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Abstract

Global climate change and other anthropogenic stressors have heightened the need to rap-
idly characterize ecological changes in marine benthic communities across large scales.
Digital photography enables rapid collection of survey images to meet this need, but the
subsequent image annotation is typically a time consuming, manual task. We investigated
the feasibility of using automated point-annotation to expedite cover estimation of the 17
dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter-
and intra- annotator variability among six human experts was quantified and compared to
semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.
edu. Our results indicate high expert agreement for identification of coral genera, but lower
agreement for algal functional groups, in particular between turf algae and crustose coral-
line algae. This indicates the need for unequivocal definitions of algal groups, careful train-
ing of multiple annotators, and enhanced imaging technology. Semi-automated annotation,
where 50% of the annotation decisions were performed automatically, yielded cover esti-
mate errors comparable to those of the human experts. Furthermore, fully-automated anno-
tation yielded rapid, unbiased cover estimates but with increased variance. These results
show that automated annotation can increase spatial coverage and decrease time and
financial outlay for image-based reef surveys.
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Introduction

Coral reefs provide habitat to a wide diversity of organisms, and substantial economic and cul-
tural benefits to coastal communities [1,2]. These functions are threatened by global declines in
coral cover caused by a wide diversity of natural and anthropogenic disturbances including
global climate change and ocean acidification [3]. The decline in coral cover has been dramatic,
with > 80% decrease in the Caribbean over the last four decades [4], and 1-2% loss each year
in the Indo-Pacific between 1997 and 2003 [5]. These rates of decline are forecast to increase
[6], and extensive surveys are urgently needed to better understand the “coral reef crisis” [7]
and contextualize effective ecosystem-based management for this critical ecosystem [8].

Reef surveys have traditionally been performed in situ by scuba divers skilled in marine
ecology and capable of identifying and counting taxa underwater. In situ surveys enable accu-
rate observations, but they are time-consuming and allow only small areas of the reef to be sur-
veyed. Additionally, they are dependent on the skill of the experts conducting the surveys, and
the data are usually not available for re-analysis. In situ surveys were largely replaced by image-
based surveys when high quality underwater cameras became available at an economic price in
the early 1960’s [9], coincident with the proliferation of scuba as a tool for underwater research.
Image-based surveys are advantageous as they allow faster data collection and provide a per-
manent record that can be analyzed for organism abundance [10] and demographic properties
[11]. However, quantifying organisms in benthic photographs is more challenging than in situ
inspection, due to limited image resolution, variable lighting conditions, water turbidity, and
the inability to interact physically with the benthos. Although some efforts have been made to
quantify accuracy and inter annotator variability in surveys conducted using underwater video
transects [12,13], there is little information describing the variability associated with annota-
tions of coral reef survey images.

Since the turn of the new millennium, the application of image-based tools for marine ecol-
ogy has changed dramatically in three domains. First, improvements in digital photography
have allowed large numbers of images to be gathered at increasing resolution. Second, the capa-
bilities of computers and software to manipulate, store, and analyze images have increased by
orders of magnitude. Third, advances in robotics and control theory have enabled the construc-
tion of autonomous underwater vehicles (AUVs), remotely operated vehicles (ROVs), and
imaging sleds that can capture thousands of survey images in a single deployment [14-17].
However, the capacity to analyze images has not advanced at a pace commensurate with the
capacity to collect them. This has created a ‘manual-annotation’ bottleneck between the rapid
image acquisition and the quantitative data needed for ecological analysis.

Generating quantitative ecological information from underwater images typically involves
random point annotation to estimate the percent cover of the substrata of interest. To generate
these data, substratum types are identified, usually manually by an expert in that ecosystem, for
a number of randomly selected locations in each image. Statistically valid sampling of benthic
habitats with image- and point- based tools requires careful attention to the primary purpose
of the study, choice of the experimental and statistical approaches necessary to answer the
questions being addressed, and the statistical power (i.e., a function of sample size, variance,
and desired difference to be detected) required to test the hypotheses of interest. These experi-
mental design components are not the focus of this paper, and interested readers are referred
to the many excellent texts on these subjects [10,18]. Instead, we focus on the means and accu-
racy by which quantitative information can be manually and automatically extracted from
underwater images using random point annotation, specifically for near-shore tropical marine
environments.
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Point annotations are typically preformed using manual annotation software like Coral
Point Count with Excel Extensions (CPCe) [19], photoQuad [20], pointCount99 [21], Biigle
(biigle.de) or Catami (catami.org), which facilitate the annotation process by providing user
interfaces and tools for the export of relevant data. Recently, there have been several efforts to
automate point annotation of benthic survey images [22-26], but the implementation of these
tools has been hindered by two issues. First, while human experts have been annotating benthic
images for decades, the accuracy of this procedure (i.e., intra-annotator error) remains largely
unknown, as does the extent to which results varies between annotators (i.e., inter-annotator
error). This information is critical as it provides a baseline against which the efficacy of current
and future automated annotation methods can be assessed. Second, there is scope to develop
“hybrid” annotation modes, which automatically annotate a significant portion of the data, but
defer the most uncertain identification decisions to human annotators. The value of such
modes will depend on the quantitative means by which “uncertain” is evaluated, and on the
appropriate trade-off between accuracy and efficiency for the question at hand.

In this paper we focus on codifying the criteria for implementing an existing automated
image analysis tool [24] for coral reef survey images. Specifically, we sought to answer two
questions: (1) what is the baseline variation among human experts in the analysis of benthic
communities that we would hope to equal or improve upon through automated methods, and
(2) what is the appropriate framework for optimizing the trade-off between the high accuracy
of a human annotator and the high efficiency of an automated annotator? To answer the first
question, we designed a study in which we quantified the variability among multiple experts in
the analysis of benthic images from coral reefs in Moorea (French Polynesia), Nanwan Bay
(Taiwan), the northern Line Islands, and Heron Reef (Great Barrier Reef), and compared their
results to those obtained through computer-based automated analysis. To address the second
question, we then altered the requirements for more (or less) human supervision in the modes
of annotation in order to quantify the trade-off between accuracy and efficiency. Finally, a key
contribution of this work is that the methods developed for automated annotations are incor-
porated in the random point annotation tool of CoralNet (coralnet.ucsd.edu), which is publi-
cally available.

Materials & Methods

Digital photoquadrats from coral reefs in four locations throughout the Pacific, with 671-3472
images per location, were used to provide a diverse model system for testing our analytical
tools (Table 1). These images were originally annotated by experts using 24-200 random point
locations superimposed on each image. From each image set at each location, 200 images were
randomly selected and designated as the Evaluation set; the remainder were designated the Ref-
erence set. The four Evaluation sets were then re-annotated independently, and without prior
knowledge of the initial annotations, by each of six human experts at 10 point locations in each
image, sub-sampled at random from the original point locations. Following the human annota-
tion, an implementation of a computer vision algorithm [24] was then used to automatically
annotate the same 10 points per image. The four Reference sets were used to train the auto-
mated annotator, and were made available as training material for the human experts. The
multiple sets of annotations were used to evaluate intra- and inter-annotator variability and to
evaluate the proposed operational modes of automated annotation. All images and data used
in this study are made available at (doi:10.5061/dryad.m5pr3).
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Table 1. Summary of image resources.

Investigator
Sampling year

Reef type
Geomorphic zone (Photo
depth)

Image cover (cm)
Image size (px.)
Spatial res. px. (mm?)
Camera

Lighting

Evaluation set

# images

# anns. image™

# total anns.
Reference set

# Images

# anns. image™”

# total anns.

Moorea Line Islands Nanwan Bay Heron Reef
P.J. Edmunds J. Smith T-Y Fan C. Roelfsema
2008 2005 2012 2007

Fringing reef Fringing reef Fringing reef Platform reef

Fringing reef (2-5 m), Fore reef (10 m & 17  Reef flat / lagoon (2-5 Fore reef (2-5 Fore reef (5 m) Reef flat (1

m) m) m) m)

50 x 50 65 x 90 35 x 35 50 x 65
6.24 M 71 M 9.98 M 6.2M
24.96 12 81.46 19.08
Nikon D70 Olympus 7070 Canon G12 Canon A540
Dual Nikonos SB 105 strobes No lighting, manual w.b.  No lighting No lighting
200 200 200 200

10 10 10 10

2,000 2,000 2,000 2,000

471 532 690 2,597

200 100 50* 24

94,200 53,200 34,260 62,328

Tabulated information about the four original reef-surveys used in this study.

# = number of, anns. = annotations, M = million, res. = resolution, px. = pixel, w.b. = white balance,
* Some images are only annotated with 49 points.

doi:10.1371/journal.pone.0130312.t001

Study locations

Digital photoquadrats were obtained from projects monitoring coral reef community structure
in the outer and fringing reefs of Moorea (French Polynesia), Kingman, Palmyra, Tabuaeran
and Kiritimati atolls (northern Line Islands), Nanwan Bay (Taiwan), and the platform reefs at
Heron Reef (Great Barrier Reef, Australia). These study locations were selected because they
offered legacy data involving large numbers of images that had been annotated with equivalent
random point methodologies by experts with extensive experience in identifying benthic
organisms from photographs at their respective locations. In each location, multiple species of
scleractinian corals, macroalgae, crustose coralline algae, and various non-coral invertebrates
densely populate benthic surfaces, and photoquadrats are characterized by complex shapes,
diverse surface textures, and intricate boundaries between dissimilar taxa. Additionally, water
turbidity and light attenuation degrade colors and image clarity to varying degrees for the four
image sets, presenting a challenging task for both manual and automated annotation. It should
be noted however, that these are all typical conditions, and these image sets represent typical
survey images taken for purposes of coral reef ecology.

The four locations also represent the great variation commonly found within and among
photographic surveys of shallow (< 20 m depth), Pacific coral reefs. This variation includes dif-
ferences among locations in species diversity and their colony morphologies, variation in cam-
era equipment (e.g., angle of view, and resolution), distance between camera and benthos (and
whether the distance was constant among photographs), and the mechanism employed to
compensate for the depth-dependent attenuation of sunlight (i.e., through the use of strobes
and/or manual white balance adjustment of camera exposures). The photographs from
Moorea, the Line Islands and Nanwan Bay were recorded using framers to hold the camera
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Fig 1. Sample photoquadrats. Sample photoquadrats acquired and annotated as part of long-term
monitoring projects on shallow coral reefs (< 17-m depth). (A) Moorea, French Polynesia, acquired with
strobes and framer (50 x 50 cm); (B) Palmyra, northern Line Islands, acquired using a manual white balance
and framer (65 x 90 cm); (C) Nanwan Bay, Taiwan acquired with framer (35 x 35 cm) but neither strobes nor
white balance; (D) Heron Reef, GBR, acquired without framer, strobes or white balance.

doi:10.1371/journal.pone.0130312.g001

perpendicular to, and at a constant distance from, the sea floor. Underwater strobes were used
in Moorea to restore surface color and remove shadows from images, and in the Line Islands,
image-colors were adjusted through manual adjustment of the white balance for each series of
images. Neither strobes nor color correction were used to record photoquadrats in Nanwan
Bay. Finally, at Heron Island, the reef was recorded using a camera (without strobes or white
balance correction) that was hand-held above the reef using a weighted line suspended below
the camera to maintain an approximately fixed distance to the sea floor [27]. Refer to Fig 1,
and S1 Fig for sample images from the locations, to Table 1 for a data summary, and to S1
Appendix for additional details on the survey locations.

Label-set

When this study began, the photoquadrats from each of the four locations had already been
manually annotated by the local coral reef experts using four different label-sets defined by the
respective experts. To make comparisons of annotator accuracies between locations, a consen-
sus label-set was created to which the four original label-sets were mapped (Table 2). The con-
sensus label-set consisted of 8 scleractinian genera and 1 ‘other scleractinians’ label; 3 algal
functional groups (macroalgae, crustose coralline algae (CCA), and turf algae); and 9 other
labels that included sponges, sand, and the hydrozoan Millepora. In our analysis we also con-
sidered all coral labels together as a coral functional group. The labels of the consensus label-
set were chosen to enable a one-to-one or many-to-one mapping from the original label-sets in
Moorea, Line Islands, and Nanwan Bay. Corals were not resolved to genus level in the original
Heron Reef label-set and all Archived coral annotations were therefore mapped to the generic
‘other scleractinians’ label for this location.

PLOS ONE | DOI:10.1371/journal.pone.0130312  July 8,2015 5/22
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Table 2. Consensus label-set.

Label Definition

Acropora Coral genus

Favia Coral genus

Favites Coral genus

Montastraea Coral genus

Pavona Coral genus

Platygyra Coral genus

Pocillopora Coral genus

Porites Coral genus

Other scleractinians Other hard corals

Millepora Genus of hydrozoan coral

Sponges All types of sponges

Soft Coral All soft corals

Crustose coralline All genera

algae

Turf algae Here defined as multi-specific assemblages: 1 cm or less in height

Macroalgae All genera—defined as larger algae > 1 cm in height

Sand Sand, silt or other fine-grained, soft substratum

Bare space Rock, Basalt, Limestone, Dead coral, Rubble, or other hard substratum. Note, use
this label only if not overgrown by algae

Transect hardware Transect line, wand, and framer. Anything that is part of the sampling methodology

Unclear Dots falling in shadowy, dark or blurry areas, where a class designation is not
possible

All other labels Any substratum not covered by the other labels, e.g., seagrass, other

invertebrates, terrestrial trash

Label-set used in this work, and definition provided to human annotators.

doi:10.1371/journal.pone.0130312.t002

Manual Annotations

As part of the present analysis, the photoquadrats from each of the four locations were manu-
ally re-annotated by six human experts. The local expert familiar with each location were desig-
nated as the ‘Host’, and the other five experts with less familiarity with the specific locations
were designated ‘Visitors’. All six were experts in identify corals and benthic taxa at coral reefs
in the tropical Pacific Ocean. The annotations completed by the Hosts prior to the present
study as part of the original ecological analyses were denoted ‘Archived’. One to six years had
passed since the original annotations were made, and thus we reasoned that the Hosts would
not be biased by their own original annotations. We emphasize that there are four Hosts in this
study; one for each location, and that the Hosts for each location re-annotated the same points
in the same images that they had annotated previously themselves. Intra-annotator variability
could thus be measured by comparing the Host and Archived annotations. All of the present
annotations were performed using the random point annotation tool of CoralNet (S2 Fig). To
assist the experts in the new annotations, the images and Archived annotations of the Refer-
ence sets from each location were stored in CoralNet and used as a virtual learning tool to
improve identification of the benthic taxa (S2 Fig). All images were scored using 10 points per
image, so with 200 images per location and 4 locations, each annotated by 6 experts, this study
generated 48,000 manual point-annotations. The manual annotation effort required on average
1 minute per image, for a total annotation time of approximately 15 hours per expert. This
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annotation time was divided into several 1-3 hour sessions over 1-4 weeks depending on the
preference of the annotator.

Automated Annotations

We previously developed an automated annotation system for coral reef survey images [24]. In
this system, the texture and color of a local image patch around a location of interest (i.e., one
of the randomly selected points) is encoded as a count of ‘visual words’, which is a quantization
of the visual appearance space of the image. The encoded visual information is then used,
together with a set of labels, to train the automated annotator, using the Support Vector
Machines (SVM) algorithm [28].

The method of [24] was modified in two ways to increase the accuracy and reduce the run-
time. First, the vector quantization step of [24] was replaced by Fisher Encoding [29] which
was recently shown to improve classification accuracy for various image classification tasks
[30]. Second, the kernel-based SVM of [24] was replaced by a linear SVMs which have signifi-
cantly lower runtime [28-31]. The final method used in this work required 20 seconds to
pre-process each image, the training of the SVM required 5-20 minutes for each location
depending on the size of the Reference set for that location, and automated annotations of an
unknown image from the Evaluation set required < 1 second. The aforementioned times were
measured on a single computational core.

The color and texture information of the images in the Evaluation and Reference sets was
encoded as a 1920 dimensional ‘feature’ vector for the annotated point in each image [29]. The
feature vectors from the Reference set were paired with the Archived annotations to form a
training-set, which was used to train a one-versus-rest linear SVM (S1 Appendix). This train-
ing was performed separately for each location so that the training-set from each location was
used to train a SVM, which was then used to automatically annotate the images in the Evalua-
tion set from the same location.

Since the images in the Evaluation set were selected randomly from the set of available
images, the mean percent cover of each label was similar in the Reference and Evaluation sets.
This means that approximately correct cover estimates of the Evaluation set could be generated
by randomly annotating point locations in the same proportions as is present in the Reference
set. However, in other situations where the automated annotator is trained on data from, for
example, a previous year or another location, the proportions of the different types of annota-
tions (e.g., percent coral) will likely differ between training data (here: Reference set) and test
data (here: Evaluation set). The following pre-processing step was applied to ensure that any
conclusions from this study, with respect to the efficacy of the automated annotator to estimate
percent covers, would be valid in such situations. In this pre-processing step, a randomly
selected subset of the non-coral annotations in the Reference sets was discarded, so that the
proportion of coral annotations increased by 10%. For example, there were 19,566 coral, and
74,634 non-coral annotations in the Moorea Reference set, and therefore, 20.77% was coral. A
random subset of 8,566 non-coral annotations was discarded so that 66,068 non-coral annota-
tions remained. This resulted in a 10% increase in the estimate of coral abundance (22.85%).

Post-processing of annotations

Two inconsistencies in the Hosts’ and Visitors’ annotations were noted and corrected. First,
some expert annotators mapped points on the images that fell on transect hardware to the
‘Transect hardware’ label, while others mapped them to substratum types that were inferred to
occur beneath the hardware based on close proximity adjacent to the hardware. Such discrep-
ancies were due to incomplete instructions to the experts rather than identification difficulties.
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Therefore, any point locations that two or more of the experts mapped to “Transect Hardware’
were considered to be transect hardware, and all annotations for that point location were
changed to ‘Transect hardware’ in post-processing.

The second inconsistency arose with the scoring of images from Moorea because neither the
original label-set in this location, nor the Archived annotations, contained the ‘Bare space’
label of the consensus label-set. Instead, in this location all “bare space” was effectively covered
with CCA and therefore was mapped to a ‘CCA’ label. However, in the annotation of the pres-
ent study, some experts mapped these areas to ‘Bare space’ as the best match to this state in the
consensus label-set. To facilitate a comparison between the multiple sets of annotations, all
‘Bare space’ annotations for the Moorea location were changed to ‘CCA’ in post-processing.

Estimating Annotator Variability

Using the Archived annotations as baseline, the accuracy of annotator a was estimated using
the Cohen’s kappa statistic, and denoted x” [32]. Additionally, x¢, denoted the Cohen’s

kappa of the binary classification task between a set of labels, ¥ (e.g., corals, macroalgae, or
Acropora), and the labels not in ¥. For example, «'*! denoted the Hosts’ accuracy for the task
of discriminating between coral and non-coral. For notational brevity, the super-script is
henceforth dropped when it is clear from the context which annotator is considered. A one-
sample Kolmogorov-Smirnov test was performed to determine normality of . This test yielded
p-values < 0.001 for all labels, annotators and locations, indicating non-normality and the con-
sequent need for non-parametric tests. Differences in x (using the full label-set) between the
Hosts and Visitors were assessed using non-parametric Mann-Whitney U tests, and difference
between the four functional groups (coral, macroalgae, CCA, and turf algae) was assessed using
a Kruskal-Wallis test, both using the four locations as repeated trials.

Additionally, using again the Archived annotations as baseline, a confusion matrix, Q was
estimated for each location and annotator. Each confusion matrix Q was 20 rows by 20 col-
umns and values at row r, column ¢ in the matrices indicate the ratio of annotations originally
labeled by Archived as label r now classified by the Host, Visitors, and automated annotator,
respectively, as label c.

Modes of Automated Annotation

In this section, the proposed operational modes for semi- and fully- automated annotation are
detailed.

The Alleviate Operational Mode. A one-versus-rest automated classification procedure
generates a vector of classification scores corresponding to each classification decision [33].
The score vector can be used to estimate the certainty of the automated classifier for an unseen
example [34]. For example, if all scores are low and similar to each other, the classifier is more
likely to assign the incorrect label [34]. In such situation, an alternative is to let the classifier
abstain from making an automated annotation decision and instead defer to a human expert.
Such procedure enables a trade-off between the amount of human effort and the accuracy of
the final annotations.

The classification scores were used in an operational mode, which we denote ‘ALLEVIATE’
because it alleviates the workload for the human annotator. The scores were denoted s; x(1)
where subscript i indicate the image, subscript k the point location, and m the class label. For a
given point in an image in the Evaluation set the vector of 20 scores, one for each class, was
denoted [s;]. Using ALLEVIATE, an automated annotation was only assigned when, for a given
point location, there existed a score s; x(m) such that s; ;(m) > ¢, for some threshold, e. More
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formally, the ALLEVIATE annotations, y'*"* were defined as:

Automated 3
- if max|s, €
yAlleviate _ y’-k [ z,k] >
" = .
’ yiet otherwise
where yAtomated was the automated annotation of point k in image i, and y"" the corresponding

Host annotation. We denoted by A(¢) the ‘level of alleviation’, the fraction of samples classified
by the automated annotator for a certain threshold, . A level of alleviation of A(€) = 50% was
used in the final analysis of ALLEVIATE.

The same alleviation procedure was also used, in one analysis, to combine the Visitors’ and
the automated annotations. However, unless explicitly stated otherwise, ALLEVIATE denoted the
combination of the Hosts’ and the automated annotations throughout this paper.

The Abundance Operational Mode. While the automated annotations are, in general,
less accurate than those provided by human experts [23,24,26], they have the benefit of being,
in contrast to a human expert, deterministic, meaning that the automated annotator will always
make the same classification decision for the same image. If the confusion matrix is known for
the automated annotator, it can be used to generate annotations that are accurate in aggregate
(such as abundance of taxa) even though individual decisions might be erroneous [35,36]. The
corrected abundances will, by design, be unbiased, but with larger variation than those based
on the automated annotations [35].

Using the abundance correction method of [35,36], a fully automated deployment mode,
ABUNDANCE was defined. In this mode, cover estimates for each image i were calculated as:

C.;\bundance (m) _ (QI)*TC;'&utomated (m) ( 1 )

where ¢ (1) denoted the cover in image i of class m based on the automated annotations,
Q' was a confusion matrix estimated through a 20 fold cross-validation on the Reference set,
and the-T superscript denotes matrix transpose followed by inverse. Note the difference
between Q', which was estimated for the automated annotator from the Reference set and used
in ABUNDANCE, and Q, which was estimated for all annotators from the Evaluations sets and
used to evaluate the final performance.

Performance evaluation based on cover estimates

The estimates of ecological composition based on the operational modes were contrasted with
the estimates based on the Archived, Hosts’, and Visitors” annotations. The cover of label m,
for image i, was denoted ¢?(m) for each annotator (or mode):

a € {Archived, Host, Visitingl, . . ., Visiting5, Alleviate}

In addition, cA****" was derived from the automated annotations using Eq 1. The pairwise
differences from the Archived cover estimates for each image were denoted:

di(m) = €l (m) — & (m)
The average estimation error (bias) for annotator (or mode) a, label m for the 200 images in

a certain location was denoted:

200

fw—%;mm
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The Mean Absolute Error (MAE) was denoted as the mean absolute value of e°(m) calcu-
lated for a particular substratum and group of annotators across the four locations (e.g., the
macroalgae cover as estimated by the Hosts).

The differences d? (m) were also used to test the null hypothesis that, for each label, annota-
tor and dataset, the mean of df (m) is zero. A one-sample Kolmogorov-Smirnov test was first
performed to determine normality of d? (). This test yielded p-values < 0.001 for all label (or
label groups), annotations, and locations, indicating non-normality and the consequent need
for a non-parametric test. A permutation t-test was therefore performed at the 95% significance
level with a Bonferroni correction for eight comparisons (ALLEVIATE, ABUNDANCE, Host, and 5
Visitors) [37]. The differences d¢(m) were also used to estimate a 95% confidence interval for
all contrasts using the percentile-t bootstrap procedure [37].

CoralNet

As a key contribution of this work, we make implementations of the described modes of opera-
tion (ALLEVIATE, ABUNDANCE, and RerINE (S1 Appendix)) available on CoralNet (coralnet.ucsd.
edu). CoralNet is a software module that has been designed as a repository and online annota-
tion tool for benthic survey images, and it allows users to upload and annotate survey images
with a user-defined label-set. Annotations are performed using a random point annotation
interface similar to that of CPCe [19]. CoralNet also offers tools for browsing images and anno-
tations as well as for viewing and exporting estimated cover statistics. The implementation of
ALLeviATE allows users to determine the level of alleviation based on the accuracy of the auto-
mated annotator, and RerINE is implemented with 5 suggested labels per point location.

Results
Annotator Accuracy

Substratum identification accuracies. Annotator accuracy was measured as Cohen’s
kappa, K of the annotators, compared to the Archived annotations. The Hosts’ accuracies dif-
fered among the functional groups (H = 10.08, df = 3, p = 0.018). Specifically, the accuracy for
each functional group was: Kcora = 89.7£1.2%, Kmacroalgae = 71.0£4.0%, Kcca = 51.0+9.3%, and
Kturf algae = 01.6£6.1% (mean * SE, n = 4 locations, Fig 2, S1 Table), with the majority of confu-
sion occurring among algal groups (S3 Fig). The Hosts’ accuracy for common coral genera (i.e.,
with > 10 Archived annotations) was Kcoral genera = 79-4%+4.2% (n = 19, S1 Table). Coral genera
were most commonly confused with other coral genera, in particular with the general label of
‘other scleractinian’. However, there was also notable confusion between the turf algae and
CCA (S3 Fig).

Relationship between abundances and identification accuracies. The Hosts” accuracies
were not correlated with the benthic covers (r = 0.089, df = 33, p = 0.61), although there were a
few outliers recorded a low (< 5%) cover (Fig 3A). The annotation accuracy of corals (when
considered as a group) was > 80% in all four locations; accuracy of algal groups was > 60%
except for three samples with < 12% cover; and accuracy of coral genera was generally > 80%,
except six samples with < 3% cover.

Inter-annotator variability. The Visitors’ annotation accuracies were lower than
the Hosts’ (U = 26, n = 4, p = 0.029). Specifically, the accuracy for each functional group was:
Keoral = 84.0+1.0%, Kinacroalgae = 58.7£2.5%, Kcca = 35.5%3.7%, and Ky agae = 43.3+3.6%
(mean + SE, n = 20, Fig 2, S1 Table). The Visitors’ accuracy for common coral genera (i.e.,
with > 10 Archived annotations) was Kcoral genera = 58.6£2.9% (n = 95, S1 Table). As with the
Hosts, the principal confusion occurred among the algal groups, and the principal confusion
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Fig 2. Annotation accuracy. Accuracy as measured by Cohen’s kappa for the Hosts’ annotations with various level of alleviation, and for the Visitors’
(mean £ SD, n = 5) annotations. The left edge of the alleviation curve corresponds to automated annotations only, and the right edge corresponds to the
Hosts’ annotations only. The first column shows accuracy calculated from the full label-set. Column two to five show accuracy for the task of discriminating
functional groups: coral, macroalgae, crustose coralline algae (CCA), and turf algae, respectively, versus the rest. Columns six, seven and eight show
accuracy for the three dominant coral genera. Genus-level identification for Heron Reef is not provided, as Archived annotations were not available to this
resolution.

doi:10.1371/journal.pone.0130312.9002

among coral genera occurred with the ‘other scleractinian’ label (S3 Fig). The lower accuracy of
the Visitors was evident also in the lesser weight across the confusion matrix diagonals com-
pared to the matrix diagonals of the Hosts (S3 Fig).

Modes of Automated Annotation

The accuracy of the automated annotation method was: Kcoray = 63.5£4.3%, Kmacroalgae =
48.5+11.7%, Kcca = 28.3116.3%, and Ky, f algae = 43.814.2% (mean + SE, n =4, Fig 2, S1 Table).
This drop in accuracy compared to the Hosts (e.g., over 20% for K1) suggested that a direct
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application of the automated annotation method of [24] would not yield reliable cover esti-
mates of benthic substrata. Instead, performance of the automated annotation method was
evaluated within the context of the proposed operational modes.

Semi- automated annotation using Alleviate. ALLEVIATE is a semi-automated annotation
mode, in which the automated annotator has the option of deferring difficult decisions to a
human expert annotator. The ratio of points that are automatically classified was denoted ‘level
of alleviation’, 1. Because the expert annotators were more accurate than the automated anno-
tator, the accuracy of ALLEVIATE increased as A decreased, and the highest accuracies were
observed when A = 0%, i.e. when all annotations were done by the Hosts (Fig 2). However, the
trade-off curves between accuracy and automation allow for large alleviation with sustained
high accuracy (Fig 4). Specifically, using the full training-set of available expert-annotated
images in the present study, A = 38-55% incurred < 5% decrease in Ko, compared to the
Hosts’ annotations (Fig 4A). Similarly, when alleviating the Visitors’ annotations, A = 38-65%
incurred < 5% decrease in k.o (Fig 4B). Moreover, a supplementary analysis established that
A =32-45% incurred < 5% decrease in accuracy when only 5,000 manual point-annotations
were used for training, which corresponds to ~ 25-200 training images for each of the four
locations (S1 Appendix).

The Mean Average Errors (MAEs) of cover estimates obtained using ALLEVIATE at A = 50%,
compared to cover estimates from the Archived annotations, were 1.3 £ 0.4% for coral,

2.0 £ 0.8% for macroalgae, 3.6 £ 1.0% for CCA, and 5.6 + 1.7% for turf algae (mean + SE, n = 4
locations, Fig 5). The 1.3% coral cover MAE corresponds to a relative error of ~ 4-6% at the
22-31% coral cover recorded across the four locations (Fig 6). These results should be viewed
in the context of the Hosts” MAEs, which were 1.3 + 0.6% for coral, 1.5 + 0.4% for macroalgae,
3.4 £ 2.0% for CCA, and 5.0 + 1.6% for turf algae (mean + SE, n = 4, Fig 5); and the Visitors’
MAESs, which were 2.2 + 0.4% for coral, 4.2 + 1.2% for macroalgae, 7.6 £ 2.1% for CCA, and
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doi:10.1371/journal.pone.0130312.9004

11.9 +2.0% for turf algae (mean + SE, n = 20, Fig 5). The ArLeviATE MAE for the three domi-
nant coral genera found in Moorea, the Line Islands, and Nanwan Bay was 0.5 + 0.2% (n =9,
Fig 5). Again, this was similar to the Hosts’ MAE of 0.5 + 0.2% (n = 9, Fig 5), and lower than
the Visitors’ MAE of 1.3 + 0.3% (n = 45, Fig 5). Notably, the ALLEVIATE cover estimates for the
three dominant coral genera in each location was only different from the Archived cover esti-
mates for one genera: Pocillopora in Nanwan Bay (Fig 6, S2 Table). It was also not different
from the Archived cover estimates with respect to coral cover as a functional group in any of
the locations (Fig 6, S2 Table).

The difference in accuracy ehlleviate _ Host (o 2 = 509%) was not correlated with benthic
cover (r =0.25, df = 33, p = 0.14, Fig 3B). The differences for coral as a group were around -5%
for the four locations, and between -9% and +3% for the coral genera (a positive difference
means that k""" was higher than ¥°*"). The only exception was Platygyra, where the differ-
ence was -28.0% at 1.6% cover and -15.3% at 0.5% cover in Nanwan Bay and Line Islands
respectively. The differences for algal functional groups were > -10%, except for macroalgae
and CCA in Nanway Bay where the differences were -19.8% at 6.5% cover, and -15.6% at 3.9%
cover, respectively.

Fully automated annotation using Abundance. Using the abundance correction method
of [35], the ABUNDANCE operational mode can be deployed without any manual annotations.
The MAE of cover estimates obtained in the ABUNDANCE mode was 1.8 + 1.5% for coral,

3.4 £ 2.3 for macroalgae, 4.1 + 2.1% for CCA, and 7.2 + 4.5% for turf algae (mean + SE, n = 4,
Fig 5). The ABUNDANCE cover MAE of the three dominant coral genera of Moorea, the Line
Islands, and Nanwan Bay was 1.5 + 0.5 (n = 9, Fig 5). As with ALLEVIATE, these errors should be
viewed in the context of the human errors.
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groups (coral, macroalgae, CCA, and turf) and the three most abundant coral genera in each location: (A) Moorea, (B) the northern Line Islands, (C) Nanwan
Bay, and (D) Heron Reef. Archived describes reference annotations, performed by a local expert in each location, against which the other results were
evaluated. ABunpaNnce and ALLEVIATE refer to fully and semi-automated annotation modes. Host refers to re-annotation by the same local expert. Visitors refer
to annotations completed by five coral biology experts who do not regularly work in those locations. Genus-level identification for Heron Reef is not provided,
as Archived annotations were not available to this resolution.

doi:10.1371/journal.pone.0130312.g005

Discussion
Annotator Accuracy

We have estimated the inter- and intra- annotator variability of human experts for annotating
coral reef survey images. Quantifying this variability is critical to contextualize the performance
of automated annotation methods. For example, if the accuracy of human experts were low for
a certain substratum, the automated annotation accuracy would be expected to be equally low
(since automated annotation methods are commonly trained on archived, manually annotated
data). Conversely, for labels where the human annotator accuracy is high (e.g., for coral gen-
era), our results establish baselines against which newer generations of automated annotation
systems can be compared.

Intra-annotator variability. Annotator accuracy was measured using Cohen’s kappa (x)
for intra- and inter- annotator agreement. While x is widely used to assess annotator agree-
ment for categorical data [38-40], there is no absolute scale against which values of x can be
gauged. For example, [41] characterized x < 0 as indicating no agreement, 0-20% as slight
agreement, 21-40% as fair agreement, 41-60% as moderate agreement, 61-80% as substantial
agreement, and > 81% as almost perfect agreement. In contrast, [42] characterized x < 40% as
poor agreement, 40-75% as fair-to-good agreement, and > 75% as excellent agreement. Using
these interpretations, the Host K o.q1 0f 89.7£1.2% should be considered an “excellent” or
“almost perfect” agreement between the Host and Archived annotations. Similar high accura-
cies have previously been noted for self consistency of human annotations of corals versus
other substratum [13,43]. Ninio et al. investigated accuracy (as defined by agreement with
in-situ observations) for video transects from coral reefs, and observed 96% accuracy for identi-
tying hard corals [13].

The intra-annotator accuracy of identifying algal substrata was lower than for corals. In par-
ticular, for CCA and turf algae Cohen’s kappa were 51.0+9.3% and 61.1+6.1%, respectively,
although this agreement can still be considered ‘moderate’ or ‘fair to good’ [41,42]. The lower
accuracy of algal classification may be due to methodological limitations in discriminating
algae in planar RGB photo-quadrats at common resolutions as used in the present study
(Table 1), but also due to the label definitions of the consensus label-set. For example, the con-
sensus label-set defined turf-algae as a “multi-specific assemblage < 1 cm in height”, while
macroalgae were “larger algae > 1 cm in height” (Table 2). Considering the planar nature of
the photo quadrats, such distinctions can be hard to apply consistently across photographs.
Ninio et al. observed 80% annotation accuracy of algae (as a ‘main benthic’ group) [13], which
is higher than our estimates of algal functional groups annotation accuracy. However, compari-
son of accuracy of algae as a ‘main benthic’ group, with algal functional groups (macroalgae,
turf algae, and CCA) is misleading, since the majority of the algal classification errors occurred
among the algal groups (S3 Fig). Merging the algal functional groups used in this study, the
Host accuracy of discriminating algae (macroalgae, turf algae and CCA combined) versus
everything else, was xjge = 71.1+1.6% (mean + SE, n = 4), which is similar to the 80% accuracy
recorded in [13].

The Hosts’ accuracies were not correlated with the abundance of the substratum of interest,
and were > 60% except for five rare substrata occupying < 5% of the benthos (Fig 3). The only
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additional exception was turf algae in Moorea, with 43% accuracy at 11.3% cover. These results
agree with the findings of Ninio et al. who noted highly variable precision when mean covers
were < 3%, but “markedly decreased” variability at higher covers (i.e., > 3%) [13].
Inter-annotator variability. Inter-annotator accuracy was lower than intra-annotator
accuracy. Differences were large in particular for CCA and turf algae, where the accuracies
were 35.5+3.7% and 43.3£3.6% respectively, which can be considered “fair” [41,42]. This lower
accuracy resulted in cover estimation errors by the Visitors that commonly exceeded 10%
(Fig 5). These results are in contrast with the results of Ninio et al., where the intra-annotator
variability only contributed + 0.5% to the confidence intervals for benthic group ‘Algae’ [13].
We believe this contrast has two principal causes. First, the multiple human annotators of
Ninio et al. were all familiar and trained in the ecology of the study location [13], while the Vis-
itors of the present study were less familiar with the local ecology and had not (with a few
exceptions) been physically present at the respective locations. Second, as noted above, Ninio
et al. do not report cover estimation on algal functional groups but only in aggregate. Still, it is
clear from our results that rigorous training of expert annotators is critical to achieve reliable
manual annotation of turf and CCA algal groups, in particular where there are multiple experts
involved in the annotation process. Another alternative is to use complementary imaging tech-
niques, such as fluorescence photography [44,45], to make the annotation task less ambigious.

Modes of Automated Annotation

Our results indicate that an automated annotator, deployed in our semi-automated annotation
mode, ALLEVIATE, can make 50% of the annotation decisions without affecting the quality of the
percent cover estimates (Figs 5 and 6), even when limited data are available for training the
automated annotator (S1 Appendix). In particular, ALLEVIATE cover estimates for the three
dominant coral genera in each location, and for the coral functional group, were not different
from the Archived cover estimates (Fig 6). The only exception was Pocillopora in Nanway Bay
which may be due to an erroneous Archived cover estimate, since also the Host’s, and three of
the Visitors’, cover estimates differed (Fig 6). Since the investigated locations exhibit a wide
variety of photographic methodology and habitat structures (Table 1), we believe these results
generalize to other coral reef survey locations, suggesting a wide applicability of ALLEVIATE to
reduce manual annotation work. We further believe that the deployment of ALLEVIATE may
increase the accuracy of the human annotators by allowing them to focus their attention on a
subset of the annotation decisions. This effect has been demonstrated for semi-automated
annotation of plankton samples [46], but would need to be verified in a future user-study for
the present application.

Differences in accuracy between ALLEVIATE and the Hosts were generally small (< 10%), and
not correlated with the substratum abundances (Fig 3). Two outliers were noted. First, the
accuracy of ALLEVIATE for Platygyra was 15-29% lower than for the Hosts (recorded at < 2%
cover). This may be due to the limited amount of available training data for Platygyra (due to
the low cover), and the visual similarity to other massive or encrusting corals with meandroid
or submeandroid corallum morphologies. Second, the accuracy of ALLEVIATE was 16% and 20%
lower for macroalgae and CCA in Nanwan Bay respectively (both recorded at < 7% cover).
This may be due to a combination of limited amount of available training data, and limitations
in the photographic methodology indicated by the low accuracy of the Host: 60.4% and 30.3%
respectively for macroalgae and CCA (Fig 2, S1 Table).

ALLEVIATE uses the classification scores to decide when to make an automated annotation
and when to defer to a human expert. To the best of our knowledge, this approach has not ben
utilized for annotation of coral reef survey images. However, a similar approach was used for
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classification of plankton images acquired using imaging in-flow cytometry, where the specific-
ity of the classifier increased for all classes when only considering decisions where the classifier
was > 65% confident [47,48].

We have also evaluated the efficacy of a fully automated annotation mode ABUNDANCE. Our
results indicates that ABUNDANCE generates unbiased cover estimates, but with larger standard
errors (Fig 5), which is to be expected by the design of the abundance correction method [35].
Large standard errors are undesirable, but can be reduced by collecting and automatically ana-
lyzing more images. In fact, the introduction of fully automated annotation can inform the
underlying random sampling survey design, where for example, more images of coral reefs
could be collected in the field (which is often relatively easy and cost effective) in order to com-
pensate for the larger variance of fully automated annotation modes such as ABUNDANCE [49].

As with ALLEVIATE, the underlying principle of ABUNDANCE has been utilized in other applica-
tions. Indeed, it was originally proposed for automated plankton classification [35], and it has
been commonly utilized for that purpose [47]. It has also been utilized for sentiment analysis
from text corpora [36].

In order for ABUNDANCE to generate unbiased cover estimates, the confusion matrix for the
data that is being sampled must be known [35]. In our experiments, the training data (i.e., the
Reference Sets) were drawn from the same underlying probability density as the sampled data
(i.e., the Evaluation Sets), and the confusion matrices could thus be estimated from the training
data. If, however, the training data and the sampled data are drawn from different locations,
sites, or years, the probability densities may be different [50,51]. In such situations a subset of
the sampled data must be annotated in order to estimate the confusion matrix, and ABUNDANCE
can no longer be considered fully automated. However, it may still offer significant savings
compared to ALLEVIATE or fully manual annotation.

Conclusions

We have established baseline accuracies of human expert annotations of coral reef survey
images, and compared them to a recent method for automated annotation. Our results indicate
that the accuracy of human experts varies with the type of benthic substrata. Annotations of
coral genera have low inter- and intra- annotator variability, while annotations of algal groups,
in particular turf and CCA algae, from those same survey images, have much larger intra- and
inter- annotator variability. This suggests the need for development of photographic methodol-
ogy for visualizing turf and CCA algal groups, and for rigorous training of expert annotators.

We have proposed two modes of operations in which methods for automated annotation
can be deployed semi- or fully- automated. Our results indicate that cover estimates from the
semi- automated annotation mode, ALLEVIATE are of similar quality to cover estimates of man-
ual annotations, while the cover estimates of the fully- automated mode, ABUNDANCE, are unbi-
ased but with higher variance. The appropriate deployment mode will depend on the specific
application. A reef manager for example, might utilize ABUNDANCE for rapid assessment of reef
health, while a benthic ecologist might prefer ALLEVIATE, which requires greater manual effort
but is more accurate. We expect the reduction of annotation time to continue as improved
methods for automated annotation become available. Implementations of the proposed modes
of operation (ALLEVIATE, ABUNDANCE, and REFINE (S1 Appendix)) are available to the public on
CoralNet (coralnet.ucsd.edu).

Supporting Information

S1 Appendix. Supplementary analysis and information. Content: (1) Details of Coral Reef
Survey Locations; (2) Classification Using Linear Support Vector machines; (3) Importance of
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Training Size for ALLEVIATE; (4) REFINE: a Supplementary Operational Mode. S1 Appendix also
includes figures related to the appendix.
(PDF)

S1 Fig. Sample photoquadrats. Sample photoquadrats drawn from the long-term coral reef
projects that served as test data for the present analysis. (First row) 4 photoquadrats (50 x 50
cm) from Moorea; (second row) 3 photoquadrats (65 x 90 cm) from the Line Islands; (third

row) 4 photoquadrats (35 x 35 cm) from Nanwan Bay (Taiwan); (bottom row) 3 photoqua-

drats (50 x 65 cm) from Heron Reef (GBR).

(PDF)

S2 Fig. Screenshots from CoralNet. A) Graphical user interface used to create the Hosts” and
Visitors” annotations. B) Browse tool used by the Visitors to learn about the images and the
label-set from previous annotations. The screen-shot shows the result of a user searching for all
Pocillopora annotations from the Line Islands dataset.

(PDF)

S3 Fig. Confusion matrices. Confusion matrices for Moorea, Line Islands, Nanwan Bay and
Heron Reef. Values at row r, column c in the matrices indicate the ratio of annotations origi-
nally labeled by Archived as label r now classified by the Host, Visitors, and automated annota-
tor, respectively as label c. The numbers on the right margin indicate the total count of each
row. For brevity, all annotations of the Visitors are merged into a single confusion matrix and
only labels for which more than 10 annotations were assigned by any of the annotators were
included.

(PDF)

S1 Table. Tabulated accuracies. Annotation accuracies as measured by Cohen’s kappa for the
automated annotator (Aut.), ALLEVIATE at A = 50% (ALL.), Hosts, and Visitors. All accuracies
are measured as compared to the Archived annotations. The first row in each location is the
accuracy of the full confusion matrix, while the other rows indicate the accuracy of binary clas-
sification between the indicated label or label group and the other labels. These labels or label
groups are: functional groups coral, macroalgae, crustose coralline algae (CCA), and turf algae,
followed by the dominant coral genera (i.e. with > 10 Archived annotations), and the hydro-
zoan Millepora if present in that location. The coral genera are ordered by percent cover based
on the Archived annotations. Note that coral genera are not included for Heron Reef because
the annotations were not resolved to genus level in the original study. The rightmost column
shows the percent cover based on the Archived (Arch.) annotations.

(PDF)

S2 Table. Tabulated p-values. Probabilities that the estimated cover from a set of annotations
and for a certain label and location is the same as the cover estimated from the Archived anno-
tations. Probabilities (p-values as estimated from the permutation t-test) in red italics are
below 0.05 / 8 = 0.00625, which means that the null hypothesis can be rejected at a 95% confi-
dence level with a Bonferroni correction for eight repeated measurements. This implies that
the particular set of annotations is unreliable for cover estimation. For each location, the first
four rows are the functional groups: coral, macroalgae, crustose coralline algae (CCA), and turf
algae, followed by the dominant coral genera (i.e. with > 10 Archived annotations), and the
hydrozoan Millepora if present in that location. The coral genera are ordered by percent cover
based on the Archived annotations. Note that coral genera are not included for Heron Reef
because the annotations were not resolved to genus level in the original study. Columns ABU
and ALL are the ABUNDANCE and ALLEVIATE annotation modes respectively, and V1 to V5 are
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the Visitors. The rightmost column shows the percent cover based on the Archived (Arch.)
annotations.
(PDF)
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