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Abstract After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’

spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to

bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can

recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of

motor commands through the lesion. This is achieved with combinations of pharmacological and

physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor

cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with

sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats

can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through

biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal

cord injury.

DOI: 10.7554/eLife.23532.001

Introduction
Spinal cord injury leads to dramatic loss of motor function below the level of the lesion, often perma-

nently compromising the ability to locomote (van Middendorp et al., 2011). From a translational

research perspective, recovery of motor function and locomotion can in principle be achieved with

at least two conceptually different approaches: (a) ‘healing’ the lesion to re-establish motor

pathways (Richardson et al., 1980; David and Aguayo, 1981); (b) bypassing the lesion to reconnect

motor circuits above and below (Ethier et al., 2012; Manohar et al., 2012; Bouton et al., 2016).

The first approach pursues the regeneration ideal of overcoming the natural limited ability of the

adult spinal cord to restore connections through the injury (Selzer, 2003; Liu et al., 2010b;

Ruschel et al., 2015). The second approach represents the practical alternative of extracting motor

information at higher levels and reinserting it below the lesion, either within the spinal cord, directly

to the muscles or through a robotic actuator (Bensmaia and Miller, 2014; Moxon and Foffani,

2015).

The two approaches – healing vs bypassing the lesion – implicitly assume that the adult nervous

system is unable to innately develop a recovery strategy to bypass the lesion. Here we will challenge

this assumption. Specifically: (i) we chose a spinal cord injury model – complete thoracic transection

in adult rats – that excludes any spinal transmission of motor commands through the lesion; and (ii)

we delivered a combination of pharmacological treatment (5-HT agonists) and physical therapies

Manohar et al. eLife 2017;6:e23532. DOI: 10.7554/eLife.23532 1 of 23

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.23532.001
http://dx.doi.org/10.7554/eLife.23532
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


(active treadmill training and/or passive hindlimb bike exercise) designed to maximize reorganization

of sensorimotor circuits both below and above the level of the lesion (Courtine et al., 2009;

Kao et al., 2009, 2011; Ganzer et al., 2013; Graziano et al., 2013; Oza and Giszter, 2014,

2015; Foffani et al., 2016; Ganzer et al., 2016).

We show that maximizing the reorganization of the hindlimb sensorimotor cortex creates a novel

circuit that responds to input from the ventral forepaws and activates trunk muscles that span the

lesion. This new cortical circuit bypasses the lesion, probably via biomechanical coupling, allowing

animals to recover a surprising level of unassisted hindlimb weight support and locomotion after

complete spinal cord injury.

Results

Combined therapeutic interventions induce hindlimb motor recovery
after complete spinal cord injury
We first sought direct evidence that hindlimb motor recovery after spinal cord injury can indeed be

achieved without explicit spinal transmission of motor commands through the lesion. To this end, in

the first set of experiments adult rats (n = 45) received a complete spinal cord transection at thoracic

level (T9/T10) and were treated with 5-HT agonists combined with either (a) physical therapy below

the level of the lesion (passive hindlimb bike exercise, n = 15) or (b) physical therapy below and

above the level of the lesion (passive hindlimb bike exercise + active treadmill training, n = 15), and

were compared with a group of transected animals that received ‘sham’ therapy (n = 15). For sim-

plicity, we will refer to 5-HT agonist + passive hindlimb bike exercise as ‘partial therapy’ and 5-HT

agonists + passive hindlimb bike exercise + active treadmill training as ‘complete therapy’. Hindlimb

motor recovery was assessed both in controlled experimental conditions, as percentage of weight

supported step cycles (%WSS) during treadmill locomotion with lateral but no vertical assist (at 4, 8

and 12 weeks post transection), and in more naturalistic conditions using open field testing without

any support (at 2, 4, 8 and 12 weeks post transection, normalized to group-averages at week two

post transection). Behavioral measures in all groups were always performed after acute administra-

tion of drugs (the same 5-HT agonists used for therapy), in order to guarantee the functional state of

the cord below the level of the lesion (Barbeau and Rossignol, 1990; Jackson and White, 1990),

but without any sensory stimulation (i.e. tail pinch or perineal stimulation).

These combined therapeutic interventions markedly improved hindlimb motor performance as

measured by %WSS during treadmill locomotion (2-way mixed ANOVA, time x therapy: F(4,78)=3.7,

p=0.0082; Figure 1A). As expected, 4 weeks after transection the %WSS was low for all groups (1.6

± 4.3%). Conversely, the %WSS increased by a factor of ten at 8 weeks and 12 weeks compared to 4

weeks both, for animals receiving partial (Tukey: p=0.0644, p=0.0086) and complete therapy

(p=0.0300, p=0.0002), but not for transected animals receiving sham therapy (p>0.99). Moreover, at

12 weeks, the %WSS of animals receiving complete therapy (19.4 ± 17.8%) was significantly higher

than that of animals that received sham therapy (1.6 ± 2.9%, p=0.0103) but animals that received

partial therapy were not different from sham therapy animals (12.3 ± 15.4%, p=0.32), suggesting

that complete therapy was more effective than partial therapy. Many of the WSS achieved with

either therapy were consecutive (Figure 1A, inset). After 12 weeks of complete therapy, three ani-

mals were able to perform >40% of WSS (one animal went as high as 56%) during the treadmill

session.

Even though %WSS were always evaluated without any assisted vertical weight support, we also

evaluated the minimal amount of assisted vertical weight support that was necessary for animals to

maintain a consistent quadrupedal locomotion on the treadmill, defined as the load-bearing failure

point (Timoszyk et al., 2005). The assisted vertical weight support at load-bearing failure point

markedly decreased at 8 weeks and 12 weeks with partial and complete therapy but not with sham

therapy (Figure 1—figure supplement 1), providing additional direct evidence of increasing levels

of hindlimb weight support achieved by the animals.

These important motor recoveries were confirmed by the evaluations in the open field without

any support (Figure 1B). Specifically, open field scores (Basso et al., 1995) were similar across

groups at 2 weeks (6.5 ± 1.3 for sham, 5.7 ± 2.0 for partial, 5.2 ± 2.4 for full; 1-way ANOVA, F(2,41)

=1.7, p=0.19), and then increased at 4 weeks, 8 weeks and 12 weeks compared to 2 weeks for
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Figure 1. Locomotor recovery after a complete spinal cord injury. (A) Percentage of weight supported step cycles (% WSS) during treadmill locomotion

for complete therapy (red), partial therapy (blue) and sham therapy (black) groups at 4, 8 and 12 weeks post-injury. Pie charts indicating the fraction of

these weight supported steps that were part of a consecutive bout of three or more step cycles for each group (right panel inset, black: percentage of

consecutive steps, grey: nonconsecutive steps). (B) Open field score measured by the BBB scale, expressed as % change from baseline at 2 weeks post

injury. (C) Pie charts showing the proportion of BBB scores that correspond to weight support in the hindlimbs during unassisted open field locomotion

(�9) at 2 weeks (top panel) and 12 weeks (bottom panel). (D) Correlation between the open field score and %WSS at 12 weeks after injury. (E) Example

frames of a spinalized rat after 12 weeks of complete therapy taking plantar weight supported steps with its hindlimbs in the open field. (F) Histological

verification of complete spinal transection using Nissl stain (left) of a horizontal section of the spinal cord. 5-HT stain (right) of a rostral and caudal

location taken from a slice adjacent to the Nissl stained slice on the left. Boxes represent the approximate location of the higher magnification picture

Figure 1 continued on next page

Manohar et al. eLife 2017;6:e23532. DOI: 10.7554/eLife.23532 3 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23532


animals receiving complete therapy (time x therapy: F(6,123)=3.2, p=0.0064; Tukey: p<0.0001) and

increased at 8 weeks and 12 weeks compared to 2 weeks for animals receiving partial therapy

(p<0.0007), but not for transected animals receiving sham therapy (p>0.40). Again, at 12 weeks the

open field scores of animals that received complete therapy were significantly higher than those of

animals that received sham therapy (p=0.0137) but animals that received partial therapy were not

different from sham (p=0.43), confirming that complete therapy was more effective than partial

therapy.

To gain insight into the behavioral significance of the recovery in the open field, we focused on a

critical aspect of motor performance: the ability of the animals to gain plantar weight support in the

hindlimbs (BBB � 9). The number of animals that achieved plantar weight support in the open field

dramatically increased with partial or complete therapy from <4% at 2 weeks to 47% at 12 weeks,

compared to 14% at 12 weeks in animals undergoing sham therapy (Figure 1C).

Interestingly, 12 weeks after spinal transection motor performance during weight-supported

treadmill locomotion and open-field motor recovery were highly correlated (Pearson: R = 0.60,

p<0.0001; n = 42; Figure 1D), suggesting that these two measures – quantitative on a treadmill with

lateral support and semi-quantitative in the open field – are capturing similar aspects of functional

recovery.

Taken together, these results show that even with a complete transection of the spinal cord, care-

fully designed combinations of therapeutic interventions can restore a significant level of hindlimb

weight support and locomotion without any sensory stimulation or assisted vertical weight support

after complete spinal cord injury (Figure 1E). Importantly, the completeness of the spinal lesion was

histologically confirmed in all animals with both nissl and 5-HT staining (Figure 1F)

Combined therapeutic interventions induce reorganization of the
deafferented motor cortex after complete spinal cord transection
A critical aspect for understanding the possible mechanisms underlying the observed motor recovery

is the role of cortical reorganization. At the end of the study, 12 weeks after the spinal transection, a

subset of animals (n = 36) underwent an anesthetized motor mapping procedure using intracortical

microstimulation to assess the possible reorganization of the deafferented hindlimb motor cortex

under the different therapy regimens (complete therapy: n = 14, partial therapy: n = 12, sham ther-

apy: n = 10). Motor reorganization was assessed in terms of cortical area (in mm2) in which microsti-

mulation elicited movement of the hindlimbs, trunk, forelimbs or vibrissae. An additional group of

naı̈ve intact animals (n = 5) was used to confirm the coordinates of hindpaw motor representation.

As expected, motor representations of the hindlimbs – typically observed in naı̈ve intact rats –

were absent in all lesioned animals, confirming the completeness of the spinal transection

(Figure 2A). However, there was a significant therapy-dependent reorganization of the deafferented

motor cortex (2-way mixed ANOVA, location x therapy: F(4,66)=3.6, p=0.0103; Figure 2A,B). Specif-

ically, we observed an expansion of the trunk representation in animals that received complete ther-

apy compared to animals that received partial therapy (Tukey, p=0.0484) or sham therapy

(p=0.0013). This expansion was not secondary to an in increase in cortical excitability, since there

were no differences between the threshold currents across groups (Figure 2—figure supplement

1). We did not observe any expansion of the cortical representations of the forelimb or of the vibris-

sae into the deafferented motor cortex (p>0.99).

Figure 1 continued

of 5-HT stain. # represents differences from week 2 or 4 and * represents differences within the same week. (*) p<0.1, *p<0.05, **p<0.01, ***p<0.001.

Error bars indicate 95% confidence intervals.

DOI: 10.7554/eLife.23532.002

The following figure supplements are available for figure 1:

Figure supplement 1. Assisted weight support provided during training.

DOI: 10.7554/eLife.23532.003

Figure supplement 2. A schematic representation of the body weight support device that was used during treadmill training.

DOI: 10.7554/eLife.23532.004
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Figure 2. Reorganization of the motor cortex induced by combined therapeutic interventions. (A) Raw intra-cortical micro-stimulation motor maps

showing the penetrations on a cortical grid (co-ordinates AP: from 0.5 mm rostral to bregma to 2 mm posterior to bregma; ML: 1 to 3.5 mm lateral to

midline) color coded by the type of movement evoked for naı̈ve-intact, sham therapy, partial therapy and complete therapy groups. (B) Average cortical

area (mm2) corresponding to a specific type of movement (trunk, forelimbs or vibrissae) for all therapy groups. Correlation between cortical area

Figure 2 continued on next page
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Importantly, considering all animals, the cortical area of the trunk representation correlated with

motor performance, measured by both %WSS (Pearson: R = 0.41, p=0.0142; n = 36; Figure 2C) and

open field scores (Pearson: R = 0.51, p=0.0013; n = 36; Figure 2D; Figure 2—figure supplement 2).

Lesioning the reorganized motor cortex reverses the behavioral
recovery
A correlation between cortical reorganization and motor recovery does not necessarily imply a causal

relationship between the two. In order to find more convincing evidence that the reorganization of

the deafferented hindlimb motor cortex directly contributed to the motor recovery, at the end of

the motor map the reorganized motor cortex was electrolytically lesioned bilaterally (Figure 3A),

animals received two additional weeks of therapy (partial or complete) post lesion and were then

Figure 2 continued

corresponding to trunk movements and locomotor recovery measured by (C) % WSS and also (D) open field score. *p<0.05, **p<0.01. Error bars

indicate 95% confidence intervals.

DOI: 10.7554/eLife.23532.005

The following figure supplements are available for figure 2:

Figure supplement 1. Threshold currents during intra-cortical micro-stimulation motor maps.

DOI: 10.7554/eLife.23532.006

Figure supplement 2. Correlation measures.

DOI: 10.7554/eLife.23532.007

Figure 3. Lesioning the motor cortex reverses behavioral recovery. (A) Photomicrograph of exemplar electrolytic lesion in the hindlimb motor cortex

(inset: cortical map showing lesion location centered at 1.0 mm caudal to bregma and 2.0 mm lateral). (B) Locomotor recovery measured by %WSS

during treadmill locomotion evaluated before and after (pre-, post-) lesioning the motor cortex. (C) Proportion of BBB scores that correspond to weight

support in the hindlimbs during unassisted open field locomotion (�9) before and after (pre-, post-) cortical lesions. ***p<0.001. Error bars indicate 95%

confidence intervals.

DOI: 10.7554/eLife.23532.008

The following figure supplement is available for figure 3:

Figure supplement 1. Quality of steps assessed from the videos based on individual paw placements.

DOI: 10.7554/eLife.23532.009
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behaviorally re-evaluated at week 14 post transection (complete therapy, n = 12; partial therapy,

n = 10).

Lesioning the reorganized motor cortex dramatically decreased the motor performance as mea-

sured by %WSS during treadmill locomotion (2-way ANOVA, lesion: F(1,20)=24.0, p<0.0001; lesion x

therapy: F(1,20)=0.1, p=0.70; Figure 3B). The key element that differentiated animals that achieved

good recovery from animals that displayed poor recovery was the ability to make plantar contact

with the treadmill during stepping, which was lost after the cortical lesion (Figure 3—figure supple-

ment 1). In agreement, the cortical lesion also decreased the number of animals that achieved plan-

tar weight support in the open field (BBB � 9) from 47% at week-12, to 36% and 27% after the

cortical lesion in animals under partial or complete therapy, respectively (Figure 3C).

The %WSS for the forelimbs was 100% for all animals at week-12 and remained 100% for all ani-

mals at week-14, after the cortical lesion. Furthermore, 100% of forelimb steps were plantar steps

both before and after the cortical lesion. Forelimb weight support thus remained unobstructed by

the cortical lesion, supporting the specificity of the cortical lesion to hindlimb function.

As a control, the same cortical lesion performed in a group of naı̈ve intact animals (n = 4) did not

induce any change in motor performance either on the treadmill or in the open field (100%WSS and

BBB = 21 both before and after the cortical lesion).

These results suggest that the reorganization of the motor cortex is at least partly responsible for

the hindlimb motor recovery after complete spinal cord transection.

Corticospinal fibers from the reorganized motor cortex sprout into the
thoracic spinal cord after therapy
The behavioral recovery induced by therapeutic interventions could be mediated by the sprouting of

corticospinal fibers within the spinal cord. To test this possibility, in a second set of experiments, we

labeled the projections from the reorganized motor cortex to the spinal cord with injections of the

anterograde tracer BDA (Figure 4A), in transected animals receiving sham therapy (n = 2) and trans-

ected animals receiving complete therapy (n = 2). A group of naı̈ve intact animals (n = 2) was used

as a control. The tracer was injected in the deafferented hindlimb motor cortex (i.e. the reorganized

cortex) 9 weeks after the spinal transection, animals continued therapy and were perfused 3 weeks

later. For each animal, labeled axons were counted in the gray matter of the spinal hemicord at the

thoracic level where alpha motor neurons innervate trunk musculature. Specifically, axons were

counted at each of three different levels above the lesion (T1, T4 and T7) contralateral to the

injected cortex, from five representative slices spaced 250 microns apart (Figure 4B). Average

counts per slice were considered as independent samples.

There was a rostro-caudal gradient of axonal innervation from the hindlimb motor cortex into the

spinal cord (two-way ANOVA, level: F(2,81)=7.3, p=0.0012), with more counts at T7 level compared

to T4 (Tukey, p=0.0054) and T1 (p=0.0030). More importantly, therapy after spinal cord transection

promoted corticospinal sprouting (therapy, F(2,81)=6.4, p=0.0027). Specifically, more axons were

counted in the gray matter of the thoracic spinal cord in transected animals that underwent com-

plete therapy compared to both transected animals that underwent sham therapy (p=0.0111) and

naı̈ve intact animals (p=0.0055) (Figure 4C–F).

These results show that our therapy regimen promotes sprouting of corticospinal fibers, originat-

ing in the deafferented hindlimb cortex, into the gray matter of the spinal cord above the level of

the lesion. This corticospinal sprouting could allow animals to gain greater control of trunk muscula-

ture, thus contributing to the observed motor recovery.

Combined therapeutic interventions induce reorganization of the
deafferented somatosensory cortex after complete spinal cord
transection
Recovery of hindlimb function after spinal cord transection likely relies on somatosensory inputs

from the intact forelimbs, suggesting that motor cortical reorganization might be paralleled by

somatosensory cortical reorganization in our animals. To test this prediction, in a third set of experi-

ments we chronically and bilaterally implanted 16-channel arrays of microelectrodes (4-by-4) in the

hindlimb somatosensory cortex of 14 animals, which were then spinally transected and received

either complete therapy (n = 8) or sham therapy (n = 6). We mapped the responses of cortical
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neurons in the deafferented hindlimb cortex to tactile sensory stimuli delivered to seven fixed loca-

tions on each forelimb, pre (week 0) and post spinal cord injury (week 4, 8, 12). Cortical reorganiza-

tion was measured as the percentage responding of cells, i.e. cells recorded in the deafferented

hindlimb cortex that significantly responded to tactile stimulation of at least one location on the con-

tralateral forelimb (Figure 5A,B). Note that neurons in the hindlimb cortex did not have significant

responses to trunk stimulation either before or after spinal cord injury, likely because the trunk sen-

sory area is not topographically adjacent to the deafferented hindlimb region.

We recorded an average of 33.4 ± 9.7 neurons per day per animal, with no differences in the

number of neurons recorded between animals that received complete or sham therapy (two-way

ANOVA, therapy: F(1,43)=0.1, p=0.77) or across evaluation days (time: F(3,43)=0.3, p=0.79). How-

ever, the percentage of responding cells was highly dependent on whether transected animals

received complete or sham therapy (two-way GZLM, therapy x time, Wald c2(3)=12.7, p=0.0054).

Namely, even though the two groups were expectedly not different at week zero before the spinal

transection (Tukey, p=0.42), the percentage of responding cells became significantly higher in ani-

mals that received complete therapy compared to sham therapy at week 4 (p=0.0128), week 8

(p<0.0001) and week 12 (p<0.0001) after spinal cord transection (Figure 5B).

We then exploited the 4-by-4-matrix arrangement of our electrode arrays to test whether this

increased responsiveness of the hindlimb somatosensory cortex to forelimb stimuli, induced by ther-

apy, followed a specific spatial topography. We found that in animals that received complete ther-

apy after spinal cord transection, the probability to record responsive cells expanded toward more

medial and more rostral electrodes (Figure 5C). In fact, the response magnitude (spikes/stimulus) of

Figure 4. Corticospinal sprouting into the thoracic spinal cord. (A) Diagram illustrating anterograde tracing experiments. (B) Histology of a sample

coronal slice of the thoracic spinal hemi-cord taken from above the level of the spinal lesion and a magnified view of the sprouting into the grey matter

in (C) Naı̈ve-Intact (D) Sham therapy and (E) Complete therapy groups. (F) Bar graphs showing the average count of corticospinal axons sprouting per

mm2 of gray matter of the spinal hemi-cord for the different groups. *p<0.05, **p<0.01. Error bars indicate 95% confidence intervals.

DOI: 10.7554/eLife.23532.010
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Figure 5. Reorganization of the hindlimb sensory cortex induced by combined therapeutic interventions. (A) Example showing single unit discrimination

using waveform-based cluster analysis (left panel) and exemplar peri-stimulus time rasters and histograms of (a) a neuron which is unresponsive to

sensory stimulation and (b) a neuron showing a significant response to sensory stimulation measured in a window extending 100 ms before and after

the stimulus. (B) Proportion of neurons recorded from sham therapy group (black) that had a significant response to forepaw sensory stimulation

compared to that of complete therapy group (red) pre- transection (0w) and weeks 4 (4w), 8 (8w) and 12 (12w) post-transection. (C) Heat maps

indicating distribution of forepaw sensory responses recorded on each of the wires of the 4 � 4 microwire electrode array implanted into the hindlimb

Figure 5 continued on next page
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the recorded cells specifically increased in the medial-rostral quadrant of the array (Q2; t-test,

p=0.002; bonferroni-corrected alpha = 0.0125) but not in the other quadrants (p>0.118; Figure 5D).

This medial-rostral expansion of the forelimb somatosensory representation nicely overlaps with

the expanded trunk motor representation we described above, suggesting that integrated sensori-

motor cortical reorganization is likely to contribute to the motor recovery induced by therapy after

spinal cord transection (Figure 5E). Importantly, neurons in the hindlimb cortex were responsive to

forepaw placement during normal treadmill locomotion, with their peak response latency being dis-

tributed across a broad range of phases in the locomotion cycle (Figure 5—figure supplement 1).

This broad normal responsiveness provides a possible functional substrate for the cortical reorgani-

zation after spinal cord injury

Discussion
The main result of the present work is that completely spinalized adult rats can recover unassisted

weight-supported hindlimb stepping without explicit spinal transmission of motor commands

through the lesion. This apparently counterintuitive locomotor recovery was achieved with combina-

tions of therapies that lead to substantial reorganization of the motor cortex, including significant

expansion of the trunk representation into deafferented hindlimb cortex. This cortical reorganization

is responsible for the motor recovery, as supported both by indirect correlative evidence and more

directly by the observation that lesioning the reorganized cortex reverses the motor recovery (exper-

iment 1; Figures 1–3). We further show that this cortical reorganization is associated with sprouting

of cortico-spinal axons within the cord above the level of the lesion (experiment 2; Figure 4) and

expansion of intact forelimb somatosensory representation toward the reorganized hindlimb motor

cortex (experiment 3; Figure 5). These results suggest the creation of a novel cortical sensorimotor

circuit that responds to inputs from the ventral forepaws and activates trunk muscles that likely span

the lesion, causally subserving the observed behavioral recovery via putative biomechanical cou-

pling. The adult nervous system is thus able to develop a strategy to bypass the lesion and enable –

at least partial – recovery of hindlimb locomotion after complete spinal cord injury.

How can weight-supported hindlimb stepping be recovered after
complete spinal cord injury?
Several previous studies were able to improve hindlimb locomotion after complete spinal cord injury

in adult rats, either using sensorimotor rehabilitation(de Leon et al., 2002; Alluin et al., 2015),

administration of serotonergic agonists (Feraboli-Lohnherr et al., 1999; Antri et al., 2002,

Antri et al., 2005), transplants below the level of the lesion (Giménez Y Ribotta et al., 2000,

Sławińska et al., 2013) or combined pharmacological and electrical stimulation

(Gerasimenko et al., 2007; Ichiyama et al., 2008; Courtine et al., 2009; Musienko et al., 2011).

However, all previous interventions required either tail pinching, perineal stimulation and/or some

level of assisted vertical weight support to achieve hindlimb locomotion in adult spinalized rats. In

our study, during treadmill testing and open-field evaluation our animals received no form of periph-

eral stimulation or assisted vertical weight support.

At first glance, this recovery of weight-supported hindlimb stepping after complete spinal cord

transection seems paradoxical. Apart from improbable regeneration across the lesion, the

Figure 5 continued

sensorimotor cortex pre- (week 0) and post- (weeks 4, 8, 12) spinal transection. (D) Average magnitude of the neural responses to forepaw stimulation

broken down into four quadrants based on the location of the electrode wire (top left inset: quadrant locations), pre- and post- spinal transection. (E)

Depiction of the rat sensorimotor cortex after complete spinal transection followed by 12 weeks of combined therapies. X-axis is the rostrocaudal

distance from bregma, y-axis is the mediolateral distance from bregma. Red represents expansion of motor cortex, purple represents expansion of

forelimb somatosensory cortex into the deafferented hindlimb cortex. Red dashed lines represent the extent of sensorimotor overlap within the

confines of our recorded regions. *p<0.05, **p<0.01, ***p<0.001. Error bars indicate 95% confidence intervals.

DOI: 10.7554/eLife.23532.011

The following figure supplement is available for figure 5:

Figure supplement 1. Characterization of neuronal responses to forepaw placement on the treadmill during locomotion.

DOI: 10.7554/eLife.23532.012

Manohar et al. eLife 2017;6:e23532. DOI: 10.7554/eLife.23532 10 of 23

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23532.011
http://dx.doi.org/10.7554/eLife.23532.012
http://dx.doi.org/10.7554/eLife.23532


immediate most logical explanation is to think about residual connections (Waxman, 1989;

Courtine et al., 2008; Cowley et al., 2010; Flynn et al., 2011; Zaporozhets et al., 2011;

Shah et al., 2013; Filli et al., 2014), but this possibility is excluded by both physiological and ana-

tomical evidence in our experiments: (a) no movement whatsoever could be elicited below the level

of the lesion by microstimulation of the hindlimb motor cortex; (b) the completeness of the spinal

lesion was verified by both nissl and the more sensitive 5-HT staining in all animals at the end of the

study.

An alternative explanation is suggested by the functional expansion of the trunk cortical represen-

tation. Trunk muscles do extend from above to below the level of the injury, thus providing a bio-

mechanical substrate for bypassing the lesion. The idea is that our treated animals learned to

activate the trunk musculature to reduce the load on the hindlimbs while balancing on the forelimbs,

which allowed the central-pattern-generators below the level of the lesion to be activated, resulting

in weight-supported hindlimb stepping. This explanation is supported by previous observations in

neonatally spinalized rats (Giszter et al., 2007, 2008, 2010), which can develop unassisted weight-

supported stepping (Stelzner et al., 1975; Weber and Stelzner, 1977; Commissiong and Sauve,

1993; Kim et al., 2001). Importantly, the motor recovery of neonatally spinalized rats is not due to

any reconnection within the spinal cord (Cummings et al., 1981; Tillakaratne et al., 2010), but is

instead causally related to sensorimotor cortical reorganization (Giszter et al., 1998,

2008; Kao et al., 2009, 2011; Moxon et al., 2013; Oza and Giszter, 2015; Udoekwere et al.,

2016). Until now, recovery of unassisted weight-supported hindlimb stepping after complete spinal

cord injury was believed to remain restricted to neonatally spinalized rats, due to the higher cortical

plasticity at neonatal age compared to adulthood (Oza and Giszter, 2015; Udoekwere et al.,

2016). Our results show that carefully designed combinations of pharmaceutical and physical thera-

pies after spinal cord transection can produce sufficient cortical plasticity to recover unassisted

weight supported hindlimb stepping after complete spinal cord injury in adult rats.

Cortical plasticity after spinal cord injury
Plasticity can refer to neural reorganization for at least two levels: (i) structural changes at the synap-

tic-to-cellular level, or (ii) changes in receptive field properties of neurons at the cellular-to-popula-

tion level (Buonomano and Merzenich, 1998; Moxon and Foffani, 2015). Our results clarify how

cortical plasticity after spinal cord injury encompasses both levels.

Cellular-to-population plasticity is demonstrated in our experiments by the expansion of both the

trunk motor representation and the forelimb somatosensory representation into the deafferented

hindlimb cortex. This overlap of sensorimotor reorganization unifies previous studies on somatosen-

sory (Endo et al., 2007; Kao et al., 2009; Ghosh et al., 2010; Ganzer et al., 2013; Graziano et al.,

2013; Humanes-Valera et al., 2017) or motor (Fouad et al., 2001; Giszter et al., 2008; van den

Brand et al., 2012; Oza and Giszter, 2014, 2015; Ganzer et al., 2016) reorganization into a joint

framework, and is likely to be a key factor for the observed functional recovery. Indeed, lesioning

the reorganized cortex reversed the recovery of hindlimb function, without affecting forelimb func-

tion. Intriguingly, our cortical lesion did not produce any evident functional impairment in naı̈ve non-

spinal-cord-injured animals, in agreement with recent data suggesting that motor cortex is required

for learning but not for executing a learned motor skill in normal rats (Kawai et al., 2015) and with

the view that in rodents the motor cortex is not required for normal locomotion (Courtine et al.,

2007). Crucially, our data suggest that the motor cortex is indeed required to sustain the recovered

locomotion after complete spinal cord injury.

We admittedly did not perform motor and somatosensory maps in the same animals, nor did we

attempt to selectively deactivate motor or somatosensory circuits, so we could not disentangle

motor vs. sensory contributions of cortical reorganization to the observed recovery. This disentangle-

ment might be important to understand why some animals achieved weight-supported stepping and

other did not, which currently remains unclear. In any case, the relationship between cortical plastic-

ity and functional recovery in our adult spinalized rats is very similar to neonatally spinalized rats,

suggesting that combinations of therapies after spinal cord injury might be able to rescue at least

some features of critical period plasticity (Pizzorusso et al., 2002; Maya Vetencourt et al., 2008;

Murphy and Corbett, 2009; Yamahachi et al., 2009).

Synaptic-to-cellular plasticity is demonstrated in our experiments by the sprouting of cortico-spi-

nal axons within the cord above the level of the lesion. This cortico-spinal sprouting is in agreement
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with many previous studies in several models of spinal cord injury (Fouad et al., 2001;

Weidner et al., 2001; Bareyre et al., 2004; Barritt et al., 2006; Vavrek et al., 2006; Girgis et al.,

2007; Garcı́a-Alı́as et al., 2009; Sasaki et al., 2009; Ghosh et al., 2010; Lee et al., 2010;

Wang et al., 2011; Floriddia et al., 2012; Scali et al., 2013; Du et al., 2015). Future work should

expand on the molecular mechanisms of this cortical plasticity, establishing the role of pre-synaptic

and post-synaptic processes as well as the possible contribution of astrocytes and neuron-glia inter-

action in the cortical reorganization observed here. Overall, even though subcortical plasticity is

likely to have contributed to the observed functional recovery (Kambi et al., 2014; Alonso-

Calviño et al., 2016), our results suggest that at least part of the plasticity induced by our therapies

after spinal cord injury is genuinely cortical.

Pathophysiological implications
Our main result that cortical plasticity, induced in adult spinalized rats, supports recovery of weight-

supported hindlimb stepping has several pathophysiological implications.

First, it is important to acknowledge the potential translational limitation of our study focusing on

quadrupedal instead of bipedal stepping. Indeed, the novel cortical sensorimotor circuit developed

in our rats – integrating sensory information from the ventral forepaws and motor control to the

muscles of the spine – suggests that the closed-loop control of trunk musculature that is sufficient

for quadrupedal functional improvement might be irrelevant for bipedal locomotion. However, it can

be argued that patients attempting to recover locomotion after a spinal cord injury make significant

use of the upper limbs to handle their walking aids, so that locomotion behavior switches from the

normal bipedal pattern to an assisted quasi-quadrupedal pattern (Del-Ama et al., 2014). From this

quasi-quadrupedal perspective, this novel supraspinal control of trunk stability – with possible

involvement of intersegmental reflexes (Tani et al., 1997) – might become critical to achieve loco-

motion in recovering patients with spinal cord injury, as in our animals.

Second, from a reductionist perspective, it is tempting – and indeed valuable – to investigate the

potential functional impact of different therapies delivered one at a time. However, therapeutic

interventions after spinal cord injury can act at multiple levels of the sensorimotor system

(Onifer et al., 2011; Musienko et al., 2012; van den Brand et al., 2012), including the skeletomus-

cular system (Hangartner et al., 1994; Lauer et al., 2011), muscular-spinal reflex circuits

(Mello et al., 2004; Hamid and Hayek, 2008; Phadke et al., 2009; Rayegani et al., 2011), and neu-

ral circuits within the spinal cord (Liu et al., 2010a; Côté et al., 2011; Keeler et al., 2012). Conse-

quently, when combined together, different therapies can have redundant or synergistic effects on

cortical plasticity and recovery (Foffani et al., 2016). The present results support the view that well-

designed combinations of therapies should be employed to maximize corticospinal plasticity and

functional outcome (Thuret et al., 2006; Hollis et al., 2016).

Finally, our study substantially raises the standard of behavioral recovery that adult rats can

achieve after a spinal cord injury without any spinal transmission of signals through the lesioned cord

(and without any external support or sensory stimulation). Any work attempting to restore sensori-

motor communication through the lesion after spinal cord injury should carefully consider the possi-

bility that at least part of the functional recovery might be unrelated to the restored spinal

communication.

Conclusion
Overall, our results show that careful combinations of pharmacological and physical therapies in

adult rats can create a novel cortical sensorimotor circuit that is able to bypass the lesion – probably

through biomechanical coupling – to partly recover unassisted hindlimb locomotion after complete

spinal cord injury. These results demonstrate the importance of taking advantage of plasticity along

the entire neural axis when developing therapies to optimize recovery of function after severe spinal

cord injury.
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Materials and methods

Experimental design
A total of 74 adult female Sprague-Dawley rats weighing 250–300 g were used in this study, divided

in three sets of experiments: 54 for experiment 1 (behavioral assessment followed by motor map-

ping followed by cortical lesioning), 6 for experiment 2 (tract tracing) and 14 for experiment 3

(somatosensory maps). Animals were single housed and experiments were performed during the

light cycle. All animal procedures were conducted in accordance with Drexel University Institutional

Animal Care and Use Committee-approved protocols.

Experiment 1
Animals received a complete spinal cord transection at thoracic level T8/T9 and were divided ran-

domly into three groups: (1) animals treated with drugs and passive hindlimb bike exercise (‘partial

therapy’, n = 15); (2) animals treated with drugs, passive hindlimb bike exercise and active treadmill

training (‘complete therapy’, n = 15); (3) animal that receive sham drug (saline) and sham exercise

therapy (‘sham therapy’, n = 15). Note that animals that received partial therapy also received sham-

treadmill therapy. Hindlimb motor function was assessed as percentage of weight supported step

cycles (%WSS) during treadmill locomotion (at 4, 8 and 12 weeks post transection), and in the open

field using BBB scores (at 2, 4, 8 and 12 weeks post transection, normalized to group-averages at

assess effects of therapy). One animal that underwent sham therapy died at week-12, so it was

excluded from the analyses. Two animals under partial therapy had no treadmill data at week-8, so

they were excluded from the %WSS analysis. During week-13 after the spinal transection, a subset

of these animals were anesthetized and the motor cortex was mapped using intracortical micro-stim-

ulation to identify changes in motor representations (complete therapy, n = 14; partial therapy,

n = 12, sham therapy, n = 10). Reorganized areas were identified in this manner and bilaterally

lesioned (complete therapy, n = 12; partial therapy, n = 10). All animals that received cortical lesions

were given therapy for an additional 2 weeks and then were behavioral re-evaluated with %WSS and

BBB scores. Two additional groups of intact naı̈ve animals were used for control experiments (n = 5

for motor maps, n = 4 for cortical lesions).

Experiment 2
Animals received a complete spinal cord transection at thoracic level (T8/T9) and either complete

therapy (n = 2) or sham therapy (n = 2). Anterograde tract tracing was performed by injecting a

tracer into the reorganized deafferented hindlimb motor cortex 9 weeks after the spinal transection.

Animals continued therapy (complete or sham) and were perfused 3 weeks later. Axons were

counted in the thoracic gray matter of the spinal hemicord above the level of the lesion, contralateral

to the injected cortex. A group of naı̈ve intact animals (n = 2) was used as a control.

Experiment 3
Animals were chronically and bilaterally implanted with 4 � 4 16-channels arrays of microelectrodes

in the hindlimb somatosensory cortex, were then spinally transected and received either complete

therapy (n = 8) or sham therapy (n = 6). Somatosensory maps of the responses of hindlimb neurons

to forelimb stimuli were performed in anesthetized conditions before (week 0) and 4, 8, and 12

weeks after spinal cord transection. Note that five animals were excluded from the study between

week-8 and week-12 due to experimental complications (loss of head-cap, bladder infection or

severe skin lesions). 11 animals were also recorded during treadmill locomotion.

Spinal cord transection and animal care
Complete mid-thoracic spinal cord transection was performed with similar methods as in our previ-

ous studies (Knudsen et al., 2012; Manohar et al., 2012; Ganzer et al., 2013; Graziano et al.,

2013; Foffani et al., 2016; Ganzer et al., 2016). Animals were anesthetized with 5% isoflurane and

2 L/min of oxygen and maintained at 2–3% isoflurane with 1-liter oxygen for the duration of the sur-

gery. A laminectomy at the T8/9 level exposed one spinal cord segment. A #10 scalpel blade was

used to open the dura and pia mater and #11 scalpel blade was used to make the complete transec-

tion of the spinal cord. A fine-tipped microaspiration device was then used to remove 2–3 mm of
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spinal cord. A collagen matrix, Vitrogen (Cohesion Technology, Encinitas, CA), was injected into the

site of the transection. Following recovery from surgery, animals were given an IM injection of the

antibiotic Pen-G and 5 ml of lactated ringer subcutaneously animals and returned to their home

cages.

Animals were housed two per cage with highly absorbent Alpha-Dri bedding (Shepherd Specialty

Papers Inc. Kalamazoo, MI) and cages were kept on warm water blankets. Animals were housed

under a 12 hr light/dark cycle (lights on at 07:00) with ad libitum access to food and water. In addi-

tion, bladder care was given three times daily for 2 weeks or until bladder control was regained. At

the sign of infection, the rats were given subcutaneous injections of Baytril (0.06 mg/kg) once a day

for 7 days.

Therapies
Drug administration
Drug administration was similar to our previous studies (Ganzer et al., 2013, 2016). 5-HT agonists

were dissolved in sterile physiological saline. Quipazine was injected intraperitoneally and 8-OH-

DPAT subcutaneously. Animals were injected once per day 5 days per week beginning 2 weeks after

the spinal transection and continuing until week-12. The 2 week lag time post injury allowed time for

5-HT receptor upregulation in the spinal cord caudal to the lesion (Kim et al., 2001). Our chosen

dose of drug was a combined injection of 0.125 mg/kg of quipazine (1 mg/ml) and 0.125 mg/kg of

8-OH-DPAT (1 mg/ml), as this dose has a maximal effect on cortical reorganization (Ganzer et al.,

2013). Sham therapy animals received an equivalent volume of saline injections.

Passive hindlimb bike exercise
Passive hindlimb bike exercise was similar to our previous studies (Ganzer et al., 2013;

Graziano et al., 2013; Foffani et al., 2016; Ganzer et al., 2016). Animals received this exercise

three times a week (Monday, Wednesday and Friday) starting 1 week after the spinal transection,

using a custom built motor-driven cycling apparatus. Rats were suspended horizontally with their

feet secured to the pedals. Cycling speed was maintained at 45 revolutions/min and each exercise

bout consisted of two 30 min exercise periods with a 10 min rest period in between. Sham exercise

consisted of placing the animals on the bicycles for 70 min while the pedals were stationary.

Active treadmill training
Active treadmill training was an improved version of what we used in previous studies (Kao et al.,

2009; Foffani et al., 2016), such that the ability of the rats to accept hindlimb loading was tested

weekly (Timoszyk et al., 2005). Animals received treadmill training 10 min after the drugs were

injected each day. Rats were placed in a cloth harness with a Velcro strap and attached to an arm of

a device that provided lateral and vertical weight assist. The arm was attached to a spring on the

other end, which could be extended by turning a knob (Figure 1—figure supplement 2). In order to

vertically support the rat’s weight the spring was extended until the moment of the forces acting on

either ends of the arm were balanced. The device was calibrated to obtain the percentage of the

rat’s body weight supported. At the start of each week, vertical weight assist was ramped down. As

the hindlimbs were loaded with more of the animal’s weight, they typically started taking steps. At a

certain level of weight assist, the animal was unable to bear its own weight and failed to step with its

hindlimbs for more than three consecutive step cycles. The assisted vertical weight support was set

right above this value, which was defined as load-bearing failure point (Timoszyk et al., 2005). Two

weeks after the spinal transection, animals were not able to step with their hindlimbs, so the initial

failure point was set at the assisted weight support that allowed animals to maintain a quadrupedal

position on the treadmill, supporting part of their weight with the forelimbs. This initial failure point

at week-2 corresponded to the weight of the animal, used to calibrate the device, less the amount

of vertical support provided by the forelimbs on the treadmill, which we could not measure. There-

fore, the assisted vertical weight support at failure point was expressed as a percentage of the initial

failure point at week-2 (note that 100% assisted weight support is upper bounded by the weight of

the animal). Failure point was evaluated in all animals (i.e. also in animals that received sham therapy

or partial therapy and thus did not receive treadmill training).
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Behavioral assessment
Behavioral measures in all groups were always performed on drugs (i.e. after acute administration of

the same 5-HT agonists used for therapy), in order to guarantee the functional state of the cord

below the level of the lesion (Barbeau and Rossignol, 1990; Jackson and White, 1990). We did not

use tail pinch or perineal stimulation.

Treadmill testing (% weight-supported step cycles)
Treadmill testing was performed without vertical support for all therapy groups, after administration

of drug. Testing sessions were video-taped to determine the number of step cycles for which the

animal could support its own weight at weeks 4, 8 and 12 post spinal cord injury (SCI). The recovery

of hindlimb locomotor function was assessed using the number of weight supported step cycles

(WSS) taken by the rat when attached to the weight assist device and placed in a neutral position on

a moving treadmill. At the neutral position, the height of the rat above the treadmill was adjusted till

the forepaws made complete plantar contact with the surface, and the length of the spring was

adjusted till the arm was level and provided no additional force on the rat in the vertical direction

(i.e. no vertical assist). The %WSS was calculated as the number of weight supported step cycles

over the first 100 step cycles taken. The start of a step cycle was determined from forepaw footfalls.

A cycle was defined as weight supported if for each hindpaw step the following criteria were ful-

filled: (a) the hindquarters were elevated off the treadmill surface, (b) the hindpaw was placed under-

neath with visible muscle contraction, (c) the knee did not touch the treadmill belt, (d) the plantar

surface of the hindpaw made contact with the treadmill during lift off and (e) again reestablished

after the hindlimb was advanced. The experimenter performing the assessment from the videotape

was blind to the group of the animal. During treadmill testing, animals did not receive any assisted

vertical weight support, so the %WSS was used to directly measured the ability of animals to support

their weight during hindlimb locomotion.

Open field locomotion (open field score)
All therapy groups were evaluated for recovery of locomotor function during overground-locomo-

tion using the Basso, Beattie and Bresnahan (BBB) open field score at weeks 2, 4, 8 and 12 post- SCI

(Basso et al., 1995). The open field score, which was always estimated over 4 min, was normalized

at weeks 4, 8 and 12 using the average score at week two for each group (after verifying that the

was no difference among groups at week 2). During each evaluation week, the animals were tested

5 min after drug administration. Sham therapy animals received a challenge dose of drug prior to

BBB testing. BBB scores from 0 to 8 are non-weight supporting, while scores of 9 to 21 indicate

hindquarter weight support. Three experimenters performed the evaluation, one placed the animal

in the open field and the other two were blind to the group of the animal and performed the

scoring.

Motor mapping
Motor mapping was performed during week-13 after the spinal transection using intracortical micro-

stimulation with methods similar to our previous study (Ganzer et al., 2016). Animals were anesthe-

tized with a combination of Ketamine (50 mg/kg), Xylazine (5 mg/kg) and Acepromazine (0.75 mg/

kg) and placed in a stereotaxic frame. Supplemental doses of anesthetic were administered as

needed. Craniotomies were performed over the right cortex to expose the medial post-bregma

area. Electrode penetrations were defined using stereotaxic coordinates (Leergaard et al., 2004) on

a cortical grid (coordinates AP: �0.5 to 2 mm posterior to bregma; ML: 1 to 3.5 lateral to midline).

Electrode penetrations were made at 500–600 mm intervals within the medial post-bregma area.

Care was taken to avoid surface cortical vasculature during mapping. A low impedance glass-insu-

lated tungsten microelectrode (500 kW; FHC Inc.; Bowdoin, ME) was mounted on a stereotaxic elec-

trode manipulator. In order to assess microstimulation waveform quality, a 100 kW resistor was

connected to a grounding screw adjacent to the craniotomies in series with the stimulator (AM sys-

tems; Sequim, WA). The dura was removed and the microelectrode was lowered, perpendicular to

the surface of the brain, to penetrate the pia. The microelectrode was then slowly inserted into the

brain to a depth of ~1,600 mm, corresponding to cortical layer V/VI. Stimulation parameters con-

sisted of 0.2 ms duration constant current bipolar pulses (anodal leading), at 333 Hz in trains of 300
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ms duration. At each penetration site, the stimulation current gradually increased from 0 mA until a

movement was evoked (current threshold). Movement was assessed by visual inspection. Penetra-

tions were marked as non-responsive when no movement could be evoked with stimulation up to

100 mA. Motor maps were conducted with two experimenters. The first experimenter placed the

electrode and recorded the data for each site. The second experimenter was kept blind to the

experimental group of the animal and electrode placement to avoid potential biasing. The second

experimenter delivered stimuli while observing which parts of the body moved in response to

stimulation.

The expansion of intact motor representations into the deafferented hindlimb motor cortex was

assessed by calculating the area (mm2) devoted to a movement type (trunk, hindlimb, forelimb,

vibrissae) using custom MATLAB algorithms. Small shifts in this grid to avoid surface cortical vascula-

ture during mapping were corrected for during processing. For each animal, the area of specific rep-

resentations (trunk, hindlimb, forelimb, vibrissae) was determined by multiplying the number of

responsive sites evoking the corresponding movement type by 0.25 mm2, using the method of

(Ramanathan et al., 2006).

Electrolytic cortical lesions
At the end of the motor mapping procedure, the reorganized area was bilaterally lesioned. Twisted

pair stainless steel electrodes of 0.35 mm diameter insulated except at the tip was lowered to a

depth of 1.65 mm below the surface of the brain at a stereotaxic coordinate that is 2 mm lateral to

the midline and 1 mm posterior to bregma. A constant current of amplitude 500mA for 10 s was sent

through the bipolar leads of the electrode. The electrodes were removed and the surface of the

brain was covered with gelfoam and dental acrylic. Lesions were also performed in the same stereo-

tactic location for naı̈ve intact animals.

Anterograde axonal tract tracing
Anterograde tract tracing was performed 9 weeks after the spinal transection. Rats were anesthe-

tized and fixed in a stereotactic frame. A craniotomy was performed over the medial post-bregma

area in the right hemisphere (0–2 mm posterior and 1–3 mm lateral to bregma). Six injections of the

anterograde tracer, fluorescein-biotin-dextran (10% in PBS, 10 kDa molecular weight BDA, Mini

Emerald, Invitrogen) was made to cover the de-afferented hindlimb region. All injections were at a

depth of 1.5 mm below the surface of the cortex. Small holes in the dura were made before inserting

the 33 gauge, 10 ml syringe (Hamilton Co.) controlled by an electrical pump (World Precision Instru-

ments). The needle was left in place 5 min after insertion, followed by injection of tracer and again

for 10 min after each injection to prevent backflow of tracer. Each injection consisted of 400 nl of

tracer at a flow rate of 15 nl/min. After the last injection, the brain was covered with gelfoam and

dental acrylic. Animals were returned to their therapy regime (sham, partial or complete therapy)

and the tracer was allowed to be transported for 3 weeks before the animal was perfused at the end

of 12 weeks after the spinal transection.

Animals were perfused transcardially with buffered saline (100 ml), followed by buffered 4% para-

formaldehyde in 0.2 M PBS (500 ml). The thoracic cord (T1-T8) was removed, retaining the T1, T4

and T7 roots and post-fixed in 4% paraformaldehyde for 24 hr and finally cryoprotected in 30%

sucrose until the tissue sank. Specimens were frozen in Shandon M-1 Embedding Matrix compound

(Thermo Scientific) and sectioned on a freezing microtome at 25 mm. Labeled axons exiting the corti-

cospinal tract were counted from five slices for each animal around T1, T4 and T7 similar to previous

studies (Carmel et al., 2010; van den Brand et al., 2012). Slices used for counting were spaced at

least 250 microns apart. For each slice, a region of interest was selected that included 2/3 of the spi-

nal hemicord gray matter contralateral to the injected cortex, excluding only the most dorsal aspects

of the dorsal horn and the most ventral aspect of the ventral horn (no labeled axons were found in

these regions for any animal group). Stereo Investigator stereology program (MBF Bioscience) was

used to sample the grey matter and count axons. Because cortico-spinal tract BDA-labeled termina-

tions were sparse, we used relatively dense sampling parameters: square counting frames 50 mm on

each side, resulting in sampling 50% of the region of interest per section. Data are reported as

cumulative axon counts per area per slice. A group of naı̈ve intact animals (n = 2) was used as a

control.
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Somatosensory mapping
Somatosensory mapping was performed with similar techniques as in our previous studies

(Foffani et al., 2004; Tutunculer et al., 2006; Moxon et al., 2008; Kao et al., 2011;

Knudsen et al., 2012; Manohar et al., 2012; Knudsen et al., 2014). Microelectrode arrays were

chronically implanted under general anesthesia (2–3% isoflurane in O2 delivered via orotracheal intu-

bation) and aseptic conditions. More specifically, 4 � 4 arrays of 50 mm Teflon-insulated, stainless

steel microwires (MicroProbes for Life Sciences) were bilaterally implanted to the infragranular layers

(1.3–1.5 mm) of the rat hindlimb representation within the sensorimotor cortex (Leergaard et al.,

2004).

On the days of somatosensory mapping, animals were lightly anesthetized with sodium pentobar-

bital (Nembutal) with an induction dosage of 35 mg/kg and maintained at stage III-2 level of anes-

thesia (Friedberg et al., 1999; Erchova et al., 2002). They were responsive to toe pinch and

corneal reflexes. Seven sparse locations were stimulated on each forelimb including two digits, two

palm pads on the forepaw and wrist, elbow and shoulder. Each location was consecutively tapped

100 times at 0.5 Hz with a fine-tipped metal probe, controlled by a precision stepper motor (Gemini

GV6). To ensure that only tactile receptors at the sight of contact were activated and to control the

magnitude of the stimuli at each location, the metal probe was first positioned on the skin, ensuring

contact but no visual indentation under 10X magnification. The metal probe was then moved 0.5

mm away from the skin, and the stimulation was started. The effect of the stimulus was viewed under

10X magnification to ensure no movement of the digits or limb. All locations were tapped within the

same recording session to ensure that the same neurons were recorded in response to stimulation

of all locations. All 100 stimuli were given to a location, and then the stimulator was moved to the

next location. The motor stimulator simultaneously sent a TTL-pulse to the data acquisition system

to record the timestamp of the stimulus onset. Single neurons were discriminated by hand using a

combined thresholding and real-time PCA analysis of waveform features. Neurons were re-discrimi-

nated before every recording session to ensure only single units were recorded. Neural signals were

acquired (40 kHz) with a neurophysiological recording system (Plexon). The waveforms and action

potential timestamps of all the discriminated neurons were recorded, and stored for further analysis.

The responses of neurons to sensory stimuli were quantified using peri-stimulus time histograms

(PSTHs,[Tutunculer et al., 2006]). A PSTH is built as a histogram of spike times relative to the sen-

sory stimulus (time-zero) averaged across trials (100 trials, 1 ms binsize). A neural response was con-

sidered significant if (a) it exceeded a threshold set as the average background activity of the neuron

(evaluated from 100 to 5 ms before the stimulus) plus three standard deviations, (b) at least three

bins (at 1 ms binsize) were over the threshold, and (c) the spiking activity between the first and the

last significant bin was significantly greater than the background activity (non-paired t-test,

p<0.001). Response magnitude was quantified as the background-subtracted average number of

spikes per stimulus in the 5–50 ms post-stimulus window of the PSTH.

Awake recordings
Neuronal activity was also recorded while animals locomoted on the treadmill (n = 11). Chronically

implanted electrodes were connected to headstages and tethered to the Plexon recording system.

Neurons were discriminated before each recording session. A mirror was placed behind the animal

and the entire session was videotaped in order to extract the timestamps of paw placements. The

recording lasted 10 mins. The timestamps on the video recording were synchronized with the neural

recording system.

PSTHs were generated around the forepaw footfalls using timestamps from the video analysis of

treadmill locomotion using a 10 ms bin size. Background firing activity of each neuron was calculated

as the firing rate in the entire recording duration. The PSTHs were smoothed in a 500 ms window

(250 ms before and after paw placement) using a sliding-window zero-phase filter of length five bins.

To see if the neuron was responsive to paw placements, a threshold was defined as the 99% confi-

dence interval above the mean firing rate of the cell. The peak of the response was the highest bin

that crossed the threshold and the response was defined as all the consecutive bins around the peak

bin that were over the threshold. The response of the cell was calculated between these bins from

the unsmoothed PSTH. Responses were considered significant if at at least three consecutive bins

exceeded the 99% confidence interval threshold.
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Perfusion and histology of the spinal cord
Animals for Experiments 1 and 3 were perfused transcardially with buffered saline (100 ml), followed

by buffered 4% paraformaldehyde in 0.2 M PBS (500 ml). For animals that underwent cortical lesion-

ing, the brain and spinal cord were then removed, post-fixed in the same buffered 4% paraformalde-

hyde for 24 hr and finally cryoprotected in 30% sucrose until the tissue sank. Specimens were frozen

in Shandon M-1 Embedding Matrix compound (Thermo Scientific, Waltham, MA) and sectioned on a

freezing microtome at 40 mm. The transection segments of the spinal cords were sectioned horizon-

tally into five sets. One set was Nissl–myelin stained and the resulting sections were examined under

a microscope to confirm completeness of the transection. A second set was stained with a polyclonal

antibody to 5-HT. Frozen sections were incubated at 4˚C with the primary antibody (diluted 1:40,000

Immunostar, Stillwater, MN) for 16 hr, with biotinylated goat anti-rabbit IgG for 2 hr, and with avi-

din-biotinylated horseradish peroxidase complex for 2 hr, as specified by the manufacturer (ABC

Standard Kit; Vector Laboratories, Burlingame, CA). Peroxidase reactivity was visualized with 0.05%

diaminobenzidine tetrahydrochloride and 0.01% hydrogen peroxide in 0.05 mM Tris buffer.

Statistical analysis
Statistical analyses were performed using two-way analyses of variance (ANOVA) or one-way multi-

variate ANOVA. A squared-root transformation was used when necessary to guarantee normality

and homoscedasticity. Binary neural data (responding/ nonresponding neurons, sample size is num-

ber of neurons) were entered into generalized linear models (GZLM) with binomial distribution and

logit link function. GZLMs allow binary data to be rigorously analyzed with ANOVA-like designs.

Tukey’s test or Fisher’s test were used for post-hoc comparisons. Correlations were assessed with

Pearson correlation coefficient and with robust regression methods, using a bi-square fit. All results

were considered significant at p<0.05.
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