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Abstract 

 

Between 45-65 million Americans run, making running the most popular physical activity in the 

US (other than walking). Although running is associated with many health benefits, it also causes as 

many as 33 running-related injuries (RRIs) per 1000 hours of running. These RRIs cause pain and reduce 

performance, cause a reduction or cessation of physical activity, necessitate medical visits and 

expenditures, and cause absenteeism from work, creating a large health and financial burden. Thus, 

reducing RRI has been a target of much biomechanics research. Unfortunately, this research has not 

reduced RRI incidence, likely because it has been constrained to lab environments that may 

misrepresent the number and magnitude of the loads (ground reaction forces) thought to cause RRI. 

This dissertation overcomes this limitation by using small wearable devices to measure running in real-

world settings. First, it presents a first-of-its-kind proof-of-concept study demonstrating that—when 

measured in the real world—the number and magnitude of loads relates to RRI development. Next, this 

dissertation presents a series of studies comparing methods to estimate the number and magnitude of 

loads using small wearable devices then validates these methods across a range of real-world 

conditions. Finally, applying these validated methods, this dissertation replicates the initial proof-of-

concept study in a large heterogenous sample across a longer period of time. Collectively, these studies 

demonstrate a novel approach to studying running and RRI, provide the tools to execute that approach, 

and show support for the hypothesis that the magnitude and number of loads experienced by runners 

relates to RRI development. 
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1. Introduction 

 

1.1. Physical activity and overuse injury 

Physical activity offers many health benefits that improve quality of life and reduce morbidity 

and mortality. However, engaging in physical activity can also lead to musculoskeletal overuse injury and 

negative health consequences. Overuse injuries are common across sport, military, and occupational 

settings. When these injuries occur, they can decrease quality of life, degrade occupational 

performance, impose medical costs, and initiate a cycle of injury recurrence that ultimately decreases 

physical activity.  

Overuse injuries result from bouts of cyclic submaximal loading of the musculoskeletal system 

that cause microtrauma accumulation over time. When microtrauma from a given bout of loading is 

limited and biological structures are allowed adequate time for repair, they can positively remodel, 

becoming stronger and less susceptible to injury [1, 2]. In contrast, when successive bouts of cyclic 

loading occur before microtrauma can be repaired, microtrauma accumulation overwhelms repair 

processes, elicits negative remodeling, and increases injury risk [3, 4]. In single bouts of continuous cyclic 

loading, the relationship between load magnitude and the number of loading cycles to structure failure 

can be described by an inverse exponential relationship for soft tissue [5, 6] and an inverse power 

relationship for bone [7]. Due to this etiology, overuse injuries typically have a gradual onset without a 

single identifiable precipitating event [8]. 
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1.2. Running-related injury 

1.2.1 Running-related as a useful model of overuse injury 

One type of overuse injury that provides a particularly useful model for study is running related 

injury (RRI). Running provides a good model for study because it is (1) popular, (2) has high injury 

incidence, and (3) occurs across discrete bouts with relatively stereotyped repeated movements (cf. for 

ex. military settings where many different movement patterns could contribute to a single overuse 

injury).  

 

1.2.2 Popularity of running 

Recreational and competitive running participation has increased rapidly since the 1970s with 

45-65 million Americans now running a total of ~4.7 billion runs a year (Figure 1.1) [9, 10, 11, 12]. These 

participation rates make running the most popular physical activity in the US (other than walking) in 

terms of both the number of participants and the number of yearly outings [9, 10]. Participation in 

running also extends beyond recreational involvement; for example, indoor and outdoor track and field 

and cross-country have the highest participation rates of any sport at the high school and junior high 

school levels [13, 14]. This popularity extends across sexes and ethnic/racial groups, and running is 

relatively accessible to people across a range of socio-economic backgrounds [9]. This broad appeal has 

resulted in a multi-billion-dollar industry providing runners with shoes, apparel, and – more recently – 

wearable activity monitors [11, 15, 14]. 
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Figure 1.1: US running participation across time. Sources presented here [9, 10, 11, 12, 15, 16, 17] used relatively consistent 
methodology to sample at multiple time points. Units vary between sources and are presented in millions (blue) and tens of 
thousands (gold) on the left axis or percent of the total US population on the right axis (dark gray). 

 

1.2.3. Health benefits of running 

The popularity of running is due, in part, to running being a relatively accessible way to achieve 

healthy levels of physical activity and cardiovascular health benefits that reduce morbidity and mortality 

[18]. Indeed, running’s popularity can be seen as a boon for public health. Each year physical inactivity 

kills 3.2 million people and accounts for 36 million years lost to ill-health, disability, and early death 

world-wide [19]. Countering the effects of inactivity, weight bearing physical activities such as running 

have demonstrated health benefits across > 25 diseases including major killers such as cardiovascular 

disease, obesity, diabetes, and some cancers [18, 20, 21, 22, 23, 24]. 

 

1.2.4. High incidence of running-related injuries 

Unfortunately, in spite of the general health benefits of running, it also presents risks: 

Depending on the sample studied and the definition of “running” and “injury,”1 between 2.5 and 33 RRIs 

occur per 1000 hours of running [24, 25]. These RRIs may cause pain and reduce performance, cause a 

reduction or cessation of physical activity (~50% of runners lose 1-5 weeks of training per year due to 

RRI), can necessitate medical visits and expenditures (~30% of runners see a doctor for RRI a mean 4 

times per year), and can cause absenteeism from work (5% of runners lose time from work each year) 

[26, 27, 28, 29, 15, 30, 31, 32]. With millions of runners in the US, even the most conservative estimates 

of RRI incidence indicate there are millions of RRIs per year in the US. Unfortunately, each of these 

 
1 Typically, three different injury definitions are used: (1) any physical complaint/pain, (2) time-loss, and (3) medical attention [119, 
26, 334]. These three definitions may capture different information. For example, pain and time-loss definitions appear to 
represent separate constructs. Time lost is more conservative [26, 27, 115, 114], does not appear related to pain across various 
RRIs [116], and does not evince the same statistical relationships with other variables [117, 118]. Due to these discrepancies, 
reported incidences may vary widely based on the injury definition. 
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injuries comes with an expected monetary cost in the hundreds of dollars [31], creating a large financial 

burden:  

Equation 1.1: Conservative estimate of the financial burden of RRI in the US. The average runner reports running > 4 h per 
week [15], the lowest reported incidence of RRI is 2.5/1000 h [25], costs per RRI are estimated at 210 USD in a nation with 
socialized health care [31], and at least 45 million Americans run [11]. 

 
4 h/wk * 52 wks/yr = 208 h/yr 

208 h/yr * 2.5 RRI/1000 h = 0.52 RRI/yr 

0.52 RRI/yr * 210 USD/RRI = 109.2 USD/yr 

109.2 USD/yr * 45e6 US runners = 4.91e9 USD/yr 

 

To compound this problem, running injuries tend to recur (anywhere from ~20-70% of RRI recur) [33, 

34] meaning that these costs are also likely to recur and – once caught in this cycle of injury recurrence – 

runners may curtail their participation, adding to the already large number of sedentary individuals in 

the US [30, 35]. Thus, these RRIs create health and economic burdens, and prevent people from 

maintaining healthy levels of physical activity.  

 

1.3. Previous research on running-related injury 

Given these figures, preventing RRI is of considerable interest both for its immediate public 

health and economic implications and for its utility as a model of overuse injury more generally. To that 

end, much excellent research has been conducted on the causes and prevention of RRI. Unfortunately, 

despite ~50 years of research examining potential RRI risk factors, causal relationships have been 

difficult to establish. A host of biomechanical, anatomical, and life history variables have been 

investigated (see [33, 36, 37] for review and summary), however, no significant reduction in RRI 

incidence has been achieved [38] (e.g., in a 1992 review, 24-65% annual incidence was reported [37] cf. 
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[39, 25]). The risk factors of RRI remain difficult to identify [40, 41, 42, 43] and the incidence of RRI 

remains high suggesting that new strategies are needed [44, 39].  

In contrast to the breadth of variables that have been investigated, at the most basic level, 

animal [45, 46, 47, 48, 49, 50, 51], in silica [52, 53, 7, 54], and ex vivo [5, 6, 55, 56, 57, 58, 59, 60]  

evidence suggests that the mechanisms for RRI are bouts of loading with combinations of high load 

magnitudes and numbers that cause microtrauma accumulation and negative remodeling without 

sufficient time for repair between bouts [46, 59]. Indeed, while other risk factors may modify the loads a 

runner generates or their sensitivity to that loading, loading must occur to cause injury: A given risk 

factor can only cause RRI when loading reaches a threshold where it interacts with that factor [61]. 

Unfortunately, difficulty in measuring the in vivo loading of, and trauma to, injury-prone 

structures in humans [62, 63, 64, 65, 66, 67] has largely prevented researchers from directly 

investigating links between the internal loading of specific musculoskeletal structures and injury to 

those structures. To overcome this difficulty, biomechanists often assume that external loads imposed 

on the body are highly correlated with structure loading and are therefore associated with injury risk. 

Most notably, ground reaction forces (GRF; external forces imposed on the foot by the ground with each 

step) are often used as a surrogate measure for internal structure loading because they are the primary 

external force acting on runners. Unfortunately, evidence relating GRF and RRI is inconsistent and 

knowing a runner’s in-lab GRF appears insufficient to predict and prevent RRIs [68, 41]. 

One potential reason for this inconsistency is that GRF may not actually correlate well with 

structure loading: Although GRF contributes to structure loading, there are limitations to the 

assumption that external and internal loading are directly related. Indeed, relations between external 

and internal loading are complex and non-intuitive due to inter-individual variability in musculoskeletal 

forces and morphology [69]. Despite this variability, the loading profile imposed on a musculoskeletal 
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structure during running depends on the interaction between their structural properties, muscle force 

profiles, and – critically – the external GRF profile. Thus, it remains reasonable to assume that increased 

external loading translates into increased internal structure loading and that tracking GRF provides 

information essential to RRI prevention. Indeed, recent work has demonstrated that GRFs explain 94% 

of the variance in structure loading at the ankle during level-ground running [70]. Thus, during level-

ground running, GRFs may provide a reasonable surrogate of structure loading and injury risk. 

Another reason for the inconsistent relation between GRF and RRI may be that biomechanics 

research has largely been restricted to lab and clinical settings. Thus, inconsistencies in observed 

relations with RRI may be due, in part, to previous research largely estimating ‘representative’ 

biomechanics from the mean of a few stances or strides observed in lab settings [71, 72]. Such research 

is constrained in several ways: (1) biomechanics obtained in labs may not accurately represent 

biomechanics in the real world [73]; (2) biomechanics may change throughout a repetitive task; for 

example, fatigue can alter biomechanics across long, exhausting runs [74, 75]; and (3) metrics based on 

a single representative stride tell an incomplete story that ignores the number of loads actually 

experienced by runners (a variable theorized to play a critical role in RRI causation [76, 61]) and are thus 

likely insufficient to predict RRI [77, 72, 78, 79, 80]. Therefore, extrapolation of lab-based, single-stride 

results may not realistically represent the number or magnitude of loads actually experienced by 

runners in the real world. Thus, lab-based observations may not be generalizable to real world behavior, 

undermining the ecological validity of extant findings and potentially explaining the failure to identify 

the causal factors of RRI [73].  

Finally, with few exceptions, the bulk of biomechanics research to-date has been cross-sectional 

or retrospective. These types of investigations are limited and cannot establish causal relations between 

biomechanics and injury. Prevention hinges on understanding causal relationships between risk factors 
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and injury [81] which requires accurately quantifying loading profiles in prospective and ecologically 

valid designs.  

 

1.4. A novel approach to studying running-related overuse injuries 

The difficulty in identifying RRI etiology has led to a realization that new methods are required. 

Although RRIs are caused by complex multifactorial interactions, recent perspectives advocate that RRIs 

are always precipitated by an instance in which the combination of load magnitudes and numbers 

exceed a musculoskeletal structure’s capacity [61]. This perspective leads to two conclusions: 1) both 

load magnitudes and numbers must be quantified as they most directly cause RRI, and 2) it is critical to 

control for loading even when investigating other risk factors—a given risk factor only causes injury 

when loading is increased to the point where it interacts with that factor. Thus, researchers interested in 

RRI must quantify runners’ loading profiles (load magnitude-number combinations).  

To this end, several approaches have been developed to expand on single-stride loading metrics. 

Notably, ‘per-unit-distance’ and ‘cumulative loading’ metrics integrate waveform magnitudes within a 

stance to calculate load, then sum integrals across loading cycles [71, 72, 82, 83, 84, 85].  

Equation 1.2: Where lc is the cumulative load, li is the loading integral at stance i, x is a weighting factor based on human 

musculoskeletal structure properties, and n is the total number of stances. 

𝑙𝑐 = ∑ 𝑙𝑖
𝑥

𝑖=𝑛

𝑖=1

 

 

These newer cumulative loading metrics promise to quantify runners’ entire loading profiles, 

representing much more data than is captured in a single, representative stride. In contrast to single-
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stride measures, cumulative loading represents loading profiles across large time periods by integrating 

waveform magnitudes across a stance to calculate load, then summing loads across multiple stances.  

Findings from these studies have shown potentially non-intuitive results not predicted by single-

stride metrics. For example, although reducing stride length decreased ankle joint loading during a 

single stance, across a 5 km run it increased cumulative loading [72]. Thus, in agreement with the 

conceptual model presented here, these novel approaches highlight the importance of broadening the 

focus from single-stride metrics to include repetitive loading in RRI research. To date, however, this 

approach has been limited to labs or simulations as there are currently no methods to collect cumulative 

loading in the field.  

In this dissertation, I report a series of studies that advance this novel cumulative loading 

approach beyond lab and in silica settings and into ecologically valid real-world settings. These studies 

allow quantification of loading profiles over long time periods, in ecologically valid settings overcoming 

both the limitations of current lab-based single-stride GRF estimation approaches and current 

limitations of cumulative loading approaches. To do so, these dissertation studies use wearable activity 

monitors to estimate stance-by-stance external loading, allowing the entire loading profile of runners to 

be captured in the real-world. The assessment of runners’ entire loading profiles, calculated from 

activity in the natural environment, offers ecologically valid data that can be used to quantify RRI risk, 

and may have tremendous implications for reducing RRI. 

The advent and adoption of wearable activity monitors offers a promising way forward. 

Although commercially available products are not capable of measuring external loading, previous work 

from the UC Davis Human Performance Lab has demonstrated the potential for wearable activity 

monitors to collect novel and meaningful loading metrics. These studies have pioneered methods that 

overcome the limitations of the lab, estimating external loading from wearable activity monitors [86, 
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87]. In these studies, participants wore hip-mounted activity monitors and ran over-ground, while 

acceleration (from the activity monitor) and force (from force plates) were collected simultaneously. 

Vertical ground reaction force (vGRF) and acceleration peaks for the stance ipsilateral to the activity 

monitor were used to develop models that estimate peak ipsilateral vGRF from peak vertical 

acceleration. Using separate subsets of participants, the accelerometer-based vGRF estimation models 

were validated and showed impressive agreement with the ‘gold-standard’ force-plate-observed vGRF 

peaks: A model for youth estimated peak vGRF within 5.2% of observed vGRF values [86] while a model 

for adults estimated peak vGRF within 8.3% of observed values [87]. The validity of these models 

suggests external loading can be accurately estimated from wearable activity monitors, allowing 

calculation of loading profiles over long time periods in real-world settings.  

Other work has shown that the number of loading cycles can be estimated from wearables. For 

example, using a sacrum-mounted activity monitor, Lee et al. [88] measured stride, step, and stance 

times during running with biases ≤ 1 ms. 

 

Figure 1.2: Illustration of the difference between actual values and those predicted with accelerometer-based estimations. 
(A) Peak vGRF was estimated using multiple linear regression with factors of peak vertical acceleration, mass, and type of 
locomotion (walk/run). The regression equation estimated peak vGRFs within 8.3 ± 3.7% of force plate-measured values (mean 
± SD) [87]. (B) Sacrum accelerations were used to estimate stride times with biases < 1 ms when compared to motion capture 
(adapted with permission, Lee et al. [88], adapted with permission). 
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In this dissertation, I expand on these approaches in a series of five studies: First, using currently 

available methods to estimate stance and force, I conduct a proof-of-concept in a small sample of elite 

runners showing that cumulative loading relates to injury. Second, I validate and compare extant 

methods for estimating the number of loads (stances or strides) from a wearable accelerometer across a 

broad range of conditions and a large heterogeneous sample. Third, I validate and compare extant 

methods for estimating the external loads from a wearable accelerometer across a broad range of 

conditions and a large heterogeneous sample. Fourth, I quantify the potential impact that misplacement 

of a wearable sensor can have on estimated numbers and magnitudes of loads. Fifth, and finally, I build 

on the initial proof-of-concept by applying the improved methods discovered in studies two and three to 

a larger, more heterogeneous sample over a longer period of time. 

By combining these approaches to estimate number and magnitude of loads experienced by 

runners in the real world, the current dissertation overcomes critical barriers of lab-based research. This 

novel approach allows us to test the hypothesis that GRF magnitudes and numbers measured in the real 

world can be used to calculate cumulative loads that predict RRI. 

 

1.5. Potential impacts of this novel approach 

In comparison to capturing single representative stances in-lab, these approaches will better 

capture the repetitive loading that leads to overuse injury and the true range and variance of GRF 

magnitudes and numbers both within- and between-runners. If no differences are observed between 

injured and uninjured runners, it would suggest that GRF measurements are insufficient to predict injury 

even when accounting for the repetitive loading that causes overuse injury and collecting data in real-

world settings. This finding would support the contention that GRFs are not well correlated with the 
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loading of injury prone structures and suggest that new methods to measure—or new surrogates of—

structure loading are needed. If, however, significant differences between injured and uninjured runners 

are observed, it would suggest that GRFs—when measured appropriately—can be used to predict RRI. 

Such findings would allow us to establish injury risk thresholds and explore the relative importance of 

GRF numbers and magnitudes to injury development. Ultimately, positive findings could be used to 

monitor runners’ loading profiles and provide feedback to prevent RRI by avoiding ‘high risk’ running 

behaviors. 
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2. Accelerometer-based prediction of running injury in National Collegiate Athletic 

Association track athletes 

 

2.1. Introduction 

Long distance runners experience high rates of running-related injury (RRI), musculoskeletal 

overuse injuries causing a restriction of running speed, distance, duration, or frequency [77]. Depending 

on the population studied and the methods used to diagnose injury, incidences range from 6.9 to 92.4% 

per 1000 hours of running [89, 39, 44]. In addition to negatively affecting performance, these RRIs lead 

to both direct (e.g., health care), and indirect (e.g., time lost) costs [31]. With approximately 51.5 million 

Americans running [9] these injuries constitute a large health and economic burden. Thus, developing 

means to predict and prevent RRI can have meaningful health and economic impacts.  

Overuse injuries such as RRI result from bouts of cyclic loading that cause microtrauma 

accumulation over time. When microtrauma from a given bout of loading is limited and biological 

structures are allowed adequate time for repair, they can positively remodel, becoming stronger and 

less susceptible to injury (e.g., [1, 2]). In contrast, when successive bouts of cyclic loading occur before 

microtrauma can be repaired, microtrauma accumulation overwhelms repair processes, elicits negative 

remodeling, and increases injury risk (Fig. 2.1) [3, 4, 52, 53]. In single bouts of continuous cyclic loading, 

the relationship between load magnitude and the number of loading cycles to structure failure can be 

described by an inverse exponential relationship for soft tissue [5, 6] and an inverse power relationship 

for bone [7]. In running, vertical ground reaction forces (vGRFs) are often used as surrogate measures 

for structure loading. As discussed by Miller and Hamill [69], however, relationships between external 

and internal loading are complex and non-intuitive due to inter-individual variability in muscle forces 

and structure morphology. Despite this variability, vGRF is the primary external force acting on runners 
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and it is reasonable to assume that increased external loading translates into increased structure 

loading. Thus, the mechanisms for RRI can be conceptualized as a combination of vGRFs (load 

magnitudes) and strides (load cycles) that cause microtrauma to a musculoskeletal structure, with 

insufficient time for recovery between runs (bouts of loading) [90, 91, 92, 77, 76].  

 

Figure 2.1: Conceptual representation of changes in a musculoskeletal structure’s strength elicited by the interaction between 
the number of cycles in a bout of activity, the magnitude of loading in the bout, and the time between bouts. During the first 
three bouts of loading, the number and magnitude of loading cycles are low and adequate time is allowed for positive 
remodelling; thus, the structure’s strength increases and the likelihood of injury decreases. In contrast, during the last three 
bouts, the number and magnitude of loading cycles increases and insufficient time between bouts is allowed for positive 
remodelling; thus, the structure’s strength decreases and injury risk increases. 

 

In spite of this theoretical rationale and much high-quality research, findings relating vGRF and 

RRI are inconsistent (e.g., [68, 41]). This inconsistency may be due in part to previous research largely 

focusing on relationships between RRI and load magnitudes determined from single representative 

stances or strides observed in laboratory settings [71, 72]. Such research is constrained in several ways: 

(1) loading data obtained in laboratories may not accurately represent loading in the field [73]; (2) 

loading may change throughout a repetitive task; for example, fatigue can alter biomechanics across a 

long, exhausting run [74, 75]; and (3) given the importance of repetitive loading in overuse injury, 

metrics based on a single representative stride tell an incomplete story and are likely insufficient to 
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predict RRI [78, 79, 80, 77, 72]. Therefore, extrapolation of lab-based, single-stride results may not 

realistically represent the number or magnitude of loads actually experienced by runners.  

Several approaches have been developed to expand on single-stride metrics. Edwards et al. [53] 

proposed a ‘stressed-life’ method in which the probability of positive and negative remodeling, and 

consequent tibial stress fracture risk, were estimated as a function of bone strain, number of strides, 

and structure adaptation. Although extremely useful in elucidating the role that repeated loading plays 

in RRI, modeling demands and assumptions limit this approach. More easily applied ‘per-unit distance’ 

and ‘cumulative loading’ metrics integrate waveform magnitudes within a stance to calculate load, then 

sum integrals across loading cycles [71, 82, 83, 72, 84, 85]. Findings from these studies have shown 

potentially non-intuitive results not predicted by single-stride metrics. For example, although reducing 

stride length decreased ankle joint loading during a single stance, across a 5 km run it increased 

cumulative loading [72]. Thus, in agreement with theory, these novel approaches highlight the 

importance of broadening the focus from single-stride metrics to include repetitive loading in RRI 

research.  

Wearable activity monitors provide the opportunity to broaden the focus from lab-based single-

stride metrics. These devices may be capable of non-invasively capturing loading profiles (load 

magnitude-number combinations) throughout entire runs in the field. For instance, to obtain 

ecologically valid estimates of peak vGRFs outside the lab, Neugebauer et al. [86, 87] simultaneously 

collected accelerations from hip-mounted activity monitors and GRFs from force plates. With a hold-

back procedure, one group of participants was used to develop a multiple linear regression relating peak 

vertical acceleration, mass, and type of locomotion (walk/run) to log-transformed peak vGRF. A second 

group of participants was used to validate that this equation estimated peak vGRFs within 8.3 ± 3.7% of 

force plate-measured values (mean ± SD) (Fig. 1.2A). Other research groups have successfully used 

activity monitors to measure temporal parameters during running (e.g., [93, 94, 95, 96, 97]). For 
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example, using a sacrum-mounted activity monitor, Lee et al. [88] measured stride, step, and stance 

times during running with biases ≤ 1 ms (Fig. 1.2B).  

Here, we combined accelerometer-based methods developed to estimate stride parameters 

[88] and peak vGRF [87] and quantified loading profiles throughout entire runs of elite track athletes. 

We quantified both traditional metrics (number of strides, peak vGRF magnitudes) and a cumulative 

loading metric and evaluated their relationships to RRI. We hypothesized that runners exhibiting large 

cumulative loading based on combinations of high peak vGRF and/or high numbers of strides were more 

likely to develop RRI. 

 

2.2. Methods  

2.2.1. Participants  

Ten National Collegiate Athletic Association Division I runners competing in distance events 

were recruited from the University of California Davis Men’s Track Team. One participant was excluded 

from analyses due to non-compliance, resulting in a final sample of nine (Table 2.1). Participants were 

excluded if they suffered a major injury within the past 12 months (physician diagnosed injury 

preventing training for ≥ 2 months) or a minor injury with a return-to-training less than six weeks before 

the study (trainer or self-diagnosed injury preventing training for ≥ 1 month). The University of California 

Davis Institutional Review Board approved all procedures and participants provided written informed 

consent.  

Table 2.1: Participant characteristics (mean ± SD). Injured participants were significantly older than uninjured participants (*p = 
0.02) but were otherwise statistically similar (ps > 0.05). 

 n Age (years)* Weight (N) Height (cm) 

All participants 9 18.7 ± 1.0 629.37 ± 71.35 178.4 ± 4.6 
Uninjured participants 6 18.2 ± 0.4 599.23 ± 64.0 178.3 ± 4.1 

Injured participants 3 19.7 ± 1.2 689.64 ± 44.15 178.6 ± 6.4 
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2.2.2. Training prescriptions  

Data were collected during training runs over a 60-day period during the Track and Field season. 

Coaches provided schedules prescribing daily training for individual participants. Running prescriptions 

for each training session were coded based on prescribed training time and optional training time (scale 

variables), whether the training was middle- or long-distance, self-supervised, contained high intensity 

portions (e.g., sprints), included a pre-race routine, and/or included any otherwise undescribed training 

(categorical variables).  

2.2.3. Training questionnaires  

After each training session, participants rated their overall pain/fatigue (Table 2.2), reported 

whether they completed the prescribed training session, and, if they did not, described the reason. If 

failure to complete training was due to RRI, participants provided details on injury location and severity.  

Table 2.2: Pain/fatigue scale. After each training session, participants rated overall musculoskeletal pain/fatigue on a scale of 
integers from 1 to 9. 

Quantitative Rating Qualitative Description 

1 No pain or fatigue. Your muscles/bones feel as though they are at optimal training 
levels. 
 

3 Minimal pain or fatigue. You feel slightly less than optimal, but you still feel as 
though you can complete a rigorous work out. 
 

5 Moderate pain or fatigue. You have noticeable pain/fatigue in your muscles/bones, 
but feel as though you could complete an average workout. 
 

7 High pain or fatigue. You have a significant level of pain/fatigue and feel as though 
you would have difficulty completing an average workout. 
 

9 Extreme pain or fatigue. You have extreme pain/fatigue in your muscles/bones and 
do not feel as though you could complete a workout. 

 

2.2.4. Accelerometer data  

Each participant was assigned an activity monitor with a tri-axial linear accelerometer (Fig. 2.3A) 

(ADXL345, Analog Devices, Norwood, MA; ± 8 g; 48.4-52.4 Hz, twice the frequency observed in vGRFs 

during running; [98]). Participants were instructed on activity monitor use and wear. Before each 
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training session, participants fixed the monitor to their lateral right iliac crest with a neoprene belt and 

turned it on (Fig. 2.3B and 2.3C). Participants wore the monitor throughout the entire training session, 

turning it off and automatically generating a time-stamped data file after the session was complete. 

Each week, researchers collected data and ensured monitor function.  
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Figure 2.3: Illustration of the approach used to quantify hip acceleration. The activity monitor including accelerometer, 
battery, microcontroller, and memory card (A) was placed in a neoprene belt (B) and secured to the runner’s lateral right iliac 
crest (C). 

 

Custom MATLAB scripts (R2016a, The MathWorks, Natick, MA) were used to extract unfiltered 

accelerometer data. The DC component was calculated during a 30 s static period and subtracted from 

the signal, and monitor-specific calibrations were applied, yielding output in “gs” relative to a reference 

frame aligned with the activity monitor housing and participant [99]. The anterior-posterior axis was 

used to identify right and left foot strikes [88]. Left stances (contralateral to the monitor) were 

discarded. Peak vertical accelerations during right stances were extracted and entered into a regression 

equation to estimate right stance peak vGRF [87]. Data were collected throughout an entire training 

session and could include warm up drills, stretching, breaks in running to wait at traffic lights, etc. Thus, 

published stride times and peak vGRF magnitudes were used to eliminate data ± 3 SD outside the ranges 

expected for running [100, 101, 102, 103, 104, 105, 106, 107, 75]. Periods evincing vGRF magnitudes and 

stride times within expected ranges but with < 10 consecutive strides were also eliminated to ensure 

participants had achieved steady running speeds and that pattern recognition algorithms were not 

biased by aberrant waveforms. Periods of running with ≥ 10 strides were concatenated for analysis.  

Mean peak vGRF and total number of strides were calculated for each training session. Data 

were grouped by training prescription and evaluated for outliers exceeding ± 2 SD of prescription mean 

number of strides (e.g., Fig. 2.4A). High outliers were considered real and complete data but 

misrepresentative of the prescription (i.e., the participant violated the coach’s instructions and ran 

longer than prescribed); thus, prescription data were removed to avoid biasing imputation (see below; 

1.67% of data). Low outliers were considered potentially incomplete data collections (i.e., the 

accelerometer turned off during data collection); thus, peak vGRF and number of strides were deleted 

and imputed (see below; 2.15% of data).  
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Figure 2.4: Comparison of known and imputed data for number of strides and peak vGRF. Mean (black line) and 95% CI 
(colored bar) of (A) number of strides, and (B) estimated peak vGRF for known and imputed data from two representative 
training prescriptions: a 95-min training session and a 45-min training session with high intensity portions. Note that consistent 
with expectations there are (1) no significant differences between known and imputed data, (2) significantly more strides for 
the longer prescribed training session, and (3) a trend to higher vGRF for the shorter prescribed training session with high 
intensity portions. Gray dots represent individual data points (training sessions). 

 

2.2.5. Multiple Imputation  

A total of 419 training sessions were prescribed, however, item non-response (e.g., the 

participant forgot to turn on the accelerometer or fill out the questionnaire) or outlier deletion caused 

the loss of 22.4% of accelerometer and 43.4% of pain/fatigue data. Consistent with recommendations 

for the use of accelerometers in measuring physical activity [108, 109], missing data were multiply 

imputed using prescribed training, participant anthropometrics, and accelerometer variables, and 

assuming that data were missing at random. Multiple imputation uses associations with observed data 

to generate multiple plausible values for each missing data point. Each of these multiple plausible data 

sets is then separately analyzed and analyses are pooled. This procedure minimizes bias and results in 

valid statistical inferences that reflect the uncertainty due to missing values. Here, 50 imputed data sets 

were generated with SPSS (v24.0, IBM Corp., Armonk, NY) and pooled for analysis using Rubin’s rules 
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[110]. To evaluate imputation accuracy, a second imputation was conducted where known data were 

deleted from two representative prescriptions. Imputed values for deleted data were not significantly 

different than original data (evaluated with uncorrected paired t-tests with significance set at p < 0.05) 

(Fig. 2.4).  

 

2.2.6. Analyses  

After imputation, mean estimated peak vGRF and number of strides per training session were 

calculated for each participant. Based on the S-N curve of tendon, an ‘effective’ load for soft-tissue 

injury was calculated by weighting the peak vGRF to the 9th power [84]. Weighted peak vGRFs were 

summed across each training session and a mean weighted cumulative load per training session was 

calculated. Participants were separated into injured (missed training due to self-reported RRI) and 

uninjured (no missed training due to RRI) groups. Injured and uninjured mean pain/fatigue, mean 

estimated peak vGRF, mean strides per training session, and mean weighted cumulative loading per 

training session were entered into independent samples t-tests. Significance was set at p < 0.05 and 

corrected with a False Discovery Rate procedure [111].  

 

2.3. Results 

2.3.1. Injury  

Across the 60-day study, three participants (33%) lost training time to self-reported foot, 

adductor, and hamstring soft-tissue RRIs with 7, 10, and 33 training days lost respectively. Injured 

participants were significantly older than uninjured participants (p = 0.02) but did not significantly differ 

in height or weight (evaluated with uncorrected independent samples t-tests with significance set at p < 

0.05) (Table 2.1).  
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2.3.2. Pain vs. injury  

Injured and uninjured participants did not report significantly different pain/fatigue (p = 0.56). 

This result suggests that high subjective pain/fatigue may not predict impending RRI and highlights the 

need for additional objective metrics (Fig. 2.5A; Fig. 2.6A).  

 

Figure 2.5: Outcome metrics for injured and uninjured runners. Mean (black line) and 95% CI (colored bar) of (A) pain, (B) 
mean number of strides per training session, (C) mean estimated peak vGRF, and (D) mean weighted cumulative load (sum of 
estimated peak vGRF weighted to the ninth power) per training session. Gray dots represent individual data points (participant 
means). 
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Figure 2.6: Relations between loading profiles, pain, and injury. (A) Each participant’s mean estimated peak vGRF vs. strides 
per training session. Color represents mean reported pain/fatigue. Thickness of encircling red line represents time lost due to 
injury (if any). (B) Empirical data coded as 0 for uninjured and 1 for injured and interpolated to conceptualize injury risk across a 
generalizable range of peak vGRF and strides/training session. Color represents chance of injury over two-months on a scale 
from 0 (not predicted to incur injury) to 1 (predicted to incur injury). 

 

2.3.3. Biomechanics vs. injury  

Mean number of strides per training session did not differ between injured and uninjured 

participants (p = 0.91) (Fig. 2.5B). Injured participants did, however, have significantly greater mean 

estimated peak vGRF (p = 0.01) (Fig. 2.5C) and mean weighted cumulative loading per training session (p 

< 0.01) (Fig. 2.5D). Injured runners also appeared as outliers when plotted on a mean estimated peak 
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vGRF vs. mean strides per training session graph, suggesting greater injury risk at combinations of high 

loads and magnitudes (Fig. 2.6A). Participant’s chance of injury across two months was coded as 1 for 

injured and 0 for uninjured then interpolated across a generalizable range of peak vGRF and stride 

number combinations. This process resulted in a contour pattern similar to the curves of Davis’/Wolfe’s 

Laws [112, 113] (Fig. 2.6B), illustrating that the risk of injury increases when high load magnitudes are 

repeatedly applied.  

 

2.4. Discussion  

In this study we used wearable activity monitors to prospectively measure runners’ loading 

profiles in the field. We found that injured runners had higher estimated peak vGRFs and weighted 

cumulative loads than uninjured runners. To our knowledge this is the first study to (1) apply 

accelerometer-based estimates of peak vGRF and stride number to RRI prediction in a prospective 

sample, and (2) empirically validate cumulative loading metrics in RRI prediction. These novel results 

suggest that the accelerometer-based models used here are capable of capturing inter-participant 

differences in loading profiles that may be predictive of RRI. These findings support both popular and 

emerging theories in RRI research: namely, that high vGRF magnitudes may be a contributing factor in 

RRI as speculated by Cavanagh & Lafortune [100] and others, and that cumulative loading metrics may 

be a valid index of RRI risk (e.g., [83]). Further, the methods used here show promise in identifying safe 

limits of loading that could allow coaches and athletes to develop and adapt training prescriptions based 

on individual athlete loading profiles.  

The development of objective metrics similar to those presented here appears critical given the 

high incidence of RRI [89, 39, 44] and apparent disconnect between subjective pain/fatigue and RRI. 

Although pain has been used to define RRI elsewhere, when RRI is instead defined as training time lost, 
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these variables appear to represent separate constructs. Indeed, time lost appears to be a much more 

conservative definition of injury [26, 114, 27, 115], does not appear related to pain across various RRIs 

[116], and does not evince the same statistical relationships with other variables as pain [117, 118]. 

Similarly, the present finding that injured runners did not report higher pain/fatigue, suggests that 

runners may be insensitive to impending injury. Indeed, it should be noted that injured runners actually 

tended to report lower pain than uninjured runners (mean 3.4 uninjured vs. 3.1 injured). Given the 

limited power in the present analysis and the risk of Type II error, however, we cannot rule out that 

sensitivity to pain may be protective, allowing runners to adapt motor patterns and avoid injury. In any 

case, subjective pain alone appears insufficient to predict time-loss injuries, highlighting both the 

important role that providing biomechanics-based feedback about RRI risk could play and the 

importance of discretely reporting injury as operationalized by medical, time-loss, and pain definitions 

to facilitate comparison across studies [119].  

The activity monitor-derived objective metrics used here address several constraints in current 

biomechanics research. In the past, biomechanics research has largely been restricted to lab and clinical 

settings. This restriction has undermined the ecological validity of findings given lab-based observations 

may not be generalizable to real world behavior [73]. Further, the constraints of the lab have prevented 

accurate measurement of the number of loads actually experienced by runners – a variable theorized to 

play a critical role in RRI causation [76, 61]. The current results join an emerging body of literature (e.g., 

[120, 120, 121, 122, 123, 124]) that demonstrates the role activity monitor-based methods may play in 

overcoming previous constraints and collecting large ecologically valid data sets.  

The results presented here were largely consistent with our hypotheses; however, the number 

of strides per training session did not significantly differ between injured and uninjured participants. 

Participants in the present study were elite athletes with training regimes highly constrained by coach’s 

prescriptions. Thus, all participants ran for similar amounts of time and there was relatively little inter-
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participant variability in the number of strides. It seems likely that in an unconstrained population, such 

as recreational runners, the number of strides completed in each training session would vary greatly; in 

which case, the number of strides might play a larger role in RRI. Further research with more 

heterogeneous samples is required to more fully investigate the role of stride number and cumulative 

loading in RRI.  

The homogeneity of the present sample was, however, beneficial in constraining the time 

between training sessions. As outlined in the introduction, repeated bouts of loading play a key role in 

RRI causation, since adequate time is required between bouts for positive remodeling of injury-prone 

structures (Fig. 2.1). In spite of this key role, the present analyses focus on metrics across a mean 

training session, largely ignoring the role of repeated bouts of loading. We feel this decision is justified 

given the highly constrained training prescriptions in our sample: injured and uninjured participants 

trained 85.8% and 85.6% of potential days respectively, and times between training sessions were 

extremely similar. Thus, variability in the number of, and time between, bouts likely has little impact on 

the present results, and taking means across training sessions captures critical differences. In a more 

variable sample, however, it seems likely that the time between bouts could play a large role in RRI. This 

role could be captured either by identifying critical time periods over which load accumulates to cause 

RRI (e.g., the ratio of workload across one week relative to workload across four weeks predicts non-

contact injury [125]; though this method is controversial; cf. [126]), by calculating a daily probability of 

injury in a given structure based on the probability of positive and negative remodeling as a function of 

estimated structure loading, number of strides, and structure adaptation (e.g., [53]), or by applying 

Miner’s Rule to calculate cumulative damage (e.g., [85]). Enacting these potential methods requires 

further research to determine mathematical associations between external loading conditions, internal 

structure loading, microtrauma accumulation, the temporal healing response, and RRI.  
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The present investigation represents a preliminary proof-of-concept application of novel 

methods. Although we observed promising results, there are a number of methodological refinements 

that could improve the techniques used here. For example, some evidence suggests the magnitude 

and/or rate of loading associated with the first peak of the vGRF waveform is more predictive of RRI 

relative to the magnitude of the second peak (e.g., [68, 41] cf. [127, 128, 129]). The method used here is 

unable to discriminate between the two peaks; rather, absolute peak acceleration is used to estimate 

absolute peak vGRF. Further, previous studies quantifying cumulative loading have summed waveforms 

integrated across stance [71, 82, 83, 72, 84, 85]. Methodological limitations prevented the use of an 

integral in the current study; instead, we summed peak vGRFs. Though this method captures 

information about the number and maximum magnitude of loads, potentially important information 

about loading throughout the entire gait cycle and/or the load duration is lost. Finally, given the 

preponderance of unilateral RRIs [39] and the potential role bilateral asymmetries play in RRI (e.g., 

[130]), methods to calculate loading and RRI separately for each limb should be developed. These, and 

other, methodological improvements should be considered as the field of activity monitor-based 

biomechanics develops.  

In sum, we observed significantly different loading profiles between injured and uninjured track 

runners across a 60-day prospective period. These promising preliminary results provide evidence that 

further work in this area is warranted. Follow up studies should build on the current methods and collect 

data from larger, more heterogeneous, samples. Calculating critical time periods over which load 

accumulates to cause injury and/or calculating rolling probabilities of injury based on loading may lead 

to the development of thresholds for RRI based on athlete-specific loading histories. Such results would 

help refine injury prediction models and provide the evidence necessary to develop adaptive feedback 

and training prescriptions that account for the mechanics and loading profiles of individual runners.  
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3. Unsupervised gait event identification with a single wearable accelerometer and/or 

gyroscope: A comparison of methods across running speeds, surfaces, and foot strike 

patterns 

 

3.1. Introduction 

In this paper we explore the accuracy and precision of different methods to identify gait events 

during human running using a single wearable device (accelerometer, gyroscope, or inertial 

measurement unit). Identifying when the foot contacts and leaves the ground—the initial contact (IC) 

and terminal contact (TC) gait events, respectively—allows biomechanists to break the cyclic 

movements of running into discrete phases. Identifying IC and TC events allows the analysis of basic but 

highly useful temporal variables like stride (right IC to right IC or left IC to left IC), step (right IC to left IC 

or left IC to right IC), stance/contact (right IC to right TC or left IC to left TC), swing (right TC to right IC or 

left TC to left IC), and flight/float (right TC to left IC or left TC to right IC) times and frequencies (1/time) 

(Figure 3.1). These basic temporal variables are critical in the analysis and prediction of running speed 

and performance [131, 132, 133, 134]. Segmenting running into these discrete phases also forms the 

starting point for many more advanced biomechanical analyses that quantify and compare kinematic or 

kinetic features’ means and variances. Thus, accurately identifying IC and TC events is a critical first step 

in the analysis and evaluation of running. 
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Figure 3.1: Gait phases defined by initial contact (IC) and terminal contact (TC) gait events. Left arm and leg represented in 
blue; right arm and leg represented in orange; trunk represented in green. 

 

IC and TC events can be accurately identified with relative ease and reliability in labs using 

ground truth force plates or instrumented treadmills. Further, several methods have been developed to 

identify these gait events from lab-based motion capture [135, 136, 137, 138]. However, lab settings 

impose constraints on data collection: Force plates, instrumented treadmills, and motion capture 

systems require participants to visit a biomechanics lab, are expensive, and require training to operate, 

process, and analyze. These ‘captive’ systems may also cause participants to alter their gait (e.g., 

treadmill or short running track) and may limit the volume of data collection to just a few gait cycles 

[139, 140, 141, 142]. Thus, ‘captive’ systems can only provide ‘snapshots’ of data that may decrease 

ecological validity, limiting biomechanists’ ability to monitor changes over time or investigate 

phenomena that occur across many gait cycles such as fatigue, movement variability, or overuse injury 

[143]. Advances in technology such as instrumented insoles have allowed biomechanists to overcome 

some of these constraints but suffer from their own issues with durability and comfort [144]. 

Consequently, researchers remain largely reliant on ‘captive’ technology, decreasing the volume and 

ecological validity of running data available for analysis. 
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The emergence of small, low-cost accelerometers, gyroscopes, and inertial measurement units 

(IMUs) (collectively called ‘wearables’ for the remainder of this paper) may offer a new way forward 

[145]. These portable sensors can be used by researchers, clinicians, coaches, and athletes to 

continuously record data during prolonged runs in natural environments. Wearables have high rates of 

adoption in runners [15] and have already demonstrated accuracy in measuring or estimating several 

biomechanical parameters including gait events [146, 145, 147]. Based on these promising findings, our 

objective was to identify and evaluate wearables-based methods of gait event identification that met 

two criteria: (1) The method needed to minimize system complexity by relying on data from a single 

wearable located on the shank or sacrum/low-back (in contrast to sets of multiple wearables), and (2) 

the method needed to be automated, using an unsupervised processing code to prevent bottlenecks 

caused by manually processing thousands or millions of gait events.  

In line with this objective, we identified 18 candidate methods (Table 3.1; see Supplement 3 for 

further description of each method). Each of these methods represents a promising approach for in-field 

gait event identification, however, comprehensive comparisons of these methods have not been 

conducted, leaving users with little guidance on selecting the best method for their application. Further, 

most methods have at least one of the following limitations: Most methods were developed and 

validated (1) using a small sample (11 ± 13 mean ± SD; 1-54 range), (2) using a narrow range of running 

speeds, (3) using a single running surface, (4) without accounting for foot-strike kinematics, and (5) 

without adequate synchronization between wearable data and a ground truth reference. These 

limitations decrease the confidence with which we can apply these wearables-based methods broadly 

across conditions and participants.  

To address these limitations and help users make an informed decision about which of the many 

available methods to use for their application, we attempted to replicate each method using code 

provided by the authors, by directly contacting the authors to acquire code, or by following descriptions 
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in the papers to produce new code (code for each method available at 

https://github.com/DovinKiernan/REID_IMU_Running_Event_ID). We then evaluated each method to 

determine how well it could identify IC and TC events from a large sample that was collected across a 

range of running speeds, surfaces, and foot strike angles. To do so, we quantified: (1) how often each 

method failed to identify gait events, (2) the method’s accuracy (bias), (3) precision (error variance), (4) 

the effects of speed, surface, and foot strike angle on accuracy, and (5) the time required to execute 

each method. 

https://github.com/DovinKiernan/REID_IMU_Running_Event_ID


 
 

Table 3.1: Summary of methods to identify gait events from running using data from a single wearable on the shank or sacrum/lower back. 1 
Sensor 

location 
Method Sample 

Foot-
strike 

Speed Surface Placement Signals 
Sampling 
frequency 

Events Ground truth Sync 
Sh

an
k 

Mizrahi [148] 
n = 14 (14 M) 

Healthy 
NR 3.5 m/s Treadmill Tibial tuberosity 𝑎𝑊𝐶𝑆,𝑌 1667 Hz IC None N/A 

Mercer [149] 
n = 10 (10 M) 

Healthy 
NR 3.1 - 3.8 m/s Treadmill 

Anteromedial 
distal tibia 

𝑎𝑊𝐶𝑆,𝑌 1000 Hz IC, TC None N/A 

Purcell [150] 
n = 6 

Healthy 
NR 

SS jog, run, & 
sprint 

Overground 
Anteromedial 

distal tibia 
𝑎𝑊𝐶𝑆,𝑋,𝑌,&𝑍 250 Hz IC, TC 

Forceplate 
1000 Hz 

TTL pulse 

Aminian/O’Donovan 
[151, 152] 

n = 1 (1 M) 
Healthy 

NR SS jog Overground Shank 𝜔𝑆𝐶𝑆,𝑍 102.4 Hz IC, TC 
MoCap 
200 Hz 

TTL pulse 

Greene/McGrath 
[153, 154] 

n = 5 (4 M; 1 F) 
Healthy 

RF 0.6 - 3.3 m/s Treadmill 
Anterior aspect 

of mid shank 
𝜔𝑊𝐶𝑆,𝑍 102.4 Hz IC, TC 

MoCap 
200 Hz 

TTL pulse 

Sinclair [155] n = 16 (11 M; 5 F) RF 4.0 ± 0.2 m/s Overground 
Anteromedial 

distal tibia 
𝑎𝑊𝐶𝑆,𝑌 1000 Hz IC, TC 

Forceplate 
1000 Hz 

Synchronous 
recording 

Whelan [156] 
n = 7 (3 M; 4 F) 

National &  
International sprinters 

NR ≤ 50% max effort Overground 
Anteromedial 

mid-tibia 
𝑎𝑊𝐶𝑆,𝑋 148.2 Hz IC 

Forceplate 
1000 Hz 

TTL pulse 

Norris [157] 
n = 6 (1 M; 5 F) 

Recreational 
NR 

SS half-
marathon 
training 

Overground 
Anteromedial 

distal tibia 
𝑎𝑊𝐶𝑆,𝑍 204.8 Hz IC None N/A 

Schmidt [158] 
n = 12 (10 M; 2 F) 

Track and Field athletes 
NR SS sprint Overground 

Lateral distal 
tibia 

𝑎𝑊𝐶𝑆,𝑌 

𝜔𝑊𝐶𝑆,𝑍 
1000 Hz IC, TC Photocell NR 

Aubol [159] 
n = 19 (9 M; 10 F) 

≥16.1 km/wk 
Injury free 

RF 3.0 ± 0.2 m/s Overground 
Anteromedial 

distal tibia 
𝑎𝑊𝐶𝑆,𝑋,𝑌,&𝑍  1000 Hz IC 

Forceplate 
1000 Hz 

Synchronous 
recording 

Fadillioglu [160] 
n = 13 (13 M) 

Injury free 
NR 

SS walking and 
running 

Overground Leg 𝜔𝑊𝐶𝑆,𝑍 1500 Hz IC, TC 
Forceplate 

1000 Hz 
TTL pulse 

 Bach [161] 
n = 5 (3 M; 2 F) 

Healthy 
NR 

SS walking and 
running 

Treadmill 
Anteromedial 
proximal tibia 

𝑎𝑊𝐶𝑆,𝑋,𝑌,&𝑍 142.9 Hz IC, TC 
Forceplate 

1000 Hz 
NR 

Sa
cr

u
m

/L
o

w
er

 b
ac

k 

Auvinet [162] 
n = 7 (7 M) 
“top-level” 

RF 5.2 ± 0.1 m/s Overground Lumbar spine 𝑎𝑊𝐶𝑆,𝑋,𝑌,&𝑍 100 Hz IC, TC, RL 
MoCap 
200 Hz 

Photoflash 

Lee [163] 
n = 10 (6 M; 4 F) 

National standard 
runners 

NR 2.8 - 5.3 m/s Treadmill Sacrum (S1) 𝑎𝑊𝐶𝑆,𝑋&𝑍 100 Hz IC, TC, RL 
MoCap 
100 Hz 

Vertical 
movement 

Wixted [95] 
n = 2 

Nationally ranked 
NR 5.9 - 6.2 m/s Overground 

Lumbar spine 
(L3-L4) 

𝑎𝑊𝐶𝑆,𝑋&𝑌 500 Hz IC, TC 
Insoles 
500 Hz 

Synchronous 
collection 

Bergamini [164] 
n = 11 (7 M; 4 F) 

Amateur and National 
Track & Field team 

NR 5.7 - 10.8 m/s Overground 
Lumbar spine 

(L1) 
𝜔𝑊𝐶𝑆,𝑋,𝑌,&𝑍 200 Hz IC,TC 

Forceplate/Mocap 
200Hz/300Hz 

Hammer 
tap/ 
none 

Benson [165] 
n = 54 (29 M; 25 F) 

Recreational 
FF & RF 2.7 - 3.6 m/s 

Treadmill & 
Overground 

Lower back 𝑎𝑊𝐶𝑆,𝑋,𝑌,&𝑍 201.03 Hz IC, TC, RL 
Forceplate 

1000 Hz 
Vertical 

jump 

Reenalda [166] 
n = 20 (15 M; 5 F) 
≥15 km/week; no 

injuries 
FF & RF 3.1 – 4.2 m/s Treadmill Sacrum 𝑎𝐺𝐶𝑆,𝑌 

240 Hz 
interpolated 
to 1000 Hz 

IC 
Forceplate 

1000 Hz 
x-correlated 

MoCap 

 
M – Male; F – Female; NR – Not reported; FF – forefoot; RF – rearfoot; SS – Self-selected;  

α – acceleration; ω – angular velocity; SCS – segment coordinate system; WCS – wearable coordinate system; GCS – global coordinate system (coordinate conventions defined in Fig. 3) 
IC – initial contact; TC – terminal contact; RL – right/left 
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3.2. Materials & Methods 

3.2.1. IMU calibration 

Tri-axial IMUs (ProMove MINI, Inertia Technology; ± 16 g primary, ± 100 g secondary, ± 34.91 

rad/s, 1000 Hz) were secured to a centrifuge (ClearPath MCVC, Teknic) with custom 3-D printed jigs 

(SOLIDWORKS 2019, Dassault Systèmes) and calibrated in 6 orientations at 16 known accelerations 

(from 0 to 41.42 g where 1 g = 9.8 m/s2 [167, 168]) and angular velocities (from 0 to 78.54 rad/s). 

Adapting methods from Coolbaugh et al. [99], known data (K) from the centrifuge and measured data 

(M) from the IMU were used to calculate 3 x 7 calibration matrices (C; 3 signed magnitude terms, 3 

absolute magnitude terms, and one bias term per axis) and quantify sensor accuracy after subtracting 

out biases observed during a quiet period (B) (Equation 3.1). After calibration, IMU primary 

accelerometer errors were ≤ 0.01 ± 0.04 g, secondary accelerometer errors were ≤ 0.05 ± 0.07 g, and 

gyroscope errors were ≤ 0.01 ± 0.01 rad/s. 

 

Equation 3.1 

C*(M + B) = K 

 

3.2.2. Participants 

Seventy-seven runners were recruited and tested. Three participants were excluded from 

analysis due to movement of an IMU (n = 2) or inability to complete the protocol as instructed (n = 1) 

leaving a final sample of 74 (32 male; 42 female; age 28 ± 12 years; Figure 3.2). All participants provided 

written informed consent and procedures were approved by the University of California, Davis 

Institutional Review Board. 
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Figure 3.2: Sample characteristics. From left to right: Sample sex, age, height, weight, and self-reported average distance run 
per week. White horizontal line represents the mean, dark blue represents ±95% confidence interval (±1.96 SEM) around the 
mean, light blue represents ±1 SD around the mean. Gray dots represent participants outside ±1 SD. 

 

3.2.3. Protocol 

Using adhesive-bonded hook-and-loop fasteners, IMUs were attached to neoprene belts with 

anti-slip silicone inners then wrapped with elastic straps as tightly as possible, within the limit of 

participant comfort. IMUs were placed anterior and superior to the lateral malleoli, the superior aspect 

of the iliac crest in-line with the greater trochanter, and the superior aspect of the sacrum in line with 

the spine (Figure 3.3). Only data from tibial and sacral IMUs are analyzed here. 
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Figure 3.3: IMU fixation and coordinate system. On the left, IMU placement and coordinate conventions. For consistency, 
different conventions used across methods have been standardized to ISB conventions [169]: Segment coordinate systems 
(SCS) were defined as anterior (+x), proximal (+y), and medial-lateral (with right defined as +z); and wearable-coordinate 
systems (WCS) were defined by the axes of the sensors within the housing of the wearable which was roughly aligned with the 
direction of progression (+x), longitudinal axis (+y), and right (+z). On the right, belt design and IMU fixation. 

 

Participants wore their own shoes and ran a 25 m track with embedded force plate (Kistler 9281, 

Kistler Group; 1000 Hz). Running speed was recorded using two custom-built laser speed gates 2.5 m on 

each side of force plate center. Participants warmed up and practiced striking the force plate three 

times per side at slowest (“the slowest pace you would use on a run”), typical (“the pace you use for the 

majority of your running”), and fastest (“the fastest pace you would use on a run”) self-selected speeds. 

During this warmup, markers on the lateral calcaneus and base of the fifth metatarsal were recorded 

using a conventional camera (Exilim EX-FH25, Casio; 120 Hz). Foot strike angle was calculated by 

subtracting a neutral standing foot angle (Kinovea 0.9.5) with positive values indicating a more 

dorsiflexed foot at IC and values > 0.14 rad corresponding to rear-foot strike, -0.03 to 0.14 rad to mid-

foot strike, and < -0.03 rad to forefoot strike [170]. After warm-up, five stances per side were collected 

at each speed for two surface conditions: (1) With a track surface covering the running path and force 

plate (track) and (2) with no covering on the hardwood floor of a basketball court (floor). Participants 

always progressed from their slowest to fastest speeds, but the order of foot and surface were pseudo-

randomized. 

IMU data were synchronized within 100 ns of each other with a wireless network hub (Advanced 

Inertia Gateway, Inertia Technology; 1000 Hz). This hub periodically sent voltage pulse trains that were 

synchronously recorded by IMUs and a custom MATLAB script that simultaneously recorded the speed 

and force data (R2018b, the Mathworks). Pulse trains were cross correlated to synchronize signals. 
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3.2.4. Data processing 

Quiet periods were identified and used to remove biases from IMU data. Saturated frames from 

the primary accelerometer (|𝑎| > 15.5 g) were replaced with corresponding frames from the secondary 

accelerometer. Data were filtered with a 4th order 50-Hz low-pass Butterworth filter. Angular velocity 

was drift-corrected using a Madgwick filter [171] (shown to perform as well as, or better than, Kalman 

and Mahony filters [172, 173] and here validated to provide the best orientation estimates under 

experimental conditions). Starting at each quiet period, accelerations were used to estimate IMU 

position in the inertial reference frame, then angular velocities were used to estimate frame-by-frame 

changes in IMU orientation and remove the gravity component from accelerations [174]. Data were 

then transformed to a segment coordinate system based on the Principal Component that explained the 

most variance in angular velocity during running (the medial-lateral axis), the gravity vector during quiet 

standing, and their cross-product [121, 175]. Force plate data were filtered with a 4th order 50-Hz low-

pass Butterworth filter. A vertical force threshold of 10 N was used to define the start and end of stance 

(IC and TC respectively).  

During data processing we observed small discrepancies caused by the initialization of discrete 

MATLAB data acquisitions and small variances in the sampling rates of the IMU and MATLAB systems. 

Although extremely small, these discrepancies could accumulate over the course of the ~60-minute data 

collection leading to timing discrepancies between the first and last synch events of a data collection 

(10s of ms). Given this study’s focus on event timing, a conservative approach was used and only trials 

that contained a synch event were analyzed (642 of 4440 trials). All other trials were discarded to ensure 

millisecond-level accuracy was maintained. 
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3.2.5. Analysis 

To quantify how well each method agreed with ground truth gait events (IC and TC) measured 

by the force plate, errors were quantified for each method by subtracting method-estimated gait-event 

timings from force plate gait-event timings. To account for non-independence of data (642 trials from 74 

participants) and ensure proper estimation of variance, IC and TC errors were entered into two separate 

linear mixed-effects models in R (v4.2.2; R Foundation for Statistical Computing) as described in 

Carstensen et al.’s approach to linked replicates (Equation 3.2) [176]: 

Equation 3.2 

𝑦𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙 =  𝑎𝑚𝑒𝑡ℎ𝑜𝑑 + 𝑏𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 + 𝑐𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙 + 𝑑𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 + 𝑒𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙  

This approach allowed us to quantify variance components and estimate: (1) Method biases 

(accuracy), (2) Limits Of Agreement (LOA) within which 95% of future errors for a given method are 

expected to fall, and (3) within-method standard deviations that quantify method repeatability 

(precision) (see also: [177, 178, 179]). Model assumptions of independence, normality, and 

homoscedasticity were validated by plotting within-participant variances against within-participant 

means, histograms of residuals, residuals for each level of random effect, and residuals as a function of 

fitted value. 

To evaluate if any potential explanatory variables affected method error, a second set of linear 

mixed effect models was developed for each method. These models added surface, speed, and foot 

strike angle as fixed effects. Significance of p ≤ 0.05 was used to evaluate whether a fixed effect 

explained a significant amount of a given method’s error. 

Finally, to quantify the processing time required to execute each method, the same computer 

(Intel Core i9-13900HX; Kingston Fury 2x32 GB DDR5 5600 MT/s; Gammix S70 Blade 7400 MB/s SSD) was 

used to process two 30-minute, 1.8 million frame (1000 Hz), steady state running trials obtained from a 
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separate study (but using the same IMUs, placement, and pre-processing) [180]. Each trial was 

processed 100 times per method and processing times were recorded. 

 

3.3. Results 

3.3.1. Failure to identify gait events or step side 

Some methods were unable to recognize any gait events within the 5 m of running that was 

segmented for analysis in each trial. The percentage of trials per participant where no gait events were 

identified is plotted in Figure 3.4. 

 

Figure 3.4: Percentage of trials per participant without any gait events recognized. White horizontal line represents the mean, 
dark blue represents ±95% confidence interval (±1.96 SEM) around the mean, light blue represents ±1 SD around the mean. 
Gray dots represent participants outside ±1 SD. No bars indicates that gait events were identified in every trial for every 
participant. Methods on the white background are for wearables on the shank. Methods on the gray background are for 
wearables on the sacrum/low-back. 

 

Methods using wearables placed on the shank only provided information ipsilateral to 

placement and thus side was always known. In contrast, methods using wearables placed on the 

sacrum/low-back provided information on bilateral gait events. Despite this, only three of the six 

sacrum/low-back placed methods were capable of identifying the side (i.e., right or left) contacting the 

ground. The accuracy of these methods is plotted in Figure 3.5. 
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Figure 3.5: Percentage of trials per participant where side was not correctly recognized. White horizontal line represents the 
mean, dark blue represents ±95% confidence interval (±1.96 SEM) around the mean, light blue represents ±1 SD around the 
mean. Gray dots represent participants outside ±1 SD. 

 

3.3.2. Initial Contact 

Using Carstensen’s method for linked replicates [176], biases, within-method SDs, and 95% LOAs 

(1.96 SD of errors) for the IC estimation of each method were modeled (Figure 3.6). Results revealed 

high biases and/or LOAs for several methods; thus, a second figure displaying only the best performing 

methods (LOAs within ±200 ms) is also provided (Figure 3.7). The best performing methods for shank 

mounted wearables were Mizrahi (0% unrecognized events, +18.58 ms bias, -112.16 to +149.32 ms 

LOA), Mercer (0% unrecognized events, -31.70 ms bias, -166.34 to +102.93 ms LOA), Purcell (0% 

unrecognized events, +17.39 ms bias, -96.81 to +131.58 ms LOA), and Fadillioglu (1.13% unrecognized 

events, -24.33 ms bias, -137.02 to +88.35 ms LOA). The best performing methods for shank/low-back 

mounted wearables were Auvinet (0% unrecognized events, -30.36 ms bias, -149.19 to +88.47 ms LOA), 

Lee (0% unrecognized events, +29.10 ms bias, -92.85 to +151.04 ms LOA), Wixted (0% unrecognized 

events, +29.56 ms bias, -92.53 to +151.65 ms LOA), Benson (0% unrecognized events, +19.25 ms bias, -

129.64 to +168.13 ms LOA), and Reenalda (0% unrecognized events, +29.00 ms bias, -83.34 to +141.34 

ms LOA). 
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Figure 3.6: IC estimation. Means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of errors; light blue) for 
each method. Gray dots represent trials falling outside the 95% LOA. A value of 0 indicates perfect agreement with the ground 
truth. Positive values indicate the IC was estimated later than the ground truth (after the force plate IC). Negative values 
indicate the IC was estimated earlier than the ground truth (before the force plate IC). Methods with a white background are 
for wearables on the shank. Methods on the gray background are for wearables on the sacrum/low-back. 

 



41 
 

 

Figure 3.7: IC estimation for methods with LOAs within ± 200 ms. Means (white bar), ±1 within-method SD (dark blue), and 
±95% LOA (1.96 SD of errors; light blue) for each method. Gray dots represent trials falling outside the 95% LOA. Outliers falling 
outside the ±200 ms range are plotted at ±200 ms. A value of 0 indicates perfect agreement with the ground truth. Positive 
values indicate the IC was estimated later than the ground truth (after the force plate IC). Negative values indicate the IC was 
estimated earlier than the ground truth (before the force plate IC). Methods with a white background are for wearables on the 
shank. Methods on the gray background are for wearables on the sacrum/low-back. 

 

We performed a second set of linear mixed effect models on each method to examine the role 

of potential explanatory variables. These models revealed that none of the methods’ IC estimations 

were significantly affected by surface (all ps > 0.05). In contrast, speed explained a significant amount (p 

≤ 0.05) of the error in 3 of 15 shank-placed methods and 5 of 6 sacrum/low-back placed methods, and 

foot strike angle explained a significant amount of the error in 1 of 15 shank- and 0 of 6 sacrum/low-

back -placed methods (Table 3.2). To better illustrate these effects, model-predicted mean absolute 

errors were plotted as a function of speed and foot strike angle (Figure 3.8 for best performing methods; 

Chapter 3S for others). 

Table 3.2. Effects of surface, running speed, and foot strike angle on Initial Contact and Terminal Contact estimation across 
methods. Numbers represent coefficients for the intercept of surface (added to model estimates for the floor condition but not 
the track condition) and the slopes of running speed and foot strike angle. *significant (p ≤ 0.05) effects highlighted in blue. 
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 Initial Contact (IC) Terminal Contact (TC) 

Method Surface Speed Foot strike Surface Speed Foot strike 

 Mizrahi  -5.02 0.71 -15.91 n/a 

Mercer -5.07 2.59 -11.99 -0.07 34.17* -47.56 
Purcell 0.74 -0.14 19.66 2.46 4.00* 4.02 

Aminian/O’Donovan 2.81 -31.55 19.26 -15.10 11.29 -1.83 
Aminian/O’Donovan modifed 11.40 -5.58 -0.12 -1.26 -5.95* 10.76 

Greene/McGrath 2.22 -5.53 23.35 1.12 1.18 -16.43 
Greene/McGrath modified -1.91 -2.70 9.89 3.79 0.69 -25.87 

Sinclair -7.24 0.18 -44.17 -9.19 -15.65 43.08 
Whelan -14.22 -13.89* 74.18* n/a 

Norris -23.89 -36.41 148.44 n/a 

Schmidt -11.17 209.61* 49.38 -2.46 227.50* 18.75 
Aubol -26.90 -3.94 34.33 n/a 

Fadillioglu 0.20 1.44 -2.13 1.27 -4.44 37.21 
Bach 19.63 9.71 32.00 -7.44 -3.37 -44.60 

Bach modified -1.07 36.60* 68.71 1.75 54.45* 75.07 
Auvinet -3.08 0.01 0.13 0.15 6.86* -19.55 

Lee -1.03 -15.11* 13.29 0.74 -12.46* 4.05 
Wixted -2.99 -13.39* 10.53 -1.52 2.37 0.20 

Bergamini -9.77 -19.31* 12.63 -9.95 2.87 -34.54 
Benson 0.11 -25.14* -6.34 0.46 4.60* -7.39 

Reenalda -0.13 -5.93* -9.39 n/a 
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Figure 3.8: Mean absolute error in IC predicted by mixed effects models for each of the best performing methods (LOAs 
within ±200 ms). Plotted as a function of speed and foot strike angle. Darker blue values represent lower predicted mean 
absolute errors while brighter yellow values represent higher predicted mean absolute errors. To illustrate, Auvinet has a mean 
absolute error of ~30 ms that is ~constant across foot strike angles and speeds; in contrast, Wixted has lower mean absolute 
error at speeds above ~4 m/s but higher mean absolute errors at speeds below ~4 m/s. 
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3.3.3. Terminal Contact 

Using Carstensen’s method for linked replicates [176], biases, within-method SDs, and 95% LOAs 

for each method’s TC estimation were calculated (Figure 3.9). Results revealed high biases and/or LOAs 

for several methods; thus, a second figure displaying only the best performing methods (LOAs within ± 

200 ms) is also provided (Figure 3.10). The best performing methods for shank mounted wearables were 

Purcell (0% unrecognized events, +3.51 ms bias, -143.86 to +150.87 ms LOA) and Fadillioglu (1.13% 

unrecognized events, +17.75 ms bias, -148.90 to +184.40 ms LOA). The best performing methods for 

shank/low-back mounted wearables were Auvinet (0% unrecognized events, -2.75 ms bias, -152.67 to 

+147.17 ms LOA), Lee (0% unrecognized events, +24.26 ms bias, -139.40 to +187.91 ms LOA), Wixted 

(0% unrecognized events, -43.84 ms bias, -192.74 to +105.07 ms LOA), and Benson (0% unrecognized 

events, +26.55 ms bias, -130.41 to +183.51 ms LOA). 

 

Figure 3.9: TC estimation. Means (white bar), ± 1 within-method SD (dark blue), and ± 95% LOA (1.96 SD of errors; light blue) 
for each method. Gray dots represent trials falling outside the 95% LOA. A value of 0 indicates perfect agreement with the 
ground truth. Positive values indicate the TC was estimated later than the ground truth (after the force plate TC). Negative 
values indicate the TC was estimated earlier than the ground truth (before the force plate TC). Methods with a white 
background are for wearables on the shank. Methods on the gray background are for wearables on the sacrum/low-back. 
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Figure 3.10: TC estimation for methods with LOAs within ± 200 ms. Means (white bar), ± 1 within-method SD (dark blue), and ± 
95% LOA (1.96 SD of errors; light blue) for each method. Gray dots represent trials falling outside the 95% LOA. Outliers falling 
outside the ± 200 ms range are plotted at ± 200 ms. A value of 0 indicates perfect agreement with the ground truth. Positive 
values indicate the TC was estimated later than the ground truth (after the force plate TC). Negative values indicate the TC was 
estimated earlier than the ground truth (before the force plate TC). Methods with a white background are for wearables on the 
shank. Methods on the gray background are for wearables on the sacrum/low-back. 

 

We performed a second set of linear mixed effect models on each method to examine the role 

of potential explanatory variables. These models revealed that none of the methods’ TC estimations 

were significantly affected by surface or foot strike angle (all ps > 0.05), while speed explained a 

significant amount (p ≤ 0.05) of the error in 5 of 11 shank-placed methods and 3 of 5 sacrum/low-back 

placed methods (Table 3.2). To better illustrate these effects, model-predicted mean absolute errors 

were plotted as a function of speed and foot strike angle (Figure 3.11 for best performing methods; 

Supplement 3 for others). 
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Figure 3.11: Mean absolute error in TC predicted by mixed effects models for each of the best performing methods (LOAs 
within ±200 ms). Plotted as a function of speed and foot strike angle. Darker blue values represent lower predicted mean 
absolute errors while brighter yellow values represent higher predicted mean absolute errors. To illustrate, Wixted has a mean 
absolute error of ~44 ms that is ~constant across foot strike angles and speeds; in contrast, Lee has lower mean absolute error 
at speeds above ~3 m/s but higher mean absolute errors at speeds below ~3 m/s. 

 

3.3.4. Processing time 

Finally, to quantify the time required to execute each method, two 30-min, 1.8 million frame, 

steady-state running trials were processed 100 times with each method. Processing times were 

recorded and plotted in Figure 3.12. 
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Figure 3.12. Mean time to process 30-min of steady state running data sampled at 1000 Hz. Error bars represent ± 1 SD about 
the mean. All processing conducted on the same computer (Intel Core i9-13900HX; Kingston Fury 2x32 GB DDR5 5600 MT/s; 
Gammix S70 Blade 7400 MB/s SSD). 

 

3.4. Discussion 

We identified 18 separate methods to estimate initial contact (IC) and terminal contact (TC) gait 

events from running using a single wearable sensor on the shank or sacrum/low-back. We modified 

three of these original methods in an attempt to improve performance, resulting in a total of 21 

methods. For each method we either adapted (4 of 18) or created (14 of 18) code to automatically 

process data (code available at https://github.com/DovinKiernan/Running_Gait_Event). We then used 

each automated method to estimate gait events from 74 runners across two different surfaces (wood 

floor and running track), three self-selected speeds (slowest, typical, and fastest), and foot strike angles 

(ranging from forefoot to rearfoot strike patterns). To quantify error, these estimated gait events were 

compared to ground truth events from a time-synchronized force plate. 

Overall, we found error to be higher than reported in the original studies (with two exceptions: 

Benson et al. [165], where we found errors below the 50 ms for IC and 30 ms for TC originally reported, 

and Reenalda et al. [166], where we found errors on par with their reported 21-27 ms). This is likely a 

https://github.com/DovinKiernan/Running_Gait_Event
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function of several factors: First, in contrast to some studies, we were able to exactly time synchronize 

our gold-standard force plates with our IMUs using voltage pulses. Second, to our knowledge, the 

current study represents the largest sample used to validate and compare running gait event 

identification methods. Most studies used samples of 11 ± 13 participants (mean ± SD) to both develop 

and validate their method (Benson was an outlier here, using 54 participants). Third, the current study 

used a range of conditions including different surfaces, speeds, and foot strike angles. In contrast, the 

methods studied were developed and validated on a narrow set of conditions (again, with the exception 

of Benson who validated across several conditions). Thus, the error values reported for most studies are 

likely a function of both developing and validating the method on the same small sample of participants 

and narrow set of conditions. When adopting a gait event identification method, users should consider 

the conditions and participants with which the method was developed and validated and not assume 

that the method will work under other conditions or for other participants.  

For example, O’Donovan et al. [152] and McGrath et al. [153] adapted approaches developed 

for walking [151, 154] without specifying any changes to address the differences between walking and 

running. These methods had high error, often mislabeling gait events from pre-/proceeding steps as the 

event of interest due to their large time windows. When modified with timings based on running, 

however, the performance of the Aminian/O’Donovan method did improve. On the other side of the 

spectrum, although it fit the criteria for inclusion in this study, Schmidt et al. [158] developed their 

method specifically for sprinting and never advocated for its application to running more broadly. This 

likely explains the high error observed across the range of running speeds we used here. As a final 

example, Bach et al. [161] trained an Echo State Network to estimate gait events using data from a 

narrow set of conditions. To replicate their model, we used the full running data set that they 

generously published with their original paper; however, we still observed high error when using it to 

estimate gait events from our data. This error likely stems from the model being applied to a broad set 
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of conditions on which it was not trained. It is possible that further training across these conditions 

could yield improved results. 

These observations should also be applied to the current study: We only quantified error for 

over-ground running on two level surfaces. It should not be assumed that our results would hold for 

incline or decline running, treadmill running, or running on other surfaces (e.g., grass/turf, asphalt, 

concrete). That said, the fact that no method was significantly affected by differences in the two 

surfaces used here, suggests that they would also work on similar surfaces (like concrete and asphalt) 

though further research should confirm they work on softer surfaces (like grass and sand). Finally, all 

methods studied here have been developed and validated on a relatively homogenous group of runners. 

Thus, if studying participants drawn from different populations, our results may not be representative. 

For example, individuals with lower extremity amputation could have higher frequency components in 

their data that may disrupt pattern recognition in some methods [98]. Similarly, data collected from 

individuals with more subcutaneous body fat could contain more noise from soft tissue artefact. 

With those caveats in mind, for IC estimation with a shank-placed wearable, we recommend 

either the Purcell [150] or Fadillioglu [160] method. Both methods were able to identify gait events in 

almost all trials (100% and 98.87%) and stood out with low biases (+17.39 and -24.33 ms) and LOAs (-

96.81 to +131.58 and -137.02 to +88.35 ms). Further, neither method was significantly affected by 

running surface, speed, or foot strike angle, suggesting that both methods could be applied broadly 

across conditions. Compared to one another, Purcell had slightly lower bias whereas Fadillioglu had 

slightly lower LOAs and slopes for speed and foot strike angle (though, again, neither was significantly 

affected by these potential explanatory variables). 

For IC estimation with a sacrum or low-back placed wearable, we recommend the Auvinet [162] 

or Reenalda [166] method. Both methods were able to identify gait events in 100% of trials and stood 
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out with low biases (-30.36 and +29.00 ms) and LOAs (-149.19 to +88.47 and -83.34 to +141.34 ms). The 

Auvinet method was not significantly affected by running surface, speed, or foot strike angle. In 

contrast, the Reenalda method was significantly affected by running speed with errors increasing at low 

running speeds as well as a trend toward errors increasing at lower foot strike angles. Thus, the 

Reenalda method may be preferable when speeds are known to exceed ~4 m/s while the Auvinet 

method may be preferable for speeds below ~4 m/s or when conditions are unknown. The Lee, Wixted, 

and Benson methods [163, 95, 165] may also present viable options when speed is known to fall within 

certain ranges (see Figure 3.7). 

For TC estimation with a shank-placed wearable, we recommend the Purcell method [150]. This 

method identified gait events in 100% of trials with low bias (+3.51 ms) and LOAs (-143.86 to +150.87 

ms). Error was not significantly affected by surface or foot strike angle. And, although it was significantly 

affected by speed, the slope was quite low, indicating error only changed a small amount across speeds 

(4.00 ms per 1 m/s). 

For TC estimation with a sacrum/low-back placed wearable, we recommend the Auvinet 

method [162]. This method identified gait events in 100% of trials with low bias (-2.75 ms) and LOAs (-

152.67 to +147.17 ms). Error for TC estimation with the Auvinet method was not significantly affected 

by surface or foot strike angle but was significantly affected by speed. At speeds below ~5 m/s, the Lee 

method [163] could also be used. Although the Lee method’s bias (+24.26 ms) and LOAs (-139.40 to 

187.91 ms) were higher overall, this appears to be largely driven by the significant effect of speed, with 

lower speeds causing larger errors. 

To identify side with a sacrum/low-back placed wearable, we recommend the Lee method [163] 

which correctly identified side in 81.95% of gait events. The Benson method performed almost as well, 

correctly identifying side for 75.05% of gait events. Given these high success rates and the predictable 
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left-right-left-right pattern of running, the probability of misidentifying gait events should decrease 

exponentially as a function of the number of steps, quickly reaching negligible values. To illustrate, 

based on the number of steps observed in the 5 m trials used here, we observed a probability of 

misidentification of 0.18. With another 5 m of steps, we would again have a 0.18 probability of 

misidentification. Therefore, we can roughly estimate the probability of misidentifying all steps in 10 m 

should be 0.182 or 0.03. Over 1 km this would fall to roughly 0.18(1000 m/5 m) or 1x10-149. Thus, over longer 

data collections, the chances of misidentifying the side a gait event is occurring on becomes extremely 

small. 

As seen in the recommendations above, users should balance reported accuracy of a method 

against the potential negative effects that running speed and foot strike angle could have on it. One 

approach to address these concerns and improve accuracy may be to include speed and foot strike angle 

as model inputs. For example, Patoz et al. [181] provided their contact and flight time estimation model 

with running speed data and reported impressively low error. Unfortunately, this method estimated the 

mean contact and flight times across a data set rather than the timing of individual gait events. Despite 

this limitation, Patoz et al. illustrate the potential benefits of including speed as a model input. Indeed, 

speed is relatively easy to calculate from GPS and several methods have already been proposed to 

estimate speed and foot strike angle from accelerations or angular velocities [182, 183, 184]. Thus, the 

inclusion of speed, foot strike angle, and other potential explanatory variables may be a relatively easy 

way to improve the performance of future models and should be a target of additional research. 

Future methods should also compare their results against the existing methods presented here. 

As seen by the 18 methods examined here, the field is saturated with options for running gait event 

identification. Further, almost all methods were developed and evaluated in isolation and there have 

been few direct comparisons of methods. This saturation and lack of comparison may lead to confusion 

about which method is best for a given application. 
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With the continued development of this field, and of data collection and processing methods 

that can be used both in-lab and in-field, biomechanics will become increasingly accessible. Although 

increasing accessibility was a key goal of this study (through minimizing system complexity and data 

processing supervision), this increase in accessibility also brings challenges. For example, when 

deploying wearables in-field, they may be placed on participants by individuals with little training. This 

could lead to misalignment and degrade accuracy. To mitigate this potential issue, we used a segment 

coordinate system. In contrast, the majority of methods we studied here (16 of 18) originally used 

wearable coordinate systems defined by the axes of the sensors within the wearable. Using a wearable 

coordinate system is less reliable due to (1) differences in wearable manufacturing (sensor axes may not 

be perfectly aligned with their housing or each other), (2) participant geometry (e.g., tibial or sacral 

morphology may differ across participants), or (3) wearable placement (e.g., wearable may be placed 

upside down or at an ‘improper’ angle). Thus, we recommend (1) calibrating the wearable to ensure the 

output is accurately expressed in a consistent coordinate system [99] and (2) creating a segment 

coordinate system based off (a) the gravity vector during quiet standing and (b) the first Principal 

Component calculated from calibration motions such as rotation about the medial-lateral axis (e.g., legs 

swings or inverted pendulum about the ankles) [121, 175], and/or (b) the gravity vector while lying 

prone/supine. Using this approach, even if a wearable is ‘misaligned’ the segment coordinate system 

should be unaffected. These or similar methods will help mitigate the potential pitfalls of deploying 

wearables, particularly when deploying in-field. Although we believe this is the best practice approach, 

for the sake of comparison, we also executed our analyses on our data expressed in both wearable and 

global coordinate systems (see the Supplement 3). In line with our a priori expectation, these 

supplemental analyses show that—even though the same trained experimenter attempted to 

consistently fix and align every wearable in this study—the segment coordinate system had lower error 

than the wearable coordinate system across most methods. Indeed, the mean absolute error in the 
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methods recommended above was, on average, 59.35 ms lower when calculated in the SCS than the 

WCS. 

Finally, in line with our goal to identify methods capable of easily processing large volumes of 

running data, we constrained our study to automated/unsupervised methods. Schmidt et al. [158] 

originally recommended that their method be used with thresholds defined by user input. Thus, we 

have included an option to run their method with user supervision in our code. However, given the goals 

of our paper, we did not include its results for comparison here. It is likely that with supervision, the 

errors observed for the Schmidt method would decrease. 
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3S: Supplement to chapter 3 

 

3S.1 Overview 

Here we provide details for both our own IMU data processing and for each of the gait event 

identification methods included in our main paper. For details beyond what we provide here please 

refer to the original sources. Figures have been included showing the process each method uses to 

identify initial contact (IC) and terminal contact (TC) gait events. All data for these figures was taken 

from the same randomly selected trial (a 1.64 m tall 62.37 kg female running 3.73 m/s on the ‘floor’ 

surface and contacting the force plate with a forefoot strike angle of -0.12 rad). Wherever possible, 

figures originally published with each method were digitized (https://apps.automeris.io/wpd/) and run 

through the code provided with this paper to ensure we could faithfully reproduce results (not included 

here due to copyright). For clarity, we have standardized the original coordinate conventions used in 

each method to be consistent with the segment- and wearable-coordinate systems (SCS and WCS) 

described briefly in our main paper (Figure 3.3), described more fully in our IMU processing Supplement 

(below), and with ISB recommendations [126]. Finally, each method’s performance is individually 

reported here. Please note that figure axes and descriptions are consistent across all methods; 

consequently, the results for some methods may not be fully plotted if they exceed the axis range. Also 

note, the results figures are only fully described the first time they appear (Figure 3S.2). 

 

3S.1.a Timing Constraints 

For several methods, novel timing constraints were added to facilitate pattern recognition and 

exclude observations falling outside the values reported for steady-state running [100, 101, 102, 103, 
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104, 133, 106, 107, 75]. Based on these sources, we adopted a maximum step frequency of 4.75 Hz, 

stance times between 95 and 270 ms, and swing times between 200 and 600 ms. 

 

3S.1.b. Common output 

Finally, for all methods, to prevent errors (e.g., empty IC and TC outputs, impossible patterns of 

results such as IC-IC-TC-IC, etc.) that were common to many methods (all except: Mizrahi, Benson, 

Norris, Reenalda, and Whelan) and to ensure a common output, we implemented a function that took 

the raw IC, TC, and side output from each function and checked it to ensure: (1) gait events were 

identified (if a method was supposed to deliver both ICs and TCs, only paired gait events were accepted; 

i.e., no IC without TC), (2) gait event timings were unique and in temporal order, and (3) gait events 

followed a logical IC-TC-IC-TC pattern. 

 

3S.2. Shank-mounted wearable methods 

3S.2.1. Mizrahi method 

Developing and validating a gait-event identification method was not the primary focus of 

Mizrahi et al. [148]. The authors did, however, report identifying IC from the peak acceleration of a 

uniaxial accelerometer on the tibial tuberosity aligned with the longitudinal axis of the tibia (𝑎𝑊𝐶𝑆,𝑦). 

The authors reported using an automated code that we attempted to replicate based on their paper. 

Our code finds maxima in y-axis acceleration (proximal-distal in the SCS or ~longitudinal in the WCS) 

with a minimum separation of ~422 ms (based on the maximum step frequencies reported across 

previous studies) (Figure 3S.1). For results see Figure 3S.2. 
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Figure 3S.1: Mizrahi method. Y-axis 
acceleration (proximal-distal in the SCS; 
~longitudinal in the WCS; dark blue line) 
maxima are found with a minimum separation 
of ~422 ms and selected as IC gait events (gold 
triangles). No TC identification. 

 

 

Figure 3S.2: Mizrahi results. Results were calculated using the methods described in each coordinate system (calculated as 
described in part 8 of our IMU processing breakdown at the end of this Supplement). Results in the top row are for the 
wearable coordinate system (WCS), results in the middle row are for the segment coordinate system (SCS), and results in the 
bottom row are for a pseudo-global coordinate system, the “tilt-corrected” coordinate system (TCCS). Reading left to right, in 
the first column the white horizontal line represents the mean percentage of trials per participant without any gait events 
recognized, dark blue represents ±95% confidence interval (±1.96 SEM) around the mean, light blue represents ±1 SD around 
the mean. Gray dots represent participants outside ±1 SD. No bars indicates that gait events were identified in every trial for 
every participant. In the second column IC error means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of 
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errors; light blue) are plotted. Gray dots represent trials falling outside the 95% LOA. A value of 0 indicates perfect agreement 
with the ground truth. Positive values indicate the IC was estimated later than the ground truth (after the force plate IC). 
Negative values indicate the IC was estimated earlier than the ground truth (before the force plate IC). In the third column TC 
error means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of errors; light blue) are plotted. Gray dots 
represent trials falling outside the 95% LOA. A value of 0 indicates perfect agreement with the ground truth. Positive values 
indicate the TC was estimated later than the ground truth (after the force plate TC). Negative values indicate the TC was 
estimated earlier than the ground truth (before the force plate TC). In the fourth column mean absolute error in IC predicted by 
a mixed effects model. Plotted as a function of speed and foot strike angle. Darker blue values represent lower predicted mean 
absolute errors while brighter yellow values represent higher predicted mean absolute errors. In the fifth column mean 
absolute error in TC predicted by a mixed effects model. Plotted as a function of speed and foot strike angle. Darker blue values 
represent lower predicted mean absolute errors while brighter yellow values represent higher predicted mean absolute errors. 

 

3S.2.2. Mercer method 

Developing and validating a gait-event identification method was not the primary focus of 

Mercer et al. [149], however, they provided the first published details on a gait-event identification 

method previously used by Shorten and Winslow [185], Hamill et al. [186], and Derrick et al. [187, 188]. 

We attempted to translate these details into an automated code. To identify IC, the authors reported 

placing an accelerometer on the anteromedial distal tibia and finding a local minimum immediately 

preceding a global maximum in 𝑎𝑊𝐶𝑆,𝑦 (Figure 3S.3A-C). To identify TC, they reported finding the 

“minimum after a second local maximum.” We found that small local maxima could generate results 

inconsistent with the figures presented in Mercer’s paper when looking for local maxima to identify TCs 

(indeed, their figure depicts the TC after three small local maxima). Thus, to exclude smaller local 

maxima, we added an additional constraint that only the four largest maxima in the window of interest 

would be considered. Results are shown in Figure 3S.4. 
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Figure 3S.3: Mercer method. (A) Y-axis 
acceleration (proximal-distal in the SCS or 
~longitudinal in the WCS; dark blue line) 
maxima (dark blue triangles) are found with a 
minimum separation of ~422 ms. The signal is 
then low-pass filtered at 15 Hz (light blue line) 
and maxima are found in the filtered signal with 
no minimum separation criterion (light blue 
triangles). The peak in the filtered signal closest 
to the peak in the original signal is selected as a 
peak of interest (red circle).  

 

 

(B) Walking back from each peak of interest 
(light blue triangles) the first point when the 
signal magnitude begins to increase is selected 
as an IC gait event (gold triangles) 

 

(C) The four largest maxima (red circles) are 
found between each peak of interest (light blue 
triangle) and its proceeding IC (gold triangle). 
Stepping forward from the second maxima, the 
first point when the signal magnitude begins to 
increase is selected as a TC gait event (red 
triangle). 
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Figure 3S.4: Mercer results. See Figure 3S.2 for description. 

 

3S.2.3. Purcell method  

Purcell et al. [150] placed a tri-axial accelerometer on the anteromedial tibia. To define IC, the 

authors report using minima in 𝑎𝑊𝐶𝑆,𝑥 (as defined by the coordinate convention they report 

standardized to ours) that corresponds in time with a maxima in 𝑎𝑊𝐶𝑆,𝑟𝑒𝑠. However, the data they 

present (and the method which we were successfully able to reproduce) suggest that they misreported 

their coordinates and actually used minima in 𝑎𝑊𝐶𝑆,𝑥 (rather than maxima). To define TC, they take the 

average time stamp of local minima in 𝑎𝑊𝐶𝑆,𝑥 and 𝑎𝑊𝐶𝑆,𝑧 (after correcting their coordinate system) 

(Figure 3S.5A-B). The 𝑎𝑊𝐶𝑆,𝑧 minima were not very pronounced; thus, to aid performance, we imposed a 
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further constraint here that the window to search for these local minima should be between 20-60% of 

one IC to the next. Results are shown in Figure 3S.6. 

 

Figure 3S.5: Purcell method. (A) X-axis 
acceleration (anterior-posterior in SCS, 
~direction of progression in WCS; dark blue 
line) minima (dark blue triangles) are identified. 
Then, the resultant acceleration is calculated 
(light blue line) and peaks separated by at least 
~422 ms are identified (light blue triangles). IC is 
defined as the x-axis minima closest to resultant 
maxima (gold triangle). 

 

(B) A window of interest (vertical black lines) is 
created from 20-60% of one IC to the 
proceeding IC (gold triangles). The greatest 
magnitude x-axis minima in that window (blue 
circle) is found. All z-axis (medial-lateral in SCS, 
~right-left in WCS) minima within that window 
(green circles) are found. The z-axis minimum 
closest to the large x-axis minimum (purple 
circle) is found. TC is defined as the midpoint 
between those two points (red triangle). 
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Figure 3S.6: Purcell results. See Figure C3S.2 for description. 

 

3S.2.4. Aminian/O’Donovan method 

Aminian et al. [151] developed a method to identify gait events during walking that was later 

applied to running by O’Donovan et al. [152]. This method decomposes ω𝑆𝐶𝑆,𝑧 using a series of wavelet 

multi-resolution analyses (MRA) that split the signal into high-scale ‘approximation’ (low-frequency) and 

low-scale ‘detail’ (high-frequency) components. Aminian et al. report using two iterative 10-level 5th 

order Coiflet wavelet analyses. Given each level in MRA represents a frequency band that is a function of 

the sampling frequency used during data collection, we first resample data to match Aminian et al.’s 

reported 200 Hz sampling frequency (thus, yielding frequency bands that should be identical to theirs 

for each level; note, however, that Aminian et al. state their approximation “only considers” up to 36 

Hz—consistent with a 72 Hz sampling frequency and not the reported 200 Hz sampling frequency—it is 
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unclear where this discrepancy originates from but for the purposes of this paper we adhered to their 

stated sampling frequency and equations). After resampling, MRA is used to obtain a new signal 

approximation (“s𝑎”) by summing details 1:9. Then, a second MRA is conducted on s𝑎 and two new 

signal approximations are created: (1) A21s𝑎 −  A29s𝑎 is designed to enhance the IC component by 

subtracting approximation 9 from approximation 1 and (2) A23s𝑎 −  A29s𝑎  is designed to enhance the 

TC component by subtracting approximation 9 from approximation 3. These new signal approximations 

are then searched for maxima/minima within specific time constraints. Results shown in Figure 3S.8. 
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Figure 3S.7: Aminian/O’Donovan method. Angular velocity about the z-axis (medial-lateral in the SCS, ~right in the WCS) is 
resampled to 200 Hz then decomposed with a 10-level 5th order Coiflet wavelet multi-resolution analysis (MRA) (A). Details 1 
through 9 are summed to yield signal approximation 𝑠𝑎 (B). 𝑠𝑎 is then entered into a second 10-level 5th order Coiflet wavelet 
MRA (C). 
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(D) Two new approximations are created: 
𝐴21𝑠𝑎 − 𝐴29𝑠𝑎 (dark blue line) and 𝐴23𝑠𝑎 − 
𝐴29𝑠𝑎 (light blue line). Maxima separated by at 
least ~422 ms are found in each signal 
approximation (circles). These maxima 
approximately correspond to mid-swing. 

 

(E) A window of interest proceeding each 
maxima in 𝐴21𝑠𝑎 − 𝐴29𝑠𝑎 (+250 to +2000 ms; 
solid vertical lines) is used to look for local 
minima corresponding to potential ICs (dark 
blue triangles). A window of interest preceding 
each maxima in 𝐴23𝑠𝑎 − 𝐴29𝑠𝑎 (-2000 to -50 
ms; dashed vertical lines) is used to look for 
local minima (light blue triangles) then the 
minimum values in the original signal 𝑠 (green 
line) within 0 to +75 ms are selected as 
potential TCs (green triangles). Starting with the 
IC closest to the mid-swing maxima in time 
iterate backwards in time through potential 
TCs. The first potential IC-potential TC pair that 
satisfies the condition 100 ms < (IC - TC) < 2500 
ms is accepted. If no pairing meets this 
condition iterate forward in time to the next 
potential IC. Note, the windows of interest 
stipulated by Arminian et al. for walking 
analysis were so large that they required the x-
scale to be adjusted and extend beyond the 
data selected for analysis. 
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Figure 3S.8: Aminian/O’Donovan results. See Figure 3S.2 for description. 

 

3S.2.5. Aminian/O’Donovan modified method 

As stated in the previous section, Aminian et al. [151] developed their method to identify gait 

events in walking. O’Donovan et al. [152] later applied this method to running but did not report any 

adjustments to the windows of interest based on the temporal differences between walking and 

running. Here we adjust the windows of interest to better correspond to swing times presented in the 

running literature. The approach is otherwise as described above. Results shown in Figure 3S.10. 
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Figure 3S.9: Aminian/O’Donovan modified 
method. New running-based windows of 
interest are defined for the Aminian/O’Donovan 
approach. A window of interest proceeding 
each maxima in 𝐴21𝑠𝑎 − 𝐴29𝑠𝑎 (+100 to +300 
ms; solid vertical lines) is used to look for local 
minima corresponding to potential ICs (dark 
blue triangles). A window of interest preceding 
each maxima in 𝐴23𝑠𝑎 − 𝐴29𝑠𝑎 (-300 to -100 
ms; dashed vertical lines) is used to look for 
local minima (light blue triangles) then the 
minimum values in the original signal 𝑠 (green 
line) within 0 to +75 ms are selected as 
potential TCs (green triangles). Starting with the 
IC closest to the mid-swing maxima in time 
iterate backwards in time through potential 
TCs. The first potential IC-potential TC pair that 
satisfies the condition 200 ms < (IC - TC) < 600 
ms is accepted. If no pairing meets this 
condition iterate forward in time to the next 
potential IC. 

 

Figure 3S.10: Aminian/O’Donovan modified results. See Figure 3S.2 for description.      
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3S.2.6. Greene/McGrath method 

Greene et al. [154] developed a method for gait event identification during walking that was 

later adapted by McGrath et al. [153] to identify running gait events. McGrath et al. placed IMUs mid-

shank to capture 𝜔𝑊𝐶𝑆,𝑧. Data were low-pass filtered with a 5 Hz 5th order Butterworth filter then 

thresholds calculated based on the data’s properties were used to determine IC and TC. Finally, the 

sequence and temporal spacing of gait events was checked to ensure they were logical (i.e., must follow 

IC-TC-IC-TC pattern). Results are shown in Figure 3S.12. 

Equation 3S.1 

𝑡ℎ1 = 0.6 ∗ 𝑚𝑎𝑥(𝜔𝑊𝐶𝑆,𝑧) 

Equation 3S.2 

𝑡ℎ2 =  0.8 ∗
1

𝑁
∑(𝜔𝑊𝐶𝑆,𝑧,𝑖 > 𝜔𝑊𝐶𝑆,𝑧)

𝑁

𝑖=1

 

Equation 3S.3 

𝑡ℎ3 =  0.8 ∗ |
1

𝑁
∑(𝜔𝑊𝐶𝑆,𝑧,𝑖 < 𝜔𝑊𝐶𝑆,𝑧)

𝑁

𝑖=1

| 

Equation 3S.4 

𝑡ℎ4 =  0.8 ∗
1

𝑁
∑(𝜔𝑊𝐶𝑆,𝑧,𝑖 < 𝜔𝑊𝐶𝑆,𝑧)

𝑁

𝑖=1

 

Equation 3S.5 

𝑡ℎ5 =  �̅�𝑊𝐶𝑆,𝑧 

Equation 3S.6 

𝑡ℎ6 =  2 ∗ 𝑡ℎ3 
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Figure 3S.11: Greene/McGrath method. (A) 
Angular velocity about the z-axis (medial-
lateral in the SCS, ~right in the WCS; dark blue 
line) is filtered with a 5-Hz  5th order low-pass 
Butterworth filter. Maxima separated by at 
least 𝑡1 (500 ms) are identified (dark blue 
circles). Any identified maximum without a 
preceding minimum (light blue circles) at least 
𝑡ℎ1 below the maximum (dashed lines) or with 
a value below 𝑡ℎ2 (solid line) is discarded.  

 

 

(B) Iterating backwards through the remaining 
maxima (dark blue circle) proceeding minima 
are identified as potential ICs (dark blue 
triangle). Potential ICs are rejected if their 
preceding maxima (light blue circle) is not at 
least 𝑡ℎ3 greater than their magnitude 
(dashed light blue line) or if their magnitude is 
𝑡ℎ5 or greater (dashed dark blue line). The 
potential IC satisfying these conditions and 
closest in time to the maxima is labeled as the 
IC. 

 

(C) Similarly, minima preceding the maxima 
are identified as potential TCs (dark blue 
triangles). Potential TCs are rejected if their 
magnitudes are 𝑡ℎ4 or greater (dashed dark 
blue line) or their proceeding maxima (light 
blue circle) is not 𝑡ℎ6 greater than the 
potential TC (dashed light blue line; note: 
Greene et al. stipulate this threshold applies to 
the preceding maximum; however, we found 
that maxima preceding TCs rarely meet this 
condition—including on Greene et al.’s own 
data digitized via 
https://apps.automeris.io/wpd/—thus, we 
believe this was a typo and that this condition 
is intended to be applied to proceeding 
maxima). The timing and sequence of events is 
then checked to ensure events always 
alternate between IC and TC, ICs and their 
proceeding TCs occur within 2500 ms of each 
other, and TCs and their proceeding ICs occur 
within 7500 ms of each other. 

https://apps.automeris.io/wpd/
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Figure 3S.12: Greene/McGrath results. See Figure 3S.2 for description.      

 

3S.2.7. Greene/McGrath modified method 

As stated in the previous section, Greene et al. [154] developed their method to identify gait 

events in walking. McGrath et al. [153] later applied this method to running but did not report any 

adjustments to the algorithm based on the temporal differences between walking and running. Here we 

adjust the algorithm to better correspond to the timing between gait events presented in the running 

literature. The approach is otherwise as described above. Results are shown in Figure 3S.13. 
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Figure 3S.13: Greene/McGrath modified results. See Figure 3S.2 for description.      

 

3S.2.8. Sinclair method 

Sinclair et al. [155] placed a tri-accelerometer on the anteromedial tibia and used 𝑎𝑊𝐶𝑆,𝑌 to 

identify IC and TC gait events. Data were low-pass filtered then maxima in the ~longitudinal acceleration 

were identified. IC was defined as the zero-crossing point preceding each maxima while TC was defined 

as a plateau following the largest local maximum between longitudinal maxima. Results are shown in 

Figure 3S.15. 
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Figure 3S.14: Sinclair method. (A) Y-axis 
acceleration (proximal-distal in the SCS; 
~longitudinal in the WCS; blue line) is filtered 
with a 4th-order 60-Hz low-pass Butterworth. 
Maxima separated by at least ~422 ms are 
identified (blue circles). Walking back from each 
maxima, the first zero-crossing point followed 
by 20 ms of positive data is defined as the IC. 

 

(B) To identify TC, a local maximum (light blue 
circle) is found between pairs of maxima. Data 
between this local maximum and the 
proceeding y-axis maximum is differentiated 
and portions with where the magnitude is 
decreasing by less than 2% of the previous 
frame’s magnitude per second are selected 
(gray shading). TC is defined as the first frame 
of the selection occurring earliest in time with a 
duration of at least ~5 ms. 
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Figure 3S.15: Sinclair results. See Figure 3S.2 for description. 

 

3S.2.9. Whelan method 

Whelan et al. [156] used 𝑎𝑊𝐶𝑆,𝑋 from a triaxial accelerometer placed on the tibialis anterior 

(anteromedial on the midshaft of the tibia) to identify IC events in sprinters running at up to 50% of their 

maximum effort. Data were first filtered using a 10 Hz low-pass Butterworth filter (order not reported; 

we assumed 4th). Then they reported using “peak acceleration” to define IC. Their figures, however, 

suggest that they defined IC using a local maximum immediately preceding a larger maximum. We 

developed automated code based on their figure. Results are shown in Figure 3S.17. 



 

73 
 

 

Figure 3S.16: Whelan method. X-axis 
acceleration (anterior-posterior in the LCS; 
~direction of progression in the WCS) was 
filtered using a 4th order 10 Hz low-pass 
Butterworth filter (dark blue line). Maxima 
were then found in the signal (we added a 
constraint that they must be separated by at 
least ~422 ms) (dark blue circles). The minimum 
value between successive maxima was then 
found (dark blue squares). Finally, a local 
maximum between the minimum and it’s 
proceeding maximum was found and labelled 
as the IC (yellow triangles). TC was not 
identified using this method. 

 

Figure 3S.17: Whelan results. See Figure 3S.2 for description. 
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3S.2.10. Norris method. 

Norris et al. [157] proposed a running gait event identification method where 𝑎𝑊𝐶𝑆,𝑍 from a tri-

axial accelerometer placed on the anteromedial distal tibia were filtered with a 2 Hz 2nd order low-pass 

Butterworth filter and a zero-crossing was used to identify IC. Results are shown in Figure 3S.19. 

 

Figure 3S.18: Norris method. Z-axis 
acceleration (medial-lateral in the SCS; ~right in 
the WCS; light blue line) is filtered with a 2nd-
order 2 Hz Butterworth filter (dark blue line). IC 
is defined as any positive zero-crossing point. 
No TC definition is provided. 
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Figure 3S.19: Norris results. See Figure 3S.2 for description.      

 

3S.2.11. Schmidt method.  

Schmidt et al. [158] developed a gait event identification method for sprinting. It should be 

noted that this method was not developed with, or intended for, use across a broad range of running 

speeds. To identify IC and TC events, Schmidt et al. placed a triaxial IMU on the distal lateral tibia and 

identified points in 𝑎𝑊𝐶𝑆,𝑌 and 𝜔𝑊𝐶𝑆,𝑍 that met user-defined thresholds. Given our focus on 

unsupervised methods, however, we adapted this code to use default thresholds. We report only the 

unsupervised results here, it is likely that results would improve with supervision. Results are shown in 

Figure 3S.21. 
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Figure 3S.20: Schmidt method. (A) Find the 
global minimum in angular velocity about the z-
axis (medial-lateral in SCS; ~right in WCS; dark 
blue line). Then, walk through each frame of 
data and find the local minimum in angular 
velocity across the next 100 ms and the 
differential in angular velocity (angular 
acceleration; light blue line) for the next 50 ms. 
If the local minimum is equal to the global 
minimum or all angular accelerations are 
negative and the linear acceleration in the y-
axis (proximal-distal in the SCS; ~longitudinal in 
the WCS; green line; B) exceeds a critical 
threshold (5 g or user-defined; dashed black 
line) then flag the current frame as a point of 
interest (In the example data, a single frame 
meets these criteria—the global minimum in 
angular velocity about the y-axis; dark blue 
circle). 

 

(B) For each point of interest, find the 
maximum in y-axis acceleration occurring 
between 20 ms before to 100 ms after the point 
of interest (green square). Then, find the y-axis 
acceleration minimum occurring between 20 
ms before the point of interest to the y-axis 
acceleration maximum (green diamond). If the 
minimum occurs after the point of interest label 
it as the IC; otherwise, label the point of 
interest as the IC (In this case, the point of 
interest was labeled as the IC; dark blue 
triangle). 

 

(C) Next, look through all ICs. Within a 150 ms 
(or user defined) time window starting 90 ms 
(or user defined) after the IC (vertical black 
lines) find the minimum angular velocity (dark 
blue circle). 
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(D) Starting from this minimum, within a ~50 
ms window (black vertical lines) and find the 
minimum y-axis acceleration (in this case, the 
same frame as the minimum angular velocity 
from the previous step). Label this as the TC 
(red triangle). If multiple estimated timings are 
obtained for a single gait event take the mean 
value. 

 

Figure 3S.21: Schmidt results. See Figure S2 for description. 
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3S.2.12. Aubol method. 

Aubol et al. [159] used 𝑎𝑊𝐶𝑆,𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 from a triaxial accelerometer mounted on the 

anteromedial distal tibia to estimate IC. First, each axis’ acceleration was filtered with a 70-Hz 4th-order 

low-pass Butterworth filter. Then features of resultant acceleration and jerk were used to identify IC. 

Results are shown in Figure 3S.23. 

 

Figure 3S.22: Aubol method. Tri-axial 
accelerations were filtered using a 70-Hz 4th 
order low-pass Butterworth filter and used to 
calculate resultant acceleration (dark blue line) 
and jerk (light blue line). Maxima in the 
resultant acceleration separated by at least 
~422 ms were identified (dark blue circles; the 
timing constraint was a novel constraint we 
introduced). Next, maxima in the resultant jerk 
were identified, however, only maxima within 
~150 ms of a resultant acceleration maximum 
were retained (light blue circles). Acceleration 
minima with a prominence of at least 0.2*the 
magnitude of the third largest resultant 
acceleration peak were found (dark blue 
diamonds). Any minimum with a resultant 
acceleration peak occurring in the preceding 
~25 ms is eliminated. Looking between pairs of 
subsequent resultant acceleration maxima 
(dark blue circles), the earliest occurring 
minimum is labeled as the IC. 
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Figure 3S.23: Aubol results. See Figure 3S.2 for description. 

 

3S.2.13. Fadillioglu method.  

Fadillioglu et al. [160] aimed to create a method capable of identifying gait events during both 

walking and running. To implement this method, Fadillioglu et al. placed a uniaxial gyroscope on the 

lateral distal tibia to capture 𝜔𝑊𝐶𝑆,𝑍. The signal was low-pass filtered then midswing peaks were 

identified. A complementary signal was created by subtracting the filtered signal from the original signal 

and then features of this complementary signal were used to identify IC and TC. Results are shown in 

Figure 3S.25. 
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Figure 3S.24: Fadillioglu method. (A) Angular 
velocity about the x-axis (medial-lateral in the 
SCS and ~right in the WCS; dark blue line) is 
filtered with a 15 Hz 4th order low-pass 
Butterworth filter. Maxima with a magnitude 
of at least 4.63 rad/s and with a minimum 
separation of at least ~333 ms are identified as 
midswing peaks (dark blue circles). The signal 
is then detrended (light blue line) and for each 
midswing peak, the first zero-crossing 
following the peak is found and labelled as the 
IC (yellow triangles). Next, for each sequential 
pair of midswing peaks, the minimum value in 
the non-detrended signal (dark blue square) is 
found within a window from halfway between 
the peaks (dark blue diamond) to the second 
peak + 0.1*the time between the peaks. 

 

(B) Next, a complementary signal is created by 
subtracting the non-detrended filtered angular 
velocity from the unfiltered angular velocity. 
The complementary signal is low-pass filtered 
with a 2nd order 10-Hz Butterworth filter. A 
window of interest is defined based on the 
time between sequential midswing maxima: 
For times less than ~1000 ms (as in the 
example where the time is ~690 ms), TC (red 
triangle) is defined as the maximum 
complementary signal within a search window 
that starts halfway between midswing maxima 
(dark blue diamond) and ends at the negative 
peak (dark blue square). For times greater than 
or equal to ~1000 ms, TC is defined as the 
minimum complementary signal within a 
window starting halfway between midswing 
peaks and ending at the negative peak + 
0.1*the time between the peaks. 
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Figure 3S.25: Fadillioglu results. See Figure 3S.2 for description.      

 

3S.2.14. Bach method.  

Bach et al. [161] placed a tri-axial accelerometer on the anteromedial proximal tibia. They 

entered acceleration data into a principal component model and retained the principal component 

explaining the most variance for further analysis. The PC was normalized to its standard deviation and 

filtered and integrated to obtain velocity and position. Each signal was then entered into a machine 

learning algorithm and trained to estimate ground reaction forces. Estimated ground reaction forces 

were then used to identify IC and TC events. Results are shown in Figure 3S.27. 
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Figure 3S.26: Bach method. First, tri-axial acceleration data are resampled to match Bach et al.’s original sampling frequency 
(A-C) (the Echo State Network was trained on data collected at ~142.9 Hz and data collected at higher frequencies may have 
signal features that are novel to the network and degrade performance). Next, accelerations are entered into a Principal 
Component Analysis and the first component (explaining the most variance in the data) is retained (D). The principal 
component “acceleration” is then normalized to its standard deviation and integrated to find principal component “velocity.” 
The principal component velocity is high-pass filtered with a 2nd order 1-Hz Butterworth filter (E) then integrated to obtain 
principal component “position.” The principal component position is then filtered using the same parameters (F). Principal 
component acceleration, velocity, and position signals are entered into an Echo State Network that has been previously trained 
using Bach et al.’s published data (G) yielding estimated ground reaction forces (H) that are used to define IC and TC events 
(yellow and red triangles). (In this example, it appears the Echo State Network has almost captured the shape and location of 
four distinct stances in the ground reaction force signal, however, these distinct stances are separated by noise and large 
troughs that interfere with the method’s ability to accurately identify IC and TC events). 
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Figure 3S.27: Bach results. See Figure 3S.2 for description.    

   

3S.2.15. Bach modified method 

We also provide a modified version of the Bach et al. method [161]. This version addresses the 

large amount of negative noise we observed between the vGRF waveforms by zeroing out any vGRF 

values below zero then multiplying the vGRF by negative one before feeding it into Bach et al.’s gait 

event estimation algorithm (to cancel out an unexplained negative one multiplication that method 

performs). Results are shown in Figure 3S.28. 
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Figure 3S.28: Bach results. See Figure 3S.2 for description.      

 

3S.3. Lower back-mounted wearable methods 

3S.3.1. Auvinet method.  

Auvinet et al. [94] identified specific features associated with gait events in the signal of a tri-

axial accelerometer placed on the mid-sagittal lumbar spine. Based on their simultaneous recording of 

acceleration and video data they identified IC as the start of a large peak in 𝑎𝑊𝐶𝑆,𝑌 co-occurring with the 

start of a deep minima in the 𝑎𝑊𝐶𝑆,𝑋. TC was identified as the end of the peak in 𝑎𝑊𝐶𝑆,𝑌. Right and left 

side were also identifiable based on 𝑎𝑊𝐶𝑆,𝑍. We developed a novel automated code to identify gait 

events based on these features. Results are shown in Figure 3S.30. 
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Figure S29: Auvinet method. Identify y-axis 
(proximal-distal in the SCS, ~longitudinal in the 
WCS; dark blue line) maxima  separated by at 
least ~422 ms (dark blue circles). Then look for 
the minimum value between successive 
maxima (dark blue squares). Next, in the x-axis 
acceleration (anterior-posterior in the SCS, 
~direction of progression in the WCS; light blue 
line) find minima (light blue circles) occurring 
between the y-axis minimum and its proceeding 
maximum. Then, walk back until values start 
decreasing (light blue squares). Define IC 
(yellow triangles) as the average frame 
between the points where y-axis minimum and 
where x-axis acceleration started decreasing. To 
identify TC  (red triangles), look for the first 
frame following each y-axis maximum where y-
axis acceleration magnitude falls below -1 g. 
Finally, to determine side, take the mean value 
of the z-axis acceleration (medial-lateral in 
~SCS, ~right in WCS) in a window extending ~10 
ms to each side of the IC (gray bars). If the 
magnitude is less than 0, call it a left stance. If 
the magnitude is more than 0, call it a right 
stance. 
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Figure 3S.30: Auvinet results. See Figure 3S.2 for description.      

 

3S.3.2. Lee method.  

Lee et al. [88] placed an IMU with tri-axial accelerometer on the sacrum. They identified IC and 

TC as maxima in 𝑎𝑊𝐶𝑆,𝑋 and used 𝑎𝑊𝐶𝑆,𝑍 to identify side. Results are shown in Figure 3S.32. 

 

Figure 3S.31: Lee method. To identify IC, find 
minima in the x-axis acceleration (anterior-
posterior in SCS, ~direction of progression in 
WCS) separated by at least ~211 ms. Label this 
point the IC (gold triangles). Look from one IC 
plus ~85 ms to the proceeding IC and find a 
secondary x-axis minima. Label this point the TC 
(red triangles). To identify stance side, low-pass 
filter z-axis accelerations (medial-lateral in SCS, 
~right in WCS) with a 10-Hz 4th order 
Butterworth filter. Then, looking between 
successive IC and TC events, find positive and 
negative peaks. If the absolute value of the 
negative peak is greater label the stance as left. 
If the positive peak is greater label the stance as 
a right. 
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Figure 3S32: Lee results. See Figure 3S.2 for description.    

   

3S.3.3. Wixted method.  

To characterize acceleration signals related to gait events, Wixted et al. [95] simultaneously 

recorded accelerations from L3-L4 and pressures from in-shoe insoles. They observed that IC occurred 

around the time of a negative peak in 𝑎𝑊𝐶𝑆,𝑋 (similar to Lee et al. [88]) while TC occurred around the 

time of a negative zero-crossing in 𝑎𝑊𝐶𝑆,𝑌 (similar to Auvinet et al. [94]). Results are shown in Figure 

3S.34. 
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Figure 3S.33: Wixted method. To identify IC, 
find negative peaks in the x-axis acceleration 
(anterior-posterior in SCS, ~direction of 
progression in WCS; dark blue line) separated 
by at least ~211 ms. Label these points the ICs 
(gold triangles). Starting ~ 85 ms after each IC, 
find the first y-axis acceleration value (proximal-
distal in the SCS, ~vertical in the WCS; light blue 
line) that goes below 0. Label this point the TC 
(red triangles). 

 

 

Figure 3S.34: Wixted results. See Figure 3S.2 for description.      
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3S.3.4. Bergamini method.  

Bergamini et al. [164] placed a tri-axial IMU on the lumbar spine and used Luo et al.’s wavelet-

mediated differentiation technique [189] to double differentiate 𝜔𝑊𝐶𝑆,𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡. Positive peaks in the 

double differentiated signal are used to define IC while minima are used to define TC. Results are shown 

in Figure 3S.36. 

 

Figure 3S.35: Bergamini method. Angular 
velocity is resampled to 200 Hz, matching 
Bergamini et al.’s original paper. Then resultant 
angular velocity is calculated and double 
differentiated using 4-level quadratic spline 
discrete wavelet differentiation as described by 
Luo et al. [32] (dark blue line). Positive peaks 
separated by at least ~211 ms are found in this 
new angular jerk signal and are labelled as IC 
(yellow triangles). Minima between each 
successive pair of positive peaks are found and 
labelled as TCs (red triangles). 
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Figure 3S.36: Bergamini results. See Figure 3S.2 for description.      

 

3S.3.5. Benson method.  

Benson et al. [165] provide several well-documented functions to identify gait events from 

acceleration profiles of wearables mounted on the foot or sacrum. Here, we’ve minimally adapted their 

sacrum function to work with the same inputs and provide same outputs as other methods in this 

package. Results are shown in Figure 3S.38. 
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Figure 3S.37: Benson method. (A) First, 
accelerations are low-pass filtered with a 10-Hz 
4th order Butterworth filter. Then positive peaks 
separated by at least ~250 ms are found in the 
y-axis acceleration (proximal-distal in the SCS, 
~vertical in the WCS; dark blue line).  

 

 

(B) Next, find negative x-axis (anterior-posterior 
in the SCS, ~direction of progression in the 
WCS; light blue line) acceleration peaks 
between each pair of successive y-axis peaks 
(vertical black lines). If there are multiple 
negative x-axis peaks, then rank them 1…n by 
both magnitude (largest to smallest) and by 
timing (latest to earliest). IC (yellow triangle) is 
defined as the peak with the lowest mean 
magnitude and timing ranking. If there is a tie in 
mean rankings, the later peak is accepted as IC. 
Then, look from the preceding y-axis peak to IC 
- ~100 ms and accept the latest occurring 
negative x-axis peak as the TC (red triangle). 
Note, if no negative x-axis peaks can be 
identified, find the x-axis minimum and label it 
as the IC. Then find the x-axis maximum 
between the preceding y-axis peak and the IC. 
Find the peak x-axis jerk between the x-axis 
maximum and the IC. 

 

(C) To identify stance side, find the largest 
positive (green square) and negative (green 
diamond) peaks in the z-axis acceleration 
(medial-lateral in the SCS, ~right in the WCS; 
green line) during each stance (vertical black 
lines). If there is no positive (rightward) peak, 
then set as a left stance (and vice versa). If both 
positive and negative peaks exist, if the positive 
peak is closer to TC than to the negative peak, 
set as a left step; otherwise, if the negative 
peak occurs within ~15 ms of the IC, find a new 
negative peak between the current negative 
peak and the TC; otherwise, set as a left stance. 
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Figure 3S.38: Benson results. See Figure 3S.2 for description.      

 

3S.3.6. Reenalda method. 

Reenalda et al. [166] placed an IMU on runners while they ran a treadmill using different foot 

strike patterns. They defined IC as the peak downward velocity of the pelvis by integrating 𝑎𝐺𝐶𝑆,𝑌 

(obtained using proprietary algorithms provided by the IMU manufacturer). Results are shown in Figure 

3S.40. 
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Figure 3S.39: Reenalda method. y-axis 
acceleration (vertical in the GCS, proximal-distal 
in the SCS, and ~vertical in the WCS) is 
integrated to obtain y-axis velocity. Negative 
peaks are found and labelled as IC. We added 
an additional constraint that these peaks must 
be separated by at least ~211 ms. No method is 
described to determine TC or stance side. 

 

Figure 3S.40: Reenalda results. See Figure 3S.2 for description.    
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3S.4. IMU data processing 

An overview of our IMU data processing is provided in the main text. Here, we expand on those 

processing details. After collecting raw data from each IMU, data were downloaded and processed 

offline using the following steps: (1) Calibration, (2) Quiet period identification, (3) Bias removal, (4) 

Saturation correction, (5) Low-pass filtering, (6) Drift correction, (7) Orientation estimation and gravity 

subtraction, and (8) Coordinate system transformation. After these processing steps each of the 642 

trials we analyzed was segmented using the speed gate signals (to include data between the times when 

the participant crossed the gate 2.5 m before force plate center and the gate 2.5 m after force plate 

center) and entered into each of the 21 individual methods as an n × 7 matrix (with n rows representing 

the number of frames and the 7 columns representing time stamps, 3 acceleration axes, and 3 angular 

velocity axes). This resulted in a total of 642 trials × 21 methods = 13482 possible events for comparison 

to the corresponding 642 ground truth force plate events for each IC, TC, and stance side. 

3S.4.1. Calibration  

All IMU data collected during this experiment were corrected with IMU-specific calibration 

matrices. These matrices were calculated by conducting a calibration procedure that ensured each IMU 

accurately expressed accelerations and angular velocities in an orthogonal coordinate system oriented 

square to the IMU housing.  

Each IMU was secured to a centrifuge (ClearPath MCVC, Teknic, Victor, USA) with custom 3-D 

printed jigs (SOLIDWORKS 2019, Dassault Systèmes, Vélizy-Villacoublay, France) and calibrated in 6 

orientations at 16 known accelerations (from 0 - 41.42 g where 1 g = 9.8 m/s2) and angular velocities 

(from 0 - 78.54 rad/s). Adapting methods from Coolbaugh et al. [99], known data (K) from the centrifuge 

and measured data (M) from the IMU were used to calculate 3 × 7 calibration matrices for each IMU (C; 
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3 signed magnitude terms, 3 absolute magnitude terms, and one bias term per axis) and quantify sensor 

accuracy with a hold-back procedure after subtracting out biases observed during a quiet period (B).  

Equation 3S.7 

C*(M + B) = K 

      

One potential limitation of this procedure is that it treats each triaxial sensor independently 

(primary accelerometer, secondary accelerometer, and gyroscope) and assumes their values do not 

affect each other. This assumption was tested while piloting this calibration procedure by quantifying 

inter-sensor dependencies between the primary accelerometer and gyroscope and between the 

secondary accelerometer and gyroscope. Observed dependencies were negligible and independent 

sensor calibration matrices yielded the best results; thus, we felt confident using this approach (which 

avoids the indeterminacy of the primary and secondary accelerometer having the same K values). 

After calibration, IMU primary accelerometer errors were ≤ 0.01 ± 0.04 g, secondary 

accelerometer errors were ≤ 0.05 ± 0.07 g, and gyroscope errors were ≤ 0.01 ± 0.01 rad/s. 

 

Figure S3.41: IMU calibration. Left: An IMU in it’s 3-D printed housing. Computer-aided design software was used to ensure 
IMUs were friction fit square to their housing. Middle: Two IMUs in their 3-D printed housings mounted on the centrifuge. IMUs 
were checked for square with an engineer’s square and level with a bullseye level. Right: Example of measured triaxial 
accelerations for the secondary accelerometer (M). The 16 accelerations being applied to the IMU in each of 6 orientations 
correspond to known (K) values from the centrifuge. Accelerations between each orientation correspond to the IMU being 
repositioned on the centrifuge and checked for square and level. 
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3S.4.2. Quiet period identification 

Quiet periods were identified throughout data collection (e.g., participant resting, participant 

preparing at the start of the runway, participant standing while receiving instruction) and used to 

periodically check for changes in bias (as bias can vary with battery life and temperature) and reset 

orientation algorithms (as orientation estimates are prone to drift over prolonged periods; discussed 

further below). These quiet periods were defined as any period where… 

Equation 3S.8 

𝜔𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 < 0.5 𝑟𝑎𝑑/𝑠 and 

Equation 3S.9 

𝑗𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡 < 0.01 𝑚/𝑠3 

…for at least 100 ms. 

 

Figure 3S.42: Quiet period identification. Top: Resultant angular velocity (blue) and jerk (orange) at the sacrum across an entire 
data collection for the randomly selected example participant. Bottom: Zoomed in to show quiet periods (QP) where resultant 
angular velocities are < 0.5 rad/s and resultant jerks are < 0.01 m/s3 for at least 100 ms. Thresholds noted with the dashed 
horizontal line. 
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3S.4.3. Bias removal 

When the IMU is quiet, we know that it is not accelerating or rotating and thus, the only thing 

loading the axes should be the gravity vector. Based on this knowledge we can create a temporary 

inertial coordinate system based on gravity: 

Equation 3S.10 

𝑌 = 
∑ 𝑎𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 

𝑙𝑎𝑠𝑡 𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒
𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒

𝑛𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒𝑠
      

We can express Y as a unit vector, then make X and Z orthogonal unit vectors (with arbitrary sense). 

Using these vectors, we can create a temporary rotation matrix that will align our data with gravity: 

Equation 3S.11 

𝑅𝑡𝑒𝑚𝑝 = [
𝑋
𝑌
𝑍

]      

We can then express our data in this temporary inertial coordinate system (and given our calibration we 

know that the axes of the accelerometer and gyroscope are exactly aligned so the same rotation matrix 

can be used for both): 

Equation 3S.12 

𝑎𝑡𝑒𝑚𝑝 = 𝑅𝑡𝑒𝑚𝑝 ∗ 𝑎𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 

Given the IMU is quiet, in every frame 𝑎𝑡𝑒𝑚𝑝 and 𝜔𝑡𝑒𝑚𝑝 should now equal [0 1 0] g and [0 0 0] rad/s, 

respectively. Thus, we can calculate bias (B) in acceleration and angular velocity as the average deviation 

from those values across the quiet period: 

Equation 3S.13 

𝐵𝑎 =
∑ (𝑎𝑡𝑒𝑚𝑝 −[0 1 0])

𝑙𝑎𝑠𝑡 𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒
𝑓𝑖𝑟𝑠𝑡 𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒

𝑛𝑞𝑢𝑖𝑒𝑡 𝑓𝑟𝑎𝑚𝑒𝑠
 

We can then remove bias and re-express our data in its original coordinates: 
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Equation 3S.14 

     𝑎𝑑𝑒𝑏𝑖𝑎𝑠 = 𝑎𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 − 𝑅𝑡𝑒𝑚𝑝
−1 𝐵𝑎 

 

Figure 3S.43: Bias removal. Top: Uncorrected resultant sacral acceleration (blue) and de-biased resultant sacral acceleration 
(orange) across the entire data collection for the randomly selected participant. Bottom: Zoomed in to show that uncorrected 
resultant acceleration does not equal 1 g during quiet periods while de-biased acceleration equals exactly 1 g. 

 

3S.4.4. Saturation correction 

Our IMU contained two tri-axial accelerometers with different ranges. The primary 

accelerometer had a range of 16 g while the secondary accelerometer had a range of 100 g. Although 16 

g is a large enough range to capture the majority of accelerations at the tibia and sacrum during running, 

we wanted to ensure that saturation did not occur, particularly at the tibia [190]. Thus, we used a 

threshold of 15.5 g and replaced any value above this threshold in our primary accelerometer with the 

corresponding frame from our secondary accelerometer (these values were highly correlated across the 

± 16 g range they could both measure). Secondary accelerometer data were then discarded. 
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Figure 3S.44: Saturation correction. Left: Tibia ~longitudinal axis accelerations from primary accelerometer (orange) and 
secondary accelerometer (blue) across the entire data collection for the example participant. The horizontal black line indicates 
data outside the primary accelerometer’s range (defined as |a| > 15.5 g). Right: Secondary accelerometer measurements 
plotted against primary accelerometer measurements for each axis (different colors). Black dashed diagonal line indicates 
perfect agreement. Here correlations between each axis ranged from r = 0.82 to r = 0.96. In general, correlations across the 
ranges shared between primary and secondary accelerometers were ≥ 0.90. 

 

3S.4.5. Low pass filtering 

Next, accelerations and angular velocities were filtered with a 4th order 50 Hz low-pass 

Butterworth filter. 
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Figure 3S.45: Low-pass filtering. Top: Worst-case example of unfiltered (blue) and filtered (orange) ~longitudinal tibial 
acceleration (that experienced saturation and is now composed of data from the primary and secondary accelerometers). Data 
is taken from a single trial from the example participant. Bottom: Zoomed in on ~one step to better visualize differences 
between filtered and unfiltered signal. Filter parameters were chosen to qualitatively balance the preservation of major signal 
features (particularly peak magnitudes and locations) with the removal of high-frequency noise. 

 

3S.4.6. Drift correction 

Angular velocity measured by IMUs is prone to drift. This drift makes it difficult to integrate 

angular velocities and calculate the orientation of an IMU in space. Several sensor fusion algorithms 

have been developed to correct this drift including Kalman filters [191], Mahoney filters [192], and 

Madgwick filters [193]. We explored the use of each of these filters and found that converting our data 

to quaternion representation and entering it into a Madgwick filter (with beta set to 0.05 and no 

magnetometer fusion due to the amount of magnetic interference in our lab) was the most successful in 

eliminating drift in a “worst case” recreation of our experimental conditions (an 80 minute data capture 

with extreme angular rotations and accelerations and no quiet period corrections yielded 1.66 rad 

rotation error). The code we used to execute the Madgwick filter is available from x-io at: 

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/ 

And from MATLAB at: 

https://www.mathworks.com/products/sensor-fusion-and-tracking.html 

 

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
https://www.mathworks.com/products/sensor-fusion-and-tracking.html
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Figure 3S.46: Drift correction. Top: Uncorrected angular velocity about the ~longitudinal axis of the sacrum (blue) for the entire 
data collection of the example participant. Middle: Difference between uncorrected and Madgwick filter-estimated angular 
velocities (orange). Bottom: Madgwick filter-estimated angular velocity about the ~longitudinal axis of the sacrum (yellow). 

 

3S.4.7. Orientation estimation and gravity subtraction 

After drift-correcting angular velocity with the Madgwick algorithm, we create a rotation matrix 

based on the loading of gravity during quiet periods (see 3S.4.3. above) then used it to create a “tilt-

corrected” coordinate system (see 3S.4.8. below). Then, between each quiet period, we used angular 

velocity to calculate changes in orientation based on Equations 2 and 3 in McGinnis & Perkins [174]. This 

provided a rotation matrix from the wearable coordinate system to the “tilt-corrected” coordinate 

system for each time step. 

Using these time-varying rotation matrices, acceleration data for each frame was expressed in 

the “tilt-corrected” coordinate system then 1 g was subtracted from the y-axis (in line with gravity). This 

procedure removed the gravity component from the accelerometer data. To create the wearable and 

segment coordinate systems (in the next step), data were then re-expressed in their original coordinate 

system using the inverse of the time-varying rotation matrices. 

 

Figure 3S.47: Orientation estimation and gravity subtraction. Top: Uncorrected acceleration of the sacrum for the entire data 
collection of the example participant (colors represent different axes). Bottom: Acceleration of the sacrum after subtracting 1 
from the y-axis in the “tilt-corrected” coordinate system and then re-expressing in the wearable coordinate system (colors 
represent different axes). 
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3S.4.8. Coordinate system definition 

Finally, data were expressed in three different coordinate systems for analysis. First, data were 

expressed in the Wearable Coordinate System (WCS). This is not the raw coordinate system of the IMU. 

Rather, all data were corrected with the calibration matrices described in 3S.4.1. above. These 

calibration matrices ensured that data were expressed in orthogonal axes aligned with the IMU housing. 

The IMU housing was positioned such that, during quiet standing, the WCS axes were oriented roughly 

in the direction of progression (+x), the longitudinal axis (+y), and to the right (+z).  

Data were also expressed in a Segment Coordinate System (SCS). This coordinate system was 

defined using an approach described in the Supplemental Material of Cain et al. [121] which can be 

found at: 

http://dx.doi.org/10.1016/j.gaitpost.2015.10. 022 

In brief, accelerations during a quiet standing trial were used to define a gravity vector (similar 

to 3S.4.3. above) assuming that the segment was aligned with gravity during the standing trial. This 

gravity-based vector was defined as the proximal-distal axis (+y proximal). Then a period of steady-state 

running was manually selected from the data set. Angular velocities from this period were entered into 

a Principal Component Analysis and the Principal Component accounting for the most variability in 

angular velocity was selected to represent the average axis of rotation. During running the average axis 

of rotation was assumed to correspond to the medial-lateral axis. We defined this as the z axis (+z right). 

The anterior-posterior axis was then defined as the cross-product of y and z  (+x anterior). Finally, the z 

axis was recalculated as the cross-product of x and y to ensure orthogonality. These three unit vectors 

were then used to create a rotation matrix that transformed data from the WCS to the SCS. 

Finally, data were expressed in a pseudo-global system similar to Cain et al.’s “tilt-corrected” 

coordinate system (TCCS) [121]. First, we created a rotation matrix based on the loading of gravity 

http://dx.doi.org/10.1016/j.gaitpost.2015.10.%20022
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during quiet periods (see 3S.4.3. above). This rotation matrix expressed data with the y-axis aligned with 

gravity during quiet standing (+y vertical). Next, the acceleration of each axis was double integrated to 

obtain displacement then entered into a Principal Component Analysis. The Principal Component 

accounting for the most variation in displacement was taken as the projection of the direction of 

progression onto the horizontal plane (+x direction of progression). Then the projection of the medial-

lateral axis onto the horizontal plane was defined as the cross product of x and z (+z right). The x-axis 

was then recalculated to ensure orthogonality. These three unit vectors were then used to create a 

rotation matrix and multiplied by the time-varying rotation matrices described in 3S.3.7. to express data 

in the TCCS. Thus, TCCS data is always expressed with y aligned with gravity but with x and z free to 

rotate about y as the participant moves. 
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Figure 3S.48: Coordinate system definition. All plots show sacral accelerations from the same trial from the example 
participant. The top row shows data in the Wearable Coordinate System (WCS). the middle row shows data in the Segment 
Coordinate System. The bottom row shows data in the Tilt-Corrected Coordinate System (TCCS). The first column shows x-axis 
data (blue). The second column shows y-axis data (orange). The third column shows z-axis data (yellow). Due to the similarities 
between all three coordinate systems at the sacrum, discrepancies are minor. 
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4. Acceleration-based estimation of vertical ground reaction forces during running: A 

comparison of methods across running speeds, surfaces, and foot strike patterns 

 

4.1. Introduction 

Ground reaction forces (GRFs) are external reaction forces created with equal magnitude and 

opposite sense to the force that the foot applies to the ground with each step. Quantifying GRFs is 

fundamental to running biomechanics research because: (1) per Newton’s second law, GRFs dictate the 

center of mass’ (COM) acceleration and can therefore be used to study whole-body motion, (2) this 

whole-body motion both causes, and is caused by, muscle activity and thus GRF provides insight into 

that activity [194], (3) in combination with this muscle activity, GRF contributes to the internal loads 

experienced by structures within the body (e.g., bone, ligament, tendon, cartilage) leading to its 

frequent (though much contested) investigation as a risk-factor for injury [195, 196, 41, 68, 197, 198, 

199, 200, 201]; (4) the magnitude and sense of GRF is used to assess performance [202, 203, 204, 205, 

206]; and finally, (5) because GRFs are critical to inverse dynamics calculations, allowing estimation of 

joint forces and moments and more advanced analysis of behavior. Thus, accurate quantification of GRF 

during running is an important goal. 

Accurate quantification of GRF is relatively easy with a force plate or instrumented treadmill, 

however, this equipment is generally ‘captive’ to lab environments that may not represent the actual 

conditions runners experience. To increase ecological validity, previous research has attempted to 

replicate field conditions within the lab [207, 208, 209, 210, 211]. Even with such attempts, however, 

spatial constraints may cause participants to alter their gait on a treadmill or short running track [212] 

and temporal constraints still limit the duration and volume of data collection. Thus, lab measured GRFs 
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may not accurately represent the millions of GRFs that occur over many long bouts of running in the 

field, limiting our understanding of GRF and its relation to other variables. 

Some of these constraints have been overcome through the advancement of force sensing 

insoles [213, 214, 215, 216, 217, 218], wearable load cells [219, 220, 221], and instrumented shoes [222, 

223, 224]. However, this equipment still suffers from issues with durability, comfort, changing the 

mechanical properties of a shoe (i.e., making it more rigid), and interfering with the foot-ground (or 

foot-shoe) interface. Consequently, biomechanists remain largely reliant on ‘captive’ technology to 

measure GRF, decreasing the ecological validity and volume of available data. 

Accelerometers offer a promising alternative to overcome this reliance on ‘captive’ technology. 

These small, low-cost wearable devices may allow the capture of greater volumes of more ecologically 

valid data than traditional ‘captive’ equipment. Sets of multiple wearables can estimate GRFs during 

walking [225, 226, 227, 228] and running [229, 230, 231] and several methods have been proposed that 

truly capitalize on the advantages of accelerometers (minimizing system complexity, preparation time, 

participant discomfort, and costs) by estimating GRFs with a single accelerometer. These single-

accelerometer methods often place the accelerometer on the shank or locations intended to 

approximate whole body COM such as the hip, lower back, or upper back (other locations, such as the 

wrist, have also been investigated but show poor correlations with GRFs [232, 233]). 

Researchers attempting to estimate GRF from shank accelerations build on observations that 

shank acceleration and GRF signals are closely related [234, 235, 236] and therefore should allow 

estimation of one from the other [237, 238, 239]. Further, some argue that forces applied at the ground 

are damped as they travel up the body and thus, measuring accelerations at the shank better reflects 

GRFs than more proximal mounting locations [240]. Researchers also point to similarities in the timing of 
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peaks in the tibial acceleration and GRF signals [241] (cf. [242]) and argue for a mechanical coupling of 

these peaks [243]. 

Relations between GRF and accelerometers mounted on the approximate COM have also been 

explored [244, 232]. Use of these COM locations is based on Newton’s second law which states that 

whole body acceleration is inversely proportional to the mass of a body and proportional to the net 

forces acting on that body [245, 246, 247, 248]. Given a constant mass, if forces other than GRF are 

relatively small (e.g., air resistance), then the COM acceleration is a function of gravitational force and 

GRF. A limitation of this ‘COM’ approach is the assumption that a single accelerometer with a static 

position can capture whole body COM acceleration even though the COM location can move during 

running (due to limb movements and changes in posture). Despite this movement, previous research 

supports this assumption and demonstrates that a sacrum mounted accelerometer captures whole body 

COM acceleration during running fairly well [249, 250, 251, 252, 253]. 

Based on these arguments there have been many attempts to estimate GRF from acceleration 

at these two mounting locations [254], however, only one study has conducted a head-to-head 

comparison of methods and that study only compared two of the many methods available [255]. Thus, 

there are no comprehensive recommendations to guide users on which method to use for a given 

application. To overcome this gap in the literature, methods to estimate GRF from a single 

accelerometer were replicated and compared. Methods were required to be non-participant or -trial 

specific (cf. [161]), non-proprietary (cf. [256, 257, 242]), report promising results (cf. [258]), and be 

capable of providing stance-by-stance estimates of at least one feature of the vertical GRF (first peak, 

loading rate, second peak, average, or time series) (cf. [248]) using only easy-to-measure 

anthropometrics and/or features of an acceleration input signal (cf. [248, 259, 208, 260]) from a single 

sensor on the shank or COM (cf. [229, 230, 231, 261, 262, 263]). In total, 27 methods derived from 13 

publications met these criteria. The 13 original publications are described in Table 4.1 while the 
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methods derived from those publications and the vertical GRF feature they are capable of estimating are 

described in Table 4.2. 

To evaluate which of these 27 methods provides the most accurate, reliable, and precise 

estimate of vertical GRF first peak, loading rate, second peak, average, and/or time series, errors were 

calculated relative to a gold-standard force plate. For each method, errors were compared across a 

range of speeds, foot strike angles, and running surfaces to explore whether method performance 

varied across these conditions. Results demonstrate the best method to estimate vertical GRF 

parameters from a single accelerometer under given surface, foot strike, and running speed conditions. 

Code to automatically execute each of the methods on stance-segmented accelerometer data is 

provided at https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a.

https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a
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Table 4.1: Published ground reaction force estimation methods. Thirteen publications met our inclusion criteria and presented one or more methods to estimate at least one 1 
feature of the vertical GRF (first peak, loading rate, second peak, average, or time series) from a single accelerometer on the shank or approximate COM (hip, sacrum, lower 2 
back, or upper back). 3 

Publication Sample 
Foot-
strike 

Speed Surface Placement Signals 
Range & 

Frequency 
Targets Ground truth Sync 

Neugebauer 2012, 2014 
[86, 87] 

n = 35 (20 F 15 M)  
children [86] 

n = 39 (20 F 19 M) 
injury free adults 

[87] 

NR 2.2 - 4.1 m/s 
90 [86] and 
15 m [87] 

overground 

Right iliac 
crest 

𝛼𝑊𝐶𝑆𝑟𝑒𝑠 [86] 
𝛼𝑊𝐶𝑆𝑥,𝑦 [87] 

NR 
40 Hz [86] 

± 6 g  
100 Hz [87] 

𝐹𝑦,𝑚𝑎𝑥 
Force plate 

1000 Hz 

Average 30 
[86] or 10 s 

[87] 

Charry 2013 [264] n = 3 NR 1.7 - 7.2 m/s Overground 
Medial mid-

tibia 
𝛼𝑊𝐶𝑆𝑦 

± 24 g 
100 Hz 

𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 
Force plate 

300 Hz 
Video 

Wundersitz 2013 [246] 
n = 17 (5 F 12 M) 
uninjured team 

sport 
NR 2.5 - 7.4 m/s 

10 m 
Overground 

2nd Thoracic 
vertebra 

𝛼𝑊𝐶𝑆𝑦,𝑟𝑒𝑠 
± 8 g  

100 Hz 
𝐹𝑦,𝑚𝑎𝑥 

Force plate 
100 Hz 

Video 

Meyer 2015 [265] 
n = 13 (3 F 10 M) 

moderately active 
children 

NR 1.7 - 2.8 m/s 
10 m 

overground 
Hip 𝛼𝑊𝐶𝑆𝑦 

± 8 g  
100 Hz 

𝐹𝑦,𝑚𝑎𝑥 
Force plate 

2400 Hz 
Average  

8-15 steps 

Gurchiek 2017 [247] n = 15 (3 F 12 M) NR 
Sprinting and 

cutting 
Overground Sacrum 

 
𝛼𝐺𝐶𝑆𝑥,𝑦,𝑧  

 

± 24 g 
450 Hz 

𝐹𝑦,𝑡 

𝐹𝑦,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 
Force plate 

1000 Hz 

Counter-
movement 

jumps 

Thiel 2018 [240] 
n = 3 

Elite sprinters 
NR Sprint Overground 

Above medial 
malleolus 

𝛼𝑊𝐶𝑆𝑥,𝑦,𝑧 
± 16 g  
250 Hz 

𝐹𝑦,𝑚𝑎𝑥 
Force plates 

1000 Hz 
LED flash 

Kiernan 2020 [266] n = 40 (NR) NR NR 
25 m 

Overground 
Sacrum; iliac 

crest 
𝛼𝑆𝐶𝑆𝑦  

± 100 g  
1000 Hz 

𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 

𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 
Force plate 

1000 Hz 
TTL pulses 

Kim 2020 [267] n = 7 (0 F 7 M) NR 2.9 m/s Treadmill Sacrum 𝛼𝑊𝐶𝑆𝑥,𝑦,𝑧 200 Hz 𝐹𝑦,𝑡 
Force plate 

400 Hz 
NR 

Pogson 2020 [268] 
n = 15 (5 F 10 M) 

team sport players 
NR 2.0 - 8.0 m/s Overground 

Back of upper 
torso 

𝛼𝑊𝐶𝑆𝑥,𝑦,𝑧 
± 16 g  
100 Hz 

𝐹𝑦,𝑡 
Force plate 

3000 Hz 
Synchronous 

recording 

Day 2021 [269] 
n = 30 (21 F 9 M) 

NCAA Div 1 xcountry 
NR 3.8 - 5.4 m/s Treadmill 

Posterior 
waistband 

𝛼𝑊𝐶𝑆𝑥,𝑦,𝑧 500 Hz 
𝐹𝑦,𝑡 

𝐹𝑦,𝑚𝑎𝑥 

Instrumented 
treadmill 
500 Hz 

Average 
10 s 

(jump) 

Higgins 2021 [232] 
n = 30 (15 F 15 M) 

healthy 
NR ~1.8 - 5.0 m/s 

23 m 
overground 

Superior to 
lateral 

malleolus; hip 
𝛼𝑊𝐶𝑆𝑦,𝑟𝑒𝑠 

± 8 g  
100 Hz 

𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 

Force plate 
1000 Hz 

Vertical 
jumps 

Veras 2022 [255] n = 131 NR 1.9 – 3.9 m/s Treadmill 

Superior to 
lateral 

malleolus; 
iliac crest; 

sacrum 

𝛼𝑊𝐶𝑆𝑦&𝑟𝑒𝑠 
± 16 g  
100 Hz 

𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 

𝐹𝑦,𝑚𝑎𝑥 

Instrumented 
treadmill 
1000 Hz 

Manual 
correction 
and cross-
correlation 

 

M – Male; F – Female; NR – Not reported; FF – forefoot; RF – rearfoot; SS – Self-selected;  
α – acceleration; SCS – segment coordinate system; WCS – wearable coordinate system; GCS – global coordinate system (coordinate conventions defined in Fig. 2) 

𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 – first (or ‘impact’) peak; 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡  – loading rate; 𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 – second (or ‘active’) peak; 𝐹𝑦,𝑚𝑎𝑥 – maximum, assumed to correspond to second (or ‘active’) peak; 𝐹𝑦,𝑡 – time series 
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Table 4.2: Twenty-seven methods derived or adapted from 13 publications in Table 3.1. Methods are sorted by accelerometer 
placement location. Methods that originally placed accelerometers on the lumbar or thoracic spine have been adapted to the 
sacrum. Not all methods could estimate all potential vertical GRF features. If a method was originally designed to estimate a 
feature it is specified as ‘designed’ and highlighted blue. If a method was designed to estimate a time series, all discrete vertical 
GRF features were then derived from that time series. These are marked ‘derived’ and highlighted pink. 

  

  Estimated force variable 

Sensor 
location 

Method First peak Loading rate Second peak Average Time series 

Sh
an

k 

Charry   designed   

Thiel   designed   
Veras shank res  designed designed   

Veras shank y  designed designed   
Higgins shank designed designed    

H
ip

 

Neugebauer   designed   
Meyer   designed   

Kiernan hip designed  designed   
Veras hip res  designed designed   
Veras hip y  designed designed   

 Higgins hip designed designed    

Sa
cr

u
m

 

Gurchiek derived derived derived designed designed 

Kim acceleration derived derived derived derived designed 

Kim displacement derived derived derived derived designed 

Kiernan sacrum designed  designed   

Veras sacrum res  designed designed   

Veras sacrum y  designed designed   

Day 5 Hz derived derived designed derived designed 

Day 10 Hz derived derived designed derived designed 

Day 30 Hz derived derived designed derived designed 

Wundersitz 10 Hz   designed   

Wundersitz 15 Hz   designed   

Wundersitz 20 Hz   designed   

Wundersitz 25 Hz   designed   

Wundersitz raw   designed   

Pogson derived derived derived derived designed 

Pogson xynormed derived derived derived derived designed 

 

4.2. Methods 

Data from this study were first reported in a separate analysis in Chapters 3 and 3S but methods 

are briefly repeated here for convenience.  

 

4.2.1. IMU calibration 

Adapting methods from Coolbaugh et al. [99], tri-axial IMUs (ProMove MINI, Inertia Technology, 

Enschede, The Netherlands; ± 16 g primary, ± 100 g secondary, ± 34.91 rad/s, 1000 Hz; see 

https://inertia-technology.com/wp-content/uploads/2022/02/ProMove-mini-datasheet.pdf for further 

https://inertia-technology.com/wp-content/uploads/2022/02/ProMove-mini-datasheet.pdf
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details on device specifications and operation) were calibrated with a centrifuge (ClearPath MCVC, 

Teknic, Victor, NY, USA) and custom 3-D printed jigs (SOLIDWORKS 2019, Dassault Systèmes, Vélizy-

Villacoublay, France). After calibration, IMU primary accelerometer errors were ≤ 0.01 ± 0.04 g, 

secondary accelerometer errors were ≤ 0.05 ± 0.07 g, and gyroscope errors were ≤ 0.01 ± 0.01 rad/s. 

 

4.2.2. Participants 

Seventy-seven participants were recruited from the University of California Davis, local running 

clubs, and the community at large. Participants were ≥ 18 years old and reported running ≥ 16.09 km per 

week for ≥ 6 months. Three participants were excluded from analysis due to movement of an IMU (n = 

2) or inability to complete the protocol as instructed (n = 1), leaving a final sample of 74 (32 males; 42 

females; 0 non-binary; age 28 ± 12 years; Figure 4.1). All participants provided written informed 

consent, and procedures were approved by the University of California Davis Institutional Review Board.  

 

Figure 4.1: Participant details. (A) Sex, (B) age, (C) height, (D) mass, and (E) self-reported average distance run per week. The 
white horizontal line represents the mean; dark blue represents ± 95% confidence interval (± 1.96 SEM) around the mean; and 
light blue represents ± 1 SD around the mean. Gray dots represent participants outside ± 1 SD. 
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4.2.3. Protocol 

Participant mass, height, and distance of the left and right lateral malleolus, fibular head, lateral 

epicondyle, and superior aspect of greater trochanter from the ground were measured. Using adhesive-

bonded hook-and-loop fasteners, IMUs were attached to neoprene belts with anti-slip silicone inners, 

then wrapped with elastic straps as tightly as possible, within the limit of participant comfort. IMUs 

were placed anterior and superior to the lateral malleoli (shank), on the superior aspect of the iliac 

crests in line with the greater trochanter (hip), and on the superior aspect of the sacrum in line with the 

spine (sacrum) (Figure 4.2).  

Figure 4.2: Experimental set up. (A) IMU placement and coordinate conventions. For consistency, different conventions used 
across methods have been standardized to ISB conventions [169]: Segment coordinate systems (SCS) were defined as anterior 
(+x), proximal (+y), and medial-lateral (with right defined as +z); wearable coordinate systems (WCS) were defined square to the 
IMU housing, which was roughly aligned with the direction of progression (+x), longitudinal axis (+y proximal), and right (+z); 
Tilt-corrected coordinate systems (TCCS) were defined as vertical (+y) and the projections of direction of progression (+x) and 
the medial-lateral axis (+z right) onto the horizontal plane. (B) Belt design and IMU fixation. (C) Experimental setup. 

 

Participants wore their own shoes and ran a 25 m runway with an embedded force plate (Kistler 

9281, Kistler Group, Winterthur, Switzerland; 1000 Hz). Running speed was recorded using two custom-

built laser speed gates, placed 2.5 m on each side of force plate center. Participants warmed up and 

practiced striking the force plate three times per side at their slowest (“the slowest pace you would use 

on a run”), typical (“the pace you use for the majority of your running”), and fastest (“the fastest pace 

you would use on a run”) self-selected speeds (Figure 4.3). During this warmup, markers on the lateral 

calcaneus and base of the fifth metatarsal were recorded using a conventional video camera (Exilim EX-
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FH25, Casio; 120 Hz). Foot strike angle was calculated by subtracting a neutral standing foot angle from 

the foot angle at initial contact (Kinovea 0.9.5). Positive values indicate a more dorsiflexed foot at initial 

contact with values > 0.14 rad corresponding to rear-foot strike, -0.03 to 0.14 rad to mid-foot strike, and 

< -0.03 rad to forefoot strike [270]. After warm-up, five stances per side were collected at each speed for 

two surface conditions: (1) with a track surface covering the runway and force plate, and (2) with no 

covering on the hardwood floor of a basketball court. Participants always progressed from their slowest 

to fastest speeds, but the order of foot and surface was pseudo-randomized. 

IMU data were synchronized within 100 ns of each other with a wireless network hub (Advanced 

Inertia Gateway, Inertia Technology, Enschede, The Netherlands). This hub sent voltage pulses that were 

synchronously recorded by IMU software and a custom MATLAB script that simultaneously recorded the 

speed and force data (R2018b, MathWorks, Natick, USA). Pulse trains were cross correlated to 

synchronize signals. During data processing, we observed small timing discrepancies caused by the 

initialization of discrete MATLAB data acquisitions and small variances between the sampling rates of 

the IMU and MATLAB systems. Although extremely small, these discrepancies could accumulate over 

the course of the ~60 min data collection, leading to timing differences between the first and last synch 

events of a data collection (on the order of 10s of ms). To ensure the input acceleration data were 

perfectly matched with the target force data, a conservative approach was used and only trials 

containing a synch event were analyzed (642 of 4440 trials). All other trials were discarded to ensure 

millisecond-level accuracy. 
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Figure 4.3: Observed speeds and foot strike angles. (A) Mean speeds and (B) foot strike angles used by each participant across 
the slowest, typical, and fastest conditions (RFS is rear foot strike, MFS is mid foot strike, and FFS is fore foot strike). The white 
horizontal line represents the mean; dark blue represents ± 95% confidence interval (± 1.96 SEM) around the mean; and light 
blue represents ± 1 SD around the mean. Gray dots represent participants outside ± 1 SD. 

 

4.2.4. IMU data processing 

Calibration matrices were applied to IMU data. Quiet periods were identified (angular velocity < 

0.5 rad/s and jerk < 0.01 m/s3 for at least 100 ms) and used to remove biases. Saturated frames from 

the primary accelerometer (|𝑎| > 15.5 g) were replaced with corresponding frames from the secondary 

accelerometer. Data were filtered with a 4th-order 50-Hz low-pass Butterworth filter. Angular velocity 

was drift-corrected using a Madgwick filter [171, 193, 173, 172]. Starting at each quiet period, 

accelerations were used to estimate the IMU’s position in the inertial reference frame, then angular 

velocities were used to estimate frame-by-frame changes in IMU orientation and remove the gravity 

component from accelerations [174]. Data were then expressed in a segment coordinate system based 

on the Principal Component that explained the most variance in angular velocity during running (the 

medial-lateral axis) and the gravity vector during quiet standing [121, 175]. IMU data during stance were 

extracted based on the instant the time-synchronized vertical force crossed a 10 N threshold. For more 

detailed IMU processing see Chapter 3S.4. 
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4.2.5. Force data processing 

Force data were filtered with a 4th-order 50-Hz low-pass Butterworth filter. A vertical force 

threshold of 10 N was used to define the start and end of stance. The first (or ‘impact’) peak was 

identified by performing a Fourier Transform on the vertical GRF then reconstructing a time domain 

signal from the ≥ 10 Hz high frequency (‘HiF’) components with an Inverse Fourier Transform [271]. First 

peak magnitude was defined as the magnitude of the original vertical GRF signal at the time when the 

HiF signal achieved its earliest peak occurring after 5% of stance duration. The loading rate was 

calculated from 20 - 80% of stance onset to first peak [272]. The second (or ‘active’) peak was defined as 

the maximum magnitude of the vertical GRF (or the magnitude of the second peak if two peaks were 

present). Average was also calculated across stance. These methods are depicted for a single stance in 

Figure 4.4. 

 

Figure 4.4: Vertical GRF and HiF reconstruction for an example stance (blue and red, respectively). Vertical dashed lines 
indicate the timing of first and second vertical GRF peaks. Note, although the first peak is difficult to visually identify in the 
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original signal (blue), a consistent point in the HiF signal can still be identified. The yellow highlighted region from 20-80% of the 
first peak was used to calculate loading rate. 

 

4.2.6. Analysis 

First peak, loading rate, second peak, average force, and force time series were estimated with 

each capable method (Table 4.2). For methods that required a model to be built (see Chapter 4S), these 

features were estimated using a leave one out analysis where 74 models were iteratively trained with 

data from 73 participants then used to estimate features for the single participant the model was not 

trained on. Errors were calculated by subtracting the ground truth force plate value from the estimated 

value (for first peak, loading rate, second peak, or average) or by calculating the RMSE (for time series). 

One sample t-tests were used to compare each method’s error to the gold standard (0 error). 

Significance was set at p ≤ 0.05 with a False Discovery Rate (FDR) procedure to correct for multiple 

comparisons. 

To account for the non-independence of the data (642 trials from 74 participants) and ensure 

proper estimation of variance, an adaptation of the Bland-Altman method was used [179]. Errors were 

entered into linear mixed-effects models in R (v4.2.2; R Foundation for Statistical Computing, 

Indianapolis, USA) as described in Carstensen et al.’s approach to linked replicates [176, 273]: 

Equation 4.1 
𝑦𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙 =  𝑎𝑚𝑒𝑡ℎ𝑜𝑑 + 𝑏𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 + 𝐶𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 + 𝐷𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙  + 𝜀𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙  

Where 𝑦 corresponds to the model estimated error, lower case terms correspond to fixed effects, upper 

case terms correspond to random effects, and 𝜀 corresponds to error. Model assumptions of 

independence, normality, and homoscedasticity were validated by plotting within-participant variances 

against within-participant means, histograms of residuals, residuals for each level of random effect, and 

residuals as a function of fitted value. Method-specific variance components were extracted using the 

‘MethComp’ package for R [274]: 
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Equation 4.2 
𝐶𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ~ 𝑁(0, 𝜏𝑚𝑒𝑡ℎ𝑜𝑑

2 ) 

Equation 4.3 
𝜀𝑚𝑒𝑡ℎ𝑜𝑑,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,𝑡𝑟𝑖𝑎𝑙  ~ 𝑁(0, 𝜎𝑚𝑒𝑡ℎ𝑜𝑑

2 ) 

Where the values of 𝐶 and 𝜀 are normally distributed about zero with variances of 𝜏2 and 𝜎2 for each 

method. This allowed estimation of: (1) method biases that quantify accuracy (mean error); (2) 

repeatability coefficients (RC) that quantify the largest absolute difference predicted between two 

measurements on the same participant under identical circumstances; and (3) limits of agreement (LOA) 

that quantify precision (limits within which 95% of future errors for a given method are expected to fall), 

using the equations: 

Equation 4.4 
𝑅𝐶𝑚𝑒𝑡ℎ𝑜𝑑 =  ± 2.83𝜎𝑚𝑒𝑡ℎ𝑜𝑑 

Equation 4.5 

𝐿𝑂𝐴𝑚𝑒𝑡ℎ𝑜𝑑 =  ± 1.96√𝜏0
2 + 𝜏𝑚𝑒𝑡ℎ𝑜𝑑

2 + 𝜎0
2 + 𝜎𝑚𝑒𝑡ℎ𝑜𝑑

2  

Where 𝜏0
2 and 𝜎0

2 correspond to variances for the gold standard. 

To evaluate if any potential explanatory variables affected method error, a second set of linear 

mixed effects models was developed for each method. These models added surface, speed, and foot 

strike angle as fixed effects. A p ≤ 0.05 for any fixed effect was interpreted as that fixed effect 

accounting for a significant amount of a method’s error (i.e., model-estimated force was significantly 

affected by running surface, speed, and/or foot strike angle).  

 

4.3. RESULTS 

4.3.1. First peak 

Using Carstensen’s method for linked replicates [176], biases, RCs, and LOAs were calculated for 

each method capable of first peak estimation (Figure 4.5; Table 4.3). First peak magnitude was 
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estimated at the shank by one method, which was among the best performing (biases < 200 N): ‘Higgins 

shank’ (+16.46 ± 879.51 N or +1.35 ± 72.23%; bias ± LOA). At the hip by ‘Kiernan hip’ (-43.18 ± 957.18 N 

or -3.55 ± 78.61%) and ‘Higgins hip’ (+16.46 ± 906.02 N or +1.35 ± 74.41%). At the sacrum, by nine 

methods, with four among the best performing: ‘Kim displacement’ (-132.74 ± 823.12 N or -10.90 ± 

67.60%), ‘Kiernan sacrum’ (-33.81 ± 961.22 N or -2.78 ± 78.94%), ‘Pogson’ (-101.25 ± 839.57 N or -8.32 ± 

68.95%), and ‘Pogson xynorm’ (-115.06 ± 850.78 N or -9.45 ± 69.87%). 

Figure 4.5: First peak estimation bias (white bar), ± RC (dark blue), and ± LOA (light blue) for each capable method. Gray dots 
represent trials falling outside the LOA. Values outside ± 1000 N are plotted at the axis limits. A value of 0 represents perfect 
agreement with the force plate. Positive values indicate the method overestimated the first peak. Negative values indicate the 
method underestimated the first peak. The method with a white background on the left is for accelerometers on the shank, 
methods with a gray background are for the hip, and methods with a white background on the right are for the sacrum. 

 

We performed a second set of linear mixed effects models on each of the best performing 

methods (biases < 200 N) to examine the role of running speed, surface, and foot strike angle as 

potential explanatory variables. These models revealed that error in each of the best performing 

methods was significantly explained by running speed and foot strike angle (ps ≤ 0.05) but not by 
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running surface (ps > 0.05) (Table 4.3). To illustrate these effects, model-predicted biases were plotted 

as a function of speed and foot strike angle (Figure 4.6). Yellow, red, and purple colors in these plots 

correspond to over estimations (positive errors where the estimate has a greater magnitude than the 

gold standard), while darker blue colors correspond to under estimations (negative errors where the 

estimate has a smaller magnitude than the gold standard). All methods showed the same general 

pattern with overestimates at low speeds and foot strike angles, and underestimates at high speeds and 

foot strike angles. 

Table 4.3: Best performing first peak estimation methods. Overall performance shown as biases (accuracy), RCs (repeatability), 
and LOAs (precision) color-coded from the absolute minimum (green) to absolute maximum (purple) values observed within-
column. Biases that significantly differed from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across conditions shown 
as coefficients for the intercept of surface (added to model estimated error for the track condition but not the floor condition) 
and slopes for running speed (in m/s) and foot strike angle (in rad). If surface, speed, or foot strike explains a significant (p ≤ 
0.05) amount of error it is highlighted pink and marked *. 

 Overall performance Performance across conditions 

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot strike 

Higgins shank +16.46 343.88 879.51 -83.70* 11.89 -243.59* 

Kiernan hip -43.18* 194.73 957.18 -191.48* -5.69 -300.01* 

Higgins hip +16.46 395.53 906.02 -131.03* -1.19 -231.61* 

Kim displacement -132.74* 115.26 823.12 -181.87* -12.86 -387.83* 

Kiernan sacrum -33.81* 134.60 961.22 -183.19* -11.26 -312.66* 

Pogson -101.25* 273.04 839.57 -135.50* -14.55 -535.86* 

Pogson xynormed -115.06* 247.59 850.78 -170.00* 2.42 -427.28* 
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Figure 4.6: Bias in first peak estimates predicted by mixed effects models for each of the best-performing methods, plotted as 
a function of speed and foot strike angle. Green values represent perfect agreement with the gold standard; yellow, red, and 
purple values represent positive biases (overestimates); darker blue values represent negative biases (underestimates). Foot 
strike angles corresponding to rear-, mid-, and fore-foot strike patterns have been labelled (RFS, MFS, and FFS) and divided with 
dashed white lines. 

 

4.3.2. Loading rate 

Three methods were capable of estimating loading rate from shank accelerations and were 

among the best performing methods (biases < 10 kN/s): ‘Veras shank res’ (+4.37 ± 62.56 kN/s or +8.26 ± 

118.16%; bias ± LOA), ‘Veras shank y’ (-3.25 ± 59.96 kN/s or -6.13 ± 113.25%), and ‘Higgins shank’ (-1.71 

± 56.69 kN/s or -3.23 ± 107.08%). Three were capable of estimating loading rate for hip acceleration but 
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only ‘Higgins hip’ was among the best performing (+0.02 ± 52.36 kN/s or +0.04 ± 98.90%). Ten methods 

were capable of estimating loading rate from accelerations at the sacrum, of these the best performing 

were: ‘Kim displacement’ (-6.34 ± 50.52 kN/s or -11.98 ± 95.43%), ‘Veras sacrum res’ (-1.95 ± 49.34 kN/s 

or -3.68 ± 93.19%), ‘Veras sacrum y’ (-1.04 ± 50.52 kN/s or -1.96 ± 95.42%), ‘Pogson’ (-5.32 ± 51.82 kN/s 

or -10.04 ± 97.87%), and ‘Pogson xynorm’ (-7.83 ± 51.21 kN/s or -14.80 ± 96.73%) (Figure 4.7). 

Figure 4.7: Loading rate bias (white bar), ± RC (dark blue), and ± LOA (light blue) for each capable method. Gray dots represent 
trials falling outside the LOA. Values outside ± 50 kN/s are plotted at the axis limits. A value of 0 represents perfect agreement 
with the force plate. Positive values indicate the method overestimated the loading rate. Negative values indicate the method 
underestimated the loading rate. Methods with a white background on the left are for accelerometers on the shank, methods 
with a gray background are for the hip, and methods with a white background on the right are for the sacrum. 

 

The linear mixed effects models examining the role of running speed, surface, and foot strike 

angle on the best performing methods (biases < 10 kN/s) revealed that error in all methods was 

significantly explained by running speed and foot strike angle (ps ≤ 0.05) but not by running surface (ps > 

0.05) (Table 4.4). All methods showed a similar pattern of overestimating loading rate at low speeds and 

foot strike angles and underestimating at high speeds and foot strike angles (Figure 4.8). 
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Table 4.4: Best performing loading rate estimation methods. Overall performance shown as biases (accuracy), RCs 
(repeatability), and LOAs (precision) color-coded from the absolute minimum (green) to absolute maximum (purple) values 
observed within-column. Biases that significantly differed from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across 
conditions shown as coefficients for the intercept of surface (added to model estimated error for the track condition but not 
the floor condition) and slopes for running speed (in m/s) and foot strike angle (in rad). If surface, speed, or foot strike explains 
a significant (p ≤ 0.05) amount of error it is highlighted pink and marked *. 

 Overall performance Performance across conditions 

Method Bias (kN/s) RC (kN/s) LOAs (kN/s) Speed Surface Foot strike 

Veras shank res +4.37* 36.96 62.56 -8.28* -0.29 -36.00* 

Veras shank y -3.25* 32.96 59.96 -9.14* -0.52 -33.12* 

Higgins shank -1.71 29.99 56.69 -3.47* 0.92 -16.17* 

Higgins hip +0.02 20.58 52.36 -10.66* -0.61 -21.41* 

Kim displacement -6.34* 11.98 50.52 -6.90* -1.45 -37.74* 

Veras sacrum res -1.95 9.47 49.34 -12.36* -0.96 -22.08* 

Veras sacrum y -1.04 10.18 50.52 -13.83* -0.96 -27.55* 

Pogson -5.32* 16.78 51.82 -5.98* -1.04 -40.57* 

Pogson xynorm -7.83* 17.25 51.21 -5.99* -1.03 -42.16* 
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Figure 4.8: Bias in loading rate estimates predicted by mixed effects models for each of the best-performing methods, plotted 
as a function of speed and foot strike angle. Green values represent perfect agreement with the gold standard; yellow, red, and 
purple values represent positive biases (overestimates); darker blue values represent negative biases (underestimates). Foot 
strike angles corresponding to rear-, mid-, and fore-foot strike patterns have been labelled (RFS, MFS, and FFS) and divided with 
dashed white lines. 
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4.3.3. Second peak 

Four methods could estimate second peak from shank accelerations, all were among the best 

performing methods (biases < 100 N): ‘Charry’ (+58.48 ± 478.42 N or +3.53 ± 28.85%; bias ± LOA), ‘Thiel’ 

(-90.32 ± 1162.97 N or -5.45 ± 70.12%), ‘Veras shank res’ (-98.67 ± 470.96 N or -5.95 ± 28.40%), and 

‘Veras shank y’ (-88.75 ± 471.45 N or -5.35 ± 28.43%). Five methods could estimate second peak from 

hip accelerations, with two among the best performing: ‘Neugebauer’ (+14.04 ± 488.09 N or +0.85 ± 

29.43%) and ‘Kiernan hip’ (-7.56 ± 572.04 N or -0.46 ± 34.49%). At the sacrum, 16 methods could 

estimate second peak, with seven among the best performing: ‘Kim acceleration’ (-27.21 ± 721.47 N or -

1.64 ± 43.50%), ‘Kim displacement’ (+20.68 ± 696.86 N or +1.25 ± 42.02%), ‘Kiernan sacrum’ (-4.20 ± 

563.80 N or -0.25 ± 33.99%), ‘Veras sacrum y’ (-74.18 ± 492.08 N or -4.47 ± 29.67%), ‘Wundersitz 20 Hz’ 

(+34.19 ± 1089.85 N or +2.06 ± 65.71%), ‘Pogson’ (+25.36 ± 745.01 N or +1.53 ± 44.92%), and ‘Pogson 

xynorm’ (-2.39 ± 730.18 N or -0.14 ± 44.02%).

 

Figure 4.9: Second peak estimation bias (white bar), ± RC (dark blue), and ± LOA (light blue) for each capable method. Gray 
dots represent trials falling outside the LOA. Values outside ± 1000 N are plotted at the axis limits. A value of 0 represents 
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perfect agreement with the force plate. Positive values indicate the method overestimated the second peak. Negative values 
indicate the method underestimated the second peak. Methods with a white background on the left are for accelerometers on 
the shank, methods with a gray background are for the hip, and methods with a white background on the right are for the 
sacrum. 

 

The linear mixed effects models examining the role of running speed, surface, and foot strike 

angle on the best performing methods revealed that error in all methods was significantly explained by 

running speed (ps ≤ 0.05). Foot strike angle also significantly explained error in eight of 13 methods (ps ≤ 

0.05) but not in ‘Kim acceleration,’ ‘Kim displacement,’ ‘Wundersitz 20 Hz,’ ‘Pogson,’ and ‘Pogson 

xynorm’ (ps > 0.05). Surface explained significant variation in only one method: ‘Wundersitz 20 Hz’ (all 

other ps > 0.05) (Table 4.5). Most methods showed the same general pattern with overestimates at low 

speeds and high foot strike angles. There were two exceptions: ‘Thiel’ had underestimates at low speeds 

and foot strike angles and overestimates at high speeds and foot strike angles, while ‘Pogson’ showed 

generally stable performance with a small (but significant) increase in error at faster speeds (Figure 

4.10). 

Table 4.5: Best performing second peak estimation methods (bias < 100 N). Overall performance shown as biases (accuracy), 
RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green) to absolute maximum (purple) values 
observed within-column. Biases that significantly differed from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across 
conditions shown as coefficients for the intercept of surface (added to model estimated error for the track condition but not 
the floor condition) and slopes for running speed (in m/s) and foot strike angle (in rad). If surface, speed, or foot strike explains 
a significant (p ≤ 0.05) amount of error it is highlighted pink and marked *. 

 Overall performance Performance across conditions 

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot strike 

Charry 58.48* 79.70 478.42 -20.20* 4.46 200.08* 

Thiel -90.32* 1006.17 1162.97 192.97* 17.93 484.50* 

Veras shank res -98.67* 0.53 470.96 -30.82* 3.04 182.12* 

Veras shank y -88.75* 10.07 471.45 -29.67* 3.88 178.48* 

Neugebauer 14.04 116.89 488.09 -23.53* 1.69 244.81* 

Kiernan hip -7.56 157.16 572.04 -44.59* 9.34 113.21* 

Kim acceleration -27.21* 74.26 721.47 -39.70* 0.25 102.31 

Kim displacement 20.68 250.96 696.86 -61.10* 1.81 75.90 

Kiernan sacrum -4.20 156.73 563.80 -60.27* 8.40 138.82* 

Veras sacrum y -74.18* 132.12 492.08 -22.25* 4.19 268.09* 

Wundersitz 20 Hz 34.19 729.30 1089.85 -51.84* 63.98* 205.90 

Pogson 25.36 233.50 745.01 28.92* 2.74 -27.38 

Pogson xynorm -2.39 429.45 730.18 -23.62* 18.74 93.89 
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Figure 4.10: Bias in second peak estimates predicted by mixed effects models for each of the best-performing methods, 
plotted as a function of speed and foot strike angle. Green values represent perfect agreement with the gold standard; yellow, 
red, and purple values represent positive biases (overestimates); darker blue values represent negative biases 
(underestimates). Foot strike angles corresponding to rear-, mid-, and fore-foot strike patterns have been labelled (RFS, MFS, 
and FFS) and divided with dashed white lines. 

 

4.3.4. Average force 

Eight sacrum methods could calculate average force from an estimated time series, the four 

best performing (biases < 100 N) were: ‘Kim acceleration’ (-67.76 ± 381.52 N or -6.87 ± 38.68%; bias ± 

LOA), ‘Kim displacement’ (+7.66 ± 394.37 N or +0.78 ± 39.98%), ‘Pogson’ (-3.18 ± 367.81 N or -0.32 ± 

37.29%), and ‘Pogson xynorm’ (-4.87 ± 278.80 N or -0.49 ± 28.26%). 

 
Figure 4.11: Average force estimation bias (white bar), ± RC (dark blue), and ± LOA (light blue) for each capable method. Gray 
dots represent trials falling outside the LOA. Values outside ± 1000 N are plotted at the axis limits. A value of 0 represents 
perfect agreement with the force plate. Positive values indicate the method overestimated the average force. Negative values 
indicate the method underestimated the average force. All methods were for the sacrum. 

 

The linear mixed effects models examining the role of running speed, surface, and foot strike 

angle on each of the best performing methods revealed that error in all methods except ‘Pogson’ was 

significantly explained by running speed (ps ≤ 0.05). Foot strike angle significantly explained error in only 
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‘Pogson’ (all other ps > 0.05). Surface significantly explained error in only ‘Pogson xynorm’ (all other ps > 

0.05) (Table 4.6). Three methods showed the same general pattern with overestimates at low speeds. 

‘Pogson’ was an exception showing generally stable performance with a small (but significant) increase 

in error at lower foot strike angles (Figure 4.12). 

Table 4.6: Best performing average force estimation methods (biases < 100 N). Overall performance shown as biases 
(accuracy), RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green) to absolute maximum 
(purple) values observed within-column. Biases that significantly differed from 0 (p ≤ 0.05 with FDR correction) marked *. 
Performance across conditions shown as coefficients for the intercept of surface (added to model estimated error for the track 
condition but not the floor condition) and slopes for running speed (in m/s) and foot strike angle (in rad). If surface, speed, or 
foot strike explains a significant (p ≤ 0.05) amount of error it is highlighted pink and marked *. 

 Overall performance Performance across conditions 

Method Bias (N) RC (N) LOAs (N) Speed Surface Foot strike 

Kim acceleration -67.76* 245.71 381.52 -66.45* 3.96 -24.06 

Kim displacement 7.66 265.11 394.37 -67.73* 5.20 -36.48 

Pogson -3.18 261.96 367.81 -5.48 3.68 -59.42* 

Pogson xynorm -4.87 169.92 278.80 -54.79* 14.12* -24.00 

 
   

   

 

 
Figure 4.12: Bias in average force estimates predicted by mixed effects models for each of the best-performing methods, 
plotted as a function of speed and foot strike angle. Green values represent perfect agreement with the gold standard; yellow, 
red, and purple values represent positive biases (overestimates); darker blue values represent negative biases 
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(underestimates). Foot strike angles corresponding to rear-, mid-, and fore-foot strike patterns have been labelled (RFS, MFS, 
and FFS) and divided with dashed white lines. 

 

4.3.5. Time series 

Eight sacrum methods could estimate force time series, of these the four best performing 

(RMSEs < 250 N) were: ‘Kim acceleration’ (245.69 ± 212.85 N or 24.91 ± 21.58%; mean ± LOA), ‘Kim 

displacement’ (240.43 ± 215.57 N or 24.37 ± 21.85%), ‘Pogson’ (237.33 ± 218.09 N or +24.06 ± 22.11%), 

and ‘Pogson xynorm’ (180.32 ± 230.62 N or 18.28 ± 23.38%). 

 
Figure 4.13: Time series estimation mean RMSE (white bar), ± RC (dark blue), and ± LOA (light blue) for each capable method. 
Gray dots represent trials falling outside the LOA. Values above 1000 N are plotted at the axis limit. A value of 0 represents 
perfect agreement with the force plate. Positive values indicate larger errors. All methods were for the sacrum. 

 

The linear mixed effects models examining the role of running speed, surface, and foot strike 

angle on each of the best performing methods (RMSEs < 250 N) revealed that error in all methods was 

significantly explained by running speed (ps ≤ 0.05) but not foot strike angle or running surface (ps > 

0.05) (Table 4.7). All methods showed the same general pattern with higher predicted RMSEs at higher 
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speeds but ‘Pogson xynorm’ had lower predicted mean RMSEs than any other method across its entire 

range (Figure 4.14). 

Table 4.7: Best performing force time series estimation methods (RMSE < 250 N). Overall performance shown as biases (accuracy), 
RCs (repeatability), and LOAs (precision) color-coded from the absolute minimum (green) to absolute maximum (purple) values observed 
within-column. RMSEs that significantly differed from 0 (p ≤ 0.05 with FDR correction) marked *. Performance across conditions shown as 
coefficients for the intercept of surface (added to model estimated error for the track condition but not the floor condition) and slopes for 
running speed (in m/s) and foot strike angle (in rad). If surface, speed, or foot strike explains a significant (p ≤ 0.05) amount of error it is 
highlighted pink and marked *. 

 Overall performance Performance across conditions 

Method RMSE (N) RC (N) LOAs (N) Speed Surface Foot strike 

Kim acceleration 245.69* 88.18 212.85 36.30* -3.45 -32.21 

Kim displacement 240.43* 115.29 215.57 11.64* 4.84 -10.52 

Pogson 237.33* 116.38 218.09 16.84* -4.09 -40.05 

Pogson xynorm 180.32* 153.83 230.62 34.94* 0.31 -0.85 

 
   

   

 

 
Figure 4.14: Mean RMSE in estimated force time series predicted by mixed effects models for each of the best-performing 
methods, plotted as a function of speed and foot strike angle. Green values represent perfect agreement with the gold 
standard; yellow, red, and purple values represent higher predicted mean RMSEs. Foot strike angles corresponding to rear-, 
mid-, and fore-foot strike patterns have been labelled (RFS, MFS, and FFS) and divided with dashed white lines. 
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The ‘Kim acceleration’ and ‘Kim displacement’ methods produced highly stereotyped time series 

with little variation (i.e., no matter the input acceleration the output force estimate was similar) (Figure 

4.15). This caused relatively large errors, particularly at the locations of the first and second peak. In 

contrast, ‘Pogson xynorm’ had much more variation in its estimated values and better fit the data (lower 

errors), however, errors remained high around the first peak. 

Figure 4.15: Mean time series estimated by each method (dark blue line) ±1 SD (light blue shading) and the error between the 
gold standard time series (dark red line) ±1 SD (light red shading). A red line at 0 indicates perfect agreement with the force 
plate, values above 0 indicate an overestimation of force at that time point, values below 0 indicate an underestimation of 
force at that time point.  
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4.4. Discussion 

Performance was evaluated for 27 methods of estimating vertical GRF during running from a 

single wearable accelerometer on the shank or approximate COM. For each method, forces were 

estimated from 74 runners across two different surfaces (wood floor, running track), three self-selected 

speeds (slowest, typical, fastest), and a range of foot strike angles (including fore-, mid-, and rear-foot 

strike patterns). Errors were quantified as the difference between estimated and ground truth forces.  

Based on the observed errors, we recommend the ‘Pogson’ or ‘Pogson xynorm’ methods for 

several reasons: First, these methods use a single accelerometer on the sacrum to estimate bilateral 

forces. This is advantageous over shank and hip methods that either (a) do not allow estimation of 

bilateral forces, (b) require an assumption of bilateral symmetry, or (c) require two accelerometers. 

Second, in contrast to most other methods, these methods can estimate every feature of the vertical 

GRF investigated here (first peak, loading rate, second peak, average, and time series). Third, these 

methods had relatively stable performance across speeds, foot strike angles, and running surfaces. 

Fourth, these methods were consistently high performers (had low biases, RCs, and LOAs) for second 

peak, average, and time series estimation. Potential users should, however, balance their own design 

needs when choosing a method. For example, if estimating second peak under known speed and foot 

strike conditions, other methods may have similar accuracy but better reliability and precision (e.g., the 

‘Neugebauer,’ ‘Kim,’ or ‘Kiernan’ methods). 

For first peak and loading rate estimation, the ‘Pogson’ methods were outperformed by other 

methods (e.g., ‘Higgins,’ ‘Kiernan,’ or ‘Veras’). However, this does not affect our overall 

recommendation due to the high LOAs observed for first peak and loading rate estimation: Even the 

best performing methods had LOAs exceeding ± 67.60 and ± 93.19% of first peak and loading rate target 

magnitudes. These LOAs are likely larger than any potential between-group effects or within-participant 
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changes, suggesting that first peak and loading rate cannot be estimated with sufficient precision with 

any of the methods investigated here. Given these results, we do not currently recommend the 

estimation of first peak or loading rate from accelerometers. 

Despite the poor results for first peak and loading rate estimation, observed biases for all 

estimated vertical GRF features were at or below those originally reported for nine of the 13 

publications from which we derived the methods [246, 265, 86, 87, 264, 240, 255, 266, 268]. Some of 

the error we did observe was attributable to speed, surface, and foot strike angle. Thus, one approach 

to decrease error may be to include these explanatory variables as model inputs. For example, Alcantara 

et al. [208] added speed, slope of the surface, and foot strike pattern to their force prediction model and 

reported RMSEs of 106.78 N (or 6.4%) for time series estimation. These results are an improvement over 

the methods recommended here (although direct comparison is difficult as they included prediction of 

zero forces during swing in their RMSE calculations, which may have reduced their errors relative to our 

analysis of stance phase only, when forces are non-zero) (see also: [259, 248, 266]). Thus, including 

speed, foot strike angle, and surface may improve the performance of future methods provided these 

variables can be quantified precisely and accurately in the field (e.g., [182, 183, 184]). 

The inclusion of other explanatory variables may also improve performance. Thirteen of the 27 

methods investigated here estimated force using linear regressions that included anthropometrics 

(mass, height, and/or leg length), sex, and/or age as explanatory variables [86, 87, 264, 240, 266, 232, 

255]. Although these methods did not receive our final recommendation, many had very reasonable 

results. These results are particularly salient in contrast to the poor performance of methods that 

estimated force by simply multiplying acceleration by mass without additional explanatory variables 

[246, 265, 247, 269]. This performance difference suggests that including explanatory variables 

improved performance and may be warranted in future models. 
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Reductions in error could also be achieved by fitting participant-specific models. For example, 

Kiernan et al. [266] reported that including a random effect of participant reduced error in their model 

by ~40% (see also [255, 232, 86]). Thus, participant-specific models likely offer more accuracy, reliability, 

and precision than participant-general models and should be used when time and resources allow. 

Participant-specific models were not examined here to ensure that the methods studied were broadly 

applicable and accessible. This design choice maximizes the in-field utility of the models studied and 

allows them to be applied to novel participants without the necessity of taking gold-standard 

measurements in-lab and using computational resources to develop a model for each participant. 

Conversely, the choice to use acceleration data that were time synchronized to target force data 

with ms accuracy stands in contrast to the goal of applying these methods in-field. This choice to made 

to ensure that errors in accelerometer-based stance identification did not affect results and lead to 

erroneous conclusions. When taking measures outside the lab, however, the use of time synchronized 

force plate data is not available. Currently, even the best methods to identify stance have errors of -30.4 

± 118.8 and -2.8 ± 149.9 ms (bias ± LOA) for initial and terminal contact, respectively [207]. These errors 

may interfere with the accurate segmentation of acceleration data during stance and thus, until more 

exact acceleration-based stance identification is possible, acceleration signals will vary in duration 

relative to their target force signals. It is likely that the regression methods that used peak acceleration 

values to estimate discrete force variables are more robust to these discrepancies in duration [86, 87, 

264, 240, 266, 232, 255]. The peaks used by these methods tend to be greater than acceleration values 

immediately pre- or proceeding initial and terminal contact and tend to be ~mid-stance so are unlikely 

to be removed accidentally (see Chapter 4S.1). In contrast, methods attempting to estimate continuous 

force time series are likely vulnerable to variability in the input data duration.  

To explore this, errors for the recommended ‘Pogson xynorm’ method were recalculated using 

acceleration input data that were stance-segmented based on acceleration signal features instead of a 
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force plate threshold (using the ‘Auvinet’ stance identification method [162] as implemented by Kiernan 

et al. [207]). In contrast to the expectation that errors would increase, they were comparable to those 

observed when segmenting based on the time synchronized force signal (first peak: -104.75 ± 876.71 N; 

loading rate: -4.71 ± 53.31 kN/s; second peak: -5.03 ± 683.64 N; average: -5.83 ± 341.02 N; time series: 

178.25 ± 207.58 N;). Model performance may have been maintained due to providing a more 

stereotyped input (i.e., acceleration data segmented based on acceleration features) and/or due to 

providing a larger set of training data (since ms accuracy was not required all 4440 trials were used vs. 

the 642 exactly synchronized trials available for the other methods). In any case, the ‘Pogson_Auvinet’ 

method’s performance demonstrates the promise of current methods to estimate vertical GRF second 

peak, average, and time series in the field. 

Before applying these force estimation methods in the field, potential users should consider the 

conditions and participants used to develop and validate the method. It should not be assumed that 

these methods will work under other conditions or for other participants. For example, only over-

ground running on two level surfaces was quantified here, so it should not be assumed that results 

would hold for incline/decline running, treadmill running, or running on other surfaces (e.g., sand, 

grass/turf, asphalt, concrete). That said, consistent with previous findings that changes in surface do not 

affect vertical GRF [275], results demonstrated that surface rarely explained error, suggesting that 

estimated forces are robust to changes in surface. Potential users should also consider that the current 

sample represents a relatively homogenous group of runners (Figure 4.1). Thus, if studying participants 

drawn from different populations, these results may not be representative, and the included 

code/models may not produce estimations with the accuracy, reliability, and precision reported here. 

Careful consideration should also be given to any differences in acceleration processing and/or 

coordinate conventions as any differences in acceleration inputs could affect force outputs. For 

example, the ‘Wundersitz,’ ‘Meyer,’ ‘Gurchiek,’ and ‘Day’ methods [246, 265, 247, 269] all used the 



 

136 
 

same general approach of multiplying acceleration by mass to estimate force. Despite this common 

approach, results differed across these methods due to differences in acceleration processing. 

Expressing accelerations in different coordinate systems will also change the input and affect the 

output. All but two of the publications the methods were derived from used a WCS (Table 4.1). These 

coordinate systems assume alignment with segments or the inertial vector and may be particularly 

prone to altering acceleration inputs. For example, an accelerometer placed on the sacrum could 

deviate from assumed inertial alignment due to lumbosacral curvature and adiposity or a participant 

leaning forward during running [276, 277]. Any discrepancies in the placement of an accelerometer 

could also change the data. More consistent data may be obtained with SCS and TCCS. Thus, all analyses 

in this paper are presented in the SCS. Although not included here, analyses were repeated in the WCS 

and TCCS. In contrast to the a priori expectation that SCS and TCCS would outperform the WCS, a 

systematic effect of coordinate system was only found in methods that multiplied acceleration by mass 

with no other coefficients [246, 265, 247, 269]. When unique model coefficients, weights, and/or biases 

were calculated for each coordinate system there were no systematic differences between them 

(Chapter 4S.2). This result should, however, be interpreted with caution: Each of the IMUs in this study 

was placed by the same experimenter, their positions were monitored throughout data collection, and 

any movement of the IMU led to elimination of a participant (n = 2). Thus, the WCS in this study is likely 

more consistent than under field conditions where wearables may be placed across many repeated data 

collections by individuals with little training, leading to misalignment and inconsistency. Thus, we still 

caution against the use of the WCS. 
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4.5. Conclusions & practical applications 

We recommend the ‘Pogson’ methods to estimate second peak, average, and time series. We 

do not currently recommend the estimation of first peak or loading rate due to the large observed limits 

of agreement for these variables. For each method, code to automatically process stance-segmented 

accelerometer data is available at https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a. 

This code should be applied with careful consideration of the sample it was developed and validated on 

and the data processing that was used on the acceleration inputs used to train the models. Future 

research should investigate whether the inclusion of anthropometrics, sex, age, field measures of speed 

and foot strike angle, or other explanatory variables can improve model performance. The results 

reported here should be used as a benchmark for the performance of future models and details on 

accuracy, reliability, and precision should be reported. 
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4S: Supplement to Chapter 4 

 

4S.1. Description of force estimation methods and their implementation 

Here we provide details on each of the force estimation methods included in our study. Brief 

descriptions, equations, and figures have been included to show the force estimation process for each 

method. For additional detail please refer to the original publications. 

All data for the figures in this section was taken from the same randomly selected trial (a 75.3 kg 

male running 3.20 m/s on the ‘floor’ surface with a rear foot strike angle of 0.44 rad). For clarity, the 

different coordinate systems used across the original publications have been standardized to the 

conventions described briefly in the main text of Chapter 4 and in detail in Section S3. All example data 

are shown in the SCS regardless of the original coordinate system used by the method, but Section 4.2. 

demonstrates the effects of different coordinate systems on the data. 

Finally, our implementation of each of these methods is freely available at: 

https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a 

To use these implementations simply feed acceleration data during a single stance into the 

provided function as an f × 4 matrix where f is frame and the columns correspond to time (in ms) and 

accelerations in the x, y, and z axes (in g).  

 

https://github.com/DovinKiernan/MTFBWY_running_vGRF_from_a
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4S.1.1. Neugebauer method 

Neugebauer and colleagues published two papers using linear regression to estimate maximum 

vertical GRF from accelerometers worn on the hips of children and adults [86, 87]. To do so, they used 

the generalized (non-participant-specific) equation: 

Equation 4S.1 
ln (𝐹𝑦,𝑚𝑎𝑥) =  𝛼0 + 𝛼1𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝛼2𝑚 + 𝛼3𝐿 + 𝛼4𝐿𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Where 𝑚 corresponds to participant mass and 𝐿 corresponds to the type of locomotion (with walking 

equal to 0 and running equal to 1). Thus, for running, their equation simplifies to: 

Equation 4S.2 
ln (𝐹𝑦,𝑚𝑎𝑥) =  (𝛼0 + 𝛼3) + (𝛼1 + 𝛼4)𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝛼2𝑚 

 

Equation 4S.3 
ln (𝐹𝑦,𝑚𝑎𝑥) =  𝑐1 + 𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝑐3𝑚 

 

Equation 4S.4 
  𝐹𝑦,𝑚𝑎𝑥 =  𝑒𝑐1+𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥+𝑐3𝑚 

Where 𝑐1, 𝑐2, and 𝑐3 are constants replacing (𝛼0 + 𝛼3), (𝛼1 + 𝛼4), and 𝛼2, respectively. Note, that 

Neugebauer and colleagues published a third paper estimating maximum vertical GRF from the 

accelerations of soldiers carrying a load during walking that can also be reduced to Equation 4S.4 if 

carrying a load of 0 [278].  

Here, we made two assumptions: (1) that Neugebauer defined their WCS with ~vertical as 

positive, and (2) that 𝐹𝑦,𝑚𝑎𝑥 is analogous to 𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 . We then used a leave-one-out cross-validation to 

iteratively calculate the error for one participant using 𝑐1, 𝑐2, and 𝑐3 values calculated from the other 73 

participants while the final 𝑐1, 𝑐2, and 𝑐3 values were calculated using data from all 74 of our 

participants. Also note, that in their 2012 and 2014 papers, Neugebauer and colleagues were unable to 

synchronize their accelerometers and force plates and thus used 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 averaged across 30 s and 
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10 s, respectively, for those papers. In contrast, we use 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 during the single stance for which 

𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 is being estimated. 

 

Figure 4S.1: Neugebauer method. Hip y-axis acceleration (proximal-distal in the SCS; ~ longitudinal in the WCS; blue line) maxima (yellow 
circle) and participant mass are entered into Equation S12 to estimate vertical GRF second peak magnitude. 

 

4S.1.2. Charry method 

Charry et al. [279] placed a ± 24 g accelerometer on the medial midshaft of three participants 

tibiae and measured 𝑎𝑊𝐶𝑆,𝑦 at 100 Hz while the participants ran 1.7 to 7.2 m/s overground. Charry et al. 

evaluated the efficacy of four potential acceleration variables to predict vertical GRF second peak 

magnitudes: (1) heel-strike, (2) initial peak acceleration, (3) minimum peak (specified as maximum in 

their paper but minimum here based on differences in coordinate conventions), and (4) peak-to-peak 

(Fig. S10A). They found that the minimum peak acceleration was the best predictor of vertical GRF 

second peak magnitude and thus discarded the other three predictor variables. Charry et al. evaluated 

both a linear and logarithmic prediction equation and found that the logarithmic equation better 

predicted vertical GRF second peak magnitude; thus, they discarded the linear fit and used: 

Equation 4S.5 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 =  𝑙𝑜𝑔2(−𝑎𝑊𝐶𝑆,𝑦,𝑚𝑖𝑛 + 1) 
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Where 1 was added to the acceleration values to prevent taking the log of a negative value. Charry et al. 

then added additional terms to their prediction equation to create slopes and intercepts that were a 

function of participant mass, using the form: 

Equation 4S.6 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 =  𝑠(𝑚) ∗ 𝑙𝑜𝑔2(−𝑎𝑊𝐶𝑆,𝑦,𝑚𝑖𝑛 + 1) + 𝑖(𝑚) 

Where s(m) and i(m) were found by taking the participant- and leg-specific slopes and intercepts 

(respectively) from Equation 4S.5 (Figure 4S.2B) and plotting them against participant mass (Figure 

4S.2C), then defining s(m) and i(m) as the equation for that line. Thus, Equation 4S.6 can be expanded to 

the form: 

𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 = (𝑠1𝑚 + 𝑠2) ∗ 𝑙𝑜𝑔2(−𝑎𝑊𝐶𝑆,𝑦,𝑚𝑖𝑛 + 1) + (𝑖1𝑚 + 𝑖2) 

The original s(m) and i(m) were found on the three participants in Charry et al.’s study. Here, we 

used a leave-one-out cross-validation to iteratively calculate the error for one participant using s(m) and 

i(m) terms calculated from the other 73 participants while the final s(m) and i(m) terms were calculated 

using data from all 74 of our participants. 

 

Figure 4S.2: Charry method. (A) Tibia 
y-axis acceleration (proximal-distal in 
the SCS; ~longitudinal in the WCS; 
blue line) features Charry et al. used 
to predict vertical GRF second peak 
magnitude. HS = Heel Strike, IPA = 
Initial Peak Acceleration, MP = 
minimum peak (originally specified as 
a maximum but here as a minimum 
due to differences in coordinate 
conventions), and P-to-P = peak-to-
peak. ‘Minimum peak’ was found to 
be the best predictor and all other 
variables were discarded. 
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(B) Fit for Charry et al.’s Equation 1 
for a single leg from the example 
participant. Each blue point 
represents one stance. To account for 
differences in coordinate 
conventions, the negative value of the 
minimum peak was used. Although 1 
was added to all accelerations, 0.2% 
of Equation 1 results when using the 
SCS were still imaginary numbers. 
These results were discarded from 
analysis. 

 

(C) Participant- and leg-specific 
intercepts from the line of best fit in 
the preceding figure plotted against 
participant mass for each participant 
and leg (blue points). The equation 
describing the line of best fit for the 
black line was used to define the i(m) 
term in Charry et al.’s Equations S14 
and S15. A similar procedure was 
conducted using the slopes from the 
previous step (Figure S9B) to define 
the s(m) term. 

  

4S.1.3. Wundersitz method 

Wundersitz et al. [280] measured vertical GRF and second thoracic vertebra acceleration from 

17 competitive team sport athletes while they ran either in a straight line or with a change of direction. 

To estimate force, they multiplied acceleration by mass. They then filtered the estimated force with a 4th 

order low-pass Butterworth filter of either 10, 15, 20, or 25 Hz and extracted the peak value. We 

assumed that the peak force they were estimating corresponds to the vertical GRF second peak such 

that: 
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Equation 4S.7 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 = 9.8𝑚𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Where 𝑚 is mass in kg and 𝑎𝑊𝐶𝑆,𝑦,𝑡 is the acceleration in g (with 1 g = 9.8 m/s2).  

Here, we adapted this upper back approach to our sacrum data. 

 

Figure 4S.3: Wundersitz method. Sacrum y-axis acceleration (proximal-distal in the SCS; ~longitudinal in the WCS) was 
multiplied by participant mass then low-pass filtered at 10, 15, 20, 25-Hz, and no filter (dark blue, light blue, yellow, orange, and 
red lines, respectively). Maxima were then identified and used to estimate vertical GRF second peak. 

 

4S.1.4. Meyer method 

Meyer et al. [281] had 13 moderately active children perform a range of tasks including jogging 

and running while they wore triaxial accelerometers on their right hip. Meyer et al. did not explicitly 

define their coordinate convention but report extracting the “minimum acceleration of the vertical 

axis.” We assumed that this corresponds to a maximum in the ~longitudinal axis as defined in our WCS 

(see Figure 4S.1 above). Acceleration and force signals were not time synchronized; thus, Meyer et al. 

extracted and averaged their acceleration minima across 8-15 steps per trial. The correlation between 

these average accelerations and “peak impact forces in the vertical plane” were then explored (which 

we interpreted as maximum vertical GRF and not vertical GRF first peak magnitude based on their 

reported magnitudes and on the fact that their other tasks would not have an “impact peak” as the term 
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is commonly used in the running literature). Meyer et al. also explored sex, age, weight, height, and leg 

length as potential explanatory variables but found they were not significant predictors. Thus, they 

ultimately used a correlation between the mean 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 across 8-15 steps and the 𝐹𝑦,𝑚𝑎𝑥 of a single 

stance on the force plate (expressed in body weights), observing an r2 of 0.81. This can be expressed as: 

Equation 4S.8 
𝐹𝑦,𝑚𝑎𝑥

9.8𝑚
= 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

And rearranged as: 

Equation 4S.9 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 = 9.8𝑚𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Where 𝑚 is mass in kg and 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 is the acceleration in g (with 1 g = 9.8 m/s2) and with the 

assumption that the 𝐹𝑦,𝑚𝑎𝑥 they attempted to estimate corresponded to 𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 at the running speeds 

they studied. This equation resembles the one used by Wundersitz et al. [280] (above) but with different 

data entered into the equation. 

We used Equation 4S.9 to estimate 𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 across our 74 participants using the 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

from the same stance the force was taken from. 

 

4S.1.5. Gurchiek method 

Gurchiek et al. [247] had 15 participants perform sprint start and change of direction tasks while 

wearing an IMU on their sacrum. Data were low pass filtered at 30 Hz then re-expressed in a GCS. The 

force time series and average across stance were estimated by scaling acceleration by mass: 

Equation 4S.10 
𝐹𝑦,𝑡 = 9.8𝑚𝑎𝐺𝐶𝑆,𝑦,𝑡 
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Where 𝑚 is mass in kg and 𝑎𝐺𝐶𝑆,𝑦,𝑡 is the acceleration in g (with 1 g = 9.8 m/s2). This equation 

resembles the one used by Wundersitz et al. [280] and Meyer et al. [281] (above) but with different data 

entered into the equation. 

 

4S.1.6. Thiel method 

Thiel et al. [240] placed IMUs above the medial malleoli of three elite sprinters and had them 

sprint 50 m on a track with embedded force plates. They calculated maximum vertical GRF as: 

Equation 4S.11 
𝐹𝑦,𝑚𝑎𝑥 =  𝑐1(𝑛)𝑎𝑊𝐶𝑆,𝑥 + 𝑐2(𝑛)𝑎𝑊𝐶𝑆,𝑦 + 𝑐3(𝑛)𝑎𝑊𝐶𝑆,𝑧 

Where 𝑐1, 𝑐2, and 𝑐3 were coefficients that varied linearly as a function of stride number 𝑛 and where 

we assumed that 𝐹𝑦,𝑚𝑎𝑥 was the vertical GRF second peak and that each “acceleration component” was 

the maximum value observed during stance, such that: 

Equation 4S.12 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 = (𝑐1𝑎𝑛 + 𝑐1𝑏)𝑎𝑊𝐶𝑆,𝑥,𝑚𝑎𝑥 + (𝑐2𝑎𝑛 + 𝑐2𝑏)𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + (𝑐3𝑎𝑛 + 𝑐3𝑏)𝑎𝑊𝐶𝑆,𝑧,𝑚𝑎𝑥 

Thiel et al. noted that this stride-varying approach was suitable until the maintenance (steady-

state) phase where an approximately constant relation between acceleration and force is expected. 

Thus, during steady state running, the coefficients could be assumed constant, and the equation 

simplified: 

Equation 4S.13 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 =  𝑐1𝑎𝑊𝐶𝑆,𝑥,𝑚𝑎𝑥 + 𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝑐3𝑎𝑊𝐶𝑆,𝑧,𝑚𝑎𝑥 

Here, we assumed that (1) participants are running at a steady-state and therefore used the 

constant expression Equation 4S.13, and that (2) Thiel et al. used a WCS with ~vertical, ~anterior, and 

~medial defined as positive (although they did not fully describe their coordinate convention, they did 

provide time-series acceleration figures that suggest this was their convention. Note, that their text 
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suggests that the right and left medial-lateral axes were defined with positive in opposite directions; 

however, we inferred that the minima was taken from the right and the maxima from the left, 

effectively making the method the maxima from the ~medial direction).  

To execute this method, we used a leave-one-out cross-validation to iteratively calculate the 

error for one participant using 𝑐1, 𝑐2, and 𝑐3 coefficients calculated using the other 73 participants while 

the final 𝑐1, 𝑐2, and 𝑐3 coefficients were calculated using data from all 74 of our participants. 

 

Figure 4S.4: Thiel method. Tibial accelerations from the x- (anterior-posterior in the SCS; ~direction of progression in the WCS; 
dark blue line), y- (proximal-distal in the SCS; ~longitudinal in the WCS; light blue line), and z-axes (medial-lateral in the SCS; 
~right in the WCS; pink line) maxima were found (dashed circles). Note, we inferred that the largest medial value was taken 
from the z-axis; thus, for right stances (such as the one shown here) the z-axis was multiplied by -1. These values were 
multiplied by the coefficients 𝑐1, 𝑐2, and 𝑐3 to estimate vertical GRF second peak magnitudes. 

 

4S.1.7. Kiernan method 

Building on work by Neugebauer et al. [86, 87, 278], Kiernan et al. [282] had 40 participants run 

overground at slow, typical, and fast speeds while recording accelerations from their iliac crests and 

sacra. In an effort to estimate both the first and second peak of the vertical GRF, the 𝑎𝑆𝐶𝑆,𝑦 signal from 

each location was divided into signals composed of 0-8 Hz ‘LoF’ frequency content and ≥10 Hz ‘HiF’ 

frequency content [271]. For each of the two sensor locations, maxima from the LoF and HiF signals 

were found and entered into a linear regression along with sex, height, mass, and leg length to estimate 
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log transformed vertical GRF first and second peaks. Kiernan et al. also explored models including speed 

and participant as fixed and random effects. They found this could improve model performance; 

however, we use the generalizable form of their model: 

Equation 4S.14 
ln (𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑) =  𝑐1 + 𝑐2𝑎𝑆𝐶𝑆,𝑦,𝐿𝑜𝐹,𝑚𝑎𝑥 + 𝑐3𝑎𝑆𝐶𝑆,𝑦,𝐻𝑖𝐹,𝑚𝑎𝑥 + 𝑐4𝑠 + 𝑐5𝑚 + 𝑐6ℎ + 𝑐7𝑔 

Which can be rearranged as: 

Equation 4S.15 
𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑 =  𝑒𝑐1+𝑐2𝑎𝑆𝐶𝑆,𝑦,𝐿𝑜𝐹,𝑚𝑎𝑥+𝑐3𝑎𝑆𝐶𝑆,𝑦,𝐻𝑖𝐹,𝑚𝑎𝑥+𝑐4𝑠+𝑐5𝑚+ 𝑐6ℎ+𝑐7𝑔 

Where 𝑐1:7 are constants, 𝑎𝑆𝐶𝑆,𝑦,𝐿𝑜𝐹,𝑚𝑎𝑥 and 𝑎𝑆𝐶𝑆,𝑦,𝐻𝑖𝐹,𝑚𝑎𝑥 are low and high frequency acceleration 

maxima, 𝑠 is the self-reported participant sex (with female = 0, male = 1, and no non-binary reported), 

𝑚 is the participant mass, ℎ is the participant height, and 𝑔 is the height of the greater trochanter. 

To replicate this method, we used a leave-one-out cross-validation to iteratively calculate the 

error for one participant using 𝑐1:7 values found using the other 73 participants while the final 𝑐1:7 

values were found using data from all 74 of our participants. Note that the original model published by 

Kiernan et al. was developed with a subset of the current sample (40 of our 74 participants). 

 

Figure 4S.5: Kiernan method. Sacrum y-axis acceleration (proximal-distal in the SCS; ~longitudinal in the WCS; light blue line) 
and its low frequency (dark blue line) and high frequency components (pink line). The peak in the low frequency was identified 
(dark blue circle) then the earliest occurring peak in the high frequency between the start of the stance and the low frequency 
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peak was identified (pink circle). These peaks were entered into a linear regression to estimate vertical GRF second peak 
magnitude.  

 

4S.1.8. Kim method 

To estimate GRF from acceleration during running, Kim et al. [267] used a feed-forward neural 

network (FFNN). They proposed two models: a “SLIP” model (spring loaded inverse pendulum) that 

estimated GRF from sacrum displacement (double integrated acceleration) and a “rigid dynamics” 

model that estimated GRF from sacrum acceleration. 

Kim et al. tested these two models on seven participants who ran on a treadmill while sacral 

acceleration was recorded via motion capture. Triaxial accelerations were low-pass filtered at 10 Hz with 

a 5th order Butterworth filter. Accelerations (or displacements) at a single time point, and the time point 

itself, were then entered into a FFNN with a single 10-node hidden layer to estimate triaxial forces 

normalized to body weight. Here, however, we followed the approach laid out in Equation 4S.7 (above) 

and instead multiplied the acceleration input by mass to estimate non-normalized force.  

Kim et al. did not report a normalization procedure for the acceleration inputs to the FFNN but 

based on their previous work [226] we assumed that data were normalized by maximum acceleration 

such that all values ranged from 0 to 1. Similarly, we inferred from their figures that time was expressed 

as percent stance from 0 to 100. Few details were provided regarding model parameters; thus, we 

assumed that log-sigmoid and pure linear activation functions were used in the hidden and output 

layers and that a 2000 epoch Levenberg-Marquardt function was used for training. 

To evaluate their model, we used a leave one out approach and iteratively trained a network to 

minimize mean square errors on 73 participants using an 80-20 training-validation split. We then 

calculated errors between estimated and actual 𝐹𝑦,𝑡 on the remaining participant. Weights and biases 

for the final model were calculated by training the FFNN on all 74 participants. 
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Figure 4S.6: Kim method. (A) Sacral 
accelerations normalized from 0 to 1 
based off the minimum and maximum 
observed values in the x- (anterior-
posterior in the SCS; ~direction of 
progression in the WCS; dark blue 
line), y- (proximal-distal in the SCS; 
~longitudinal in the WCS; light blue 
line), and z-axes (medial-lateral in the 
SCS; ~right in the WCS; pink line). Tri-
axial values from each time point 
were used to estimate corresponding 
vertical GRF values. 

 

(B) Sacral displacements normalized 
from 0 to 1 based off the minimum 
and maximum observed values in the 
x- (anterior-posterior in the SCS; 
~direction of progression in the WCS; 
dark blue line), y- (proximal-distal in 
the SCS; ~longitudinal in the WCS; 
light blue line), and z-axes (medial-
lateral in the SCS; ~right in the WCS; 
pink line). Tri-axial values from each 
time point were used to estimate 
corresponding vertical GRF values. 

 

4S.1.9. Pogson method 

Pogson et al. [283] measured resultant forces and upper back accelerations while 15 team sport 

athletes ran overground. Given our goal of estimating vertical GRFs we instead used y-axis force and 

acceleration. Accelerations were segmented by stance then zero-padded to the duration of the longest 

stance (we zero-padded to 0.4 s to ensure the method could accommodate all future data). Acceleration 

and force data were then entered into a Principal Component Analysis. The acceleration principal 

components (PCs) and signal duration were then entered into a multilayer perceptron (MLP) which was 
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trained to estimate the force PCs. Pogson et al. used a stochastic particle swarm optimization to 

determine the number of inputs (acceleration PCs), hidden layers, number of nodes in each layer, and 

outputs (force PCs) that minimized force PC estimation error. They reported that all optimizations 

returned similar values but found slightly better results with an MLP using 6 acceleration PCs, with 5 

hidden layers containing 45, 36, 45, 82, and 40 nodes, and trained to estimate 8 force PCs. The force PCs 

were then used to reconstruct the force signal. We assumed that input data were normalized from 0 to 

1 and that sigmoid activation functions were used between each of the layers except for the output 

layer where a linear activation function was used. 

The reconstructed force signal could vary in duration from the input and target signals. To 

address this issue, Pogson et al. reported appending the signal duration to the output layer (as a 

quantity to be estimated) then trimming the force signal to the estimated duration. During 

development, however, we observed that this approach often led to input and output signals of 

different durations, increasing error (consistent with Pogson et al.’s Figure 4). Given that the estimated 

force should always have the same duration as the acceleration input (because both are segmented 

based on stance onset and offset) we trimmed any values following the point where estimated force fell 

below 10 N then interpolated the force signal to match the duration of the input signal. This approach 

greatly reduced error. 

To evaluate Pogson’s method, we tuned the hyperparameters of the MLP solver using a grid 

search then used a leave one out approach to iteratively train a network that minimized mean square 

errors on 73 participants using an 80-20 training-validation split. We then calculated errors between 

estimated and actual 𝐹𝑦,𝑡 on the remaining participant. Weights and biases for the final model were 

calculated by training the MLP on all 74 participants. 
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Figure 4S.7: Pogson method. (A) 
Sacral acceleration in the y-axis 
(proximal-distal in the SCS; 
~longitudinal in the WCS; light blue 
line) zero-padded to 400 ms.  

 

(B) The first six Principal Component 
reconstructions for the example trial 
(solid lines; PC scores multiplied by 
coefficients) and mu (dashed line; the 
estimated means of each time point 
across the sample). The sum of these 
seven lines reconstructs the original 
signal. The scores used to calculate 
the solid lines were entered into the 
machine learning model to estimate 
vertical GRF PC scores. 

 

4S.1.10. Pogson xynorm method 

We observed that the Pogson et al. [283] method was promising but that the majority of error 

originated from differences between the duration of the original force signal and the estimated force 

signal. To deal with this source of error we modified their approach: Instead of zero-padding the data we 

standardized all signals to 101 time points and followed the approach laid out in Equation 4S.7 (above), 

multiplying the acceleration input by mass before applying the Principal Component Analysis. After 

estimating the PC scores and reconstructing the signal it was rescaled to its original duration. 
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To evaluate this model, we tuned the hyperparameters of the MLP solver using a grid search 

then used a leave one out approach to iteratively train a network that minimized mean square errors on 

73 participants using an 80-20 training-validation split. We then calculated errors between estimated 

and actual 𝐹𝑦,𝑡 on the remaining participant. Weights and biases for the final model were calculated by 

training the MLP on all 74 participants. 

 

4S.1.11. Day method 

Day et al. [284] had 30 NCAA Division 1 cross country runners run on an instrumented treadmill 

while wearing an IMU clipped to their posterior waistband. They filtered 𝑎𝑊𝐶𝑆,𝑦 at 5, 10, and 30 Hz. 

Other filter parameters were not reported thus we assumed they used the same 8th order low-pass 

Butterworth filter that was used to filter their force data. Then, using an approach similar to Wundersitz 

et al. [280], Meyer et al. [281], and Gurchiek et al. [247], they multiplied acceleration by mass to 

estimate force:  

Equation 4S.16 
𝐹𝑦,𝑡 = 9.8𝑚𝑎𝑊𝐶𝑆,𝑦,𝑡 

Where 𝑚 is mass in kg and 𝑎𝑊𝐶𝑆,𝑦,𝑡 is the acceleration in g (with 1 g = 9.8 m/s2) at time 𝑡. This equation 

resembles the one used by Wundersitz et al. [280], Meyer et al. [281], and Gurchiek et al. [247] (above) 

but with different data entered into the equation (namely, data had different filtering, a different 

coordinate system, and came from a different sensor location). 

For this method, we found that the aggressive filtering (particularly the 5 Hz) led to signal 

distortion when using stance-segmented data and thus, in contrast to the other methods, here we 

filtered before segmenting by stance. If using this method, please be aware that your data must be 

filtered before passing your stance-segmented data into our provided code. 
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Figure 4S.8: Day method. Sacrum y-axis acceleration (proximal-distal in the SCS; ~ longitudinal in the WCS) low-pass filtered at 
5, 10, and 30-Hz (dark blue, light blue, and pink lines, respectively) maxima (dashed circles) were multiplied by participant mass 
to estimate vertical GRF second peak magnitude. 

 

4S.1.12. Higgins method 

Higgins et al. [285] had 30 participants perform a range of tasks including jogging and running 

down a 23 m pathway with an embedded force plate while wearing an accelerometer on their right hip 

and ankle. Higgins et al. took the maximum accelerations in 𝑎𝑊𝐶𝑆,𝑦 during each stance and entered 

them into linear mixed models (note that their coordinate convention was not explicitly defined outside 

of stating that the vertical vector is “typically in line with the majority of gravity related loading;” based 

on this statement, we inferred that they used a WCS with the ~vertical direction defined as positive). In 

addition to 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥, Higgins et al. explored several variables including sex, age, and “activity code” as 

potential predictors of either average vertical loading rate or vertical GRF first peak magnitude. Potential 

predictors that were not significant were iteratively removed leading to the development of the 

following equations: 

Equation 4S.17 
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 =  𝛼 + 𝛽1𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝛽2𝐴 
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Equation 4S.18 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 =  𝛼 + 𝛽1𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝛽2𝐴 + 𝛽3𝑦 

Where 𝐴 is activity code (jogging = 1, running = 2) and 𝑦 is age in years. Here, we assume a single type of 

activity (running) resulting in a constant activity code 𝐴. Further, although Higgins et al. originally 

specified 𝛼 as a participant-specific intercept, our goal here is to produce a generalizable method thus 

we simplify their approach to: 

Equation 4S.19 
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 =  𝑐1 + 𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Equation 4S.20 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 =  𝑐1 + 𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝑐3𝑦 

Where 𝑐1 corresponds to (𝛼 +  𝛽2𝐴) with 𝐴 being constant and where 𝑐2 and 𝑐3 correspond to 𝛽1 and 

𝛽3. 

Note that Higgins et al. also attempted to estimate average vertical loading rate and vertical GRF 

first peak magnitude using the same approach but with shank accelerations. They found that hip 

accelerations provided better estimates across the activities they studied and thus did not report full 

details on their shank models (despite reporting that 𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 measured at the shank had the highest 

observed correlation with vertical loading rate during running). Thus, to replicate their shank method we 

assumed that it was identical to their hip method. 

We used a leave-one-out cross-validation to iteratively calculate the error for one participant 

using 𝑐1, 𝑐2, and 𝑐3 values found using the other 73 participants while the final 𝑐1, 𝑐2, and 𝑐3 values 

were found using data from all 74 of our participants. 
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Figure 4S.9: Higgins method. (A) Hip 
y-axis acceleration (proximal-distal in 
the SCS; ~longitudinal in the WCS; 
blue line) maxima (yellow circle). 

 

(B) Shank y-axis acceleration 
(proximal-distal in the SCS; 
~longitudinal in the WCS; blue line) 
maxima (yellow circle). 

 

4S.1.13. Veras method 

Veras et al. [255] had 131 participants walk and run on an instrumented treadmill while wearing 

accelerometers on their tibiae, hips, and sacra. Peak accelerations and jerks (first derivative of 

acceleration) were extracted from 𝑎𝑊𝐶𝑆,𝑦 and 𝑎𝑊𝐶𝑆,𝑟𝑒𝑠 signals low pass filtered with a 4th order 20 Hz 

Butterworth filter. These values were entered into linear regressions along with participant mass to 

predict  𝐹𝑦,𝑚𝑎𝑥 and 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡. Body mass index and body mass index category were also explored as 

potential predictor variables but did not improve model performance. On the other hand, models were 
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improved by the inclusion of random effects for speed and participant. To maintain generalizability, 

however, we omit those variables resulting in the equations: 

Equation 4S.21 
𝐹𝑦,𝑚𝑎𝑥 =  𝑐1 + 𝑐2𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝑐3𝑚 + 𝑐4𝑚𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Equation 4S.22 
𝑑𝑦

𝑑𝑥
𝐹𝑦,𝑓𝑖𝑟𝑠𝑡 =  𝑐1 + 𝑐2

𝑑𝑦

𝑑𝑥
𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 + 𝑐3𝑚 + 𝑐4𝑚

𝑑𝑦

𝑑𝑥
𝑎𝑊𝐶𝑆,𝑦,𝑚𝑎𝑥 

Where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are constants and 𝑚 corresponds to participant mass. 

Here, we assumed that 𝐹𝑦,𝑚𝑎𝑥 is analogous to 𝐹𝑦,𝑠𝑒𝑐𝑜𝑛𝑑. We then used a leave-one-out cross-

validation to iteratively calculate the error for one participant using 𝑐1, 𝑐2, 𝑐3, and 𝑐4 values found using 

the other 73 participants while the final 𝑐1, 𝑐2, 𝑐3, and 𝑐4 values were found using data from all 74 of our 

participants.  

 

Figure 4S.10: Veras method. (A) 
Shank y-axis (proximal-distal in the 
SCS; ~longitudinal in the WCS; blue 
line) and resultant (pink line) 
accelerations and maxima (dashed 
circles). 
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(B) Hip y-axis acceleration (proximal-
distal in the SCS; ~longitudinal in the 
WCS; blue line) maxima (yellow 
circle). 

 

(C) Sacrum y-axis acceleration 
(proximal-distal in the SCS; 
~longitudinal in the WCS; blue line) 
maxima (yellow circle). 

 

4S.2. Results across wearable, segment, and tilt-corrected coordinate systems 

Despite the fact that the majority of the publications described in Section 4S.1. expressed their 

acceleration data in the WCS (11 of 13), we presented our results in the main paper based on 

acceleration data expressed in the SCS. We made this choice based on an a priori expectation that the 

WCS would be more prone to error due to IMU misplacement/misalignment, differences in participant 

morphology, and/or differences in participant posture/kinematics. We did, however, also execute the 

same analyses presented in the main paper but with WCS and TCCS acceleration data as inputs.  
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Overall, we found that for all linear regression and machine learning methods that had 

coefficients, weights, or biases fit to the specific input data (i.e., had different values for WCS, SCS, and 

TCCS), there were no systematic effects. In contrast, for methods that simply multiplied acceleration by 

mass, the WCS error was systematically higher. This result was consistent across all estimated features 

(first peak, loading rate, second peak, average, and time series); thus, we present only the time series 

results here to illustrate (Figure 4S.11). 

Figure 4S.11: Results across coordinate systems. Mean RMSE for each method capable of estimating vertical GRF time series 
based on acceleration inputs. Orange and yellow represent estimations made with models trained on WCS input data, blue on 
SCS input data (identical to the main paper), and red on TCCS input data. The ‘Gurchiek’ and ‘Day’ methods did not have 
coefficients, weights, or biases fit to individual coordinate systems and showed systematically higher errors in the WCS. 
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5. A 0.05 m change in inertial measurement unit placement alters time and frequency 

domain metrics during running. 

 

5.1. Introduction 

Inertial measurement units are small, low-cost, light-weight devices that measure acceleration, 

angular velocity, and ferromagnetic fields. These wearable devices offer several key advantages over 

systems that are ‘captive’ to lab environments [286]. Captive systems (like force plates and video motion 

capture) are relatively expensive, require dedicated facilities, and are time-consuming to set up and 

operate [240, 287]. These factors limit the general population’s access to captive systems and the 

biomechanical analyses they can provide [287]. Further, even when accessible, captive systems may 

cause participants to alter their gait (e.g., the Hawthorne effect, running on a treadmill or short track, 

targeting force plates during over-ground running in lab), can limit the volume of data collected to a few 

‘representative’ gait cycles [288], cannot be used to provide real-time feedback in the field, and cannot 

capture biomechanics that may only occur under certain real-world conditions (e.g., weather, running 

surfaces, races and training) [289, 225, 290, 291]. These limitations have led to most biomechanics 

studies capturing relatively brief ‘snapshots’ of running that may not accurately represent the millions of 

gait cycles that occur over many long bouts in the field [292], creating a gap in our understanding of 

running behavior [41].  

IMUs overcome these limitations and can be used in-field, facilitating the collection of large 

volumes of running biomechanics data under real-world conditions [145]. These devices are much more 

accessible to the general population than captive systems, with >90% of runners already reporting 

regularly wearing a tracking device or watch (similar in size and cost to an IMU) to improve their training 

outcomes or avoid injury [15, 293, 294, 295]. These advantages have led to the use of IMUs to collect 
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data in ways that captive technology cannot. For example, IMUs can estimate gait events, external 

loading, running speed, and kinematics for entire runs in the field [207, 296, 297, 298], can be used to 

quantify biomechanical changes over long-duration runs in the field [299, 300, 301, 302, 303], can 

continuously monitor biomechanics that may lead to injury over many bouts of running [198, 304, 305, 

306], and can be used to provide instantaneous feedback in the field [307, 308, 309, 310, 311]. Thus, 

IMUs have the potential to greatly expand the volume and ecological validity of data available to 

runners, coaches, researchers, and clinicians. 

Despite this potential, there are challenges to deploying IMUs to collect in-field data across 

many runs with long durations. When collecting data on long runs, an IMU may change position over the 

duration of the run, potentially altering the data obtained. When collecting data over many runs, it is 

likely that the initial placement of the IMU will vary slightly, particularly when end users (e.g., coaches, 

runners) are not in a constrained lab or clinical environment and do not have the same training 

palpating anatomical landmarks as researchers and clinicians. Thus, inconsistencies in IMU placement 

between and within users, as well as IMU movement during data collection, may ultimately decrease 

the repeatability of measurements and reliability of results. In turn, errors in IMU-derived quantities 

could result from differences in placement rather than any difference between participants or 

conditions, leading to misleading findings.  

Unfortunately, the critical effects of IMU misplacement and movement on running data are little 

explored. Previous research suggests that small variations in IMU location can affect estimated ground 

reaction forces, knee joint angles, and inter-session reliability in walking [312, 313, 314], shank and foot 

accelerations in running [315, 238, 316], and lumbar accelerations in cadavers [317]. However, 

systematic quantification of the effects of placement variation on acceleration and angular velocity time 

and frequency domain metrics in vivo is still lacking. To address this gap, this paper quantifies the effects 

that a 0.05 m difference in IMU placement has on the time and frequency domains during running. IMUs 
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were placed at three common locations (shank, pelvis, and sacrum) [318], then, to represent a worst-

case misplacement/movement scenario, a second IMU was ‘misplaced’ 0.05 m away and data were 

recorded simultaneously. Potential differences between IMUs were quantified as (1) the root mean 

square error (RMSE) between time domain signals, (2) the magnitude and timing of peaks, (3) the 

differences in outcome variables commonly estimated with IMUs, including temporal (initial contact and 

terminal contact) and kinetic metrics (vertical ground reaction force second peak magnitude, average, 

and RMSE), (4) the magnitude-squared coherence between signals, and (5) the proportion of signal 

power contained in different frequency bins. In sum, these descriptive analyses provide a wholistic 

understanding of the potential effects that IMU misplacement or movement can have on acceleration 

and angular velocity time and frequency domain metrics and derived outcome variables. 

 

5.2. Methods 

Data collection for this study was first reported in separate analyses in Chapters 3 and 4 [207, 

296] but is briefly repeated here for convenience. 

5.2.1. Participants 

Seventy-seven participants were recruited from UC Davis, local running clubs, and the 

community at large. Participants were ≥18 years old and reported running ≥16.09 km per week for ≥6 

months. Three participants were excluded from analysis due to an inability to complete the protocol as 

instructed (n = 1) or an IMU moving from its original placement location across the duration of data 

collection (e.g., IMU belt rotated about the long axis of the shank or ‘rode up’ moving the IMU proximal; 

n = 2), leaving a final sample of 74 (32 males; 42 females; 0 non-binary; age 28 ± 12 years; Figure 5.1). All 

participants provided written informed consent, and procedures were approved by the UC Davis 

Institutional Review Board. 
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Figure 5.1: Participant characteristics. (A) sex, (B) age, (C) height, (D) mass, and (E) self-reported average distance run per week 
for males (red) and females (purple). The white horizontal line represents the mean; dark colors represent ± 95% confidence 
interval (± 1.96 SEM) around the mean; and light colors represent ± 1 SD around the mean. Gray dots represent participants 
outside ± 1 SD. 

 

5.2.2. IMU placement 

Using adhesive-bonded hook-and-loop fasteners, IMUs, each with two tri-axial accelerometers 

and one tri-axial gyroscope (ProMove MINI, Inertia Technology, Enschede, The Netherlands; ± 16 g 

primary accelerometer with 0.0005 g resolution, ± 100 g secondary accelerometer with 0.05 g 

resolution, ± 34.91 rad/s gyroscope with 0.001 rad/s resolution, 1000 Hz; see https://inertia-

technology.com/wp-content/uploads/2022/08/ProMoveMiniAdvGwUserManual3.8.10.pdf; accessed on 

24 December 2023), were attached to neoprene belts with anti-slip silicone inners, then wrapped with 

elastic straps as tightly as possible, within the limit of participant comfort (Figure 5.2A). IMUs were 

‘correctly’ placed at three locations commonly used for IMU-based research: (1) anterosuperior to the 

lateral malleoli (shank), (2) on the superior aspect of the iliac crests in line with the greater trochanter 

(pelvis), and (3) on the superior aspect of the sacrum in line with the spine (sacrum) (Figure 5.2B). The 

correctly placed IMU on the right shank (n = 26), right pelvis (n = 24), or sacrum (n = 24) was then 

pseudo-randomly selected as the ‘reference’ IMU and another IMU was ‘misplaced’ 0.05 m on-center 

from the correctly placed reference IMU. The misplaced IMU was always 0.03 m more proximal than the 

reference IMU. Fifty percent of the time it was placed 0.04 m anterior/ventral and 50% of the time it 

https://inertia-technology.com/wp-content/uploads/2022/08/ProMoveMiniAdvGwUserManual3.8.10.pdf
https://inertia-technology.com/wp-content/uploads/2022/08/ProMoveMiniAdvGwUserManual3.8.10.pdf
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was placed 0.04 m posterior/dorsal (for shank and pelvis locations) or 0.04 m left and right (for the 

sacrum) (Figure 5.2C). Given the physical size of the IMUs, these were the smallest misplacements 

possible that still allowed the misplaced IMU to be secured to the participant in a manner identical to 

the reference IMU. This 0.05 m change in placement likely represents a ‘worst-case’ 

misplacement/movement scenario. 

 

Figure 5.2: Set up and protocol. (A) Belt design and IMU fixation. (B) IMU placement and coordinate conventions. A segment 
coordinate system was defined as anterior (+x), proximal (+y), and medial-lateral (with right defined as +z) and adduction-
abduction/right downward-upward tilt/right-left lateral bending, internal-external rotation/left-right axial rotation, and flexion-
extension/anterior-posterior tilt were defined about the x, y, and z axes with the right hand rule [169]. (C) The reference IMU 
(blue location) was ‘correctly’ placed anterosuperior to the right lateral malleolus (shank), on the superior aspect of the right 
iliac crest in line with the greater trochanter (pelvis), or on the superior aspect of the sacrum in line with the spine (sacrum). A 
single ‘misplaced’ IMU was then positioned 0.03 m proximal and either 0.04 m to the left or right of the reference IMU (in the 
red and purple locations). (D) Experimental setup. 

 

5.2.3. Protocol 

Participants wore their own shoes and ran a 25 m runway with an embedded force plate (Kistler 

9281, Kistler Group, Winterthur, Switzerland; 1000 Hz). Running speed was recorded using two custom-

built laser speed gates, placed 2.5 m on each side of force plate center. Participants warmed up and 

practiced striking the force plate three times per side at their slowest (“the slowest pace you would use 

on a run”), typical (“the pace you use for the majority of your running”), and fastest (“the fastest pace 

you would use on a run”) self-selected speeds (Figure 5.3). After warm-up, five stances per side were 

collected at each speed for two surface conditions: (1) with a track surface covering the runway and 

force plate, and (2) with no covering on the hardwood floor of a basketball court. Participants always 

progressed from their slowest to fastest speeds, but the order of foot and surface was pseudo-

randomized. IMU data were synchronized within 100 ns of each other with a wireless network hub 
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(Advanced Inertia Gateway, Inertia Technology, Enschede, The Netherlands). Data were rejected (5.83% 

of all trials) if visual inspection revealed atypical kinematics or kinetics suggesting that the participant 

was targeting the force plate, positively or negatively accelerating, or otherwise not exhibiting a steady 

state running pattern, resulting in a total of 4181 trials for analysis.

 

Figure 5.3: Running speeds and foot strike angles across conditions. (A) Mean speeds and (B) foot strike angles calculated 
from markers on the lateral calcaneus and base of the fifth metatarsal for males (red) and females (purple) across the slowest, 
typical, and fastest conditions (RFS is rear foot strike, MFS is mid foot strike, and FFS is fore foot strike [270]). The white 
horizontal line represents the mean; dark colors represent ± 95% confidence interval (± 1.96 SEM) around the mean; and light 
colors represent ± 1 SD around the mean. Gray dots represent participants outside ± 1 SD. 

 

5.2.4. Processing 

For full IMU processing details see Chapter 3S. In brief, calibration matrices were applied to IMU 

data. Quiet periods were identified (angular velocity < 0.5 rad/s and jerk < 0.01 m/s3 for at least 100 ms) 

and used to remove biases. Saturated frames from the primary accelerometer (|a| > 15.5 g) were 

replaced with corresponding frames from the secondary accelerometer. Data were filtered with a 4th-

order 50-Hz lowpass Butterworth filter. Angular velocity was drift-corrected using a Madgwick filter 

[193, 171]. Starting at each quiet period, accelerations were used to estimate IMU position in the 

inertial reference frame, then angular velocities were used to estimate frame-by-frame changes in IMU 

orientation and remove the gravity component from accelerations [174] Data were then expressed in a 
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segment coordinate system based on the Principal Component that explained the most variance in 

angular velocity during running (the medial–lateral axis) and the gravity vector during quiet standing 

[121, 175]. This system was defined as anterior (+x), proximal (+y), and medial–lateral (with right 

defined as +z), and adduction–abduction/right downward–upward tilt/right–left lateral bending, 

internal–external rotation/left-right axial rotation, and flexion–extension/anterior–posterior tilt were 

defined about the x, y, and z axes with the right hand rule [169] (Figure 5.2B). 

 

5.2.5. Analysis 

The Purcell method [150] (as implemented by Kiernan et al. [207]) was used to identify initial 

contact events from acceleration of the reference shank IMU. The stride (right foot initial contact to 

right foot initial contact) containing or immediately following force plate contact was identified and 

segmented for further analysis. Means and standard deviations were calculated and plotted for each 

axis of the reference and misplaced acceleration and angular velocity signals (Chapter 5S.1). Root mean 

squared error (RMSE) between these signals was calculated. The stride was then concatenated with 

itself, 50 ms was removed from the start and end, and peak absolute acceleration and angular velocity 

were found for each axis. A 101 ms search window centered on the reference peak was then used to 

find the peak absolute acceleration and angular velocity in the time-synchronized misplaced IMU signal. 

Differences in the magnitude and timing of reference and misplaced peaks were then calculated along 

with limits of agreement (LOAs; ± 1.96 SD) within which 95% of future differences are expected to fall.  

To compare the potential consequences of misplacement on outcome metrics, gait events and 

vertical ground reaction forces were estimated from both reference and misplaced IMUs at the shank 

and sacrum. For the shank, gait events were estimated using the Purcell method [150] while vertical 

ground reaction force second peak magnitude was estimate using the Charry method [264] (as 
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implemented by [207] and [296], respectively). For the sacrum, gait events were estimated using the 

Auvinet method [162] while vertical ground reaction force second peak magnitude, stance averages, and 

time series were estimated using the Pogson-Auvinet method [268] (as implemented by [207] and [296], 

respectively). Differences and LOAs were then calculated. 

To compare the frequency domains of reference and misplaced IMU signals, a Fourier transform 

was used to calculate power spectral density at frequencies from 0 to 50 Hz (the low-pass filter cut-off 

frequency) in 1 Hz bins. Magnitude squared coherence was calculated between reference and misplaced 

IMUs via the Welch method. The proportion of signal power in three equally sized bins from 0 to 50 Hz 

(0 to 16 Hz, 17 to 33 Hz, and 34 to 50 Hz) was then calculated [98]. Results from these frequency 

analyses are presented in Chapter 5S. 

 

5.3. Results 

Plots of reference and misplaced acceleration and angular velocity time series data for each axis 

and placement condition are included in Chapter 5S. Differences in those time series are summarized 

here as RMSEs. 

 

5.3.1. Acceleration 

Mean RMSEs for acceleration were less than 1 g across all conditions (Table 5.1; Figure 5.4). 

RMSEs had higher magnitudes and greater LOAs at the shank compared to the pelvis or sacrum. 

Table 5.1: Acceleration differences observed between simultaneously recorded reference and misplaced IMUs. 

   
RMSE 

(g) 
Δ |magnitude| 

(g) 
Δ |magnitude| 
(% reference) 

Δ timing 
(ms) 

Δ timing 
(% stride) 

location axis misplacement mean LOA mean LOA mean LOA mean LOA mean LOA 

 shank x anterior-proximal 0.86 1.02 -0.11 3.61 0.46 37.69 -1.36 21.21 -0.19 3.12 

  posterior-proximal 0.60 0.80 -0.01 3.69 0.49 41.47 0.07 15.43 0.02 2.28 
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 y anterior-proximal 0.64 0.54 -0.85 2.32 -8.22 20.91 0.76 8.52 0.11 1.20 

  posterior-proximal 0.70 0.67 0.42 3.21 5.87 28.46 -0.14 13.50 -0.01 1.92 

 z anterior-proximal 0.84 0.83 2.45 4.05 36.82 70.88 1.16 20.14 0.15 2.85 

  posterior-proximal 0.96 0.85 -0.91 4.60 -9.09 68.21 2.07 31.93 0.32 4.54 

pelvis x anterior-proximal 0.29 0.22 -0.23 0.88 -8.71 36.82 3.47 32.00 0.50 4.50 

  posterior-proximal 0.36 0.35 0.01 1.39 1.05 58.35 -2.33 30.34 -0.33 4.41 

 y anterior-proximal 0.31 0.22 -0.02 1.17 0.60 23.98 2.41 13.01 0.33 1.81 

  posterior-proximal 0.32 0.26 -0.07 1.09 -2.09 25.48 -1.67 12.51 -0.25 1.86 

 z anterior-proximal 0.39 0.29 -0.19 1.21 -8.41 68.79 6.89 40.43 0.90 5.64 

  posterior-proximal 0.47 0.28 -0.01 1.91 10.73 96.00 4.71 35.80 0.72 5.31 

sacrum x left-proximal 0.45 0.37 -0.20 1.65 -4.83 55.43 6.57 24.52 0.97 3.74 

  right-proximal 0.45 0.34 -0.06 1.77 -0.14 66.92 5.40 23.65 0.78 3.67 

 y left-proximal 0.28 0.30 0.06 1.41 2.67 28.12 0.63 15.29 0.10 2.22 

  right-proximal 0.27 0.25 0.18 1.24 5.84 29.26 0.78 13.18 0.12 1.94 

 z left-proximal 0.28 0.28 -0.26 1.74 -4.69 41.44 0.94 26.11 0.11 3.83 

  right-proximal 0.25 0.22 -0.09 0.65 -3.01 32.23 2.95 29.38 0.41 4.19 

 

 

Figure 5.4: Root mean square error (RMSE) between 𝑎 measured simultaneously by the reference IMU and the misplaced 
IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The 
white line represents the RMSE mean across all trials, the dark-colored box represents the confidence interval about the mean 
(± 1.96 SEM), the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials falling 
outside the limits of agreement (with trials falling outside the axis limit plotted at the limit). 

 

The differences between the reference and misplaced absolute acceleration magnitudes were 

generally zero-centered (Table 5.1 and Figure 5.5). The shank y and z axes were exceptions and 

exhibited systematic changes in the direction of error based on the misplacement location, with positive 

differences indicating the misplaced acceleration peak had a larger magnitude than the reference and 

negative errors indicating the misplaced acceleration peak had a smaller magnitude than the reference. 
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Pelvis x and z axes also tended to show systematic changes based on misplacement location; however, 

this difference did not appear large unless magnitudes were normalized by the reference magnitude. 

The LOAs for the differences between the reference and misplaced absolute acceleration magnitudes 

were greater for the shank compared to the pelvis or sacrum. Due to the larger magnitude of peaks 

observed at the shank, however, when differences were normalized to the magnitude of the reference 

peak, LOAs were more comparable between the shank, pelvis, and sacrum. 

 

Figure 5.5: (A) absolute and (B) normalized differences between peak |𝑎| magnitudes measured simultaneously by the 
reference IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or 
right-proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
plotted at the limit). Positive differences indicate the misplaced |𝑎| magnitude was greater than the reference |𝑎| magnitude 
while negative differences indicate the misplaced |𝑎| magnitude was less than the reference |𝑎| magnitude. 

 

The differences between the reference and misplaced absolute acceleration timings were 

generally zero-centered (Table 5.1 and Figure 5.6). The pelvis x and y axes were exceptions and 
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exhibited systematic changes in the direction of error based on the misplacement location, with positive 

differences indicating that the misplaced IMU peak occurred after the reference peak, and negative 

differences indicating the misplaced IMU peak occurred before the reference peak. The pelvis z axis and 

sacrum x axis’ misplaced IMU tended to have systematically later peaks than the reference IMU. The 

magnitudes and LOAs of the differences were generally comparable across the shank, pelvis, and 

sacrum, both in absolute terms and when normalized by stride duration. 

 

Figure 5.6: (A) absolute and (B) normalized differences between peak |𝑎| timings measured simultaneously by the reference 
IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or right-
proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
plotted at the limit). Positive differences indicate the misplaced |𝑎| peak occurred after the reference peak while negative 
differences indicate the misplaced |𝑎| peak occurred before the reference peak. 
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5.3.2. Angular velocity 

Mean RMSEs were less than 1 rad/s across all conditions (except the shank anterior-proximal y 

axis which was 1.01 rad/s) (Table 5.2 and Figure 5.7); however, RMSEs tended to have higher 

magnitudes and greater LOAs at the shank than the pelvis or sacrum. 

Table 5.2: Angular velocity differences observed between simultaneously recorded reference and misplaced IMUs. 

   
RMSE 
(rad/s) 

Δ |magnitude| 
(rad/s) 

Δ |magnitude| 
(% reference) 

Δ timing 
(ms) 

Δ timing 
(% stride) 

location axis misplacement mean LOA mean LOA mean LOA mean LOA mean LOA 

 shank x anterior-proximal 0.97 1.92 0.20 4.29 0.21 54.21 -4.98 26.75 -0.71 3.86 

  posterior-proximal 0.66 0.73 -0.16 4.53 0.56 49.71 -2.80 24.72 -0.40 3.44 

 y anterior-proximal 1.01 0.92 2.48 6.10 22.07 45.47 0.96 11.81 0.14 1.74 

  posterior-proximal 0.87 0.75 0.10 4.86 -0.88 51.02 0.23 21.44 0.03 3.05 

 z anterior-proximal 0.58 0.73 -0.25 1.73 -4.57 30.68 2.48 18.75 0.36 2.76 

  posterior-proximal 0.40 0.35 -0.11 0.85 -1.27 11.71 -3.04 17.54 -0.44 2.53 

pelvis x anterior-proximal 0.58 0.35 -1.16 1.80 -56.34 89.81 9.68 22.94 1.34 3.16 

  posterior-proximal 0.62 0.50 0.00 2.88 -0.69 130.63 -1.36 23.81 -0.20 3.47 

 y anterior-proximal 0.62 0.43 0.24 1.88 5.59 45.30 3.60 24.33 0.50 3.33 

  posterior-proximal 0.67 0.51 -1.15 2.05 -27.89 51.56 3.53 30.64 0.49 4.39 

 z anterior-proximal 0.42 0.30 0.14 1.89 6.07 107.43 0.10 25.62 0.03 3.55 

  posterior-proximal 0.46 0.40 0.35 1.78 30.00 125.17 0.62 18.87 0.08 3.01 

sacrum x left-proximal 0.47 0.52 -0.06 1.83 -3.95 66.85 4.45 23.56 0.63 3.47 

  right-proximal 0.34 0.23 0.05 0.97 4.96 49.84 3.56 16.61 0.52 2.31 

 y left-proximal 0.71 0.54 -0.02 1.68 0.46 36.49 3.93 25.99 0.57 3.79 

  right-proximal 0.73 0.77 -0.79 2.32 -20.48 60.98 1.76 30.20 0.23 4.32 

 z left-proximal 0.66 0.53 -0.12 3.17 3.26 113.30 1.93 22.12 0.29 3.30 

  right-proximal 0.61 0.40 0.03 3.17 -0.87 153.98 1.81 18.15 0.28 2.65 

 

 

Figure 5.7: Root mean square error (RMSE) between 𝜔 measured simultaneously by the reference IMU and the misplaced 
IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The 
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white line represents the RMSE mean across all trials, the dark-colored box represents the confidence interval about the mean 
(± 1.96 SEM), the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials falling 
outside the limits of agreement (with trials falling outside the axis limit plotted at the limit). 

 

Although most absolute angular velocity peak magnitude differences were zero-centered (Table 

5.2 and Figure 5.8), the shank y axis, all pelvis axes, and the sacrum y axis exhibited systematic changes 

in the direction/magnitude of differences based on the misplacement location, with positive differences 

indicating that the misplaced angular velocity peak had a larger magnitude than the reference and 

negative errors indicating that the misplaced angular velocity peak had a smaller magnitude than the 

reference. Again, before normalization, differences appeared larger at the shank than the pelvis or 

sacrum, but after normalizing to the reference, the peak magnitude differences appeared more similar 

across the shank, pelvis, and sacrum. 

 

Figure 5.8: (A) absolute and (B) normalized differences between peak |𝜔| magnitudes measured simultaneously by the 
reference IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or 
right-proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
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1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
plotted at the limit). Positive differences indicate the misplaced |𝜔| magnitude was greater than the reference |𝜔| magnitude 
while negative differences indicate the misplaced |𝜔| magnitude was less than the reference |𝜔| magnitude. 

 

Most differences in the timing of the angular velocity peaks were not zero-centered (Table 5.2 

and Figure 5.9). The timing differences at the pelvis and sacrum suggested that angular velocity peaks 

tended to occur later in time for the misplaced IMU than the reference IMU (positive differences). In 

contrast, three of six axis-placement conditions at the shank suggested that the shank angular velocity 

peaks tended to occur earlier in time for the misplaced IMU. The magnitudes and LOAs were generally 

comparable across the shank, pelvis, and sacrum, both in absolute and relative terms. 

 

Figure 5.9: (A) absolute and (B) normalized differences between peak |𝜔| timings measured simultaneously by the reference 
IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or right-
proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
plotted at the limit). Positive differences indicate the misplaced |𝜔| peak occurred after the reference peak while negative 
differences indicate the misplaced |𝜔| peak occurred before the reference peak. 
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5.3.3. Estimated outcome variables 

Despite the shank exhibiting larger RMSEs and peak differences, the initial contact differences 

were lower at the shank than the sacrum (Table 5.3 and Figure 5.10). In contrast, the terminal contact 

differences were comparable between the shank and sacrum. 

Table 5.3: Differences between contact times estimated from simultaneously recorded reference and misplaced IMUs. 

  
Δ initial contact 

(ms) 

Δ initial contact 
(% stride) 

Δ terminal 
contact 

(ms) 

Δ terminal 
contact 

(% stride) 

location misplacement mean LOA mean LOA mean LOA mean LOA 

 shank anterior-proximal 2.02 32.21 0.30 4.67 3.68 94.61 0.49 13.47 

 posterior-proximal 1.28 38.62 0.18 5.68 8.43 102.29 1.25 14.97 

sacrum left-proximal 6.42 98.50 0.81 15.88 0.03 98.96 0.15 16.35 

 right-proximal 3.10 63.70 0.49 9.61 -10.08 129.21 -1.51 19.71 

 

 

Figure 5.10: Differences in (A) initial contact and (B) terminal contact gait event timings estimated using data from the 
reference IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or 
right-proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
plotted at the limit). Positive differences indicate the gait event estimated with the misplaced IMU occurred after the reference 
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gait event while negative differences indicate the gait event estimated with the misplaced IMU occurred before the reference 
gait event. 

 

A similar trend was observed in the estimated vertical ground reaction forces, with lower 

differences in estimated second peak at the shank than the sacrum (Table 5.4; Figure 5.11).  

Table 5.4: Differences between ground reaction forces estimated from simultaneously recorded reference and misplaced 
IMUs. 

  
Δ second peak 

(N) 
Δ second peak 
(% reference) 

Δ average force 
(N) 

Δ average force 
(% reference) 

time series RMSE 
(N) 

location misplacement mean LOA mean mean LOA LOA mean LOA mean LOA 

 shank anterior-proximal -6.22 33.73 -0.45 2.60       

 posterior-proximal 13.23 38.18 0.85 3.03       

sacrum left-proximal 62.99 298.04 4.07 17.37 31.48 173.58 3.59 16.84 95.06 162.42 

 right-proximal 22.45 373.92 2.05 24.48 15.95 211.19 2.15 22.71 93.12 216.66 

 

 

Figure 5.11: Differences in (A) vertical ground reaction force second peak magnitude, (B) average vertical ground reaction 
force during stance, and (C) vertical ground reaction force time series during stance. Estimated using data from the reference 
IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents posterior- or right-
proximal misplacement). The white line represents the mean observed difference across trials (bias), the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limits 
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plotted at the limit). For (A) and (B) positive differences indicate the misplaced IMU estimated a higher magnitude than the 
reference while negative values indicate the misplaced IMU estimated a lower magnitude than the reference. 

 

5.4. Discussion 

To characterize the extent of changes that occur when an IMU is misplaced or moved, the 

current paper compared signals from a reference IMU ‘correctly’ placed on the shank, pelvis, or sacrum 

and an IMU ‘misplaced’ 0.05 m away (simulating a ‘worst-case’ misplacement/movement scenario). 

Overall, the time domain signals of the reference and misplaced IMUs exhibited the same general 

patterns (Chapter 5S), as evidenced by their low root mean square errors (RMSEs) (≤ 1 g and ~1 rad/s). 

Examining another commonly investigated feature of IMU signals—the peak magnitudes and timings—

revealed that differences were generally small and zero-centered but could reach up to 2.45 ± 4.05 g 

(36.82 ± 70.88% reference; mean ± limits of agreement; LOA), 2.48 ± 6.10 rad/s (22.07 ± 45.47% 

reference), and 9.68 ± 22.94 ms (1.34 ± 3.16 % stride duration) depending on the axis and direction of 

misplacement. Altogether, these data show that IMU users must be cautious about IMU misplacement 

and movement when collecting and interpreting data. 

Acceleration and angular velocity magnitude errors were larger at the shank than the pelvis or 

sacrum. When normalized by the reference magnitude, however, these errors were mitigated. Thus, the 

relatively large shank errors observed before normalization likely reflect the larger magnitude 

accelerations and angular velocities observed at the shank during running (cf. the pelvis or sacrum; see 

time series in Chapter 5S). 

Although we are not aware of any previous investigations of IMU misplacement at the pelvis or 

sacrum during running, Sara et al. [315] and Zhang et al. [238] have previously reported the effects of 

IMU misplacement on proximal-distal (y-axis) acceleration magnitudes at the shank. Sara et al. placed a 

reference IMU on the medial malleolus and ‘misplaced’ another IMU 0.02 m proximal. They found that 
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peak proximal–distal accelerations during fast (but not typical or slow) running were ~1.23 g (or 

~13.00%) higher for the misplaced IMU than the reference IMU (estimated from their Figure 1A, using 

https://apps.automeris.io/wpd/; accessed on 7 November 2023). Using a similar approach, Zhang et al. 

positioned a reference IMU at the lateral malleolus and compared it to an IMU on the anteromedial 

distal tibia. They found that peak proximal accelerations were 0.70 g (or 8.65%) greater for the 

anteromedial distal tibia than the lateral malleolus (calculated from their Table 1). Thus, both Sara et al. 

and Zhang et al. reported that a small proximal shift (coupled with a change from lateral to medial in 

Zhang et al.) increased observed proximal–distal acceleration peaks. These differences are inconsistent 

with other research demonstrating that large proximal shifts in location decrease acceleration peaks 

[319, 320] but are partially consistent with the current results: we found that a 0.05 m anterior-proximal 

misplacement caused a −0.85 g (−8.22%) difference while a 0.05 m posterior-proximal misplacement 

caused a 0.42 g (5.87%) difference. The increase observed with a posterior-proximal placement may be 

due to greater movement of the IMU relative to the anatomical segment that it is measuring (soft tissue 

artefact, as the IMU sits more on the muscle). Conversely, the decrease observed with an anterior-

proximal placement may be due to less soft tissue artefact (as the IMU sits more on the anterior aspect 

of the tibia) and is more consistent with the previous literature [319, 320] and with the pattern of results 

Sara et al. originally predicted.  

These observed differences may have downstream effects when using IMU signals to estimate 

other outcome metrics (e.g., spatiotemporal events, ground reaction forces, running speed, segment 

and joint kinematics, etc.). To investigate this, we used the reference and misplaced IMU signals to 

estimate initial contact, terminal contact, vertical ground reaction force second peak magnitude, 

average vertical ground reaction force during stance, and vertical ground reaction force time series, and 

then quantified the differences between these estimates. This investigation revealed that, although the 

overall differences between signal magnitudes may be small (as evidenced by the RMSEs), even these 

https://apps.automeris.io/wpd/
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small differences can cause large downstream effects: At the sacrum, the mean difference in estimated 

terminal contact reached −10.08 ± 129.21 ms (−1.51 ± 19.71% stride duration), while the mean 

difference in estimated vertical ground reaction force second peak magnitude reached 62.99 ± 298.04 N 

(or 4.07 ± 17.37% reference). At the shank, differences in terminal contact times had similar magnitude 

errors (8.43 ± 102.29 ms or 1.25 ± 14.97% stride), but initial contact times (2.02 ± 32.21 ms or 0.30 ± 

4.67% stride) and vertical forces 13.23 ± 38.18 N (0.85 ± 3.03% reference) were less affected by 

misplacement, suggesting that shank-based estimates may be more robust to misplacement. To our 

knowledge Tan et al. [312] provide the only comparable results. They investigated misplacements of up 

to ± 0.10 m at one or more of eight simulated IMU placement locations (feet, shanks, thighs, sacrum, 

and trunk) and then used the accelerations and angular velocities of the eight simulated IMUs to 

estimate vertical ground reaction forces during walking. They found that the misplacement of a single 

IMU resulted in estimated force differences of up to 2.0%, comparable to the differences observed here 

(−0.45, 0.85, 2.05, and 4.07%). It seems likely that even with their very large 0.10 m misplacement, the 

use of multiple IMUs to estimate force stabilized the estimate (i.e., seven of their eight simulated IMU 

signals were still unaffected). When Tan et al. misplaced all eight IMUs, they observed mean differences 

up to 6.0%, higher than even the largest differences observed here. This is likely a function of the large 

misplacement they used. 

Overall, the differences observed both here and in previous work [315, 238, 312] underscore the 

importance of placing IMUs correctly and preventing their movement throughout data collection. Ruder 

et al. [313] previously demonstrated that IMUs placed by untrained participants have lower validity and 

inter-session reliability than IMUs placed by trained experimenters. Thus, care should be taken when 

deploying IMUs in-field and proper training should be provided to end users. Attempts should also be 

made to reduce IMU movement. Before executing the current study, we piloted our IMU fixation system 

by quantifying IMU movement across multiple 5.63 km runs. These runs were designed to elicit the 
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greatest possible movement (e.g., included dynamic warm-ups, sprinting, ‘strides’, ‘Fartlek’, moving 

through extreme ranges of motion, etc.). Even under these ‘worst case’ conditions, maximum 

displacements at the shank were only 0.0049 m proximal and 0.0027 m posterior with 0.07 rad of 

rotation, while maximum displacements at the sacrum were only 0.0068 m proximal and 0.0004 m left 

with 0 rad of rotation. These observed displacements are far lower than those studied here and are 

likely associated with smaller signal differences; however, it is unclear from the present results 

whether/how signal differences scale with the size of misplacement (i.e., error magnitudes may be non-

linear). 

The current results may not represent other fixation systems or populations. Previous work by 

Johnson et al. [321] demonstrates that fixation method can systematically alter IMU signals, with a 

looser fixation resulting in higher shank accelerations. The current misplacement results, and the IMU 

movements reported for the fixation system we used, were collected from a relatively lean sample. In a 

sample with greater adiposity there may be greater soft tissue artefact that alters both the IMU signal 

and how it is affected by misplacement [322]. Anecdotally, participants with greater adiposity may also 

induce greater IMU movement across data collection. The two participants that were eliminated from 

the current study due to the movement of an IMU were both outliers in terms of mass and body mass 

index. To ensure IMUs can be used to collect high-quality data from all participants, future research 

should characterize potential differences across participant subgroups and develop comfortable fixation 

systems that prevent IMU movement for all participants. 

Finally, the current study did not investigate the effects of IMU rotations on IMU signals. Tan et 

al. [312] previously demonstrated that changes in orientation had a larger effect on IMU-derived 

estimates of vertical ground reaction forces during walking than even very large 0.10 m linear 

translations. Errors in orientation originating from IMU misplacement can be mitigated using a 

coordinate transformation from the ‘wearable’ coordinate system (WCS) to the ‘segment’ coordinate 
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system (SCS) (see Supplementary Materials Section SA). Thus, all the results presented in the current 

paper were derived from data expressed in an SCS. For the sake of comparison, we did, however, repeat 

the entire set of analyses on data in the WCS (Chapter 5S). These analyses show much higher errors for 

the same linear misplacements when data are processed and analyzed in the WCS rather than the SCS. 

Thus, we recommend using an SCS when possible. Unfortunately, using an SCS does not negate the 

possibility that an IMU may rotate/move across the duration of a data collection, which would still 

introduce error between the axis alignment at the start and end of the data collection. This type of 

movement was not studied here as we established coordinate systems at the start of the data collection 

and used a hook-and-loop attachment system that minimized movement and did not allow rotation of 

the IMU. To prevent IMU rotations, we recommend the use of a similar hook-and-loop fixation system 

or the use of double-sided tape to secure IMUs directly to a participant’s skin, then tightly wrapping 

elastic straps over top. 

 

5.5. Conclusions 

This paper provides a descriptive analysis of the effects that a 0.05 m IMU misplacement can 

have on acceleration and angular velocity signals during running. IMU users should characterize the 

magnitude of IMU misplacements and movements they expect for a specific use scenario with a specific 

fixation system and target population. The present results can then serve as a guide to estimate the 

signal differences that could be expected due to misplacement or movement. Those expected 

differences can then be compared to expected effect sizes to determine if IMUs will be sufficiently 

reliable for a given scenario.  

The results from this paper suggest that signal coherence is high and differences in the 

frequency domain are minimal for most axes, while in the time domain, most differences are 
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approximately zero-centered with low bias. The limits of agreement may, however, be quite high, 

indicating a high degree of variability. Absolute differences are larger at the shank than at the pelvis or 

sacrum but are comparable when normalized by the reference magnitude. Further, the differences at 

the shank appear to have less of an effect on outcome variables like initial contact and ground reaction 

force when estimated from the shank versus the sacrum. Thus, when IMU movement or misplacement 

is likely, using a shank IMU may be preferable to using a sacrum IMU.  

Future research should investigate smaller, incremental misplacements (more in line with those 

observed using the type of fixation system here) and changes in IMU orientation. To provide confidence 

for scenarios where participants place their own IMUs, research should also be conducted to 

characterize the size of misplacements across repeated placements by participants, and how much 

training is required to minimize those misplacements. 
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5S. Supplement to Chapter 5 

 

5S.1. Time series plots 

Means and standard deviations were calculated and plotted for each axis of the reference and 

misplaced acceleration and angular velocity signals. Data are time-normalized such that right stance 

goes from 0-30% of stride and right swing (right terminal contact to right initial contact) goes from 31-

100% of stride (stance was 29.96 ± 5.82% of stride in our data). 

 

5S.1.1. Shank acceleration 
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Figure 5S.1: Shank x-axis accelerations. (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.2: Shank y-axis accelerations (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.3: Shank z-axis accelerations (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 

 



 

185 
 

5S.1.2. Shank angular velocity 

 

Figure 5S.4: Shank x-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.5: Shank y-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.6: Shank z-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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5S.1.3. Pelvis acceleration 

 

Figure 5S.7: Pelvis x-axis accelerations (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
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stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 

Figure 5S.8: Pelvis y-axis accelerations (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.9: Pelvis z-axis accelerations (A) measured at the reference (blue), anterior-proximal misplaced (red), and posterior-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) anterior-proximal and (C) 
posterior-proximal IMUs are shown in the panels below. 
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5S.1.4. Pelvis angular velocity 

Figure 5S.10: Pelvis x-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.11: Pelvis y-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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Figure 5S.12: Pelvis z-axis angular velocities (A) measured at the reference (blue), anterior-proximal misplaced (red), and 
posterior-proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background 
represents stance while the white background represents swing. Differences between the reference and (B) anterior-proximal 
and (C) posterior-proximal IMUs are shown in the panels below. 
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5S.1.5. Sacrum acceleration 

Figure 5S.13: Sacrum x-axis accelerations (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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Figure 5S.14: Sacrum y-axis accelerations (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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Figure 5S.15: Sacrum z-axis accelerations (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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5S.1.6. Sacrum angular velocity 

Figure 5S.16: Sacrum x-axis angular velocity (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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Figure 5S.17: Sacrum y-axis angular velocity (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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Figure 5S.18: Sacrum y-axis angular velocity (A) measured at the reference (blue), left-proximal misplaced (red), and right-
proximal (purple) IMUs. The light blue area represents ± 1 SD about the reference mean. The light grey background represents 
stance while the white background represents swing. Differences between the reference and (B) left-proximal and (C) right-
proximal IMUs are shown in the panels below. 
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5.S.2. Frequency domain analyses 

Each stride previously segmented in the time domain was zero-padded to the nearest power of 

two that exceeded the stride duration. The power spectral density from 0 to the Nyquist frequency (500 

Hz) was then calculated using a Fast Fourier Transform. Powers and frequencies were interpolated to 1 

Hz bins, then power was normalized so that the sum of powers from 0 to 500 Hz was equal to the mean 

squared amplitude of the time domain. Thus, final units were g2/Hz or (rad/s)2/Hz [186, 187, 323]. 

Magnitude-squared coherences between reference and misplaced IMU signals were then calculated via 

the Welch method. This yields a number between 0 and 1 at each frequency with 0 indicating that the 

misplaced signal cannot be predicted from the reference signal using a linear model and 1 indicating 

that the two signals are perfectly related through a linear model. Finally, the proportion of signal power 

in three equally sized bins from 0 to 50 Hz (0 to 16 Hz, 17 to 33 Hz, and 34 to 50 Hz) was calculated [98]. 
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5S.2.1. Shank acceleration 

Figure 5S.19: Frequency analysis of shank x-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD.  
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Figure 5S.20: Frequency analysis of shank y-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.21: Frequency analysis of shank z-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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5S.2.2. Shank angular velocity 

 
Figure 5S.22: Frequency analysis of shank x-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.23: Frequency analysis of shank y-axis angular velocity. (Top) Power spectral from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.24: Frequency analysis of shank z-axis angular velocity. (Top) Power spectral from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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5S.2.3. Pelvis acceleration 

 
Figure 5S.25: Frequency analysis of pelvis x-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.26: Frequency analysis of pelvis y-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.27: Frequency analysis of pelvis z-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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5S.2.4. Pelvis angular velocity 

 
Figure 5S.28: Frequency analysis of pelvis x-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.29: Frequency analysis of pelvis y-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 

 

 



 

212 
 

 
Figure 5S.30: Frequency analysis of pelvis z-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
anterior-proximal and posterior-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced 
IMU and the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 
Hz, and 34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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5S.2.5. Sacrum acceleration 

 
Figure 5S.31: Frequency analysis of sacrum x-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.32: Frequency analysis of sacrum y-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.33: Frequency analysis of sacrum z-axis acceleration. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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5S.2.6. Sacrum angular velocity 

 
Figure 5S.34: Frequency analysis of sacrum x-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.35: Frequency analysis of sacrum y-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 
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Figure 5S.36: Frequency analysis of sacrum z-axis angular velocity. (Top) Power spectral density from 0 to 50 Hz. The blue line 
represents the mean for the reference IMU, the blue shaded area represents ± 1 SD, and the red and purple lines represent the 
left-proximal and right-proximal misplaced IMUs. (Middle) Magnitude squared coherence between each misplaced IMU and 
the reference IMU. Plotted as mean ± 1 SD. (Bottom) Proportion of total signal power observed in the 0-17 Hz, 18-33 Hz, and 
34-50 Hz bins. Central white line represents the mean across trials, dark shaded area represents ± 1.96 SEM (confidence 
interval; difficult to see due to small size), light shaded area represents ± 1 SD, and grey dots represent trials falling outside ± 1 
SD. 

 

5.3 Wearable coordinate system results 

The analyses presented in the main paper were repeated on the same data expressed in the 

wearable coordinate system (WCS) as opposed to the segment coordinate system (SCS) (see Chapter 3S 

for a detailed description of these coordinate systems). Analysis of derived outcome metrics could not 

be repeated due to difficulties in consistently identifying gait events with the WCS, making a direction 
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comparison between WCS and SCS impossible for those variables. Overall, the analyses revealed that 

misplacement tended to cause greater differences in the WCS than the SCS, particularly at the shank. 

 

Figure 5S.37: Wearable coordinate system root mean square error in acceleration. RMSE between 𝑎 measured simultaneously 
by the reference IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple represents 
posterior- or right-proximal misplacement). The white line represents the RMSE mean across all trials, the dark-colored box 
represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 
1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the axis limit 
plotted at the limit). 

 

 



 

220 
 

Figure 5S.38: Wearable coordinate system differences between peak |𝑎| magnitudes. (A) absolute and (B) normalized (red 
represents anterior- or left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The white 
line represents the mean observed difference across trials (bias), the dark-colored box represents the confidence interval about 
the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials 
falling outside the limits of agreement (with trials falling outside the axis limits plotted at the limit). Positive differences indicate 
the misplaced |𝑎| magnitude was greater than the reference |𝑎| magnitude while negative differences indicate the misplaced 
|𝑎| magnitude was less than the reference |𝑎| magnitude. 

 

 
Figure 5S.39: Wearable coordinate system differences between peak |𝑎| timings. (A) absolute and (B) normalized differences 
between peak |𝑎| timings measured simultaneously by the reference IMU and the misplaced IMU (red represents anterior- or 
left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The white line represents the mean 
observed difference across trials (bias), the dark-colored box represents the confidence interval about the mean (± 1.96 SEM), 
the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials falling outside the limits 
of agreement (with trials falling outside the axis limits plotted at the limit). Positive differences indicate the misplaced |𝑎| peak 
occurred after the reference peak while negative differences indicate the misplaced |𝑎| peak occurred before the reference 
peak. 
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Figure 5S.40: Wearable coordinate system root mean square error in angular velocity. RMSE between 𝜔 measured 
simultaneously by the reference IMU and the misplaced IMU (red represents anterior- or left-proximal misplacement; purple 
represents posterior- or right-proximal misplacement). The white line represents the RMSE mean across all trials, the dark-
colored box represents the confidence interval about the mean (± 1.96 SEM), the light-colored box represents the limits of 
agreement (± 1.96 SD), and the grey dots represent trials falling outside the limits of agreement (with trials falling outside the 
axis limit plotted at the limit). 

 

 
Figure 5S.41: Wearable coordinate system differences between peak |𝜔| magnitudes. (A) absolute and (B) normalized 
differences between peak |𝜔| magnitudes measured simultaneously by the reference IMU and the misplaced IMU (red 
represents anterior- or left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The white 
line represents the mean observed difference across trials (bias), the dark-colored box represents the confidence interval about 
the mean (± 1.96 SEM), the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials 
falling outside the limits of agreement (with trials falling outside the axis limits plotted at the limit). Positive differences indicate 
the misplaced |𝜔| magnitude was greater than the reference |𝜔| magnitude while negative differences indicate the misplaced 
|𝜔| magnitude was less than the reference |𝜔| magnitude. 
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Figure 5S.41: Wearable coordinate system differences between peak |𝜔| timings. (A) absolute and (B) normalized differences 
between peak |𝜔| timings measured simultaneously by the reference IMU and the misplaced IMU (red represents anterior- or 
left-proximal misplacement; purple represents posterior- or right-proximal misplacement). The white line represents the mean 
observed difference across trials (bias), the dark-colored box represents the confidence interval about the mean (± 1.96 SEM), 
the light-colored box represents the limits of agreement (± 1.96 SD), and the grey dots represent trials falling outside the limits 
of agreement (with trials falling outside the axis limits plotted at the limit). Positive differences indicate the misplaced |𝜔| peak 
occurred after the reference peak while negative differences indicate the misplaced |𝜔| peak occurred before the reference 
peak.
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6. Cumulative loading does not relate to injury development over a 12-week 

prospective period 

 

6.1. Introduction 

Running is a relatively accessible way to achieve healthy levels of physical activity, providing 

cardiovascular health benefits that reduce morbidity and mortality [24]. Unfortunately, running is also 

associated with high rates of musculoskeletal overuse injury: As many as 33 running-related injuries 

(RRIs) occur per 1000 hours of running [25]. With millions of runners world-wide [9], these RRIs create 

health and economic burdens, and prevent people from maintaining healthy levels of physical activity 

[28, 31]. Thus, preventing RRIs is of considerable interest. Unfortunately, despite much high-quality 

research, the incidence of RRI remains high and new injury prevention strategies are needed [39, 25]. 

Most RRIs are overuse injuries caused by microtrauma that accumulates when musculoskeletal 

structures are exposed to repeated loading (e.g., stresses/strains). Trauma occurs when the combined 

number and magnitude of loads exceeds the threshold a structure can sustain [46, 59]. In vivo, it is 

difficult to measure or model this structure loading and microtrauma accumulation [66, 69]. To 

overcome this difficulty, biomechanists often assume that external loads imposed on the body are 

highly correlated with structure loading and therefore relate to injury risk. Based on this assumption, a 

frequent target of investigation in RRI research has been ground reaction forces measured in-lab (GRFs; 

external forces imposed on the foot by the ground with each step). Unfortunately, evidence relating GRF 

and RRI is inconsistent and knowing a runner’s in-lab GRF appears insufficient to predict and prevent 

RRIs [68, 41]. 

One potential reason for this inconsistency is that assuming that GRFs are highly correlated with 

structure loading may be incorrect: Although GRF contributes to structure loading, structure loading is 
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also dictated by structure material properties, muscle forces, and other factors. Thus, the relation 

between GRF and structure loading is confounded and may be non-linear [69]. Despite these confounds, 

GRFs have explained up to 94% of the variance in loading of some structures during level-ground 

running [70]. Thus, during level-ground running, GRFs may provide a reasonable surrogate of structure 

loading and injury risk.  

Another potential reason GRFs have not consistently predicted RRI in past research, is that 

previous research has focused on relations between RRIs and GRF magnitudes determined from a 

‘representative’ stance created by averaging a few stances observed in a lab setting [73]. Such research 

is constrained in several ways: (1) loading data obtained in labs may not accurately represent loading in 

the real world; (2) loading may change throughout a repetitive task; for example, fatigue can alter 

biomechanics across long runs; and (3) given the importance of repetitive loading in RRI, metrics based 

on a single representative stance tell an incomplete story that is likely insufficient to predict RRI [77]. 

Therefore, extrapolation of lab-based, single-stance GRFs does not realistically represent the number or 

magnitude of GRFs actually experienced by runners, potentially explaining why GRFs have not 

consistently predicted RRIs in previous lab-based research. 

To overcome these lab-based limitations, Kiernan et al. calculated GRF ‘profiles’ (combinations 

of load numbers and magnitudes) over long time periods in real-world settings by following NCAA 

Division 1 Track runners for two months of in-the-field training [198]. For every run during this two-

month training period, Kiernan et al. calculated the number of right foot strikes and their GRF peak 

magnitudes. GRF numbers and magnitudes were then weighted based on human musculoskeletal 

structural properties to create a metric of ‘cumulative loading’ [84]. Using this approach, Kiernan et al. 

were able to collect a large amount of GRF data (>400 runs and >2 million strides) and found that injured 

runners had significantly higher cumulative loading than uninjured runners. This finding suggests that 

GRF numbers and magnitudes—when measured in the field—may predict RRI. This finding 
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demonstrates the value of collecting real-world GRF profiles (load number-magnitude combinations) 

over single representative lab-based GRFs. 

To build on this proof-of-concept and test the hypothesis that GRF magnitudes and numbers 

measured in the field can be used to calculate cumulative loads that predict RRI,  the current study uses 

a larger and more diverse free-running sample in combination with improved methodology [207, 296, 

324]. These methodological advancements improve GRF estimation and gait event identification and 

validate all methods across different foot strike kinematics, running surfaces, and running speeds thus 

providing more confidence in any findings. With these improvements, the present study provides a well 

validated, robust, and accurate comparison of GRF magnitudes and numbers across runners who do and 

do not develop RRIs. Results from this study overcome limitations of previous in-lab measurements and 

provide ecologically valid estimates of real-world load magnitudes and numbers. Further, in comparison 

to single representative stances, measuring GRFs from each step across the entire study duration will 

better capture the repetitive loading that leads to overuse injury and the range and variance of GRF 

magnitudes and numbers within- and between-runners.  

This approach will allow us to explore the relative importance of GRF magnitudes and numbers 

to prospective injury development and combine them into a weighted metric of cumulative loading. If 

field-measured cumulative loads are associated with injury, this approach will allow us to index risk as a 

function of GRF number and magnitude combinations. Such findings could be used to monitor and 

provide feedback on cumulative loading in runners and prevent RRI by avoiding ‘high risk’ training. 
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6.2. Methods 

6.2.1. Sample size calculations and participants 

Sample size calculations were based on previous work which found that 33 of 101 participants 

had ≥ 1 week where they missed ≥ 4 days of training due to RRI during a 26-week prospective study 

[118, 117]. Adjusting for a 54% shorter 12-week study duration, we estimated that ~15% of participants 

would receive an RRI that caused ≥ 4 days of time-loss during ≥ 1 week. Using this percentage to 

calculate an uninjured/injured group allocation ratio, cumulative loading effect sizes calculated from 

previous work [198], a power of 0.8, and an alpha of 0.05, we calculated that a total sample size of 24 

participants was required [325]. Eight percent attrition was observed in similar prospective research 

[118, 117]. To account for attrition or the possibility that fewer injuries would occur than predicted, we 

conservatively over-sampled and recruited double the subjects required.  

Thus, 48 participants ≥ 18 years old were recruited from the University of California Davis, local 

running clubs, and the community at large (18 female; 30 male; 0 non-binary; age 37.60 ± 15.02 years; 

Figure 6.1). All participants reported (1) running ≥ 16.09 km per week for ≥ 1 year, (2) not having visited 

a medical professional for an RRI for ≥ 1 year, (3) willingness to wear an IMU on a belt every time they 

ran for 12-weeks, and (4) willingness to track their running and injury with a weekly survey for 12-weeks. 

Participants provided written informed consent and procedures were approved by the University of 

California, Davis Institutional Review Board. Participants were compensated with 10 USD at baseline and 

at weeks 1, 2, 7, and 12 of the study for a total of 50 USD. 
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Figure 6.1: Participant details. Sample (A) sex, (B) age, (C) height, (D) mass, and (E) self-reported average distance run per week 
for male (blue) and female (red) participants that did (darker colors) and did not (lighter colors) complete the entire 12-week 
experiment. The white horizontal line represents the mean, the darker central box represents ± 95% confidence interval (± 1.96 
SEM) around the mean, the lighter outside box represents ± 1 SD around the mean (not easily visible for incomplete 
participants due to low sample sizes increasing size of confidence intervals). Gray dots represent participants outside ± 1 SD. 

 

6.2.2. Baseline data collection 

Participants had their height and weight measured, completed an interview describing their 

running and injury history (including previous experience with races, previous injury, etc.; see Chapter 

6S), and provided their daily running distances for the previous 4-weeks of running. Participants were 

trained to fix an inertial measurement unit (IMU; Inertia Technology ProMove MINI; ± 16 g primary, ± 

100 g secondary, ± 2000 deg/s, 200 Hz) to their sacrum using an elastic belt with an anti-slip silicone 

inner and a waterproof neoprene pouch for the IMU (Figure 6.2). Participants were then trained to 

collect simple static and dynamic calibration movements (standing still then rotating forward and 

backward about the z-axis of the ankle joint like an inverted pendulum) that could be used to create a 

segment coordinate system. 
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Figure 6.2: IMU placement and belt design. (A) IMU placement and coordinate conventions. A coordinate system was defined 
as anterior (+x), proximal (+y), and medial-lateral (with right defined as +z) and right-left lateral bending, left-right axial 
rotation, and posterior-anterior tilt were defined about the x, y, and z axes with the right hand rule [169]. (B) Belt design and 
IMU fixation. Elastic straps with anti-slip silicone inners were threaded through the IMU within a waterproof neoprene pouch. 
These straps were buckled around the waist such that IMUs were placed on the superior aspect of the sacrum in line with the 
spine. 

 

In-lab foot strike angle and ground reaction force data were collected as participants ran a 25 m 

runway with an embedded force plate (Kistler 9281, Kistler Group, Winterthur, Switzerland; 1000 Hz) 

while wearing their own shoes. Running speed was recorded using two custom-built laser speed gates, 

placed 2.5 m on each side of force plate center. Participants struck the force plate five times per side 

and were encouraged to progress through the range of speeds they typically use while running from 

slowest to fastest. Foot kinematics were recorded using a conventional camera (Exilim EX-FH25, Casio; 

120 Hz) and foot strike angle was calculated by subtracting a neutral standing foot angle (Kinovea 0.9.5) 

[270]. 
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Participants then (1) completed a detailed walk-through of the online survey (Qualtrics, Provo, 

Utah) they would receive each week to track their running and RRI, (2) were given a hard-copy tracking 

sheet to help them record details for the survey (Chapter 6S), (3) were given an IMU, charger, and belt, 

and (4) were sent an email summarizing the experiment, their action items as a participant, and a 

schedule of subsequent visits with the experimenter. 

 

6.2.3. Prospective survey data 

After leaving the lab, participants began a 12-week prospective data collection. Each Sunday a 

link to an online survey was emailed to the participants (Chapter 6S). If the survey was not completed, 

automatic email reminders were sent out 24 and 48 h after the initial email. If a participant still had not 

responded after 36 h they were contacted by an experimenter. Participants reported:  

(1) injury in three discrete ways:  

(a) as pain (0-10 Likert scale and location),  

(b) as number of training days lost and/or modified due to RRI, and  

(c) as medical visits due to RRI,  

(2) daily running distance, duration, and rating of perceived exertion (RPE) [326],  

(3) daily non-steroidal anti-inflammatory drug use,  

(4) heart rate mean, max, and variability and the device used to record it2 

(5) stress across the week (0-10 Likert scale),  

 
2 No heart monitors were provided, however, if participants had their own, they were encouraged to provide these details. 
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(6) weight,  

(7) daily sleep quality (0-10 Likert scale), 

(8) daily perception of recovery/readiness (0-10 Likert scale), 

(9) whether they wore their IMU during their run, 

(10) any other physical activity, and 

(11) any free form comments they thought were important to note 

 Masses on days between the day the survey was completed and the next reported mass were 

interpolated to give an estimate of day-by-day participant mass. These day-by-day masses were used for 

estimation of GRFs (see below). 

 

6.2.4. Prospective IMU data 

Participants were instructed to wear the IMU they had been given on every run for the entire 

12-week period. During that period, they were instructed to maintain their typical running habits and 

not modify their running in any way for the experiment with one exception: Participants were asked to 

perform calibration movements at the start of every run. These calibration movements consisted of 

standing straight and still then rotating forward and backward about the z-axis of the ankle joint like an 

inverted pendulum. During this calibration and throughout the run, the IMU collected triaxial 

magnetometer, accelerometer, and gyroscope data at 200 Hz.  

Each IMU had a 16 GB onboard capacity and was capable of storing > 200 hours of data at 200 

Hz. Thus, the IMUs were likely capable of storing all 12-weeks of data; however, participants were 

required to exchange their IMU at/around weeks 1, 2, 7, and 12. During these exchanges all data were 
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downloaded from the IMU. These exchanges were used to ensure that the IMUs were in working order 

and that the participants were recording data properly, minimizing the potential for data loss. 

 

6.2.5. Attrition management 

If participants repeatedly (> 2 times) failed to exchange the IMU, had large discrepancies 

between the running reported in their survey and the files recorded on their IMU, or did not complete 

their survey, they were removed from the study by the experimenter. Participants could also voluntarily 

withdraw from the study due to the burden involved (or for any other reason). If participants did not run 

or record data for a week but still completed the survey it was deemed part of the normal variability in 

their running habits and thus an important feature of the data we wanted to collect (e.g., on vacation, 

lay-off after large race, injured). 

 

6.2.6. IMU data processing 

IMU data were filtered with a 4th-order 50-Hz low-pass Butterworth filter. The orientation of 

the IMU was calculated based on constraints in the fixation system (the belt limited the IMU to four 

potential orientations) and the observed mean ~vertical acceleration and ratio of mean ~anterior versus 

mean ~posterior peaks. After determining the orientation, data were re-expressed in a coordinate 

system defined as ~anterior (+x), ~proximal (+y), and ~medial-lateral (with right defined as +z) with 

~right-left lateral bending, ~left-right axial rotation, and ~posterior-anterior tilt defined about the x, y, 

and z axes with the right hand rule [169] (Figure 6.2). The gravity component was removed from 

accelerations by subtracting 1 g from the y axis.  

Next, epochs of steady state movement with at least 10 consecutive peaks of at least 1 g 

occurring at least 210 ms apart were identified. Stances during each steady state running epoch were 
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identified by estimating initial and terminal contact gait events via the ‘Auvinet’ method [162, 207]. 

Then, for each stance, the second (‘active’) peak vertical GRF was estimated from y-axis accelerations 

using the ‘Veras’ method [198, 255]. Finally, GRF second peak magnitudes falling outside the acceptable 

range for human running (< 1.25 bodyweights) were eliminated [327] and epochs from a given day of 

running were concatenated together for further analysis.  

 

6.2.7. IMU outcome metrics 

For each day, the total number of stances was calculated. The GRF second peak magnitude was 

scaled with an allometric scaling factor predicted from dimensionality theory (Equation 6.1) then the 

mean was calculated for each day.  

Equation 6.1: Allometric scaling. 

𝐿𝑠 =  𝑃𝑠𝑚𝐴 

 

Where 𝐿𝑠 is the allometrically-scaled ‘load’ for stance 𝑠, 𝑃𝑠 is the GRF second peak magnitude estimated 

for stance 𝑠 in N, 𝑚 is the participant’s mass in kg, and 𝐴 is the allometric scaling factor -0.67 [328].  

To calculate cumulative weighted load (CWL) for each day, Equation 6.2 was adapted from 

Edwards [143] and Firminger et al. [329]. 

Equation 6.2: Cumulative weighted load. 

𝐶𝑊𝐿 =  (∑(𝐿𝑠
𝑏)

𝑠=𝑛

𝑠=1

)

1
𝑏

 

 

Where 𝑠 is a stance, 𝑛 is the total number of stances for a given day, 𝐿𝑠 is the load (allometrically-scaled 

GRF second peak magnitude) for stance 𝑠 raised to 𝑏, and 𝑏 is 9.3 based on the power law line of best fit 
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that relates applied strain magnitudes to the number of cycles to failure for human Achilles tendon [6, 

84]. Finally, the result is raised to the power of 
1

𝑏
 to reduce the magnitude [143, 329]. 

 

6.2.8. Analyses 

Participants who did and did not report a time-loss injury were divided into injured and 

uninjured groups, respectively. Mean self-reported session rating of perceived exertion/day, self-

reported distance/day, self-reported pain, IMU-estimated steps/day, IMU-estimated allometrically-

scaled loads, and IMU-estimated cumulative weighted loads/day were compared across injured and 

uninjured groups via independent samples t-tests with significance set at p ≤ 0.05. For the uninjured 

group these means were taken across the duration of the study. In contrast, for the injured group, these 

means were taken from the first day of the study until they first reported a time loss injury. 

In an alternate analysis, cumulative weighted loads were entered into equations that have been 

proposed to account for the structural properties and dynamic remodeling response of the 

musculoskeletal system in order to capture injury risk (Table 6.1). Although many variations of these 

‘risk models’ have been proposed, in an investigation of 19 of these variations, a previous simulation 

study [330] suggested they are highly correlated; thus, only the subset that was least correlated and 

best able to categorize runners that developed injury was used here. This subset consisted of (1) ACWR 

(6 day:21 day), (2) strain, (3) exponentially weighted moving average (10 day), and (4) week-to-week 

change (see Table 6.1). For each of these four risk models, average uninjured and injured scores across 

the duration of data collection were compared via independent samples t-test. To further visualize any 

potential differences between injured and uninjured runners, the mean and standard deviation were 

calculated for the uninjured runners across the study duration and individual injured runner’s scores 

were plotted against these values.  
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Table 6.1: ‘Risk models’ proposed to predict overuse injury. Equations proposed to predict overuse injury in the literature. 
Although many variations of these equations have been proposed a smaller subset was used here. 

Risk model Equation Details 

Mean daily workload 

𝐿𝑥 =  
∑ 𝐿𝑡

𝑡= −𝑥+1
𝑡=0

𝑥
 

Lt is the loading for a given day,  
t = 0 is the current day, and 
x is the total number of days 

Cumulative workload 
𝐶𝑥 = ∑ 𝐿𝑡

𝑡= −𝑥+1

𝑡=0

 Where x = {7, 14, 21, 28} 

Exponentially-weighted 
moving average (EWMA)  𝐸𝐹,0 =  𝐹𝐿0 + (1 − 𝐹)𝐸𝐹,−1 

Where F = {
1

20
, 

1

10
, 

1

5
, 

1

2
} 

and 𝐸𝐹,−1 is yesterday’s EWMA 

Acute:Chronic Workload 
Ratio (ACWR) 𝑅𝑥:𝑦 =

∑ 𝐿𝑡
𝑡= −𝑥+1
𝑡=0

∑ 𝐿𝑡
𝑡= −𝑦+1
𝑡=0 𝑦/𝑥⁄

 
Where x = {3, 6, 7}  
and y = {21, 28} 

Uncoupled ACWR 
𝑈𝑥:𝑦 =

∑ 𝐿𝑡
𝑡= −𝑥+1
𝑡=0

∑ 𝐿𝑡
𝑡= −𝑦+1
𝑡=−7 𝑦/𝑥⁄

 
Where x = 7  
and y = 28 

Exponential ACWR 
𝑋 =

𝐸1
7,0

𝐸 1
28,0

 
Where 𝐸1

7
,0

 is EWMA for 1 week 

and 𝐸 1

28
,0

 is EWMA for 4 weeks 

Week-to-week change 
∆𝑊 = |𝐶7 − ∑ 𝐿𝑡

𝑡= −13

𝑡=−7

| This week’s minus last week’s cumulative loads 

Training monotony 

𝑀 = 𝐿7/√
∑ (𝐿𝑡 − 𝐿7)2𝑡=−6

𝑡=0

7
 One week’s mean divided by standard deviation 

Training strain 𝑆 = 𝑀𝐶7 One week’s cumulative workload multiplied by monotony 

 

 

6.3. Results 

6.3.1. Compliance and attrition 

Across the 12-week prospective period, two participants voluntarily withdrew due to the burden 

of the study. An additional six participants were removed by the experimenter for failing to complete 2 

consecutive surveys (n = 5) or failure to accurately report/record data (n = 1) (i.e., IMU and survey data 

were mismatched). The 40 remaining participants had 100% survey compliance. 
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Figure 6.3: Attrition. Stacked area showing the number of participants that withdrew voluntarily (pink; n = 2), were withdrawn 
by the experimenter (red; n = 6), and that completed the experiment (blue; n = 40) over time in weeks. 

 

6.3.2. Accuracy of self-reported mass 

Mass was recorded twice at baseline: once via self-report and once by the experimenter. This 

procedure was done to assess the accuracy of self-reported masses across the prospective study 

duration (which are critical to accurately estimating GRF from recorded accelerations). Results suggest 

that self-reported mass accurately reflected participants’ true mass: Mean errors between self-reported 

and true mass were 1.58 ± 1.38 kg and the coefficient of determination (r2) was 0.99. 
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Figure 6.4: Self-reported vs. true mass at baseline. Participants’ self-reported masses were highly accurate suggesting that self-
reported mass from the prospective period can be confidently used to estimate GRF. 

 

6.3.3. Injury 

Injury was recorded via weekly survey in three different ways: (1) an injury that required a 

medical visit, (2) an injury that required time off from running, and (3) an injury that resulted in pain. 

Across the 12-week study duration three participants reported a medical injury, 20 reported a time loss 

injury, and 32 reported a pain injury. For the remainder of this Chapter, the term “injury” will be defined 

as a time loss injuries. This definition yields equal numbers of participants in the injured and uninjured 

groups (n = 20 each). 
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Figure 6.5: Injury development across time and definitions. The number of participants that remained uninjured across time 
using different definitions of injury. Light blue represents a medical definition, blue represents a time loss definition, and dark 
blue represents a pain definition. 

 

6.3.4. Self-reported outcome variables across groups 

Self-reported outcome variables were compared across injured and uninjured groups to 

evaluate whether they were predictive of injury (Table 6.2 and Figure 6.6). Of these, only the percentage 

of days that non-steroidal anti-inflammatory drugs (NSAIDs) were used varied significantly across groups 

at p ≤ 0.05, with the injured group using NSAIDs more often than the uninjured group in the lead up to 

injury. 

Table 6.2: Self-reported outcome variables across groups. Participants that did and did not sustain a time loss injury are 
divided into the injured and uninjured groups, respectively (n = 20 each). Values represent mean ± SD across the duration of the 
study for the uninjured group and across all time points preceding the time-loss injury for the injured group. Bolded values 
highlighted in pink indicate significance at p < 0.05 with no correction for multiple comparisons.  

Variable Uninjured (n = 20) Injured (n = 20) 

Age (years) 35.68 ± 12.87 42.06 ± 17.98 

Sex (% male) 57.89% 70.59% 
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sRPE (out of 10) 6.01 ± 0.80 5.45 ± 1.30 

Pain (out of 10) 0.63 ± 0.77 1.8 ± 1.31 

Sleep quality (out of 10) 6.76 ± 1.07 7.14 ± 1.13 

Recovered (out of 10) 7.24 ± 1.52 7.20 ± 1.23 

Stress (out of 10) 4.94 ± 1.62 4.71 ± 2.18 

Mass (kg) 70.49 ± 10.65 68.80 ± 13.53 

Distance run (km per day) 8.22 ± 2.61 8.98 ± 2.56 

Running duration (minutes per day) 79.73 ± 23.79 79.46 ± 21.34 

Running speed (m/s) 3.08 ± 0.90 3.07 ± 0.56 

NSAID use (% days used) 3.89 ± 1.77 % 11.15 ± 9.30 % 

Mean heart rate (BPM) 149.77 ± 13.00 153.22 ± 19.58 

Max heart rate (BPM) 169.70 ± 12.75 170.61 ± 21.43 

 

 

Figure 6.6: Self-reported outcome variables across injured and uninjured runners. (A) Mean session rating of perceived 
exertion from 0 (no exertion) to 10 (maximal exertion) across the study duration. (B) Mean perceived pain from 0 (no pain) to 
10 (worst pain imaginable) across the study duration. (C) Mean self-reported distance run per day (in km) across the study 
duration. Uninjured group in blue. Injured group in red. The white horizontal line represents the mean, the darker central box 
represents ± 95% confidence interval (± 1.96 SEM) around the mean, the lighter outside box represents ± 1 SD around the 
mean, and gray dots represent participants outside ± 1 SD. 

 

6.3.5. IMU-derived outcome variables across groups 

The number of steps per day, the external load per step, and the cumulative load per day were 

compared across injured and uninjured groups (Figure 6.7). None of these outcomes varied significantly 
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across groups at p ≤ 0.05 and no clear pattern emerged when plotting injured and uninjured 

participants’ load magnitudes and numbers (Figure 6.8) 

 

 

Figure 6.7: IMU-estimated outcome variables across injured and uninjured runners. (A) Mean number of steps run per day 
across the study duration. (B) Mean allometrically-scaled external load (GRF second peak magnitude) across all recorded steps. 
(C) Mean cumulative weighted load (CWL) per day across the study duration. Uninjured group in blue. Injured group in red. The 
white horizontal line represents the mean, the darker central box represents ± 95% confidence interval (± 1.96 SEM) around the 
mean, the lighter outside box represents ± 1 SD around the mean, and gray dots represent participants outside ± 1 SD. 
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Figure 6.8: Injury status as a function of load magnitudes and numbers. Uninjured participants are plotted in blue, injured 
participants are plotted in red. 

 

6.3.6. Risk models across groups 

Cumulative weighted loads for each day were entered into four potential risk models: (1) ACWR 

(6:21), (2) strain, (3) exponentially-weighted moving average (1/10), and (4) week-to-week change. 

Independent samples t-tests comparing scores for injured and uninjured groups did not reveal any 

significant differences between any of these scores at p < 0.05 (Figure 6.8). Patterns were also visualized 

by comparing injured participants scores over time against the mean and variance observed for 

uninjured runners (Figures 6.9-6.12).  

 

 

Figure 6.9: Risk model scores across injured and uninjured runners. (A) Acute (6 day):Chronic (21 day) cumulative weighted 
loading. Unitless. (B) Training strain estimated from cumulative weighted loading. Expressed in original units (((N*kg-0.67)9.3)1/9.3). 
(C) 10-day exponentially-weighted moving average of cumulative weighted loading. Expressed in original units (((N*kg-

0.67)9.3)1/9.3). (D) Week-to-week change in cumulative weighted loading. Expressed in original units (((N*kg-0.67)9.3)1/9.3). Uninjured 
group in blue. Injured group in red. The white horizontal line represents the mean, the darker central box represents ± 95% 
confidence interval (± 1.96 SEM) around the mean, the lighter outside box represents ± 1 SD around the mean, and gray dots 
represent participants outside ± 1 SD. 
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Figure 6.10: Acute (6 day):Chronic (21 day) cumulative weighted loading over time. Mean uninjured participant ACWR (dark 
blue line) ± 1.96 SD (blue shaded area) and individual injured participant ACWR scores (red lines) leading to first report of a 
time-loss injury (red circle). Unitless. 

 

Figure 6.11: Training strain over time. Mean uninjured participant strain (dark blue line) ± 1.96 SD (blue shaded area) and 
individual injured participant strain scores (red lines) leading to first report of a time-loss injury (red circle). Expressed in original 
units (((N*kg-0.67)9.3)1/9.3). 
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Figure 6.12: 10-day exponentially weighted moving average over time. Mean uninjured participant EWMA (dark blue line) ± 
1.96 SD (blue shaded area) and individual injured participant EWMA scores (red lines) leading to first report of a time-loss injury 
(red circle). Expressed in original units (((N*kg-0.67)9.3)1/9.3). 

 

 

Figure 6.13: Week-to-week change in cumulative loading over time. Mean uninjured participant week-week change (dark blue 
line) ± 1.96 SD (blue shaded area) and individual injured participant week-week change scores (red lines) leading to first report 
of a time-loss injury (red circle). Expressed in original units (((N*kg-0.67)9.3)1/9.3). 
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6.4. Discussion 

This study tests the hypothesis that real-world loading profiles (combinations of loading 

numbers and magnitudes) relate to the development of future injuries [100, 83]. To collect these 

profiles, 40 runners wore an inertial measurement unit (IMU) that collected their accelerations every 

time they ran for 12 weeks. Recorded accelerations were used to estimate each time the foot contacted 

the ground (load number) and the vertical ground reaction force second peak magnitude (external load 

magnitude). These two variables were weighted based off human musculoskeletal properties and 

combined to calculate the cumulative weighted load (CWL)—a surrogate of the musculoskeletal damage 

accrued during a run [143]. Over 10.3 million steps were recorded, making this the largest known study 

of external loading and running injury, and uniquely positioning it to overcome the limitations of 

previous lab-based cross-sectional and retrospective studies and shed light on the relation between 

external loading and running injury.  

In contrast to the proof-of-concept study that pioneered this approach (presented in Chapter 2), 

the current study found no significant differences between the loading profiles of injured and uninjured 

runners. Indeed, neither the number of loads (stances), magnitude of loads (vertical GRF second peak 

magnitudes), nor CWLs significantly differed across groups. This failure to replicate the difference in load 

magnitudes and CWLs found in the original study may be due to several factors. First, the small sample 

size and exploratory nature of the original study (n = 9) may have led to a Type I error (false positive) 

and the current results may better reflect the true nature of the relation (or lack thereof) between 

running injury and external loading operationalized as the vertical GRF second peak magnitude. This 

would suggest that future research and prevention efforts should focus on potential predictors of 

running injury other than vertical GRF second peak magnitude.  
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For example, some evidence suggests that the magnitude and/or rate of the first peak of the 

vertical GRF is more predictive of RRI than the magnitude of the second peak [68, 41]. We were not able 

to explore this hypothesis as existing methods to estimate vertical GRF first peak magnitude and rate of 

loading have low precision that would undermine any results [296]. Another method that has been 

advocated to operationalize external loading is the integral of the GRF waveform. Taking the integral 

captures potentially important information about load duration and loading throughout the entire gait 

cycle and thus may be a better predictor of RRI than a single-point magnitude [329]. While it is possible 

to estimate the integral of the GRF waveform from observed accelerations [283, 296], the 

computational processing time to do so here was prohibitive. The relation between RRI and external 

loads as operationalized as integrated GRF waveforms should, however, be explored in a future re-

analysis of these data.  

Ultimately, the most proximal causes of RRI will be internal loading, stresses, and strains. 

Unfortunately, these variables are currently difficult to measure/model and thus increasing access to 

these measurements should be a priority of overuse injury research. Further, even with accurate 

quantification of internal loading, the influence of these loads will be moderated by an individuals’ 

musculoskeletal structure mechanical properties. We attempted to capture the general relation 

between these properties and loading by using an allometric scaling factor based on dimensionality 

theory [328], however, this is a very general approach that does not capture the inter-participant 

variation that is likely important in moderating the relation between loading and injury [69, 331]. Thus, 

another target of future research should be to develop methods to more easily measure/model 

musculoskeletal structure mechanical properties across participants (e.g., [332, 333]). 

A second reason for the observed failure to replicate may be due to difficulty in appropriately 

defining and quantifying injury. Injury can be operationalized using different criteria such as pain, time-
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loss, and medical visits [26, 114, 27, 115, 119] and each of these operationalizations may evince 

different relations with one another and with potential predictive variables [117, 118]. Although we 

recorded all three injury definitions, an a priori decision was made to use a time-loss definition. This 

decision was made due to previous findings that pain and injury are not related [116] (consistent with 

the current findings; Figure 6.6B) and due to a medical definition being too conservative to yield an 

adequately sized injured group (e.g., only three of 40 participants here sustained a medical injury). 

Another consideration when defining “injury” is the decision to consider an injury a function of all 

loading. Many RRIs are unilateral [39] and loading during running is often asymmetrical (e.g., [130]). 

Thus, future reanalysis of these data should use the reported locations of injury (see Chapter 6S) to 

define the side of the body that an injury occurred on and then relate only the ipsilateral loading to that 

injury. 

A third possibility for the current null result is that the methods used here have obscured the 

relation between external loading and injury and led to a Type II error (false negative). Although the 

procedures used here are common across IMU-based research in the field, I do not believe they 

constitute “best practices.” Several key processing steps developed and validated across Chapters 3-5 

(see Chapter 3S.4) were omitted here due to constraints in computational processing time: saturation 

and drift were not corrected, sensor fusion was not used to estimate orientation and subtract gravity, 

and data were left in a wearable coordinate system that is vulnerable to misplacement and between-

participant differences in posture. Further, the ‘Veras’ method was used to estimate GRFs here because 

it provided the best balance of estimation accuracy and low computational processing time, however, 

superior methods are available. For example, the ‘Pogson’ methods provide a more accurate method 

with estimations that are more robust to differences in running speed and foot strike angle (an 

important factor in this study where runners’ behaviors and environments are unconstrained). The 
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computational cost of that method was, however, ~250x that of the Veras method and thus it was not 

used. 

Another critical difference between the methods used in the proof-of-concept and those used 

here, was the lack of accounting for data missingness. From comparing the mean self-reported running 

distances in Figure 6.6C and the IMU-estimated number of steps in Figure 6.7A a large discrepancy can 

be observed: Mean self-reported distances for the uninjured and injured groups are 8.22 and 8.64 km 

respectively, at ~762 steps per km [53] we expect the mean number of steps to be ~6264 and ~6584; 

however, they are much lower at 3260.72 and 3646.00 respectively. This difference suggests a large 

amount of data missingness caused by participants forgetting to wear the IMU, turn the IMU on, charge 

the IMU, etc. These types of errors are common in this type of prospective research and can be 

corrected for by identifying and imputing missing data [108]. The omission of this missing data does, 

however, draw the current findings into question and future work should reprocess these data to 

address these methodological constraints and deal with missingness. 

One final source that may potentially account for the observed difference between the current 

study and the proof-of-concept is that participants in the proof-of-concept were Division I running 

athletes (university student-athletes at the highest competitive level). These participants had training 

regimes that were highly constrained by their coach’s prescriptions and thus there was relatively little 

inter-participant variability in the number of strides and the distances run. In contrast, the inclusion 

criteria for the current study was to run a minimum of ≥ 16.09 km per week (on average). Thus, the 

current sample is a much more heterogeneous group of runners with much more variability in the 

number of runs, steps per run, intensity of runs, time between runs, etc. The inclusion of this variability 

was intentional given the importance that each of these variables can play in RRI causation, it does, 

however, pose analytical challenges. Several approaches have been proposed to address these 

challenges by using ‘risk models’ to quantify the risk of injury over time (see Table 6.1). Although these 
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models are controversial [126, 330] they represent an important effort to identify the interplay between 

positive and negative remodeling and the critical time periods over which load accumulates to cause 

RRI. In the current study, none of the risk models evaluated differed across injured and uninjured 

runners. This may be due to one of (or a combination of) the reasons mentioned in the previous 

paragraphs or may be due to a disconnect between these models and the biological response to loading. 

Improved models may be developed with greater fidelity to these responses. For example, by calculating 

a daily probability of injury in a given structure based on the probability of positive and negative 

remodeling as a function of estimated structure loading, number of strides, and structure adaptation 

(e.g., [53]), or by applying Miner’s Rule to calculate cumulative damage (e.g., [85]). Enacting these 

potential methods requires further research to determine mathematical associations between external 

loading conditions, internal structure loading, microtrauma accumulation, the temporal healing 

response, and RRI. 

Despite the concerns and limitations presented above, the present finding that injured runners 

did not report higher pain replicates previous research and confirms that runners are not sensitive to 

impending injury. This finding underscores the need to continue developing objective metrics that can 

forecast injury. Indeed, given the high incidence of RRI and the burden that RRIs impose, these efforts 

remain critical [89, 39, 44]. Thus, the IMU-derived objective metrics used here represent an important 

effort in the field. The current method’s capability to measure over 10 million steps in the real world 

demonstrates its ability to address several constraints in current biomechanics research. In the past, 

biomechanics research has largely been restricted to lab and clinical settings. This restriction has 

undermined the ecological validity of findings given lab-based observations may not be generalizable to 

real world behavior [73]. Further, the constraints of the lab have prevented accurate measurement of 

the number of loads actually experienced by runners – a variable theorized to play a critical role in RRI 
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causation [76, 61]. Thus, the method presented here is an important step toward ecologically valid 

measures of biomechanical loading magnitudes and numbers. 

 

6.5. Conclusions 

In sum, no significant differences were observed in the loading profiles of runners who 

developed injury across a 12-week prospective period and those who did not. These results stand in 

contrast to an earlier proof-of-concept study and join a muddied literature. Future work is, however, 

needed to address a number of methodological limitations in the processing and analysis of the current 

results. After this work has been conducted it will provide strong evidence to either support or refute 

the hypothesis that external loading relates to running-related injury development. In either case, these 

results can help shape future biomechanics research by either guiding biomechanists to focus on 

alternative or moderating variables (e.g., internal loading, musculoskeletal structure mechanical 

properties) or by suggesting that measuring real-world external loading profiles is a viable method to 

predict and prevent injuries. Such results would help refine injury prediction models and provide the 

evidence necessary to develop adaptive feedback and training prescriptions that account for the 

mechanics and loading profiles of individual runners.  
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6S: Supplement to Chapter 6 

 

6S.1: Baseline interview 

• What gender do you identify as? What is your biological sex? 

• How old are you? 

• How much do you weigh (in pounds)? 

• How many years have you been running? 

• Have you ever run competitively? If so, at what level? 

• Have you ever run in any races? If so, what distances and what were your best times? 

• How many times do you run per week on average? 

• How many miles do you run per week on average? 

• How much time do you spend running per week on average (give best estimate)? 

• On what surfaces do you typically run (e.g., grass, concrete, dirt, etc.)? 

• Do you warm-up before you run? If so, please describe what you do? 

• What is the make, model, and size of the shoes you are currently wearing? 

• How many miles do you have on these shoes? 

• How many other pairs of shoes do you rotate through? 

• Do you do any other physical activities regularly? If so, what activity, how often, and at what 

level of skill or competition (e.g., recreationally, intramurals, collegiate, professional)? 

• Have you had a running-related injury or an injury to your legs/lower back in the last year? If so, 

please describe the injury. 

o Did you see a medical professional for this injury?  

o Did you reduce or alter your running because of this injury?  
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o Does this injury cause you any current pain? If so, please rate the pain from 0 (no pain) 

to 10 (worst pain imaginable). 

• Do you take non-steroidal anti-inflammatory drugs such as aspirin, ibuprofen, indomethacin, 

etc.? If so, then on average how much do you take (e.g. 200 mg) and how often (e.g. before 

every run, once a week, less than once a week)? 

 

6S.2: Weekly survey 

 Each Sunday an email containing a link to an online survey was sent to participants. If the survey 

was not completed, then automatic reminder emails were sent on Monday and Tuesday. If the survey 

was still not completed by Wednesday, an experimenter manually contacted the participant. An 

example of this survey can be completed here: 

https://ucdavis.co1.qualtrics.com/jfe/form/SV_39FUucksE40fnHD (accessed February 14th 2024). 

Alternatively, all the survey questions are listed below. Note, the survey used a branching logic and only 

presented some sections depending on the answers to previous questions (e.g., if a respondent did not 

report running on Monday, they would not be asked to report their Monday running distance). 

https://ucdavis.co1.qualtrics.com/jfe/form/SV_39FUucksE40fnHD
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6S.3: Weekly running log 

UC Davis Human Performance Lab 

Weekly Running Log 

If needed, you can email any questions to experimenter@ucdavis.edu 

 
What was your weight this week?                        . 

Do you feel stressed this week? Rate from 0 (not at all) to 10 (very much):                        . 

Stress means a situation in which you felt tense, restless, nervous, or anxious or were unable to sleep at night because your mind was troubled. 

 

 
 
 
Did you experience any running-related pain or injury this week?                        . 

If so, was it caused by a single traumatic event?                       . 

Did you seek medical treatment for running-related pain or injury?                        . 

Rate the severity of the pain from 0 (no pain) to 10 (worst pain imaginable)                       .

2
6

1
 

mailto:experimenter@ucdavis.edu


 

262 
 

7. Conclusions 

 

Running injuries affect millions of Americans each year. These injuries impose serious and costly 

health and economic burdens. Thus, reducing running injury has been a target of decades of 

biomechanics research. Despite these research efforts, the incidence of running injury has not 

appreciably decreased and easy-to-measure biomechanical metrics of running injury risk remain elusive. 

A major contributor to this lack of success is likely the disconnect between theories of running injury 

causation—in which injury is caused by the accumulation of microtrauma across many repeated loading 

events—and the way running injury has been studied—in lab environments where biomechanics have 

been represented as a single magnitude calculated from the average of a handful of gait cycles. 

In Chapter 2 of this dissertation, I introduced a novel method that overcame these lab-based 

limitations. This first-of-its kind study used small wearable devices to estimate the magnitude and 

number of external loads (operationalized as maximum ground reaction forces and number of strides) 

across two months of training for 9 Division I running athletes. Results demonstrated that runners who 

developed injuries had higher external loads and cumulative loads (loads weighted by an exponent to 

account for musculoskeletal structure properties then summed across strides) than runners that did not 

develop an injury. These promising results underscored the potential of this method to move the field of 

biomechanics out of the lab and into the real world where ecologically valid measurements can be taken 

of the number and magnitude of loads that runners actually experience—and that potentially lead to 

injury. 

Although exciting, this methodology was on the cutting edge of a new and rapidly developing 

area of biomechanics research: The use of wearable technology in biomechanics is exploding but no 

clear guidelines have yet emerged to guide the field, and few standards or publicly available pipelines 
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exist (see Chapter 5.1 for a more detailed discussion). As such, a number of limitations existed in this 

novel method. Critically, only unilateral maximum ground reaction forces could be estimated, no 

validation of force or gait event estimation had been conducted across different runners or running 

conditions, and no information existed on how sensor misplacement could impact data—even though 

this type of misplacement is likely in wearables-based prospective research. To systematically address 

these limitations, I present a series of studies in Chapters 3, 4, and 5 where typical lab-based 

measurements and measurements from a wearable inertial measurement unit were taken from 74 

participants as they ran across a range of different conditions. These data were used to compare 18 

different methods of estimating gait events, 27 different methods of estimating vertical ground reaction 

forces, and how these and other metrics were affected by a 5 cm change in sensor placement. To help 

guide the field, code to execute each of these methods was made available online and 

recommendations were made to guide future use. 

 Finally, applying these validated methods in Chapter 6, this dissertation replicated the initial 

proof-of-concept study in a large heterogenous sample across a longer period of time. Currently the 

methods of this study are limited due to the computational demands of executing several processing 

steps and correcting for missingness; thus, the present results should not be overinterpreted. The 

general approach illustrated by this study collectively with the earlier chapters of this dissertation does, 

however, demonstrate a novel way to measure running and injury, provide the tools to execute that 

approach, and show mixed support for the hypothesis that the magnitude and number of loads 

experienced by runners relates to RRI development. 
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