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Abstract: From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an
increasingly important role in many vision and graphics applications. Practical applications often use
sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize
cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene
features across different camera views. In this paper, we propose a novel algorithm that can accurately
and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on
a network. Our work has a number of novel features. First, to cope with the wide separation
between different cameras, we establish view correspondences by using a spherical calibration
object. We show that this approach outperforms other techniques based on planar calibration objects.
Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal
only for pinhole cameras, we systematically test different view transformation functions including
rigid transformation, polynomial transformation and manifold regression to determine the most
robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle
adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial
estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration
of a five-camera system, including data capture, can be done in minutes using only commodity PCs.
Our proposed framework is compared with other state-of-the-arts systems using both quantitative
measurements and visual alignment results of the merged point clouds.

Keywords: RGB-D camera; spherical object; camera network calibration; 3D reconstruction

1. Introduction

When capturing static or dynamic scenes for different augmented or mixed reality applications,
using multiple networked cameras has many advantages over a single camera. A single camera suffers
from unintuitive, self-occluding hulls when capturing non-convex articulated 3D shapes like human
bodies. The field of view and spatial resolutions of a single camera, especially depth cameras, are often
limited. Simultaneous Localization and Mapping (SLAM) techniques [1–4] with a moving camera can
be used to capture a large static environment, but does not work for dynamic scenes. On the other
hand, using a stationary camera network can address the limitations in both field of view and dynamic
scene capturing. There is already a large body of work using color camera networks for various types
of vision processing [5–7]. Camera networks based on depth sensors such as Time-of-Flight (ToF)
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or structured light cameras, however, are not as well-explored. Earlier depth cameras suffer from
high measurement noise and low spatial resolution. Due to the recent success of low-cost commodity
depth cameras such as Kinect and Xtion Pro Live, there have been significant improvements in
performance, thanks to better sensing technology and the addition of a companion high-definition
color camera [8–10]. In fact, utilizing a pair of color and depth cameras has solved a number of
challenging problems. For example, missing depth values and depth misalignment on planar surfaces
can be recovered by exploiting the co-located color and depth information [11,12]. It is natural to
extend from a single RGB-D camera to a network of RGB-D cameras, which are beneficial to a myriad
of applications including 3D model rendering, body pose tracking and understanding [13–15].

One of the prerequisites in using multiple RGB-D cameras for these applications is to calibrate
individual cameras into a unified coordinate system. There are three main challenges to this task: first,
the captured data from depth cameras often have missing and noisy measurements, particularly on
transparent or specular surfaces, and near depth discontinuities. These imperfections can greatly
deteriorate the accuracy of the geometric alignment. Second, the sparsity of cameras makes it difficult
to locate common scene features needed for calibration across disparate camera views. Adjacent camera
views may share more scene features, but even small alignment error between adjacent views could
accumulate when it is extrapolated to the entire network. Finally, as multiple cameras are often
cumbersome to setup and maintain, it is highly desirable to make the calibration procedure robust and
easily adaptable to any changes in the camera placement. There have been a number of recent works
on RGB-D network calibration [14,16–18], but as we shall point out in Section 2, these approaches are
either impractical or prone to errors.

In this paper, we propose a fast and robust algorithm for calibrating a network of multiple RGB-D
cameras. Using only commodity hardware, the entire calibration process of a five-camera network
takes only minutes to complete. Our algorithm uses a spherical object for calibration. An effective
sphere-fitting algorithm is first used to identify the moving locations of the sphere center in both the
color and depth images. An initial estimate of the extrinsic parameters is then obtained based on the
corresponding locations across different views. In the final step, the extrinsic parameters are further
refined using a simultaneous optimization of the entire network. The main contributions of our work
are as follows:

1. Unlike other approaches that rely on planar calibration objects, our usage of a spherical
object overcomes the problem of limited scene features shared by sparsely-placed cameras.
Specifically, the location of the sphere center can be robustly estimated from any viewpoint as
long as a small part of the sphere surface can be observed.

2. Rigid transformation is typically used to represent camera extrinsic calibration and has been
shown to be optimal for the pinhole camera model. However, real cameras have imperfections,
and a more flexible transformation could provide higher fidelity in aligning 3D point clouds from
different cameras. We systematically compare a broad range of transformation functions including
rigid transformation, intrinsic-extrinsic factorization, polynomial regression and manifold
regression. Our experiments demonstrate that linear regression produces the most accurate
calibration results.

3. In order to provide an efficient calibration procedure and to support real-time 3D rendering and
dynamic viewpoints, our proposed algorithm is implemented in a client-and-server architecture
where data capturing and much of the 3D processing are carried out at the clients.

This paper is an extension of our previous work in [19]. In this work, we further provide a
thorough comparison of different view transformations and incorporate a simultaneous optimization
procedure in refining the results. The rest of the paper is organized as follows. Section 2 reviews
recent literature on the camera calibration problem. In Section 3, we describe in detail our proposed
system, which includes sphere center detection, pairwise camera calibration and the simultaneous
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optimization for the camera network. The setup for our experiments and the evaluation results can be
found in Section 4. We conclude the paper in Section 5.

2. Related Work

Extrinsic calibration requires a calibration object visible to different cameras in order to establish
correspondences. For color camera calibration, commonly-used calibration objects include planar
checkerboards [5,20–22], laser pointers [23–25], circular patterns [26,27], planar mirrors [28] and other
custom-made objects [29]. None of these calibration objects work for depth sensors as they rely on
distinctive colors or texture patterns that are not observable by depth sensors. Additionally, they require
a dense distribution of a camera network to obtain accurate camera extrinsics. As such, their calibration
procedures tend to be time-consuming and are unable to restore the calibration rapidly in a dynamic
capture environment, where cameras may be added, moved or removed. Instead, objects with
significant depth variations need to be used to calibrate depth sensors. For example, a planar calibration
pattern with holes were used in [30]. Planar objects were also used by Herrera et al. who utilized the
four corners of the calibration plane [31]. Liu et al. instead used a moving stick with one end fixed
for RGB-D camera calibration [32]. A common drawback of these approaches is that the sharp depth
edges along these objects usually have significant measurement noise on the depth images. Such noise
can lead to erroneous correspondences across different views.

In [33], the authors of [31] improved their earlier scheme by using the planarity constraint defined
based on the corners of a checkerboard plane. The use of planar, instead of point, features alleviates
the problem associated with depth discontinuities. Similar approaches could also be found in [34,35],
both of which used planarity constraints to detect the correspondences between the depth images.
However, the calibration accuracy is still poor due to the low spatial resolution of depth cameras.
To improve the accuracy, Shim et al. used the corresponding 3D positions, rather than 2D features,
to optimally calibrate multiple RGB-D cameras [9]. Specifically, they identified the two major sources
of depth measurement error to be the changes in scene depth and the amount of captured infrared
light. Based on these two factors, they constructed an error model to optimize the calibration results.
On the other hand, the authors did not address the issue of limited common scene features when the
cameras are sparsely spaced.

Calibrations without using any specialized reference objects or patterns have also been
studied [36–38]. In [36], a silhouette extracted from a person was used for calibration. In [37],
Carrera et al. calibrated a robotic camera platform by detecting invariant SURF feature correspondences
across different views. In [38], the extrinsic parameters were estimated based on point correspondences
established from the unstructured motion of objects in the scene. These methods typically have lower
precision than those based on reference objects due to imprecise knowledge of the unknown scene
features, which can lead to erroneous correspondences from different viewpoints. In [39], Li et al.
proposed a method to calibrate multiple cameras based on users’ joint positions. The calibration process
can be accomplished by aligning skeleton data across different camera views. However, their system
has difficulty in fusing noisy skeleton data from the wide-baseline camera network setup.

Besides calibration objects, another key difference between RGB-D cameras and color cameras
is the availability of both color and depth information in RGB-D cameras. Appropriate fusion of
multiple data channels can potentially achieve more accurate depth measurements and extrinsic
calibration [8,10,40]. Prasad et al. first demonstrated depth resolution enhancement through color and
depth registration by using a novel system with a 2D sensor, a 3D sensor and an image multiplier [40].
In [8], reference depth images generated by a pair of stereo cameras were used to calibrate a
Time-of-Flight (ToF) depth sensor. The depth image quality can also be improved by utilizing both
active and passive depth measurements. Hansard et al. used 3D projective transformation to calibrate
both the ToF and color cameras [10]. The geometric relation could then be found by aligning range
images with parallax reconstructions.
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With the advent of low-cost commodity RGB-D cameras, there are now software libraries that
can easily align the depth image to the color image for an RGB-D camera [41]. However, a common
assumption of all these methods is a close baseline among different cameras so that the transformation
among different views can be easily accomplished. Based on [41], the works in [14,16,18] calibrated
an RGB-D camera network to reconstruct 3D objects. Nevertheless, none of them can accurately
reconstruct an entire 3D scene including static background and dynamic foreground as they utilized
the checkerboard and iterative closest point algorithm to align dense point clouds of foreground
objects. The reconstructed background scenes would be misaligned based on their proposed methods.

Increasingly, the topic of calibration of wide-area networks of sparsely-spaced cameras has been
investigated [7,42–44], though the majority of the techniques require special equipment and image
features. Kuo et al. used GPS position and images taken by mobile devices to calibrate a fixed camera
in a camera network [7]. Ly et al. utilized the image of lines to improve the calibration results for
multiple cameras with only partially overlapping fields of view [42]. In [43], an active self-calibration
of a multi-camera system scheme was proposed to solve the problem of non-overlapping views and
occlusion by automatically rotating and zooming each camera. A probabilistic model was used to find
the appropriate relative pose during extrinsic calibration. In [44], the authors used large planer scenes
such as the floor or ceiling to calibrate cameras with disparate views. The use of pan-tilt-zoom cameras
or special scene features limits the types of applications where these techniques can be deployed.

While we were the first to propose using spherical objects in calibrating multiple RGB-D
camera networks [19], there are other works, such as [17,45–48], that also utilized spherical objects
for RGB-D network calibration. However, our current work goes beyond accurate calibration for
foreground object reconstruction in [45,46] to reconstruction of the entire environment through flexible
transformations and global optimization. In [47,48], the authors have shown that using a spherical
object for calibration could produce better results than using the traditional checkerboard as in [35].
However, the comparisons were done only for cameras separated by a narrow baseline. For sparse
camera networks, Ruan et al. used a spherical object and estimated the location of the sphere center for
extrinsic calibration of multiple depth cameras [17]. However, the sphere detection was not very robust
because color information was not used. Furthermore, as the cameras were not time-synchronized,
the technique was labor intensive as the sphere needed to be physically moved and affixed to different
locations in order to capture enough data for calibration. In [19], we independently proposed an
RGB-D camera network calibration scheme based on sphere center detection. Using both the color
and depth channels, we developed an automatic noise removal algorithm to robustly identify the
sphere and estimate its center location. As our cameras were time-synchronized, a user could simply
waive the sphere in the environment once, and the data collection process would be done. A drawback
of [19] is its reliance on the simplistic rigid transformation-based pairwise camera registration, which
is inadequate for non-pinhole cameras and can lead to error accumulation. In this paper, we extend
the scheme in [19] by first using a more flexible view transformation function to minimize error in
registration and then introduce a simultaneous optimization framework to further refine the extrinsic
parameters. Comparison of the proposed scheme with our earlier work and other state-of-the-art
schemes discussed here can be found in Section 4.

3. Proposed Method

The block diagram in Figure 1 shows the basic architecture and data flow of our proposed
framework. Each RGB-D camera is controlled by a client process. The server process, which can be
run on the same computer as the clients or a separate computer on the network, collects all necessary
information from the clients to compute the extrinsic parameters. All the client processes and the
server process are time-synchronized using the Network Time Protocol (NTP) with a time drift of
less than 4 milliseconds [49]. While the accuracy of the extrinsic parameters could be measured with
respect to ground truth data, the ultimate test is how well they can contribute to the 3D reconstruction
of a real-world scene beyond the ground truth set. As such, our architecture is designed with this goal
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in mind and supports real-time 3D rendering: color and depth images are compressed and streamed to
the server, which can use the previously-computed extrinsic parameters to perform 3D reconstruction
in real time. Our framework applies to camera networks consisting of co-located depth-color cameras
such as Kinect cameras. The main functional blocks in Figure 1 are as follows:

• Sphere center detection: The 3D locations of the center of a moving sphere are estimated from
the color and depth images. They are used as visual correspondences across different camera
views. There are two reasons for choosing a sphere as a calibration object. First, it is suitable for
a wide baseline: any small surface patch on the sphere is sufficient to estimate the location of
its center. As such, two cameras capturing different sides of the sphere can still use the sphere
center as a correspondence. Second, instead of using the error-prone point or edge features
as correspondences, depth measurements of the sphere surface are mostly accurate, and the
spherical constraint can be used to provide a robust estimate of the center location. This step
is independently executed at each camera client. The details of the procedure can be found in
Section 3.2.

• Pairwise calibration: To provide an initial estimate of the extrinsic parameters of each camera,
we perform pairwise calibration to find the view transformation function from each camera to an
arbitrarily-chosen reference coordinate system. The server receives from each client the estimated
sphere center locations and the associated time-stamps. Correspondences are established by
grouping measurements from different cameras that are collected within the time synchronization
error tolerance. Then, a system of equations with all correspondences as data terms and parameters
of the view transformations as unknowns are solved at the server to provide an initial guess of
the transformation functions. Details of this step can be found in Section 3.3.

• Simultaneous optimization: The estimated view transformations are then used to bootstrap a
pseudo bundle adjustment procedure. This procedure simultaneously adjusts all the extrinsic
parameters and the true 3D locations of the sphere center so as to minimize the sum of 3D
projection errors across the entire network. Details of this step can be found in Section 3.4.

Figure 1. This figure provides an overview of our RGB-D camera calibration framework for real-time
3D rendering in a client-server distributed architecture. On the client side, each of the Kinect camera
clients produces a pair of color and depth images. The sphere center detection module uses these raw
data to estimate the location of the sphere center. During calibration, the estimates are sent to the server,
which produces first a rough estimate of the extrinsic camera matrices and the sphere center locations
in the world coordinate system. The results are then refined by a simultaneous optimization process to
produce optimal extrinsic matrices, which are used to produce real-time rendering results.



Sensors 2018, 18, 235 6 of 23

3.1. Problem Formulation

Before we delve into the details of each component, this section formulates the problem of
the extrinsic calibration of RGB-D camera network and defines all the symbols used in this paper.
An RGB-D sensor consists of a color camera and a depth camera. We first formalized the color camera
projection process. Using the coordinate system at the optical center of the color camera as a reference,
we denote a 3D scene point as Xc = [Xc, Yc, Zc, 1]T . The subscript c indicates the usage of the color
camera’s coordinate system. The color camera project process is modeled by a 3× 3 camera projection
matrix Kc and a scalar distortion function Lc(·). Specifically, Xc is projected onto the image coordinate
xc on the color camera plane as follows:

xc = Kc · Lc

(∥∥∥∥∥
[

Xc/Zc

Yc/Zc

]∥∥∥∥∥
)Xc/Zc

Yc/Zc

1

 (1)

The camera matrix Kc is defined as follows:

Kc =

 fx γ ox

0 fy oy

0 0 1

 (2)

based on the intrinsic parameters of the camera including the focal lengths ( fx, fy), the principal point
(ox, oy) and the skew factor γ. Lc(·) is a scalar distortion function that models the radial distortion
of the lens, typically expressed as a sixth-degree polynomial [50]. Methods to obtain these intrinsic
camera parameters are well documented [20].

The depth camera model projects the 3D scene point Xd = [Xd, Yd, Zd, 1]T with respect to its
local coordinate system to two components: the 2D image coordinates xd = [xd, yd, 1]T and the depth
measurement zd. For the 2D image coordinates, the projection process is similar to that of the color
camera as described in Equation (1):

xd = Kd · Ld

(∥∥∥∥∥
[

Xd/Zd
Yd/Zd

]∥∥∥∥∥
)Xd/Zd

Yd/Zd
1

 (3)

with its own camera matrix Kd and distortion function Ld. The depth measurement is related to the
actual depth based on the following model:

zd =
1− α1Zd

α0Zd
(4)

where α0 and α1 are the parameters that correct the depth measurement [51]. To fuse the color and
depth information, the color camera and the depth camera need to be calibrated in order to obtain the
transformation Pd between the two coordinate systems:

Xc = PdXd (5)

Pd is pre-computed using the method in [52].
Consider a network of m RGB-D cameras {C1, C2, ..., Cm}. The goal of the extrinsic calibration

is to transform between the local coordinate system of each camera and an arbitrarily-chosen world
coordinate system. Without loss of generality, we choose the coordinate system of the color camera C1

to be our world coordinate system. To allow a broad range of extrinsic transformations, we consider
the following formulation of the mapping between the 3D point Xw in world coordinates to the 3D
point X(j)

d in the j-th local depth camera coordinates:
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h(X(j)
d ) = PjXw for j = 1, . . . , m. (6)

Pj is the extrinsic matrix for the j-th depth camera and h(·) is a data-independent feature mapping
that can introduce higher order terms to provide a potentially better fit of the data. The specific
types of Pj and h(·) tested in this paper are described in Section 3.3. The usages of Equation (6) in

analysis and synthesis are different. During the analysis stage, we have multiple observations X(j)
d

from different cameras of an unknown 3D point Xw. The goal is to estimate P−1
j h(·) so as to minimize

the overall discrepancies after projecting the image points onto the same world coordinate system.
During the synthesis stage, we reverse the above process by using the estimated P−1

j h(·) to project a

known 3D point Xw onto each local coordinate system. If the mapping P−1
j h(·) is not invertible, its

Moore–Penrose pseudoinverse, denoted as h†(Pj·), will be used. For example, we can compute the

color information by relating the local 3D point X(j)
c in the j-th color camera coordinates to Xw using

the following formula:

X(j)
c = P(j)

d h† (PjXw
)

for j = 1, . . . , m. (7)

Equations (1), (3), (4), (6) and (7) altogether describe the relationship between an image point
(x(j)

c , x(j)
d , z(j)

d ) in each of the RGB-D cameras and a 3D scene point Xw in the world coordinate system.
The problem of extrinsic calibration can now be formulated as follows: using multiple Xw and their
corresponding camera image points {(x(1)c , x(1)d , z(1)d ), . . . , (x(m)

c , x(m)
d , z(m)

d )} to optimally compute the
extrinsic matrices Pj for j = 1, 2, 3, . . . , m.

3.2. Sphere Detection by Joint Color and Depth Information

The prerequisite for solving the extrinsic calibration problem as described in Section 3.1 is
to establish the correspondence between an image point from each camera and a 3D point in the
physical space. Our proposed system uses the center of a spherical calibration object as the target
3D point for calibration. Figure 2 illustrates a sphere in the camera network, and Figure 3 shows our
sphere detection process. While the sphere center is not directly visible to any camera, the spherical
constraint implies that the observation of a reasonably-sized surface patch from any direction can be
used to deduce the location of the center. In this section, we describe the algorithm in identifying the
calibration object and estimating its center from the captured color and depth images.

Figure 2. Sphere center detection in a camera network.
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To facilitate the detection of the sphere in the color channel, it is painted with a highly distinctive
color (see the top row of Figure 3). To minimize the effect of varying illumination, we first convert the
RGB image into HSV color space and detect the specific color using a pre-trained Gaussian mixture
model classifier in the hue-saturation space. The real-time detection of the sphere is further aided by
using a simple background subtraction and focusing the color search within the foreground region.

The detected color pixels of the sphere are then mapped to the corresponding depth pixels based
on the intrinsic alignment between the two modalities as stated in Equation (5). Combining the
spatial coordinates and the depth value, we can invert Equations (3) and (4) to obtain the local 3D
coordinates of the detected sphere surface points. As pointed out in Section 1, depth measurements
could be quite noisy. In addition, the IR interference between adjacent Kinect cameras can significantly
degrade the depth measurements. The interference is due to neighboring structured light sensors
projecting IR patterns in the same spectrum, thereby affecting the depth estimation at each camera.
Many solutions have been proposed in the literature, including mounting the camera on a vibrating
platform [53,54], using mechanical shutters to periodically block individual cameras [55] and software
denoising techniques [56]. However, such an interference primarily affects the overlapping visual
fields, which in our case are relatively small. Our camera configuration is designed to enlarge the
coverage and adjacent cameras are usually kept at 90–180 degree angles where the interference is
relatively minor [57]. In order to obtain a robust estimate of the center location based on these noisy
measurements, we apply a RANSAC procedure by iteratively identifying all the 3D points that satisfy
the surface equation of a 3D sphere of a known radius r̄ [58]. While we use the known radius to
increase robustness, the knowledge of it is not strictly necessary as the procedure is often accurate
enough without the extra constraint. We compute the sphere equation, parameterized by A1, A2, A3

and A4, by carrying out the following constrained optimization:

min
A1···A4

∑
k
(x2

k + y2
k + z2

k + A1xk + A2yk + A3zk − A4) (8)

subject to the constraint: ∣∣∣∣ √(A2
1 + A2

2 + A2
3)/4− A4 − r̄

∣∣∣∣ ≤ ε (9)

where ε is a pre-defined error tolerance in the radius measurement. The estimated sphere center is
given by (−A1/2,−A2/2,−A3/2). This estimation is highly robust in our setup for a number of
reasons. First, the noisy depth measurements tend to concentrate around the edge of the sphere.
However, this has little effect on the estimation of the sphere center location as it is an isotropic
quantity. Second, we have chosen a large enough sphere (radius > 100 mm in a 5 m × 5 m room) so
that the RANSAC procedure typically retains more than a thousand pixels per camera frame for the
estimation. Even with a fair amount of occlusion, we have more than sufficient data points to solve for
the optimization problem, which has only 4 degrees of freedom. The initial detected spheres in 3D
with the estimated sphere centers are shown in Figure 3k–o. Repeating the same procedure for n video
frames, we obtain the trajectory {c1, ..., cn} of the estimated sphere centers in the local 3D space.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3. Sphere center detection: each column shows the process at a different camera in the network.
The top row images (a–e) are the input RGB and depth images. The middle row images (f–j) show
the results of detected sphere regions, and the bottom row images (k–o) represent the initial detected
spheres in 3D with the red dots indicating the estimated sphere centers. Depending on the perspective
view of the virtual camera, the sphere center may not be at the center of the detected sphere.

3.3. Extrinsic Calibration between Pairwise Cameras

After the locations of the moving sphere center are detected at each camera, we can use them
as correspondences to estimate the extrinsic parameters between each camera and the reference
camera frame as illustrated in Figure 4. The focus on a pair of camera simplifies the optimization,
but is likely to be suboptimal. As such, this step only produces an initial estimate of the extrinsic
parameters, which will be later refined in Section 3.4. While all cameras are time-synchronized,
the sphere may not be simultaneously visible to both cameras in question. Thus, the first step is to
filter out those frames in which the sphere is visible to one, but not the other. We denote the filtered,
time-synchronized trajectories of sphere center locations in local 3D coordinates at camera pair Cr

and Cq as {C(r)
1 , C(r)

2 , ..., C(r)
n } and {C(q)

1 , C(q)
2 , ..., C(q)

n }. To keep the calibration effort low, the number
of calibration data points could be quite small, so the challenge is to use a flexible transformation
that can generalize well to the entire scene based the limited training data. Existing approaches
almost exclusively focus on using rigid transformation, but it is unclear if there are other types of
transformations that might be able to produce better results. As such, we have experimentally tested a
number of different transformations, which are reviewed in the following subsections.
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Figure 4. Pairwise calibration: Camera 2 to Camera N are aligned to the reference coordinate
(Camera 1).

3.3.1. Rigid Transformation

The six degrees of freedom rigid transformation is commonly used to describe a relative camera
pose in 3D space. For the camera pair (Cq, Cr), the transformation is determined by a rotation matrix
R(qr) parameterized by the three rotation angles θx, θy and θz and a translation vector t(qr) = [tx, ty, tz]T

between the two camera centers. Putting them in the form of Equation (7) with Cr as the world
(reference) coordinate system, we have h(·) as the identity function and the extrinsic matrix as:

P−1
q =

(
R(qr) t(qr)

0 1

)
(10)

To compute each unknown parameter, we require at least n ≥ 3 point correspondences. Our goal
is to find R(qr) and t(qr) that minimize the following cost function:

JRT(R(qr), t(qr)) =
n

∑
i=1

∥∥∥C(r)
i − P−1

q C(q)
i

∥∥∥2
(11)

Due to the orthogonality constraint on the rotation matrix R(qr), we use the least-squares-based
method in [59] by first computing the covariance matrix as follows:

A =
n

∑
i=1

[(C̄(q) − C(q)
i ) · (C̄(r) − C(r)

i )T ] (12)

where C̄(q) = 1
n · ∑n

i=1 C(q)
i and C̄(r) = 1

n · ∑n
i=1 C(r)

i are the respective centroids of the two
correspondence sets. Using singular value decomposition A = USV T , we can compute the rotation
matrix as R(qr) = VUT and t(qr) = C̄(q) − C̄(r).

3.3.2. Polynomial Regression

The rigid transformation is sufficient if all sources of intrinsic distortion have been fully
compensated. In practice, there are always residual error, and a more flexible regression model
could further minimize the error without overfitting. In this section, we focus on d-degree polynomial
transformation F(qr)(·) to map C(q)

i to C(r)
i for i = 1, 2, . . . , n. We can parameterize the polynomial

fitting problem by treating F(qr) as a matrix multiplication with the extrinsic matrix P−1
q , again treating
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Cr as the world frame, after a feature mapping function hd(·). The overall cost function to be minimized
is as follows:

JPR(P−1
q ) =

n

∑
i=1

∥∥∥C(r)
i − P−1

q hd(C
(q)
i )
∥∥∥2

(13)

hd(·) expands an input 3D point into the products of all cross terms with up to d coordinates.
For example, in the case d = 2, h2(·) is as follows:

h2

(
[x y z 1]T

)
=
[

x2 y2 z2 xy xz yz x y z 1
]T

(14)

The corresponding extrinsic matrix P−1
q would be a 4× 10 matrix. This matrix has 30 degrees of

freedom after removing redundancy based on the use of homogeneous coordinates. While a regression
function with a higher degree can fit the calibration data better, it might have problems generalizing to
unseen data, especially outside the vicinity of the sphere trajectory. This problem can be addressed
by cross-validation, and we will evaluate and compare regression functions of different degrees
in Section 4.

3.3.3. Manifold Alignment

Even without overfitting, non-rigid transformations can produce non-Euclidean artifacts that
can significantly degrade the quality of the 3D reconstruction. As such, it is important to preserve
as much as possible the metric relationship within the data. Manifold alignment [60], unlike rigid
body transformation and polynomial regression, can align correspondences across datasets, while
preserving metric structures within each individual dataset. For camera calibration, its flexibility can
potentially model the alignment better than rigid transformation, while preserving the Euclidean
relationship better than polynomial regression. In this paper, we adapt the feature-level alignment
in [60] for our camera calibration problem. Given two valid 3D trajectories at cameras Cr and Cq,
the mapping functions (F(r), F(q)) can register the points in the manifold space by minimizing the
following cost function:

JMA(F(r), F(q)) = µ
n

∑
i=1
‖F(r)C(r)

i − F(q)C(q)
i ‖

2 +
n

∑
i=1

n

∑
j=1

Wi,j
r ‖F(r)C(r)

i − F(r)C(r)
j ‖

2

+
n

∑
i=1

n

∑
j=1

Wi,j
q ‖F(q)C(q)

i − F(q)C(q)
j ‖

2
(15)

The first term of Equation (15) is the alignment cost between the two trajectories. The second
and the third terms attempt to preserve the local metric relationship by incorporating the similarity
measurements Wi,j

r and Wi,j
q . Specifically, Wi,j

r = exp(−‖C(r)
i − C(r)

j ‖
2) and Wi,j

q = exp(−‖C(q)
i −

C(q)
j ‖

2). µ is an empirical parameter to balance the two parts of the cost function.
To map the manifold alignment representation to our extrinsic matrix representation, it is easy

to see that P−1
q =

(
F(r)

)−1
F(q) with an identity feature mapping. To ensure both F(r) and F(q) are

invertible, the formulation in [60] also incorporates a regularization constraint to enforce a constant
volume after the alignment. Unlike rigid transformation or polynomial regression, m invocations of
pairwise manifold alignment with the reference camera will produce m different transformations at
the reference camera. In order to produce just one transformation at the reference frame, we modify
the cost function (15) so that the same transformation is used to simultaneously minimize the error
with respect to every other camera.
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3.4. Simultaneous Optimization

In the final stage, we jointly refine all the extrinsic parameters estimated from the previous steps
to produce the simultaneously optimal extrinsic parameters. Our simultaneous optimization algorithm
is based on Bundle Adjustment (BA) [61], which has been widely used in many 3D reconstruction
applications. The goal of bundle adjustment is to simultaneously adjust the camera parameters and
3D points to minimize the overall projection error between the observed and expected locations of the
3D points. In the original formulation of [61], BA was carried out based on the estimated 3D points
and their 2D projections as follows:

min
Pj ,Xi

n

∑
i=1

m

∑
j=1

vijd( f (Pj, Xi), x̃ij)
2 (16)

where m and n are the total number of cameras and 3D scene points, respectively. The function
f denotes the relation that maps 3D point Xi in world coordinates to 2D image pixel xij by the
corresponding projection matrix Pj. The variable vij ∈ {0, 1} indicates whether the point is visible by
camera j. The function d denotes a distance function on the camera plane.

For our problem, we are interested in minimizing distance errors in 3D space instead of in 2D,
and the obtained optimal extrinsic parameters will be used for our real-time 3D rendering. We assume
that the intrinsic parameters of all cameras are known. The input of for this stage are the m sequences
of n 3D sphere center locations from the m RGB-D cameras: {C(j)

1 , C(j)
2 . . . , C(j)

n } for j = 1, 2, . . . , m.
The goal is to find the n “true” 3D points {C1, C2 . . . , Cn} and the optimal extrinsic matrices Pj
for j = 1, 2, . . . , m that transform these 3D points to the m observed sphere center sequences. Our
pseudo-bundle adjustment equation can be written as follows:

min
Pj ,Ci=1,...,n

n

∑
i=1

m

∑
j=1

vij ‖ h† (PjCi
)
− C(j)

i ‖
2 (17)

Different from the classical BA, our formulation uses the 3D Euclidean distance in the local camera
coordinate system. The minimization problem (17) is non-linear, and the standard approach is to
use the Levenberg–Marquardt (LM) algorithm [62,63], which is an iterative procedure to find a local
minimum of a cost function. At the t-th iteration step, our adapted LM procedure first computes an
estimate of [Ci]t for i = 1, 2, . . . , n based on averaging the projections of the data points onto the world
frame using the estimated [Pj]t−1:

[Ci]t =
1

∑m
j=1 vij

m

∑
j=1

vij[Pj]
†
t−1h

(
C(j)

i

)
(18)

Then, LM updates the estimates of the extrinsic matrices as follows:

[Pj]t = [Pj]t−1 + ∆(j)
t (19)

where ∆(j)
t is determined based on a combination of steepest-descent and Gaussian–Newton methods

in minimizing the cost function in (17), but fixing Ci = [Ci]t for i = 1, 2, . . . , n. The iteration continues
until the reduction in the cost function becomes negligible. The details of the LM procedure can be
found in [63].

4. Experiments

The proposed algorithm is agnostic about the type of depth-sensing technologies, may that be
stereo, structured-light or time-of-flight RGB-D cameras. For concreteness, we have chosen to use
Microsoft Kinect v.1 structured-light cameras to capture all color and depth images in the experiments.
They are inexpensive, which is an important consideration to build a large camera network. In addition,
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a recent study has shown that structured-light cameras provide a good price and performance tradeoff
among different types of depth sensors [64].

The setup of our camera network is shown in Figure 5. The camera network consists of 5 Kinect
cameras sparsely placed in an indoor room of 45.36 m2. A client-server architecture is built for parallel
computing and data collection from the cameras. Each camera is connected to a separate client
computer, which is a Wintel machine with an Intel Core 2 Quad Q9650 processor, 8 GB of RAM,
running Windows 7. The server is a Wintel machine with an Intel Core i7-5820k processor and GeForce
GTX-1080 GPU, 32.0 GB of RAM, running Windows 10. The local network is a 100BASE-TX Ethernet.
In practice, our proposed system does not require extra setup effort or additional equipment. We have
tested a 5-camera network using Wi-Fi and commodity hardware in our laboratory, various classrooms
and auditorium in our university. During the initial calibration stage, each client sends the identified
sphere centers and timestamp information to the server. For online 3D rendering, each client sends
aligned color and depth images with 640× 480 resolution at 30 fps to the server. As such, static and
dynamic objects are captured and reconstructed in real time. To ensure the server receives the accurate
corresponding frames sent by each camera, we set up a local Network Time Protocol (NTP) server to
synchronize all computers. The time server is equipped with a GPS board, which provides a precise
PPS (Pulse Per Second) signal for time synchronization. After synchronizing with the local time server,
the system time for capturing each frame among all computers is within a 4-ms offset.

Figure 5. Overview of our camera network setup.

The performance of the proposed system described in Section 3 is systematically measured.
A yellow sphere with known radius R̄ is used as the calibration object as described in Section 3.2.
We have tested spheres of different radii ranging from 127 mm–203.2 mm. While there is no definitive
mathematical relationship between the size of the ball and the algorithm, a larger ball is visible to
more cameras and in general requires fewer video frames for calibration. As such, all the results
in Section 3.2 are based on using the sphere with radius R̄ = 203.2 mm. The three approaches of
camera view transformation described in Section 3.3, including rigid transformation, polynomial
regression and manifold alignment, were tested. For polynomial regression, we have tested the linear
feature mapping feature and two variants of the quadratic feature mapping: a simplified version (14)
without the cross terms and (14) itself. These three forms of regressions are denoted as Regression I
with 12-DOF, Regression II with 18-DOF and Regression III with 30-DOF, respectively. Each of these
methods is combined with the simultaneous optimization step as described in Section 3.4. To compare
these methods with the state-of-the-art, we include the scheme by Herrera et al. [33] based on their
publicly available software. Both quantitative and qualitative results of calibrations were measured as
described below.
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4.1. Quantitative Evaluation

For the initial calibration, about 1000 RGB-D images are captured for sphere detection by each
camera. The whole calibration process is fully automatic in our constructed client-server architecture.
The speed performance of each task during the calibration stage is shown in Table 1. The total
execution time for our calibration is 47 s. The short execution time enables rapid reconfiguration of the
camera network for any target applications. For real-time 3D capture after the calibration, the pairwise
calibration step and simultaneous optimization are no longer needed. Instead, the color and depth data
are locally compressed using motion-JPEG and transmitted to the server for rendering. The bandwidth
requirement for 5 cameras is measured to be 157.4 Mbits per second on average, and the rendering
speed of the point clouds from all cameras at the server is approximately 20 frames per second.

Table 1. Execution performance on our RGB-D camera network calibration.

Task Processing Time
Sphere center detection 44 ms (per frame)

Pairwise calibration 60 ms
Simultaneous optimization 2.2 s

Next, we evaluate our sphere fitting algorithm. The goal of the sphere fitting algorithm is to
estimate the location of the sphere center C(t) at frame t based on the observed 3D depth points Xdi

(t)
for i = 1, . . . , Dp(t) identified on the sphere surface. While it is difficult to establish the ground truth for
the unobservable sphere centers, we know the ground truth radius of the sphere to be R̄ = 203.2 mm.
As such, we can calculate the average deviation from the ground truth radius of the radii estimated
based on the identified sphere centers:

σ =

√√√√ 1

∑T
t=1 Dp(t)

T

∑
t=1

Dp(t)

∑
i=1

(
R̄−

∥∥Xdi
(t)− C(t)

∥∥)2 (20)

Three hundred sequential frames are tested to evaluate the sphere fitting accuracy. The estimate is
unbiased with standard deviation σ equal to 6.42 mm or 3.15% of the ground truth radius.

After the initial pairwise calibration, the acquired initial extrinsics are then optimized by our
pseudo bundle adjustment algorithm. To test whether the estimated extrinsics can extrapolate unseen
data, we apply them on a separate testing set of RGB-D images, which has the 200 detected sphere
centers for each camera, to validate the correctness of the calibration. The back-projection error for each
camera is compared across all the schemes. To calculate back-projection error, we use the pre-computed
extrinsic matrices to project the 3D sphere center locations in local coordinates to the global frame,
take the average of the projections from all the cameras, back-project it onto each local coordinate
system and calculate the root mean square error (RMSE). To show that there is no bias in each method,
we show the 3D projection error of Camera 1 for each frame in Figure 6. As shown in the figure,
different curves representing different schemes seldom cross over each other. This shows that the
relative performance among the five schemes stays constant regardless of the location of the sphere.
As the plots for other cameras are similar, only the results for Camera 1 are shown in the figure. Table 2
shows the mean and standard deviation of the 3D projection errors of the entire trajectory for each
camera-method combination. Table 3 shows the p-values when comparing Regression III with each
the other methods, with the null hypothesis that the two methods produce similar results and the
alternative hypothesis that Regression III produces better results. Based on the recommendation by
Fisher [65], there is very strong evidence (p < 0.001) among the majority of the cameras against the
null hypothesis when comparing Regression III with Herrera [33], rigid [19] and manifold [60]. On the
other hand, there is no evidence (p > 0.1) against the null hypothesis when comparing Regression III
with the other two regression techniques.
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For the visual alignments, the plots of the sphere movement points in the global frames are in
Figure 7. One can see that there are significant misalignment error among trajectories from different
cameras in Herrera’s scheme and the rigid scheme. The manifold scheme produces a skewed global
frame, but appears to produce reasonable alignment. All regression schemes produce similar alignment
results, with minor improvements as the degree of freedom increases. Table 4a–f shows the average
differences in sphere center location between each camera pair with respect to Figure 7a–f. We should
caution that while the testing data are different from the training data, they are all captured in the
same center area where there is a significant overlap among the fields of view of different cameras.
To extrapolate the coverage into areas with little overlap, we evaluate in the next section the visual
quality of captured 3D environment including static background and moving foreground when the
system performs real-time 3D rendering.

Figure 6. The 3D projection error of Camera 1 for each frame.

Table 2. 3D projection errors on validation data.

Local Coordinate Herrera [33] Rigid [19] Manifold [60] Regression I Regression II Regression III
Camera 1 2.74 ± 0.23 2.40 ± 0.2 2.24 ± 0.22 1.98 ± 0.19 1.87 ± 0.17 1.80 ± 0.15
Camera 2 2.73 ± 0.22 2.36 ± 0.21 2.01 ± 0.23 2.01 ± 0.15 1.94 ± 0.16 1.88 ± 0.18
Camera 3 4.94 ± 0.54 4.56 ± 0.42 2.29 ± 0.22 2.12 ± 0.2 1.90 ± 0.16 1.85 ± 0.2
Camera 4 2.86 ± 0.22 2.29 ± 0.18 1.56 ± 0.12 1.44 ± 0.11 1.40 ± 0.1 1.49 ± 0.12
Camera 5 1.86 ± 0.17 2.33 ± 0.2 2.27 ± 0.17 2.05 ± 0.19 1.88 ± 0.17 1.84 ± 0.17

Average (cm) 3.03 2.79 2.07 1.92 1.80 1.77

Table 3. p-value for hypothesis testing.

Local Coordinate R. III - Herrera [33] R. III - Rigid [19] R. III - Manifold [60] R. III - R. I R. III - R. II R. II - R. I
Camera 1 0.0001 0.0001 0.0001 0.0905 0.9996 0.9999
Camera 2 0.0001 0.0001 0.9998 0.9952 0.9999 0.9999
Camera 3 0.0001 0.0001 0.0001 0.1302 0.9999 0.9999
Camera 4 0.0001 0.0001 0.0001 0.1517 0.9989 0.9999
Camera 5 0.0001 0.0001 0.0001 0.8743 0.9999 0.9999
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Sphere movement points alignment: (a) Herrera [33]; (b) rigid [19]; (c) manifold [60];
(d) Regression I; (e) Regression II; (f) Regression III.
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Table 4. Average differences (cm) in sphere location between each camera pair over all frames.

(a) Herrera [33]

Camera C1 C2 C3 C4 C5
C1 2.98 5.39 3.08 3.01
C2 2.98 5.69 2.85 2.77
C3 5.39 5.69 6.05 4.73
C4 3.08 2.85 6.05 2.46
C5 3.01 2.77 4.73 2.46

(b) Rigid [19]

Camera C1 C2 C3 C4 C5
C1 2.36 5.02 2.57 3.03
C2 2.36 5.57 2.32 2.95
C3 5.02 5.57 5.89 4.52
C4 2.57 2.32 5.89 2.99
C5 3.03 2.95 4.52 2.99

(c) Manifold [60]

Camera C1 C2 C3 C4 C5
C1 2.42 2.67 2.33 2.75
C2 2.42 3.02 2.48 2.39
C3 2.67 3.02 2.33 2.95
C4 2.33 2.48 2.33 2.0
C5 2.75 2.39 2.95 2.0

(d) Regression I

Camera C1 C2 C3 C4 C5
C1 2.23 2.64 2.0 2.46
C2 2.23 2.37 2.07 2.25
C3 2.64 2.37 2.07 2.34
C4 2.0 2.07 2.07 1.79
C5 2.46 2.25 2.34 1.79

(e) Regression II

Camera C1 C2 C3 C4 C5
C1 2.27 2.6 1.95 2.26
C2 2.27 2.43 2.17 2.24
C3 2.6 2.43 2.07 2.18
C4 1.95 2.17 2.07 1.7
C5 2.26 2.24 2.18 1.7

(f) Regression III

Camera C1 C2 C3 C4 C5
C1 2.19 2.43 2.05 2.24
C2 2.19 2.38 2.11 2.13
C3 2.43 2.38 2.27 2.17
C4 2.05 2.11 2.27 1.75
C5 2.24 2.13 2.17 1.75

4.2. Qualitative Evaluation

In this section, we evaluate the results of our real-time 3D rendering in an indoor environment by
the RGB-D camera network. Figure 8a,b shows the coverage area from each camera and the merged
camera view, respectively. One can see that the center area has a higher density of point cloud than the
surroundings. To compare alignment accuracy among different camera view transformations, we first
consider the reconstruction of the foreground objects near the center of the captured area, which include
a stationary mannequin and a walking person. Two randomly-selected virtual viewpoints of the
mannequin and one viewpoint of the person are shown in Figure 9. Similar to the numerical results
in Section 4.1, using polynomial regression produces better alignment on the model’s face and feet
than the other methods. Next, we evaluate the reconstruction quality of the entire indoor scene for
each view transformation method. In Figure 10a–f, Herrera’s scheme has a significant alignment
problem when extending beyond the center area. The rigid and manifold schemes produce similar
reconstruction results. All regression schemes have better alignments (less holes in the reconstructions),
but Regression II and III start to introduce non-linear distortion in the background wall. The reason
is the data from the training set are overfitted by higher degree parameters and cross terms, which
can no longer preserve the geometry of the far-distance objects outside the calibration area. Overall,
Regression I produce the best reconstruction results in our experiments with the minimal amount of
misalignment and geometrical distortion.
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(a) (b)

Figure 8. Real-time camera view merging in an indoor room using Regression I. The field of view for
each camera is rendered in a different color in the left image.

Figure 9. Cont.
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Figure 9. Comparison of 3D point cloud alignments zoom-in on the specific targets. From left to
right column: (1) Herrera [33]; (2) rigid [19]; (3) manifold [60]; (4) Regression I; (5) Regression II;
(6) Regression III.

(a) (b) (c)

(d) (e) (f)

Figure 10. Comparison of 3D point cloud alignments on the indoor environment. From the top
to the bottom (row-major order): (a) Herrera [33]; (b) rigid [19]; (c) manifold [60]; (d) Regression I;
(e) Regression II; (f) Regression III.

5. Conclusions

In this paper, we have presented a fast and robust method for RGB-D camera network calibration
using a spherical calibration object. The proposed 3D sphere center estimation scheme has been
shown to produce a robust estimate of the sphere center trajectory. Compared with planar calibration
objects, our solution is more reliable and requires less overlap in camera views. Using the observed
sphere center trajectories at different camera views, we have tested four types of extrinsic camera
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calibrations including rigid transformation, manifold alignment, linear transformation and quadratic
transformation, followed by a customized simultaneous refinement based on bundle adjustment.
Our results have shown that linear transformation produced the best results by providing good
alignment in the central view overlapping region and preserving geometric features in the peripheral
area that has limited camera coverage. The proposed scheme has been implemented using a
client-server architecture that enables rapid calibration and real-time 3D dynamic scene rendering.
We are currently extending our scheme to cover an area as large as an entire building and to develop
more data-efficient representations so as to scale the network to tens and hundreds of cameras.
Furthermore, more investigations on mitigating distortion effects of metric structures of 3D space
using polynomial approaches will be conducted in our future work.

Supplementary Materials: The source codes for our RGB-D camera network calibration are available online at
https://github.com/PoChang007/RGBD_CameraNetwork_Calibration.
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