Lawrence Berkeley National Laboratory

Recent Work

Title

MEASUREMENT OF K~-MESONIC X RAYS FROM Li, Be, B AND C

Permalink

https://escholarship.org/uc/item/9cd8s2sj

Authors

Wiegand, Clyde E. Mack, Dick A.

Publication Date 1967-02-01

UCRL-17390

University of California

Ernest O. Lawrence Radiation Laboratory

MEASUREMENT OF K⁻-MESONIC X RAYS FROM Li, Be, B, AND C

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Submitted to Phys. Rev. Letters

UCRL-17390 Preprint

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

MEASUREMENT OF K⁻-MESONIC X RAYS FROM Li, Be, B, AND C

Clyde E. Wiegand and Dick A. Mack

February 1967

MEASUREMENT OF K -MESONIC X RAYS FROM Li, Be, B, and C*

Clyde E. Wiegand and Dick A. Mack

Lawrence Radiation Laboratory, University of California, Berkeley, California

February 1967

K⁻-mesonic x rays were first observed in He by Burleson et al.⁽¹⁾ We report here the measurements on several lines emitted by the light elements Li⁷, Be⁹, B^{nat}, and C¹² and compare them with the predictions of Eisenberg and Kessler (E-K).⁽²⁾ The K particle beam is described as Beam No. 5 in the 1966 Bevatron Experimenters Handbook.⁽³⁾ Particles of momentum 500 ± 10 MeV/c FWHM were slowed down in an energy degrader equivalent to 47 g cm⁻² C in the arrangement shown in Fig. 1. The targets in which the K⁻ mesons stopped were 5×5 cm² transverse to the beam and had the following lengths and thicknesses: LiH 6.0 cm , 4.4 g cm⁻²; Be 6.2 cm , 11.4 g cm⁻²; B 6.0 cm , 3.2 g cm⁻²; and CH₂ 6.0 cm , 5.5 g cm⁻².

Two separate systems were used to measure the x rays.

1) an array of 4 lithium-drifted silicon detectors 0.3 cm thick with a sensitive area diameter of 1 cm each.

2) a lithium-drifted germanium detector 2.1 × 1.5 cm² by 0.4 cm thick. The detectors were placed as close as practicable to the targets as
indicated in Fig. 1. Each detector element was connected directly to the
gate of a field effect transistor and they were operated in vacuum at temperatures prescribed by Bowman et al.⁽⁴⁾

Each Si(Li) detector had its own pre-amplifier and amplifier. The 4 channels connected to the Si detectors were electronically identical and

Work performed under the auspices of the U.S. Atomic Energy Commission.

their amplifier outputs were joined together by a mixer circuit of conducting transistors. The combined signals were fed to a pulse height analyzer (PHA) for accumulation of the data. The Ge(Li) detector channel was conventional and was connected to a separate PHA.

The electronic command to store data was generated by the K particle counter telescope consisting of scintillation counters $S_1, S_2, S_3, S_4, \bar{S}_5$ and Cherenkov counter \bar{c} , (\bar{s}_5 and \bar{c} were connected in anticoincidence). of high specific ionization. A count in S_1 , \overline{C} , S_2 , S_3 , S_4 , \overline{S}_5 indicated that a low velocity particle had either stopped in or scattered out of the target. From a range curve of telescope counts versus degrader thickness we estimate that about 0.9 of the events S_1 , \overline{C} , S_2 , S_3 , S_4 , \overline{S}_5 were caused by K mesons stopping in the target. Counter \bar{S}_5 actually had the shape of a 5 sided box and was placed around the target when π^- mesons were stopped for calibration purposes. \bar{S}_5 could not be left around the target when K particles were stopped because the K reaction products would cause many events to be vetoed. For example, $K^{-} + p \rightarrow \Sigma^{+} + \pi^{-}$ in which the pions would be counted by \bar{S}_5 . The signals generated by stopping K particles were used to open gates at the entrance to the PHA's. No coincidence signals from the x-ray detectors were required to open the gates.

The number of K stopped per Bevatron pulse depended upon the intensity of the external proton beam and the thickness of the target. Most of the data was collected by stopping about 10 K per pulse although 50 per pulse were attainable at 10 pulses per minute.

In practice a period of operation was started and ended by calibrating

the apparatus with an Am^{241} source of x rays. The individual channels of the Si(Li) detectors were adjusted separately to make their pulse height outputs equal for a selected spectral line. The fact that the resolution was practically the same with one or more detectors contributing to a stored spectrum shows that the channels were remarkably linear in output with respect to x-ray energy. All amplifier circuits had excellent stability. Spectrum peaks shifted no more than one channel out of 100 channels during any run of typically 12 hrs duration. K⁻-mesonic spectra were printed out at intervals of 2 to 4 hrs in order to safeguard the accumulated data in event of a power or equipment failure.

Figure 2 presents the accumulated spectra. The three lines of Am^{241} serve only to determine the energy scale of the LiH data and are not part of the efficiency calibration. The LiH spectrum was taken before the Ge(Li) detector was put into operation. For the LiH data only we used the second PHA to measure background. This was accomplished by delaying one of the PHA gates to open 5 µsec after each K⁻ stop. The net number of counts in each channel is plotted along with the background that was sub-tracted. This particular kind of background amounted to 23 percent of the total number of counts. In the early stages of the experiment several spectra were taken of K⁻ stopped in LiH under various beam conditions and amplifier settings. The main peak always came at 15.3 keV.

The spectrum taken with the Ge(Li) detector of K stopped in CH_2 is composed of two runs taken at different amplifier gain settings. The energy scale of one spectrum was adjusted to coincide with the other. All the other spectra are plotted from PHA printouts without any kind of manipu-

-3-

lation of the data. Energy scales were determined by Am²⁴¹ calibrations.

Table I presents a summary of the results. Explicit transitions are listed along with their Klein-Gordon energies even though states with the same principal quantum number have nearly the same energies. If Stark mixing is important other transitions may occur including those to l = 0 and consequent absorption by the nucleus. Within the limits of our detector resolution all the observed lines are consistent with K-G energies. We tried especially to find a line from C^{12} in the region of 63 keV (3d \rightarrow 2p) because the energy was predicted by E-K to be 1.15 keV higher than the K-G energy. Unfortunately the yield of x rays from transitions to n = 2 was too low to detect in our experiment.

The yield is defined as the number of x rays in a given spectral line per stopped K⁻ meson. To find the yield we must determine three quantities: (1) the number of x rays in the line under investigation (2) the number of K⁻ stopped in the target and (3) the efficiency to detect the x rays. The number of x rays was determined by estimating the counts in the peaks of the spectra. Although the Am^{241} spectra give an idea of the resolution, the true resolution might be compromised due to extraneous pions passing the through the target and general ambient backgrounds. The background must be estimated from the performance in channels adjacent to the peaks. Finally, the limited number of events sets a statistical limit on the accuracy.

The number of stopped K was estimated from a range curve to be 90 percent of the trigger rate.

The detector efficiencies given in Table I stem from a calibrated

-4-

source of Am²⁴¹ procured from the Vienna office of the International Atomic Energy Agency. The standard source is said to emit 1.60×10^5 sec⁻¹ x rays at 59.54 keV. However, we are interested in the emissions at 26.4, 20.8, 17.8 and 14.0 keV and have used the work of Magnusson⁽⁵⁾ who gave the relative intensities of the above lines as: 100, 7.0, 13.8, 51.2 and 37.5 respectively. In practice the standard source was placed at several positions within the Be and CH, targets which were made up of slabs. Then the average counting rates of each line were determined with the detectors in their regular positions. It was impractical to put the source inside the LiH and B targets so extrapolations from external positions were made. The average over the target volumes was justified because the K particles stopped with an almost uniform distribution throughout the target. Having determined the efficiencies (counting rate/source rate) at the energies of the Am²⁴¹ lines we could interpolate to the efficiencies at other x-ray energies. The yields predicted by E-K were based on initial distribution of K mesons in the n = 14 level of the type $(2\ell + 1) \exp 0.2\ell$. The cascading process was presumed to be governed by conventional radiative and Auger transition probabilities. Finally, it was necessary to assume a parameter that characterized the strength of absorption of K by the nucleus.

Eisenberg and Kessler predicted the <u>total</u> yields of the x-ray series L, M, N, etc. for 3 values of a nuclear capture parameter; $\tau_{\rm K} = \hbar/2W$, where $\tau_{\rm K}$ is the mean life of K⁻ in nuclear matter and W is the imaginary part of the optical potential. They also list the ratios $L_{\alpha}/L_{\rm tota2} \simeq 0.7$ for Z = 3 to 7. We measured the L_{α} yields for Li, Be, and B and

-5-

can compare them with the predicted values of E-K (figure 1 of reference 2) by dividing the experimental values by $\simeq 0.7$. Our values are consistently lower than the theoretical curves implying that the nuclear absorption is stronger than anticipated. We also measured yields for M_{α} , M_{β} and M_{γ} from C^{12} and find agreement with the predicted value of the ratio $M_{\alpha}/M_{total} \simeq 0.7$ for Z = 5 and 6. By dividing our M_{α} yields for B and C by 0.7 we can compare the experimental total M yields with the predicted values. Here we find somewhat better agreement. At the n = 3 level for Z = 5 and 6 the yields are not affected by nucleon capture but depend upon the initial meson distribution and the cascade mechanism.

Von Hippel and Douglas⁽⁶⁾ and Uretsky⁽⁷⁾ have attempted to fit to a satisfactory theory the results of Burleson et al.⁽¹⁾ on K⁻-mesonic x rays from He. The results of our work point to the need of further theoretical studies. In the meantime we hope to extend and improve the present experiment.

We wish to express our appreciation for the work of Terry Ricketts on the electronics. We gratefully acknowledge the contributions of our colleagues for making the detectors and the loan of their equipment. We wish to thank the Bevatron crew for their cooperation. Our appreciation is expressed to Professor E. Segrè for his suggestion that we search for the K⁻-mesonic x rays and his continued interest.

-6-

TABLE I. Summary of data.

CCC)

Isotope	Transition	K-G keV	Number K stopped	Number x rays	Detector type	Detection efficiency	Yield exper'tal
Li ⁷	3d → 2p	15.3	215 000	225	Si(Li)	5 × 10 ⁻³	0.21±0.07
Be ⁹	3d → 2p	27.6	99 000	60	Si(Li)	4 × 10 ⁻³	0.15±0.06
Bnat	3d → 2p	43.6	81 000	40	Ge(Li)	7 × 10 ⁻³	0.07±0.03
Bnat	4f → 3d	15.2	81 000	50	Si(Li)	2 × 10 ⁻³	0.3 ±0.15
c ^{l2}	3d → 2p	63.0	186 000		Ge(Li)	7 × 10 ⁻³	< 0.04
c ¹²	4f → 3d	22.0	190 000	220	Si(Li)	5 × 10 ⁻³	0.23±0,07
c ₁₅	4f → 3d	22.0	186 000	150	Ge(L1)	4 × 10 ⁻³	0.20±0.07
c ¹²	5f → 3d	32.2	186 000	45	Ge(Li)	6 × 10 ⁻³	0.04±0.02
c ¹²	6f → 3d	37.8	186 000	45	Ge(Li)	6 x 10 ⁻³	0.04±0.02

-7-

REFERENCES

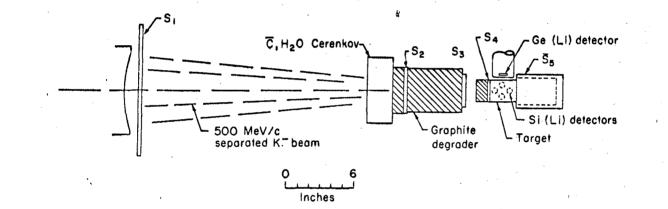

- 1. G. R. Burleson, D. Cohen, R. C. Lamb, D. N. Michael, and R. A. Schluter, Phys. Rev. Letters <u>15</u>, 70 (1965).
- 2. Y. Eisenberg and D. Kessler, Phys. Rev. 130, 2352 (1963).
- Bevatron Experimenters Handbook, Lawrence Radiation Laboratory Report No. UCRL-17333, unpublished.
- 4. Harry R. Bowman, Earl K. Hyde, Stanley G. Thompson, and Richard C. Jared, Science <u>151</u>, 562 (1966).
- 5. L. B. Magnusson, Phys. Rev. <u>107</u>, 161 (1957).
- 6. F. von Hippel and J. Douglas, Phys. Rev. <u>146</u>, 1042 (1966).
- 7. J. Uretsky, Phys. Rev. <u>147</u>, 906 (1966).

FIGURE CAPTIONS

REGI

Fig. 1. Plan view schematic of the arrangement of the apparatus.
Fig. 2. Experimental x-ray spectra. The curves above the LiH spectrum show how the energy scales were established by means of an Am²⁴¹ source. Only the LiH data had a background subtracted and this background is shown immediately beneath the LiH data.

-9-

X8L672-866

a the second

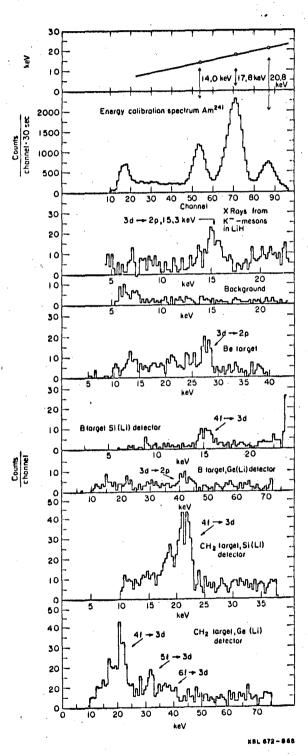


Fig. 2

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor. ÷