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Abstract In this paper we discuss symmetrically self-dual spaces, which are simply
real vector spaces with a symmetric bilinear form. Certain subsets of the space will be
called q-positive, where q is the quadratic form induced by the original bilinear form.
The notion of q-positivity generalizes the classical notion of the monotonicity of a
subset of a product of a Banach space and its dual. Maximal q-positivity then gen-
eralizes maximal monotonicity. We discuss concepts generalizing the representations
of monotone sets by convex functions, as well as the number of maximally q-positive
extensions of a q-positive set. We also discuss symmetrically self-dual Banach spaces,
in which we add a Banach space structure, giving new characterizations of maximal
q-positivity. The paper finishes with two new examples.
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1 Introduction

In this paper we discuss symmetrically self-dual spaces, which are simply real vector
spaces with a symmetric bilinear form. Certain subsets of the space will be called
q-positive, where q is the quadratic form induced by the original bilinear form. The
notion of q-positivity generalizes the classical notion of the monotonicity of a subset
of a product of a Banach space and its dual. Maximal q-positivity then generalizes
maximal monotonicity.

A modern tool in the theory of monotone operators is the representation of mono-
tone sets by convex functions. We extend this tool to the setting of q -positive sets.
We discuss the notion of the intrinsic conjugate of a proper convex function on an
SSD space. To each nonempty subset of an SSD space, we associate a convex func-
tion, which generalizes the function originally introduced by Fitzpatrick [2] for the
monotone case in. In the same paper he posed a problem on convex representations
of monotone sets, to which we give a partial solution in the more general context of
this paper.

We prove that maximally q-positive convex sets are always affine, thus extending
a previous result in the theory of monotone operators [1,4].

We discuss the number of maximally q-positive extensions of a q-positive set. We
show that either there are an infinite number of such extensions or a unique extension,
and in the case when this extension is unique we characterize it. As a consequence
of this characterization, we obtain a sufficient condition for a monotone set to have a
unique maximal monotone extension to the bidual.

We then discuss symmetrically self-dual Banach spaces, in which we add a Banach
space structure to the bilinear structure already considered. In the Banach space case,
this corresponds to considering monotone subsets of the product of a reflexive Banach
space and its dual. We give new characterizations of maximally q-positive sets, and
of minimal convex functions bounded below by q.

We give two examples of q-positivity: Lipschitz mappings between Hilbert spaces,
and closed sets in a Hilbert space.

2 Preliminaries

We will work in the setting of symmetrically self-dual spaces, a notion introduced in
[9]. A symmetrically self-dual (SSD) space is a pair (B, �·, ·�) consisting of a nonzero
real vector space B and a symmetric bilinear form �·, ·� : B × B → R. The bilinear
form �·, ·� induces the quadratic form q on B defined by q(b) = 1

2�b, b�. A nonempty
set A ⊂ B is called q- positive [9, Definition 19.5] if b, c ∈ A ⇒ q(b − c) ≥ 0.

A set M ⊂ B is called maximally q-positive [9, Definition 20.1] if it is q-positive
and not properly contained in any other q-positive set. Equivalently, a q-positive
set A is maximally q-positive if every b ∈ B which is q-positively related to A
(i.e. q(b − a) ≥ 0 for every a ∈ A) belongs to A. The set of all elements of B that
are q-positively related to A will be denoted by Aπ . The closure of A with respect
to the (possibly non Hausdorff) weak topology w (B, B) will be denoted by Aw.

Given an arbitrary nonempty set A ⊂ B, the function �A : B → R ∪ {+∞} is
defined by
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�A(x) := q(x) − inf
a∈A

q(x − a) = sup
a∈A

{�x, a� − q(a)}.

This generalizes the Fitzpatrick function from the theory of monotone operators. It
is easy to see that �A is a proper w (B, B)-lsc convex function. If M is maximally
q-positive then

�M (b) ≥ q(b), ∀ b ∈ B, (1)

and

�M (b) = q(b) ⇔ b ∈ M. (2)

A useful characterization of Aπ is the following:

b ∈ Aπ if and only if �A(b) ≤ q(b). (3)

The set of all proper convex functions f : B → R ∪ {+∞} satisfying f ≥ q on B
will be denoted by PCq(B) and, if f ∈ PCq(B),

Pq( f ) := {b ∈ B : f (b) = q(b)}. (4)

We will say that the convex function f : B → R ∪ {+∞} is a q-representation of a
nonempty set A ⊂ B if f ∈ PCq(B) and Pq( f ) = A. In particular, if A ⊂ B admits
a q-representation, then it is q-positive [9, Lemma 19.8]. The converse is not true in
general, see for example [9, Remark 6.6].

A q-positive set in an SSD space having a w (B, B)-lsc q -representation will be
called q-representable (q-representability is identical with S-q-positivity as defined in
[8, Def. 6.2] in a more restrictive situation). By (1) and (2), every maximally q-positive
set is q-representable.

If B is a Banach space, we will denote by 〈·, ·〉 the duality products between B and
B∗ and between B∗ and the bidual space B∗∗, and the norm in B∗ will be denoted
by ‖ · ‖ as well. The topological closure, the interior and the convex hull of a set
A ⊂ B will be denoted respectively by A, int A and convA. The indicator function
δA : B → R ∪ {+∞} of A ⊂ B is defined by

δA (x) :=
{

0 if x ∈ A
+∞ if x /∈ A

.

The convex envelope of f : B → R ∪ {+∞} will be denoted by conv f, and the
domain of f is dom f := f −1 (R) . The domain of a set-valued operator T : X ⇒ X∗
is DomT := {x ∈ X : T (x) �= ∅}.

3 SSD spaces

Following the notation of [5], for a proper convex function f : B → R ∪ {+∞}, we
will consider its intrinsic (Fenchel) conjugate f @ : B → R ∪ {+∞} with respect to
the pairing �·, ·� :
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f @(b) := sup{�c, b� − f (c) : c ∈ B}.

Proposition 1 [5,9] Let A be a q-positive subset of an SSD space B. The following
statements hold:

(1) For every b ∈ B,�A(b) ≤ �@
A (b) and q(b) ≤ �@

A (b);
(2) For every a ∈ A,�A(a) = q(a) = �@

A (a);
(3) �@

A is the largest w (B, B)-lsc convex function majorized by q on A;
(4) A is q-representable if, and only if, Pq(�@

A ) ⊂ A;
(5) A is q-representable if, and only if, for all b ∈ B such that, for all c ∈ B, �c, b� ≤

�A(c) + q (b) , one has b ∈ A.

Proof (1) and (2). Let a ∈ A and b ∈ B. Since A is q -positive, the infimum
infa′∈A q(a − a′) is attained at a′ = a; hence we have the first equality in (2). Using
this equality, one gets

�@
A (b)=sup

c∈B
{�c, b�−�A(c)} ≥ sup

a∈A
{�a, b�−�A(a)}= sup

a∈A
{�a, b�−q(a)}=�A(b),

which proves the first inequality in (1). In view of this inequality, given that �@
A (b) =

supc∈B{�c, b� − �A(c)} ≥ �b, b� − �A(b) = 2q (b) − �A(b), we have �@
A (b)

≥ max {2q (b) − �A(b),�A(b)} = q (b) + |q (b) − �A(b)| ≥ q (b) , so that the
second inequality in (1) holds true. From the definition of �A it follows that �A(c) ≥
�c, a� − q(a) for every c ∈ B; therefore

�@
A (a) = sup

c∈B
{�c, a� − �A(c)} ≤ q (a) .

From this inequality and the second one in (1) we obtain the second equality in (2).
(3) Let f be a w (B, B)-lsc convex function majorized by q on A. Then, for all

b ∈ B,

�A(b) = sup
a∈A

{�b, a� − q (a)} = sup
a∈A

{�a, b� − q (a)}

≤ sup
a∈A

{�a, b� − f (a)} ≤ sup
c∈B

{�c, b� − f (c)} = f @ (b) .

Thus �A ≤ f @ on B. Consequently f @@ ≤ �@
A on B. Since f is w (B, B)-lsc,

from the (non Hausdorff) Fenchel–Moreau theorem [10, Theorem 10.1], f ≤ �@
A on

B.

(4) We note from (1) and (2) that �@
A ∈ PCq(B) and A ⊂ Pq(�@

A ). It is clear from
these observations that if Pq(�@

A ) ⊂ A then �@
A is a w (B, B) -lsc q-representation of

A. Suppose, conversely, that A is q-representable, so that there exists a w(B; B)-lsc
function f ∈ PCq(B) such that Pq( f ) = A. It now follows from (3) that f ≤ �@

A
on A, and so Pq(�@

A ) ⊂ Pq( f ) = A.

(5) This statement follows from (4), since the inequality �c, b� ≤ �A(c) + q (b)

holds for all c ∈ B if, and only if, b ∈ Pq(�@
A ). ��

The next results should be compared with [8, Theorems 6.3.(b) and 6.5.(a)].
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Corollary 2 Let A be a q-positive subset of an SSD space B. Then Pq(�@
A ) is the

smallest q-representable superset1 of A.

Proof By Proposition 1(2), Pq(�@
A ) is a q-representable superset of A. Let C be a q-

representable superset of A. Since A ⊂ C, we have �A ≤ �C and hence �@
C ≤ �@

A .

Therefore, by Proposition 1(4), Pq(�@
A ) ⊂ Pq(�@

C ) ⊂ C . ��
Corollary 3 Let A be a q-positive subset of an SSD space B, and denote by C the
smallest q-representable superset of A. Then �C = �A.

Proof Since A ⊂ C, we have �A ≤ �C . On the other hand, by Corollary 2, C =
Pq(�@

A ); hence �@
A is majorized by q on C. Therefore, by Proposition 1(3), �@

A ≤
�@

C . Since �A and �C are w (B, B)-lsc, from the (non Hausdorff) Fenchel–Moreau
theorem [10, Theorem 10.1], �C = �@@

C ≤ �@@
A = �A. We thus have �C = �A.

��
We continue with a result about the domain of �@

A which will be necessary in the
sequel.

Lemma 4 [about the domain of �@
A ] Let A be a q-positive subset of an SSD space

B. Then,

convA ⊂ dom�@
A ⊂ convw A.

Proof Since �@
A coincides with q in A, we have that A ⊂ dom�@

A , hence from the
convexity of �@

A it follows that

convA ⊂ dom�@
A .

On the other hand, from Proposition 1(3) �@
A + δconvw A ≤ �@

A , because �@
A +

δconvw A is w (B, B)-lsc, convex and majorized by q on A. Thus,

dom�@
A ⊂ dom

(
�@

A + δconvw A

)
⊂ convw A.

This finishes the proof. ��

3.1 On a problem posed by Fitzpatrick

Let B be an SSD space and f : B → R ∪ {+∞} be a proper convex function. The
generalized Fenchel–Young inequality establishes that

f (a) + f @(b) ≥ �a, b�, ∀ a, b ∈ B. (5)

1 By a superset of A we mean a subset of B which contains A.
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We define the q-subdifferential of f at a ∈ B by

∂q f (a) :=
{

b ∈ B : f (a) + f @(b) = �a, b�
}

and the set

G f := {b ∈ B : b ∈ ∂q f (b)}.

In this subsection we are interested in identifying sets A ⊂ B with the property that
G�A = A. The problem of characterizing such sets is an abstract version of an open
problem on monotone operators posed by Fitzpatrick [2, Problem 5.2].

Proposition 5 Let B be an SSD space and f : B → R ∪ {+∞} be a w (B, B)-lsc
proper convex function such that G f �= ∅. Then the set G f is q-representable.

Proof Taking the w (B, B)-lsc proper convex function h := 1
2 ( f + f @), we have

that

G f = Pq(h).

��
Theorem 6 Let A be a q-positive subset of an SSD space B. Then

(1) A ⊂ Pq(�@
A ) ⊂ G�A ⊂ Aπ ∩ convw A;

(2) If A is convex and w (B, B)-closed,

A = G�A ;

(3) If A is maximally q-positive,

A = G�A .

Proof (1) By Proposition 1(2), we have the first inclusion in (1). Let b ∈ Pq(�@
A ).

Since �A(b) ≤ �@
A (b) = q(b), we get

2q(b) ≤ �A(b) + �@
A (b) ≤ 2q(b).

It follows that b ∈ G�A . This shows that Pq(�@
A ) ⊂ G�A . Using Proposition

1(1), we infer that for any a ∈ G�A ,�A(a) ≤ q(a), so G�A ⊂ Aπ . On the
other hand, since G�A ⊂ dom�@

A , Lemma 4 implies that G�A ⊂ convw A.

This proves the last inclusion in (1).
(2) This is immediate from (1) since convw A = A.

(3) This follows directly from Proposition 5 and (1). ��
Proposition 7 Let A be a nonempty subset of an SSD space B and let D be a w (B, B)-
closed convex subset of B such that
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�A(b) ≥ q(b) ∀ b ∈ D. (6)

Suppose that Aπ ∩ D �= ∅. Then Aπ ∩ D is q-representable.

Proof We take f = �A +δD; this function is w (B, B)-lsc, proper (because Aπ �= ∅)
and convex. Let b ∈ B be such that f (b) ≤ q(b), so

�A(b) ≤ q(b) and b ∈ D.

This implies that b ∈ Aπ ∩ D. From (6) we infer that f (b) = �A(b) = q(b). It
follows that f ∈ PCq(B). It is easy to see that f is a q-representative function for
Aπ ∩ D. ��
Proposition 8 Let A be a q-positive subset of an SSD space B. If C = Aπ ∩ convw A
is q-positive, then

C = G�C = Cπ ∩ convwC.

Proof Clearly convw A ⊃ C, from which convw A ⊃ convwC. Since C ⊃ A, Aπ ⊃
Cπ . Thus C = Aπ ∩ convw A ⊃ Cπ ∩ convwC. However, from Theorem 6(1),
C ⊂ G�C ⊂ Cπ ∩ convwC . ��
Proposition 9 Let A be a q-positive subset of an SSD space B. If

�A(b) ≥ q(b) ∀ b ∈ convw A, (7)

then

G�A = Pq(�@
A ).

Proof It is clear from Theorem 6(1) and (7) that, for all b ∈ G�A ,�A(b) = q(b);
thus �@

A (b) = �b, b� − �A(b) = q(b), so G�A ⊂ Pq(�@
A ). The opposite inclusion

also holds, according to Theorem 6(1). ��
Corollary 10 Let A be a q-positive subset of an SSD space B. If �A ∈ PCq(B), then

G�A = Pq(�@
A ).

Proposition 11 Let A be a q-representable subset of an SSD space B. If�A(b) ≥ q(b)

for all b ∈ convw A, then

A = G�A .

Proof Since A is a q-representable set, A = Pq( f ) for some w (B, B)-lsc f ∈
PCq(B). By Proposition 1(3), f ≤ �@

A ; hence, by Proposition 1(4), Pq( f ) ⊃
Pq(�@

A ) ⊃ A = Pq( f ), so that A = Pq(�@
A ). The result follows by applying

Proposition 9. ��
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Lemma 12 Let A be a q-positive subset of an SSD space B. If for some topologi-
cal vector space Y there exists a w (B, B) -continuous linear mapping f : B → Y
satisfying

(1) f (A) is convex and closed,
(2) f (x) = 0 implies q(x) = 0, then

�A(b) ≥ q(b) ∀ b ∈ convw A. (8)

Proof Since

f (A) ⊂ f
(
convw A

) ⊂ conv f (A) = f (A),

it follows that

f
(
convw A

) = f (A).

Let b ∈ convw A. Then there exists a ∈ A such that f (b) = f (a), hence f (a−b) = 0.

By 2, q(a − b) = 0, and so we obviously have (8). ��
Corollary 13 Let T : X ⇒ X∗ be a representable monotone operator on a Banach
space X. If DomT (RanT ) is convex and closed, then

T = GϕT .

Proof Take f = PX or f = PX∗ , the projections onto X and X∗, respectively, in
Lemma 12 and apply Proposition 11. Notice that when X × X∗ is endowed with the
topology w(X × X∗, X∗ × X), PX and PX∗ are continuous onto X with its weak
topology and X∗ with the weak ∗ topology, respectively. ��

3.2 Maximally q-positive convex sets

The following result extends [4, Lemma 1.5] (see also [1, Thm. 4.2 ]).

Theorem 14 Let A be a maximally q-positive convex set in an SSD space B. Then A
is actually affine.

Proof Take x0 ∈ A. Clearly, the set A − x0 is also maximally q-positive and convex.
To prove that A is affine, we will prove that A − x0 is a cone, that is,

λ (x − x0) ∈ A − x0 for all x ∈ A and λ ≥ 0, (9)

and that it is symmetric with respect to the origin, that is,

− (x − x0) ∈ A − x0 for all x ∈ A. (10)

Let x ∈ A and λ ≥ 0. If λ ≤ 1, then λ (x − x0) = λx + (1 − λ) x0 − x0 ∈ A − x0,

since A is convex. If λ ≥ 1, for every y ∈ A we have q (λ (x − x0) − (y − x0)) =
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λ2q
(
x − ( 1

λ
(y − x0) + x0

)) ≥ 0, since 1
λ

(y − x0) ∈ A − x0. Hence, as A − x0 is
maximally q-positive, λ (x − x0) ∈ A − x0 also in this case. This proves (9). To prove
(10), let x, y ∈ A. Then q (− (x − x0) − (y − x0)) = q ((x + y − x0) − x0) ≥ 0,

since x + y − x0 ∈ A (as A − x0 is a convex cone) and x0 ∈ A. Using that A − x0 is
maximally q -positive, we conclude that − (x − x0) ∈ A − x0, which proves (10).

��

3.3 About the number of maximally q-positive extensions of a q-positive set

Proposition 15 Let x1, x2 ∈ B be such that

q(x1 − x2) ≤ 0. (11)

Then λx1 + (1 − λ) x2 ∈ {x1, x2}ππ for every λ ∈ [0, 1].
Proof Let x ∈ {x1, x2}π . Since

q(x1 − x2) = q ((x1 − x)−(x2 − x))=q(x1 − x) − �x1 − x, x2−x� + q(x2 − x),

(11) implies that

�x1 − x, x2 − x� ≥ q(x1 − x) + q(x2 − x).

Then, writing xλ := λx1 + (1 − λ) x2,

q (xλ − x) = q (λ (x1 − x) + (1 − λ) (x2 − x))

= λ2q(x1 − x) + λ(1 − λ) �x1 − x, x2 − x� + (1 − λ)2q(x2 − x)

≥ λ2q(x1 − x) + λ(1 − λ) (q(x1 − x) + q(x2 − x))

+(1 − λ)2q(x2 − x)

= λq(x1 − x) + (1 − λ)q(x2 − x) ≥ 0.

��
We will use the following lemma:

Lemma 16 Let A ⊂ B. Then Aπππ = Aπ .

Proof Since q is an even function, from the definition of Aπ it follows that A ⊂ Aππ .

Replacing A by Aπ in this inclusion, we get Aπ ⊂ Aπππ . On the other hand, since the
mapping A �−→ Aπ is inclusion reversing, from A ⊂ Aππ we also obtain Aπππ ⊂
Aπ . ��
Proposition 17 Let A be a q-positive set. If A has more than one maximally q-positive
extension, then it has a continuum of such extensions.
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Proof Let M1, M2 be two different maximally q-positive extensions of A. By the max-
imality of M1 and M2, there exists x1 ∈ M1 and x2 ∈ M2 such that q(x1 − x2) < 0.

Notice that {x1, x2} ⊂ Aπ ; hence, using proposition 15 and Lemma 16, we deduce that,
for every λ ∈ [0, 1], λx1 + (1 − λ) x2 ∈ {x1, x2}ππ ⊂ Aπππ = Aπ . This shows that,
for each λ ∈ [0, 1], A ∪ {xλ}, with xλ := λx1 + (1 − λ) x2, is a q -positive extension
of A; since q(xλ1 − xλ2) = q ((λ1 − λ2) (x1 − x2)) = (λ1 − λ2)

2 q (x1 − x2) < 0
for all λ1, λ2 ∈ [0, 1] with λ1 �= λ2, the result follows using Zorn’s Lemma. ��

3.4 Premaximally q-positive sets

Let (B, �·, ·�) be an SSD space.

Definition 18 Let P be a q-positive subset of B. We say that P is premaximally
q-positive if there exists a unique maximally q-positive superset of P. It follows from
[8, Lemma 5.4] that this superset is Pπ (which is identical with Pππ ). The same
reference also implies that

P is premaximally q-positive ⇐⇒ Pπ is q-positive. (12)

Lemma 19 Let P be a q-positive subset of B and

�P ≥ q on B. (13)

Then P is premaximally q-positive and Pπ = Pq(�P ).

Proof Suppose that M is a maximally q-positive subset of B and M ⊃ P . Let b ∈ M.

Since M is q-positive, b ∈ Mπ ⊂ Pπ , thus �P (b) ≤ q(b). Combining this with (13),
�P (b) = q(b), and so b ∈ Pq(�P ). Thus we have proved that M ⊂ Pq(�P ). It now
follows from the maximality of M and the q-positivity of Pq(�P ) that Pπ = Pq(�P ).

��
The next result contains a partial converse to Lemma 19.

Lemma 20 Let P be a premaximally q-positive subset of B. Then either (13) is true,
or Pπ = dom �P and Pπ is an affine subset of B.

Proof Suppose that (13) is not true. We first show that

dom �P is q-positive. (14)

Since (13) fails, we can first fix b0 ∈ B such that (�P − q))(b0) < 0. Now let
b1, b2 ∈ dom �P . Let λ ∈ ]0, 1[ . Then

(�P − q) ((1 − λ)b0 + λb1) ≤ (1−λ)�P (b0) + λ�P (b1)−q ((1 − λ)b0 + λb1) .

(15)

Since �P (b1) ∈ R and quadratic forms on finite-dimensional spaces are contin-
uous, the right–hand expression in (15) converges to �P (b0) − q(b0) as λ →
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0 + . Now �P (b0) − q(b0) < 0 and so, for all sufficiently small λ ∈ ]0, 1[ ,

(�P − q) ((1 − λ)b0 + λb1) < 0, from which (1 − λ)b0 + λb1 ∈ Pπ . Similarly,
for all sufficiently small λ ∈ ]0, 1[ , (1 − λ)b0 + λb2 ∈ Pπ . Thus we can choose
λ0 ∈ ]0, 1[ such that both (1−λ0)b0 +λ0b1 ∈ Pπ and (1−λ0)b0 +λb2 ∈ Pπ . Since
Pπ is q-positive,

0 ≤ q ([(1 − λ0)b0 + λ0b1] − [(1 − λ0)b0 + λb2]) = λ2
0q(b1 − b2).

So we have proved that, for all b1, b2 ∈ dom �P , q(b1 − b2) ≥ 0. This establishes
(14). Therefore, since dom �P ⊃ P, we have dom �P ⊂ Pπ . On the other hand, if
b ∈ Pπ , then �P (b) ≤ q(p), and so b ∈ dom �P . This completes the proof that
Pπ = dom �P . Finally, since Pπ (= dom �P ) is convex, Theorem 14 implies that
Pπ is an affine subset of B. ��
Our next result is a new characterization of premaximally q-positive sets.

Theorem 21 Let P be a q-positive subset of B. Then P is premaximally q-positive
if, and only if, either (13) is true or Pπ is an affine subset of B.

Proof “Only if” is clear from Lemma 20. If, on the other hand, (13) is true then Lemma
19 implies that P is premaximally q-positive. It remains to prove that if Pπ is an affine
subset of B then P is premaximally q-positive. So let Pπ be an affine subset of B. Sup-
pose that b1, b2 ∈ Pπ , and let p ∈ P. Since P is q-positive, p ∈ Pπ , and since Pπ is
affine, p + b1 − b2 ∈ Pπ , from which q(b1 − b2) = q([p + b1 − b2] − p) ≥ 0. Thus
we have proved that Pπ is q-positive. It now follows from (12) that P is premaximally
q-positive. ��
Corollary 22 Let P be an affine q-positive subset of B. Then P is premaximally
q-positive if and only if Pπ is an affine subset of B.

Proof In view of Theorem 21, we only need to prove the “only if” statement.
Assume that P is premaximally q-positive. Since the family of affine sets A such
that P ⊂ A ⊂ Pπ is inductive, by Zorn’s Lemma it has a maximal element M. Let
b ∈ Pπ , m1, m2 ∈ M, p ∈ P and λ,μ, ν ∈ R be such that λ + μ + ν = 1. If
λ �= 0 then q (λb + μm1 + νm2 − p) = λ2q

(
b − 1

λ
(p − μm1 − νm2)

) ≥ 0, since
1
λ

(p − μm1 − νm2) ∈ M ⊂ Pπ and Pπ is q-positive (by [8, Lemma 5.4]). If, on the
contrary, λ = 0 then q (λb + μm1 + νm2 − p) = q (μm1 + νm2 − p) ≥ 0, because
in this case μm1 + νm2 ∈ M ⊂ Pπ . Therefore λb + μm1 + νm2 ∈ Pπ . We have
thus proved that the affine set generated by M ∪{b} is contained in Pπ . Hence, by the
maximality of M, we have b ∈ M, and we conclude that Pπ = M . ��
Definition 23 Let E be a nonzero Banach space and A be a nonempty monotone
subset of E × E∗. We say that A is of type (NI) if,

for all (y∗, y∗∗) ∈ E∗ × E∗∗, inf(a,a∗)∈A〈a∗ − y∗, â − y∗∗〉 ≤ 0.

We define ι : E × E∗ → E∗ × E∗∗ by ι(x, x∗) = (x∗, x̂ ), where x̂ is the canonical
image of x in E∗∗. We say that A is unique if there exists a unique maximally monotone
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subset M of E∗ × E∗∗ such that M ⊃ ι(A). We now write B := E∗ × E∗∗ and define
�·, ·� : B × B → R by �(x∗, x∗∗), (y∗, y∗∗)� := 〈y∗, x∗∗〉 + 〈x∗, y∗∗〉.(B, �·, ·�) is
an SSD space. Clearly, for all (y∗, y∗∗) ∈ E∗ × E∗∗, q(y∗, y∗∗) = 〈y∗, y∗∗〉. Now
ι(A) is q-positive, A is of type (NI) exactly when �ι(A) ≥ q on B, and A is unique
exactly when ι(A) is premaximally q-positive. In this case, we write ι(A)π for the
unique maximally monotone subset of E∗ × E∗∗ that contains ι(A).

Corollary 24(a) appears in [7], and Corollary 24(c) appears in [4, Theorem 1.6].

Corollary 24 Let E be a nonzero Banach space and A be a nonempty monotone
subset of E × E∗.
(a) If A is of type (NI) then A is unique and ι(A)π = Pq

(
�ι(A)

)
.

(b) If ι(A)π is an affine subset of E∗ × E∗∗ then A is unique.
(c) Let A be unique. Then either A is of type (NI), or

ι(A)π = {(y∗, y∗∗) ∈ E∗ × E∗∗ : inf(a,a∗)∈A〈a∗ − y∗, â − y∗∗〉 > −∞}
(16)

and ι(A)π is an affine subset of E∗ × E∗∗.
(d) Let A be maximally monotone and unique. Then either A is of type (NI), or A

is an affine subset of E × E∗ and A = dom ϕA, where ϕA is the Fitzpatrick
function of A in the usual sense.

Proof (a), (b) and (c) are immediate from Lemmas 19 and 20 and Theorem 21, and
the terminology introduced in Definition 23.
(d) From (c) and the linearity of ι, ι−1 (ι(A)π ) is an affine subset of E × E∗. Fur-
thermore, it is also easy to see that ι−1 (ι(A)π ) is a monotone subset of E × E∗.
Since A ⊂ ι−1 (ι(A)π ) , the maximality of A implies that A = ι−1 (ι(A)π ) . Finally,
it follows from (16) that ι−1 (i(A)π ) = dom ϕA. ��

3.5 Minimal convex functions bounded below by q

This section extends some results of [6].

Lemma 25 Let B be an SSD space and f : B → R ∪ {+∞} be a proper convex
function. Then, for every x, y ∈ B and every α, β ≥ 0 with α + β = 1, one has

α max { f (x) , q (x)} + β max
{

f @ (y) , q (y)
}

≥ q (αx + βy) .

Proof Using (5) one gets

q (αx + βy) = α2q (x) + αβ�x, y� + β2q (y)

≤ α2q (x) + αβ
(

f (x) + f @(y)
)

+ β2q (y)

= α (αq (x) + β f (x)) + β
(
α f @(y) + βq (y)

)

≤ α max { f (x) , q (x)} + β max
{

f @ (y) , q (y)
}

.

��
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Corollary 26 Let B be an SSD space, f : B → R∪ {+∞}be a proper convex function
such that f ≥ q and x ∈ B. Then there exists a convex function h : B → R∪ {+∞}
such that

f ≥ h ≥ q and max
{

f @ (x) , q (x)
}

≥ h (x) .

Proof Let h := conv min
{

f, δ{x} + max
{

f @ (x) , q (x)
}}

. Clearly, h is convex,
f ≥ h, and max

{
f @ (x) , q (x)

} ≥ h (x) ; so, we only have to prove that h ≥ q. Let
y ∈ B. Since the functions f and δ{x} + max

{
f @ (x) , q (x)

}
are convex, we have

h (y) = inf
u,v∈B

α,β≥0,α+β=1
αu+βv=y

{
α f (u) + β

(
δ{x} (v) + max

{
f @ (x) , q (x)

})}

= inf
u∈B

α,β≥0,α+β=1
αu+βx=y

{
α f (u) + β max

{
f @ (x) , q (x)

}}

≥ inf
u∈B

α,β≥0,α+β=1
αu+βx=y

q (αu + βx) = q (y) ,

the above inequality being a consequence of the assumption f ≥ q and Lemma 25.
We thus have h ≥ q. ��
Theorem 27 Let B be an SSD space and f : B → R∪ {+∞} be a minimal element
of the set of convex functions minorized by q. Then f @ ≥ f.

Proof It is easy to see that f is proper. Let x ∈ B and consider the function h pro-
vided by Corollary 26. By the minimality of f, we actually have h = f ; on the
other hand, from (5) it follows that 1

2

(
f (x) + f @(x)

) ≥ 1
2�x, x� = q (x) . Therefore

f (x) = h (x) ≤ max
{

f @ (x) , q (x)
} ≤ max

{
f @ (x) , 1

2

(
f (x) + f @(x)

)} ; from
these inequalities one easily obtains that f (x) ≤ f @ (x). ��
Proposition 28 Let B be an SSD space and f : B → R∪ {+∞} be a convex function
such that f ≥ q and f @ ≥ q. Then

conv min
{

f, f @
}

≥ q.

Proof Since f and f @ are convex, for every x ∈ B we have

conv min
{

f, f @
}

(x) = inf
u,v∈B

α,β≥0,α+β=1
αu+βv=x

{
α f (u) + β f @ (v)

}

≥ inf
u,v∈B

α,β≥0,α+β=1
αu+βv=x

q (αu + βv) = q (x) ,
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the inequality following from the assumptions f ≥ q and f @ ≥ q and Lemma 25.
��

4 SSDB spaces

We say that (B, �·, ·�, ‖ · ‖) is a symmetrically self-dual Banach (SSDB) space if
(B, �·, ·�) is an SSD space, (B, ‖ · ‖) is a Banach space, the dual B∗ is exactly {�·, b� :
b ∈ B} and the map i : B → B∗ defined by i(b) = �·, b� is a surjective isometry.
In this case, the quadratic form q is continuous. By [5, Proposition 3] we know that
every SSDB space is reflexive as a Banach space. If A is convex in an SSDB space
then Aw = A.

Let B be an SSDB space. In this case, for a proper convex function f : B →
R ∪ {+∞} it is easy to see that f @ = f ∗ ◦ i, where f ∗ : B∗ → R ∪ {+∞} is the
Banach space conjugate of f. Define g0 : B → R by g0(b) := 1

2 ‖b‖2 . Then for all
b∗ ∈ B∗, g∗

0 (b∗) = 1
2 ‖b∗‖2 .

4.1 A characterization of maximally q-positive sets in SSDB spaces

Lemma 29 The set Pq(g0) = {x ∈ B : g0(x) = q (x)} is maximally q-positive and
the set P−q(g0) = {x ∈ B : g0(x) = −q (x)} is maximally −q-positive.

Proof To prove that Pq(g0) is maximally q-positive, apply [8, Thm. 4.3(b)] (see also
[5, Thm. 2.7]) after observing that g@

0 = g∗
0 ◦i = g0. Since replacing q by −q changes

Pq(g0) into P−q(g0), it follows that P−q(g0) is maximally −q-positive too. ��
From now on, to distinguish the function �A of A ⊂ B corresponding to q from that
corresponding to −q, we will use the notations �q,A and �−q,A, respectively. Notice
that �−q,P−q (g0) is finite-valued; indeed,

�−q,P−q (g0) (x) = sup
a∈P−q (g0)

{−�x, a� + q (a)}

= sup
a∈P−q (g0)

{− 〈x, i (a)〉 − g0(a)}

= sup
a∈P−q (g0)

{−〈x, i (a)〉 − g∗
0 (i (a))

} ≤ g0(x).

Theorem 30 Let B be an SSDB space and A be a q-positive subset of B, and consider
the following statements:

(1) A is maximally q-positive.
(2) A + C = B for every maximally −q-positive set C ⊆ B such that �−q,C is

finite-valued.
(3) There exists a set C ⊆ B such that A + C = B, and there exists p ∈ C such

that

q (z − p) < 0 ∀ z ∈ C\ {p} .
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Then (1), (2) and (3) are equivalent.

Proof (1) �⇒ (2) Let x0 ∈ B and A′ := A − {x0} . We have

�q,A′ (x) + �−q,C (−x) ≥ q (x) − q (−x) = 0 ∀ x ∈ C.

Hence, as �−q,C is continuous because it is lower semicontinuous and finite-valued,
by the Fenchel–Rockafellar duality theorem there exists y∗ ∈ B∗ such that

�∗
q,A′

(
y∗) + �∗−q,C

(
y∗) ≤ 0.

Since, by Proposition 1 (1), �∗
q,A′ ◦ i = �@

q,A′ ≥ �q,A′ and, correspondingly,

�∗−q,C ◦ (−i) = �@−q,C ≥ �−q,C , we thus have

0 ≥
(
�∗

q,A′ ◦ i
) (

i−1 (
y∗)) +

(
�∗−q,C ◦ (−i)

) (
−i−1 (

y∗))

≥ �q,A′
(

i−1 (
y∗))+�−q,C

(
−i−1 (

y∗)) ≥ q
(

i−1 (
y∗))−q

(
−i−1 (

y∗))=0.

Therefore

�q,A′
(

i−1 (
y∗)) = q

(
i−1 (

y∗)) and �−q,C

(
−i−1 (

y∗)) = −q
(
−i−1 (

y∗)) ,

that is,

i−1 (
y∗) ∈ A′ and − i−1 (

y∗) ∈ C,

which implies that

x0 = x0 + i−1 (
y∗) − i−1 (

y∗) ∈ x0 + A′ + C = A + C.

(2) �⇒ (3) Take C := P−q(g0) (see Lemma 29) and p := 0.

(3) �⇒ (1) Let x ∈ Aπ , and take p as in (3). Since x + p ∈ B = A + C, we
have x + p = y + z for some y ∈ A and z ∈ C. We have x − y = z − p;
hence, since x ∈ Aπ and y ∈ A, we get 0 ≤ q (x − y) = q (z − p) ≤ 0. There-
fore q (z − p) = 0, which implies z = p. Thus from x + p = y + z we obtain
x = y ∈ A. This proves that Aπ ⊂ A, which, together with the fact that A is
q-positive, shows that A is maximally q-positive. ��

Corollary 31 One has

Pq(g0) + P−q(g0) = B.

Proof Since the set Pq(g0) is maximally q-positive by Lemma 29, the result follows
from the implication (1) �⇒ (2) in the preceding theorem. ��
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4.2 Minimal convex functions on SSDB spaces bounded below by q

Theorem 32 If B is an SSDB space and f : B → R∪ {+∞} is a minimal element
of the set of convex functions minorized by q then f = �M for some maximally
q-positive set M ⊂ B.

Proof We first observe that f is lower semicontinuous; indeed, this is a consequence
of its minimality and the fact that its lower semicontinuous closure is convex and min-
orized by q because q is continuous. By Theorem 27 and [8, Thm. 4.3(b)] (see also
[5, Thm. 2.7]), the set Pq( f ) is maximally q-positive, and hence �Pq ( f ) ≥ q. From
[5, Thm. 2.2] we deduce that �Pq ( f ) ≤ f, which, by the minimality of f, implies that
�Pq ( f ) = f. ��

5 Examples

5.1 Lipschitz mappings between Hilbert spaces

Let K > 0. Let H1, H2 be two real Hilbert spaces and let f : D ⊂ H1 → H2 be a
K -Lipschitz mapping, i.e.

‖ f (x1) − f (y1)‖H2 ≤ K‖x1 − y1‖H1, ∀ x1, y1 ∈ D. (17)

Remark 33 It is well known that there exists an extension f̃ : H1 → H2 which
is K -Lipschitz (see [3,11]). Let D ⊂ H1; we will denote by F(D) the family of
K -Lipschitz mappings defined on D and by F : = F (H1) the family of K -Lipschitz
mappings defined everywhere on H1.

Proposition 34 Let H1, H2 be two real Hilbert spaces, let B = H1 × H2 and let
�·, ·� : B × B → R be the bilinear form defined by

�(x1, x2), (y1, y2)� = K 2〈x1, y1〉H1 − 〈x2, y2〉H2 . (18)

Then

(1) A nonempty set A ⊂ B is q-positive if and only if there exists f ∈ F(PH1(A))

such that A = graph( f );
(2) A set A ⊂ B is maximally q-positive if and only if there exists f ∈ F such that

A = graph( f ).

Proof (1) If A = graph( f ) with f ∈ F(PH1(A)), it is easy to see that A is
q-positive.
Assume that A ⊂ B is q-positive. From the definition we have that for all (x1, y1),

(x2, y2) ∈ A,

0 ≤ q ((x1, y1) − (x2, y2)) = 1

2

(
K 2‖x1 − x2‖2

H1
− ‖y1 − y2‖2

H2

)
.
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Equivalently,

‖y1 − y2‖H2 ≤ K‖x1 − x2‖H1 . (19)

For x ∈ PH1(A) we define f (x) = {y : (x, y) ∈ A}. We will show that f is a
K -Lipschitz mapping. If y1, y2 ∈ f (x), from (19) y1 = y2, so f is single-valued.
Now, for x1, x2 ∈ PH1(A) from (19) we have that

‖ f (x1) − f (x2)‖H2 ≤ K‖x1 − x2‖H1 ,

which shows that f ∈ F(PH1(A)).

(2) Let A ⊂ B be maximally q-positive. From (1), there exists f ∈ F(PH1(A))

such that A = graph( f ), and from the Kirszbraun–Valentine extension theorem
[3,11] f has a K -Lipschitz extension f̃ defined everywhere on H1; since graph( f̃ )

is also q-positive we must have f = f̃ . Now, let f ∈ F and (x, y) ∈ H1 × H2 be
q-positively related to every point in graph( f ). We have that graph( f ) ∪ {(x, y)}
is q -positive, so from (1) we easily deduce that y = f (x). This finishes the proof
of (2) ��

Clearly, the w (B, B) topology of the SSD space (B, �·, ·�) coincides with the weak
topology of the product Hilbert space H1 × H2. Therefore, every q-representable set
is closed, so that it corresponds to a K -Lipschitz mapping with closed graph. Notice
that, by the Kirszbraun–Valentine extension theorem, a K -Lipschitz mapping between
two Hilbert spaces has a closed graph if and only if its domain is closed. The follow-
ing example shows that not every K -Lipschitz mapping with closed domain has a
q-representable graph.

Example 35 Let H1 := R =: H2 and let f : {0, 1} → H2 be the restriction of
the identity mapping. Clearly, f is nonexpansive, so we will consider the SSD space
corresponding to K = 1. Then we will show that the smallest q-representable set
containing graph( f ) is the graph of the restriction f̂ of the identity to the closed
interval [0, 1] . Notice that this graph is indeed q -representable, since the lsc func-

tion δgraph( f̂ ) belongs to PCq (B) and one has graph( f̂ ) = Pq

(
δgraph( f̂ )

)
. We

will see that graph( f̂ ) ⊂ Pq (ϕ) for every ϕ ∈ PCq (B) such that graph( f ) ⊂
Pq (ϕ) . Indeed, for t ∈ [0, 1] one has ϕ (t, t) ≤ (1 − t) ϕ (0, 0) + tϕ (1, 1) =
(1 − t) q (0, 0) + tq (1, 1) = 0 = q (t, t) ; hence (t, t) ∈ Pq (ϕ) , which proves the
announced inclusion.

Our next two results provide sufficient conditions for q-representability in the SSD
space we are considering.

Proposition 36 Let H1, H2, B and �·, ·� be as in Proposition 34 and let f : D ⊂
H1 → H2 be a K ′-Lipschitz mapping, with 0 < K ′ < K . If D is nonempty and
closed, then graph( f ) is q -representable.

Proof We will prove that graph( f ) coincides with the intersection of all the graphs
of K -Lipschitz extensions f̃ of f to the whole of H1. Since any such graph is maxi-

mally q-positive, we have graph( f̃ ) = Pq

(
�graph( f̃ )

)
; hence that intersection is
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equal to Pq (ϕ) , where ϕ denotes the supremum of all the functions �graph( f̃ )
; so the

considered intersection is q-representable. As one clearly has graph( f ) ⊂ Pq (ϕ) ,

we will only prove the opposite inclusion. Let (x1, x2) ∈ Pq (ϕ) . Then f̃ (x1) = x2

for every f̃ , so it will suffice to prove that x1 ∈ D. Assume, towards a contradiction,
that x1 /∈ D. By the Kirszbraun–Valentine extension theorem, some f̃ is actually
K ′-Lipschitz. Take any y ∈ H2 \ {x2} in the closed ball with center x2 and radius(
K − K ′) inf x∈D ‖x − x1‖H1 . This number is indeed strictly positive, since D is

closed. Let fy be the extension of f to D∪{x1} defined by fy (x1) = y. This mapping is
K -Lipschitz, since for every x ∈ D one has

∥∥ fy (x) − fy (x1)
∥∥

H2
= ‖ f (x) − y‖H2

≤
‖ f (x) − x2‖H2

+ ‖x2 − y‖H2
=

∥∥∥ f̃ (x) − f̃ (x1)

∥∥∥
H2

+ (
K − K ′) ‖x − x1‖H1 ≤

K ′ ‖x − x1‖H1 + (
K − K ′) ‖x − x1‖H1 = K ‖x − x1‖H1 . Using again the Kirsz-

braun–Valentine extension theorem, we get the existence of a K -Lipschitz exten-
sion f̃ y ∈ F of fy . Since (x1, x2) ∈ Pq (ϕ) ⊂ graph( f̃ y), we thus contradict
f̃ y (x1) = fy (x1) = y. ��
Proposition 37 Let H1, H2, B and �·, ·� be as in Proposition 34 and let f : D ⊂
H1 → H2 be a K -Lipschitz mapping. If D is nonempty, convex, closed and bounded,
then graph( f ) is q-representable.

Proof As in the proof of Proposition 36, it will suffice to show that graph( f ) coincides
with the intersection of all the graphs of K -Lipschitz extensions f̃ of f to the whole of
H1, and we will do it by proving that for every point (x1, x2) in this intersection one nec-
essarily has x1 ∈ D. If we had x1 /∈ D, by the Hilbert projection theorem there would
be a closest point x to x1 in D, characterized by the condition 〈x − x, x1 − x〉 ≤ 0
for all x ∈ D. Let C := supx∈D {‖x − x1‖ + ‖x − x‖} . Since x1 �= x and D is non-
empty and bounded, C ∈ (0,+∞) . For every x ∈ D we have ‖x − x1‖−‖x − x‖ =
‖x−x1‖2−‖x−x‖2

‖x−x1‖+‖x−x‖ = ‖x1−x‖2+2〈x−x,x−x1〉‖x−x1‖+‖x−x‖ ≥ ‖x1−x‖2

‖x−x1‖+‖x−x‖ ≥ ‖x1−x‖2

C . Take y ∈ H2 \
{x2} in the closed ball with center f (x) and radius K‖x1−x‖2

C . Let fy be the extension
of f to D ∪{x1} defined by fy (x1) = y. This mapping is K -Lipschitz, since for every
x ∈ D one has

∥∥ fy (x) − fy (x1)
∥∥

H2
= ‖ f (x) − y‖H2

≤ ‖ f (x) − f (x)‖H2
+

‖ f (x) − y‖H2
≤ K ‖x − x‖H1 + ‖ f (x) − y‖H2

≤ K ‖x − x‖H1 + K‖x1−x‖2

C ≤
K ‖x − x‖H1 +K (‖x − x1‖ − ‖x − x‖) = K ‖x − x1‖ . The proof finishes by apply-
ing the same reasoning as at the end of the proof of Proposition 36. ��
In this framework, for A := graph( f ) the function �A is given by

�A(x1, x2)= 1

2
sup

a1∈dom f
{−K 2‖a1−x1‖2

H1
+‖ f (a1)−x2‖2

H2
}+ K 2

2
‖x1‖2− 1

2
‖x2‖2.

It is also evident that (B, �·, ·� , ‖·‖) is an SSDB space if and only if K = 1.

5.2 Closed sets in a Hilbert space

Let (H, 〈·, ·〉) be a Hilbert space.and denote by ‖·‖ the induced norm on H. Clearly,
(H, 〈·, ·〉 , ‖·‖) is an SSDB space, and the associated quadratic form q is given by
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q (x) = 1
2 ‖x‖2 . Since q is nonnegative, every nonempty set A ⊂ H is q-positive.

We further have:

Proposition 38 A nonempty set A ⊂ H is q-representable if and only if it is closed.

Proof The “only if” statement being obvious, we will only prove the converse. Define
h : H → R∪{+∞} by

h (x) = sup
y∈H

{
q (y) + 〈y, x − y〉 + 1

2
d2

A (y)

}
,

with dA (y) := infa∈A ‖y − a‖ . Clearly, h is convex and lsc.
For all x ∈ H,

h (x) ≥ q (x) + 〈x, x − x〉 + 1

2
d2

A (x) = q (x) + 1

2
d2

A (x) ≥ q (x) ,

which implies that h ≥ q and Pq(h) ⊂ A. We will prove that h represents A, that is,

A = Pq(h). (20)

To prove the inclusion ⊂ in (20), let x ∈ A. Then, for all y ∈ H,

q (y) + 〈y, x − y〉 + 1

2
d2

A (y) ≤ 1

2
‖y‖2 + 〈y, x − y〉 + 1

2
‖y − x‖2 = 1

2
‖x‖2

= q (x) ,

which proves that h (x) ≤ q (x) . Hence, as h ≥ q, the inclusion ⊂ holds in (20). We
have thus proved (20), which shows that A is q -representable. ��
Proposition 39 Let ∅ �= A ⊂ H. Then

(1) �A(x) = 1
2‖x‖2 − 1

2 d2
A(x);

(2) �@
A (x) = 1

2‖x‖2 + 1
2 supb∈H {d2

A(b) − ‖x − b‖2};
(3) �@

A (x) = 1
2‖x‖2 ⇔ x ∈ A;

(4) G�A = {
x ∈ H : supb∈H {d2

A(b) − ‖b − x‖2} = d2
A(x)

}
Theorem 40 Let ∅ �= A ⊂ H be such that A = G�A , and let a1, a2 ∈ A be two
different points, x = 1

2 (a1 + a2) and r = 1
2‖a1 − a2‖. Denote by Br (x) the open ball

with center x and radius r. Then,

Br (x) ∩ A �= ∅.

Proof Suppose that

A ∩ Br (x) = ∅, (21)

so, we must have d2
A(x) = ‖x − a1‖2 = ‖x − a2‖2.
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For b ∈ H, we have

either 〈b − x, x − a1〉 ≤ 0 or 〈b − x, x − a2〉 ≤ 0.

If 〈b − x, x − a1〉 ≤ 0,

d2
A(b) − ‖b − x‖2 ≤ ‖b − a1‖2 − ‖b − x‖2 ≤ ‖x − a1‖2 = d2

A(x).

If 〈b − x, x − a2〉 ≤ 0,

d2
A(b) − ‖b − x‖2 ≤ ‖b − a2‖2 − ‖b − x‖2 ≤ ‖x − a2‖2 = d2

A(x).

Thus, we deduce that

sup
b∈H

{d2
A(b) − ‖b − x‖2} = d2

A(x),

hence by Proposition 39(4) x ∈ G�A = A, which is a contradiction with (21). ��
Corollary 41 Let H = R and ∅ �= A ⊂ R. Then,

A = G�A if and only if A is closed and convex.

Proof (�⇒) Since A = G�A , A is closed. Assume that A is not convex, so there
exists a1, a2 ∈ A such that ]a1, a2[∩A = ∅, hence

A ∩ Br (x) = ∅, with x = 1

2
(a1 + a2) and r = 1

2
|a1 − a2|,

which contradicts Theorem 40. Thus A is convex.
(⇐�) Since A is closed, it is q-positive; hence we can apply Theorem 6(2). ��
We will show with a simple example that, leaving aside the case B = R, in general
A = G�A does not imply that A is convex.

Example 42 Let H = R
2, and let A = {

(x1, x2) ∈ R
2 : x1x2 = 0

}
. We will show

that A = G�A . Let x = (x1, x2) ∈ R
2\A. Then

dA (x) = min {|x1| , |x2|} .

If λ ∈ R, let f (λ) := d2
A (λx) − ‖λx − x‖2 = λ2d2

A (x) − (λ − 1)2 ‖x‖2 . Then
f ′ (1) = 2d2

A (x) > 0 and so, if λ is slightly greater than 1, f (λ) > f (1) , that is to
say, d2

A (λx) − ‖λx − x‖2 > d2
A (x) . Hence we have

sup
y∈H

{
d2

A (y) − ‖y − x‖2
}

> d2
A (x) ;

thus, by Proposition 39(4), x /∈ G�A . We deduce that A = G�A , and clearly A is not
convex.
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