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Endothelial cell calpain as a critical modulator of angiogenesis

Yixuan Zhang, Norika Mengchia Liu, Yongchen Wang, Ji Youn Youn, and Hua Cai*

Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine 
at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, 
Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine 
at University of California Los Angeles (UCLA), CA 90095, USA

Abstract

Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, 

calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown 

that calpain activity can be increased in endothelial cells by growth factors, primarily vascular 

endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of 

PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological 

angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can 

be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain 

activation, and the newly identified mechanistic roles and downstream signaling events of calpains 

in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and 

diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an 

increase in calpain activity. Further discussed include the differential strategies of modulating 

angiogenesis through manipulating calpain expression/activity in different pathological settings. 

Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic 

wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of 

significant translational potential. Emerging strategies of tissue-specific targeting, environment-

dependent targeting, and genome-targeted editing may turn out to be effective regimens for 

targeted manipulation of angiogenesis through calpain pathways, for differential treatments 

including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
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1. Introduction of calpains

Calpains belong to a family of calcium-dependent cysteine proteases. Calpains 

proteolytically process substrates to transform their structures to modulate activities. 

Calpains have been present during evolution. Isoforms of calpains exist in various 

organisms, ranging from fish to human [1–3]. To date, 15 isoforms have been identified in 

humans [4]. Calpain 3 is found in skeletal muscle, while calpain 6 in placenta and 

embryonic muscles, calpain 8 and calpain 9 in gastrointestinal tract, calpain 11 in testis and 

calpain 12 in hair follicles. Other calpain isoforms are ubiquitously expressed. Among all of 

the calpain isoforms, calpain 1 and calpain 2 have been widely studied. Of note, calpain 1 

and calpain 2 are the only known calpain isoforms expressed in the endothelial cells [5]. 

Calpain 1 (p-calpain) and calpain 2 (m-calpain) were originally named by μmol or mmol of 

calcium concentration that is required for their activation in vitro. The requirements for half 

maximal activities are at approximately 3–50 μM and 400–800 μM for calpain 1 and calpain 

2 respectively [6,7]. However, additional evidences indicate that both calpains could be 

activated at physiological calcium concentrations in vivo at 0.4–0.5 μM (calpain 1) and 10 

μM (calpain 2) respectively, although the activation mechanisms may involve specific 

cellular components, such as membrane ezrin and phosphoinositides [8–14].

The calpain proteolytic system includes large subunits, small subunit and the endogenous 

calpain inhibitor calpastatin. Calpain 1 (CAPN1) and calpain 2 (CAPN2) are heterodimeric 

proteins, consisting of a large 78–80 kDa catalytic subunit and a common 29 kDa small 

regulatory subunit (CAPN4). Calpastatin has been shown to inhibit both calpain 1 and 

calpain 2. Upon activation, calpains cleave a broad spectrum of substrates that are involved 

in several fundamental cellular processes, including cell proliferation, cell migration and 

cytoskeletal remodeling. Several groups have shown that calpains are required for cell 

proliferation. Inhibition of calpains leads to reduced proliferation in different cell types, such 

as pulmonary artery smooth muscle cells, HeLa and WI-38 human fibroblasts [15–17]. It is 

also reported that calpain-mediated substrate proteolysis is indispensable for cell migration 

and cytoskeletal remodeling [18,19]. Attenuated cell migration was observed in cells treated 

with calpain inhibitors [20,21]. Calpain-mediated proteolysis of focal adhesion proteins, 

such as paxillin, focal adhesion kinase and talin, mediates focal adhesion turnover during 

migration [22–24]. Mouse embryonic fibroblasts obtained from CAPN4 knockout mice 

displayed repressed migration and impaired organization of cytoskeleton [25]. In this review, 

we will discuss the mechanistic roles and downstream signaling events of endothelial 

calpains in both physiological and pathological angiogenesis.

2. The structure of calpains

The catalytic large subunit of calpains comprises four domains of I-IV, while the small 

subunit has two domains V-VI. The N-terminus of domain I undergoes autolysis upon 

exposure to Ca2+ [26,27]. Domain II contains the catalytic sequence of Cys-His-Asn. The 

crystallographic structure of calpain reveals that in the absence of calcium the active site is 

disrupted by the separation of the two subdomains, domains Ha and lib [8,28]. Upon Ca2+ 

binding, however, lib and Ha form a functional catalytic center following a subtle 

conformational change [8,28]. The crystal structure of calpain 2 similarly reveals that during 
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the conformational change, some residues in lib come into close contact with the membrane 

[8]. Domain III can bind to phospholipid in Ca2+ - dependent manner, and may play an 

important role in Ca2+ -dependent membrane translocation of calpains [29,30]. We have 

shown that Ezrin is required for the membrane specific activation of calpain [14]. Domain 

IV and domain VI each contains five EF-hand motifs. It has been shown that the first to third 

EF-hands bind Ca2 + and the fifth EF-hand motif is involved in heterodimer formation of the 

large subunit and the small subunit. Domain IV and domain VI are also involved in binding 

to calpastatin [31]. Domain V of the regulatory small subunit contains hydrophobic Gly-rich 

sequence [32,33]. Deletion of domain V reduced membrane binding and localization [34]. 

Most of this domain is cut off by autolysis, indicating no involvement in protease activity.

3. Activation of calpains in endothelial cells

Activation of calpains in endothelial cells is induced by growth factors, primarily vascular 

endothelial growth factor (VEGF). It has been reported that VEGF activates calpains in 

endothelial cells, which can be attenuated by calpain inhibitors calpeptin, ALLN and 

calpastatin [14,35,36]. The detailed mechanisms of calpain activation by VEGF are 

discussed below. The combination of VEGF and basic fibroblast growth factor (FGF) was 

reported to significantly elevate calpain activity in endothelial cells, as well as the cleavage 

of calpain substrate vimentin [37]. Another growth factor that has been shown to activate 

calpain 2 in endothelial cells is epidermal growth factor (EGF). It has been recently reported 

that EGF induces calpain 2 membrane translocation and activation in endothelial cells 

through phosphatidylinositol 4,5-bisphosphate [38]. Nonetheless, VEGF seems to be the 

primarily characterized activator of calpain signaling in endothelial cells.

Under physiological conditions, activation of calpain by VEGF results in endothelial nitric 

oxide synthase (eNOS) phosphorylation to produce nitric oxide (NO), which is a potent 

angiogenic activator [14]. It is known that VEGF activates eNOS/NO through PI3K/Akt 

[39–41]. Our group previously identified a novel role of calpain 2 in mediating VEGF-

induced PI3K/AMPK/Akt activation, and subsequent eNOS phosphorylation and NO 

production in endothelial cells [14]. Application of calpain inhibitors (ALLN or Calpeptin), 

or siRNA targeting calpain 2, abolished VEGF-induced activation of PI3K/AMPK/Akt/

eNOS/NO pathway. However, calpain 1 is not involved in this response [14]. Taken together, 

these data indicate a unique role of calpain 2 in mediating VEGF-induced angiogenesis. 

Other reports also support the specific role of calpain 2 in mediating VEGF downstream 

signaling [42]. It has been shown that VEGF selectively activates calpain 2 in endothelial 

cells [42]. The activation of calpain 2 by VEGF may be caused by preferably increased 

calpain 2 protein expression. Su et al. demonstrated that the protein abundance of calpain 2 

was increased 2 h post-VEGF stimulation [43]. However, calpain 1 expression was 

unchanged, suggesting that elevated calpain activity is attributed to increased calpain 2 

protein content [43,44]. Our group has further revealed a calpain dependent negative 

feedback loop to inhibit VEGFR2 overactivation [45]. Cleavage and activation of protein 

tyrosine phosphatase type 1 (PTP1B) by calpain de-phosphorylates VEGFR2 [45]. Altered 

expression or activity of PTP1B and/or calpain modulated VEGF-induced angiogenesis and 

diabetic wound healing in mice [45]. Illustrations on a role of endothelial calpain 2 in 
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VEGF-induced angiogenesis are presented in Fig. 1. Roles of calpain pathways in 

physiological and pathological angiogenesis are further discussed in the Section 4 below.

Moreover, calpains are activated when endothelial cells are exposed to hypoxia [46–49]. 

Zhang et al. reported that short exposure of endothelial cells to hypoxia (1–12 h) up-

regulated mRNA level and activity of calpain [47]. Treatments of actinomycin D (a 

transcriptional inhibitor) and ALLN prevented hypoxia-induced calpain 2 transcription and 

activation, implicating a potential regulation at transcriptional level [47]. Though VEGF is 

transcriptionally regulated by hypoxia inducible factor-la (HIF-la) during hypoxia, the 

transcription regulation of calpain mRNA may be facilitated directly by hypoxia in short 

exposure. For longer exposure to hypoxia, calpain activation could be mediated by HIF-la-

induced VEGF or Na+/H+ exchanger-1 (NHE1) expression [49]. Similar to VEGF, NHE1 is 

also a HIF-1α target. Both mRNA and protein levels of NHE1 are up-regulated by hypoxia 

(48 h) or adenovirus-delivered HIF-la (24 h) [49,50]. Knockdown of NHE1 selectively 

inhibited HIF-la-induced calpain 2 protein expression and activation, and subsequent 

angiogenesis [49]. These pathways are included in Fig. 2 for mechanisms of tumor 

angiogenesis involving calpain activation.

In addition to selective induction of calpain 2 expression, calpain activation is subjected to 

spatial regulations. We have shown that in response to VEGF stimulation, only the 

membrane-localized calpain is activated and inhibited by calpain inhibitors (ALLN and 

calpeptin). Furthermore, we also found that VEGF induces direct binding of calpain and 

ezrin [14]. Membrane colocalization of these two proteins can be detected within 10 min of 

VEGF stimulation. The activity of calpain in the membrane fraction was greatly decreased 

by ezrin siRNA [14]. These results suggest that ezrin mediates calpain membrane 

translocalization and activation as a novel mechanism of regulating calpain in endothelial 

cells. Another mechanism of calpain membrane activation involves phosphoinositides. 

Studies from different groups have shown that phosphoinositides, components of the 

membrane, interact with calpain 1 and 2 through calpain domain III [10,30,51]. Sphingosine 

1-phosphate (SIP) induces calpain membrane translocation and activation without changing 

calpain expression level [52]. More evidence of calpain membrane localization was shown 

by the study of the crystal structure of calpain 2 [8].

Furthermore, calpain activation in endothelial cells involves calpastatin, the endogenous 

calpain inhibitor. It was reported that calpastatin binds to calpains in response to calcium to 

prevent calpains from activation [53]. Calpastatin has four inhibitory domains and each one 

of those is able to bind to one calpain molecule. Each inhibitory domain contains three 

subdomains, A, B and C. Subdomains A and C bind to calpain domain IV and domain VI, 

respectively [31,54]. A recent study has shown that calpastatin binds to the active cleft of 

calpains by looping out around the active site, so that calpastatin blocks the active site 

without being cleaved [54]. Treatment of endothelial cells with VEGF potently down-

regulated calpastatin expression, leading to increased calpain activity [44]. The combined 

regulations of calpastatin and calpain enable maximal activation of calpain and its 

downstream signaling in response to VEGF.
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Therefore, calpain 2 activation in endothelial cells can be induced through at least three 

different mechanisms: 1) selective up-regulation of calpain 2 protein abundance and activity 

[14,43,55]; 2) spatial regulation of calpain subcellular localization to promote membrane 

translocation and activation [14,56]; and 3) down-regulation of calpain inhibitor calpastatin 

[44]. The mechanistic pathways of calpain 2 activation by VEGF to mediate angiogenesis 

are summarized in Fig. 1. Calpain 2 inhibition suppresses multiple features of angiogenesis, 

such as proliferation [56,57], cell migration [42,55,58] and tube formation [42,43,55,58].

4. Role of calpains in angiogenesis

4.1. General introduction of angiogenesis

Angiogenesis is the process of new vessel formation from existing vessels. Angiogenesis 

requires a highly coordinated series of events that involve the interactions among endothelial 

cells, extra-cellular matrix and growth factors. Key steps of angiogenesis include endothelial 

cell proliferation, migration and tube formation (the formation of capillary-like tube 

structures). Basic physiology of angiogenesis has been discussed in several recent reviews 

[59–61]. VEGF is one of the main initiators of angiogenesis. We and others have shown that 

VEGF exposure induces calpain 2 dependent activation of PI3K/AMPK/Akt/ eNOS pathway 

and NO production in endothelial cells through VEGFR2 [14,45]. Blocking PI3K/

AMPK/Akt by pharmacological kinase inhibitors, or genetic/pharmacological abrogation of 

calpain 2 activation, completely attenuated VEGF-induced NO production and angiogenesis 

[14,62–64]. Additionally, angiogenesis is promoted in conditions where ERK is activated. 

Studies have shown that ERK is activated in response to VEGF/VEGFR2 [65]. Abrogated 

ERK signaling inhibits VEGF-induced angiogenic response of endothelial cells [66].

4.2. Role of calpains in angiogenesis under physiological conditions

Under physiological conditions, angiogenesis mostly occurs during embryonic development, 

when it requires adequate vasculature for organ development. Normal angiogenesis in the 

adulthood usually happens during repair processes, such as wound healing. It has been 

reported that deletion of the small subunit (CAPN4) of calpain results in elimination of both 

calpain 1 and calpain 2 activities and embryonic death at day Ell.5, implicating a role of 

calpain in embryonic development [67]. Arthur et al. reported that CAPN4 knockout 

embryos had reduced yolk sac vasculature at E10.5. The endothelial cells lining the atria 

were found rounding up at E10.5, and eventually delaminated at El 1.5, indicating the 

indispensable role of calpains in normal vascular development [67]. Using global and 

conditional knockout strategies, Takano and colleagues have shown that calpain 2 

deficiencies caused embryonic death on day 15, due to placental dysfunction-induced 

apoptosis [68]. Interestingly, calpain 1 knockout alone appeared mostly harmless (viable and 

fertile) [69]. Double knockout of calpain 1 and calpain 2 potentiated embryonic lethality (— 

3 days earlier) however, suggesting that the two isoforms may additively modulate some 

common developmental pathways in vivo, at least during the developmental stage [68].

Calpains play important roles in wound healing, a physiological process highly dependent 

on angiogenesis. It has been shown that transgenic mice globally over-expressing calpastatin 

displayed a striking delay in skin wound healing through impaired angiogenesis, indicating 
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that calpain activity is required for wound healing [70]. We have recently demonstrated that 

application of calpain inhibitor ALLN to wound bed significantly delayed VEGF-induced 

wound healing in diabetic mice [45]. However, wound healing is not a process that only 

involves enhanced angiogenesis. In the late stage of wound healing, a mechanism of vessel 

dissociation/regression is activated. Interestingly, vessel regression is mediated by calpain 1. 

Bodnar and colleagues reported that activation of calpain 1 in endothelial cells leads to 

vessel regression and reduced angiogenesis during middle and late stage of wound healing 

[71,72]. Calpain 1-induced dissociation of newly formed vessels is a mechanism to maintain 

a regular vascular network near the wounded area by eliminating excessive vessels. 

Moreover, a separate study reported that cells with calpain 1 siRNA transfection showed 

stabilized tube formation at late stages (6–24 h) [58]. Of note, the role of calpain 1 during 

later stage of angiogenesis is established in experiments of exposing endothelial cells to 

CXCL10 (IP-10), a known ligand for the resolving stage of the wound, rather than VEGF. A 

potential role of calpain 1 in VEGF-induced wound healing remains to be investigated.

4.3. Role of calpains in angiogenesis under pathological conditions

4.3.1. Calpains in tumor angiogenesis

The constant growth of solid tumor requires large quantity of oxygen and nutrients. 

Therefore, tumor cells have developed the ability to establish their own blood supply by the 

induction of angiogenesis. By secreting angiogenic factors, tumor cells induce angiogenesis 

around them to achieve nutrient delivery and removal of metabolic wastes through the newly 

formed vessels. One of the most important angiogenic factors produced by tumor cells is 

VEGF. Blockade of VEGF or VEGF receptors dramatically inhibited tumor growth via 

abrogation of angiogenesis [73]. As discussed in the previous section, VEGF activates 

calpain 2 in endothelial cells [14,42,43,55]. We and others have demonstrated that inhibition 

of calpain 2 (with siRNA or calpain inhibitors) abolished VEGF-induced endothelial NO 

production and angiogenesis [14,43,45,74]. Moreover, the fast growth of tumor cell results 

in hypoxia, exposure to which upregulates calpain expression and activity in endothelial 

cells [46–49,75,76].

Under hypoxic conditions, calpains are involved in the crosstalk between tumor cells and 

endothelial cells. VEGF is secreted by tumor cells to influence endothelial cells. 

Interestingly, calpain in tumor cells serves as a newly identified regulator of the HIF-la/

VEGF pathway [77]. Zheng et al. have shown that hypoxia induces filamin A proteolysis by 

calpain in melanoma cells, which in turn facilitates HIF-1α nuclear translocation. Calpeptin 

inhibition of calpain however attenuated HIF-1α nuclear accumulation and transactivation 

[77]. It is known that VEGF is transcriptionally up-regulated by HIF-1α. Overexpression of 

filamin A increased recruitment of HIF-1α to VEGF promoter and augmented angiogenesis 

in a tumor xenograft model [77]. Another crosstalk involves vasohibin-1 (VASH1), an 

angiogenesis inhibitor generated by VEGF-stimulated endothelial cells [78,79]. It was 

reported that hypoxia inhibits VEGF-induced VASH1 expression [79]. Interestingly, tumor 

cells inactivate VASH1 through calpain-dependent cleavage of VASH1 in EC-tumor cell co-

culture experiments [78]. These calpain central tumor cell-EC crosstalks to facilitate 

angiogenesis are summarized in Fig. 2.
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To study the involvement of endothelial calpains in tumor angiogenesis, Miyazaki et al. 

collected tumors and nearby normal tissues from patients with malignant astrocytoma, colon 

and lung adenocarcinomas. Immunostaining of calpastatin illustrated that the expression 

level of calpastatin was significantly reduced in endothelial cells of tumor vessels compared 

to nearby normal vessels [44]. They further generated transgenic mice that harbor 

endothelial cell specific transgene of calpastatin. In these animals, tumor angiogenesis was 

attenuated in a Lewis lung carcinoma allograft transplantation model. It turns out that 

calpastatin inhibits VEGF-C production through calpain/ SOCS3/STAT3 [44]. These results 

provide more evidences that regulation of calpain pathway is important in tumor 

angiogenesis (summarized in Fig. 2).

4.3.2. Calpains in diabetic wound healing

Diabetic food ulcer, one of the most common complications of diabetes mellitus, affects 

15% of people with diabetes [80]. It is also the leading cause of amputations among diabetic 

patients [81,82]. One of the major causes of diabetic foot ulcer is impaired wound healing, 

which is characterized by impaired growth factor production and defective angiogenesis 

[82–85]. It is known that the expression of growth factors and their receptors (such as VEGF, 

platelet-derived growth factor (PDGF)/PDGF receptor, FGF/FGF receptor, EGF) is up-

regulated in the wounded area during physiological repair [83]. However, the up-regulation 

of growth factors and their receptors is absent in diabetic wounds. The synthesis of PDGF 

and FGF like growth factors was down-regulated in STZ-induced diabetic wound [83,86]. 

The abundance of VEGF was decreased in wounded area throughout wound healing process 

in the db/db mice [87]. Galkowska et al. have compared the expression of growth factors and 

their receptors in the margin skin tissue of diabetic foot ulcers with normal non-diabetic foot 

skin by immunohistochemistry [84]. They reported down-regulation of PDGF receptor and 

TGF-pl. There was a similar trend for VEGF/ VEGFR2, EGF and FGF [84]. In accordance 

with the impaired production of growth factors, angiogenesis process is also delayed in 

diabetic wound [88–90]. To promote wound healing through angiogenesis, multiple 

strategies have been tested. Administration of growth factors has been shown to be effective 

[45,91]. Others and we have shown that VEGF activates PI3K/AMPK/Akt/eNOS cascade to 

induce NO production, which in turn mediates angiogenesis and wound healing [14,92,93]. 

Topical application of VEGF accelerated skin wound healing in both type 1 and type 2 

diabetic models [45,80]. This strategy and other approaches discussed below to improve 

diabetic wound healing are summarized in Fig. 3.

To further accelerate wound healing, an alternative approach is to facilitate angiogenesis by 

targeting downstream pathways of growth factors. We have recently shown that VEGF 

signaling is regulated by a calpain/PTPlB/VEGFR2 feedback mechanism, which can be 

employed to enhance VEGF signaling to facilitate therapeutic angiogenesis [45]. PTP1B 

activity is up-regulated in diabetic wound to constrain VEGFR2, while application of PTP1B 

inhibitor accelerated VEGF-dependent diabetic wound healing [45]. To test the effect of 

calpain in wound healing, we directly applied plasmids that encode human calpain cDNA to 

the wound bed. As expected, we found that calpain overexpression in wound bed accelerated 

VEGF-induced wound healing in STZ-induced diabetic mice [45]. Data from calpastatin 

transgenic mice confirmed the importance of calpain in angiogenesis and wound healing. 
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Global calpastatin transgenic mice showed impaired angiogenesis and a striking delay in 

wound healing [70]. Moreover, calpain 2 is indispensable to lymphangiogenesis [58], 

enhancement of which contributed to accelerated diabetic wound healing [80,94,95].

Studies examining roles and mechanisms of calpains in pathophysiological angiogenesis, 

including models and approaches employed, are summarized in Table 1.

5. Other mechanisms that regulate calpain activity in endothelial cells

5.1. Oxidized LDL, phospholipids and mechanical stress

In addition to growth factors and hypoxia, calpains can be activated in endothelial cells by 

oxidized low-density lipoprotein (oxLDL), phospholipids or mechanical stress. OxLDL 

induces calpain activation in endothelial cells through elevated calcium concentration 

[96,97]. In human atherosclerotic plaques, calpain activity was identified in apoptotic cells 

[98]. In addition, oxLDL-induced endothelial cell apoptosis can be partially blocked by 

PD151746, a calpain 1 inhibitor [99]. These results suggest that at least calpain 1 activation 

is involved in ox-LDL-induced endothelial apoptosis, which has long been considered as an 

important regulator of the initiation and progression of atherosclerotic lesions. On the other 

hand, calpain 2 has been reported to regulate endothelial adherence junctions (through 

cleavage of VE-cadherin) and promote atherogenesis. Recently, Miyazaki et al. have shown 

that endothelial calpain 2 up-regulation is associated with more severe atherosclerotic 

lesions in patients [100]. In LDL receptor (LDLR) deficient mice, high cholesterol fed 

animals showed elevated expression of endothelial calpain 2. Administration of calpain 

inhibitors (calpeptin, ALLM) on the other hand significantly limited lesion formation in high 

cholesterol diet-treated LDLR knockout or Apolipoprotein E deficient mice [100]. Similarly, 

lysophosphatidylcholine, the major lipid constituent of oxLDL, can activate calpain 2 and 

induce cleavage of VE-cadherin [100,101]. Taken together, activation of calpain 1 and 

calpain 2 by oxLDL contributes to atherogenesis. Though a causal role of angiogenesis in 

atherosclerosis has not been established, there is strong evidence that the development of 

plaques is associated with neovascularization within the plaque [102–105].

It has also been reported that calpain 2 is activated by physiological shear stress through 

elevated intracellular calcium [106,107]. Calpeptin impaired shear stress-induced focal 

adhesion polarization and cell alignment under shear conditions [107]. Shear stress, 

combined with sphingosine 1-phosphate, induces calpain membrane translocation and MTP-

MMP1 activation in endothelial cells [52]. On the other hand, Mayazaki et al. have 

demonstrated that calpain 2 antagonizes RhoA overactivation and endothelial barrier 

dysfunction in response to disturbed flow [108]. Overall calpain 2 activation under different 

flow patterns seem to exert protective signaling via differential mechanisms.

5.2. Ischemic retinopathy

Calpains have been reported to contribute to hypoxia-derived retina cell death in ischemic 

retinopathy [109,110]. Using an oxygen-induced retinopathy (OIR) model, Hoang et al. 

demonstrated that ischemic hypoxia activates calpain in retinal endothelial cells and disrupts 

actin cytoskeleton in human retinal microvascular endothelial cells [46]. Moderate inhibition 
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(30–35%) of calpain activity results in formation of functional neovasculature. Further 

investigation revealed that calpain inhibitor MDL28170 and calpastatin peptide improved 

organization and alignment of actin cytoskeleton both in vitro and in vivo [46]. The role of 

calpains in ischemic retinopathy was also reported by another independent group using the 

OIR model [44]. Endothelial specific transgene of calpastatin abolished OIR-induced 

vascular tufts through down-regulation of calpain 1-dependent cleavage of SOCS3, followed 

by inhibition of STAT3 and VEGF-C expression [44]. These results suggest that targeting 

calpain system (either by application of calpain inhibitor or overexpression of calpastatin) is 

beneficial for the normalization of angiogenesis in ischemic retinopathy.

6. Differential strategies targeting endothelial calpain and calpain-

dependent pathways for different pathophysiological conditions

Calpain 1 and calpain 2 are ubiquitously expressed in human tissues. For therapeutic 

purposes related to angiogenesis, endothelial targeted strategies of modulating calpain 

activity may be beneficial. Restrain of calpain activity inhibits tumor growth and 

atherogenesis, and promotes formation of normal vasculature in ischemic retinopathy. On 

the other hand, activation of calpain is aimed to treat diabetic wound healing and protect 

endothelial function under disturbed flow. Therefore, differential strategies of regulating 

endothelial calpain/ angiogenesis are necessary for therapeutic control of different 

pathophysiological conditions.

One of the options enabling endothelial cell-targeted delivery involves generating genetically 

modified vectors. Plasmids or viral vectors-based gene targeting could specifically modulate 

gene expression in certain type of cells, with the help of tissue-specific promoters/ 

enhancers, and sequences with physiological sensing elements (such as those responsive to 

hypoxia, shear stress) [111,112]. Localized intraspinal injection into rats of lentiviral vector 

encoding calpain 1 resulted in sustained ability of proteolysis (activated NF-κBp65 after IκB 

being cleaved by calpain 1) up to 7 weeks after injection [113,114]. It has been reported that 

hypoxia response element from the promoters of multiple genes (such as erythropoietin, 

phosphoglycerate kinase-1, and VEGF) has been used as a hypoxia sensitive enhancer to 

promote transcription of the delivered gene of interest [111,115–117]. Very recently, 

lentiviruses that are pseudotyped with endothelial-specific envelopes recognizing endothelial 

cell surface marker CD105 have been shown to be efficient and specific in endothelial 

delivery after systemic injection [118]. Tumor endothelial cells were specifically targeted 

upon intratumoral injection in mice carrying a vascularized human tumor xenograft [118]. 

Most recently, the emergence of CRISPR/Cas9 gene editing system further increases the 

possibility of in vivo genome editing [119–121]. Yin et al. recently reported that systemic 

delivery of nanoparticle-conjugated Cas9 mRNA and sgRNA/HDR sequences by AAV 

provided efficient genome editing and less off-target editing in diseased mice [122].

Especially, tumor cells are known to have lower pH (6.2–6.9) than normal tissues (7.3–7.4) 

due to the glycolysis under anaerobic environment [123]. Modified nanoparticles can be 

used as the vehicle of delivery which is capable of pH-dependent drug release and has been 

shown to effectively inhibit xenografted tumor growth [124–126]. Another approach to 
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achieve local regulation is to apply treatment in situ. In a diabetic wound healing model, 

topical administration of recombinant VEGF and calpain plasmids accelerated wound 

closure [45]. This local application is transient and restrained only to wounded area. This 

approach is especially applicable to dermal treatment.

In conclusion, calpain 1 and calpain 2 play important roles in VEGF-induced angiogenesis 

in endothelial cells. Blockade of calpain 2 impairs, while activation of calpain 2 promotes, 

VEGF-induced angiogenesis. In animal models, inhibition of calpain 1 and calpain 2 by 

calpastatin transgene specifically expressed in endothelial cells efficiently attenuated tumor 

angiogenesis and tumor growth [44]. Abrogation of calpain activity reduced progression of 

atherosclerosis and ischemic retinopathy [46,100,127]. On the other hand, activation of 

calpain pathway accelerated diabetic wound healing, and is dispensable to protect from 

disturb flow-induced endothelial cell barrier dysfunction [45,108]. Therefore, disease-

specific modulations of calpain, combined with endothelial cell-targeted delivery techniques, 

may prove to be promising strategies for the treatments of pathophysiological conditions 

associated with angiogenesis.
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Fig. 1. 
VEGF activates angiogenesis through calpain 2. VEGF/VEGFR2 activates calpain 2, not 

calpain 1, in endothelial cells. Calpain 2 activation Involves binding to Ezrln and 

phosphoinositides on the cell membrane. VEGFR2 Is negatively regulated by a calpain 2/

PTP1B feedback loop. Calpain 2 mediates VEGF-lnduced activation of PI3K/AMPK/Akt/

eNOS pathway and consequent nitric oxide (NO) production and angiogenesis.
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Fig. 2. 
Calpain central signaling pathways in tumor angiogenesis. Under hypoxic conditions, von 

Hippel-Lindau (VHL)-mediated HIF-1α degradation is inhibited, leading to accumulation of 

HIF-1α in both tumor cells and endothelial cells. VEGF expression is transcriptionally up-

regulated by HIF-1α. Hypoxia also increases calpain activity in tumor cells. The cleavage of 

filamin A, a substrate of calpain. facilitates HIF-1α nuclear translocation and enhances 

HIF-1α transactivation, resulting in up-regulation of VEGF expression and secretion. On the 

other hand, hypoxia induces calpain 2 activation in endothelial cells. During acute exposure, 

hypoxia directly upregulates calpain 2 mRNA, while prolonged exposure to hypoxia 

increases calpain 2 activity through HIF-la-induced VEGF and NHE1 expression. Other 

growth factors secreted by tumor cells, such as EGF and bFGF, are able to activate 

endothelial calpain 2 as well. Down-regulation of calpastatin causes calpain 1-dependent 

SOCS3 cleavage and VEGF-C production through STAT3 phosphorylation. Activation of 

endothelial calpain 2 leads to enhanced tumor angiogenesis. Another calpain-dependent up-

regulation of angiogenesis involves VASH1. Hypoxia inhibits VEGF-induced expression of 

VASH1 in endothelial cells. Secreted VASH1 undergoes cleavage by tumor calpain. which 

impairs its anti-angiogenic function.
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Fig. 3. 
Mechanisms of impaired angiogenesis in diabetic wound healing. Normal wound healing 

can be facilitated by VEGF via VEGFR2/calpain 2/eNOS/angiogenesis axis (details see Fig. 

1). In diabetes, impaired wound healing is characterized by reduced growth factors 

expression (VEGF, FGF, and EGF), and increased PTP1B activity to inhibit VEGFR2. To 

promote angiogenesis in diabetic wound healing, the following strategies can be employed; 

a) supplementation of VEGF; b) genetic or pharmacological approaches to inhibit PTP1B to 

increase VEGFR2-dependent angiogenic signaling; or c) genetic or pharmacological 

approaches to activate calpain.
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