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Complement-mediated events in Alzheimer’s Disease: 
Mechanisms and Potential Therapeutic Targets

Andrea J. Tenner
Department of Molecular Biology and Biochemistry, Department of Neurobiology and Behavior, 
Department of Pathology and Laboratory Medicine, Institute for Memory Impairment and 
Neurological Disorders, University of California Irvine, Irvine, CA

Abstract

An estimated 5.7 million Americans suffer from Alzheimer’s disease in the United States with no 

disease modifying treatments to prevent or treat cognitive deficits associated with the disease. 

GWAS studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-

inflammatory response may slow or prevent disease progression. Increasing awareness of distinct 

roles of complement components in normal brain development and function and in 

neurodegenerative disorders align with complement-mediated responses and thus thorough 

understanding of these molecular pathways is needed to facilitate successful therapeutic design. 

Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by 

C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential 

benefit of ß-amyloid clearance from the circulation via CR1-mediated mechanisms is also 

reviewed. Therapies that suppress inflammation, while preserving protective effects of 

complement could be tested now to slow the progression of this debilitating disease.
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The complement system is an evolutionarily ancient system contributing to defense from 

pathogens and injury (1). While the protective effector functions of the complement system 

in the vasculature were the first to be described, it is now clear that the components of the 

system have a plethora of roles in immune mechanisms of homeostasis, the development and 

retraction of the adaptive immune responses, intracellular metabolism and regeneration of 

injured tissue (reviewed in (2–4)), and that over activation or dysregulation contributes to 

disease. There has been an explosion of new findings of the role of complement in the 

nervous system, from contributions to migration of cells and synapse elimination during 

development (5, 6), to detrimental damage of nerve cells in autoimmunity (7) and stroke (8), 

and aberrant synapse pruning in neurological disorders (reviewed in (9, 10)). In this brief 

review, the systems involved will be introduced, followed by discussion of data suggesting 
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modulatory roles of complement in Alzheimer’s disease. Finally, potential approaches to 

therapies targeting specific elements of the complement system will be presented.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most prevalent progressive neurodegenerative disorder of 

the elderly, and the sixth leading cause of death in the United States (11). Clinical symptoms 

of the disease include an unrelenting progressive decline of both memory and executive 

cognitive function. Unfortunately, there are still no treatments that limit the pathology or, 

more importantly, slow the progressive cognitive loss characteristic of this disorder. Alois 

Alzheimer first described AD in 1906 as clinically dementia with brain pathology defined by 

the presence of extracellular plaque deposits and neurofibrillary tangles. The plaques contain 

aggregated β-amyloid peptide (Aβ) and the tangles are aggregated hyper-phosphorylated tau 

(a microtubule associated protein) (12). It is now clear that “reactive” microglia and 

astrocytes indicative of a glial neuroinflammatory response surround the fibrillar plaques 

(plaques containing multimers of Aß in a ß-sheet fibrillar conformation, fAß). This, in 

conjunction with measured elevated levels of inflammatory mediators in post-mortem AD 

brains, suggests a role for inflammation in the progression of the disease ((13, 14) and 

reviewed in (15, 16)).

Most AD cases (about 95–98%) are diagnosed after the age of 60 and are classified as 

“sporadic” or, perhaps a better term, “late onset” (LOAD). While age is the greatest risk 

factor for the disease, large genome-wide association studies (GWAS) have identified greater 

than 25 genetic risk loci including two complement associated genes, clusterin (CLU) and 

complement receptor 1 (CR1) (17–21). While most variants confer low risk, many have 

relatively high prevalence in the population, and thus can combine to generate significant 

polygenic risk scores (22, 23). These data strongly suggest that multi-genetic as well as 

environmental factors contribute to the disease. Concurrently, large unbiased bioinformatics 

analyses reproducibly point to clusters of genetic risk factors in pathways that suggest 

overlapping processes contribute to synapse loss, neuronal degeneration and cognitive 

dysfunction (21). Importantly, complement, microglia, astrocytes and immune response 

pathways involving inflammation and/or clearance mechanisms align with the genetics and 

pathological features of LOAD (13). Gene expression studies in mouse models of AD (24–

27) support these critical pathways. A somewhat unexpected finding from models that 

perturb inflammatory pathways via deletion of C5AR1 and TYROBP, was that 

normalization of gene expression pathways and cognitive deficits occurred in the absence of 

decreased amyloid plaque deposition (25, 26). However, those data are consistent with 

reports of cognitively normal individuals with substantial plaque pathology at autopsy (28, 

29) and indicate that it is an induced response to plaque that is detrimental in AD, rather 

than the plaques alone. Thus, these dysregulated “response” pathways can provide potential 

therapeutic targets to ameliorate or slow the progression of disease.

Current therapeutics thus far have shown limited efficacy (reviewed in (30, 31)) with recent 

disappointing results from anti-Aβ and BACE1 inhibitor therapies. While steroids, non-

steroidal anti-inflammatories, and anti-oxidants target inflammation, these broad, non-

selective drugs have had limited success in AD clinical trials and are accompanied by 
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substantial side effects (32). These negative clinical results may have several possible 

inadvertent design caveats, but combined with the GWAS studies and more recently gene 

expression data, have led to new conceptual frameworks suggesting that there are many 

pathways to the cognitive loss associated with AD pathology. Thus, more consideration is 

now being given to the development of drugs with highly specific targets that would be 

disease modifying in subsets of AD patients or that would reduce excessive detrimental 

inflammation or promote neuronal resilience broadly.

Complement

The complement system, composed of over 40 interacting proteins in blood and other 

tissues, is a part of the innate immune response that is critically important for quickly 

recognizing and clearing pathogens, dying cells and misfolded proteins (33). It is also a 

prominent effector in antibody-mediated pathogen killing and clearance, and contributes to 

the generation of the pathogen-specific adaptive immune system response (34, 35). The 

complement system is activated by three different recognition pathways (classical, lectin and 

alternative), all of which lead to sequential enzyme activation, protein cleavage and 

conformational change to mediate effector functions (33). The classical complement 

pathway is activated by binding of C1q, a component of the C1 complex, to the Fc domain 

of antibody in immune complexes or to nonimmunoglobulin activators such as fibrillar Aß. 

The interaction-induced conformational change induces activation of the proenzymes Clr 

and C1s within the C1 complex. C1s then cleaves complement component C4 generating 

C4a and C4b, the latter of which is covalently deposited on the activator surface by a 

thioester bond. C4b binds C2 and the C1s protease then cleaves C2 into C2a and C2b. (Here 

C2b refers to the larger cleaved fragment of C2 that contains the enzymatic activity (36, 

37).) The nascently formed C3 convertase, C4b2b, cleaves C3 into C3a and C3b. C3a 

influences inflammation and cellular responses via C3aR (38–40), and C3b stably associated 

with the activator is a potent opsonin engaging phagocytic cells, as well as mediating 

clearance of immune complexes. Some of the cleaved C3b remains associated with C4b2b 

forming C4b2b3b, the classical pathway C5 convertase. The C5 convertase then cleaves C5 

into C5a and C5b. C5a can bind to receptors expressed on myeloid, mast cells, and other cell 

types (41, 42), inducing chemotaxis, increased vascular permeability and stimulating 

proinflammatory pathways. C5b initiates the formation of the membranolytic pore-forming 

C5b-9 complex, capable of lysing pathogens.

The lectin pathway is quite similar to the classical pathway except that the recognition 

components ficolins, mannan binding lectin (MBL) or other collectins are activated by 

specific repeating carbohydrate structures and the associated serine proteases are MASP1/2. 

The alternative pathway of activation is the result of the direct association of C3b with an 

activating surface (43), which is often a pathogen but can also be fibrillar Aß (44). The 

serine proteases Factor D and Factor B result in the generation of the C3 cleaving enzyme 

complex C3bBb and the alternative C5 cleaving enzyme C3bBb3b. The alternative pathway 

can also amplify the classical pathway activation, and thus could be targeted to decrease 

excessive downstream complement activation.
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Regardless of the activation mechanism, the same major effector functions can result: (1) 

opsonization, via tagging of activators with cleavage fragments C3b/iC3b (and to a lesser 

extend C4b and C1q) resulting in more efficient receptor-mediated clearance of pathogens, 

apoptotic cells, and cellular debris by phagocytes; (2) recruitment of immune cells, 

including microglia, to the site of injury via production of chemotactic peptides, C3a and 

C5a, and their subsequent engagement of specific cell membrane receptors; (3) targeted 

death of pathogens due to the sequential interaction of activation cleavage product C5b with 

C6, C7, C8, C9 generating the lytic membrane attack complex (MAC); (4) increased 

vascular permeability; and (5) polarization of cells via induction of specific gene expression 

patterns (reviewed in (33, 45).

Noncanonical roles of Complement in the Central Nervous System (CNS)

In 2007, Beth Stevens, Ben Barres and colleagues “rocked” the complement and 

neurodevelopment world using high resolution confocal microscopy to quantify synaptic 

puncta in mice genetically deficient in the complement proteins C1q and C3 to demonstrate 

a substantial role for the upstream classical complement pathway in eliminating “inactive” 

synapses during the refinement of the developing retinogeniculate system (6). Microglia 

ingested C1q- and iC3b/C3b-tagged, presumably “weak” CD47 low (46), synapses via the 

complement receptor CR3 (47). At the protein level, C1q was copurified with synaptosomes 

containing apoptosis markers (48), suggesting that synaptic pruning may involve some of the 

same molecular triggers as the complement mediated enhanced clearance of apoptotic cells. 

Thus, while very surprising at first, the nervous system appears to have merely assimilated 

functions normally provided by complement in the tagging of apoptotic cells and cellular 

material for “silent” clearance by phagocytic cells in tissue. However, subsequently, 

excessive complement dependent synaptic pruning and/or localized loss of spine density was 

demonstrated to occur in multiple mouse models of neurological disorders (49–54), often 

correlating with deficits in behavioral performance, indicating either aberrant activation or 

insufficient regulation of the cascade.

In a distinct mechanism of action, interaction of C1q with myeloid cells, including 

microglia, in the absence of the enzyme complex C1, suppresses proinflammatory cytokine 

production and enhances clearance of apoptotic cells and neuronal blebs in primary cell 

cultures (55–58) (Figure 1). C1q interaction with macrophages or microglia in tissue during 

cell turnover, tissue remodeling, or apoptotic cell death, as may occur in mild sterile injury, 

is a homeostasis mechanism to enable clearance without inducing an immune response to 

self antigens (autoimmunity) (59, 60) and as reviewed in (61, 62). This is an area of 

continuing investigation, as C1q can engage diverse receptors and co-receptors thereby 

mediating diverse cellular responses (reviewed in (63, 64)).”

C1q has direct protective effects on primary cultured neurons under nutrient stress or 

amyloid induced toxicity, again without the presence or activation of C1 or any of the 

downstream complement components (65–67) (Figure 2). Early investigations of the 

intracellular signaling and induced patterns of gene expression are intriguing (66, 67) and 

warrant further investigation in the pursuit of potential therapeutic advantage. Thus, 

although targeting C1q to avoid damaging downstream events due to the activation of the 
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classical pathway may have benefits, inhibition of these other neuroprotective functions may 

be counterproductive for neurodegenerative diseases in general.

Synthesis of Complement Proteins

The liver had long been recognized as the site of complement protein production (reviewed 

in (68), both constitutively and in some cases (for example, C3, MBL) as inducible acute 

phase proteins (69, 70). However, the synthesis of complement proteins is now recognized to 

be differentially induced in multiple cell types, including myeloid cells throughout the body, 

and importantly can be transcriptionally regulated in CNS resident neurons, astrocytes, 

oligodendrocytes, and microglia with injury or aging (reviewed in (9, 71)). CNS expression 

of most complement components increases with aging, and further increases in AD patients 

and animal models of AD consistent with a role for complement in the response to injury 

and progression of disease (72–75). However, evidence thus far suggests that complement 

system regulators such as C1 Inhibitor levels in the aging, AD brain are decreased especially 

relative to the increased activators, such as misfolded proteins, apoptotic cells/damaged 

neurons, or cell debris (76, 77) and reviewed in (78), leading to a potentially significant 

imbalance in control of inflammatory activation.

More is known about C1q and C3 synthesis in the brain. An increase in C1q mRNA results 

in the dramatically increased C1q protein in the normal aging of mouse and human brain 

(79). During development of the visual system, synthesis of C1q is upregulated in neurons 

(6). In this case, C1q synthesis by neurons is dependent on TGFß secreted by astrocytes 

(80). However, in a microglial specific conditional C1q knock out mouse, blood C1q levels 

remain unchanged while C1q in the adult brain was absent, Implicating microglia as the 

predominant CNS source of C1q (81). Thus, this complement component is present in aging 

brain even without a breakdown of the blood brain barrier. In contrast to the dominant 

expression of C1q by microglia, C3 is largely produced by reactive astrocytes in brain and 

C4 appears to be synthesized in oligodendrocytes as demonstrated by 

immunohistochemistry (82) and RNA-seq (51, 83, 84). C3 has been used as a marker of A1 

activated astrocytes (83).

Over 35 years ago it was demonstrated that C1q, the initiating component of the classical 

complement cascade, could be synthesized in the absence of the C1 serine proteases C1r and 

C1s in peripheral myeloid cells (85). In the brain, upregulation of C1q expression at the 

mRNA and protein level is an early response to injury or disease and in many cases, is 

robustly produced in the absence of the classical pathway serine proteases (as reviewed in 

(86) and more recently (67)) supporting C1-independent C1q-mediated functions. C1r, C1s 

and C3 are upregulated later in models of AD when plaques become more abundant (67). 

Wu and colleagues report differential synthesis of several complement components in 

murine astrocytes and microglial as a function of amyloidosis or tauopathy with age (51). 

The temporal and cellular regulation of individual component cascade proteins in normal, 

aging and diseased brains is clearly important to define as several components contribute to 

different disease processes and tissue repair or resilience. How transcriptional and 

translational control of complement protein availability contributes to disease progression 
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will become more clear as single cell RNA-Seq and proteomic studies assessing complement 

component genes in regional and temporal dimensions are completed (84).

Complement and Alzheimer’s disease

As early as 1982, complement proteins were found associated with amyloid plaques in 

human AD brain (87). It was then demonstrated that the complement cascade could be 

directly activated in vitro by fibrillar Aβ and neurofibrillary tangles (hyperphosphorylated 

tau) (44, 88–90). C1q, C3b, C4b and properdin were verified as being readily associated 

with fibrillar Aß plaques in humans and animal models providing in vivo correlates to the 

activation of both classical and alternative pathway, as reviewed in (91) and in (92), clearly 

implicating the complement system as a player in the inflammatory scenario.

Clearance of Aβ plaques is either impaired in AD or not sufficient to overcome an 

accumulation of Aß (or both). While a portion of Aβ is transported out of the brain via 

LRP-1 and microglia have been shown ingesting amyloid, the mechanisms and relative 

contributions to clearance of Aβ plaques remains to be clarified (93). While oligomeric Aß 

directly stresses neurons, the ß-sheet fibrillar amyloid plaque (and likely protofibrils) is the 

complement activating conformation (94). A beneficial result of complement activation in 

the case of AD could be opsonization and clearance of misfolded proteins (95, 96). In 

addition, glutamate containing vesicular blebs generated by damaged neurons and apoptotic 

cells bind C1q and are cleared by microglia (58) (Figure 1). Both membrane-bound and 

soluble complement regulators, including, for example, CD55, Factor H and C4 binding 

protein (C4BP), limit the formation of the downstream C3 and C5 convertases. Factor H is a 

cofactor for Factor I mediated cleavage of C3b whereas C4BP is a cofactor for cleavage of 

C4b by factor I, leading to inactivation of C3b and C4b, respectively and thus inhibiting 

further C3 cleavage activity. Both Factor H and C4BP are colocalized with plaques and dead 

cells in AD brains, demonstrating that there is some level of inhibition at the C3 convertase 

level (78, 97–99) that could permit clearance of apoptotic cells, with concomitant 

attenuation of inflammation, with limited generation of downstream mediators C5a and 

C5b-9. However, the MAC, C5b-9, has also been found in human AD brain in areas 

containing fibrillar plaques and tangles (100). While this could result in MAC-induced 

damage by insertion into cells (adjacent to the plaques) that may not be well protected by 

host cell CD59 (76), the contribution to AD dysfunction by the C5b-9 complex remains to 

be established. The presence of the MAC nevertheless demonstrates that complete activation 

of the cascade does occur within the AD brain, thereby inferring the generation of the 

generally proinflammatory fragment, C5a. A large body of previous investigations of C5aR1 

signaling (reviewed in (101)) indicate that the anaphylatoxin receptor C5aR1 produces a 

pro-inflammatory environment by acting on MAPKs and leading to generation of 

inflammatory cytokines many of which are known to be expressed in AD brain. While 

carboxypeptidase N (CPN) reduces C3a and C5a affinity for their receptors and thus reduces 

corresponding pro-inflammatory actions by rapidly cleaving their C-terminal Arg, little is 

known of the expression and role of CPN in the CNS (102). C5aR2, an alternate receptor for 

C5a, is thought to have C5a scavenger and neuroprotective functions (103). C5aR2 can also 

heterodimerize with C5aR1, resulting in modulation of that receptor expression/activity 

(104), again demonstrating multiple potential levels of regulation.
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To explore functions and consequences of complement activation in vivo, mouse models of 

AD were crossed to C3 knockout mice or to a transgenic mouse overexpressing the C3 

convertase inhibitor, Crry. Greater amyloid accumulation and greater cognitive deficits were 

observed in the C3 deficient or Crry-overexpressed mice (95, 105), suggesting a beneficial 

role for activated C3. In contrast, in the Tg2576 transgenic mouse, genetic ablation of C1q 

resulted in reduced plaque and glial activation, less loss of synaptaphysin in stratum lucidum 

of CA3 (where mossy fibers synapse CA3 pyramidal dendrites), less loss of MAP2 in CA3 

pyramidal neurons dendrites, and less cognitive decline relative to the C1q sufficient Tg2576 

(106). In more recent studies, deletion of C1q or C3 in other AD models was found to be 

beneficial in cognitive studies (53, 107). This protection was attributed to suppression of 

excessive synaptic pruning. Similar evidence of the involvement of early complement 

components in detrimental excessive synapse elimination has been reported in models of 

frontal temporal dementia (FTD) and West Nile Virus infection (49, 54). However, the 

complex role of complement in the brain complicates interpretation of the results of either 

knocking out or inhibiting the early components of complement as that can influence the 

generation of multiple downstream functions, which must be considered as potential 

mechanisms for the observed results.

Toll-like receptors (TLRs) are pattern recognition receptors which are important sensors for 

innate immune system that can synergize with or antagonize the complement system to 

initiate and enhance the response to pathogens and misfolded proteins (reviewed in (108)). 

In the periphery, C5a-C5aR1 signaling was found to synergize with TLR2 and TLR4 

stimulation and enhance pro-inflammatory cytokine responses (TNF-α and IL-1β) in mouse 

models (109, 110), mouse macrophages, and human monocytes all of which can be 

beneficial in the resolution of infections (reviewed in (108)). Although it remains to be 

determined if similar synergy occurs in CNS, Aβ binding to microglia has been found to 

involve TLR4 and TLR2 (111). The early in vitro findings that C5a increased the release of 

IL-1β and IL-6 in Aβ-primed human monocytes (112) and induced chemotaxis in microglia 

(113), was consistent with a scenario in which fibrillar amyloid plaque complement 

activation generates C5a which then recruits microglia to the plaque. Upon interaction of 

fibrillar plaques with TLR (114) on the recruited microglia would synergistically initiate an 

inflammatory response leading to a neurotoxic environment (Figure 1). An unbiased 

integrated systems approach identified immune functions and microglial activation products 

including complement, TLR and cytokine networks as key nodes correlating with attributes 

of human late-onset AD (13), and thus as in the periphery, C5a may play a synergistic role 

with other damage associated molecular patterns (DAMPs) in the response to perceived 

danger in the brain.

Role of C5a and Inflammation in AD

Evidence from multiple systems suggests that inflammation due to the complement system 

is triggered by the activation-induced cleavage product, C5a. C5a is chemotactic for 

phagocytes (including microglia) and leads to an alteration of their functional states 

(reviewed in (115)). In AD, the complement system may be continually activated by both 

fibrillar Aß (89, 116) and extracellular tangles formed by hyperphosphorylated tau (88). This 
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could contribute to a chronic inflammatory state mediated substantially by the complement 

activation product C5a upon binding to its receptor C5aR1 on microglia (Figure 1 and 2).

Evidence for the concept of microglial priming has long been proposed with proponents 

advocating peripheral or CNS origin of the priming and/or secondary inflammatory stimuli 

(117, 118). Many groups have recognized the dichotomous roles of microglia, both 

detrimental and beneficial, for some time (119). RNA-Seq and immunohistochemical data 

provide evidence that microglia near fAß plaques adopt different functional states that 

enable them to produce pro-inflammatory cytokines as well as reactive oxygen species 

(ROS) while other microglial subsets enhance phagocytosis and generate neuroprotective 

growth factors (24, 26, 27, 120–122). The functional state of microglia is critical because the 

location and “balance” of different microglia populations may have significantly different 

effects on astrocytes and neurotoxicity vs neurons and resiliency during CNS diseases (83, 

123). If microglia can be inhibited in their differentiation to the disease activated microglial 

(DAM) state or “repolarized” to perform a more beneficial role in neurodegenerative and/or 

neuroinflammatory diseases such as AD (27, 121), it would certainly be a valuable 

therapeutic treatment target.

Recently, in an additional AD mouse model (Arctic), genetic ablation of C5aR1 prevented 

spatial specific memory deficits (26) independent of changes in amyloid load. Importantly, 

Sholl analysis of neurons in the CA1 region of the hippocampus revealed a profound 

decrease in neuronal complexity temporally aligning with cognitive deficits in the C5aR1-

sufficient AD model mice, whereas no such loss of neuronal branching was seen in the AD 

mice lacking C5aR1. Gene expression data from adult microglia isolated from brain at four 

different ages was examined to investigate the effect of complement C5a on microglial gene 

expression. Indeed, a lack of C5aR1 prevents the polarization of microglia to a more 

inflammatory state seen with age and amyloid accumulation, while expression of genes 

involved in phagocytosis and lysosomal degradative enzymes were enhanced (26), consistent 

with induction of clearance and repair functions. Since C5aR1 knock out Arctic mice 

maintained neuronal integrity and had no behavior deficit as seen in the C5aR1 sufficient 

Arctic mice, treatment with a C5aR1 antagonist, without blocking C1q or C3 may be an 

effective treatment for slowing the progression of cognitive loss in AD and AD-related 

dementias. The data also confirm that amyloid plaques may be necessary (by definition), but 

not sufficient, to cause the cognitive decline seen in this AD mouse model (26) and in high 

amyloid pathology cognitively intact patients (29). A potential caveat of all mouse models of 

AD studied thus far is that they are more closely aligned with the early onset AD, that is the 

result of mutations in the amyloid precursor protein, APP, or the presenilins that cleave APP 

to form Aß, overexpress these proteins under a variety of promoters that lack endogenous 

regulation, and lack genetic diversity seen in the human population (124, 125). New 

candidate models of late onset AD are currently being generated, with a few currently 

distributed commercially. Thus, while accumulation of misfolded proteins, complement 

activation and inflammation are hallmarks of AD dementia pathology, utilization of these 

models will certainly accelerate the path to effective therapeutic intervention.
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C5aR1 as a Therapeutic Target

PMX53 and related PMX205 are cyclic hexapeptide analogs of the C-terminal region of 

C5a, and function as antagonists of C5aR1. PMX205 has a more lipophilic nature than 

PMX53, and thus more easily gains access to the brain than PMX53 (126, 127). Treatment 

with PMX205 led to less fibrillar amyloid accumulation in 2 mouse models of Alzheimer’s 

disease, less activation of microglia and astrocytes, and reduction of cognitive loss (128) 

(Figure 2). In the 3xTg model that acquires tangles, PMX205 treatment resulted in a 70% 

decrease in hyperphosphorylated tau. PMX205 and PMX53 have been protective in other 

models of neurodegeneration (reviewed in (9)), and prevented neuronal death in vitro (129, 

130). Such a therapy would be less immunocompromising than complete inhibition of C1q, 

C1 or C3, as it leaves opsonization and the ability to form the MAC on pathogens intact in 

the brain and periphery. Complement activation by fAß leading to C5a generation also 

produces C5b and in the presence of C6, C7, C8 and C9 would lead to the formation of 

MAC. Given that the plaque would not be damaged by MAC and that MAC would be 

susceptible to neutralization by clusterin or vitronectin complexes in solution (20, 131–133), 

only insertion into membranes of bystander cells could be detrimental. While in the 

described mouse models of AD C5aR1 receptor antagonist treatment was protective, 

suggesting a limited consequence of generated MAC, it of course remains to be seen if the 

protection would also be effective in humans, and at all stages of disease.

PMX53 and another orally available selective antagonist of C5aR1, Avacopan, have been 

tested in human clinical trials for safety. PMX53 was found to be safe in a human Phase 1 

clinical trial for autoimmune diseases (reviewed in (115)). Thus, PMX53 and PMX205 

could have an accelerated path to human clinical trials. It is important to note that PMX53 

binds to human C5aR1 with much higher affinity than mouse C5aR1 (134), suggesting that 

beneficial results in murine models may underestimate that in humans. Avacopan (135) is a 

small molecule specific antagonist for C5aR1 that was effective in mouse models of anti-

neutrophil cytoplasmic antibody (ANCA) associated vasculitis (136) and is currently in 

Phase 3 clinical trial for ANCA-associated vasculitis. Brain permeability has not yet been 

reported. As mentioned above, while a C5a receptor antagonist would block the 

proinflammatory effects of C5a (and perhaps enhance phagocytosis and clearance 

pathways), the complement activation fragment, C5b, would still be intact and able to 

participate in the MAC formation during a bacterial infection. Thus, this protective function 

of complement as well as opsonization, normal synaptic pruning and neuroprotective effects 

will not be compromised during systemic treatment with the antagonist. Finally, it should be 

noted that 16 years of clinical experience with Eculizumab (an anti C5 therapeutic antibody 

that blocks generation of C5a) have indicated a lack of toxicity/adverse effects resulting 

from the absence of C5a-C5aR1 signaling. In summary, the mouse and human data together 

predict that C5aR1 inhibition is safe and may suppress inflammation and enhance 

homeostatic processes in AD.

CR1, a multi-functional protein

CR1 is a host cell-associated regulatory protein, which binds C3b, and more weakly C4b 

and C1q (137). A major CR1 function is to promote the dissociation of C3b containing C3 
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convertases and to act as cofactor for Factor I cleavage of C3b to iC3b (which can no longer 

participate in C3 or C5 convertase activity), thereby, preventing the accumulation of C3b and 

formation of cell lytic C5b-9 on host cells (138). In humans, erythrocyte CR1 plays a major 

role in the clearance of C3b-opsonized immune complexes from the circulation via a 

mechanism called “immune adherence”. C3b linked to immune complexes via its thioester 

bond, binds to erythrocyte CR1 which then transports the immune complexes to the liver and 

spleen for ingestion, degradation and thus clearance (139). Polymorphisms in CR1 have 

been associated with AD risk although most SNPs are located in non-coding regions of the 

CR1 gene. Keenan and colleagues identified a SNP that is within the coding region of CR1 

(18) resulting in an amino acid change (S1610T) within the protein domain that has been 

attributed to C1q binding (137). However, interestingly these SNPs often co segregate with 

another genetic polymorphism that is associated with decreased expression of CR1 on 

erythrocytes (140–142). As a result, it has been hypothesized that this lower density of CR1 

on red cells, lowers peripheral clearance of Aß, and thus may contribute to the phenotype of 

CR1 risk variants, although a contribution of CR1 as an extrinsic regulator of complement is 

not excluded. In a small study of 36 individuals, AD patients had significantly lower levels 

of C3b-opsonized Aβ bound to their erythrocytes than age-matched controls or mild 

cognitively impaired individuals, consistent with a defect in peripheral amyloid clearance 

mechanisms (143). In a series of reports, Rogers and colleagues provided further evidence of 

decreased erythrocyte Aß levels in AD vs cognitively intact individuals, that Aß and 

erythrocytes were colocalized with Kupffer cells in human liver (indicated of immune 

adherence mediated clearance), and that anti-Aß in the presence of serum complement 

enhanced capture of Aß by human erythrocytes in vitro and in vivo (140, 144, 145). Thus, 

facilitating Aß immune complex association with CR1 (146) may be a part of a therapeutic 

strategy to enhance peripheral clearance of amyloid, if this leads to lower brain amyloid and 

cognitive improvement. While in humans CR1 and CR2 are coded for by distinct genes, 

mice express CR1 and CR2 proteins that result from differential splicing of a single Cr2 

gene. In addition, CR1 in the mouse is not expressed on erythrocytes as in humans, making 

mouse models of the role of red cell CR1 in AD more challenging. However, a transgenic 

mouse expressing CR1 in mouse erythrocytes has been reported (147) and a new humanized 

CR1 knockin mouse has been generated by the MODEL-AD consortium. Both mice are 

available through Jackson Labs, and may enable preclinical testing of this novel therapeutic 

approach.

Conclusions

Prevalence of AD in the United States is projected to reach 13 million by 2050 creating a 

great financial as well as emotional burden. With no cure or disease-modifying therapeutics 

available, there is currently a significant unmet medical need to develop therapies for AD. 

The relatively recent awareness of the role of the early complement components in synapse 

pruning in multiple neurological diseases adds another level of complexity and/or 

opportunity for selective modulation of this process. In addition, colocalization of 

complement components with both plaques and tangles, and the detection of C5b-9 in brain 

provide clear evidence of activation of the entire complement cascade by a variety of 

activators within the AD brain. In animal models, direct and specific inhibition of the 
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function of C5aR1 had beneficial effects on both pathology and cognitive behavior in several 

murine models of AD. This strategy would leave the beneficial functions of other 

complement components such as C1q and C3b, and C5b-9 intact. How suppressing C5aR1 

would affect synaptic pruning is yet unknown. Quantitative studies on the balance between 

activators and inhibitors of complement in injured brain and the influence of the complotype 

(148) on progression of AD could be useful in designing personalized therapies in the future. 

While much remains to be clarified, targeting specific effector pathways of complement is 

justified now as a potential therapeutic strategy for this debilitating neurodegenerative 

disease.
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Figure 1: Complement-mediated functions change with disease progression.
Early disease (Phase 1): C1q expression is upregulated by “injury” independently of other 

complement cascade proteins. C1q binds apoptotic neurons and neuronal blebs, thereby 

enhancing phagocytosis by microglia (pink) while also suppressing inflammatory response 

in the absence of other PAMPs/DAMPs. Phase 2: The complement cascade is chronically 

activated as fAß and other activators accumulate. C1r, C1s, C4, and C3 synthesis is induced 

in response to more local damage, while the complement regulators C1-INH and C4BP are 

not comparatively upregulated. Generated C3b/iC3b covalently links to fAβ and may lead to 

phagocytosis. However, in Phase 3, C5a is also generated, diffuses from the plaque, engages 

C5aR1 on microglia and induces chemotactic activity recruiting microglia to the plaques. 

fAβ binds to microglial TLR receptors (or others) inducing a synergistic response including 

pro-inflammatory cytokine secretion and reactive oxygen species production. Since large 

fAβ plaques are not efficiently cleared, a chronic inflammatory environment develops 

contributing to greater neuronal damage conducive to more fAβ production and ultimately 
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neuronal dysfunction and death. The contribution of all these events to AD onset and 

progression in humans remains to be determined.
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Figure 2: Beneficial complement-mediated functions in the brain are retained in the presence of 
C5aR1 antagonists.
A specific C5aR1 antagonist (inhibitor, INH) will prevent induction of detrimental pro-

inflammatory responses to chronic fibrillar Aβ via blocking C5a-induced microglia 

responses (and possibly induction of A1 astrocytes), as well as block C5a-induced neuronal 

apoptosis. The antagonist will not affect the direct interaction of C1q with neurons that 

promotes survival and resistance to fAβ induced death (left), nor the enhancement of 

microglial uptake of apoptotic cells and neuronal blebs with suppression of inflammatory 

cytokine release (right). CR3 will remain functional mediating phagocytosis by engaging 

iC3b and C3b bound to Aβ, apoptotic cells or other debris (right). C5aR2 would be 

unaffected and can act as a scavenger of C5a to contribute to the suppression of pro-

inflammatory responses (left and right). Not pictured: Formation of membranolytic C5b-9 

on pathogens will not be affected.
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