2.48)

D ≥ L+H
(
A

[Θ,S]
{1,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
. (2.49)
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Adding (2.47), (3.39), (2.49) and divided by 3 we have

D ≥ L+
1

3
H
(
A

[Θ,S]
{1,2} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)

+
1

3
H
(
A

[Θ,S]
{2,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)

+
1

3
H
(
A

[Θ,S]
{1,3} | Q

[Θ,S]
[3] ,W[2],Θ = 3,S = S

)
(2.50)

≥ L+
2

3
H
(
A

[Θ,S]
[3] | Q[Θ,S]

[3] ,W[2],Θ = 3,S = S
)

(2.51)

= L+
2

3
L (2.52)

=
5

3
L. (2.53)

Here (2.51) follows from Han’s inequality, and (2.52) holds because from
(
W[2],A

[Θ,S]
[3] ,Q

[Θ,S]
[3] ,Θ = 3,S = S

)
one can recover W3 with vanishing probability of

error. Since the same argument holds for all realizations (Θ, S) = (θ, S), this gives us the upper

bound on the capacity of TPIR-PSI with (K,M,N, T ) = (3, 1, 3, 2) as CTPIR-PSI ≤ 3
5
.

Converse for Arbitrary (K,M,N, T )

If M = K − 1, it is trivial that 1 is an upper bound, since any rates cannot be larger than 1. So let

us assume that M < K − 1. For compact notation, let us define

D(K,S, θ, V ) , H
(
A

[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W[V ],Θ = θ,S = S

)
.

Here W[V ] = (W1,W2, · · · ,WV ) represents the messages that appear in the conditioning. Also,

define an arbitrary T ⊂ [N ] with cardinality |T |= T which represents the set of indices of collud-

ing databases.

Without loss of generality, suppose messages W1, · · · ,WM are known as side information and
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WM+1 is desired. Then, we have

D(K, [M ],M + 1,M)

= H(A
[Θ,S]
[N ] |Q

[Θ,S]
[N ] ,W[M ],Θ = M + 1,S = [M ])

(2.6)
= H

(
A

[Θ,S]
[N ] ,WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

= H
(
WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

+H
(
A

[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W[M+1],Θ = M + 1,S = [M ]

)
.

Note that

H
(
WΘ | Q[Θ,S]

[N ] ,W[M ],Θ = M + 1,S = [M ]
)

= L

since messages are independent, and queries are independent of the messages. And

H
(
A

[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W[M+1],Θ = M + 1,S = [M ]

)

≥ H
(
A

[Θ,S]
T | Q[Θ,S]

[N ] ,W[M+1],Θ = M + 1,S = [M ]
)

(2.54)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,W[M+1],Θ = M + 1,S = [M ]
)

(2.55)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,W[M+1],Θ = M + 2,S = [M ]
)

(2.56)

≥ H
(
A

[Θ,S]
T | Q[Θ,S]

[N ] ,W[M+1],Θ = M + 2,S = [M ]
)
, (2.57)

where equation (2.55) holds because of Lemma 2.1. Equation (2.56) holds because of Lemma

2.2. There are a total of
(
N
T

)
such subsets T . Writing (2.57) for all such subsets, adding those

inequalities and divided by
(
N
T

)
, we obtain

D(K, [M ],M + 1,M)

≥ T
N
H
(
A

[Θ,S]
[N ] | Q

[Θ,S]
[N ] ,W[M+1],Θ = M + 2,S = [M ]

)

+ L (2.58)
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=L+
T

N
D(K, [M ],M + 2,M + 1), (2.59)

where (2.58) follows from Han’s inequality. Proceeding along these lines, we have

D(K, [M ],M + 1,M)

≥ L+
T

N
D(K, [M ],M + 2,M + 1) (2.60)

≥ L+
T

N

(
L+

T

N
D(K, [M ],M + 3,M + 2)

)
(2.61)

≥ · · · (2.62)

≥ L+
T

N

(
L+ · · ·+ T

N

(
L+

T

N
D(K, [M ], K,K − 1)

))
(2.63)

where D(K, [M ], K,K − 1) ≥ L. Therefore,

D(K, [M ],M + 1,M)

≥ L+
T

N
L+ · · ·+

(
T

N

)K−M−1
L (2.64)

= L

(
1 +

T

N
+ · · ·+

(
T

N

)K−M−1)
. (2.65)

The above argument holds similarly for any (θ, S), and hence the upper bound on the rate of

TPIR-PSI is

R = lim
L→∞

L

D
≤
(

1 +
T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
.

Thus, the proof of converse for Theorem 2.1 is complete.

REMARK 2.9. The converse can also be proved alternatively by a genie-aided approach using

the capacity of TPIR-GSI of Remark 2 as follows. Starting from the TPIR-PSI problem, sup-

pose we provide the indices of the side information S to all the databases, so the side informa-

tion is now globally known and only the privacy of the desired message needs to be preserved.
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Any schemes for TPIR-PSI are applicable to this TPIR-GSI setting, because they preserve the

privacy of the desired message index even after the side-information is revealed. This is be-

cause TPIR-PSI schemes satisfy I
(
Θ,S;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K]

)
= 0, which in turn implies that

I
(
Θ;Q

[Θ,S]
T ,A

[Θ,S]
T ,W [K] | S

)
= 0. Therefore,

CTPIR-PSI ≤ CTPIR-GSI

=

(
1 +

T

N
+

(
T

N

)2

+ · · ·+
(
T

N

)K−M−1)−1
.

2.5 Proof of Theorem 2.2

2.5.1 Achievability

When M = K − 1, the user can download the sum of all the messages from one database and get

the desired message with side information. The rate is 1, achieving the capacity. Note that in this

case, common randomness among databases is not required. When M < K − 1, the achievable

scheme can directly use the scheme of STPIR [103, 114], and the side information is simply not

used.

2.5.2 Converse

When M = K − 1, it is obvious that 1 is an upper bound. When M < K − 1, we show that 1− T
N

is an upper bound.

Proof of the bound R ≤ 1 − T/N Let us start with an intuitive understanding of the upper

bound, R ≤ 1 − T/N . Due to database privacy, given the side information, the answers from all
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N databases should be independent of the non-queried messages. At the same time, the answers

from any T databases should contain no information about the queried message index since the

user privacy must be preserved. Combining these two facts, given the side information, the an-

swers from any T databases should contain no information about any individual message, whether

desired or undesired. As a result, the useful information about the desired message must come

from the remaining N −T databases. Thus, the download per database must be at least 1/(N −T )

times the entropy of the desired message.

The formal proof is as follows. SinceM < K−1, for any S ∈ S, there exist at least 2 messages that

are not in the set S. Any feasible STPIR-PSI scheme must satisfy the database-privacy constraint

(2.12),

0 = I
(
W(Θ,S);Q

[Θ,S]
[N ] ,A

[Θ,S]
[N ] |WS,S,Θ

)
(2.66)

Therefore, ∀T ⊂ [N ], |T |= T,∀S ∈ S, and for all distinct θ, θ′ ∈ [K] \ S,

0 = I
(
Wθ′ ;A

[Θ,S]
T ,Q

[Θ,S]
T |WS,Θ = θ,S = S

)
(2.67)

= I
(
Wθ′ ;Q

[Θ,S]
T |WS,Θ = θ,S = S

)

+ I
(
Wθ′ ;A

[Θ,S]
T | Q[Θ,S]

T ,WS,Θ = θ,S = S
)

(2.68)

= H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Θ = θ,S = S
)

−H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Wθ′ ,Θ = θ,S = S
)

(2.69)

(2.34)
= H

(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Θ = θ,S = S
)

−H
(
A

[Θ,S]
T | Q[Θ,S]

T ,WS,Wθ′ ,Θ = θ′,S = S
)

(2.70)

where (2.67) holds because T is a subset of [N ] and (2.69) holds due to (2.4). According to the
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correctness condition,

L = H (Wθ′)

(2.6)
= I

(
Wθ′ ;A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.71)

= H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
[N ] |Wθ′ ,WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.72)

≤ H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
T |Wθ′ ,WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.73)

= H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
T |Wθ′ ,WS,Q

[Θ,S]
T ,Θ = θ′,S = S

)
(2.74)

(2.70)
= H

(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
T |WS,Q

[Θ,S]
T ,Θ = θ,S = S

)
(2.75)

(2.35)
= H

(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
T |WS,Q

[Θ,S]
T ,Θ = θ′,S = S

)
(2.76)

≤ H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

−H
(
A

[Θ,S]
T |WS,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
, (2.77)

where (2.74) follows due to Lemma 2.1. Writing (2.77) for all T ⊂ [1 : N ], |T |= T , adding those

inequalities and divided by
(
N
T

)
we obtain,

L ≤ H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

− 1(
N
T

)
∑

T
H
(
A

[Θ,S]
T |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.78)

≤ H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)

− T

N
H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.79)
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=

(
1− T

N

)
H
(
A

[Θ,S]
[N ] |WS ,Q

[Θ,S]
[N ] ,Θ = θ′,S = S

)
(2.80)

where (2.79) is due to Han’s inequality. Since this inequality is true for all S ∈ S, θ′ ∈ [K] \ S, it

is also true when averaged across them, so,

L ≤
(

1− T

N

)
H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ,S

)
(2.81)

≤
(

1− T

N

)
H
(
A

[Θ,S]
[N ]

)
(2.82)

≤
(

1− T

N

)
D, (2.83)

where (2.82) holds because dropping conditioning does not reduce entropy. Therefore, R =

limL→∞
L
D
≤ 1− T

N
, and we have shown that the rate of any feasible STPIR-SI scheme cannot be

more than 1− T
N

.

Proof of the bound ρ ≥ T/(N − T ) Let us first explain the intuition behind this bound on the

size of the common randomness U that should be available to all databases but not to the user.

We have already shown that the normalized size of the answer from any individual database must

be at least L/(N − T ). Due to the user and database privacy constraints, the answers from any T

databases are independent of the messages. Therefore, to ensure database privacy, the amount of

common randomness must be no smaller than the size of the answers from T databases.

The formal proof is as follows. Suppose a feasible STPIR-PSI scheme exists that achieves a non-

zero rate. Then we show that it must satisfy ρ ≥ T/(N − T ). For S = S ∈ S and for Θ =

θ ∈ [K]\S, consider the answering strings A[Θ,S]
1 , · · · ,A[Θ,S]

N and the side information WS , from

which the user can retrieve Wθ. According to the database-privacy constraint, we have

0 = I
(
W(θ,S) ;A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

(2.6)
= I

(
W(θ,S) ;A

[Θ,S]
[N ] ,Wθ |WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
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(2.9)
= I

(
W(θ,S) ;A

[Θ,S]
[N ] |Wθ,WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

≥ I
(
W(θ,S) ;A

[Θ,S]
T |Wθ,WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

= H
(
A

[Θ,S]
T |Wθ,WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

−H
(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

(2.10)
= H

(
A

[Θ,S]
T |Wθ,WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

−H
(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

+H
(
A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,U ,Θ = θ,S = S

)

= H
(
A

[Θ,S]
T |Wθ,WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

− I
(
U ;A

[Θ,S]
T |W[K],Q

[Θ,S]
[N ] ,Θ = θ,S = S

)

≥ H
(
A

[Θ,S]
T |Wθ,WS,Q

[Θ,S]
T ,Θ = θ,S = S

)
−H(U)

(2.70)
= H

(
A

[Θ,S]
T |WS,Q

[Θ,S]
T ,Θ = θ′,S = S

)
−H(U)

(2.35)
= H

(
A

[Θ,S]
T |WS,Q

[Θ,S]
T ,Θ = θ,S = S

)
−H(U).

Therefore,

H(U) ≥ H
(
A

[Θ,S]
T |WS,Q

[Θ,S]
T ,Θ = θ,S = S

)
. (2.84)

Adding (2.84) for all T ⊂ [N ], |T |= T and divided by
(
N
T

)
, we obtain,

H(U) ≥ T

N
H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
T ,Θ = θ,S = S

)
(2.85)

≥ T

N
H
(
A

[Θ,S]
[N ] |WS,Q

[Θ,S]
[N ] ,Θ = θ,S = S

)
(2.86)

(2.80)

≥ T

N

(
N

N − T

)
L =

(
T

N − T

)
L. (2.87)

⇒ ρ =
H(U)

L
≥ T

N − T (letting L→∞). (2.88)
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Note that (2.85) is due to Han’s inequality. Thus the amount of common randomness normalized

by the message size for any feasible STPIR-PSI scheme cannot be less than T/(N − T ).

2.6 Some Insights on the Capacity of PIR-SPSI

The four variants of PIR with side information are defined as follows.

• PIR-SI, or PIR with (non-private) side information. Only the privacy of the desired message

is preserved, i.e., I
(
Θ;Q

[Θ,S]
n ,W [K]

)
= 0,∀n ∈ [N ].

• PIR-SPSI, or PIR with separately private side information. The privacy of the de-

sired message and the privacy of the side information are preserved individually, i.e.,

I
(
Θ;Q

[Θ,S]
n ,W [K]

)
= I

(
S;Q

[Θ,S]
n ,W [K]

)
= 0,∀n ∈ [N ].

• PIR-PSI, or PIR with jointly private side information. The privacy of the desired message

and the privacy of the side information are preserved jointly, i.e., I
(
Θ,S;Q

[Θ,S]
n ,W [K]

)
=

0,∀n ∈ [N ].

• PIR-GSI, or PIR with global side information. The side information is globally known,

i.e., the databases are also fully knowledgeable about the side information. In this case, the

privacy of the desired message index must be preserved in spite of the globally known side

information, I
(
Θ;Q

[Θ,S]
n ,W [K] | S

)
= 0,∀n ∈ [N ].

From the result of Theorem 2.1 we know the capacity of PIR-PSI is Ψ(1/N,K −M), and from

Remark 2 that follows Theorem 2.1 we also know the capacity of PIR-GSI is Ψ(1/N,K −M).

The capacity of PIR-SI is known to be d K
M+1
e−1 for N = 1 database from [61]. In spite of various

attempts the capacity of PIR-SI remains in general an open problem for multiple databases. The

remaining setting of PIR-SPSI has not been studied, perhaps due to lack of practical motivation for
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this setting. Nevertheless, out of technical curiosity, let us present some insights into the capacity

of PIR-SPSI. We will focus only on the single database setting, i.e., N = 1 in this section.

2.6.1 PIR-SPSI: N = 1, M = 1, K even

For this setting the capacity of PIR-SPSI is
(
K
2

)−1
= dK

2
e−1, i.e., the same as the capacity of PIR-

SI. Since PIR-SPSI is a more constrained version of PIR-SI, its capacity cannot be higher than that

of PIR-SI. Thus, the converse is trivial. It turns out that the achievability is also straightforward

because the Partition and Code scheme in [61] already preserves the separate privacy of side in-

formation. Let us present just an example to illustrate this. Suppose N = 1,M = 1, K = 6, and

suppose each message is comprised of one bit. Let θ denote the desired message index and s denote

the index of the message available as side information to the user. The user asks the database for

three bits, corresponding to the three partitions: P1 = Wi1 +Wi2 , P2 = Wi3 +Wi4 , P3 = Wi5 +Wi6 .

The indices (i1, i2, · · · , i6) are obtained by first randomly permuting (1, 2, · · · , 6) and then switch-

ing the position of the side information index s with another index (if needed) so that it appears

within the same partition as θ, i.e., one of the partitions must contain Wθ + Ws. The scheme is

correct because the user can recover Wθ from the sum Wθ + Ws (because Ws is already available

to the user as side information). It is easily verified that θ and s are each uniformly distributed over

(i1, i2, · · · , i6), so the scheme preserves their separate privacy. However, since θ, s must appear

in the same partition, it is also clear that their joint privacy is not preserved. For example, (θ, s)

cannot be equal to (i1, i3). The general scheme in [61] works for any even K by partitioning the

messages into sets of size 2, one of which contains both θ and s. Each of θ and s is uniformly

distributed over the indices but they are not jointly uniform.
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2.6.2 PIR-SPSI: N = 1, M = 1, K odd

For this setting also the capacity of PIR-SPSI is
(
K+1
2

)−1
= dK

2
e−1, the same as the capacity of

PIR-SI. Once again, the converse is trivially inherited from PIR-SI. Achievability requires a small

modification to the Partition and Code scheme of [61], as explained next. Let us also illustrate

this through an example. Suppose N = 1,M = 1, K = 7 and each message is comprised of one

symbol from, say F5. The user asks the database for 4 symbols, corresponding to P1 = Wi1 +Wi2 ,

P2 = Wi3 +Wi4 , P3 = Wi5 +Wi6 +Wi7 , and P4 = Wi5 + 2Wi6 + 3Wi7 . In fact, P3, P4 can be the

non-systematic symbols of any (5, 3) systematic MDS code applied to Wi5 ,Wi6 ,Wi7 . Once again,

the indices (i1, i2, · · · , i7) are obtained by first randomly permuting (1, 2, · · · , 7) and then switching

the position of the side information index s with another index (if needed) so that it appears within

the same partition as θ. If Wθ and Ws appear in P1 or P2 then Wθ is decoded by subtracting the

side-information, while if Wθ and Ws appear in partitions P3, P4 with interfering message Wi,

then after eliminating the known side information Ws, the two equations can be solved for the

remaining two variables Wθ,Wi (equivalently, the MDS property guarantees decodability). Once

again, it is easily verified that θ and s are each uniformly distributed over (i1, i2, · · · , i7), so the

scheme preserves their separate privacy. However, since θ, s must appear in the same partition, it

is also clear that their joint privacy is not preserved. The example generalizes to any odd value of

K, by constructing (K + 1)/2 partitions of the form Wi1 +Wi2 , Wi3 +Wi4 , · · ·, WiK−4
+WiK−3

,

WiK−2
+ WiK−1

+ WiK and WiK−2
+ 2WiK−1

+ 3WiK , and generating the indices (i1, i2, · · · , iK)

by first randomly permuting (1, 2, · · · , K) and then switching the position of the side information

index s with another index (if needed) so that it appears within the same partition as θ. This

ensures that θ and s are each uniformly distributed over (i1, i2, · · · , iK), so the scheme preserves

their separate privacy. However, since θ, s must appear in the same partition, it is also clear that

their joint privacy is not preserved.
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2.6.3 PIR-SPSI: N = 1, M = 2, K = 6

The preceding discussion shows that PIR-SI and PIR-SPSI have the same capacity forN = 1,M =

1. Let us now present an example to show that the capacity of PIR-SPSI can be strictly less than

the capacity of PIR-SI in general. For this example, let us consider K = 6 messages stored at

N = 1 database, out of which M = 2 messages are available to the user as side information. From

[61] we know that the capacity of PIR-SI for this example is 1/2. Incidentally, this is achieved by

downloading two partitions, namely Wi1 + Wi2 + Wi3 and Wi4 + Wi5 + Wi6 , where the indices

(i1, i2, · · · , i6) are generated by first randomly permuting (1, 2, · · · , 6) and then switching indices

if necessary to place the two side information indices into the same partition as θ. Note that this

scheme does not preserve the privacy of side information indices, e.g., (i1, i4) cannot be both side

information indices (because side information indices must be within the same partition). We will

show that for this example the capacity of PIR-SPSI is no more than 1/3, i.e., strictly smaller than

the capacity of PIR-SI.

Let us denote the entropy of each message as L bits. We will show that conditioned on each

realization of the query, the download from the database must be at least 3L bits, which also

proves that the average download must be at least 3L bits. To set up a proof by contradiction, let

us assume that conditioned on the query realization Q = q, the download A from the database is

less than 3L bits. This assumption implies that,

H(A | Q = q) < 3L. (2.89)

The conditioning on Q = q will be assumed throughout the remainder of this proof.

We need some preliminary work before we start the core of the converse proof. To have compact

notation, for any subset P ⊂ [K], let us define

HA(WP ) , H
(
A | Q = q,W[K]\P

)
. (2.90)
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Intuitively, HA(WP ) represents the entropy that remains in the answer A due to messages WP

(after all other messages are known), i.e., the ‘space’ occupied by the messages WP in A. We need

the following facts.

LEMMA 2.3. The following facts hold for PIR-SPSI with N = 1,M = 2, K = 6.

1. If P is a singleton set, e.g., P = {k}, then we must have

HA(Wk) ≥ L, ∀k ∈ [K]. (2.91)

2. If P1 ⊂ P2 ⊂ [K], then

HA(P1) ≤ HA(P2). (2.92)

3. If Θ = θ is the desired message index, S = (s1, s2) are the M = 2 side information indices,

and l,m, n are the 3 remaining indices representing interfering messages, then we must have,

HA(Wl,Wm,Wn) < 2L, (2.93)

HA(Wθ,Wi) ≥ 2L, ∀i ∈ {l,m, n}. (2.94)

Proof. The first fact, (2.91) holds because given the answer A and all messages except Wk (which

must include the side information), the user must be able to decode Wk, therefore L = I(Wk; A |

Q = q,W[K]\{k}) ≤ HA(Wk). The next fact, (2.92) is simply the statement that conditioning

reduces entropy. The third fact, (2.93) is quite intuitive, as it says that the space occupied by

interference must be less than 2L bits because the overall download is less than 3L bits, out of

which L bits are needed for the desired message. Formally, this can be seen as follows.

L = I(Wθ; A | Q = q,Ws1 ,Ws2) (2.95)

= H(A | Q = q,Ws1 ,Ws2)−H(A | Q = q,Ws1 ,Ws2 ,Wθ) (2.96)
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≤ H(A | Q = q)−HA(Wl,Wm,Wn) (2.97)

< 3L−HA(Wl,Wm,Wn) (2.98)

which implies (2.93). Finally, the last fact, (2.94) is also quite intuitive. It says that the desired

information must not align with interference so that the user is able to resolve the two. Formally,

for any i ∈ {l,m, n}, because the user must be able to decode his desired message from A and his

side information,

L = I(Wθ; A | Q = q,W[K]\{θ,i}) (2.99)

= HA(Wθ,Wi)−HA(Wi) (2.100)

≤ HA(Wθ,Wi)− L (2.101)

which implies (2.94). Note that we used (2.91) to obtain (2.101).

With these preliminary facts established, let us now proceed with the core of the converse argu-

ment. Since the query preserves the privacy of the side information, all choices of (s1, s2) must

be equally likely. In particular they must all be feasible (have non-zero probability) from the

database’s perspective. Note that because the database knows Q = q, it can evaluate H(WP ) for

all P ⊂ [K]. Let (a, b, c, d, e, f) represent some permutation of (1, 2, · · · , 6). The main reasoning

now proceeds through the following steps.

1. Consider (s1, s2) = (a, b). Since this must be feasible, there must exist another index in

[K] that could be a desired message, i.e., that satisfies facts (2.93), (2.94). Without loss of

generality, let c be this index, so that,

HA(Wd,We,Wf ) < 2L, (2.102)

HA(Wc,Wi) ≥ 2L, ∀i ∈ {d, e, f}. (2.103)
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2. Now consider (s1, s2) = (b, c). This must also be feasible, so there must exist an index in

[K] which can be a desired message. Based on (2.102), and the fact (2.94) the database can

conclude that this index must be a. This is because all other indices lead to contradictions.

For example, if the desired message is Wd, then from (2.94) we must have HA(Wd,We) ≥

2L, which contradicts the fact that HA(Wd,We) ≤ HA(Wd,We,Wf ) < 2L according to

(2.92) and (2.102). Similarly, the desired message index cannot be e or f either, leaving a as

the only possibility. Now (2.94) implies that we must have

HA(Wa,Wi) ≥ 2L, ∀i ∈ {d, e, f}. (2.104)

3. Next, consider (s1, s2) = (e, f). This must also be feasible, so there must exist an index

in [K] which can be a desired message. Based on (2.103), (2.104) and the fact (2.93) the

database can conclude that this index must be d. This is because all other indices lead to

contradictions. For example, if the desired message is a, then from (2.93) we must have

HA(Wb,Wc,Wd) < 2L. Along with (2.92) this implies that HA(Wc,Wd) < 2L which

contradicts (2.103). Similarly, the desired message index cannot be b or c either, leaving d

as the only possibility. Now (2.93) implies that we must have

HA(Wa,Wb,Wc) < 2L. (2.105)

4. Finally, consider (s1, s2) = (a, d). This must also be feasible, so there must exist an index in

[K] which can be a desired message. However, it turns out that every choice of this desired

message index leads to a contradiction. For example, suppose the desired message index is

b. Then according to (2.94) we must have HA(Wb,Wc) ≥ 2L, which contradicts with the

combination of (2.105) and (2.92). All other indices are similarly ruled out, leaving us with

an unavoidable contradiction.

The contradiction proves that the download must be at least 3L bits, which in turn implies that the
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average download must be at least 3L bits, and therefore the capacity cannot be more than 1/3.

The exact capacity even for this simple setting remains an intriguing open problem. Remarkably,

if the capacity is less than 1/3 then that would imply that having more side-information is counter-

productive for PIR-SPSI (because ifM is reduced from 2 to 1 then we do know from the preceding

discussion in this section that the capacity of PIR-SPSI is 1/3).

2.7 Conclusion

In this chapter, the capacity of TPIR-PSI and the capacity of STPIR-PSI are characterized. Some

insights on the capacity of PIR-SPSI are discussed. As a special case of TPIR-PSI obtained by

setting T = 1, the result settles the capacity of PIR-PSI, an open problem highlighted by Kadhe et

al. in [61]. Notably, the results of our work (initially limited to capacity of PIR-PSI for T = 1 as

reported in our original ArXiv posting in 2017 [19]) have subsequently been generalized to multi-

message PIR-PSI in [97]. Other generalizations, e.g., PIR-PSI with multi-round communication,

secure and/or coded storage, remain promising directions for future work, as are the capacity

characterizations for PIR-SI (multiple databases) and PIR-SPSI which remain open.
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Chapter 3

The Asymptotic Capacity of Private Search

3.1 Introduction

Search is among the most frequent operations performed on large online datasets. With privacy

concerns increasingly taking center stage in online interactions, a private search functionality is

highly desirable. As a basic formulation of the information-theoretically private search problem,

consider a dataset that is replicated across N non-colluding servers. There are L i.i.d. records

in the dataset, each record is comprised of P symbols, and each symbol is from an alphabet of

size K. A basic form of private search, called exact private search, allows a user to privately

choose one symbol from the alphabet, and then search for all records that contain this symbol,

without revealing any information about the queried symbol. Suppose the record length P is a

constant, and L � K � 1, i.e., the alphabet size K is large, but the number of records in the

dataset is much larger. This is not an uncommon scenario. For example, consider datasets of DNA

sequences. When searching for a DNA pattern of length ` (e.g., ` = 10), the alphabet size is

K = 4`, while current DNA sequencing machines produce millions of records (called reads) per

run. Since the upload cost of private search can be made independent of L while the download

41



cost scales linearly with L, the communication cost of private search for large L is dominated by

the download cost. The capacity of private search is therefore defined as the maximum number of

bits of desired information that can be retrieved per bit of download. Furthermore, since K � 1,

the asymptotic capacity of private search, i.e., the capacity for large K is of particular interest.

Characterizing the asymptotic capacity of private search is our main goal in this chapter.

Private search (PS) has been studied in computer science for decades. One branch focuses on de-

signing searchable encryption schemes, which enable users to store encrypted data at the servers

and execute search over ciphertext domain [15, 42]. Encryption preserves the user privacy compu-

tationally. Various models of search functionality have been explored in this framework, such as

keyword search [15, 42], similarity search [69, 72], OR and AND search [43, 63] and ranked search

[111]. Another branch allows servers to store unencrypted data, and relies on private information

retrieval (PIR) [23] schemes to guarantee the privacy of the user’s query. Problems investigated in

this framework include keyword search [21], streaming data search [10, 37, 88], and media search

[34, 35]. Our work is along the latter line and tries to characterize the asymptotic capacity of pri-

vate search. Recall that in its original form as introduced by Chor et al. in [23], the goal of PIR

is to allow a user to retrieve an arbitrary desired message out of µ independent messages that are

replicated acrossN distributed and non-colluding servers, without revealing any information about

the identity of the desired message to any individual server. The capacity of PIR is the maximum

number of bits of desired information that can be retrieved per bit of download, and was shown in

[102] to be
(
1 + 1

N
+ · · ·+ 1

Nµ−1

)−1. The capacity of many variants of PIR has since been charac-

terized, such as PIR with colluding servers [105], PIR with coded servers [7, 107, 110], symmetric

PIR [103, 114], PIR with side information [20, 60, 109, 118] and multi-message PIR [6].

Particularly relevant to this paper is the generalized form of PIR introduced in [80, 106], known

as the private computation problem [106] or the private function retrieval problem [80, 85, 86].

As its main result, [106] establishes the capacity of PIR when the messages have arbitrary linear

dependencies. A supplementary result of [106] shows that even if non-linear dependencies are
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allowed, the asymptotic capacity of private computation approaches 1 − 1/N provided that the

message set includes an unbounded number of independent messages. Some other types of private

computations are also investigated, i.e., private polynomial computation [92] which allows poly-

nomial relationships among messages, and private inner product retrieval [81] which considers the

inner product of messages. Private search is a form of PIR with a specific form of dependency

among messages, that is not covered by these prior works. This is because in private search the

dependencies among messages are neither linear nor of a polynomial form, and no two messages

are independent. To see this clearly, consider exact search with alphabet set {A,B,C} (which

implies K = 3). Assume there are L = 4 records, A,A,B,C, each of size P = 1. We search for

all records that match a queried symbol. Denote the retrieved message for a query by Wθ, for some

θ ∈ [3], which is comprised of 4 i.i.d. bits, i.e., Wθ = (Wθ(1),Wθ(2),Wθ(3),Wθ(4)), such that

Wθ(l) = 1 if the l-th record matches the queried symbol, and Wθ(l) = 0 otherwise. For example,

if A is queried, the corresponding message W1 = (1, 1, 0, 0). If B is queried, the corresponding

message W2 = (0, 0, 1, 0). If C is queried, the corresponding message W3 = (0, 0, 0, 1). It is

easily seen that any two messages, Wi,Wj , i 6= j, are identically distributed but not independent,

e.g., Wi(l) = 1 implies Wj(l) = 0. This dependency is neither linear nor in a polynomial form.

To approach the private search problem, we first consider a broader generalization of PIR to in-

clude messages with arbitrary dependencies (DPIR in short). Then we consider private search as a

special case of DPIR.

Since simple keyword search often yields far too coarse results, almost all the search engines

such as Google, Bing, Yahoo, Linkedin and Facebook, and large database management systems

like MySQL and PostgreSQL support OR search, AND search and NOT search. These searches

allow a broader range of search operations by connecting various pieces of information with OR,

AND or NOT operators to make the search more precise. For example, instead of retrieving all

emails from “Alice”, a user might only want those emails from Alice that are marked urgent and

pertain to finance, in which case what is needed is the ability to search on the conjunction of the

keywords, “Alice” and “urgent” and ”finance” [43]. In other cases, it is desirable to search for
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symbols that appear in consecutive positions in a record, e.g., to search for a phrase. Therefore as

natural generalizations of exact private search, we also consider OR private search, AND private

search, NOT private search and sequence private search. OR private search looks for all records

which contain any of M symbols, AND private search looks for all records which contain all of M

symbols, and NOT search looks for all records which do not contain the chosen symbol. Finally,

sequence private search allows the user to search for all records that contain an M -symbol long

sequence.

Our main contributions are as follows.

• We start with a general non-asymptotic converse for dependent private information retrieval

or DPIR (Theorem 3.1). Converse here denotes a lower bound on the download cost, or

equivalently, an upper bound on the capacity.

• The converse combined with a general achievability result for DPIR that was established

in [106], leads us to a sufficient condition under which the asymptotic capacity of DPIR is

characterized to be 1− 1/N (Theorem 3.3).

• The sufficient condition of Theorem 3.3 is shown to hold for exact private search, thus es-

tablishing the asymptotic capacity of private search as 1− 1/N (Theorem 3.4).

• We show that the sufficient condition of Theorem 3.3 also holds for OR search, AND search,

NOT search and sequence search, so that the asymptotic capacity for these generalizations is

also equal to 1 − 1/N (Theorem 3.4). Remarkably, for OR search, the asymptotic capacity

characterization holds even when M itself grows with K.

• Finally, to illustrate the difficulty of finding general asymptotic capacity results for DPIR,

we consider an example of OR private search with special restricted search patterns. For this

example, we show that either the new converse bound is not tight, or the asymptotic capacity

is not 1− 1/N (Proposition 3.1). The asymptotic capacity for this example remains open.
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The paper is organized as follows. Section 3.2 presents the problem statement. The download

lower bound of DPIR and the asymptotic capacity of various forms of private search are character-

ized in Section 3.3. Section 3.4 presents the proofs of the results. Section 3.5 concludes the paper

with a discussion of generalization of our settings, including extending Theorem 3.3 to T -colluding

DPIR and MDS-coded DPIR, and the non-asymptotic capacity of private search.

Notation: We use parentheses (a1, a2, . . . , an) to represent a vector or a tuple (sequence) and

braces {s1, s2, . . . , sN} to represent a set. [z1 : z2] represents the set {z1, z1 + 1, · · · , z2}, for

z1, z2 ∈ N, z1 < z2, [z] represents [1 : z] for z ∈ N. Let W1,W2, . . . be random variables, and

S = {s1, s2, . . . , sN} be a subset of indices where s1 < s2 < · · · < sN . The random vector

(Ws1 ,Ws2 , . . . ,WsN ) is represented by WS . A ∼ B means that random vectors A and B are

identically distributed. A function f(L) = o(L) means that limL→∞ f(L)/L = 0. o(L) can

be positive or negative. A function f(L) = O(L) means that limL→∞ |f(L)| /L ≤ c, for some

constant c > 0.

3.2 Problem Statement

3.2.1 Dependent private information retrieval (DPIR)

Consider µ ∈ N messages, Wm,m ∈ [µ], each comprised of L symbols, Wm =

(Wm(1),Wm(2), · · · ,Wm(L)). The random vectors (W1(l),W2(l), · · · ,Wµ(l)), for all l ∈ [L],

are i.i.d., and have a distribution that is identical to the distribution of the random vector

(w1, w2, · · · , wµ). Namely, for different l, the vectors (W1(l),W2(l), · · · ,Wµ(l)) are independent;

but for any particular l, the variables Wm(l),m ∈ [µ] have dependencies defined by the joint

distribution of wm,m ∈ [µ].

EXAMPLE 3.1. For L = 2, µ = 3, let (w1, w2, w3) be a binary random vector and the distribution
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be p(w1, w2, w3) = 1/3 for (w1, w2, w3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and p(w1, w2, w3) = 0 for

all other cases. One realization of the messages can be:

W1 1 0

W2 0 0

W3 0 1

The first bit (column) and the second bit (column) of the messages are independent. Within the first

bit (column), only one entry can be 1.

The amount of information carried by the m-th message, m ∈ [µ], is

H(Wm) = LH(wm). (3.1)

We say that the DPIR problem is balanced if all messages Wm, ∀m ∈ [µ] carry the same amount

of information,

H(W1) = H(W2) = · · · = H(Wµ) , LH(w), (3.2)

i.e. ∀m ∈ [µ], H(wm) = H(w).

We note here that the random variable w may depend on the number of messages µ, especially in

the context of private search, i.e., H(w) = H(w(µ)). For compact notation, we will not explicitly

show the dependence on µ.

The problem of DPIR is as follows. There are N servers and each server stores all µ messages.

A user privately generates θ ∈ [µ] and wishes to retrieve Wθ while keeping θ private from each

server. Depending on θ, the user employsN queriesQ[θ]
1 , · · · , Q[θ]

N and sendsQ[θ]
n to the n-th server.
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The n-th server returns a response string A[θ]
n which is a function of Q[θ]

n and W[µ], i.e.,

∀θ ∈ [µ],∀n ∈ [N ], H(A[θ]
n | Q[θ]

n ,W[µ]) = 0. (3.3)

From all the information that is now available to the user, he must be able to decode the desired

message Wθ, with probability of error Pe → 0 as L → ∞. This is called the “correctness”

constraint. From Fano’s inequality, we have

[Correctness] H
(
Wθ | A[θ]

[N ], Q
[θ]
[N ]

)
= o(L). (3.4)

To protect the user’s privacy, θ must be indistinguishable from θ′, from the perspective of each

server, ∀θ, θ′ ∈ [µ], i.e.,

[Privacy] (Q[θ]
n , A

[θ]
n ,W[µ]) ∼ (Q[θ′]

n , A[θ′]
n ,W[µ]). (3.5)

The DPIR rate characterizes how many bits of desired information are retrieved per downloaded

bit, and is limited by the worst case as,

R ,
minm∈[µ] LH(wm)

D
, (3.6)

where D is the expected total number of bits downloaded by the user from all the servers. If

the DPIR problem is balanced, then the minimum over m may be ignored. The supremum of

achievable rates R is the capacity CDPIR(µ,N).

3.2.2 Private search

We first define exact search and OR search. Later we define AND search, NOT search and sequence

search. Examples of different kinds of search are given in Table 3.1.
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Exact Search and OR Search

Consider a dataset ∆ comprised of L i.i.d. records: ∆ = (∆1,∆2, · · · ,∆L). Each record ∆l,

l ∈ [L], is a sequence of length P , where P is constant, denoted by (δl1, δl2, · · · , δlP ), and each

symbol δli takes values uniformly and independently from the alphabet set U = {U1, U2, · · · , UK}.

The dataset is replicated across N non-colluding servers.

For all l ∈ [L], δli ∈ U , i ∈ [P ],

P (∆l = (δl1, δl2, · · · , δlP )) =
1

KP
, (3.7)

H(∆) = LH(∆l) = L log2(K
P ) = LP log2K bits. (3.8)

A user privately chooses a set (search pattern), S = {Uθ1 , Uθ2 , · · · , UθM}, S ⊂ U , M < K, and

searches for all records in ∆ that contain at least one element of S. Note that even though each

record is of length P , given a search pattern S the search result for a record is only a single bit,

indicating whether the P symbols in the record contain an element in S or not. The overall search

result for the dataset is L (independent) bits. We refer to the M = 1 setting as exact private search,

and to the M > 1 setting as OR private search, because the output of the search reveals the exact

value of a matching record if M = 1, but not if M > 1. In general, for OR search we allow M to

grow with K (either o(K) or Ω(K)) in the asymptotic regime K →∞.

To view private search as a special case of DPIR, we treat the result of each possible search pattern

as one message. A similar technique has been also used in the work of Fanti [35]. There are a total

of µ =
(
K
M

)
search patterns. Let us arbitrarily label them Sm,m ∈ [µ]. Correspondingly, there are

a total of µ messages. Label these messages Wm, so that ∀m ∈ [µ],

Wm = (Wm(1),Wm(2), · · · ,Wm(L)), (3.9)
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and

Wm(l) =





1, if ∃i ∈ [M ], Uθi ∈ {δl1, · · · , δlP},

0, otherwise.

Note that each message is comprised of L i.i.d. bits. ∀l ∈ [L],

H(w) = H(Wm(l)) = H2

(
(K −M)P

KP

)
,∀m ∈ [µ], (3.10)

where the binary entropy function is defined as follows.

H2(p) = −p log2(p)− (1− p) log2(1− p), (3.11)

H2(0) = H2(1) = 0. The second equation in (3.10) is based on the facts that for each record there

are a total of KP possible realizations and (K −M)P of those do not match. Fig. 3.1 shows the

relationship between private search and DPIR. For example, suppose there are L = 2 records of

length P = 1, the alphabet is U = {A,B,C} of size K = 3, and we do exact search (M = 1).

Let the records be ∆1 = A, ∆2 = C. Then the µ = 3 messages are shown as in Example 3.1. See

Table 3.1 for additional examples.

AND Search

For AND private search, a set Sm = {Uθ1 , Uθ2 , · · · , UθM} is chosen out of a total of µ =
(
K
M

)

possibilities. In general, M can be arbitrary. However, if M > P the problem degenerates into a

trivial case where no record can contain all of the chosen symbols. Therefore, we only consider

the non-trivial case where 1 ≤ M ≤ P . For all m ∈ [µ], l ∈ [L], the lth bit of the corresponding
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Figure 3.1: Relationship between PS and DPIR. The i-th record (row) ∆i in PS corresponds to the
i-th symbol (column) of each message in DPIR. Different messages (rows) in DPIR correspond to
different search patterns S.

message Wm is defined as,

Wm(l) =





1, if ∀i ∈ [M ], Uθi ∈ {δl1, · · · , δlP},

0, otherwise.

The L-bits of each message are i.i.d., and ∀l ∈ [L],∀m ∈ [µ], H(w) = H(Wm(l)). See Table 3.1

for an example.

NOT Search

For NOT private search, a user privately chooses a value Sm = {Uθ} out of µ = K possibilities.

The lth symbol of the corresponding message Wm is defined as

Wm(l) =





1, if Uθ /∈ {δl1, · · · , δlP},

0, otherwise.
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Table 3.1: Example of different types of private search. The dataset contains L = 3 records (A, B,
C), (A, C, B) and (B, B, B). Each record contains P = 3 symbols.

Type Pattern (A, B, C) (A, C, B) (B, B, B) Wm

exact A 1 1 0 110
OR A or B 1 1 1 111

AND A and B 1 1 0 110
NOT not A 0 0 1 001

sequence (A, B) 1 0 0 100

The L bits of each message are i.i.d. and ∀l ∈ [L],∀m ∈ [µ], H(w) = H(Wm(l)). Essentially

NOT search is the complement of exact search. For example, in terms of the same chosen symbol,

if Wm(l) = 1 in exact search, then Wm(l) = 0 in NOT search, and vice versa. See Table 3.1 for an

example.

Sequence Search

Sequence private search is similar to AND search, the difference is that the order of symbols

matters in sequence search. Specifically, a sequence Sm = (Uθ1 , Uθ2 , · · · , UθM ) is chosen, out

of µ = KM possibilities. For the same reason as AND search, we only consider the non-trivial

scenario where 1 ≤M ≤ P . For all m ∈ [µ], l ∈ [L], the lth symbol of the corresponding message

Wm,

Wm(l) =





1, if Sm ∈ {(δli+1
, · · · , δli+M ), i ∈ [0 : P −M ]},

0, otherwise.

The L-bits of each message are i.i.d., and ∀l ∈ [L],∀m ∈ [µ], H(w) = H(Wm(l)). See Table I for

an example.

Even though in our definitions of private search, we assume that all search sets S (or search se-

quence S) of size M are allowed, one can generalize the definition to restricted search patterns.
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One example of such a setting is discussed in Section 3.3.5.

The queries and answers, privacy and correctness constraints, rate and capacity definitions for pri-

vate search are inherited from DPIR. The capacity of private search is denoted CPS(K,M,P,N),

and the asymptotic capacity of private search is denoted limK→∞CPS(K,M,P,N).

3.3 Results

We present the main results in this section. All proofs appear in Section 3.4.

3.3.1 A General Converse for DPIR

The download cost (expected number of bits of download) for DPIR is bounded as follows.

THEOREM 3.1. For DPIR, denote byW1,W2, . . . ,Wµ an arbitrary permutation of the µmessages.

Then

D ≥ H(W1) +
H(W2|W1)

N
+
H(W3|W[1:2])

N2
+ · · ·+ H(Wµ|W[1:µ−1])

Nµ−1 . (3.12)

Note that the bound depends on the chosen permutation of message indices, so finding the best

bound from Theorem 3.1 requires a further optimization of the permutation. Substituting (3.12)

into (3.6), we obtain an equivalent bound on capacity. If the messages are independent, we recover

the converse bound of [102]. However, Theorem 3.1 is more broadly useful since it allows arbitrary

dependencies. Also note that Theorem 3.1 is not limited to balanced DPIR.
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3.3.2 General Achievable Rate for DPIR [106]

A PIR achievable scheme for independent messages is also a DPIR achievable scheme. We use

the achievable PIR scheme with µ→∞messages from [106, Theorem 2] (also see [23, 96, 103]),

from which we obtain the following lower bound on the capacity of DPIR.

CDPIR(µ,N) ≥ lim
µ→∞

CDPIR(µ,N) ≥ lim
µ→∞

CPIR(µ,N)

=

(
1− 1

N

)
minm∈[µ]H(wm)

maxm∈[µ]H(wm)
. (3.13)

THEOREM 3.2. The capacity of DPIR satisfies

CDPIR(µ,N) ≥
(

1− 1

N

)
Hmin

Hmax

, (3.14)

where Hmin = minm∈[µ]H(wm) and Hmax = maxm∈[µ]H(wm).

For balanced DPIR, this gives us 1 − 1/N as a lower bound on capacity. As a simple example of

the achievable scheme, assume there are N = 2 servers and µ = 2 messages with the size of 1 bit.

A user wishes to retrieve W1. He generates two binary random variables α and β independently,

and sends (α, β) to server 1 and (α + 1, β) to server 2. Here “+” denotes XOR. He downloads

αW1 + βW2 and (α + 1)W1 + βW2 from server 1 and server 2, respectively, which allows him

to retrieve W1 privately. Therefore the total download is 2 bits, and R = 1/2 = 1 − 1/N . This

achievable scheme requires one multiplication for each symbol of each message. In general, for

each server, the computation complexity is O(µL).

3.3.3 Asymptotic Optimality of Rate 1− 1/N for Balanced DPIR

For balanced DPIR, as the number of messages µ→∞, the asymptotic behavior of (3.12) gives us

the following sufficient condition. Here we defineWk = 0 if k > µ, and define a sequence function
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to be a sequence of functions k1(µ), k2(µ), · · · , where every ki, i ≥ 1, is a mapping N→ N. When

it is clear from the context, we drop the variable µ and simply use ki to denote ki(µ). But one

should keep in mind that ki depends on the number of messages µ.

THEOREM 3.3. For balanced DPIR, if there exists an increasing sequence ki ∈ N,∀i ∈ N, such

that ∀l ∈ N,

lim
µ→∞

I
(
Wkl+1

;Wk[1:l]

)

LH(w)
= 0, (3.15)

then the asymptotic capacity is

lim
µ→∞

CDPIR(µ,N) = 1− 1

N
. (3.16)

Note since H(w) may depend on µ, the sufficient condition is in general not equivalent to

limµ→∞ I
(
Wkl+1

;Wk[1:l]

)
= 0. In particular, (3.15) provides a measure of “weak” dependency

among the messages in the asymptotic regime, such that the capacity of DPIR is 1 − 1/N . In-

tuitively, if we find an infinite sequence of messages that have this weak dependency in DPIR,

we know the asymptotic capacity is 1 − 1/N . If the dependence among messages are all linear,

(3.16)⇒ (3.15) is also correct. Please see Section 3.4.5.

3.3.4 Asymptotic Capacity of Private Search

THEOREM 3.4. The asymptotic capacity of private search is

lim
K→∞

CPS(K,M,P,N) = 1− 1

N
, (3.17)
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for exact search (M = 1), NOT search (M = 1), OR search (M > 1), AND search (1 ≤ M ≤ P )

and sequence private search (1 ≤ M ≤ P ). For OR search, M can even grow with K, satisfying

either M = o(K) or M = Ω(K).

Theorem 3.4 is proved by showing that the sufficient condition (3.15) is satisfied for private search.

Note that condition (3.15) is explicitly proven to be true for balanced DPIR, and private search in-

deed has balanced messages. Notably, for exact private search, as K → ∞, both I(Wkl+1
;Wk[1:l])

and H(w) approach zero. The key to the asymptotic capacity result is that I(Wkl+1
;Wk[1:l]) ap-

proaches zero much faster than H(w). Furthermore, as shown in Fig. 3.2, convergence of capacity

to its asymptotic value is quite fast, and the larger the value of N , the faster the convergence. For

example, when the record size P = 1 and the number of servers N = 5, the bound (3.12) for

K = 10 messages is already within 1% gap from the asymptotic value.

Figure 3.2: Normalized download lower bound of exact search (P = 1) based on Theorem 1 versus
alphabet size K. The asymptotic value (1− 1/N)−1 is the upper bound.
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3.3.5 Difficulty of Private Search over Restricted Search Patterns

Finding the capacity of DPIR with arbitrary dependency structures is in general a difficult problem.

The difficulty remains even when the problem is limited to asymptotic capacity. To highlight this

aspect, we present an example of approximate private search over restricted search patterns where

the asymptotic capacity remains an open problem.

PROPOSITION 3.1. Consider OR private search, with P = 1 and M = bK
2
c, where the only

search sets allowed are

Sk = {U〈k+1〉, U〈k+2〉, · · · , U〈k+M〉}, ∀k ∈ [K], (3.18)

and 〈m〉 , (m mod K) + 1. As K → ∞, either the bound (3.12) is not tight, or

limK→∞CPS(K,M,P,N) 6= 1− 1
N

.

Here privacy is required only within the µ = K choices of search sets.

3.4 Proofs

3.4.1 Proof of Theorem 3.1

For the DPIR problem, the total download is bounded as,

D ≥ H
(
A

[1]
[N ] | Q

[1]
[N ]

)
(3.19)

(3.4)
= H

(
A

[1]
[N ],W1 | Q[1]

[N ]

)
+ o(L) (3.20)

= H
(
W1 | Q[1]

[N ]

)
+H

(
A

[1]
[N ] | Q

[1]
[N ],W1

)
+ o(L) (3.21)

≥ H (W1) +H
(
A

[1]
1 | Q[1]

[N ],W1

)
+ o(L) (3.22)
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= H (W1) +H
(
A

[1]
1 | Q[1]

1 ,W1

)
+ o(L) (3.23)

(3.5)
= H(W1) +H

(
A

[2]
1 | Q[2]

1 ,W1

)
+ o(L) (3.24)

= H(W1) +H
(
A

[2]
1 | Q[2]

[N ],W1

)
+ o(L), (3.25)

where (3.22) follows because the queries are independent of W1, and A[1]
1 is an element of A[1]

[N ],

and (3.23) follows from the fact A[1]
1 and Q

[1]
[2:N ] are independent given Q

[1]
1 . Similarly, for all

n ∈ [2 : N ] we have,

D ≥ H(W1) +H
(
A[2]
n | Q[2]

[N ],W1

)
. (3.26)

Adding all of these N inequalities we obtain,

ND ≥ NH(W1) +H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)
(3.27)

⇒ D ≥ H(W1) +
H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)

N
. (3.28)

Proceeding recursively in a similar manner as (3.28), ∀m ∈ [2 : µ− 1], we have

H
(
A

[m]
[N ] | Q

[m]
[N ],W1, · · · ,Wm−1

)
≥ H (Wm | W1, · · · ,Wm−1)

+
H
(
A

[m+1]
[N ] | Q[m+1]

[N ] ,W1, · · · ,Wm

)

N
(3.29)

and when m = µ,

H
(
A

[µ]
[N ] | Q

[µ]
[N ],W1, · · · ,Wµ−1

)
≥ H (Wµ | W1, · · · ,Wµ−1) . (3.30)

Therefore,

D ≥ H(W1) +
H
(
A

[2]
[N ] | Q

[2]
[N ],W1

)

N
(3.31)
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≥ H(W1) +
H(W2 | W1)

N
+
H
(
A

[3]
[N ] | Q

[3]
[N ],W[1:2]

)

N2
(3.32)

≥ · · ·

≥ H(W1) +
H(W2 | W1)

N
+
H(W3 | W[1:2])

N2

+ · · ·+ H(Wµ | W[1:µ−1])

Nµ−1 . (3.33)

3.4.2 Proof for Theorem 3.3

Define m such that km ≤ µ < km+1. Note that m is a function of µ and as µ → ∞, m → ∞.

Based on Theorem 3.1 and equations (3.1), (3.2),

D ≥ H(Wk1) +
H(Wk2 | Wk1)

N
+

+
H(Wk3 | Wk1 ,Wk2)

N2
+ · · ·+

H
(
Wkm | Wk[1:m−1]

)

Nm−1

= H(Wk1) +
H(Wk2)

N
+ · · ·+ H(Wkm)

Nm−1

− I(Wk2 ;Wk1)

N
− · · · −

I
(
Wkm ;Wk[1:m−1]

)

Nm−1

= (1 +
1

N
+

1

N2
+ · · ·+ 1

Nm−1 )LH(w)

− I(Wk2 ;Wk1)

N
− · · · −

I
(
Wkm ;Wk[1:m−1]

)

Nm−1 . (3.34)

Normalizing both sides by LH(w) we have

D

LH(w)
=

(
1 +

1

N
+

1

N2
+ · · ·+ 1

Nm−1

)

− I(Wk2 ;Wk1)

NLH(w)
− · · · −

I
(
Wkm ;Wk[1:m−1]

)

Nm−1LH(w)
. (3.35)
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Applying limit µ→∞, the reciprocal of rate is bounded as

lim
µ→∞

D

LH(w)
≥
(

1− 1

N

)−1
− lim
µ→∞

m−1∑

l=1

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
.

Now, we need to show that

lim
µ→∞

m−1∑

l=1

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
= 0. (3.36)

Equivalently, for every ε > 0 we will show that

lim
µ→∞

m−1∑

l=1

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
≤ ε. (3.37)

Choose a finite l∗ such that

1

N l∗

(
1− 1

N

)−1
≤ ε. (3.38)

Note that l∗ depends only on N and ε. More importantly, it is not a function of µ. Now partition

the sum as follows

lim
µ→∞

m−1∑

l=1

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l

= lim
µ→∞

l∗−1∑

l=1

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
+ lim

µ→∞

m−1∑

l=l∗

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
. (3.39)

The first term on the RHS of (3.39) is zero because it is a sum of finitely many terms (l∗ is finite),

each of which is zero because (3.15) holds by assumption. For the second term in (3.39),

lim
µ→∞

m−1∑

l=l∗

I
(
Wkl+1

;Wk[1:l]

)

LH(w)N l
≤ lim

µ→∞

m−1∑

l=l∗

1

N l
(3.40)
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≤ 1

N l∗
lim
µ→∞

m−1−l∗∑

l=0

1

N l
(3.41)

≤ 1

N l∗

(
1− 1

N

)−1
≤ ε. (3.42)

Thus, the reciprocal of rate is bounded as 1/R ≥ (1 − 1/N)−1, i.e., the rate is bounded as R ≤

1− 1/N . By Theorem 3.2 this rate is achievable. Hence proved.

3.4.3 Proof of Theorem 3.4

We treat private search as a balanced DPIR problem. As an application of Theorem 3.3, we show

that (3.15) is satisfied. Therefore the asymptotic capacity must be 1 − 1/N . Note that for all the

private search variations, the number of messages µ→∞ if and only if the alphabet size K →∞.

So in our proofs we let K grow to infinity.

In the following proofs, we consider a subset of the possible messages, W1,W2, . . . ,Wf(µ), for

some f(µ) ≤ µ that grows with µ. We use the identity sequence functions ki = i for 1 ≤ i ≤ f(µ),

and map i to some ki > µ for i > f(µ). In other words, we only use the first f(µ) messages in our

proofs. Then (3.15) becomes

lim
µ→∞

I
(
Wl+1;W[1:l]

)

LH(w)
= 0 (3.43)

for all 1 ≤ l ≤ f(µ).

Exact private search

We start with the exact private search problem (M = 1).
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Firstly, consider the case where the record length P = 1, note that

lim
K→∞

H(w) = lim
K→∞

H2

(
1

K

)
= 0. (3.44)

According to L′Hôpital′s rule,

lim
K→∞

H2

(
1

K−t

)

H2

(
1
K

) = 1, (3.45)

where t is a constant. The detailed proof of (3.45) is shown below. Let f(p) = H2(p) =

−p log2(p)−(1−p) log2(1−p). WhenK →∞, 1
K−t → 0 and 1

K
→ 0. Since limK→∞ f

(
1

K−t

)
=

0, limK→∞ f
(

1
K

)
= 0 and both of them are differentiable, L′Hôpital′s rule is applicable. Consider

the derivative of f(p),

df

dp
= − log2 p−

p

p ln 2
+ log2(1− p) +

1− p
(1− p) ln 2

(3.46)

= log2(1− p)− log2 p = log2

1− p
p

. (3.47)

Let p = 1
K−t and q = 1

K
. According to L′Hôpital′s rule,

lim
K→∞

f
(

1
K−t

)

f
(

1
K

) = lim
K→∞

df
dp

dp
dK

df
dq

dq
dK

(3.48)

= lim
K→∞

−1
(K−t)2 log2

1−p
p

−1
K2 log2

1−q
q

(3.49)

= lim
K→∞

−1
(K−t)2 log2(K − t− 1)

−1
K2 log2(K − 1)

. (3.50)

Since limK→∞

−1

(K−t)2
−1

K2
= 1 and limK→∞

log2(K−t−1)
log2(K−1)

= 1, we obtain

lim
K→∞

f
(

1
K−t

)

f
(

1
K

) = 1. (3.51)

61



Since ∀l ∈ [K],Wl(1), · · · ,Wl(L) are i.i.d., H(Wl) = LH (Wl(η)), η can be any integer between

1 to L. Consider the dependence among the messages,

H
(
Wl+1 | W[1:l]

)

L
= H

(
Wl+1(η) | W[1:l](η)

)
(3.52)

= Pr
(
W[1:l](η) = ~0

)
·H
(
Wl+1(η) | W[1:l](η) = ~0

)

+
l∑

i=1

Pr
(
Wi(η) = 1,W[1:l]\{i}(η) = ~0

)

·H
(
Wl+1(η) | Wi(η) = 1,W[1:l]\{i}(η) = ~0

)
(3.53)

=

(
1− l

K

)
H2

(
1

K − l

)
+

l∑

i=1

1

K
· 0 (3.54)

=

(
1− l

K

)
H2

(
1

K − l

)
, (3.55)

where Pr(e) is the probability of event e and bold ~0 is the zero vector. The above equalities are

explained as below. The only possible values for W[1:l](η) are either all zeros or 1 one and l − 1

zeros. Note that the probability Pr
(
W[1:l](η) = ~0

)
= 1 − l/K. If Wi(η) = 0,∀i ∈ [l], then

∆η 6= U1, · · · , Ul and ∆η can only take values from {Ul+1, Ul+2, · · · , UK}, each with probability

1/(K − l). Therefore, conditioning on W[1:l](η) = ~0, we have ∆η = Ul+1, i.e., Wl+1(η) = 1,

with probability 1/(K − l), and ∆η 6= Ul+1, i.e., Wl+1(η) = 0, with probability 1 − 1/(K − l).

If W1(η) = 1, then ∆η = U1 and W2(η), · · · ,WK(η) must be equal to zero. Thus there is at

most one Wi(η) = 1 and each Wi(η) = 1 with probability 1/K . If any Wi(η) = 1, then

H (Wj(η) | Wi(η)) = 0,∀j 6= i.

Substituting µ = K into the LHS of (3.43), we have for any fixed l ∈ N,

lim
K→∞

I(Wl+1;W1,W2, · · · ,Wl)

LH2

(
1
K

) (3.56)

= lim
K→∞

H(Wl+1)−H(Wl+1 | W[1:l])

LH2(
1
K

)
(3.57)

= lim
K→∞

H2

(
1
K

)
−
(
1− l

K

)
H2

(
1

K−l

)

H2

(
1
K

) (3.58)
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= 1− lim
K→∞

(
1− l

K

)
H2

(
1

K−l

)

H2

(
1
K

) = 1− 1 = 0. (3.59)

Here (3.59) follows from (3.45). Therefore, (3.43) is satisfied, and based on Theorem 3.3, the

asymptotic capacity is 1− 1/N .

Then consider the case where P > 1 is a constant, note that

lim
K→∞

H(w) = lim
K→∞

H2

(
(K − 1)P

KP

)
= 0. (3.60)

According to L′Hôpital′s rule,

lim
K→∞

H2

(
(K−t−1)P
(K−t)P

)

H2

(
(K−1)P
KP

) = 1, (3.61)

where t is a constant. The detailed proof of (3.61) is shown below. Let f(p) = H2(p) =

−p log2(p) − (1 − p) log2(1 − p). When K → ∞, (K−t−1)P
(K−t)P → 1 and (K−1)P

KP → 1. Since

limK→∞ f
(

(K−t−1)P
(K−t)P

)
= 0, limK→∞ f

(
(K−1)P
KP

)
= 0 and both of them are differentiable,

L′Hôpital′s rule is applicable. Let p = (K−t−1)P
(K−t)P and q = (K−1)P

KP . According to L′Hôpital′s

rule,

lim
K→∞

f
(

(K−t−1)P
(K−t)P

)

f
(

(K−1)P
KP

) = lim
K→∞

df
dp

dp
dK

df
dq

dq
dK

(3.62)

= lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P log2
1−p
p

P (K−1)P−1KP−1

K2P log2
1−q
q

(3.63)

= lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P log2

(
(K−t)P

(K−t−1)P − 1
)

P (K−1)P−1KP−1

K2P log2

(
KP

(K−1)P − 1
) . (3.64)
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Since

lim
K→∞

P (K−t−1)P−1(K−t)P−1

(K−t)2P

P (K−1)P−1KP−1

K2P

= 1 (3.65)

and

lim
K→∞

log2

(
(K−t)P

(K−t−1)P − 1
)

log2

(
KP

(K−1)P − 1
) (3.66)

L′Hôpital′s rule
= lim

K→∞

1(
(K−t)P

(K−t−1)P
−1
)
ln 2
· −P (K−t)P−1

(K−t−1)P+1

1(
KP

(K−1)P
−1
)
ln 2
· −PKP−1

(K−1)P+1

= 1, (3.67)

we obtain

lim
K→∞

f
(

(K−t−1)P
(K−t)P

)

f
(

(K−1)P
KP

) = 1. (3.68)

For any fixed l ∈ N, we denote by Ei the event that i entries out of W1(η), · · · ,Wl(η) are 1, and

the remaining l − i entries are 0. Let its probability be τi = Pr(Ei). Since each record size is P ,

there are at most P of Wi(η) equal to 1, hence 0 ≤ i ≤ min(P, l).

H(Wl+1 | Wl, · · · ,W1) (3.69)

= LH(Wl+1(η) | Wl(η), · · · ,W1(η)) (3.70)

=

min(P,l)∑

i=0

(
l

i

)
τiLH(Wl+1(η) | Ei) (3.71)

≥
(
l

0

)
τ0LH(Wl+1(η) | E0) (3.72)

= τ0LH(Wl+1(η) | E0). (3.73)
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Note that

τ0 = Pr(E0) =
(K − l)P
KP

, (3.74)

and conditioned on E0, Wl+1(η) is 0 with probability (K − l − 1)P/(K − l)P , thus

H(Wl+1(η) | E0) = H2

(
(K − l − 1)P

(K − l)P
)
. (3.75)

Therefore,

H(Wl+1 | Wl, · · · ,W1) ≥ τ0LH(Wl+1(η) | E0) (3.76)

=
L(K − l)P

KP
H2

(
(K − l − 1)P

(K − l)P
)
. (3.77)

Substituting µ = K into the LHS of (3.43), we have

lim
K→∞

I(Wl+1;W1,W2, · · · ,Wl)

LH2

(
(K−1)P
KP

) (3.78)

= lim
K→∞

H(Wl+1)−H(Wl+1 | W[1:l])

LH2(
(K−1)P
KP )

(3.79)

≤ lim
K→∞

H2(
(K−1)P
KP )− (K−l)P

KP H2

(
(K−l−1)P
(K−l)P

)

H2(
(K−1)P
KP )

(3.80)

= 1− lim
K→∞

(K−l)P
KP H2

(
(K−l−1)P
(K−l)P

)

H2(
(K−1)P
KP )

= 1− 1 = 0. (3.81)

Here (3.81) follows from (3.61). Therefore, (3.43) is satisfied, and based on Theorem 3.3, the

asymptotic capacity is 1− 1/N .

In summary, for arbitrary constant P the asymptotic capacity of exact private search is 1− 1/N .
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NOT search

Since NOT search essentially is the complement of exact search, the asymptotic capacity of NOT

search is 1− 1/N .

OR search

For OR search, first we show that any P > 1 OR search problems can be viewed as P = 1 OR

search problem. For example, suppose the alphabet set is {A,B,C}, i.e., K = 3 and record length

P = 2. A user wishes to search for A or B. It is equivalent to the problem that the alphabet set is

all ordered tuples consisting of {A,B,C}, i.e. {AA,AB,AC,BA,BB,BC,CA,CB,CC} and

the record length is P ′ = 1. Notice that every character in the new alphabet set is searched for with

the same probability. The user wishes to search for AA or AB or AC or BA or BB or BC or CA

or CB. In general, for OR search problem with alphabet size K, record length P > 1 and search

set size M , it is equivalent to the OR search problem with alphabet size K ′ = KP , record length

P ′ = 1 and search set size M ′ = K ′ − (K −M)P . Note that if M = o(K),

lim
K→∞

M ′

K ′
= lim

K→∞

KP − (K −M)P

KP
= 0, (3.82)

i.e. M ′ = o(K ′). Similarly, if M = Ω(K),M ′ = Ω(K ′). Therefore in the following proof of OR

private search, we only consider the case P = 1.

Define γ , M/K < 1. When M = o(K), regard each M -element set as one new symbol and

consider messages corresponding to disjoint search patterns. For example, suppose the alphabet set

is {1, 2, · · · , K}, M = 2, regard {1, 2}, {1, 3}, {2, 3}, · · · as new symbols. Consider the messages

corresponding to {1, 2}, {3, 4}, {5, 6}, · · ·. There are K ′ = bK/2c such messages. As K → ∞,

K ′ →∞. Based on the proof for the exact search setting, these messages satisfy (3.15). Therefore

the asymptotic capacity is 1 − 1/N . For the general case, consider the K ′ = bK/Mc messages
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corresponding to disjoint search patterns. Invoking Theorem 3.3 we conclude that the asymptotic

capacity is 1− 1/N .

For M = Ω(K), by symmetry of the truth function, searching for a given set is the same as

searching for its complement. The entropy H2(γ) = H2(1 − γ) and the capacity as a function

of γ, is symmetric around γ = 1/2. Thus we only need to consider γ = M/K ≤ 1/2. Let us

find a sequence of dependent messages such that (3.43) is satisfied. Choose W1 corresponding to

S1 = {U1, U2, · · · , UM}. It separates the alphabet set U into 2 parts: S1 of size γK, and U\S1

of size (1 − γ)K. Note that γK = M is an integer. Choose the second message W2 so that it is

comprised of bγMc elements of S1 and M − bγMc elements of U\S1. Repeating this step we get

a series of dependent messages, as in Fig. 3.3.

U

W1

W2

W3

M

bγMc M − bγMc

bγbγMcc

bγM − γbγMcc

bγM − γbγMcc

M − 2bγM − γbγMcc − bγbγMcc

···

• • • • • • • • • • • • •
U1 U2 U3 · · · UK

Figure 3.3: Partition of the alphabet to obtain a sequence of dependent messages for OR search,
M = Ω(K), P = 1. Here γ = M/K. The alphabet U = {U1, U2, · · · , UK} is represented on a
straight line.

Note that

H(Wl) = LH2(γ), ∀l. (3.83)

Since γ ≤ 1/2, γM−1
M
≤ bγMc

M
≤ 1/2. In terms of function H2(x), γM−1

M
and bγMc

M
are both in the
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monotonically increasing range. When M−bγMc
K−M ≤ 1/2,

H(W2|W1)

= LH2

(bγMc
M

)
M

K
+ LH2

(
M − bγMc
K −M

)
K −M
K

(3.84)

≥ LH2

(
γM − 1

M

)
M

K
+ LH2

(
γ(K −M)− 1

K −M

)
K −M
K

(3.85)

= LH2

(
γ2K − 1

γK

)
M

K
+ LH2

(
γ(1− γ)K − 1

(1− γ)K

)
K −M
K

. (3.86)

Then we have

lim
K→∞

H(W2|W1) ≥ LH2(γ) = H(W1), (3.87)

⇒ lim
K→∞

H(W2|W1) = H(W1). (3.88)

When M−bγMc
K−M ≥ 1/2, M−bγMc

K−M and γ(K−M)−1
K−M are in non-monotonic range, (3.85) is still true. Due

to the symmetry, we only need to show M−bγMc
K−M is closer to 1/2 than γ(K−M)−1

K−M . We have

M − bγMc
K −M − 1

2

=
M − bγMc
K −M − γ + γ − 1

2
(3.89)

=
M − bγMc
K −M − M − γM

K −M + γ − 1

2
(3.90)

=
γM − bγMc
K −M − 1

2
+ γ (3.91)

≤ 1

K −M −
1

2
+ γ (3.92)

≤ 1

K −M . (3.93)

And

1

2
− M − γM − 1

K −M
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=
1

2
− M − γM − 1

K −M + γ − γ (3.94)

=
1

2
− M − γM − 1

K −M +
M − γM
K −M − γ (3.95)

=
1

2
+

1

K −M + γ (3.96)

≥ 1

K −M . (3.97)

Combining (3.93) and (3.97), (3.85) is satisfied.

Since M = Ω(K), there exists a constant 0 < c < 1 such that γ = M/K ≥ c for sufficiently large

K. For a givenK, consider the search of only the restricted messages {Wl : l ≤ log1/c

√
K}. Note

that the number of the restricted messages goes to infinity as K →∞. Next we prove

lim
K→∞

H(Wl|W[l−1])

LH2(γ)
= 1, ∀l ≤ log1/c

√
K. (3.98)

According to our choice of the messageWl in Fig. 3.3, we partition the alphabet into 2l parts at step

l. Thus there are 2l−1 terms in H(Wl|W[l−1]). In particular, ∀i ∈ [2l−1], the i-th term corresponds

to the event that the record symbol is in the i-th part, and we use ξi to denote its probability. To

bound the i-th term, let us use a binary number to represent i − 1. Let the number of “1”s in the

binary number be mi and mi ∈ [l − 1]. For example, if l = 4 and i = 2, then i− 1 = (001)2, and

mi = 1. The size of the i-th part is between γl−mi(1−γ)miK− l+1 and γl−mi(1−γ)miK+ l−1.

Then the i-th term of H(Wl|W1, · · · ,Wl−1) is greater than or equal to

LH2

(
γl−mi+1(1− γ)miK − l + 1

γl−mi(1− γ)miK + l − 1

)
· ξi (3.99)

= LH2

(
γ − l−1

γl−mi (1−γ)miK

1 + l−1
γl−mi (1−γ)miK

)
· ξi. (3.100)
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When K →∞, ∀i ∈ [2l−1], l ≤ log1/c

√
K,

lim
K→∞

l − 1

γl−mi(1− γ)miK
≤ lim

K→∞

l − 1

γlK
= 0. (3.101)

Therefore,

lim
K→∞

LH2

(
γ − l−1

γl−mi (1−γ)miK

1 + l−1
γl−mi (1−γ)miK

)
= lim

K→∞
LH2(γ). (3.102)

Summing up all the terms, we obtain

lim
K→∞

H(Wl|W1, · · · ,Wl−1) ≥ lim
K→∞

LH2(γ), (3.103)

⇒ lim
K→∞

H(Wl|W1, · · · ,Wl−1) = lim
K→∞

H(Wl). (3.104)

Invoking Theorem 3.3 at this point, we conclude that the asymptotic capacity is 1− 1/N .

AND private search

For AND search, the record size P ≥ M , otherwise no record matches. Similar to OR search,

we translate it to OR search with the record size P ′ = 1. For example, consider the alphabet set

is {A,B,C}, i.e., K = 3 and record length P = 2. A user wishes to search for A and B. It is

equivalent to the problem that the alphabet set is all ordered tuples consisting of {A,B,C}, i.e.

{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record length is P ′ = 1. The user wishes to

search for AB or BA.

In general case, for AND search problem with alphabet size K, search set size M and record

length P ≥ M , it is equivalent to the OR search problem with alphabet size K ′ = KP , record

length P ′ = 1 and search set size M ′ = o(K ′). Here M ′ is the number of matching cases for an

AND search, which is a function of P,M,K, i.e. M ′ = Γ(P,M,K). To show M ′ = o(K ′), we
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first calculate the value of Γ(P,M,K). Notice the fact that there are two cases where a P -symbol

length record matches: 1) The first P − 1 symbols already contain all of the M chosen symbols,

and 2) The first P − 1 symbols only contain M − 1 chosen symbols. For the first case, the last

symbol can be any one in the alphabet while for the second case, the last symbol must be the

missing symbol and any one of the M symbols could be missing. Thus, the value of Γ(P,M,K)

can be calculated by recursive equation

Γ(P,M,K) = KΓ(P − 1,M,K) +MΓ(P − 1,M − 1, K − 1), (3.105)

with base cases

Γ(P, 1, K) = KP − (K − 1)P , (3.106)

Γ(M,M,K) = M ! . (3.107)

Recall that P and M are constants, which do not grow with K. When K → ∞, Γ(P, 1, K) =

o(KP ) and Γ(M,M,K) = O(1). Suppose Γ(P −1,M,K) = o(KP−1) and Γ(P −1,M −1, K−

1) = o((K − 1)P−1),

Γ(P,M,K) = K · o
(
KP−1)+M · o

(
(K − 1)P−1

)
= o

(
KP
)
. (3.108)

Based on mathematical induction, ∀M and ∀P ≥M ,

Γ(P,M,K) = o(KP ) = o(K ′). (3.109)

Since the asymptotic capacity of OR search is 1− 1/N , the asymptotic capacity of AND search is

1− 1/N .

71



Sequence private search

For sequence search, the non-trival case is under the condition P ≥ M , otherwise no record

matches. Suppose the chosen sequence is the tuple S = (Uθ1 , · · · , UθM ). Note that here Uθi

and Uθj can be the same symbol even through i 6= j. For sequence search, again we translate

it to OR search with the record size P ′ = 1. Consider the same example where alphabet set is

{A,B,C}, i.e., K = 3 and record length P = 2. A user wishes to search for a sequence AB. It

is equivalent to the problem that the alphabet set is all ordered tuples consisting of {A,B,C}, i.e.

{AA,AB,AC,BA,BB,BC,CA,CB,CC} and the record length is P ′ = 1. The user wishes to

search for AB.

In general case, for sequence search problem with alphabet size K, search set size M and record

length P ≥ M , it is equivalent to the OR search problem with alphabet size K ′ = KP , record

length P ′ = 1 and search set size M ′ = o(K ′). Here M ′ is the number of matching cases for a

sequence search, which is a function of P,M,K, i.e. M ′ = Ψ(P,M,K). To show M ′ = o(K ′),

note that if a sequence is contained in a record, every character in the sequence must be contained

in that record,

Ψ(P,M,K) ≤ Γ(P,m,K) = o(KP ) = o(K ′), (3.110)

where m = |{Uθ1 , · · · , UθM}|≤ M is the number of distinct searched symbols. Therefore the

asymptotic capacity of sequence search is 1− 1/N .

3.4.4 Proof of Proposition 3.1

Consider the even values of K as it approaches infinity so that we have H(Wk(η)) = H(1/2) =

1 bit, i.e., each message bit is marginally uniform. We prove the proposition by contradiction.

Suppose the asymptotic capacity is 1 − 1
N

, namely, limK→∞
D

LH(1/2)
=
(
1− 1

N

)−1, and suppose
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the bound (3.12) is tight for some sequence k1, k2, · · ·. Note that message Wki corresponds to

search set Ski . Then we have the following equation.

lim
K→∞

1 +
1

N
+

1

N2
+ · · · = lim

K→∞

D

LH(1
2
)

= lim
K→∞

D

L

(3.12)
= lim

K→∞
H(Wk1(η)) +

1

N
H(Wk2(η) | Wk1(η))

+
1

N2
H (Wk3(η) | Wk1(η),Wk2(η)) + . . . (3.111)

Therefore,

0 = lim
K→∞

1

N
(1−H(Wk2(η) | Wk1(η)))

+
1

N2
(1−H (Wk3(η) | Wk1(η),Wk2(η))) + · · · ,

which implies that

lim
K→∞

H (Wk2(η) | Wk1(η)) = 1, (3.112)

lim
K→∞

H (Wk3(η) | Wk1(η),Wk2(η)) = 1. (3.113)

Let us represent U1, U2, · · · , UK on an alphabet circle U shown in Fig. 3.4.

•
•
•

•

•

•

•

•

•
•

•••
•

•

•

•

•

•

•

•
•
• •

···
UKU1U2U3 ···

U

A

B

C

D

Sk1

Sk2

Figure 3.4: Alphabet circle

Since Sk1 is a contiguous set of K/2 points on the circle, without loss of generality it may
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be represented by the red semi-circle. Wk1(η) and Wk2(η) are binary random variables. So if

limK→∞H (Wk2(η) | Wk1(η)) = 1, then

lim
K→∞

H (Wk2(η) | Wk1(η) = 0) = 1, (3.114)

lim
K→∞

H (Wk2(η) | Wk1(η) = 1) = 1. (3.115)

This is equivalent to, within Sk1 half of the points must be in Sk2 and half of the points must

be outside Sk2 , when K approaches infinity. Similar for the points outside Sk1 . Therefore,

without loss of generality, Sk2 is represented by the blue semi-circle on the alphabet circle.

Note that this divides the alphabet circle into 4 parts, labeled as A,B,C,D, corresponding

to (Wk1(η),Wk2(η)) = (0, 0), (0, 1), (1, 1), (1, 0), respectively. Note that each of these spans

K/4 + o(K) points.

Since limK→∞H (Wk3(η) | Wk1(η),Wk2(η)) = 1, then

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (0, 0)) = 1, (3.116)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (0, 1)) = 1, (3.117)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (1, 1)) = 1, (3.118)

lim
K→∞

H (Wk3(η) | (Wk1(η),Wk2(η)) = (1, 0)) = 1. (3.119)

Consider (3.116), it is the sector of the U circle labeled A. Within this sector Wk3(η) must be

uniform, i.e., half of A must be in Sk3 and half of A must be outside Sk3 . Similarly, conditions

(3.117), (3.118) and (3.119) imply that half of B, C, D must be in Sk3 and half of B,C,D must be

outside Sk3 . But Sk3 is a contiguous semicircle, a continuous semi-circle cannot overlap with half

of each of A,B,C,D. Therefore we have a contradiction. The contradiction means that either the

asymptotic capacity of OR search with special patterns is not 1− 1/N or Theorem 3.1 is not tight

for this OR private search.
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3.4.5 Proof of (3.16)⇒ (3.15) under Block model with Linear Dependencies.

For balanced DPIR, each message is comprised of L uniformly distributed symbols from the finite

field Fq, where q = dH(w)e. Both L and q are fixed. If assume all dependencies among messages

are linear, Theorem 3.3.3 can be stated more explicitly as

LEMMA 3.1. For balanced DPIR with linear dependencies, then the asymptotic capacity is

lim
µ→∞

CDPIR(µ,N) = lim
µ→∞

CPIR(µ,N) = 1− 1

N
. (3.120)

if and only if there exists an increasing sequence ki ∈ N,∀i ∈ N, such that ∀l ∈ N,

lim
µ→∞

I
(
Wkl+1

;Wk[1:l]

)

LH(w)
= 0, (3.121)

For convenience, denote CDPIR(∞, N) = limµ→∞CDPIR(µ,N) and CPIR(∞, N) =

limµ→∞CPIR(µ,N).

The proof of (3.121) ⇒ (3.120) is shown in 3.4.2. To prove that (3.120) ⇒ (3.121), it suffices to

assume that there does not exist an infinite subsequence of independent messages, and then based

on this assumption, prove that CDPIR(∞, N) > CPIR(∞, N) = 1− 1/N . So, henceforth we assume

that there does not exist an infinite subsequence of independent messages. This implies that there

exists a finite m, such that ∀k ∈ N,

H(Wk|W1,W2, · · · ,Wm) < LH(w) (3.122)

Since q, L,m are fixed, there are only finitely many different linear combinations of symbols from
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these m messages in Fq. Let this number be s and denote the symbols corresponding to the distinct

linear combinations as a1, a2, · · · , as. Since dependencies are linear, every one of the messages

Wm+1,Wm+2, · · ·, has at least one symbol in common with these s symbols. Partition all the

messages into s disjoint groups, such that every message in the ith group has the symbol ai as one

of its L symbols. Now, use PIR to privately recover one of the symbols a1, a2, · · · , as depending

on whichever group the desired symbol falls in at a rate CPIR(s,N). Since s is finite CPIR(s,N) >

CPIR(∞, N). For the remaining L − 1 desired symbols, use asymptotic PIR at rate CPIR(N,∞) =

1− 1/N . Thus, the rate achieved is

R =
L

1
CPIR(s,N)

+ L−1
CPIR(∞,N)

(3.123)

>
L

1
CPIR(∞,N)

+ L−1
CPIR(∞,N)

(3.124)

= CPIR(∞, N) (3.125)

Thus, we can achieve a rate strictly higher than C(∞, N) and the proof is complete.

REMARK 3.1. Note that the proof is not limited to finite length messages. It also applies to a

block extension of this setting, where each message is comprised of blocks, each block has L

symbols from Fq, dependencies exist across messages within the same block, but across blocks all

realizations are i.i.d.

3.5 Concluding Remarks

We introduced the private search problem, which requires PIR with dependent messages (DPIR).

We derived a general converse bound for DPIR, studied its asymptotic behavior, and combined it

with a known general achievability result in order to characterize the asymptotic capacity of vari-

ous forms of private search, which include exact search, OR search, AND search, NOT search and
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sequence search. We also showed through an example that even asymptotic capacity characteriza-

tions for private search are difficult for additionally constrained message structures.

We note that the sufficient condition in Theorem 3.3 is applicable to T -colluding servers [105] or

(N, T )-MDS coded servers (T < N) [7], i.e., for DPIR with T -colluding servers or (N, T )-MDS

coded servers, if there exists an increasing sequence ki that satisfies (3.15), then the asymptotic

capacity is 1− T
N

. The converse proof is similar to the proof of Theorem 3.3. Following [7, 105],

we can obtain a download lower bound similar to Equation (3.34),

D ≥
(

1 +
T

N
+
T 2

N2
+ · · ·+ Tm−1

Nm−1

)
LH(w)

− TI(Wk2 ;Wk1)

N
− · · · −

Tm−1I
(
Wkm ;Wk[1:m−1]

)

Nm−1 . (3.126)

With the method in Section 3.4.2, it is easily proven that limµ→∞
∑m−1

l=1

T lI
(
Wkl+1

;Wk[1:l]

)
LH(w)N l = 0.

In terms of the achievable scheme, one can use the scheme of [58] and set the parameters Kc =

1, X = 0, T = T,B = 0, U = 0 for T -colluding servers, and set parameters Kc = T,X = 0, T =

1, B = 0, U = 0 for (N, T )-MDS coded servers.

One future direction is the capacity of private search over restricted search patterns discussed in

section 3.4.4. Another future direction is the capacity in non-asymptotic regime. In contrast to the

outer bound matching the achieving rate in the asymptotic regime, there is a gap between the outer

bound and the achieving rate in the non-asymptotic regime. Take exact search with P = 1 as an

example, when there are only K = 2 messages, the result is trivial because W1 is a function of

W2. So there is no privacy for K = 2. Consider K = 3 and N = 2, suppose the desired message

is W1, an achievable scheme is shown in Table 3.2.

The “+” in the scheme means XOR operation. ai notates W1(i), which is the i-th symbol of the

first message. Similarly, bi, ci notate W2(i) and W3(i). Based on the problem setting, dependency
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Table 3.2: Achievable scheme for DPIR with K = 3, N = 2

Server 1 Server 2
a1, b1 a2, b2
a3 + b2 a5 + b1
a4 + c2 a6 + c2
b4 + c3 b6 + c5

a7 + b6 + c5 a8 + b4 + c3

only exists among ai, bi, ci. The correctness and privacy of this scheme are inherited from the

achievable scheme of PIR [102] and the dependence.

In this scheme, on one hand due to the dependency among ai, bi, ci, we achieve the rate R =

0.6617. On the other hand, according to our outer bound (3.12), CPS(3, 1, 1, 2) ≤ 0.7337. There is

a gap between the achievable rate and the outer bound. Bound (3.12) is an outer bound for general

DPIR problems, and Proposition 3.1 and this example show that the outer bound may not be tight

for private search. To close the gap, one might need to improve the converse bound in the future.

Note that forN = 2, K = 3, the PIR capacity is 4/7 < 0.6617. It shows that in the non-asymptotic

regime, dependency among messages can increase the capacity, which is different from that in the

asymptotic case.
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Chapter 4

GCSA Codes with Noise Alignment for

Secure Coded Multi-Party Batch Matrix

Multiplication

4.1 Introduction

Recent interest in coding for secure, private, and distributed computing combines a variety of

elements such as coded distributed massive matrix multiplication, straggler tolerance, batch com-

puting and private information retrieval [1, 4, 7, 8, 17, 27, 28, 29, 30, 31, 44, 53, 54, 55, 56, 57, 59,

61, 62, 67, 68, 70, 71, 75, 79, 90, 93, 95, 98, 100, 102, 105, 113, 115, 116, 124, 125, 126, 127, 128].

These related ideas intersected recently in Generalized Cross Subspace Alignment (GCSA) codes

presented in [55]. GCSA codes originated in the setting of secure private information retrieval

[59] and have recently been developed further in [55] for applications to coded distributed batch

computation problems. GCSA codes generalize and improve upon the state of art distributed com-

puting schemes such as Polynomials codes [127], MatDot codes and PolyDot codes [30], Gen-
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eralized PolyDot codes [27] and Entangled Polynomial (EP) Codes [128] that partition matrices

into submatrices, as well as Lagrange Coded Computing [124, 125] that allows batch processing

of multiple computations.

As the next step in the expanding scope of coding for distributed computing, recently in [83]

Nodehi and Maddah-Ali explored its application to secure multiparty computation [122]. Specifi-

cally, Nodehi et al. consider a system including N sources, S servers and one master. Each source

sends a coded function of its data (called a share) to each server. The servers process their inputs

and while doing so, may communicate with each other. After that each server sends a message to

the master, such that the master can recover the required function of the source inputs. The input

data must be kept perfectly secure from the servers even if up to X of the servers collude among

themselves. The master must not gain any information about the input data beyond the result.

Nodehi et al. propose a scheme called polynomial sharing (PS), which admits basic matrix opera-

tions such as addition and multiplication. By concatenating basic operations, arbitrary polynomial

function can be calculated. The PS scheme has a few key limitations. It needs multiple rounds of

communication among servers where every server needs to send messages to every other server.

This is a concern because communication increases the risk for collusion. Furthermore, PS carries

a high communication cost and requires the network topology among servers to be a complete

graph (otherwise data security may be compromised), does not tolerate stragglers, and does not

lend itself to batch processing. These aspects (batch processing, improved inter-server communi-

cation efficiency, various network topologies) are highlighted as open problems by Nodehi et al.

in [83].

Since GCSA codes are particularly efficient at batch processing and already encompass prior ap-

proaches to coded distributed computing, in this chapter we explore whether GCSA codes can also

be applied to the problem identified by Nodehi et al. In particular, we focus on the problem of

secure multiplication of two matrices. Such a problem may arise, e.g., in correlation analysis be-

tween privately held genomic datasets to determine genetic connections without revealing anything
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else. As it turns out, in this context the answer is in the affirmative. Securing the data against any

X colluding servers is already possible with GCSA codes as shown in [55]. The only remaining

challenge is how to prevent the master from learning anything about the inputs besides the result

of the computation. Let us refer to the additional terms that are contained in the answers sent by

the servers to the master, which may collectively reveal information about the inputs beyond the

result of the computation, as interference terms. To secure these interference terms, we use the

idea of Noise Alignment (NA) – the workers communicate among themselves to share noise terms

(unknown to the master) that are structured in the same manner as the interfering terms. Because

of their matching structures, when added to the answer, the noise terms align perfectly with the in-

terference terms and as a result no information is leaked to the master about the input data besides

the result of the computation. Notably, the idea of noise alignment is not novel. While there are

superficial distinctions, noise alignment is used essentially in the same manner in [129].

The combination of GCSA codes with noise alignment, GCSA-NA in short, leads to significant

advantages over PS schemes. Foremost, because it uses GCSA codes, it allows the benefits of

batch processing as well as straggler robustness, neither of which are available in the PS scheme of

[83]. The only reason any inter-server communication is needed in a GCSA-NA scheme is to share

the aligned noise terms among the servers. Since these terms do not depend on the data inputs,

the inter-server communication in a GCSA-NA scheme is secure in a stronger sense than possible

with PS, i.e., even if all inter-server communication is leaked, it can reveal nothing about the data

inputs. The inter-server communication can take place before the input data is determined, say

during off-peak hours. This directly leads to another advantage. The GCSA-NA scheme allows

the inter-server communication network graph to be any connected graph unlike PS schemes which

require a complete graph. In fact, the GCSA-NA scheme works even if inter-server communica-

tion is entirely disallowed, because the aligned noise can be equivalently generated by either of

the source nodes and sent to the servers. By disallowing communication among servers, GCSA-

NA may reduce the probability of collusion among servers relative to PS where all servers must

communicate with each other.
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The rest of the paper is organized as follows. Section 4.2 presents the problem statement. In

Section 4.3 we state the main result and compare it with previous approaches. A toy example

is presented in Section 4.4. The construction and proof of GCSA-NA are shown in Section 4.5.

Section 4.6 concludes the paper.

Notation: For positive integers M,N (M < N ), [N ] stands for the set {1, 2, . . . , N} and [M :

N ] stands for the set {M,M + 1, . . . , N}. For a set I = {i1, i2, . . . , iN}, XI denotes the set

{Xi1 , Xi2 , . . . , XiN}. The notation ⊗ denotes the Kronecker product of two matrices. IN denotes

the N × N identity matrix. T(X1, X2, · · · , XN) denotes the N × N lower triangular Toeplitz

matrix, i.e.,

T(X1, X2, · · · , XN ) =




X1

X2 X1

...
. . . . . .

XN · · · X2 X1



.

For a matrix M , |M | denotes the number of elements in M . For a polynomial P , degα(P ) denotes

the degree with respect to a variable α. Define the degree of the zero polynomial as −1. The

notation Õ(a log2 b) suppresses polylog terms for computation complexity. It may be replaced with

O(a log2 b) if the field F supports the Fast Fourier Transform (FFT), and withO(a log2 b log log(b))

if it does not.

4.2 Problem Statement

Consider a system including 2 sources (A andB), S servers (workers) and one master, as illustrated

in Fig. 4.1. Each source is connected to every single server. Servers are connected to each other,1

1While we allow these links (dash-dotted lines in Figure 4.1) for the sake of consistency with the original formula-
tion in [83], these links are not necessary for our solution. See the remark following the definition of security & strong
security.
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Source A

A =
(
A(1), . . . ,A(L)

)
,ZA

Source B

B =
(
B(1), . . . ,B(L)

)
,ZB

Server S

Server 1
· · ·

Server i1

· · ·

Server iX

· · ·

ÃS

Ã1 Ãi1

ÃiX

B̃1

B̃iX

B̃i1

B̃S

Master

Y1 Yi1

YiX

AB =
(
A(1)B(1), . . . ,A(L)B(L)

)

I(A,B;Y1,Y2, · · · ,YS | AB) = 0

A total of R answers downloaded

X possible colluding servers

Figure 4.1: The SMBMM problem. Sources generate matrices A = (A(1),A(2), · · · ,A(L)) with
separate noiseZA and B = (B(1),B(2), · · · ,B(L)) with separate noiseZB, and upload information
to S distributed servers in coded form Ã[S], B̃[S], respectively. Servers may communicate with
each other via dash-dotted links. For security, any X colluding servers (e.g., Servers i1 to iX in
the figure) learn nothing about A,B. The sth server computes the answer Ys, which is a function
of all information available to it. For effective straggler (e.g., Server S in the figure) mitigation,
upon downloading answers from any R servers, where R < S, the master must be able to recover
the product AB = (A(1)B(1),A(2)B(2), . . . ,A(L)B(L)). For privacy, the master must not gain any
additional information about A,B beyond the desired product AB.
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and all of the servers are connected to the master. All of these links are secure and error free.

Source A and B independently generate sequences2 of L matrices, denoted as A =
(
A(1),A(2), . . . ,A(L)

)
, and B =

(
B(1),B(2), . . . ,B(L)

)
, respectively, such that ∀l ∈ [L],

A(l) ∈ Fλ×κ and B(l) ∈ Fκ×µ. The master is interested in the sequence of product matrices,

AB =
(
A(1)B(1),A(2)B(2), . . . ,A(L)B(L)

)
. The system operates in three phases: 1) sharing, 2)

computation and communication, and 3) reconstruction.

1) Sharing: Each source encodes (encrypts) its matrices for the sth server as Ãs and B̃s, so Ãs =

fs(A,ZA), B̃s = gs(B,ZB), where ZA and ZB represent private randomness (noise) generated

by the source. The encoded matrices, Ãs, B̃s, are sent to the sth server.

2) Computation and Communication: Servers may send messages to other servers, and process

what they received from both the sources and other servers. Denote the communication from

Server s to Server s′ as Ms→s′ . Define Ms , {Ms′→s | s′ ∈ [S] \ {s}} as the messages that

Server s receives from other servers, and M , {Ms | s ∈ [S]} as the total messages that all

servers receive. After the communication among servers, each server s computes a response Ys

and sends it to the master. Ys is a function of Ãs, B̃s and Ms, i.e., Ys = hs(Ã
s, B̃s,Ms),

where hs, s ∈ [S] are the functions used to produce the answer, and we denote them collectively

as h = (h1, h2, . . . , hS).

3) Reconstruction: The master downloads information from servers. Some servers may fail to

respond (or respond after the master executes the reconstruction), such servers are called stragglers.

The master decodes the sequence of product matrices AB based on the information from the

responsive servers, using a class of decoding functions d = {dR | R ⊂ [S]} where dR is the

decoding function used when the set of responsive servers isR.

This scheme must satisfy three constraints.

2The batch size L can be chosen to be arbitrarily large by the coding algorithm.
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Correctness: The master must be able to recover the desired products AB, i.e.,

H(AB | YR) = 0, (4.1)

or equivalently AB = dR(YR), for someR.

Security & Strong Security: We first define security which is called privacy for workers in [83].

The servers must remain oblivious to the content of the data A,B, even if X of them collude.

Formally, ∀X ⊂ [S], |X |≤ X ,

I(A,B; ÃX , B̃X ,MX ) = 0. (4.2)

In this paper, strong security is also considered. It requires that the information transmitted among

servers is independent of data A,B and all the shares Ã[S], B̃[S], i.e.,

I(A,B, Ã[S], B̃[S];M) = 0. (4.3)

This property makes it possible that inter-server communications happen before receiving data

from sources, and makes the server communication network topology more flexible. Note that PS

does not satisfy strong security because H (AB | M) = 0 in the PS scheme.

REMARK 4.1. M can be shared among servers in various ways that satisfy strong security. For

example, the servers can shareM a-priori during an initial setup phase, so that there is no commu-

nication among servers during the actual computation phase. Alternatively,M can come from a

service provider whose sole purpose is to generate structured noise and send it to each server. Fi-

nally,M can also be separately generated by either of the source nodes (independent of the input

matrices and their coded shares) and sent to each server. This only makes uses of existing com-

munication links between the source and server nodes, and requires no communication between

servers.
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Privacy: The master must not gain any additional information about A,B, beyond the required

product. Precisely,

I(A,B; Y1,Y2, · · · ,YS | AB) = 0. (4.4)

This is the privacy for the master in [83].

REMARK 4.2. There is another setting for secure distributed matrix multiplication that appears

in the literature, where the input matrices originate at the master node itself [1, 17, 31, 32, 62, 67].

In that case, while the solution presented in this chapter will still apply, the privacy aspect would

be irrelevant because the master already knows both A and B. Correspondingly, our solution

degenerates to a special case called X-secure GCSA codes (see Remark 2 of Appendix A in [55]).

Since privacy is an important aspect of this chapter, we assume that the source nodes are distinct

from the master node as shown in Figure 4.1.

We say that (f, g,h, d) form an SMBMM (Secure coded Multi-party Batch Matrix Multiplication)

code if it satisfies these three constraints. An SMBMM code is said to be r-recoverable if the

master is able to recover the desired products from the answers obtained from any r servers. In

particular, an SMBMM code (f, g,h, d) is r-recoverable if for any R ⊂ [S], |R|= r, and for any

realization of A, B, we have AB = dR(YR). Define the recovery threshold R of an SMBMM

code (f, g,h, d) to be the minimum integer r such that the SMBMM code is r-recoverable.

The communication cost of an SMBMM code is comprised of these parts: upload cost of the

sources, communication cost among the servers, and download cost of the master. The (normal-

ized)3 upload costs UA and UB are defined as follows.

UA =

∑
s∈[S]|Ãs|
Lλκ

, UB =

∑
s∈[S]|B̃s|
Lκµ

. (4.5)

3We normalize source upload cost with the number of elements contained in the constituent matrices A,B. The
server communication cost and master download cost are normalized by the number of elements contained in the
desired product AB.
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Similarly, the (normalized) server communication cost CC and download cost D are defined as

follows.

CC =

∑
M∈M|M|
Lλµ

, D = max
R,R⊂[S],|R|=R

∑
s∈R|Ys|
Lλµ

. (4.6)

Next let us consider the complexity of encoding, decoding and server computation. Define the

(normalized) computational complexity at each server, Cs, to be the order of the number of arith-

metic operations required to compute the function hs at each server, normalized by L. Similarly,

define the (normalized) encoding computational complexity CeA for Ã[S] and CeB for B̃[S] as the or-

der of the number of arithmetic operations required to compute the functions f and g, respectively,

each normalized by L. Finally, define the (normalized) decoding computational complexity Cd to

be the order of the number of arithmetic operations required to compute dR(YR), maximized over

R,R ⊂ [S], |R|= R, and normalized by L. Note that normalization by batch-size L is needed

to have fair comparisons between batch processing approaches and individual matrix-partitioning

solutions per matrix multiplication.

4.3 Main Result

Our main result appears in the following theorem.

THEOREM 4.1. For SMBMM over a field F with S servers, X-security, and positive integers

(`,Kc, p,m, n) such that m | λ, p | κ, n | µ and L = `Kc ≤ |F|−S, the GCSA-NA scheme

presented in Section 4.5 is a solution, and its recovery threshold, cost, and complexity are listed as

follows.

Recovery Threshold:R = pmn(`+ 1)Kc + 2X − 1,

Source Upload Cost of Ã[S], B̃[S]:(UA, UB) =

(
S

Kcpm
,

S

Kcpn

)
,
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Server Communication Cost:CC =
S − 1

`Kcmn
,

Master Download Cost:D =
R

`Kcmn
,

Source Encoding Complexity for Ã[S], B̃[S]:

(CeA, CeB) =

(
Õ
(
λκS log2 S

Kcpm

)
, Õ
(
κµS log2 S

Kcpn

))
,

Server Computation Complexity:Cs = O
(

λκµ

Kcpmn

)
,

Master Decoding Complexity:Cd = Õ
(
λµp log2R

)
.

The following observations place the result of Theorem 4.1 in perspective.

1. GCSA-NA codes are based on the construction of GCSA codes from [55], combined with

the idea of noise-alignment (e.g., [129]). In turn, GCSA codes are based on a combination of

CSA codes for batch processing [55] and EP codes for matrix partitioning [128]. CSA codes

are themselves based on the idea of Cross-Subspace Alignment (CSA) that was introduced in the

context of secure Private Information Retrieval (PIR) [59]. It is a remarkable coincidence that

while the idea of CSA originated in the context of PIR [59], and Lagrange Coded Computing

(LCC) was introduced in parallel independently in [125] for the context of coded computing, the

two approaches are essentially identical, with CSA codes being slightly more powerful in the

context of coded distributed matrix multiplication (CSA codes offer additional improvements over

LCC codes in terms of download cost [55]). Indeed, LCC codes for batch matrix multiplication

are recovered as a special case of CSA codes.

2. The idea of noise alignment can be applied to the N -CSA codes [55], for N -source secure

coded multi-party batch matrix computation. In [124], Strassen’s construction [99], combined with

LCC, are introduced for batch distributed matrix multiplication for better computation complexity.

Noise alignment is also applicable to Strassen’s constructions (see Section 4.6). By settingKc = 1,

` = L and S = R, the construction of GCSA-NA codes, with a straightforward generalization,

can be further modified to settle the asymptotic (the number of messages go to infinity) capacity of
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symmetric X-secure T -private computation (and also symmetric X-secure T -private information

retrieval XSTPIR) [59]. However, the amount of randomness required by the construction is not

necessarily optimal. For example, it is shown in [59] that by the achievable scheme for XSTPIR,

symmetric security (privacy) is automatically satisfied when T = 1, i.e., no randomness among

servers is required.

Polynomial Sharing (PS [83]) GCSA-NA

Strong Security No Yes
Recovery Threshold (R) 2pmn+ 2X − 1 pmn(`+ 1)Kc + 2X − 1

Straggler Tolerance No (S = R) Yes. Tolerates S −R stragglers
Server Network Topology Complete Graph Any Connected Graph

Source Encoding
Complexity (CeA, CeB)

(
Õ
(
λκS log2 S

pm

)
, Õ
(
κµS log2 S

pn

)) (
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
Source Upload Cost (UA, UB)

(
S
pm

, S
pn

) (
S

Kcpm
, S
Kcpn

)
Server Communication Cost (CC)

S(S−1)
mn

S−1
`Kcmn

Server Computation
Complexity (Cs) O

(
λκµ
pmn

)
+O (λµ) + Õ

(
S log2 Sλµ

mn

)
O
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
+O

(
(S−1)λµ
mn

)
≈ O

(
λκµ
pmn

)
if κ
p
� S ≈ O

(
λκµ

Kcpmn

)
if κ
p
� S

Master Download Cost (D) mn+X
mn

R
`Kcmn

Master Decoding Complexity (Cd) Õ
(
λµ log2(mn+X)

)
Õ
(
λµp log2(R)

)
Table 4.1: Performance Comparison of PS and GCSA-NA.

3. A side-by-side comparison of the GCSA-NA solution with polynomial sharing (PS) appears

in Table 4.1. Because all inter-server communication is independent of input data, GCSA-NA

schemes are strongly secure, i.e., even if all inter-server communication is leaked it does not com-

promise the security of input data. In GCSA-NA the inter-server network graph can be any con-

nected graph. This is not possible with PS. For example, if the inter-server network graph is a star

graph, then the hub server can decode AB by monitoring all the inter-server communication in a

PS scheme, violating the security constraint. Unlike the PS scheme, in GCSA-NA, all inter-server

communication can take place during off-peak hours, even before the input data is generated, giv-

ing GCSA-NA a significant latency advantage. Unlike PS where every server must communicate

with every server, i.e., S(S−1) such inter-server communications must take place, GCSA-NA only

requires S − 1 inter-server communications to propagate structured noise terms across all servers.

This improvement is shown numerically in Fig. 4.2a. The server computation complexity is also

lower for the GCSA-NA scheme than the PS scheme. This is because in PS, each server needs to

multiply the two shares received from the sources, calculate the shares for every other server and
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sum up all the shares from every other server. However, in GCSA-NA, each server only needs

to multiply the two shares received from the sources and add noise (which can be precomputed

during off-peak hours). This advantage is particularly significant for large number of servers. The

GCSA-NA scheme naturally allows robustness to stragglers, which is particularly important for

massive matrix multiplications. Stragglers can be an especially significant concern for PS because

of the strongly sequential nature of multi-round computation that is central to PS. This is because

server failures between computation rounds disrupt the computation sequence. Remarkably, Fig.

4.2a shows that the inter-server communication cost of GCSA-NA is significantly better than PS

even when GCSA-NA accommodates stragglers (while PS does not).

When restricted to batch size 1, i.e., with ` = Kc = 1, GCSA-NA has the same recovery threshold

as PS. Now consider batch processing, i.e., batch size L > 1, e.g., with L = Kc, ` = 1. PS can be

applied to batch processing by repeating the scheme L times. Fig. 4.2b shows that the normalized

server communication cost of GCSA-NA decreases as L increases and is significantly less than

that in PS. For the same number of servers S, the upload cost of GCSA-NA is smaller by a factor

of 1/Kc compared to PS. GCSA-NA does have higher download cost and decoding complexity

than PS by approximately a factor of p, which depends on how the matrices are partitioned. If p

is a small value, e.g., p = 1, then the costs are quite similar. The improvement in download cost

and decoding complexity of PS by a factor of 1/p comes at the penalty of increased inter-server

communication cost by a factor of S. But since S ≥ R ≥ 2pmn + 2X − 1 ≥ p, and typically

S � p, the improvement is dominated by the penalty, so that overall the communication cost of

PS is still significantly higher.

4.4 Toy Example

Let us consider a toy example with parameters λ = κ = µ,m = n = 1, p = 2, l = 1, Kc = 2, X =

1 and S = R. Suppose matrices A,B ∈ Fλ×λ, and we wish to multiply matrix A = [A1 A2]
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Figure 4.2: λ = κ = µ, p = m = n. (a) Server communication cost vs. partition size, given
L = 1, X = 5. (b) Server communication cost vs. batch size, given p = 2, X = 5.

with matrix B =

[
BT

1 BT
2

]T
to compute the product AB = A1B1 + A2B2, where A1,A2 ∈

Fλ×λ2 ,B1,B2 ∈ Fλ
2
×λ. For this toy example we summarize both the Polynomial Sharing approach

[82, 83, 84], and our GCSA-NA approach.

4.4.1 Polynomial Sharing Solution

Polynomial sharing is based on EP code [128] . The given partitioning corresponds to EP code

construction for m = n = 1, p = 2, and we have

P = A1 + αA2, Q = αB1 + B2. (4.7)

=⇒ PQ = A1B2 + α(A1B1 + A2B2) + α2A2B1. (4.8)

To satisfyX = 1 security, PS includes noise with each share, i.e., Ã = P+α2ZA, B̃ = Q+α2ZB,

where α, Ã, B̃ are generic variables that should be replaced with αs, Ã
s, B̃s for Server s, and

α1, · · · , αS are distinct elements. Each server computes the product of the shares that it receives,
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i.e.,

ÃB̃ = PQ + α2PZB + α2ZAQ + α4ZAZB (4.9)

= A1B2 + α(A1B1 + A2B2) + α2(A2B1 + A1Z
B + ZAB2)

+ α3(A2Z
B + ZAB1) + α4ZAZB. (4.10)

To secure inputs from the master, PS requires that every server sends to the master only the desired

term A1B1+A2B2 by using secret sharing scheme among servers. Since degα(ÃB̃) = 4, A1B1+

A2B2 can be calculated from 5 distinct ÃB̃ according to the Lagrange interpolation rules. In

particular, there exist 5 constants r1, · · · , r5, such that A1B1 + A2B2 =
∑

s∈[5] rsÃ
sB̃s. Consider

Server s, it sends Ms→j = rsÃ
sB̃s + αjZs to Server j, where Z1, · · · ,Z5 are i.i.d. uniform noise

matrices. After Server s collects all the shares Mj→s, it sums them up

Ys =
∑

j∈[5]

Mj→s = A1B1 + A2B2 + αs
∑

j∈[5]

Zj (4.11)

and sends Ys to the master. Note that after receiving Mj→s for all j ∈ [5], Server s still gains no

information about the input data, which guarantees the security. However, it does not satisfy strong

security, because AB can be decoded based on Mj→s, j, s ∈ [5].

The master can decode AB after collecting 2 responses from servers.4 Note that PS needs at least

S = R = 5 servers, since 5 distinct ÃB̃ are required to obtain Ys.

4In [84], for arbitrary polynomials, Ms→j = rsÃ
sB̃s + α2

jZs because Ys is forced to be casted in the form of
entangled polynomial sharing.
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4.4.2 GCSA-NA Solution

GCSA codes [55] can handle batch processing, therefore let us consider batch size 2 (` = 1, Kc =

2). Denote the second instance by A′,B′. Using CSA code,

P = A1 + (f − α)A2, Q = (f − α)B1 + B2. (4.12)

P′ = A′1 + (f ′ − α)A′2, Q′ = (f ′ − α)B′1 + B′2. (4.13)

And the shares are constructed as follows,

Ã = ∆

(
P

(f − α)2
+

P′

(f ′ − α)2

)
, B̃ =

Q

(f − α)2
+

Q′

(f ′ − α)2
,

where ∆ = (f − α)2(f ′ − α)2, and α, Ã, B̃ are generic variables that should be replaced with

αs, Ã
s, B̃s for Server s. Furthermore, f, f ′, α1, α2, · · · , αS are distinct elements. Each server

computes the product of the shares that it receives, i.e.,

ÃB̃ =
(f ′ − α)2

(f − α)2
PQ +

(f − α)2

(f ′ − α)2
P′Q′ + P′Q + PQ′ (4.14)

=
((f ′ − f) + (f − α))2

(f − α)2
PQ +

((f − f ′) + (f ′ − α))2

(f ′ − α)2
P′Q′

+ P′Q + PQ′ (4.15)

=
(f ′ − f)2 + 2(f ′ − f)(f − α) + (f − α)2

(f − α)2
PQ

+
(f − f ′)2 + 2(f − f ′)(f ′ − α) + (f ′ − α)2

(f ′ − α)2
P′Q′

+ P′Q + PQ′ (4.16)

=
(f ′ − f)2

(f − α)2
PQ +

2(f ′ − f)

f − α PQ +
(f − f ′)2
(f ′ − α)2

P′Q′

+
2(f − f ′)
f ′ − α P′Q′ + PQ + P′Q′ + P′Q + PQ′ (4.17)

=
c0

(f − α)2
PQ +

c1
f − αPQ +

c′0
(f ′ − α)2

P′Q′

+
c′1

f ′ − αP′Q′ + I0 + αI1 + α2I2 (4.18)
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=
c0A1B2

(f − α)2
+
c0A1B1 + c0A2B2 + c1A1B2

f − α +
c′0A

′
1B
′
2

(f ′ − α)2

+
c′0A

′
1B
′
1 + c′0A

′
2B
′
2 + c′1A

′
1B
′
2

f ′ − α + I0 + αI1 + α2I2, (4.19)

where I0, I1, I2 are various linear combinations of A1,A2,B1,B2,A
′
1,A

′
2,B

′
1,B

′
2 and

c0, c1, c
′
0, c
′
1 are constants. Their exact forms can be found by performing partial fraction decom-

position. This is the original GCSA code [55], and we need R = pmn((`+ 1)Kc− 1) + p− 1 = 7

responses to recover the desired product.

Next, let us modify the scheme to make it X = 1 secure by including noise with each share, i.e.,

Ã = ∆

(
P

(f − α)2
+

P′

(f ′ − α)2
+ ZA

)
,

B̃ =
Q

(f − α)2
+

Q′

(f ′ − α)2
+ ZB.

ÃB̃ =
c0PQ

(f − α)2
+
c1PQ

f − α +
c′0P

′Q′

(f ′ − α)2
+
c′1P

′Q′

f ′ − α +
4∑

i=0

αiIi.

As a result of the added noise terms, the recovery threshold is now increased to 9. Note that the

term I4 contains only contributions from ∆ZAZB, i.e., this term leaks no information about A,B

matrices.

If the servers directly return their computed values of ÃB̃ to the master, then besides the result

of the computation some additional information about the input matrices A,B may be leaked by

the interference terms
(

c0
(f−α)2 + c1

f−α

)
A1B2 +

(
c′0

(f ′−α)2 +
c′1

f ′−α

)
A′1B

′
2 +

∑3
i=0 α

iIi, which can

be secured by the addition of aligned noise terms Z̃ =
(

c0
(f−α)2 + c1

f−α

)
Z+

(
c′0

(f ′−α)2 +
c′1

f ′−α

)
Z′+

∑3
i=0 α

iZi at each server so that the answer returned by each server to the master is ÃB̃ + Z̃.

Here Z,Z′,Z0,Z1,Z2,Z3 are i.i.d. uniform noise matrices, that can all be privately generated by

one server, who can then share their aligned form Z̃ with all other servers. This sharing of Z̃ is

the only inter-server communication needed in GCSA-NA. Since it is independent of the inputs, it

can be done during off-peak hours, thereby reducing the latency of server computation. The strong
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security is also automatically satisfied.

4.5 Construction of GCSA-NA

Now let us present the general construction. L = `Kc instances of A and B matrices are split into

` groups. ∀l ∈ [`], ∀k ∈ [Kc], denote

Al,k = A(Kc(l−1)+k), Bl,k = B(Kc(l−1)+k). (4.20)

Further, each matrix Al,k is partitioned into m × p blocks and each matrix Bl,k is partitioned into

p× n blocks, i.e.,

Al,k =




Al,k
1,1 · · · Al,k

1,p

Al,k
2,1 · · · Al,k

2,p

...
...

...

Al,k
m,1 · · · Al,k

m,p



,Bl,k =




Bl,k
1,1 · · · Bl,k

1,n

Bl,k
2,1 · · · Bl,k

2,n

...
...

...

Bl,k
p,1 · · · Bl,k

p,n



,

where
(
Al,k
i,j

)
i∈[m],j∈[p]

∈ F
λ
m
×κ
p and

(
Bl,k
i,j

)
i∈[m],j∈[p]

∈ F
κ
p
×µ
n .

Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS be (S + L) distinct elements from the field F. For conve-

nience, define

R′ = pmn, DE = max(pm, pmn− pm+ p)− 1, (4.21)

E = {p+ p(m′ − 1) + pm(n′′ − 1) | m′ ∈ [m], n′′ ∈ [n]} , (4.22)

∆l,Kc
s =

∏

k∈[Kc]

(fl,k − αs)R
′
, ∀l ∈ [`], ∀s ∈ [S]. (4.23)

Define cl,k,i, i ∈ {0, 1, · · · , R′(Kc − 1)} to be the coefficients satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α + (fl,k′ − fl,k))R
′
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=

R′(Kc−1)∑

i=0

cl,k,iα
i, ∀l ∈ [`],∀k ∈ [Kc], (4.24)

i.e., they are the coefficients of the polynomial Ψl,k(α) =
∏

k′∈[Kc]\{k} (α + (fl,k′ − fl,k))R
′
,

which is defined by its roots. Note that all the coefficients (cl,k,i)l∈[L],k∈[Kc],i∈{0,1,···,R′(Kc−1)}, α[S],

(fl,k)l∈[L],k∈[K] are globally known.

4.5.1 Sharing

Firstly, each source encodes each constituent matrix blocks Al,k and Bl,k with Entangled Polyno-

mial code [128]. For all l ∈ [`], k ∈ [Kc], define

Pl,k
s =

∑

m′∈[m]

∑

p′∈[p]

Al,k
m′,p′(fl,k − αs)p

′−1+p(m′−1), (4.25)

Ql,k
s =

∑

p′′∈[p]

∑

n′′∈[n]

Bl,k
p′′,n′′(fl,k − αs)p−p

′′+pm(n′′−1). (4.26)

Note that the original Entangled Polynomial code can be regarded as polynomials of αs, and here

for each (l, k), Entangled Polynomial code is constructed as polynomials of (fl,k − αs).

Each source generates `X independent random matrices, ZA =
{
ZA

1,1, · · · ,ZA
`,X

}
and ZB =

{
ZB

1,1, · · · ,ZB
`,X

}
. The independence is established as follows.

H(ZA,ZB,A,B) = H(A) +H(B)

+
∑

l∈[`],x∈[X]

H
(
ZA
l,x

)
+

∑

l∈[`],x∈[X]

H
(
ZB
l,x

)
. (4.27)

For all s ∈ [S], the shares of matrices A and B at the sth server are constructed as Ãs =
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(
Ãs

1, Ã
s
2, . . . , Ã

s
`

)
, B̃s =

(
B̃s

1, B̃
s
2, . . . , B̃

s
`

)
, where for all l ∈ [`],

Ãs
l = ∆l,Kc

s


 ∑

k∈[Kc]

Pl,k
s

(fl,k − αs)R′
+
∑

x∈[X]

αx−1s ZA
l,x


 ,

B̃s
l =

∑

k∈[Kc]

Ql,k
s

(fl,k − αs)R′
+
∑

x∈[X]

αx−1s ZB
l,x.

Then each pair of shares Ãs, B̃s is sent to the corresponding server.

4.5.2 Computation and Communication

One of the servers generates a set of λ
m
× µ

n
matrices Zserver, which contains R′(Kc − 1) +

X + DE + `Kc(p − 1)mn independent random matrices and `Kcmn zero matrices. In partic-

ular, Zserver = {Zserver1 ,Zserver2 }, Zserver1 = {Z′i | i ∈ [R′(Kc − 1) +X +DE]}, and Zserver2 =
{
Z′′l,k,i | l ∈ [`], k ∈ [Kc], i ∈ [R′]

}
. Here,

Z′′l,k,i =





0, if i ∈ E

Z′′′l,k,i, otherwise,
∀l ∈ [`],∀k ∈ [Kc].

Here Z′i and Z′′′l,k,i are the independent random matrices. The independence is established as fol-

lows.

H(Zserver,A,B) = H(A) +H(B)

+

R′(Kc−1)+X+DE∑

i=1

H(Z′i) +
∑

l∈[`],k∈[Kc],
i∈[R′]

H(Z′′l,k,i). (4.28)
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Without loss of generality, assume the first server generates Zserver, encodes them into

M̃s =

R′(Kc−1)+X+DE∑

x=1

αx−1s Z′x +
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i
(4.29)

and sends M̃s to server s, s ∈ [S] \ {1}, where cl,k,i is defined in (4.24). The answer returned by

the sth server to the master is constructed as Ys =
∑

l∈[`] Ã
s
l B̃

s
l + M̃s.

4.5.3 Reconstruction

After the master collects any R answers, it decodes the desired products AB.

4.5.4 Proof of Theorem 1

To begin, let us recall the standard result for Confluent Cauchy-Vandermonde matrices [39], repli-

cated here for the sake of completeness.

LEMMA 4.1. If f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αR are R + L distinct elements of F, with |F|≥
R+L, L = `Kc and R = R′(`+ 1)Kc + 2X− 1, then the R×R Confluent Cauchy-Vandermonde
matrix (4.30) is invertible over F.

V̂`,Kc,R′,X,R ,



1

(f1,1−α1)R
′ · · · 1

f1,1−α1
· · · 1

(f`,Kc−α1)R
′ · · · 1

f`,Kc−α1
1 · · · αR

′Kc+2X−2
1

1

(f1,1−α2)R
′ · · · 1

f1,1−α2
· · · 1

(f`,Kc−α2)R
′ · · · 1

f`,Kc−α2
1 · · · αR

′Kc+2X−2
2

...
...

...
...

...
...

...
...

...
...

1

(f1,1−αR)R
′ · · · 1

f1,1−αR
· · · 1

(f`,Kc−αR)R
′ · · · 1

f`,Kc−αR
1 · · · αR

′Kc+2X−2
R


(4.30)

Firstly, let us prove that the GCSA-NA codes are R = pmn(` + 1)Kc + 2X − 1 recoverable.

Rewrite Ys as follows.

Ys = Ãs
1B̃

s
1 + Ãs

2B̃
s
2 + · · ·+ Ãs

`B̃
s
` + M̃s (4.31)
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=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

Pl,k
s

(fl,k − αs)R′
+
∑

x∈[X]

αx−1s ZAl,x




·


 ∑

k∈[Kc]

Ql,k
s

(fl,k − αs)R′
+
∑

x∈[X]

αx−1s ZBl,x


+ M̃s (4.32)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

Pl,k
s

(fl,k − αs)R′




 ∑

k∈[Kc]

Ql,k
s

(fl,k − αs)R′




+
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

Pl,k
s

(fl,k − αs)R′




∑

x∈[X]

αx−1s ZBl,x




︸ ︷︷ ︸
Γ2

+
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

Ql,k
s

(fl,k − αs)R′




∑

x∈[X]

αx−1s ZAl,x




︸ ︷︷ ︸
Γ3

+
∑

l∈[`]

∆l,Kc
s


∑

x∈[X]

αx−1s ZAl,x




∑

x∈[X]

αx−1s ZBl,x




︸ ︷︷ ︸
Γ4

+M̃s (4.33)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′
Pl,k
s Ql,k

s

+
∑

l∈[`]

∑

k,k′∈[Kc]
k 6=k′


 ∏

k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)R
′


Pl,k

s Ql,k′
s

︸ ︷︷ ︸
Γ1

+ Γ2 + Γ3 + Γ4 + M̃s. (4.34)

Consider the first term in (4.34). For each l ∈ [`], k ∈ [Kc], we have

∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′
Pl,k
s Ql,k

s

=

∏
k′∈[Kc]\{k}

(
(fl,k − αs) + (fl,k′ − fl,k)

)R′

(fl,k − αs)R′
Pl,k
s Ql,k

s (4.35)

=
Ψl,k(fl,k − αs)
(fl,k − αs)R′

Pl,k
s Ql,k

s (4.36)

=

(
cl,k,0

(fl,k − αs)R′
+

cl,k,1
(fl,k − αs)R′−1

+ · · ·+ cl,k,R′−1
fl,k − αs

)
Pl,k
s Ql,k

s
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+



R′(Kc−1)∑

i=R′

cl,k,i(fl,k − αs)i−R
′


Pl,k

s Ql,k
s

︸ ︷︷ ︸
Γ5

, (4.37)

where (4.36) results from the definition of Ψl,k(·) as in (4.24) and in (4.37) the polynomial

Ψl,k(fl,k − αs) is rewritten in terms of its coefficients.

By the construction of Entangled Polynomial code (4.25) (4.26), the product Pl,k
s Ql,k

s can be writ-

ten as weighted sums of the terms 1, (fl,k − αs), · · · , (fl,k − αs)R′+p−2, i.e.,

Pl,k
s Ql,k

s =

R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i, (4.38)

where Cl,k
1 ,C

l,k
2 , · · · ,Cl,k

R′+p−1 are various linear combinations of products of blocks of Al,k and

blocks of Bl,k. Consider the first term in (4.37).

(
cl,k,0

(fl,k − αs)R′
+ · · ·+ cl,k,R′−1

fl,k − αs

)
Pl,k
s Ql,k

s

(4.38)
=

(
cl,k,0

(fl,k − αs)R′
+ · · ·+ cl,k,R′−1

fl,k − αs

) R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i (4.39)

=
R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i

+

p−2∑

i=0

(fl,k − αs)i
(

R′+i′∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1

)

︸ ︷︷ ︸
Γ6

+

R′+p−3∑

i=p−1

(fl,k − αs)i
(
R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1

)

︸ ︷︷ ︸
Γ7

. (4.40)

Note that if Kc = 1, ∀i 6= 0, cl,k,i = 0, then Γ5 and Γ7 are zero polynomials. Now let us consider
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the degree with respect to αs of Γ1, · · · ,Γ7.

degαs (Γ1) =





R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
,

degαs (Γ2) = R′(Kc − 1) + pm+X − 2,

degαs (Γ3) = R′(Kc − 1) + pmn− pm+ p+X − 2,

degαs (Γ4) = R′Kc + 2X − 2, degαs (Γ6) = p− 2,

degαs (Γ5) =





R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
,

degαs (Γ7) =





R′ + p− 3, if Kc > 1

−1, otherwise
.

Recall X, p,m, n,Kc are positive integers. If Kc > 1, it is easy to see that R′Kc + 2X − 2 is the

largest. If Kc = 1, R′ = pmn ≥ p > p − 2, R′Kc + 2X − 2 is also the largest. Therefore the

sum of Γ1, · · · ,Γ7 can be expanded into weighted sums of the terms 1, αs, · · · , αR′Kc+2X−2
s . Note

that the weights of terms αR
′(Kc−1)+X+DE+1

s , · · · , αR′Kc+2X−2
s are functions of ZA,ZB. Ys can be

rewritten as

Ys =
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i
+

R′Kc+2X−1∑

x=1

αx−1s Ix + M̃s (4.41)

(4.29)
=

∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i

+
R′Kc+2X−1∑

x=1

αx−1s Ix +

R′(Kc−1)+X+DE∑

x=1

αx−1s Z′x

+
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i
(4.42)
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=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′

(
Cl,k
i′+1 + Z′′l,k,i′+1

)

(fl,k − αs)R′−i

+

R′(Kc−1)+X+DE∑

x=1

αx−1s (Ix + Z′x) +
R′Kc+2X−1∑

x=R′(Kc−1)+X+DE+1

αx−1s Ix (4.43)

=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′D

l,k
i′+1

(fl,k − αs)R′−i
+

∑

x∈[R′Kc+2X−1]

αx−1s Jx, (4.44)

where Dl,k
i = Cl,k

i + Z′′l,k,i, l ∈ [`], k ∈ [Kc], i ∈ [R′], Jx = Ix + Z′x, x ∈ [R′(Kc − 1) +X +DE]

and Jx = Ix, x ∈ [R′(Kc− 1) +X +DE + 1 : R′Kc + 2X − 1]. In the matrix form, answers from
any R = R′Kc + 2X − 1 + R′L = pmn(` + 1)Kc + 2X − 1 servers, whose indices are denoted
as s1, s2, · · · , sR, can be written as (4.45)



Ys1

Ys2

...

YsR


=



1

(f1,1−αs1
)R

′ · · · 1
f1,1−αs1

· · · 1

(f`,Kc−αs1
)R

′ · · · 1
f`,Kc−αs1

1 · · · αR
′Kc+2X−2

s1

1

(f1,1−αs2
)R

′ · · · 1
f1,1−αs2

· · · 1

(f`,Kc−αs2
)R

′ · · · 1
f`,Kc−αs2

1 · · · αR
′Kc+2X−2

s2

...
...

...
...

...
...

...
...

...
...

1

(f1,1−αsR
)R

′ · · · 1
f1,1−αsR

· · · 1

(f`,Kc−αsR
)R

′ · · · 1
f`,Kc−αsR

1 · · · αR
′Kc+2X−2

sR


︸ ︷︷ ︸

V̂`,Kc,R′,X,R



T(c1,1,0, · · · , c1,1,R′−1)

. . .

T(c`,Kc,0, · · · , c`,Kc,R′−1)

IR−R′L


︸ ︷︷ ︸

V̂′
`,Kc,R′,X,R

⊗Iλ/m



D1,1
1

...

D1,1
R′

...

D`,Kc
1

...

D`,Kc
R′

J1

...

JR′Kc+2X−1



. (4.45)

Since f1,1, f1,2, · · · , f`,Kc are distinct, for all l ∈ [`], k ∈ [Kc], cl,k,0 =
∏

k′∈[Kc]\{k}(fl,k′ −

fl,k)
R′ are non-zero. Hence, the lower triangular toeplitz matrices T(c1,1,0, · · · , c1,1,R′−1), · · · ,

T(c`,Kc,0, · · · , c`,Kc,R′−1) are non-singular, and the block diagonal matrix V̂′`,Kc,R′,X,R is invertible.

Guaranteed by Lemma 4.1 and the fact that the Kronecker product of non-singular matrices is non-

singular, the matrix (V̂`,Kc,R′,X,RV̂′`,Kc,R′,X,R)⊗ Iλ/m is invertible. Therefore, the master is able to
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recover
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

by inverting the matrix. Note that Z′′l,k,i = 0, l ∈ [`], k ∈ [Kc], i ∈ E ,

therefore
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

=
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈E

. The desired products (A(l)B(l))l∈[L] are re-

coverable from
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

, guaranteed by the correctness of Entangled Polynomial code

[128]. This completes the proof of recovery threshold R = pmn(`+ 1)Kc + 2X − 1.

Consider the strong security property. According to the construction, M1 = 0, Ms = M̃s, s ∈

[S] \ {1}, andM = {M̃s | s ∈ [S] \ {1}}. Since M̃s is a function of Zserver,

I
(
A,B, Ã[S], B̃[S];M) ≤ I(A,B, Ã[S], B̃[S];Zserver

)
= 0.

Strong security is satisfied. Security is guaranteed because ∀X ⊂ [S], |X |= X ,

I
(
A,B; ÃX , B̃X ,MX

)

= I
(
A,B;MX ) + I(A,B; ÃX , B̃X | MX

)
(4.46)

= I (A,B;MX ) + I
(
A,B; ÃX , B̃X

)
= 0, (4.47)

where (4.47) is due to (4.27), (4.28) and the facts that each share is encoded with (X,S) Reed-

Solomon code with uniformly and independently distributed noise.

Consider the privacy property,

I (Y1,Y2, · · · ,YS ; A,B | AB)

= I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1]; A,B | AB

)
(4.48)

= I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

; A,B | AB

)

+ I

(
(Jx)x∈[R′Kc+2X−1]; A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(4.49)

= I

(
(Jx)x∈[R′Kc+2X−1]; A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(4.50)

≤ I
(

(Jx)x∈[R′Kc+2X−1]; A,B,AB,
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(4.51)
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≤ I
(
Zserver1 ,ZA,ZB; A,B,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
= 0, (4.52)

where (4.48) holds because the mapping from
((

Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1]

)
to

(Y1, · · · ,YS) is bijective. Equation (4.50) holds due to (4.28) and the fact
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

are functions of AB.

Consider the communication cost. The source upload cost UA = S
Kcpm

and UB = S
Kcpn

. The server

communication cost CC = S−1
`Kcmn

. Note that the master is able to recover Lmn desired symbols

from R downloaded symbols, the master download cost is D = R
Lmn

= pmn(`+1)Kc+2X−1
`Kcmn

. Thus

the desired costs are achievable.

Now let us consider the computation complexity. Note that the source encoding procedure can be

regarded as products of confluent Cauchy matrices by vectors. So by fast algorithms [87], the en-

coding complexity of (CeA, CeB) =
(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is achievable. For the server

computation complexity, each server multiplies the ` pairs of shares Ãsl , B̃
s
l , l ∈ [`], and returns

the sum of these ` products and structured noise M̃s. With straightforward matrix multiplication

algorithms, each of the ` matrix products has a computation complexity of O
(
λκµ
pmn

)
for a total of

O
(
`λκµ
pmn

)
. The complexity of summation over the products and noise is O

(
`λµ
mn

)
. To construct the

noise, one server needs to encode the noise, whose complexity is Õ
(
λµS log2 S

mn

)
by fast algorithms

[87]. Normalized by the number of servers, it is Õ
(
λµ log2 S
mn

)
. Considering these 3 procedures,

upon normalization by L = `Kc, it yields a complexity ofO
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+Õ

(
λµ log2 S
`Kcmn

)

per server. The master decoding complexity is inherited from that of GCSA codes [55], which is

at most Õ(λµp log2R). This completes the proof of Theorem 4.1.

REMARK 4.3. When L = ` = Kc = 1, S = R, by setting f1,1 = 0, our construction of shares of

Ãs and B̃s essentially recovers the construction of shares in [83].
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4.6 Discussion and Conclusion

In this paper, the class of GCSA codes is expanded by including noise-alignment, so that the

resulting GCSA-NA code is a solution for secure coded multi-party computation of massive matrix

multiplication. For two sources and matrix multiplication, GCSA-NA strictly generalizes PS [83]

and outperforms it in several key aspects. This construction also settles the asymptotic capacity of

symmetric X-secure T -private information retrieval. The idea of noise-alignment can be applied

to construct a scheme for N sources based on N -CSA codes, and be combined with Strassen’s

construction. As open problems, exploring the optimal amount of randomness and finding the

communication efficient schemes for arbitrary polynomial are interesting directions.

Since Strassen’s algorithm [99] is an important fast matrix multiplication approach, it is interesting

to show noise alignment can be combined with it for secure multi-party matrix multiplication.

Consider an example with two 2 × 2 block matrices A,B and X = 1. It can be shown that the

general recursive Strassen’s algorithm also works similarly. The desired product is denoted by

C =




C1,1 C1,2

C2,1 C2,2


. The Strassen’s constuction constructs 14 matrices Pi,Qi, i ∈ [7] (Pi only

depends on A and Qi only depends on B) and




C1,1

C1,2

C2,1

C2,2




=




0 −1 0 1 1 1 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

1 0 −1 0 1 0 −1







P1Q1

P2Q2

...

P7Q7.



. (4.53)

This is the basic Strassen algorithm. Now let us see how we apply CSA and noise align-

ment to it. Each share is constructed based on CSA code principles with noise, i.e., Ã =

∆
(∑

i∈[7]
Pi
fi−α + ZA

)
, B̃ =

∑
i∈[7]

Qi

fi−α + ZB, ÃB̃ =
∑

i∈[7]
ci

fi−αPiQi +
∑7

i=0 α
iIi.

If the servers directly return ÃB̃ to the master, additional information about the input may be

leaked due to interference terms P1Q1, · · · ,P7Q7 and
∑6

i=0 α
iIi. We secure the scheme by

105



the addition of noise. The idea is that we want the master to decode T1, · · · ,T7 instead of

P1Q1, · · · ,P7Q7, such that

H(C | T1, · · · ,T7) = I(A,B; T1, · · · ,T7 | C) = 0. (4.54)

T1, · · · ,Tv are constructed as follows.

T1 = P1Q1 − Z1 − Z2 + Z3, T2 = P2Q2 − Z1 + Z2 − Z3,

T3 = P3Q3 − Z1, T4 = P4Q4 + Z1, T5 = P5Q5 + Z2,

T6 = P6Q6 − Z3, T7 = P7Q7 + Z3,

where Z1,Z2,Z3 are i.i.d. uniform noise matrices. To align the noise, we construct Z̃,

Z̃ =

(
− c1
f1 − α

− c2
f2 − α

− c3
f3 − α

+
c4

f4 − α

)
Z1

+

(
− c1
f1 − α

+
c2

f2 − α
+

c5
f5 − α

)
Z2

+

(
c1

f1 − α
− c2
f2 − α

− c6
f6 − α

+
c7

f7 − α

)
Z3 +

6∑

i=0

αiZi+4,

where Z4, · · · ,Z10 are i.i.d. uniform noise matrices. The answer returned by each server to the

master is ÃB̃ + Z̃. The correctness and privacy are easily proved.
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Chapter 5

Flexible Distributed Matrix Multiplication

5.1 Introduction

Distributed matrix multiplication has received wide interest because of the huge amount of data

computation required by many popular applications like federated learning, cloud computing, and

the Internet of things. In particular, the multiplication of two massive input matrices A ∈ Fλ×κ and

B ∈ Fκ×µ, where F is some finite field is considered. Each matrix is encoded into N shares and

distributed to N servers. Each server performs computation on its own shares and sends the results

to the central computational node, e.g., the cloud. After collecting enough results, the desired

product AB can be calculated. However, stragglers (servers that fail to respond or respond after

the the reconstruction is executed) are inevitable in distributed systems, due to various reasons

[3, 26] including network latency, resource contention, workload imbalance, failures of hardware

or software, etc. To reduce the overall system latency caused by stragglers, distributed matrix

computing schemes with straggler tolerance are provided in [1, 4, 17, 18, 27, 28, 29, 30, 31, 44,

53, 54, 55, 62, 67, 68, 70, 71, 75, 79, 90, 93, 95, 98, 100, 115, 116, 125, 126, 127, 128] with a

predetermined recovery threshold R such that the final product can be obtained using computation
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results from anyR out ofN servers. Among the state-of-the-art schemes, some are based on matrix

partitioning such as Polynomial codes [127], MatDot codes and PolyDot codes [30], Generalized

PolyDot codes [27] and Entangled Polynomial (EP) codes [128], and others are based on batch

processing such as Lagrange Coded Computing [125], Cross Subspace Alignment (CSA) codes

and Generalized Cross Subspace Alignment (GCSA) codes [55].

The above literature assumes there are a fixed numberN−R of stragglers. However, the number of

stragglers is unpredictable in practical systems. When the number of stragglers is smaller thanN−

R, each non-straggler server still needs to do the same amount of computation as if there areN−R

stragglers and the central node still only uses the results from R servers. A significant amount of

computation power is wasted. To handle this situation, a setting in which the number of stragglers

is not known a priori has been considered in [2, 11, 13, 14, 24, 25, 33, 36, 45, 46, 65, 66, 91] and

schemes that can cope with such a setting have been designed. The underlying idea is to assign a

sequence of small tasks to each server instead of assigning a single large task. Therefore, besides

the scenario that the fastest R servers finish all their tasks, there are other scenarios that make

the computation complete. References [2, 36] focus on the task scheduling for general distributed

computing. The matrix-vector multiplication setting is considered in [11, 14, 25, 91]. In these

works, only the input matrix is partitioned. References [13, 24, 33, 45, 46, 65] consider matrix-

matrix multiplication, but they can only handle a special partitioning, i.e., A and B are row-wisely

and column-wisely split, respectively, or only A is row-wisely split. In [66], the authors propose 3

hierarchical schemes for matrix multiplication to leverage partial stragglers. The main idea is that

the task is first divided into several small subtasks, i.e., the multiplication of several pairs of small

matrices, and each subtask is coded separately with existing schemes.

Arbitrary partitioning of input matrices is important in massive matrix multiplication since it en-

ables different utilization of system resources, e.g., the required amount of storage at each server

and the amount of communication from servers to the central node. When the number of stragglers

is fixed, many codes such as PolyDot codes [30], EP codes [128] and GCSA codes [55] provide
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elegant solutions for arbitrary partitioning by encoding the input matrix blocks into a carefully

designed polynomial. In particular, EP codes effectively align the servers’ computation with the

terms that the central node needs and achieve the optimal recovery threshold among all linear

coding strategies in some cases.

A naive solution to achieve flexibility for distributed matrix multiplication with arbitrary partition-

ing is simply applying a fixed EP code with a recovery threshold of PR, where each server gets P

pairs of shares instead of one pair of shares. The central node can calculate the final results with

any PR out of the PN computing results. Thus, each server only needs to compute RP/N results

when there is no straggler, and in general, the number of results computed in each server can be

adjusted based on the number of stragglers. However, by doing so, the computation needs to be

done in a field with a minimum size of PN and operations over a larger field result in a much

bigger delay [40].

In this chapter, we present a flexible coding scheme for distributed matrix multiplication that al-

lows a flexible number of stragglers and arbitrary matrix partitioning while only requiring a much

smaller field size. The main idea is that non-straggler servers can finish more tasks to compensate

for the effect of the stragglers without knowing the stragglers a priori. Specifically, the computation

is encoded into several tasks for each server, and each server keeps calculating and sending results

to the central node until enough results are obtained. Enough results can be either a larger number

of servers with a smaller amount of completed computation by each server or a smaller number of

servers with a larger amount of completed computation by each server. Therefore, the number of

available servers is flexible and the number of required tasks is adjusted to the number of available

servers. Our scheme is different from those that leverage partial stragglers [24, 25, 33, 65, 66, 91].

In our construction, the computation load (the number of multiplication operations) of each non-

straggler server is the same and the computation by stragglers is neglected, while in schemes with

partial stragglers, the computation load varies in different servers including stragglers.

The main contributions of the chapter are as follows. We present a coding framework of flexible
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distributed matrix multiplication schemes, and one-round and multi-round communication models.

A construction with multiple layers of computation tasks is proposed, which only requires a field

size of less than 2N and the computation load of each server is reduced significantly when there are

fewer stragglers than N −R. We also demonstrate the optimization of the parameters to obtain the

lowest computation load. We show that the two-layer construction outperforms the fixed scheme

under the one-round model as long as the server storage is above a threshold, and the maximum

number of layers is preferred under the multi-round model.

The rest of the chapter is organized as follows. Section 5.2 presents the problem statement. In

Section 5.3, we present our construction and its performance. The choice of parameters to optimize

the computation load given the storage capacity is discussed in Section 5.4. Section 5.5 concludes

the chapter.

Notation: We use calligraphic characters to denote sets. For positive integer N , [N ] stands for the

set {1, 2, . . . , N}. For a matrix M , |M | denotes its number of entries. For a set of matricesM,

|M| represents the sum of the number of entries in all its matrices. When M is partitioned into

sub-block matrices, M(u,v) denotes the block in the u-th row and the v-th column.

5.2 Problem Statement

We consider a problem of matrix multiplication (see Fig. 5.1) with two input matrices A ∈ Fλ×κ

and B ∈ Fκ×µ, for some integers λ, κ, µ and a field F. We are interested in computing the product

Γ = AB in a distributed computing environment with 2 sources, a central node, and N servers.

Sources 1 and 2 hold matricesA andB, respectively. It is assumed that there are up toN−R strag-

glers among the servers. In non-flexible distributed matrix multiplication, R is called the recovery

threshold. The shares (coded matrix sets) Ãi and B̃i are generated by sources for Server i, i ∈ [N ].

Each share consists of some coded matrices, denoted by
{
Ãi,1, · · · , Ãi,γ̃

}
, or

{
B̃i,1, · · · , B̃i,γ̃

}
,
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Source 1 A Source 2B

Server 1 Server 2 · · · Server N

ÃN,1

ÃN,2
· · ·

Ã1,1

Ã1,2
· · ·

Ã2,1

Ã2,2
· · ·

B̃1,1

B̃1,2

· · ·

B̃2,1

B̃2,2

· · ·

B̃N,1

B̃N,2

· · ·

Central
node

Γ̃1,1

Γ̃1,2

· · ·

Γ̃N,1

Γ̃N,2

· · ·

Γ = dK,[j]

(
Γ̃K,[j]

)
∀K, R ≤ |K| ≤ N, j = γ∗

Figure 5.1: The flexible distributed matrix multiplication problem.

where γ̃ is a function of N and R. For i ∈ [N ], the shares and the encoding functions are

Ãi =
{
Ãi,j | j ∈ [γ̃]

}
= ui(A), (5.1)

B̃i =
{
B̃i,j | j ∈ [γ̃]

}
= vi(B). (5.2)

Then, Ãi and B̃i are sent to Server i from the sources. Server i sequentially computes γ̃ tasks in

order:

Γ̃i,j = Ãi,j · B̃i,j, j ∈ [γ̃], (5.3)

and sends Γ̃i,j to the central node once its computation is finished. Due to the sequential processing

nature of the servers, the central node receives Γ̃i,j1 before Γ̃i,j2 for ∀i ∈ [N ], j1 < j2. Denote

Γ̃i,[j] =
{

Γ̃i,t | t ∈ [j]
}

and Γ̃K,[j] =
{

Γ̃i,[j] | i ∈ K
}
,∀K ⊂ [N ].

We require that the central node be able to decode the desired product Γ from arbitrary R̂ ≥

R servers, where each server calculates γ∗ (a function of R̂) tasks. Equivalently, the decoding

function dK,[j] of the central node for recovering Γ satisfies

Γ = dK,[j]

(
Γ̃K,[j]

)
,∀K, R ≤ |K|= R̂ ≤ N, j = γ∗. (5.4)
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The function set {ui, vi, dK,[j] | 1 ≤ i ≤ N,R ≤ |K|= R̂ ≤ N, j = γ∗} is called the flexible

constructions for distributed matrix multiplication.

In other words, the sources send coded matrices to each server. Each server keeps calculating and

sending results to the central node until it obtains enough results – when the quickest R̂ servers

complete the first γ∗ tasks. The remaining servers are viewed as stragglers and the computation

results from stragglers are ignored.

In this chapter, we consider two communication models: the one-round communication model and

the multi-round communication model. For the one-round communication model, the sources send

all γ̃ coded matrices to the server at one time. After that there are no communications between

sources and servers. For the multi-round communication model, first, the sources send one pair

of coded matrices to the servers. Once a server finishes its tasks, it will ask the sources to send

another pair of coded matrices. It is not necessary for the sources to know which servers are the

stragglers. This procedure lasts until the central node obtains enough results. Note that there are

no communications among servers in either models.

The computation load L is defined as the number of multiplication operations per server. More-

over, each server has a storage capacity C 1. At any time, any server cannot store more than

C. Specifically, for the one-round communication model, maxi∈[N ]

(∣∣∣Ãi
∣∣∣+
∣∣∣B̃i
∣∣∣
)
≤ C. For the

multi-round communication model, maxi∈[N ],j∈[γ̃]

(∣∣∣Ãi,j
∣∣∣+
∣∣∣B̃i,j

∣∣∣
)
≤ C. This is because once a

server finishes a task and sends the result to the central node, it can refresh the storage and delete

the coded matrices related to this task. In general, the storage constraint is stricter in the one-round

communication model. We want to find flexible constructions with the storage capacity C and the

computation load L at each server as small as possible.

1The maximum storage size C is usually smaller than |A|+|B|, otherwise the sources can send A and B to the
servers.
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5.3 Construction

In this section, we present our flexible constructions. The scheme is based on EP code [128] and the

computation tasks are divided into several layers to provide flexibility. We start with a motivating

example. The general construction and its storage and computation load are presented afterwards.

EXAMPLE 5.1. Consider the matrix multiplication of A and B, for A ∈ Fλ×κ, B ∈ Fκ×µ, using

N = 5 servers with at most N − R = 2 stragglers. Suppose A is column-wisely partitioned as

A = [A1, A2], each submatrix is of size λ × κ
2
, and B is row-wisely partitioned as B =



B1

B2


,

each submatrix is of size κ
2
× µ. The central node requires AB = A1B1 + A2B2. Applying the

EP code, Server i, i ∈ [5] receives coded matrices A1 + αiA2 and αiB1 + B2, for αi ∈ F, and

calculates

(A1 + αiA2) · (αiB1 +B2) (5.5)

=A1B2 + αi(A1B1 + A2B2) + α2
iA2B1,

which is a degree 2 polynomial with respect to αi. Thus, A1B1 + A2B2 can be calculated by 3

distinct evaluations from {αi | i ∈ [5]} using Lagrange interpolation. The total computation load

of directly multiplying A and B is L = λκµ, while using the EP code the computation load of each

server is L/2. However, when there is no straggler, the computation of 2 servers are wasted.

Alternatively, we can use a flexible scheme to calculate AB, such that any R̂ available servers

can complete the computation, 3 = R ≤ R̂ ≤ N = 5. First, we partition the matrices and get

A = [A1, A2, A3], each submatrix is of size λ × κ
3
, and B = [BT

1 , B
T
2 , B

T
3 ]T , each submatrix is of

size κ
3
× µ. The central node requires AB = A1B1 + A2B2 + A3B3. Let {αi|i ∈ [7]} be distinct

elements in F. The calculation will be divided into 2 layers.
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Layer 1: Server i, i ∈ [5], calculates γ1 = 1 task

Γi,1 =(A1 + αiA2 + α2
iA3) · (α2

iB1 + αiB2 +B3)

=A1B3 + αi(A2B3 + A1B2) + α2
i (A1B1 + A2B2 + A3B3)

+ α3
i (A2B1 + A3B2) + α4

iA3B1. (5.6)

It is a degree 4 polynomial with respect to αi and the final product can be obtained from all 5

servers. If there is no straggler, we stop here. In this layer, matrices A and B are divided into

smaller pieces compared to the fixed EP code and the computation load of each server is L/3. If

there are stragglers, the servers continue the calculation in Layer 2.

Layer 2: We set Aαi = A1 + αiA2 + α2
iA3, Bαi = α2

iB1 + αiB2 + B3, i ∈ {6, 7} and partition

them into 2 parts,

Aαi = [Aαi,1, Aαi,2], Bαi =



Bαi,1

Bαi,2


 . (5.7)

Server i has γ2 = 2 computation tasks:

Γi,2 = (Aα6,1 + αiAα6,2) · (αiBα6,1 +Bα6,2), (5.8)

Γi,3 = (Aα7,1 + αiAα7,2) · (αiBα7,1 +Bα7,2). (5.9)

The detailed calculation of each server is shown in Table 5.1.

Since Layer 2 has a similar structure as (5.5), from any 3 of the servers, we can get Aα6 · Bα6

and/or Aα7 ·Bα7 . If there is one straggler, the central node obtains Aα6 ·Bα6 from Layer 2, which

causes the additional computation load of L/6 in a server. If there are 2 stragglers, the central

node obtains both Aα6 · Bα6 and Aα7 · Bα7 , which causes the computation load of L/3 in Layer 2

for each server.
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In this example, there are two recovery thresholds R1 = 5 and R2 = 3, corresponding to two

layers, respectively. We term the choice of per-layer recovery thresholds as recovery profile. There

are totally γ̃ = γ1 + γ2 = 3 coded matrices in a share where γ1 coded matrices correspond to

Layer 1 and γ2 coded matrices correspond to Layer 2. Specifically, ∀i ∈ [N ], the shares Ãi and B̃i
contain

Ãi,1 = Aαi , Ãi,2 = Aα6,1 + αiAα6,2, Ãi,3 = Aα7,1 + αiAα7,2, (5.10)

B̃i,1 = Bαi , B̃i,2 = Bα6,1 + αiBα6,2, B̃i,3 = Bα7,1 + αiBα7,2, (5.11)

respectively. Each server needs to store all the above 6 coded matrices under the one-round com-

munication model, but only 2 coded matrices at a time under the multi-round communication. Each

server computes up to γ̃ = 3 tasks in order, independent of the progress of the other servers.

Table 5.1: Calculation tasks in each server for Example 1.

Server 1 Server 2 Server 3 Server 4 Server 5
Layer 1 Aα1 ·Bα1 Aα2 ·Bα2 Aα3 ·Bα3 Aα4 ·Bα4 Aα5 ·Bα5

Layer 2

(Aα6,1 + α1Aα6,2)
·(α1Bα6,1 +Bα6,2),
(Aα7,1 + α1Aα7,2)
·(α1Bα7,1 +Bα7,2)

(Aα6,1 + α2Aα6,2)
·(α2Bα6,1 +Bα6,2),
(Aα7,1 + α2Aα7,2)
·(α2Bα7,1 +Bα7,2)

(Aα6,1 + α3Aα6,2)
·(α3Bα6,1 +Bα6,2),
(Aα7,1 + α3Aα7,2)
·(α3Bα7,1 +Bα7,2)

(Aα6,1 + α4Aα6,2)
·(α4Bα6,1 +Bα6,2),
(Aα7,1 + α4Aα7,2)
·(α4Bα7,1 +Bα7,2)

(Aα6,1 + α5Aα6,2)
·(α5Bα6,1 +Bα6,2),
(Aα7,1 + α5Aα7,2)
·(α5Bα7,1 +Bα7,2)

For Example 5.1, the computation load of each server is L/3, L/2, 2L/3 for the cases of no strag-

glers, 1 straggler and 2 stragglers, respectively. When there is no straggler (which is more likely

in most practical systems), the computation load of each server is reduced 33%, from L/2 to L/3.

The resulting computation latency under an exponential model is plotted in Fig. 5.2.

In this example, if there is only one communication round from the sources to the servers, the

storage size required for each server is 2λκ
3

+ 2κµ
3

for our flexible construction and λκ
2

+ κµ
2

for the

EP code. We will discuss how to partition the matrices to obtain an advantageous computation

load while maintaining the same storage size in Section 5.4.

Next, we present the general definitions and constructions of our flexible schemes. The key com-

ponent is to generate extra parities during the encoding in each layer that will correspond to extra
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Figure 5.2: CDF of computation latency for flexible construction and EP code in Example 1 of
Section 5.3. N = R1 = 5, R2 = R = 3. We assume λ = κ = µ = 6U , for some integer U , and the
computation delay for multiplication of two U × U matrices in each server satisfy the exponential
distribution with parameter 0.1. The latency of the EP code is the delay of the 3rd quickest server,
and the slowest 2 servers are viewed as stragglers. For the flexible construction, the computation is
completed in the cases of 5 servers complete 1 task (no straggler), or 4 servers complete 2 tasks (1
straggler), or 3 servers complete 3 tasks (2 stragglers). The overall latency is the smallest latency
of these 3 cases. The expected latency is 10.79 for EP code, and 8.20 for the flexible construction.
Hence we save 24%.

tasks to be completed by higher layers to compensate for more stragglers.

Define the recovery profile as a tuple of integers (R1, R2, · · · , Ra), where N ≥ R1 > R2 > ... >

Ra = R and a is some integer termed the number of layers. Denote

γj =





1, j = 1,

(Rj−1 −Rj)
j−1∑
J=1

γJ , 2 ≤ j ≤ a,

(5.12)

which will be shown to be the number of tasks in each layer. For two matrices Φ,Ψ and partition

parameters pj,mj, nj , define functions fj, gj, j ∈ [a], as

fj(αi; Φ) =

mj∑

u=1

pj∑

v=1

Φ(u,v)α
v−1+pj(u−1)
i , (5.13)
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gj(αi; Ψ) =

pj∑

u=1

nj∑

v=1

Ψ(u,v)α
pj−u+pjmj(v−1)
i , (5.14)

where

Φ =




Φ(1,1) · · · Φ(1,pj)

Φ(2,1) · · · Φ(2,pj)

...
...

...

Φ(mj ,1) · · · Φ(mj ,pj)



,Ψ =




Ψ(1,1) · · · Ψ(1,nj)

Ψ(2,1) · · · Ψ(2,nj)

...
...

...

Ψ(pj ,1) · · · Ψ(pj ,nj)



. (5.15)

Note that (5.13) and (5.14) are the encoding functions of the EP codes [128] used in Layer j.

CONSTRUCTION 5.1. Given recovery profile (R1, R2, · · · , Ra) and partitioning parameters

pj,mj, nj such that Rj = pjmjnj + pj − 1, j ∈ [a], the construction consists of a layers. Fix

N +R1 −Ra distinct elements αi, i ∈ [N +R1 −Ra], in a finite field F.

In Layer 1, set A(1,1) = A and B(1,1) = B. A pair of coded matrices f1
(
αt;A

(1,1)
)

and

g1
(
αt;B

(1,1)
)

are generated for Server t, t ∈ [N ]. Moreover, extra R1 − Ra pairs of parities

will be generated, i.e., f1
(
αN+t;A

(1,1)
)

and g1
(
αN+t;B

(1,1)
)
, t ∈ [R1−Ra]. They will be used in

higher layers.

In Layer j, 2 ≤ j ≤ a, the number of pairs of coded matrices is γj given by (5.12). For each

δj ∈ [γj], a pair of coded matrices fj
(
αt;A

(j,δj)
)

and gj
(
αt;B

(j,δj)
)

are generated for Server

t, t ∈ [N ]. Besides, extra parities fj(αN+t;A
(j,δj)) and fj(αN+t;B

(j,δj)), t ∈ [Rj − Ra], are

produced for higher layers. Here, A(j,δj) and B(j,δj), δj ∈ [γj], are from the extra parities

fJ(αN+t;A
(J,δJ )), gJ(αN+t;B

(J,δJ )) in Layer J for all J ∈ [j − 1] and

Rj −Ra + 1 ≤ t ≤ Rj−1 −Ra, δJ ∈ [γJ ]. (5.16)
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Specifically, given j and δj , A(j,δj) and B(j,δj) are set as

A(j,δj) = fJ
(
αN+t : A(J,δJ )

)
, (5.17)

B(j,δj) = gJ
(
αN+t : B(J,δJ )

)
, (5.18)

where

t =

⌊
δj
Rj−1 −Rj

γj

⌋
+Rj −Ra + 1, (5.19)

and J is the integer satisfying

J−1∑

x=1

γx < δj mod
γj

(Rj−1 −Rj)
≤

J∑

x=1

γx (5.20)

and

δJ = δj mod
γj

(Rj−1 −Rj)
−

J−1∑

x=1

γx. (5.21)

Intuitively, the t-th extra parities in all previous layers are encoded in Layer j, for all t satisfying

(5.16). Equations (5.19), (5.20), and (5.21) simply mean that these extra parities are ordered from

left to right and from top to bottom (see Fig. 5.3 for an example).

Denote Γj,δj(αi) as the δj-th task in Layer j calculated in Server i, for i ∈ [N ], j ∈ [a], δj ∈ [γj],

where

Γj,δj(αi) = fj
(
αi;A

(j,δj)
)
· gj
(
αi;B

(j,δj)
)
, (5.22)

The calculation tasks of the construction are shown in Table 5.2.
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Note that there are in total γ̃ =
∑a

j=1 γj tasks. The shares and the tasks are

Ãi = {A(j,δj) | j ∈ [a], δj ∈ [γj]}, (5.23)

B̃i = {B(j,δj) | j ∈ [a], δj ∈ [γj]}, (5.24)

Γ̃
i,
j−1∑
x=1

γx+δj

= Γj,δj(αi). (5.25)

Table 5.2: Calculation tasks in each server for the multiple-layer construction, where δj ranges
between 1 and γj as defined in (5.12), j ∈ [a].

Server 1 . . . Server N Extra parity 1 . . . . . . Extra parity R1 −Ra
Layer 1 Γ1,1(α1) . . . Γ1,1(αN ) Γ1,1(αN+1) . . . . . . Γ1,1(αN+R1−Ra

)
Layer 2 Γ2,δ2(α1) . . . Γ2,δ2(αN ) Γ2,δ2(αN+1) . . . Γ2,δ2(αN+R2−Ra

)
...

...
. . .

...
...

...
Layer a Γa,δa(α1) . . . Γa,δa(αN )

EXAMPLE 5.2. An example of a 3-layer construction is shown in Fig. 5.3. We set N = 5, R =

2, (R1, R2, R3) = (5, 3, 2). In Fig. 5.3, we show that the coded matrices transmitted from Source 1

and Source 2 are similar. In Layer 1 (A(1,1) = A), the coded matrices f1(αi;A(1,1)) are transmitted

to Server i, i ∈ [5], and f1(α5+t;A
(1,1)), t ∈ [3] are the extra parities. These parities are used

in Layers 2 and 3. Specifically, A(2,1) = f1(α7;A
(1,1)) and A(2,2) = f1(α8;A

(1,1)) are used in

Layer 2 and A(3,1) = f1(α6;A
(1,1)) is used in Layer 3. In Layer 2, f2(αi;A(2,δ2)), δ2 ∈ [2], i ∈ [5]

are encoded using the above extra parities from Layer 1. The generated extra parities A(3,2) =

f2(α6;A
(2,1)) and A(3,3) = f2(α6;A

(2,2)) are used in Layer 3.

Figure 5.3: Example of coded matrices for 3-layer construction, N = R1 = 5, R2 = 3, R3 = R =
2.
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Theorem 5.1, below, states the performance of the flexible construction in terms of storage and

computation. This result is based on the following decoding strategy: in the presence of R̂ avail-

able servers, Rj ≤ R̂ < Rj−1, all tasks in Layers 1, 2, . . . , j − 1 and some tasks in Layer j are

executed. It should be noted that the sum of storage sizes in all layers corresponds to the one-round

communication model. However, under the multi-round communication model, the server storage

size is only the maximum over the pairs of coded matrices. Since the coded matrix in a layer is en-

coded from sub-matrices in the previous layer, the higher the layer is, the smaller the size becomes.

Hence, the storage size is just that of the first pair of coded matrices.

THEOREM 5.1. In Construction 5.1, assume we have R̂ available servers and R ≤ R̂ ≤ N , we

need

Lflex =





L1, R̂ ≥ R1,

(
1 +

Rj−1−R̂
pjmjnj

) j−1∑
J=1

LJ , Rj ≤ R̂ < Rj−1, j ≥ 2,

(5.26)

computation load at each server to obtain the final result, where

Lj =





λκµ
m1p1n1

, j = 1,

Rj−1−Rj
pjmjnj

j−1∑
J=1

LJ , j ≥ 2,

(5.27)

is the total computation load at each server in Layer j. The server storage size required in Layer

j is

Cj = Cj,A + Cj,B, (5.28)

where

Cj,A =





λκ
p1m1

, j = 1,

Rj−1−Rj
pjmj

j−1∑
J=1

CJ,A, j ≥ 2.

(5.29)
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Cj,B =





κµ
p1n1

, j = 1,

Rj−1−Rj
pjnj

j−1∑
J=1

CJ,B, j ≥ 2.

(5.30)

Proof. In the following, we first prove (5.27). Then, we show that with the computation load in

(5.26), the central node is able to obtain the matrix product. At last, we prove the storage size

required in each layer.

In Layer j = 1, from (5.15), we know that f1(αi;A(1,1)) and f1(αi;B(1,1)) have sizes λ
m1
× κ

p1
and

κ
p1
× µ

n1
, respectively. Thus, the computation load in Layer 1 is

L1 =
λκµ

m1p1n1

. (5.31)

In Layer j, according to (5.15), (5.13), (5.14), and (5.22), the computation load of {Γj,δj(αi) =

fj(αi;A
(j,δj)) · gj(αi;B(j,δj)) : δj ∈ [γj]} is 1/(pjmjnj) fraction of that of X , {A(j,δj) · B(j,δj) :

δj ∈ [γj]}. Moreover, the computation load of Y(J, t) , {fJ(αN+t : A(J,δJ )) · fJ(αN+t : B(J,δJ )) :

δJ ∈ [γJ ]} is equal to the load (per server) at the J-th layer, which is LJ . Based on (5.16), (5.17)

and (5.18), the computation load ofX is equal to the load ofY(J, t) for all J ∈ [j−1], Rj−Ra+1 ≤

t ≤ Rj−1 −Ra, which is (Rj−1 −Rj)
j−1∑
J=1

LJ . Therefore, (5.27) is satisfied.

In the case that the number of available servers R̂ ≥ R1, according to the correctness of EP codes

[128], the required results can be obtained by collecting R1 evaluation points of Γ1,1(αi). Thus,

we only need the computation in Layer 1.

In the case that Rj ≤ R̂ < Rj−1, we first calculate all the tasks in Layers 1 to j − 1,

whose computation load is
j−1∑
J=1

LJ . Then, in Layer j, Server i calculates Rj−1−R̂
Rj−1−Rj γj tasks, i.e.,

Γj,δj(αi), δj = 1, 2, ...,
Rj−1−R̂
Rj−1−Rj γj, i ∈ [N ]. Thus, the total computation is

(
1 +

Rj−1−R̂
pjmjnj

) j−1∑
J=1

LJ .

Claim: RJ evaluations from {ΓJ,δJ (αi), i ∈ [N ]} can be obtained by the above calculations for

J = j, j − 1, . . . , 2, 1.
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We prove it by induction on J . As a consequence, the polynomial ΓJ,δJ (·) is decoded due to the

correctness of EP codes [128]. Hence, the final result can be decoded with J = 1 and (5.26) is

proved.

Base case: In Layer j, since R̂ ≥ Rj , the claim holds trivially.

Induction step: Suppose the claim holds for Layers j, j−1, . . . , J+1. We show that it will hold for

Layer J . Note that J < j. The associated polynomials are decoded in Layers j, j − 1, . . . , J + 1.

Then, from Eqs. (5.16), (5.17) and (5.18), one can calculate ΓJ,δJ (αN+t), for Rj − Ra + 1 ≤

t ≤ Rj−1 − Ra − (R̂ − Rj) from Layer j and RJ ′ − Ra + 1 ≤ t ≤ RJ ′−1 − Ra from Layers

J ′ = j−1, . . . , J+1. In total,RJ−R̂ extra parities are obtained for the polynomial ΓJ,δJ (·). Thus,

together with R̂ available nodes, RJ evaluation points of ΓJ,δJ (·) are obtained, for all δJ ∈ [γJ ].

The proof of the storage size is similar to the proof of (5.27). The proof sketch is as follows.

In Layer 1, the server needs to store f1(αi;A(1,1)), f1(αi;B
(1,1)), i ∈ [N ], then

C1 =
1

p1

(
λκ

m1

+
κµ

n1

)
. (5.32)

In Layer j ≥ 2, from (5.12), (5.17) and (5.18), the γj tasks in Layer j are encoded from the

extra parities in Layers 1 to j − 1. Based on (5.15), (5.13), (5.14), and (5.22), the size of

fj(αi;A
(j,δj)), i ∈ [N ] is pjmj fractions of A(j,δj), and the size of fj(αi;B(j,δj)), i ∈ [N ] is pjnj

fractions of B(j,δj). Thus, (5.29) and (5.30) are obtained.

REMARK 5.1. In Fig. 5.3, partial computation results can be also utilized to accelerate the com-

putation in several cases such that the nodes contribute different number of results depending on

their speed. For example, when Servers 1 and 2 complete their first 4 tasks and Server 3 completes

its first 2 tasks, we are able to obtain f1(αi, A(1,1)) for i = 1, 2, 3, 6, 7, thus obtain the final results.

Similar partial results utilization can be found in our general constructions, but in this chapter we

assume a server is either available or not able to provide any results.
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REMARK 5.2. CSA codes and GCSA codes [55] are designed to handle batch processing of matrix

multiplication, namely, the multiplication of two sequences of matrices. They also provide solutions

for secure distributed computation. Combined with these codes, our construction can be easily

modified to handle batch processing and secure distributed computation.

The following corollary states a special case of the computation load that will be useful in the

optimization discussed in Section 5.4 under the multi-round communication model.

COROLLARY 5.1. In the case of pj = 1, j ≥ 2, we have mjnj = Rj in Construction 5.1. The j-th

layer’s computation load of each server is

Lj =





λκµ
m1p1n1

, j = 1,

R1(Rj−1−Rj)
Rj−1Rj

L1, j ≥ 2,

(5.33)

and the total computation of each server is

Lflex =





L1, R1 ≤ R̂,

R1(Rj+Rj−1−R̂)

Rj−1Rj
L1, Rj ≤ R̂ < Rj−1, j ≥ 2,

(5.34)

where R̂ is the number of non-straggler servers. Specifically, when R̂ = Rj ,

Lflex =
R1

Rj

L1. (5.35)

Proof. We first prove (5.33) by induction.

Base case: When j = 2, we get L2 = R1−R2

R2
L1 from (5.27) and it satisfies (5.33).

Induction step: Suppose L2, ..., Lj satisfy (5.33). From (5.27) and pjmjnj = Rj we know that

Lj =
Rj−1 −Rj

Rj

j−1∑

J=1

LJ . (5.36)
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Then, we have

Lj+1 =
Rj −Rj+1

Rj+1

j−1∑

J=1

LJ +
Rj −Rj+1

Rj+1

Lj (5.37)

=
Rj −Rj+1

Rj+1

Rj

Rj−1 −Rj

Lj +
Rj −Rj+1

Rj+1

Lj

=
Rj−1(Rj −Rj+1)

Rj+1(Rj−1 −Rj)
Lj

=
R1(Rj −Rj+1)

RjRj+1

L1,

which satisfies (5.33).

Then, for the total computation, from (5.26) we can easily check that for Rj ≤ R̂ < Rj−1, j ∈ [a],

we have

Lflex =

(
1 +

Rj−1 − R̂
Rj

)
j−1∑

J=1

LJ (5.38)

=

(
1 +

Rj−1 − R̂
Rj

)
Rj

Rj−1 −Rj

Lj

=
R1(Rj +Rj−1 − R̂)

Rj−1Rj

L1.

The proof is completed.

5.4 Computation Load Optimization

In this section, we discuss how to pick the matrix partition parameters and the recovery profile to

optimize the computation load given the storage capacity. Under the one-round communication

model, we find the optimal parameters for the 2-layer flexible construction and show that when

the storage capacity is above a threshold, the flexible construction outperforms the fixed EP code.

For the multi-round communication model, we show that all layers except the first layer reduce
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to block-wise matrix-vector multiplication, and when the straggler probability is small, the most

number of layers is optimal.

Recall R̂ is the number of non-straggler servers, R ≤ R̂ ≤ N . We consider the expected compu-

tation load over the realizations of R̂. Assume for each instance of computing, R̂ is independent

and identically distributed. Denote qj as the probability of j stragglers in the system. Formally,

qj = P (R̂ = N − j), ∀j ∈ {0, , 1, · · · , N −R}. (5.39)

Here, R is chosen such that the probability of having more than N − R stragglers is negligible.

Therefore, j is assumed to be in the range between 0 and N −R, and

N−R∑

j=0

qj = 1. (5.40)

The expectation of the computation load is

E[Lflex] =
N−R∑

j=0

qjLflex(R̂ = N − j), (5.41)

whereLflex(R̂) is the computation load for R̂ non-straggler servers. The goal is to minimizeE[Lflex]

over the partitioning parameters pj,mj, nj , j ∈ [a] and the recovery profile {R1, · · · , Ra}, given

the recovery threshold Ra = R and the storage constraint C in each server. Although in practical

systems pj,mj, nj, Rj, j ∈ [a] are required to be integers, in this section, we only assume them

as real numbers to simplify the optimization analysis. To find an integer solution (not necessarily

optimal), we pick the parameters close to the optimal real values that satisfy the recovery threshold

and the storage constraint.
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5.4.1 Optimization on Entangled Polynomial codes

As a warm-up, let us start with an EP code with a fixed recovery threshold R, which satisfies

R = m0p0n0 + p0 − 1 according to [128], for some undetermined partition parameters p0,m0, n0.

The computation load of EP codes remains the same if the number of stragglers is no greater than

N −R. According to [128], the computation load and the required storage size are

LEP(R̂) =
λκµ

m0p0n0

, R̂ ≥ R, (5.42)

CEP =
1

p0

(
λκ

m0

+
κµ

n0

)
. (5.43)

Thus, the optimization problem can be formulated as

min
p0,m0,n0

LEP =
λκµ

m0p0n0

,

s.t. R = p0m0n0 + p0 − 1,

λκ

p0m0

+
κµ

p0n0

≤ C.

(5.44)

THEOREM 5.2. The solution of the EP code optimization problem in (5.44) is

L∗EP =
2Cλκµ

C(R + 1) +
√
C2(R + 1)2 − 16λκ2µ

(5.45)

with

p∗0 =
1

2
(R + 1)− 1

2

√
(R + 1)2 − 16

λκ2µ

C2
, (5.46)

and m∗0, n
∗
0 are given by m∗0n

∗
0 = R+1

p∗0
− 1 and λκn∗0 = κµm∗0.
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Proof. Using the threshold constraint

m0n0 =
R + 1

p0
− 1, (5.47)

we have LEP = λκµ
R+1−p0 , which is an increasing function of p0. So, we minimize p0 under the

constraint that

λκn0 + κµm0

R + 1− p0
≤ C. (5.48)

Note that

λκn0 + κµm0 ≥ 2
√
λκ2µm0n0 = 2

√
λκ2µ

R + 1− p0
p0

(5.49)

and it holds with equality if and only if λκn0 = κµm0. Combining (5.48) with (5.49) results in

2

√
λκ2µ

(R + 1− p0)p0
≤ C. (5.50)

Note that 2
√

λκ2µ
(R+1−p0)p0 decreases with p0 because the derivative

d (R + 1− p0)p0
d p0

= R + 1− 2p0 = p0m0n0 − p0 ≥ 0. (5.51)

Therefore, LEP reaches its optimal value when λκn0 = κµm0 and (5.50) holds with equality, i.e.,

p∗0 = 1
2
(R+ 1)− 1

2

√
(R + 1)2 − 16λκ

2µ
C2 . As a result, m∗0, n

∗
0 can be obtained by m∗0n

∗
0 = R+1

p∗0
− 1

and λκn∗0 = κµm∗0. The optimal computation load is

L∗EP =
2Cλκµ

C(R + 1) +
√
C2(R + 1)2 − 16λκ2µ

. (5.52)

The theorem is proved.
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REMARK 5.3. In Theorem 5.2, the storage capacity is required to satisfy

C ≥ 4κ
√
λµ

1 +R
. (5.53)

to have a valid L∗EP in (5.45). In addition, by combining (5.48) and (5.49), we obtain the minimum

storage required as 2
√

λκ2µ
(R+1−p0)p0 in (5.50). Since p0 = R+1

m0n0+1
and m0, n0 are at least 1, we

conclude that (5.53) is the minimum storage constraint requirement to use EP codes for distributed

matrix multiplication.

5.4.2 Optimization for the one-round communication model

Next, we consider the flexible constructions with the one-round communication model. In this

model, all the tasks are sent to the server in one communication round. Thus, the sum of the task

sizes should not exceed the storage constraint. Since the more layers, the larger the total size of

the tasks is, only the 2-layer construction is considered. We first optimize the partition parameters

with predetermined R1, R2 = R. After that, R1 is optimized.

By the expression of the computation load in Theorem 5.1, the expectation of the computation load

in (5.41) becomes

E[Lflex] =

N−R2∑

j=0

qj
λκµ

p1m1n1

+

N−R2∑

j=N−R1+1

qj
λκµ(R1 + j −N)

m1m2p1p2n1n2

. (5.54)

In practical systems, the probability of having many stragglers is usually small. For instance, less

than 110 failures occur over a 3000-node production cluster of Facebook per day [94]. So, we

ignore the second term in (5.54) and use the approximation Lflex = λκµ
p1m1n1

in our optimization
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problem. Combined with (5.28), the optimization problem can be formulated as

min
p1,m1,n1,p2,m2,n2

Lflex =
λκµ

p1m1n1

,

s.t. R1 = p1m1n1 + p1 − 1,

R2 = p2m2n2 + p2 − 1,

1

p1

(
λκ

m1

+
κµ

n1

)
+

(R1 −R2)

p1p2

(
λκ

m1m2

+
κµ

n1n2

)
≤ C.

(5.55)

It should be noted that when R1 = R2 = R, the 2-layer flexible construction reduces to the fixed

EP code and the optimal partition parameters remain the same.

THEOREM 5.3. Fix R1, R2 = R. The solution of the 2-layer flexible construction optimization

(5.55) is

L∗flex =
2C(R2 + 1)λκµ

C(R1 + 1)(R2 + 1) +
√
C2(R1 + 1)2(R2 + 1)2 − 16λκ2µ(2R1 −R2 + 1)2

,

(5.56)

with

p∗1 =
1

2
(R1 + 1)− 1

2

√
(R1 + 1)2 − 16λκ2µ(2R1 −R2 + 1)2

C2(R2 + 1)2
, (5.57)

and m∗1, n
∗
1 are given by m∗1n

∗
1 = R1+1

p∗1
− 1 and λκn∗1 = κµm∗1, and p∗2 = R2+1

2
,m∗2 = 1, n∗2 = 1.

Proof. Using m1n1 = R1+1
p1
− 1, we have Lflex = λκµ

R1+1−p1 , which is an increasing function of p1.

Therefore, to maximize Lflex we need to minimize p1.

Using m1n1 = R1+1
p1
− 1 and m2n2 = R2+1

p2
− 1, similar to (5.48) and (5.49), we have:

C

≥ 1

p1

(
λκ

m1

+
κµ

n1

)
+

(R1 −R2)

p1p2

(
λκ

m1m2

+
κµ

n1n2

)
(5.58)

129



≥2

√
λκ2µ

(R1 + 1− p1)p1
+ 2(R1 −R2)

√
λκ2µ

(R1 + 1− p1)(R2 + 1− p2)p1p2
. (5.59)

Here (5.58) holds with equality when λκn1 = κµm1 and λκn1n2 = κµm1m2 or n2 = m2. Similar

to (5.51), it is easy to show that (5.59) is a decreasing function of p1 and p2. For any fixed p2, to

obtain the minimum p1, we should set (5.59) equal to C. When (5.59) is fixed, p1 is minimized

when p2 reaches its maximum because a bigger p2 results in a smaller p1 when (5.59) is equal to

C. Noticing that p2 = R2+1
m2n2+1

and m2, n2 are at least 1, we set p∗2 = R2+1
2
,m∗2 = 1, n∗2 = 1. The

optimal p∗1 and L∗flex are obtained accordingly.

If R2 is odd, then the choices of p2,m2, n2 in the above theorem are the exact optimal integer

parameters.

REMARK 5.4. In Theorem 5.3, the storage capacity is required to satisfy

C ≥ 4κ
√
λµ(2R1 −R2 + 1)

(1 +R2)(1 +R1)
(5.60)

to have a valid L∗flex in (5.56). In addition, we obtain the minimum storage required in (5.59).

Since p1 = R1+1
m1n1+1

, p2 = R2+1
m2n2+1

, and m1, n1,m2, n2 are at least 1, we conclude that (5.60) is the

minimum storage constraint requirement to use our 2-layer flexible codes for the distributed matrix

multiplication. When R1 = R2, (5.60) is the same as (5.53).

Next, we provide an example for the optimal integer solutions of the partition parameters.

EXAMPLE 5.3. Assume there are N = 8 servers and we need to tolerate N − R = 1 straggler.

λ = κ = µ and the storage size of each server is limited by C = 8
7
λκ. Using the EP code, the

optimal choice of {p0,m0, n0} is {1, 1, 7}, which results in a storage size of 8
7
λκ and a computation

load per server of 1
7
λκµ = 0.143λκµ. Using the 2-layer flexible construction with R1 = 8 and

R2 = 7, the optimal parameters are chosen as p1 = 1,m1 = 2, n1 = 4, p2 = 4,m2 = 1, n2 = 1,

which cost a storage size of 15
16
λκ and a computation load of 1

8
λκµ when there is no straggler, with
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an additional computation load of 1
32
λκµ when there is one straggler. Assuming the probability of

one straggler to be 10%, the average computation load is 0.128λκµ. In this example, we save both

storage size and average computation load while maintaining one straggler tolerance.

Having found the best computation load for a fixed recovery profile as in Theorem 5.2, next, we

discuss the optimization of the recovery profile. Given the straggler tolerance level N − R2, we

just need to optimize R1, such that R2 ≤ R1 ≤ N .

THEOREM 5.4. To minimize the 2-layer computation load L∗flex in (5.56), the optimal R∗1 is

R∗1 =





N, C ≥ 8κ
√
λµ

R2+1
,

min
(
N, C

2(R2+1)2(R2+3)+64λκ2µ(R2−1)
2(64λκ2µ−C2(R2+1)2)

)
, 8κ

R2+1

√
λµ
3
< C < 8κ

√
λµ

R2+1
,

R2, C ≤ 8κ
R2+1

√
λµ
3
.

(5.61)

Proof. The optimal computation given R1 is shown in (5.56). Since the numerator is a constant

not related to R1, we set Y as the denominator and L∗flex has the minimum value when Y reaches

its maximum.

dY

dR1

= C(R2 + 1) +
C2(R2 + 1)2(R1 + 1)− 32λκ2µ(2R1 −R2 + 1)√
C2(R1 + 1)2(R2 + 1)2 − 16λκ2µ(2R1 −R2 + 1)2

. (5.62)

Setting dY
dR1

= 0, we have

(
32λκ2µ(2R1 −R2 + 1)

C(R2 + 1)

)2

= 64λκ2µ(2R1 −R2 + 1)(R1 + 1)− 16λκ2µ(2R1 −R2 + 1)2.

(5.63)

Since R1 ≥ R2, the term λκ2µ(2R1 −R2 + 1) 6= 0 can be cancelled and the solution to the above

equation is

R̂1 ,
C2(R2 + 1)2(R2 + 3) + 64λκ2µ(R2 − 1)

2(64λκ2µ− C2(R2 + 1)2)
. (5.64)
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Let X = C2(R1 + 1)2(R2 + 1)2 − 16λκ2µ(2R1 −R2 + 1)2. We have X ≥ 0 due to the minimum

storage constraint in Remark 5.4. We simplify (5.62) as

dY

dR1

= C(R2 + 1) +
dX
dR1

2
√
X
, (5.65)

where

dX

dR1

= 2(C2(R2 + 1)2 − 64λκ2µ)R1 + 2C2(R2 + 1)2 + 64λκ2µ(R2 − 1) (5.66)

is a linear function of R1 and the constant term 2C2(R2 + 1)2 + 64λκ2µ(R2 − 1) > 0 since R2 is

at least 1.

In the case of C ≥ 8κ
√
λµ

R2+1
, we have

C2(R2 + 1)2 − 64λκ2µ ≥ 0⇒ dX

dR1

> 0⇒ dY

dR1

> 0. (5.67)

Thus, we should pick R∗1 = N .

In the case of C < 8κ
√
λµ

R2+1
, we get

C2(R2 + 1)2 − 64λκ2µ < 0⇒ dX

dR1

is a decreasing linear function. (5.68)

We discuss dY
dR1

when R1 varies between (0, C
2(R2+1)2+32λκ2µ

64λκ2µ−C2(R2+1)2
] and (C

2(R2+1)2+32λκ2µ
64λκ2µ−C2(R2+1)2

,+∞) sepa-

rately. In the first region, we have

R1 ≤
C2(R2 + 1)2 + 32λκ2µ

64λκ2µ− C2(R2 + 1)2
⇒ dX

dR1

≥ 0⇒ dY

dR1

> 0, (5.69)

Y reach its maximum when R1 = C2(R2+1)2+32λκ2µ
64λκ2µ−C2(R2+1)2

. In the second region, we have

R1 >
C2(R2 + 1)2 + 32λκ2µ

64λκ2µ− C2(R2 + 1)2
⇒ dX

dR1

< 0. (5.70)
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Clearly,
dX
dR1

2
√
X

is a decreasing function of R1, because dX
dR1

is a negative decreasing function of R1

by (5.68) and (5.70), and
√
X is a positive decreasing function of R1 by (5.70). Then, with (5.65)

we can conclude that

d2Y

dR2
1

=
d

dX
dR1

2
√
X

dR1

< 0. (5.71)

In addition, we know from (5.64) that R̂1 is located in (C
2(R2+1)2+32λκ2µ

64λκ2µ−C2(R2+1)2
,+∞) when R2 ≥ 2,

and hence is a local maximum. Therefore, combining the 2 ranges of R1, we conclude that Y

reaches its maximum in (5.64). Finally, the proof is completed considering the requirement that

R2 ≤ R1 ≤ N , and the fact that R̂1 ≥ R2 is satisfied when C ≥ 8κ
R2+1

√
λµ
3

.

COROLLARY 5.2. The flexible construction with 2 layers is better than a fixed EP code in terms

of the computation load when the storage constraint C satisfy:

C >
8κ

R2 + 1

√
λµ

3
. (5.72)

Proof. From Theorems 5.2 and 5.3 we have

L∗flex|R1=R2= L∗EP. (5.73)

Also, it is easy to check thatR∗1 > R2 in (5.61) when (5.72) is satisfied. Then, combining Theorem

5.4 we conclude that

L∗flex|R1=R∗1
< L∗flex|R1=R2= L∗EP. (5.74)

The proof is completed.

We summarize how to choose the optimal constructions in different situations in Table 5.3.
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Table 5.3: Optimal choices of the flexible constructions given the number of servers N , the failure
tolerance N −R and the storage constraint C.

Storage constraint C Optimal constructions Optimal matrix partition

C < 4κ
√
λµ

1+R2
Not available Not available

4κ
√
λµ

1+R2
≤ C ≤ 8κ

R2+1

√
λµ
3

Fixed EP codes p0,m0, n0 chosen in Theorem 5.2

C > 8κ
R2+1

√
λµ
3

Flexible codes with R1 chosen in Theorem 5.4 pj ,mj , nj , j ∈ [2] chosen in Theorem 5.3

Fig. 5.4 shows a comparison of our 2-layer flexible codes and the fixed EP codes. For the approxi-

mate computation load, only the computation load in the first layer is considered as in (5.55). The

expected computation load is computed based on (5.54) with a truncated binomial distribution

qj =
1

θ

(
N

j

)
(1− ε)N−jεj, 0 ≤ j ≤ N −R, (5.75)

where ε = 0.05 is the probability that each server is a straggler. To limit the number of stragglers

below N −R, we truncate the binomial distribution below N −R and θ =
N−R∑
i=0

(
N
i

)
εi(1− ε)N−i is

the probability that there are at least N − R available nodes.2 In Fig. 5.4, we have 1− θ < 10−4.

The minimum required storage constraint is C = 0.33. When C < 0.45, our 2-layer construction

reduces to the EP code. When the storage constraint C ≥ 0.45, our 2-layer constructions have

better performance. For example, when C = 0.9, the optimal EP code has p0 = 2,m0 = 1, n0 =

5 and its expected computation is LEP = 0.1. However, our 2-layer optimal flexible code has

p1 = 1,m1 = 3, n1 = 5, p2 = 6,m2 = 1, n2 = 1, R1 = 15, and its expected computation

load is Lflex = 0.069, i.e., we save more than 30% in terms of computation load. In addition, the

approximate computation load of the 2-layer flexible code in this case is 0.067, which is very close

to the expected computation load when the computation in both layers are considered.

5.4.3 Optimization for the multi-round communication model

Now let us consider the multi-round communication model where coded matrices are sent sequen-

tially from the source to the server. In this case, it is only required that the maximum size of the

2In practice, R is chosen such that the probability of having more than N −R stragglers is negligible.
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Figure 5.4: Computation load comparison of our 2-layer flexible codes and fixed EP codes under
different storage constraint. N = 16, R = 11, and λ = κ = µ = 1 unit. Each server has a failure
probability of 0.05. The approximate computation load in (5.56) and the expected computation
load in (5.54) are both shown in the figure. For all cases, the optimal matrix partitioning and the
recovery profile are found by exhaustive search.

coded matrices does not exceed the storage size. As mentioned before Theorem 5.1, the storage

capacity just needs to exceed the size of the first pair of coded matrices. We first optimize the

partitioning parameters for a fixed recovery profile and then optimize the number of layers and the

recovery profile.

Let us consider the construction with a layers and predetermined Rj, j ∈ [a] such that N ≥ R1 >

R2 > ... > Ra = R. Assuming Rj, j ∈ [a], and the storage constraint C are given, we first

minimize the computation load in each layer:

min
pj ,mj ,nj

Lj

s.t. Rj = pjmjnj + pj − 1

λκ

p1m1

+
κµ

p1n1

≤ C,

(5.76)

whereLj is shown in (5.27). Note that onceLj, j ∈ [a], are minimized, by Theorem 5.1 the compu-

tation load Lflex(R̂) for any number of non-stragglers R̂ is also minimized. Hence the optimization

in (5.76) is stronger than optimizing the expected computation load defined in (5.41).
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THEOREM 5.5. The optimal solution of (5.76) for the flexible construction under the multi-round

communication model is

L∗j =





2Cλκµ

C(R+1)+
√
C2(R+1)2−16λκ2µ

, j = 1,

R1(Rj−1−Rj)
Rj−1Rj

L1, j ≥ 2,

(5.77)

with

p∗1 =
1

2
(R + 1)− 1

2

√
(R + 1)2 − 16λκ2µ

C2
, (5.78)

m∗1, n
∗
1 are given by m∗1n

∗
1 = R+1

p∗1
− 1 and λκn∗1 = κµm∗1 and p∗j = 1,m∗jn

∗
j = Rj for j ≥ 2.

Proof. When j = 1, it is the same optimization problem in Theorem 5.2.

For j ≥ 2, We prove by induction.

Base case: For j = 2, since there is no constraint on storage size of Layer 2, by Theorem 5.1 we

have

L2 =
R1 −R2

p2m2n2

L1 =
R1 −R2

R2 − p2 + 1
L1, (5.79)

which is an increasing function of p2. Thus, we have p∗2 = 1,m∗2n
∗
2 = R2.

Induction step: Assume the minimum L∗J is achieved when p∗J = 1,m∗Jn
∗
J = RJ for J =

2, 3, ..., j − 1. For J = j, we have

Lj =
Rj−1 −Rj

pjmjnj

j−1∑

J=1

LJ =
Rj−1 −Rj

Rj − pj + 1

j−1∑

J=1

LJ , (5.80)

which is an increasing function of pj and LJ , J ∈ [j − 1], respectively. Hence, we should pick the

minimum p∗j = 1 and the minimum L∗J , 1 ≤ J ≤ j−1 to optimize Lj . Therefore, p∗J = 1,m∗Jn
∗
J =
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RJ for all 2 ≤ J ≤ j.

Notice that in the case of j ≥ 2, we have Rj = mjnj , there is at least one integer solution with

mj = Rj, nj = 1, which simplifies the problem to be matrix-vector multiplication.

Next, we discuss how to set the number of layers and the recovery profile to minimize the com-

putation load. First, we state a lemma to show that adding more layers does not increase the

computation load. Then, a theorem is proposed to show how to set R1.

LEMMA 5.1. Given R,R1, and pj = 1, j ≥ 2, adding another layer does not increase the compu-

tation load of each server.

Proof. Let us add a layer between Layers j − 1 and j. When Rj−1 = Rj + 1, no layers can be

added. When Rj−1 > Rj + 1, consider adding one extra layer with Radd = Rj + 1 between Layer

j − 1 and j so that Rj < Radd < Rj−1. Denote the computation load of the new construction by

Ladd, which is a function of the number of non-stragglers, R̂.

When R̂ ≤ Rj or R̂ ≥ Rj−1, based on (5.34), the computation load of each server does not change,

i.e., Ladd = Lflex.

When Radd ≤ R̂ < Rj−1, by Corollary 5.1, the new computation load is

Ladd =
R1(Radd +Rj−1 − R̂)

Rj−1Radd
L1

=
R1

Rj−1
L1 +

R1(Rj−1 − R̂)

Rj−1Radd
L1,

<
R1

Rj−1
L1 +

R1(Rj−1 − R̂)

Rj−1Rj

L1

= Lflex, (5.81)

where the inequality results from the fact that Radd > Rj . Thus, by adding one layer with Radd =

Rj + 1, computation load does not increase. Similarly, more layers can be added between Layer
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j − 1 and j. Therefore, adding more layers between R1 and R does not increase the computation

load of each server.

Based on Lemma 5.1, given R1 and R, the optimal scheme is to add one layer for each value

between R1 and R. Thus, the recovery profile should be chosen to be (R1, R1− 1, R1− 2, . . . , R).

The only problem left is how to set R1. According to Corollary 5.1 and Theorem 5.5,

Lflex =





L1 = 2λκµ

(R+1)+
√

(R+1)2− 16λκ2µ

C2

, if R̂ > R1,

R1

N−jL1, if R̂ = N − j,N −R1 ≤ j ≤ N −R.
(5.82)

Based on (5.82), we see λκµ
R1+1

< L1 <
2λκµ
R1+1

. Denote L1 = η λκµ
R1+1

, where

η =
2

1 +
√

1− 16λκ2µ
C2(1+R1)2

. (5.83)

Note that given λ, κ, µ, C, the value of η decreases as R1 increases. Then, for fixed R1, the expec-

tation of the computation load is

E
[
L
(R1)
flex

]
= L1

N−R1−1∑

j=0

qj +
N−R∑

j=N−R1

qj
R1

N − jL1 (5.84)

= λκµη

(
N−R1−1∑

j=0

qj
1 +R1

+
N−R∑

j=N−R1

qjR1

(N − j)(1 +R1)

)
. (5.85)

Here, the superscript R1 indicates that the computation load depends on R1. The goal is to mini-

mize E
[
L
(R1)
flex

]
over R1 where R ≤ R1 ≤ N .

The theorem below states a sufficient condition for which we should set R1 = N and use the

maximum number of layers. In particular, the recovery profile should be (N,N−1, N−2, . . . , R).

THEOREM 5.6. When q0 >
∑N−R

j=1
qj
N−j , the optimal R1 to minimize (5.85) is achieved when

R∗1 = N .
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Proof. Denote the term in the parentheses of (5.85) as

h(R1) =
1

1 +R1

N−R1−1∑

j=0

qj +
R1

1 +R1

N−R∑

j=N−R1

qj
N − j . (5.86)

When R1 = N ,

h(N) =
N

1 +N

N−R∑

j=0

qj
N − j . (5.87)

When R1 = N − k, k ∈ [1, N −R],

h(N − k) =
1

N − k + 1

k−1∑

j=0

qj +
N − k

N − k + 1

N−R∑

j=k

qj
N − j . (5.88)

Then, their difference is

h(N − k)− h(N) (5.89)

=
1

N − k + 1

k−1∑

j=0

qj +
N − k

N − k + 1

N−R∑

j=k

qj
N − j −

N

1 +N

N−R∑

j=0

qj
N − j (5.90)

=
1

(N + 1)(N − k + 1)

(
k−1∑

j=0

(k − j)N − j
N − j qj − k

N−R∑

j=k

qj
N − j

)
. (5.91)

When q0 >
∑N−R

j=1
qj
N−j , the first term in the parentheses of (5.91) is

k−1∑

j=0

(k − j)N − j
N − j qj ≥ kq0 > k

N−R∑

j=1

qj
N − j ≥ k

N−R∑

j=k

qj
N − j . (5.92)

Thus, h(N−k) > h(N). Since η increases asR1 decreases, by (5.85) we conclude thatE
[
L
(N)
flex

]
<

E
[
L
(N−k)
flex

]
. Therefore, R∗1 should be set as N .

EXAMPLE 5.4. SupposeN = 50, R = 40 and assume the number of stragglers follows a truncated

binomial distribution similar to (5.75), i.e., qj = θ
(
N
j

)
εj(1 − ε)N−j , for the constant factor θ =
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1∑N−R
i=0 (Ni )εi(1−ε)N−i

. According to Theorem 5.6, R1 can be set as N as long as ε < 7.4%.

5.5 Conclusion

In this chapter, we consider coded distributed matrix multiplication. A flexible construction for

distributed matrix multiplication is proposed and the optimal parameters are discussed. The con-

struction can also be generalized to batch processing of matrix multiplication and secure distributed

computation. Flexible constructions are also found in other problems such as communication-

efficient secret sharing [51], adaptive gradient codes [78], coded elastic computing [120] and flex-

ible storage [52, 76]. It is worthwhile to explore more applications of flexible constructions, such

as distributed machine learning and secure multi-party computation.
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Chapter 6

Conclusion

In this dissertation, we focus on the privacy, security, and flexibility of distributed computing. The

fundamental trade-offs are investigated. We characterized the capacities of T -private information

retrieval with private side information, symmetric T -private information retrieval with private side

information, and private search. These works lead us to the fundamental understanding of the

roles of side information and dependence in distributed computing. We proposed GCSA codes

with noise alignment for secure coded multi-party batch matrix multiplication and a flexible con-

struction for coded distributed matrix multiplication. These schemes can be generalized to other

distributed computation problems, such as multi-source distributed computing. To conclude the

dissertation, we present several promising directions for future work.

There are many constructions for different distributed computing scenarios. However, the converse

arguments for distributed computing are not known in most cases. Exploring converse arguments

for distributed computing is an interesting direction for future work. For example, private search

is the first step to explore the PIR with dependent messages. We propose a loose bound for DPIR,

but the tight bound of general DPIR is still unknown. Another example is distributed matrix multi-

plication. Recently, there are a large number of works on the schemes of coded distributed matrix
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multiplication. However, there are rarely works on the converse bounds. For a distributed matrix

multiplication problem, Yu et al. [128] proposed a loose bound for the optimum linear recovery

threshold with the bilinear complexity. It would be interesting to find converse arguments for more

coded matrix multiplication problems.

For flexible constructions, they are highly related to the problems such as communication effi-

cient secret sharing [51], adaptive gradient codes [78], coded elastic computing [120] and flexible

storage [76]. It offers a fertile research landscape for discovering new coding structures and con-

verse arguments. It is also worthwhile to explore more applications of flexible constructions, like

distributed machine learning, DNA storage, and consistent data storage.
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