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Abstract

Quieting the Chaos in the Cold:
Noise Cancellation Algorithms in CUORE’s Search for 0νββ Decay

by

Kenneth J. Vetter

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yury Kolomensky, Chair

Neutrinos are the most elusive particles known to humanity, and their nature has puzzled
physicists for decades. While great strides in understanding neutrinos have been made in
the past three decades, many open questions about them remain, including their absolute
mass scale, the nature of their masses, and the extent to which they violate CP symmetry.
The fact that neutrinos are indeed massive has shown that the Standard Model of particle
physics, while wildly successful, is incomplete. This fact has motivated searches for Beyond
Standard Model processes that may fundamentally change our understanding of nature.
Among these potential processes is neutrinoless double beta decay (0νββ), a theorized lepton
number violating process. Experimental evidence of 0νββ decay would conclusively show that
neutrinos are Majorana fermions. This has profound implications for particle physics, as it
would help to explain the matter-antimatter asymmetry in the universe while also providing
insight into the origins of the masses of neutrinos.

The Cryogenic Underground Observatory for Rare Events (CUORE) experiment is an on-
going experiment searching for 0νββ decay in 130Te. This dissertation outlines the current
status of the ongoing global search for 0νββ and details how the CUORE experiment is
contributing to this effort. The results presented here showcase the use of a novel noise can-
cellation algorithm to improve the CUORE data quality, including the RMS noise, energy
resolution, and threshold. The application of this algorithm to CUORE’s latest dataset with
2039 kg-years of TeO2 exposure is then detailed. The results from CUORE’s search for 0νββ
decay using this dataset are also reported. No evidence for 0νββ decay is found, and an upper
limit on the decay rate of Γ0ν < 2.0 × 10−26 yr−1 (90% C.I.) is placed, corresponding to a
lower limit on the half-life of T 0ν

1/2 > 3.5×1025 yr. The 90% C.I. exclusion sensitivity to 0νββ

decay is T 0ν
1/2 > 4.4× 1025 yr, and the 3σ discovery sensitivity is T 0ν

1/2 > 2.6× 1025 yr. Finally,
future searches for 0νββ decay beyond CUORE and the prospects of noise decorrelation
algorithms for these searches are discussed.
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To my father
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Be still my beating heart
It would be better to be cool

It’s not time to be open just yet

– Sting
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Chapter 1

Introduction

Of the many unanswered questions in physics today, among the most intriguing is perhaps:
“Why are we here?” A potentially satisfying answer may come from the generally accepted
Big Bang theory [1], which proposes that the universe began as a highly concentrated region
of space-time with an incomprehensibly large energy density which then expanded, cooled,
and ultimately gave way to the vast network of galaxies, stars, and planets we observe today.
Unfortunately, as many particle physicists and cosmologists are acutely aware, the current
standard model of Big Bang cosmology, ΛCDM, [2] coupled with the Standard Model of
particle physics1 [3–6], predicts that our universe should consist of nearly equal parts matter
and antimatter. As a universe which obeys this prediction expands and cools, one would
expect the matter and antimatter to annihilate with each other, producing only photons.
This is, of course, not the universe that we observe today. Therefore, our earlier question
should slightly be rephrased as: “Why is the observable universe composed of matter instead
of antimatter?”

It is important to note that we can only safely conclude that the observable universe is
dominated by matter instead of antimatter. It is entirely possible that the entire observable
universe exists within a volume in which there is an over-fluctuation of matter over antimat-
ter, and that beyond this bubble, there are bubbles containing over-fluctuations of antimatter
such that on average, the universe indeed has no preference for matter over antimatter. The
Copernican principle [7] provides an epistemological ground on which to reject this idea,
but the idea is certainly physically possible and has been the subject of many theoretical
discussions [8–10].

The underlying reason for why a matter-antimatter asymmetry exists in the observable
universe quickly enters the realms of philosophy and perhaps even theology. (As Richard
Feynman once stated in a 1983 interview as a part of the 1983 BBC program Fun to Imag-
ine, “How does a person answer why something happens?” [11]) Given the scope of this
dissertation, it is ultimately more appropriate for us to frame the question in the following
way:

1Throughout this dissertation, only the Standard Model of particle physics will be capitalized. Apologies
to the astrophysics and cosmology communities.
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“How can we explain an asymmetry between the amount of matter and antimatter in the
observable universe in a way that is consistent with experimental results?”

Particular phrasing aside, this unanswered question is known as the Baryon Asymmetry
Problem, and it is the subject of much research and debate in particle physics and cosmology.
Here, I will explore one particular avenue out of the many available to the scientific com-
munity to address this question. I will focus on the ongoing effort to answer this question
through the lens of particle and nuclear physics. Specifically, this dissertation will focus on
the curious nature and still unknown properties of the neutrino, how the neutrino may play
a role in resolving the matter-antimatter asymmetry problem, and how physicists are trying
to unveil these properties using experimental nuclear physics techniques.

The first four chapters of this dissertation will provide relevant theoretical and experi-
mental background information. Chapter 1 will provide a more technical description of the
matter-antimatter asymmetry problem, its connection to our current understanding of par-
ticle physics, and why neutrinos may play a key role in its resolution. It will also detail the
history of neutrino physics from both an experimental and theoretical point of view. Chapter
2 will discuss the phenomena of two-neutrino and neutrinoless double beta decay and why
the existence of the latter would provide insight into the properties of neutrinos that may
help resolve the matter-antimatter asymmetry problem. Chapter 3 will provide an overview
of the Cryogenic Underground Observatory for Rare Events (CUORE) experiment, an ongo-
ing search for neutrinoless double beta decay, and Chapter 4 will detail the data processing
chain used to conduct this search.

The last five chapters of this dissertation will focus on my contributions to the CUORE
experiment. Chapter 5 will detail the characteristics of the noise in the CUORE detectors
and its sources; much of this work comes from studies I have performed over the past several
years. Chapters 6 and 7 will describe the heart of my contribution to the CUORE experiment:
a novel noise decorrelation algorithm which improves the CUORE data quality when added
to the processing chain. Chapter 8 will outline the latest results from CUORE in its search
for neutrinoless beta decay, an analysis in which I played a major role. Finally, chapter 9
will discuss the future of the search for neutrinoless double beta decay, the CUORE Upgrade
with Particle Identification (CUPID) experiment, and the future technologies, including new
noise decorrelation algorithms, that will be implemented to make CUPID a reality.

1.1 On the Origin of Everything

1.1.1 Baryogenesis

The Baryon Asymmetry Problem has been on the minds of physicists for decades. A major
step forward in articulating and solidifying this problem in a particle physics context was
a 1967 paper by Andrei Sakharov. This paper outlined a set of three conditions necessary
for Baryogenesis, i.e. the production of an excess of baryons over anti-baryons during the
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evolution of the universe. Now known as the “Sakharov conditions,” these three conditions
are [12]:

• Baryon number (B) violation

• Charge conjugation symmetry (C) violation and charge conjugation parity symmetry
(CP) violation

• Interactions which take place out of thermal equilibrium

Baryon number is defined as

B =
1

3
(nq − nq) (1.1)

where nq is the number of quarks and nq is the number of anti-quarks. A process that
conserves baryon number must therefore produce quarks and anti-quarks in equal quantities
or destroy them in equal quantities. The violation of baryon number is thus a self-evident
condition for a matter-antimatter asymmetry to arise; you cannot have more baryons than
anti-baryons in the observable universe without a process that produces more quarks than
anti-quarks in the early universe. At low energies, the Standard Model provides no such
interaction, however as discussed in more detail soon in section 1.1.2, there are interactions
allowed by the Standard Model at high energies which can violate baryon number.

The fact that CP must be violated is effectively axiomatic because CP conjugation maps
particles to anti-particles. Any baryon-generating mechanism that conserves CP would pro-
duce baryons and anti-baryons in equal numbers, which is obviously not what we need to
explain what we see in our universe, thus Baryogenesis in our universe requires CP violation.
CP violation is already described by the Standard Model and there is experimental evidence
confirming its existence. In the quark sector, CP violation has been observed in many inter-
actions that are consistent with the Standard Model. In the lepton sector, there is a solid
theoretical framework which is analogous to that in the quark sector, but the experimental
picture is less clear. There are many ongoing experiments still searching for CP violation in
the lepton sector. In particular, the Tokai to Kamioka (T2K) collaboration has excluded CP
conservation at 95% confidence in long-baseline neutrino and antineutrino oscillations. This
confidence interval increases to 99% assuming the inverted neutrino mass ordering [13]. On
the other hand, the NuMI Off-axis νe Appearance (NOνA) experiment has reported results
that are consistent with both CP conservation and CP violation [14, 15].
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The third Sakharov condition is perhaps the most subtle. It first assumes that CPT (the
combination of CP and the time reversal operator T) is conserved. The CPT theorem [16]
states that any quantum field theory that is unitary, causal, and Lorentz-invariant must
be invariant under a CPT transformation. We generally expect that this will hold for any
beyond Standard Model physics we may find. If CPT is conserved, then any process obeying
the first two Sakharov conditions occurring in thermal equilibrium will still fail to create an
excess of baryons. In thermal equilibrium, the rate Rb of the baryon-creating process will be
equal to the rate of the time-reversed process T(Rb) that destroys baryons. The same is true
for the creation rate (Rb) and annihilation rate (T(Rb)) of anti-baryons, so we must have a
process occurring out of thermal equilibrium to have an excess of baryons in the universe.
This condition is met during the expansion of the universe so long as the rate of excess
baryon production is slower than the rate of expansion of the universe [17].

It may seem that there is no need for beyond Standard Model physics to explain the
matter-antimatter asymmetry in our universe, since all three Sakharov conditions are met
in the standard models of cosmology and particle physics. To analyze this more carefully, it
is useful to define the baryon number asymmetry density:

η ≡ nb − nb

nγ

(1.2)

where nb(b) is the (anti-)baryon number density per unit volume, and nγ is the photon
number density per unit volume. Big Bang Nucleosynthesis (BBN) predicts abundances of
light elements which are in good agreement with observational data. Using BBN based on
the Standard Model with three neutrino flavors, and allowing η to be a free parameter in
the model, these abundances are best explained by a value of ηBBN = (6.04± 0.12)× 10−10

[18]. This is in good agreement with an analysis from the Planck collaboration using data
from the cosmic microwave background (CMB) which corresponds to a value of ηCMB =
(6.12 ± 0.04) × 10−10 [19]. However, in the Standard Model, the amount of CP violation
observed in the quark sector only allows for a value of η ≈ 10−26 [20]. This suggests that any
baryogenesis due to electroweak interactions must have an additional source of CP violation
that is so far unknown. Finally, since the universe was expanding extremely rapidly during
the Big Bang, it is possible that even a universe obeying a matter-antimatter symmetry would
have some primordial matter and antimatter that survives all the way until the conditions
of the present-day, effectively “freezing out” as the universe cools, but this can only account
for a value of η ≈ 10−20 [21]. The fact that this leaves us to explain another ten orders of
magnitude of matter in the universe effectively necessitates the existence of physics beyond
the standard models of particle physics and cosmology.

1.1.2 Leptogenesis

A common way to theoretically resolve the Baryon Asymmetry Problem is with grand unified
theories (GUTs), which predict baryogenesis with the right order of magnitude in the early
universe. Cosmic inflation complicates this picture, however, because the temperature of



CHAPTER 1. INTRODUCTION 5

the universe was only above the GUT energy scale before inflation, and inflation as it is
currently understood would significantly reduce the baryon density in the universe [22]. It
is also extremely unlikely that anywhere in the universe reach temperatures above the GUT
scale after inflation. In the 1980s, it was shown that non-perturbative electroweak processes
which do not conserve baryon number could in fact exceed the expansion rate at temperatures
above ∼100 GeV [23]. These processes, known as sphaleron transitions, violate the symmetry
of B+ L, but conserve B− L, where L is the lepton number operator. The baryon number
asymmetry can be written exactly in terms of the B− L asymmetry [24]:

nB =

(
8Nf + 4NH

22Nf + 13NH

)
nB−L (1.3)

where Nf is the number of fermion families, and NH is the number of Higgs doublets. This
implies that if a lepton number asymmetry existed in the early universe, sphaleron transitions
could have partially converted this asymmetry into a baryon asymmetry, thus providing a
route to baryogenesis.

The Standard Model treats B and L as discrete symmetries. One way of extending the
Standard Model is to introduce U(1)B−L as a gauge symmetry which is spontaneously broken
at a high energy scale on the order of 1010 − 1013 GeV. Following [25] and [26], we can write
this extended Standard Model gauge group as:

SU(3)C × SU(2)L × U(1)Y × U(1)Y ′
⟨χ⟩=v′−−−−→ SU(3)C × SU(2)L × U(1)Y
⟨ϕ⟩=v−−−→ SU(3)C × U(1)EM

(1.4)

where ϕ is the Standard Model Higgs doublet and χ is a new singlet Higgs field with vacuum
expectation value v′ which is needed to break the U(1)Y ′ symmetry. Omitting the SU(3)C
group, the Lagrangian for this gauge group is:

L ⊃− 1

4
W̃µνW̃

µν − 1

4
BµνB

µν − 1

4
CµνC

µν

+ iℓ̄ /Dℓ+ iν̄R /DνR + iēR /DeR + (Dµϕ)
†(Dµϕ) + (Dµχ)

†(Dµχ)− V (χ, ϕ)

− (ℓ̄ϕgννR + ℓ̄ϕ̄geeR +
1

2
χν̄c

RhνR + h.c.)

(1.5)

where ge, gν , and h are the Yukawa coupling matrices for the charged leptons, the left-handed
neutrinos, and the right-handed neutrinos, respectively. The term which couples right-handed
neutrino field to its charge conjugate field, −1

2
χν̄c

RhνR, implies the existence of a Majorana
mass. In the above equation, the covariant derivative is the same as the Standard Model but
with an additional contribution from the U(1)Y ′ group:

Dµ = ∂µ − igWα
µ Tα − ig′BµY − ig′

√
2

3
CµY

′ (1.6)
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where Cµ is the U(1)Y ′ gauge field. The hypercharge Y ′ is related to B− L by:

Y ′ = Y − 5

4
(B− L) (1.7)

Finally, the most general Higgs potential in this model can be written as:

V (χ, ϕ) = µ1ϕ
†ϕ+ µ2χ

∗χ+
1

2
λ1(ϕ

†ϕ)2 +
1

2
λ2(χ

∗χ)2 + λ3(χ
∗χ)(ϕ†ϕ) (1.8)

where λ > −
√
λ1λ2 to ensure the potential remains finite from below. When spontaneous

symmetry breaking first occurs (see equation 1.4), a massive neutral Z ′ boson is created,
and the right-handed neutrinos acquire Majorana masses M = hv′. Since v′ is a new free
parameter distinct from the Standard Model, it can potentially generate large Majorana
masses. The existence of large Majorana masses is important because they may play a role
in generating the small neutrino masses we observe today. This is discussed in more detail
in section 1.2.3.

Assuming that the mass matrix h is real and diagonal, the weak eigenstates are equivalent
to the Majorana mass eigenstates, i.e. the left-handed neutrinos we observe today are given
by:

ν = νL + νC
L (1.9)

and the so-far unobserved right-handed neutrinos are given by:

N = νR + νC
R (1.10)

The right-handed neutrinos, if sufficiently heavy, can decay into Standard Model leptons and
Higgs bosons. The two decay channels are [22]:

N → ℓL + ϕ†

N → ℓL + ϕ
(1.11)

So long as CP is violated and these decays occur out of thermal equilibrium, there is a
difference in the branching ratios of these two decay paths. Thus, the decay of heavy right-
handed neutrinos could reasonably produce an excess of leptons in the early universe, paving
the way for baryogenesis and the matter-dominated universe we observe today.

This model, which introduces a Higgs singlet, is called the singlet majoron model [27],
so-named because the Goldstone boson associated with the breaking of the U(1)Y ′ symmetry
is known as the majoron. This is of course not the only model that predicts leptogenesis in
the early universe, but it is compelling for a few reasons: it is a minimal extension of the
Standard Model which invokes only one new gauge field, it predicts the existence of heavy
right-handed neutrinos with Majorana masses, and it provides a mechanism for leptogenesis
and subsequent baryogenesis in the early universe.
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Neutrinos are of great interest to the particle physics and cosmology communities; they
are an excellent avenue to potentially find physics beyond the Standard Model of particle
physics, and they may be the key to explaining leptogenesis and baryogenesis in the early
universe. While right-handed neutrinos have no experimental confirmation, the existence of
extremely light, left-handed neutrinos has been known for decades. There is a rich history
of experimental efforts that have lead to this knowledge. We will now turn our attention
away from theorized models and towards the established phenomenology of the left-handed
neutrinos.

1.2 Neutrino Physics
Neutrinos were first hypothesized to exist by Wolfgang Pauli in 1930 to explain the observed
spectra of beta decays. Later Enrico Fermi, who coined the term “neutrino,” proposed an
effective field theory describing the weak nuclear force which predicted the emission of anti-
neutrinos during beta decay. In 1937, Ettore Majorana showed that unlike other fundamental
fermions, neutrinos could possibly be their own antiparticle [28]. In 1956, Clyde Cowan and
Frederick Reines provided the first experimental evidence for the existence of neutrinos by
observing inverse beta decays induced by reactor antineutrinos [29]. In the late 1960s, Ray-
mond Davis Jr. conducted an experiment utilizing a large tank filled with perchloroethylene
located deep underground in the Homestake Gold Mine in South Dakota [30]. The experi-
ment measured electron neutrino interactions with chlorine atoms in the tank mediated by
the weak force:

37Cl + νe →37 Ar + e− (1.12)
It provided the first direct evidence of neutrinos from the sun. However, it also gave rise to
a significant discrepancy between the number of neutrinos Davis expected to observe given
theoretical models of the nuclear fusion processes in the sun and the number of neutrinos he
actually detected [31]. This so-called “Solar Neutrino Problem” puzzled physicists for several
decades, hinting at a gap in the understanding of either solar physics or neutrino properties.
This was later resolved with the discovery of neutrino oscillation by the SNO and Super-K
experiments, a phenomenon in which neutrinos change their flavor as they travel, which was
not accounted for in the original predictions from solar models. This discovery showed that
neutrinos have mass, providing the first evidence of physics beyond the Standard Model [32].

1.2.1 Neutrino Oscillations

With the development of the Standard Model came a more complete understanding of the
lepton sector. The three generations of charged leptons e, µ, and τ each have an associated
νe, νµ, and ντ , or an associated “flavor eigenstate” of the three neutrinos. The left-handed
fields associated with these pair up to create three doublets:(

νe
eL

)
,

(
νµ
µL

)
,

(
ντ
τL

)
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that transform under the electroweak SU(2)L gauge symmetry. After electroweak symmetry
breaking, this results in the various interactions with the weak bosons such as W− −→ e−+νe

and Z −→ νe+νe. The phenomenon of neutrino oscillations can be described by representing
each of the three flavor eigenstates as a linear combination of “mass eigenstates,” i.e.

|νℓ⟩ =
i=3∑
i=1

Uℓi |νi⟩ (1.13)

where ℓ runs over e, µ, τ and indexes the three flavors and i runs from 1 to 3 and in-
dexes the three mass eigenstates. The matrix Uαi is a 3 × 3 mixing matrix known as the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [33, 34]. It is conventional to parame-
terize this matrix with three mixing angles θ12, θ23 and θ13, a CP-violating phase δCP , and
two so-called Majorana phases α1 and α2 which would also give rise to CP violation. The
full matrix can then be written as:

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

eiα1/2 0 0
0 eiα2/2 0
0 0 1


(1.14)

where cij = cos(θij) and sij = sin(θij), with θij being the mixing angles. It is instructive
to see how the existence of separate mass and flavor eigenbases is directly responsible for
neutrino oscillations. To outline this, we will temporarily use a two-flavor model in which
only the electron and muon neutrinos exist as superpositions of two mass eigenstates, and
there is a single mixing angle θ. We start with a neutrino created by a nuclear process which
produces an electron neutrino |ν(t = 0)⟩ = |νe⟩ = Ue1 |ν1⟩ + Ue2 |ν2⟩. Using natural units,
(ℏ = c = 1), the neutrino will evolve in time according to2:

|ν(t)⟩ = e−iEt |νe⟩ (1.15)

where E =
√

p2 +m2. Assuming that the neutrino mass is small, we can expand this as
E ≈ p + m2

2p
. The mass-dependence of this term requires that we assign different phases to

the different mass eigenstates, i.e.

|ν(t)⟩ ≈ Ue1e
−it

(
p+

m2
1

2p

)
|ν1⟩+ Ue2e

−it

(
p+

m2
2

2p

)
|ν2⟩ (1.16)

The overall phase of e−ipt does not cause any oscillation between the two mass eigenstates, so
we can drop it. The probably that the particle is observed in the muon eigenstate P (|ν(t)⟩ =
|νµ⟩) is given by:

2This is admittedly a non-relativistic framework in which we assume the neutrino is produced in an
energy eigenstate. It has been shown in [35] that such a framework still produces the same results as a
relativistic framework regardless of the choice of “equal-momentum versus equal-energy.”
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P (νe → νµ) = |⟨νµ|ν(t)⟩|2 =
∣∣∣∣U∗

µ1e
−i

m2
1

2p
tUe1 + U∗

µ2e
−i

m2
2

2p
tUe2

∣∣∣∣2 (1.17)

Again using the assumption of a light neutrino (i.e. E = p + O(m2
i ) ≈ p), the oscillation

probability simplifies to:

P (νe → νµ) =

∣∣∣∣U∗
µ1Ue1e

−i
m2

1
2E

t + U∗
µ2Ue2e

−i
m2

2
2E

t

∣∣∣∣2 (1.18)

Expanding this and using the unitarity of the PMNS matrix (which in the two-flavor case
reduces to simple trigonometric identities for the mixing angle θ), we have:

P (νe → νµ) = sin2(2θ) sin2

(
∆m2

4E
t

)
(1.19)

where ∆m2 = m2
2 −m2

1 is the difference of the squares of the mass eigenvalues, and E is the
energy of the neutrino. Finally, again assuming a light neutrino, we say t ≈ L to give us the
often-used result:

P (νe → νµ) = sin2(2θ) sin2

(
∆m2L

4E

)
(1.20)

In the three-flavor case, this becomes:

P (νℓ → ν ′
ℓ) = δℓℓ′ − 4

∑
i>j

Re(U∗
ℓiUℓ′iUℓjU

∗
ℓ′j) sin

2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im(U∗
ℓiUℓ′iUℓjU

∗
ℓ′j) sin

(
∆m2

ijL

2E

) (1.21)

Finally, we can rewrite the final sum in terms of a lepton-sector analog of the Jarlskog
invariant [36]:

J =
∑
i>j

Im(U∗
ℓiUℓ′iUℓjU

∗
ℓ′j) = J

∑
α,β

ϵℓℓ′αϵijβ (1.22)

Like its quark sector cousin, this is nonzero only if the PMNS matrix allows for CP-violation.
In this context, it is proportional to sin(δCP ). Right now, the best fits for δCP range from
1.08π to 1.58π [37], and the global best fit on δCP right now is δCP = 1.36+0.20

−0.16 [38]. CP-
violation is thus slightly preferred given the current data but by no means confirmed. In the
quark sector, the amount of CP-violation is well known: J = 3.08+0.15

−0.13 × 105 [38].
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Neutrino oscillations are a natural consequence of a general unitary matrix U which mixes
the flavor states with the mass states. The fact that the oscillation probability depends on
the difference of the squares of the masses of each mass eigenstate is important to keep in
mind; it implies that oscillation experiments are not directly sensitive to the absolute mass
scale of the neutrino. (A technique that is directly sensitive to the absolute mass scale is
described later in Chapter 2). However, ∆m2

ij, θij, and ∆CP are known with varying degrees
of sensitivity today. It is worthwhile to discuss how each of these parameters has been (and is
being) measured experimentally. The jargon often used to describe these parameters derives
from experimental results, and this discussion will directly lead to an outline of the neutrino
ordering problem.

1.2.2 Measuring the Neutrino Oscillation Parameters

When building a neutrino oscillation experiment, a common practice is to build neutrino
beams and neutrino detectors at a known distance L from the creation point of the neutrinos.
The neutrino energy E is a parameter that is either controlled (e.g. a beam energy) or
predicted by theory (e.g. the expected energies of solar neutrinos). Equation 1.21 tells us
that constructing such an experiment restricts the probability of a neutrino changing flavors
to be functions of only the norms of the PMNS matrix values (i.e. the three mixing angles
θij and ∆m2

ij). Using reasonable units, we can use Equation 1.21 to write the oscillation
probability of from one mass eigenstate to another:

P (νi −→ νj) = sin2(2θij) sin
2

(
1.27∆m2

ijL

E

GeV
eV2km

)
(1.23)

Experiments are only sensitive to changes in expected numbers of neutrino interactions
when the oscillation rate is large so that the statistics are sufficiently large. This means
that the oscillation probability “angle” ∆m2L

E
is of order 1. If this quantity becomes too

small, then the oscillation probability goes to zero, and nothing can be observed along a
reasonable length scale. If it becomes too large, then the oscillations occur much too rapidly
for an experiment to meaningfully distinguish between the three mass states. Therefore,
the ratio L

E
governs the range of ∆m2 to which an oscillation experiment is sensitive. In

short baseline experiments, L/E ≈ 1eV−2. These experiments can broadly be broken down
into reactor νe disappearance experiments and accelerator νµ to νe oscillation experiments.
Atmospheric neutrino measurements involve detecting neutrinos produced by cosmic rays
interacting with the Earth’s atmosphere. Atmospheric neutrino energies range from ∼100
MeV to 10 TeV, with the highest flux occurring at a few GeV [39]. Using the peak energy,
this gives L/E ≈ 10−3eV−2. These experiments are primarily sensitive to ∆m32 and the
mixing angle θ23 because they primarily govern the oscillations between νµ and ντ . For this
reason, θ23 is known as the “atmospheric angle.” Solar neutrino experiments detect neutrinos
produced in fusion reactions within the Sun. Solar neutrinos also have a wide range of
energies, ranging from tens of keV to above 10 MeV. The flux peaks at roughly 300 keV, for
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Figure 1.1: A diagram illustrating the two possible neutrino mass orderings. The normal
ordering (NO) assumes m1 < m2 < m3 while the inverted ordering (IO) assumes m3 < m1 <
m2. The colors represent the probability of finding a given mass eigenstate in a particular
flavor eigenstate. The curved parts of the colored regions represent how these probabilities
change as δCP varies from 0 to 2π. Reprinted from [41].

which L/E ≈ 10−13eV−2. The key parameters for solar neutrino experiments are ∆m2
21 and

θ12. The angle θ12 is known as the “solar angle” because it is primarily responsible for the
oscillation of the νe emitted by the Sun.

We know from matter effects in the Sun that ∆m2
21 = m2

2−m2
1 is positive and much smaller

than |∆m2
31|, but we have yet to determine the sign of ∆m2

31 (i.e., whether m3 ≥ m1,m2)
[40]. The “neutrino mass hierarchy problem” or “neutrino mass ordering problem” refers
to open question of whether the neutrino masses follow the normal ordering (NO) where
m1 < m2 < m3, or the inverted ordering (IO) where m3 < m1 < m2.

From a global analysis of solar, atmospheric, reactor, and accelerator experiments, the
best fit values for the squared-mass differences are ∆m2

21 = (7.41+.21
−.20) × 10−5 eV2 for both

NO and IO, ∆m2
31 = (2.51 ± 0.03) × 10−3 eV2 for NO, and ∆m2

32 = (−2.50 ± 0.03) × 10−3

eV2 for IO [37]. This analysis favors the normal ordering by 2.7σ. The masses of the three
neutrinos for each ordering are shown in Fig. 1.1. Given these values, there must be at least
two neutrinos with masses of at least 8 meV and at least one neutrino with a mass of at least
50 meV regardless of the ordering. This places a lower bound on the sum of the neutrino
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masses: ∑
mν > 60 meV (NO)∑
mν > 100 meV (IO)

(1.24)

While we are still unsure about the absolute mass scale of the neutrinos, an analysis of
cosmological data from the Dark Energy Spectroscopic Instrument (DESI) collaboration has
constrained the sum of the neutrino masses at 95% C.L. to be [42]:∑

mν < (73− 195) meV (1.25)

Fig. 1.2.2 shows the posterior distribution on the sum of the neutrino masses using the
ΛCDM+

∑
mν model. This reported limit includes a range of masses depending on which

external datasets are included in the DESI analysis and which extensions to the ΛCDM
model are considered. Cosmological results cannot yet rule out the inverted mass ordering,
but there is a 2σ preference for the normal ordering from these cosmological results. It should
be stressed that these limits are highly dependent on the cosmological models used. Direct
detection of the neutrino masses is more desirable in the particle physics community. If a
direct measurement of the neutrino mass were to come into tension with cosmological limits,
it could indicate new physics beyond ΛCDM, which would certainly be exciting.

(a) (b)

Figure 1.2: Results on the sum of the neutrino masses from cosmological data. (a) The
marginalized 1D posterior distribution and constraints on

∑
mν using the single parameter

extension flat ΛCDM+
∑

mν model. (b) The joint marginalized 68% and 95% credibility
intervals on

∑
mν and H0. Reprinted from [42].
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Figure 1.3: Masses of the leptons in the Standard Model and their uncertainties. The absolute
mass scale of the neutrinos is still unknown. The ranges on the possible the neutrino masses
come from the current values of the oscillation parameters and the limit on

∑
mν from

cosmological data.

1.2.3 Explaining the Nonzero Neutrino Masses

The masses of the charged leptons are spread across the six orders of magnitude between the
electron mass (511 keV) and the top quark mass (173 GeV). The neutrino masses, on the
other hand, lie at least six orders of magnitude away from the electron mass (see Fig. 1.3).
In the particle physics community, it is widely accepted that it would be incongruous for the
mechanism that generates the mass of the neutrinos to be the same as that which generates
the masses of the other particles. This suggests that something else may be at play, including
potentially new physics.

In the Standard Model, the charged lepton masses are described by a Yukawa term in
the electroweak Lagrangian:

LEW ⊃ −yαϕ̃
†LαℓαR + h.c. (1.26)

where ϕ =

(
ϕ+

ϕ0

)
is the Higgs doublet, ϕ̃ = iσ2ϕ

∗, and Lα =

(
ναL
ℓαL

)
is one of the six SU(2)L

doublets:
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(
νe
eL

)
,

(
νµ
µL

)
,

(
ντ
τL

)
,

(
uL

dL

)
,

(
cL
sL

)
,

(
tL
bL

)
Each charged lepton has an associated right-handed SU(2)L singlet field:

eR, µR, τR, uR, cR, tR, dR, sR, bR

Note the conspicuous absence of the right-handed neutrino fields νR. This is a reasonable
model because of a property unique to neutrinos: we have never observed a neutrino with
right-handed chirality or an antineutrino with left-handed chirality. This fact is crucial in neu-
trino physics because it suggests that neutrinos may not gain their mass via the mechanism
that applies to the charged leptons. In the Higgs mechanism, all particles are massless at an
energy above the electroweak scale, ΛEW . Below this scale, the Higgs field gains a non-zero
expectation value ⟨ϕ⟩ = 1√

2

(
0 v

)T , and the Yukawa term in the Lagrangian simplifies to:

LEW ⊃ −yαvℓαLℓαR + h.c. (1.27)

where 1√
2
yαv = mα is the mass of each charged lepton. Here v = (

√
2GF )

−1/2 ≈ 246 GeV.
There are no right-handed neutrino fields to which the left-handed fields can couple, so the
Yukawa couplings cannot give rise to the small neutrino masses we observe. One way to
remedy this is to simply add a set of right-handed neutrino fields to the Standard Model
and bound the Yukawa couplings. The new term in the Lagrangian is the Dirac mass term:

LD
N ⊃ −yiαN iRϕ̃

†Lα + h.c. (1.28)

where NiR are the right-handed neutrino fields. Using 49 meV ≤ mheaviest ≤ 120 meV, we
get Yukawa couplings of order 10−13 − 10−12. Compare this to the charged lepton Yukawa
couplings which range from ye ≈ 2×10−6 to yt ≈ 0.7. It could be that these coupling constants
simply span across thirteen orders of magnitude. After all, if the Higgs mechanism describes
the charged fermions, then they must already span across six orders of magnitude, so why not
another seven? The community tends to agree that this fine-tuning of the Yukawa couplings
would be rather unnatural. This is a major shortcoming of the Dirac-neutrino model. There
are other models that do not suffer from the same problems. In fact, there is a Lagrangian
we can write down that is more general than 1.28, provided that we allow for the violation
of lepton number L. One can include a Majorana mass term which couples the right-handed
neutrino field to its charge conjugate field instead of the left-handed field. (An example of
model which does this was outlined earlier in section 1.1.2.) The Lagrangian then becomes:

LM
N ⊃ −yiαN iRϕ̃

†Lα − 1

2
N iRMij(NjR)

c + h.c. (1.29)

where Mij is a symmetric matrix of Majorana masses. This can be written as a matrix
expression:

LM
N ⊃ −1

2

(
νc
αL) N iR

)( 0 (mD
αj)

T

mD
iβ Mij

)(
νβL

(NjR)
c

)
(1.30)



CHAPTER 1. INTRODUCTION 15

The mass matrix can then be diagonalized:

M =

(
0 (mD

αj)
T

mD
iβ Mij

)
−→

(
Dν

ab 0
0 DN

kl

)
(1.31)

where:
Dν

ab = maδab DN
ij = M ′

iδij (1.32)

We now impose the limit that the Majorana masses M ′
i are much larger than the electroweak

scale ∼v, known as the seesaw limit. Assuming that the Majorana mass matrix Mij is itself
diagonalized, we can approximate the total mass matrix as:

M =

(
mαβ 0
0 M ′

ij

)
(1.33)

For low-energy phenomenology, we only need to consider the light neutrino mass matrix:

mαβ = −(mD
αi)

TM ′−1
ij m

D
βj (1.34)

The eigenvalues m1,m2,m3 are the masses of the light neutrino mass eigenstates. The light
neutrino masses are thus suppressed by the ratio of the electroweak scale to the Majorana
mass scale, mD

α /M
′
i . In the seesaw limit, this suppression factor is very small. If we use an

O(1) Yukawa coupling for the neutrinos such that mD is of order 100 GeV, then a 10 meV
light neutrino corresponds to a Majorana mass of order 1015 GeV. Until now we have made
no assumptions about how many right-handed neutrino fields are contained in NiR. This
mechanism for generating a set of very light particles using a very large mass scale is called
the seesaw mechanism [43–45]. It turns out that two options present themselves here: a model
with two right handed neutrinos (2RHN) and a model with three right handed neutrinos
(3RHN), so Mij can be either 2 × 2 or 3 × 3 [46, 47]. In the 3RHN, everything outlined
above regarding neutrino oscillations still holds. The principle difference in the 2RHN is that
because there is one fewer right-handed neutrino field, one of the two Majorana phases in
the PMNS matrix (see Equation 1.14) can be set to zero. It is conventional to set α1 to zero
and let α = α2 be the sole Majorana phase.

It should be stressed that this mechanism, known as a type I seesaw, is not the only
mechanism that could explain a Majorana neutrino. Several other models exist including the
type II seesaw[48, 49] in which a small left-handed Majorana mass is generated via a scalar
Higgs scalar triplet, and the type III seesaw[50, 51] which adds three gauge-triplet fermions
to the theory. By its nature, a Majorana neutrino mass must break the conservation of lepton
number (L), also called lepton number violation, no matter the mechanism at play. This is
exactly one of the conditions we need for leptogenesis.
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Zooming out a bit, the Dirac-neutrino model anticipates new physics at the electroweak
scale, while the Majorana-neutrino model anticipates new physics at the scale of Majorana
masses, which we have good reason to believe are very large. The Majorana-neutrino model
readily explains the small neutrino masses without invoking vastly different Yukawa cou-
plings, instead invoking a higher energy scale at which we might expect new physics. If these
masses are at sufficiently high enough scales, we could expect these Majorana masses to play
a role in grand unified theories [52–54], provide a reasonable mechanism for leptogenesis,
and explain why the light neutrinos are in fact so small. This makes studying the Majorana
nature of neutrinos an inviting task for physicists today.

A question that still persists is how to build an experiment that can probe the seemingly
natural Majorana mass value of 1015 GeV. The Large Hadron Collider at CERN has operated
at energy scales up to 13 TeV [55], and the ICECUBE experiment has recorded neutrino
events with energies ≳ 1 PeV [56] but even these energies leave us with six orders of magnitude
still to surmount. It so happens that a good place to look for the effects of a Majorana mass
is in the energy spectra of beta decays. This is the search for neutrinoless double beta decay
(0νββ), and it is the overarching science goal of this dissertation. We must now turn our
attention towards nuclear physics for a while and discuss 0νββ, how it provides a direct way
to verify the Majorana nature of the neutrinos, and how one can build an experiment to
search for it.
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Chapter 2

Beta Decay

Beta decay is a nuclear process described by the reaction:

A
ZX −→A

Z+1 X
′ + e− + νe (2.1)

Beta (β) decay played a key role in the discovery of the neutrino. When the first mea-
surements of β decay spectra were conducted, there was no knowledge of neutrinos. The
continuous nature of the β decay spectrum (see Fig. 2.1a) was unexplained by the contem-
porary theories of β decay until Pauli introduced a neutrino to the theory. In Fermi’s theory
of β decay, the neutrino is a chargeless, massless spin-1

2
particle. It is instructive to start

by analyzing β decay from first principles. To model the dynamics of β decay, we start in
the rest frame of the parent nucleus. We assume that the three-momenta of the daughter
nucleus (p⃗d), electron (p⃗e), and (anti)neutrino (p⃗ν) are all non-negligible. This means that
the electron and anti-neutrino can each be emitted in any direction with one constraint:

p⃗N = p⃗e + p⃗ν (2.2)

We next assume that since me ≪ mN , the kinetic energy of the nucleus is negligible.
Therefore, energy conservation implies:

Q ≡ Mp −Md −me = Te + Tv (2.3)
where Ti is the kinetic energy of particle i, Mp is the mass of the parent nucleus, Md is

the mass of the daughter nucleus. The Q-value is fixed for a given value of (A,Z). To find
the β decay rate, we use Fermi’s golden rule:

Γi→f =
2π

ℏ
F (Z, Te)

∣∣∣ ⟨i|Ô|f⟩
∣∣∣2 ∫∫ dNνdNeδ(Q− Te − Tν) (2.4)

Here F (Z, Te) is the Fermi function, a correction term which models the Coulomb inter-
action between the emitted electron (or positron in the case of β+ decay) and the daughter
nucleus. For now, we will ignore it. The proceeding integral is the phase space factor for the
decay rate. To solve it, we consider the density of states for a discrete lattice of momentum
states in a box of volume V :
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dN =
4πV

(2πℏ)3
p2dp

and we apply the appropriate relativistic transformations assuming a massless neutrino:

pe =
√
T 2
e + 2meTe (2.5)

dpe = dTe
Te +me√
T 2
e + 2meTe

(2.6)

dpν = dTν (2.7)

The decay rate is therefore:

Γi→f =
2π

ℏ

∣∣∣ ⟨i|Ô|f⟩
∣∣∣216π2V 2

(2πℏ)6

∫ Q

0

dTe (Q− Te)
2 (Te +me)

√
T 2
e + 2meTe (2.8)

This integral scales as Q5 to leading order, a fact which is known as Sargent’s rule [57].
This can also be deduced solely from the kinematics of the decay. β decay is a “1-to-3”
decay in which one particle decays into three particles. Each product particle has a unique
momentum in each direction and energy, giving four equations per product particle. The on-
shell condition requires that E2 = |p⃗|2 +m2, eliminating one equation per product particle,
while conservation of energy and momentum eliminates four more equations. In total, this
gives 3NP − 4 unconstrained equations, where NP is the number of product particles. For
NP = 3, this gives five unconstrained equations, so we expect the phase space integral to scale
as Q5. Sargent’s rule is useful to keep in mind during isotope selection for an experiment, as
higher values of Q give a faster decay rate and typically higher signal-to-background ratios.
We are often interested in the electron kinetic energy spectrum, dΓ/dTe, because we can
measure it directly.

The nuclear matrix element M = ⟨i|Ô|f⟩ is the subject of much study in β decay and
double beta (ββ) decay, and we will come back to it soon. For now, we will group it in with
the constant of proportionality:

dΓ

dTe

∝ (Q− Te)
2 (Te +me)

√
T 2
e + 2meTe (2.9)

When we account for a neutrino mass mβ, this becomes:1

dΓ

dTe

∝ (Q− Te) (Te +me)
√
(T 2

e + 2meTe)
[
(Q−mβ − Te)

2 + 2mβ (Q−mβ − Te)
]

(2.10)

1Here we define Q such that Q ≡ Mp−Md−me still holds. This means Q = Te+Tν +mβ . This function
is 0 at Te = 0 and Te = Q −mβ . This is a helpful way to keep Q fixed as we vary the neutrino mass, but
still enforce an endpoint of Q−mβ .
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where mβ is calculated using the PMNS matrix:

m2
β =

∑
i

|Uei|2m2
i (2.11)

This simplified model does not account for several effects. The Fermi function, which we
have ignored, has a large effect on the overall shape of dΓ/dTe, but it does not play a large
role at the endpoint, Tmax = Q−mν (see Fig. 2.1b). The non-zero neutrino mass does play
a large role in the spectral shape at Te ≈ Q, where the shape is distorted and the endpoint
is shifted to the left by mβ (see Fig. 2.1c). This presents an interesting opportunity to make
a direct measurement of the neutrino masses by analyzing β decay events near the Q-value.
This is done by measuring the kinetic energy of the electrons produced by β decay and
fitting the energy spectrum near the endpoint to the spectral shape function while floating
the endpoint. The KATRIN experiment [58] has conducted such an analysis using tritium
decay:

3
1T −→3

2 He + e− + νe (2.12)

to set a limit of mβ < 0.45 eV (90% C.L.) [59], and the experiment has a projected lifetime
sensitivity of 0.2 eV.

Theoretically, because β decay produces a neutrino in a flavor eigenstate, νe, there is
a non-zero probability of finding the emitted neutrino in each of the three neutrino mass
eigenstates when reconstructing the electron energies. The probability of finding the neutrino
in mass state i is equal to U2

ei. As a result, the true spectrum from β decay is a sum of three
spectra, each with different endpoints. This produces a kink in the spectrum (see Fig. 2.1d).
In practice, this effect is small enough that the KATRIN experiment cannot resolve this
kink, and this effect can be ignored. However, a similar effect due to the existence of sterile
neutrinos could cause a more prominent kink in the spectrum away from the endpoint, at
Te = Q−ms, where ms is the mass of the sterile neutrino, and this effect could potentially
be measured by KATRIN.

2.1 Nuclear Matrix Elements in β decay
Nuclear matrix elements (NMEs) are mathematical constructs that describe the probability
amplitude for a nuclear transition. They are derived from the wavefunctions of the initial
and final nuclear states and the relevant transition operator. The NME can be written as:

M = ⟨i|Ô|f⟩ (2.13)

where ⟨f | and |i⟩ are the final and initial nuclear states, respectively, and Ô is the transition
operator. In the context of β decay, the transition operator includes contributions from both
the vector and axial-vector currents, reflecting the weak interaction’s nature.
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Figure 2.1: Electron kinetic energy spectra from β decay with an endpoint Q ≪ me. (a)
Kinetic energy spectra using only the phase space factor. The vast majority of the spectrum
is unaffected by varying a very small neutrino mass. (b) Effects of the Fermi function F (Z, Te)
on the electron kinetic energy spectrum. Distributions with Z < 0 are the spectra of positrons
emitted during β+ decay. (c) Energy spectra at the β decay endpoint Q with different
neutrino mass values assuming the electron neutrino is in a mass eigenstate. (d) Energy
spectra including the spectrum with a neutrino flavor eigenstate which is a linear combination
of three mass eigenstates. This spectrum, with kinks at m2 and m3, is most similar to what
is expected for a true β decay that produces an electron neutrino.
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Fermi matrix elements describe the transition involving the vector current. They assume
no spin change between the initial and final states, and they are relevant for super-allowed
Fermi transitions for which isospin changes but parity does not. Fermi matrix elements are
typically written as:

MF = ⟨f |
∑
k

τ+k |i⟩ (2.14)

where τ+k is the isospin raising operator and k indexes over each of the nucleons in the
nucleus.

Gamow-Teller matrix elements, on the other hand, describe the transition involving the
axial vector current. These operators account for changes in both spin and isospin between
the initial and final states, and they are relevant for transitions where both spin and parity
can change. Gamow-Teller matrix elements are typically written as:

MGT = ⟨f |
∑
k

σkτ
+
k |i⟩ (2.15)

where σk is the Pauli spin operator.
It is instructive to compute a simple NME for the case of β decay of tritium. This decay

is of particular interest because tritium and helium-3 are mirror nuclei, i.e. the number of
protons in one nucleus is equal to the number of neutrons in the other nucleus, and vice-versa.
This allows one to simplify the calculation by assuming that the spatial wave-functions of
the nuclei are identical and focusing on isospin. This reduces equation 2.14 a single term in
the Fermi matrix element:

MF = ⟨3He|τ+|3H⟩ =
√
2 (2.16)

This value comes from the Clebsch-Gordan coefficients for the transition of an isospin I3 =
1
2

state. The Gamow-Teller matrix element is also a single term:

MGT = ⟨3He|στ+|3H⟩ =
√
3 (2.17)

which can be derived from the combination of spin and isospin transition probabilities. The
total transition probability involves both MF and MGT :

|M|2 = g2V |MF |2 + g2A|MGT |2 (2.18)

where gV and gA are the vector and axial-vector coupling constants, respectively. For the
weak interaction, gV ≈ 1 and gA ≈ 1.27. Plugging in these values, we have:

|M|2 = (
√
2)2 + 1.272 · (

√
3)2 ≈ 6.83 (2.19)
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This is a very simplified calculation, and more accurate calculations include corrections based
on nuclear structure [60]. In practice, the Gamow-Teller NME is approximately 0.95

√
3

[61]. Computing NMEs accurately is difficult even for small nuclei such as tritium. For
large nuclei, this is an even greater challenge since the computational complexity of the
problem grows substantially with the number of nucleons in the system. Therefore, one must
make approximations and use different models to compute the NMEs while considering the
tradeoff between accuracy and computational complexity. Several techniques are employed
to compute NMEs for large nuclei, including:

• Ab initio Methods: These utilize first-principles calculations based on fundamental
interactions between nucleons, aiming for highly accurate results without relying on
phenomenological parameters. Ab initio methods are computationally intensive but
offer a deep understanding of the underlying nuclear forces.

• Shell Model: In this model, the wavefunctions of the nucleons are well-described. The
model effectively accounts for the discrete energy levels that nucleons occupy within a
nucleus, providing a clear picture of the nuclear structure. However, the interactions
between nucleons are described by a limited set of effective operators, known as residual
interactions, which account for deviations from an independent particle model. This
method is well-suited for describing the structure of nuclei with closed shells (Z,N =
2, 8, 20, 28, 50, 82, or 126). but becomes increasingly complex for nuclei with partially
filled shells.

• Quasiparticle Random Phase Approximation (QRPA): This extends the shell model
by including collective excitations of the nucleus. The wavefunctions are described by
considering quasiparticles that arise from the pairing correlations in the nucleus. The
quasiparticle wavefunctions are constructed by solving the Hartree-Fock-Bogoliubov
equations, which take into account both mean-field potentials and pairing interactions.
QRPA then describes collective excitations as coherent superpositions of quasiparticle
excitations, providing a more comprehensive description of the nuclear wavefunctions,
especially for nuclei with open shells. QRPA can handle correlations between nucleons
more effectively than the shell model alone.

• Nuclear Mean-Field Models: These models, which also include the Hartree-Fock-Bogoliubov
method, consider mean-field potentials to describe nucleon interactions. Mean-field
models simplify the problem by averaging the effects of all nucleons on a single nucleon,
making the calculations more tractable. However, they usually need to be extended to
include correlations and fluctuations beyond the mean field to improve accuracy.

Each of these techniques has its benefits and drawbacks, and, importantly, the results
substantially differ between the different techniques. Fig. 2.2 shows the NMEs for various
0νββ candidate isotopes calculated using many different methods. While these techniques
have not converged, recent developments in ab initio methods, which are typically seen as



CHAPTER 2. BETA DECAY 23

Figure 2.2: Nuclear matrix elements for light-neutrino exchange from different many-body
methods. Image reprinted from [62].

the most accurate, have given insight into the shortcomings of different techniques and are
challenging the many-body methods currently used in the field. As these insights develop
and the theoretical work continues, we can expect to see the accuracy of NME calculations
improve in the coming years.

2.2 Double Beta Decay
In 1935, Maria Goeppert-Mayer hypothesized the existence of two-neutrino double beta
decay (2νββ) [63]:

A
ZX −→A

Z+2 X
′ + 2e− + 2νe (2.20)

2νββ is a second-order weakly-mediated Standard Model process that conserves lepton num-
ber. The Feynman diagram for the process is shown in Fig. 2.3a. While this process is allowed
in the Standard Model, its decay rate is highly suppressed due to the small nature of the
Fermi constant. Its half-life can be expressed as:
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1

T 2ν
1/2

= G2νg4A
∣∣〈M2ν

〉∣∣2 (2.21)

where G2ν is the phase space factor that scales as Q11, gA is the axial vector coupling, and
M2ν is the nuclear matrix element. Note that the phase space integral for 2νββ is much
more complicated than the one shown in equation 2.4. Unlike ordinary β decay, 2νββ is a
1-to-5 decay. Counting the kinematic degrees of freedom as we did for β decay, the exponent
on the leading term of the phase space integral is 3NP − 4 = 11.

The axial vector coupling for a free nucleon is known with high precision to be ≈ 1.27 [64,
65]. In heavy nuclei, however, quenching effects may significantly change the effective value
of gA. Understanding these quenching factors is an ongoing pursuit of both experimentalists
and theorists. For isotopes of interest for ββ decay (20 ≤ A ≤ 250), the quenching geffA /gfreeA

can range between between 0.3 and 1 [66]. This depends both on the analysis one chooses
to endorse and on the isotope in question. The value of the quenching for each ββ decaying
isotope is of great experimental importance because of the g4A dependence in the decay rate.

n

n

p+

p+

e−

ν̄e
ν̄e

e−

W−

W−

(a)

n

n

p+

p+

e−

e−

W−

W−

ν̄e

ν̄e

(b)

Figure 2.3: (a) A Feynman diagram for 2νββ. (b) A Feynman diagram for 0νββ.

The suppressed decay rate means that most radionuclei with fast β decay rates will
completely wash out any 2νββ signal, making it very difficult to observe. There exist isotopes
for which single β− (or β+) transitions are forbidden or highly suppressed, such that 2νββ
is the dominant decay process. Table 2.1 lists the current values of the half-life of 2νββ in
several of these isotopes. The half-lives of these decays range from 1018 – 1021 years.2. Notably,
all the listed isotopes are “even-even,” i.e. they have even numbers of protons and neutrons.
This is because nuclei in which protons and neutrons can pair up amongst themselves tend
to have higher binding energies and, thus, lower masses than their odd-odd counterparts. In
the semi-empirical mass model, or liquid drop model [68, 69], this is modeled as a pairing

2To date, the slowest process ever measured is another second-order weakly-mediated process, the two-
neutrino double electron capture (2νECEC) of 124Xe, with a half-life of (1.8± 0.5)× 1022 years [67]
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Figure 2.4: Masses of nuclei with A = 130 and their allowed decay modes. Because 130I is
heavier than 130Te, the single β decay of 130Te to 130I is forbidden, and the dominant process
is 2νβ−β− to 130Xe. Similarly, the decay of 130Ba to 130Cs via electron capture or β+ decay
is energetically forbidden, and 2νβ+β+ is favored. Image reprinted from [70].

term in the binding energy:

∆EB =


δ0A

γ if Z,N both even
0 if A odd
−δ0A

γ if Z,N both odd
(2.22)

where γ is typically chosen to be -0.5 or -0.75. The masses of several nuclei from the A = 130
isobar are shown in Fig. 2.4. This isobar is particularly interesting because two allowed ββ
decay modes exist. 130Te can undergo 2νβ−β−:

130
52 Te −→130

54 Xe + 2e− + 2νe (2.23)

and 130Ba can undergo 2νβ+β+, double electron capture (2νECEC), or β+/EC:

130
56 Ba −→130

54 Xe + 2e+ + 2νe (2.24)

130
56 Ba + 2e− −→130

54 Xe + 2νe (2.25)
130
56 Ba + e− −→130

54 Xe + e+ + 2νe (2.26)
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Table 2.1: Averages of measured 2νββ half-lives in different isotopes from current-generation
experiments. Values are taken from [71] using averaging methods from [72].

Isotope T 2ν
1/2 (year) Experiments

48Ca
(
5.3+1.2

−1.8

)
× 1019 Irvine TPC [73], TGV [74], NEMO-3 [75]

76Ge
(
1.88+0.08

−0.07

)
× 1021 HEIDELBERG-MOSCOW [76], GERDA [77]

82Se
(
0.87+0.02

−0.01

)
× 1020 NEMO-3 [78],CUPID-0 [79], Irvine TPC [80],

NEMO-2 [81]
96Zr (2.3± 0.2)× 1019 NEMO-2 [82], NEMO-3 [83]
100Mo

(
7.06+0.15

−0.13

)
× 1018 NEMO-3 [84], CUPID-Mo [85], NEMO-2 [86],

Irvine TPC [87], ZnMoO4 bolometers [88]
116Cd (2.69± 0.09)× 1019 NEMO-3 [89], Aurora [90], ELEGANT [91],

Solotvina [92], NEMO-2 [93]
130Te (7.91± 0.21)× 1020 CUORE-0 [94], CUORE [95], CUORICINO [96],

NEMO-3 [97]
136Xe (2.18± 0.05)× 1021 EXO-200 [98], KamLAND-Zen [99]
150Nd (9.34± 0.65)× 1018 NEMO-3 [100]

2.3 Neutrinoless Double Beta Decay
In 1939, Furry [101] synthesized the idea of ββ decay with the idea of the Majorana neutrino
to hypothesize the existence of neutrinoless double beta decay (0νββ):

A
ZX −→A

Z+2 X
′ + 2e− (2.27)

Fig. 2.3b shows the Feynman diagram for this process. In 0νββ, the two neutrinos present
in the 2νββ final state are instead virtually exchanged. This is particularly enticing to
particle physics because it violates lepton number (∆L = 2). As discussed in section 1.2.3,
the presence of a Majorana mass guarantees a lepton-number violating process regardless of
the mass generation mechanism. If massive Majorana neutrinos exist, then so should 0νββ.
We can still ask the converse, though: does the observation of 0νββ prove the existence
of massive Majorana neutrinos? The Schechter-Valle theorem [102] says yes.3 The theorem
states that all of the beyond Standard Model physics at play in 0νββ can be put into a black
box, then the 0νββ diagram can be rearranged into a diagram for the process ν −→ ν (see
Fig. 2.5). The observation of 0νββ proves the existence of a Majorana mass term. Therefore,
if Majorana neutrinos exist, then we can expect 0νββ to be observed except in a particular
case of fine-tuning.

As discussed in section 1.2.1, the neutrino mass eigenstates are different from their flavor
eigenstates. Using the light neutrino exchange model, we sum over the electron projections

3This theorem considers 0νββ only in the framework of a “natural” SU(2)×U(1) gauge theory. There
are of course many other possibilities for a beyond Standard Model gauge group, but many of the common
choices still contain SU(2)×U(1) as a subgroup.
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Figure 2.5: A Feynman diagram demonstrating the Schechter-Valle theorem.

of the mass eigenstates mi to define the effective Majorana mass mββ as [103]:

mββ ≡
∣∣∣∣∣
i=3∑
i=1

U2
eimi

∣∣∣∣∣ (2.28)

Note the difference between this equation and Equation 2.11. mβ is a quadrature sum of
the mass-weighted probability amplitudes, while mββ is a mass-weighted linear sum of three
complex amplitudes. Expanding this sum we have:

mββ =
∣∣c2θ12c2θ13eiα1m1 + s2θ12c

2θ13e
iα2m2 + s2θ13e

−2iδCPm3

∣∣ (2.29)

It is possible that these three terms sum to zero, but this requires that the parameters of the
PMNS matrix be finely tuned. Our knowledge of θij and ∆m2

ij constrains the allowed range
of mββ for a given lightest neutrino mass mlightest (see Fig. 2.6). The fine-tuning scenario in
which mββ = 0 is only allowed given the normal ordering and 1 meV < mlightest < 10 meV.
Note that even if both of these conditions are met, mββ need not be 0. If no fine-tuning
exists, then the nonzero values of mββ > 1 meV are overwhelmingly more likely assuming all
Majorana phases are equally likely [104].

It is important to keep in mind that at the end of the day, experiments are only sensitive
to the half-life (or the decay rate) of 0νββ. Any mapping from the half-life to mββ will be
model-dependent. As experimentalists, we often like to quote experimental sensitivities to
0νββ in terms of mββ, as we do in Fig. 2.6. This is useful because it gives us a way to
compare half-lives across different isotopes. However, doing so is highly model-dependent.
The experimental community has generally adopted the practice of assuming light Majorana
neutrino exchange as the dominant mechanism responsible for 0νββ. Doing so allows us to
express the half-life of 0νββ as:

1

T 0ν
1/2

= G0νg4A
∣∣〈M0ν

〉∣∣2m2
ββ

m2
e

(2.30)
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Figure 2.6: Regions of allowed values of mββ versus the lightest neutrino mass mlightest for
both neutrino mass orderings. The right panel shows the current experimental limits on
mββ for different isotopes. All data shown assume that 0νββ is mediated via light neutrino
exchange. The range of each experimental limit is due to the uncertainty of the 0νββ nuclear
matrix element. Image made with the LobsterPlot software package, available courtesy of J.
Torres.

which is similar to 2.21, but with a different phase factor since 0νββ is a one-to-three decay, a
different matrix element, and of course the Majorana mass dependence. Even after adopting
this convention, the model-dependence does not end here. The nuclear matrix element M0ν

is also not agreed upon by modern theories or computational models, thus there is still an
uncertainty in mββ depending on the model one chooses. In practice, we tend to select the
most modern from a running list of matrix element calculations using different techniques
and report a range of possible values of mββ given a particular half-life.

2.3.1 Searching for Neutrinoless Double Beta Decay

Experimental Sensitivity and Scaling

The final state of 0νββ contains, unsurprisingly, no neutrinos. Therefore, the kinetic energy
of the entire interaction must be carried away by the two outgoing electrons (up to the recoil
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energy of the nucleus, which is negligible in β decay). The experimental signature of this
process is thus a sharp peak at E = Qββ in the spectrum of all ββ decay events. After
selecting a candidate isotope to search for such a peak, the goal is to maximize the number
of ββ events observed while minimizing the number of observed background events. The
number of observed 0νββ events is:

n0ν = n0

(
1− e−t ln 2/T 0ν

1/2

)
≈ n0t ln 2

T 0ν
1/2

(2.31)

where we have assumed that the 0νββ half-life is very long (an extremely reasonable thing to
do in this context). Here n0 is the initial number of candidate isotope nuclei being observed.
We often rewrite this number as:

n0 =
m

mA

f (2.32)

where mA is the atomic mass of the candidate isotope, m is the mass of the detector, and f
is the enrichment factor.4 Assuming a signal detection efficiency of the detector ϵ (including
all fiducialization and analysis efficiencies), the expected number of signal counts is:

n̂0ν =
fϵsmt

mA

(2.33)

The numerator is the time-integrated amount of candidate isotope observed by the experi-
ment. We call this quantity the exposure, and we will often use it when referring to the sizes
of particular datasets. In an experimental setup, background events and background-like
events can be induced by many sources including cosmogenic events, radioactive contami-
nation, and noise. When searching for 0νββ, we define a region of interest (ROI) of width
∆E centered around Qββ. Typically ∆E is chosen to be the full-width at half maximum
(FWHM) energy resolution of the experiment when quoting sensitivity values, but actual
analyses use much wider windows when fitting for the 0νββ signal. The number of expected
background events is:

n̂b = BI ·∆E · ϵb ·mt (2.34)
where BI is the background index, defined in units of counts/(Energy·Mass·Time) and ∆E
is the energy resolution, typically quoted as the standard deviation σ, or the FWHM. Note
that we have distinguished between the background event efficiency ϵb and the signal event
efficiency ϵs. This reflects the fact that experiments can apply signal/background rejection
techniques (e.g. pulse shape discrimination, light yield discrimination, etc.) to select for
supposed signal events while rejecting background events. Increasing the ratio ϵs/ϵb is an
ongoing effort across the experimental community. One definition of the sensitivity to T 0ν

1/2

is the half-life required such that the number of signal events is equal to the uncertainty on
the number of background events. Assuming the number of background events is Poisson
distributed, we have:

n̂0ν =
√

n̂b (2.35)
4It is often of value to further rewrite the enrichment factor as f ′ = f/anat where anat is the natural

abundance of the particular isotope. This is useful because it scales well with the most fundamental unit,
dollars.



CHAPTER 2. BETA DECAY 30

fϵsmt ln 2

mAT 0ν
1/2

=
√

BI ·∆E · ϵb ·mt (2.36)

T 0ν
1/2 = ln 2

fϵs
mA

√
ϵb

√
mt

BI ·∆E
(2.37)

In the background-free limit, the sensitivity scales proportionally to the number of expected
signal events:

T 0ν((BI) = 0) = ln 2
fϵs
mA

mt (2.38)

Current Experimental Framework

One may take many technological approaches when designing and building an experiment
to search for 0νββ. Liquid cryogenic detectors – such as those used in the EXO-200 ex-
periment [105], its successor nEXO [106], and the next-generation NEXT experiment [107]
– employ large volumes of liquid xenon cooled to cryogenic temperatures. These detectors
leverage the scintillation light and ionization signals produced by particle interactions to
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Figure 2.7: Predicted spectra of 2νββ and 0νββ near Qββ = 2527 keV for one experiment
with an FWHM energy resolution of 5 keV and one experiment with an FWHM energy
resolution of 25 keV. No backgrounds are considered. As the resolution worsens, the number
of 2νββ events in the ROI grows. The rate of 0νββ is assumed to be 10−6 times the 2νββ
rate.
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identify potential 0νββ events. Large liquid scintillator detectors, such as KamLAND-Zen
[108] and SNO+ [109], use a liquid scintillator material to detect the light produced when
a particle interacts with the liquid. This technology allows for the deployment of extremely
large masses of the isotopes of interest, allowing for very large exposures within a reason-
able data collection timeframe. Cryogenic solid-state calorimeters, such as those deployed
in CUORE [110], CUPID-Mo [111], and AMoRE [112], utilize cryogenically cooled crystals
of candidate isotopes. These detectors measure the tiny temperature rise caused by particle
interactions by collecting phonons produced in the crystal lattice. Finally, solid-state semi-
conductor detectors, such as those used in the Majorana demonstrator [113], the GERDA
experiment [114], and their successor LEGEND [115], measure the charge produced when
ionizing radiation interacts with them. When a particle, such as an electron, interacts with
the detector, it excites electrons from the valence band to the conduction band, creating
electron-hole pairs. An electric field applied across the detector collects these charge carriers,
resulting in a measurable electric current.

Each technology varies in its sensitivity and scalability. Liquid cryogenic detectors like
EXO-200/nEXO offer energy resolutions around 1% at MeV scales and the capability to scale
to large detector masses, enhancing sensitivity. However, the extensive cryogenic infrastruc-
ture required is complex and costly, posing significant engineering and operational challenges.
Furthermore, as we enter the era of tonne-scale experiments, it will become challenging and
costly to procure multiple tonnes of liquid xenon, especially after considering the enrichment
costs. Large liquid scintillator detectors, such as SNO+, are easily scalable to large volumes,
making them suitable for extensive, large-scale experiments. They generally offer moderate
energy resolutions, around 5% at MeV scales. The large monolithic nature of these detectors
enables them to be self-shielding, allowing them to have much lower intrinsic backgrounds
than their counterparts. Ensuring uniform detector response across large volumes can also
be challenging. Cryogenic calorimeters like those used in CUORE and AMoRE, sometimes
referred to as bolometers, provide excellent energy resolution, about 0.1% at MeV scales, and
their segmented nature allows for good background discrimination. However, scaling these
detectors to larger volumes is challenging due to the complexity and cost of producing large
numbers of high-purity crystals and maintaining cryogenic conditions. Additionally, the op-
eration of cryogenic systems demands meticulous engineering and constant monitoring to
ensure stable performance. Solid-state semiconductor detectors, typically made from high-
purity Germanium, provide the best energy resolutions of the current technologies, and their
extremely fast timing resolution allows for excellent background rejection using pulse shape
discrimination techniques. One of the primary challenges associated with these detectors is
the need for high-purity crystals made of enriched germanium, which are expensive and re-
quire specialized facilities for production and enrichment. The cryogenic systems needed to
operate these detectors also introduce further complexity and cost.

Today, many experiments have reached the quasi-background-free regime in which the
projected sensitivities to 0νββ are competitive, but the predicted number of background
events in the ROI during the lifetime of the experiment is ≲ 1. Even in the quasi-background
free regime, 0νββ has an inescapable background associated with it: the 2νββ continuum near
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the endpoint5 (see Fig. 2.7). This effect becomes worse as the detector resolution worsens,
so the energy resolution becomes even more important than equation 2.37 may suggest.

The Past, Present, and Future of 0νββ Searches

The experimental search for ββ decay has developed a rich history over the past several
decades. As mentioned earlier, Furry’s proposal of 0νββ was only two years after Majorana’s
theory was published in 1937. Since then, the experimental pursuit has endured. For decades,
the best limits on 0νββ were placed by geochemistry [116]. Excess quantities of products of
radioisotopes in the Earth could be attributed to ββ decay, though this method is unable to
distinguish between 2νββ and 0νββ. The first evidence of ββ decay was found in 130Te using
the geochemical method, and the half-life was determined to be 1.4×1021 years [117]. The
first direct measurement of the half-life of 2νββ was made in 1987 [118]. The experiment
employed a 1m3 time projection chamber (TPC) with 14g of enriched 82Se deposited on Mylar
foil which composed the central electrode of the TPC. This experiment found evidence for
2νββ in 82Se with a lifetime of T 2ν

1/2 = 1.1+0.8
−0.3 × 1020 yr. This is in good agreement with

the current global best fit value of 0.87+0.02
−0.01 × 1020. Today, the rates of 2νββ have been

measured to at least 5σ precision in almost ten isotopes, as was shown in Table 2.1. 0νββ
has proven more elusive than 2νββ. In 1948, the first direct search for 0νββ in 124Se set an
upper bound of 3×1015 years on the half-life[119]. Now, three-quarters of a century after the
first limits were placed, the best limits on 0νββ half-lives range from 1022 to 1028 years, and
experimental searches continue to push these limits higher and higher. The current leading
limits are listed in Table 2.2.

The best limit on mββ currently comes from the KamLAND-Zen experiment [108], which
is located in Japan. The Yangyang Underground Laboratory in northeast South Korea is
home to the AMoRE-I experiment, which has set the leading limit on the 0νββ half-life
in 100Mo. The EXO-200 experiment, which set the world-leading limit on the 0νββ half-
life in 136Xe at the time, and the Majorana demonstrator were both based in the United
States. Europe is also home to two ongoing experiments, CUORE and LEGEND-200, which
are located at the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, L’Aquila, Italy.
LNGS was also home to the GERDA experiment which set the leading limit on 0νββ in
76Ge [114]. This search is an active, international campaign. The rest of the 2020s are an
optimistic time for the community. We hope to see something soon.

Contemporary 0νββ experiments are crossing the tonne-scale milestone, and the latest
exclusion sensitivities are beginning to rule out sizable regions of the mββ parameter space,
particularly when assuming the inverted ordering. The precise values of the neutrino oscilla-
tion parameters are solidifying, the upper limit on the sum of the neutrino masses is being
pushed closer to the minimum possible value, and the neutrino ordering problem could easily

5In the limit of arbitrarily good resolution and no backgrounds, one could discriminate 2νββ events from
0νββ with absolute confidence. 2νββ decays have an endpoint that is shifted from the 0νββ endpoint by
2mβ , allowing one to separate the two in principle. However, crafting a detector with the necessary resolution
remains out of reach.
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Table 2.2: Leading 0νββ half-life limits in different isotopes from current-generation exper-
iments. Note that the listed leading limit in 130Te excludes the latest result from CUORE,
which is a major subject of the later chapters of this dissertation.

Isotope T 0ν
1/2 (years) Experiment

48Ca > 5.8× 1022 ELEGANT VI [120]
76Ge > 1.8× 1026 GERDA [114]
82Se > 4.6× 1024 CUPID-0 [121]
96Zr > 9.2× 1021 NEMO-3 [83]

100Mo > 3.0× 1024 AMoRE-I [112]
116Cd > 2.2× 1023 Aurora [90]
128Te > 3.6× 1024 CUORE [122]
130Te > 2.2× 1025 CUORE [110]
136Xe > 3.8× 1026 KamLAND-Zen [108]
150Nd > 2.0× 1022 NEMO-3 [100]

be resolved in the coming decade. With that, the allowable parameter space for 0νββ decay
given our typical assumptions comes into clearer view. Though 0νββ decay still evades us,
the future of the search for 0νββ decay seems bright. In the United States, the Nuclear
Science Advisory Committee Long Range Plan states [123]:

As the highest priority for new experiment construction, we recommend that the United
States lead an international consortium that will undertake a neutrinoless double beta decay
campaign, featuring the expeditious construction of tonne-scale experiments, using different
isotopes and complementary techniques.
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Chapter 3

The CUORE Experiment

The Cryogenic Underground Observatory for Rare Events (CUORE) [110] is an experiment
primarily searching for 0νββ decay of 130Te. It is located at the Laboratori Nazionali del
Gran Sasso (LNGS) in Italy, the world’s largest underground laboratory for neutrino and
astroparticle physics. Home to many experiments including dark matter searches and rare
event searches such as CUORE, LNGS is one of the few laboratories in the world in which
many experiments can be built while shielded from cosmic rays. This shielding comes primar-
ily from Gran Sasso d’Italia, a massif in the Apennine Mountain range which contains Corno
Grande, the highest peak on the Italian peninsula. The massif provides 3800 meters water
equivalent of shielding from cosmic rays, reducing the flux of cosmic ray muons from about
1 per cm2 per minute at sea level to just 2× 10−6 per cm2 per minute at the LNGS under-
ground labs [124]. While other underground laboratories provide greater shielding, LNGS has
many practical advantages compared to its sister laboratories. The laboratory is accessible
by vehicles, including cars and large trucks, allowing for the easy transport of researchers,
equipment, and materials. This is particularly convenient for those who do not enjoy the
experience of traveling down mine shaft elevators or dealing with their limited space.

As was discussed in chapter 2, there are several isotopes in which 2νββ has been measured.
It turns out that not all of these isotopes are practical for use in an experiment given current
technologies. For example, 48Ca may seem like a fine choice of isotope. Of all the known
double beta decaying isotopes, 48Ca has the highest Q-value (4.27 MeV) and the smallest
atomic mass. Its low mass number makes calculating the nuclear matrix elements more
tractable than doing so for the other double beta decaying isotopes. Unfortunately, 48Ca is
an extremely scarce isotope of calcium, making up only 0.187% of natural calcium by molar
fraction. This renders enrichment costs extremely high; a gram of 48Ca costs hundreds of
thousands of dollars, and global production is limited to roughly ten grams per year. This
makes a large-scale 0νββ decay search using 48Ca very impractical. 130Te does not suffer
from the same problems. 130Te is the most abundant isotope of tellurium, with a natural
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(a) (b)

Figure 3.1: A comparison of double beta decaying isotopes. (a) The natural isotopic abun-
dance of different double beta decaying isotopes. (b) The Q-values of the double beta decay
of different isotopes and the energies of some relevant backgrounds.

abundance of ∼34%1[125]. This is by far the highest natural abundance of all known double
beta decaying isotopes (See Fig. 3.1a). By selecting 130Te as the 0νββ candidate isotope,
CUORE can use natural tellurium, eliminating enrichment costs. The Q-value of double
beta decay in 130Te is 2.5275 MeV, which is higher than many sources of γ and β decay
present in laboratories on Earth. A somewhat significant drawback of this isotope is that
2.5275 MeV is less than the 2.6145 MeV γ ray emitted by the de-excitation of 208Pb after
the β decay of 208Tl, which is the last process in the 4n decay chain of 232Th (See Fig. 3.1b).
Luckily, the Q-value of 130Te lies between the Compton edge of this γ ray and the peak
energy value, so any backgrounds from 208Tl that fall near the Q-value of 130Te must come
from multiple instances Compton scattering. Given the scattering cross-section in TeO2, the
interaction length of a 2.615 MeV γ ray turns out to be close to the length of a CUORE
crystal, meaning that a multi-Compton event is less likely than a single scattering in a
CUORE crystal. Multi-compton events that occur in multiple crystals can be tagged using
coincidence analysis and then rejected when conducting a 0νββ search. Finally, a major
benefit of using tellurium is that it can be manufactured into large, high-purity crystals.
This keeps radioactive backgrounds to a minimum while also allowing one to instrument the
crystals with detectors at the “human scale” as opposed to at the microscopic scale.

CUORE is the most recent of many experiments utilizing the bolometric technique, de-
scribed in detail below, to search for 0νββ decay in 130Te. Using the bolometric technique
to search for 0νββ was first proposed by Ettore Fiorini in 1984. In 1994, Fiorini and oth-

1Interestingly, the second-most abundant isotope of tellurium, 128Te, also double beta decays and has a
natural abundance of ∼32%. However, the half-life of 2νββ in 128Te is about 2000 times longer than that of
130Te (2.2× 1024 years versus 8.2× 1020 years).
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ers demonstrated the feasibility of this technique by operating a single TeO2 crystal with a
mass of 340 grams [126]. Further results on 0νββ of 130Te were obtained with four [127] and
eight [128] crystals with similar design in the late 1990s. In 1997, the Milano Double Beta
Decay (MiDBD) experiment [129], a tower of 20 TeO2 crystals, began collecting data. These
experiments paved the way for CUORICINO [130], an array of 62 TeO2 crystals arranged
into 13 floors with a total mass of 40.8 kg and 11.8 kg of 130Te. Cuoricino operated from
2003 to 2008 and set a limit on the half-life of 0νββ in 130Te of 2.8× 1024 years (90% C.L.)
with 19.75 kg·yrs of 130Te exposure.

The successor to Cuoricino was CUORE-0 [131], which operated from 2013 to 2015.
CUORE-0 consisted of an array of 52 TeO2 crystals, each 5×5×5cm3, arranged into a tower
of 13 floors with four crystals per floor arranged in a two-by-two configuration. CUORE-
0 was an important experiment designed to validate the background-reduction techniques
intended for CUORE. These techniques included improving the detector production, devel-
oping better cleaning strategies to enhance the radio-purity of the detectors (particularly
at the crystal surface), and procuring more radio-pure materials, including copper, for the
detector support structure. These methods proved effective, as the background due to α con-
tamination was six times less than that of Cuoricino. In addition, the improvements made
to the detector assembly line improved the uniformity of the detectors, which showed more
consistent resolutions than Cuoricino. After two years of data-taking, CUORE-0 set a limit
on the half-life of 0νββ in 130Te of 2.7 × 1024 years (90% C.L.) with only 9.8 kg · yrs of
130Te exposure [132]. The fact that this limit is so similar to that of Cuoricino with less
than half of the exposure can be explained by the improvement in detector energy resolution
and the reduction of backgrounds in CUORE-0 compared to Cuoricino. When the data from
Cuoricino and CUORE-0 were combined, the resulting limit on 0νββ in 130Te was found
to be 4.0 × 1024 years at 90% C.L. CUORE was constructed between 2015 and 2017 using
effectively the same techniques that were realized for CUORE-0. The detectors are arranged
into 19 towers, each consisting of 52 crystals with the same geometry as CUORE-0. Of these
988 detectors, 984 were successfully deployed, while four were declared dead before the start
of data-taking.

Before the publication of this dissertation, the most stringent limits on the half-life of
0νββ in 130Te come from the analysis of CUORE data with one (metric) tonne-year of TeO2

exposure.2 The most recent results from CUORE’s search for 0νββ decay in 130Te with two
tonne-years of exposure will be discussed later in chapter 8. This chapter will focus on the
experimental techniques used in the CUORE experiment and how they allow for the search
of 0νββ decay.

2The word “tonne” will be used throughout this dissertation in an attempt to distinguish it from the
American “ton.”
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3.1 Cryogenic Calorimeters
A calorimeter is any device used to measure energy. The earliest calorimeters were created
in the eighteenth century; one of the earliest uses was to measure the latent heat of the
melting of water. Calorimetry has developed into a rich field of research in the past quarter
millennium. While most calorimeters used in high energy physics measure the energy loss of
a particle interaction in the form of ionization or scintillation light, cryogenic calorimeters
measure this energy in the form of ionization and heat [133]. A typical cryogenic calorimeter
consists of an absorber, a thermometer, and a thermal link to a thermal bath with constant
temperature T0. When energy is deposited in the absorber, this causes a change in the
thermometer – typically a change in its resistance, which leads to a measurable change in
voltage when passing a current through it.

When a given amount of energy ∆E is deposited in a calorimeter, the temperature of
the calorimeter increases by an amount

∆T =
∆E

C
(3.1)

where C is the heat capacity of the calorimeter. When searching for 0νββ decay, we seek to
measure energies of order 1 MeV with resolutions of at most 1% of the energy deposition.
This is a challenging feat because we must build calorimeters in our macroscopic world.
Operating at extremely low temperatures makes this possible thanks to Debye’s Law, which
states that the heat capacity of a dielectric crystal scales with temperature as

C(T ) ∝
(

T

ΘD

)3

(3.2)

where ΘD is the Debye temperature of the crystal.3 This means that at very low tempera-
tures, a small amount of energy deposited in a dielectric crystal will result in a relatively large
change in the crystal temperature. This suggests that operating calorimeters at cryogenic
temperatures allows one to build a calorimeter sensitive to tiny energy deposits. For a TeO2

crystal, the Debye temperature is 232 K [134], and when operating at a base temperature of
T = 15 mK, the corresponding heat capacity is roughly 1 MeV / 10−4 K.

No calorimeter is perfect; there will always be random fluctuations in the amount of
energy measured by the system. It can safely be assumed that the amount of energy deposited
in the absorber will be normally distributed. We can treat the calorimeter as a canonical
ensemble to derive the energy resolution. The average energy ⟨E⟩ is given by:

−∂ lnZ

∂β
= − 1

Z

∂Z

∂β
=

1

Z

∑
i

Eie
−βEi = ⟨E⟩ (3.3)

3For conductors, the heat capacity is more accurately modeled as C(T ) ∝ a
(

T
ΘD

)3

+ bT where a and b

are material-specific constants. The linear term comes from the electron contribution to the heat capacity,
while the cubic term comes from the phonon contribution.
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where Z is the partition function, the sum is over all microstates, and β is the thermodynamic
beta 1/kBT , where kB is the Boltzmann constant. Differentiating again, we have

∂2 lnZ
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= − ∂

∂β
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]
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E

(3.4)
Now, using the definition of heat capacity:

C =
∂ ⟨E⟩
∂T

= − 1

kBT 2

∂ ⟨E⟩
∂β

=
1

kBT 2

∂2 lnZ

∂β2
=

σ2
E

kBT 2
(3.5)

Rearranging to solve for the energy resolution, we have:

σE =
√
kBT 2C (3.6)

Note that this is not dependent on ∆E, so we can expect this contribution to the energy
resolution to be constant regardless of the amount of energy deposited in the absorber.
Of course, this is an intrinsic contribution to the energy resolution that does not consider
outside sources of noise, which may further degrade it. In a TeO2 crystal operating at T = 15
mK, this corresponds to a resolution of roughly 14 eV. In contrast, the energy resolution in a
typical CUORE crystal is 1 – 10 keV, and the observed energy resolution strongly depends on
the energy deposited in the detector. Other contributions to the resolution therefore cannot
be ignored. Studying the sources that further degrade the energy resolution is a focal point
of this dissertation.

In CUORE, the cryogenic calorimeter technique has been realized through the careful
design and fabrication of state-of-the-art detector components. Fig. 3.2 shows a schematic of
one CUORE calorimeter. The absorber is the TeO2 crystal, which contains the 0νββ decay
candidate isotope, 130Te. The fact that the 0νββ candidate isotope is itself a part of the
detector is a crucial aspect that makes CUORE a competitive experiment. This “source =
detector” technology gives rise to a high detection efficiency which would not be possible if
the source and detector were separated into two different components.

The thermometers used in CUORE are neutron-transmutation doped (NTD) germanium
thermistors [135, 136]. A thermistor is simply a resistor whose resistance depends on tem-
perature. When a current is supplied to the thermistor, a change in temperature causes a
change in the voltage drop across the thermistor, resulting in a measurable signal that can
be read out. The NTD germanium is fabricated by irradiating samples of pure germanium
with a controlled flux of thermal neutrons. Of the five stable isotopes of Germanium (A =
70, 72, 73, 74, 76), three transmute into dopants once they have captured a thermal neutron
[137]:



CHAPTER 3. THE CUORE EXPERIMENT 39

Figure 3.2: Schematic of a CUORE calorimeter. The absorber is the TeO2 crystal which also
contains the 0νββ decay candidate isotope, 130Te. The thermometer is an NTD germanium
thermistor glued to the absorber and read out via gold wire bonds. The crystal is connected
to the copper frame of the detector by PFTE holders which serve as a weak thermal link.
The copper frame is connected to the mixing chamber stage of the dilution refrigerator and
serves as the heat sink.

70
32Ge + n →71

32 Ge EC−−−−−−−−→
T1/2=11.2days

71
31Ga + νe (3.7)

74
32Ge + n →75

32 Ge β−
−−−−−−−−→
T1/2=82.8min

75
33As + ν̄e (3.8)

76
32Ge + n →77

32 Ge β−
−−−−−−−−→
T1/2=11.3 hrs

77
33As + ν̄e

β−
−−−−−−−−→
T1/2=38.8hrs

77
34Se + ν̄e (3.9)

Compared to other techniques such as diffusion, this process results in a high uniformity
of dopants throughout the volume of the germanium sample (so long as the thermal neutron
source used is large compared to the sample). This is because in natural germanium, the
stable isotopes are randomly distributed throughout a crystal and because the absorption
cross sections for neutron capture are of order 10−24 cm2 at the relevant neutron energies,
effectively eliminating the self-shielding of the neutrons by the germanium [138].

The resistivity of NTD germanium has been found to obey the relation derived in [139]:

ρ = ρ0e
√

T0/T (3.10)

where ρ0 and T0 are constants that depend on the doping. For cryogenic calorimeters,
this has the important ramification that as T → 0, the resistivity diverges. By applying a
bias current to the thermistor at cryogenic temperatures, one can thus measure significant
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Figure 3.3: Schematic of the biasing circuit for the detector thermistor RTHE, glued on the
TeO2 crystal, not to scale. Reprinted from [140].

changes in temperature by reading the corresponding changes in the output voltage. A
detailed schematic of the biasing circuit is shown in Fig. 3.3. Combined with the fact that
the heat capacity of the absorber is extremely small at low temperatures, this high resistivity
allows one to build a cryogenic calorimeter capable of measuring the energy deposition from
single particle events.

In CUORE, each TeO2 crystal is outfitted with one NTD-Ge thermistor and a silicon
heater [141]. This heater allows one to inject a known amount of energy into the absorber
in a controlled manner, allowing one to study the thermal response of the detector. For a
particle event to be measured by the thermistor, the heat from the event must dissipate
slowly enough that the thermistor and the absorber have time to be in thermal equilibrium
with each other, but not with the thermal bath. This is ensured by attaching small pieces
of Teflon to each corner of the crystal. The Teflon pieces are then directly connected to a
copper support frame, which serves as the thermal bath at 15 mK. Along with the gold wires
that connect the thermistor and heater to the readout cables, these Teflon pieces serve as
weak thermal links connecting the calorimeter to the cryogenic structure.
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Figure 3.4: A typical CUORE pulse. The time axis is set such that the pulse is triggered at
t = 3 seconds, and the pulse amplitude is normalized to 1. The amplitude of the pulse is
proportional to the temperature change in the calorimeter, ∆T = E

C
where E is the energy

deposited in the detector by a particle interaction and C is the heat capacity of the detector.
The decay time of the pulse is given by τD = C/G where G is the thermal conductance
between the calorimeter and the thermal bath. A typical CUORE pulse has a decay time of
order 1 second.

The characteristic output signal from a particle event is a thermal pulse with two time
constants.4 A typical CUORE pulse is shown in Fig. 3.4. The first time constant, τR, is
proportional to the rise time of the pulse, and it is the amount of time it takes for the
NTD-Ge thermistor to come into thermal equilibrium with the absorber. The second time
constant, τD, is proportional to the decay time of the pulse. Analogous to the time constant
of an RC circuit, this time constant is given by τD = C/G, where C is the heat capacity
of the detector and G is the thermal conductance between the calorimeter and the thermal
bath. In CUORE, a typical pulse has a decay time of roughly 1 second.

4In practice, it is known that real pulses in CUORE often exhibit three time constants: a rise time and
two decay times. One decay time is due to the heat capacity of the crystal and the thermal conductance of
the gold wires, while the other is due to the heat capacity and thermal conductance of the Teflon. Here, we
ignore the second decay time to simplify the explanation of the system.
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The signal is sent to room-temperature electronics outside the cryogenic infrastructure to
read out the voltage signals from the NTD-Ge thermistors. The signal first passes through a
front-end electronics board which consists of a differential pre-amplifier and a second-stage
programmable gain amplifier. It is then passed to an analog anti-aliasing Bessel-Thomson
filter. This filter features a 120 dB/decade roll-off and a selectable -3 dB bandwidth ranging
from 15 Hz to 120 Hz in four steps [142], with unity gain below the cutoff frequency. The
Bessel-Thomson filter was chosen because of its maximally flat phase delay, which prevents
distortion of the pulse shape after filtration. The filtered analog signal signal is then digitized
at 1 kHz with a 24-bit Σ∆ analog-to-digital converter (ADC) and written to disk. The 24-bit
ADC is chosen so that the digitization noise is negligible compared to other noise sources,
and the 1 kHz sampling frequency ensures that the relevant signal band (≲ 10Hz) is well-
covered. The timestreams from all 988 calorimeter channels are stored continuously, i.e. there
is no data rejection upfront. This allows all digital signal processing, triggering, and pulse
shape discrimination to be done offline, though triggering is also done online for the purposes
of detector monitoring. More details on the front-end electronic system can be found in [140].

3.2 The Cryogenic Infrastructure

3.2.1 3He/4He Dilution Refrigerators

The cryogenic calorimeters used in CUORE must be operated at temperatures well below 1
K to measure nuclear and particle interactions effectively. These temperatures are achieved
with 3He/4He dilution refrigerators (DRs). 3He/4He DRs represent a pinnacle in cryogenic
technology and low-temperature physics; they are uniquely capable of cooling large payloads
to temperatures in the millikelvin range while keeping vibration and potential contamination
to a minimum [143]. This makes them ideal for experiments that demand high thermal stabil-
ity and low thermal noise. Today they are essential for experiments in quantum computing,
condensed matter physics, experimental astrophysics, and nuclear physics.

Helium exists primarily as two stable isotopes: the relatively rare 3He isotope with a single
neutron and the more abundant 4He isotope with two neutrons. Both isotopes become liquid
at low temperatures but exhibit distinct quantum mechanical behaviors. The 4He nucleus
is composed of four spin-1

2
nucleons, thus it is a boson. When cooled below 2.17 K (at 1

atmosphere), the so-called “lambda point,” 4He undergoes Bose-Einstein condensation and
becomes a superfluid. In contrast, 3He is a fermion and only becomes a condensate once
the 3He atoms preferentially pair together in a process analogous to the pairing of electrons
in Bardeen–Cooper–Schrieffer theory. The lambda point of 3He is roughly 2.5 mK. This
difference in lambda points is at the heart of the DR technology.

Dilution refrigeration leverages the unique thermodynamic properties of a mixture of
3He and 4He at low temperatures. The key phenomenon is a phase separation that occurs
in a 3He/4He mixture below 0.87 K, depending on the concentration of 3He in the mixture
(See Fig. 3.5). At these temperatures, the mixture separates into two distinct phases: a
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concentrated phase rich in 3He and a dilute phase containing a small proportion of 3He
dissolved in 4He.

The refrigeration cycle of the DR is based on the continuous extraction of 3He from the
3He-rich phase to the dilute phase. This transfer process is endothermic; it absorbs heat from
the surroundings, thereby cooling the system. The DR exploits this cooling effect to reach
temperatures as low as a few millikelvin. For this refrigeration to be possible, one must first
reach a temperature below 0.87 K so that the helium phase separation can occur. DRs can
widely be classified into two main categories, each of which uses very different technologies
to achieve this: so-called “wet” cryostats and “dry” cryostats.

In a wet DR, the cooling process begins with a “main bath” of liquid 4He, which serves as
a primary coolant. Liquid nitrogen is often used first to cool the bath from room temperature
to 77 K, then the nitrogen is removed, and liquid 4He is added. This dramatically reduces the
amount of helium lost to evaporation, and liquid nitrogen is much cheaper and more readily
available than liquid 4He. The main bath is maintained at a temperature of around 4.2 K
under normal pressure, but by reducing the pressure over the helium bath using a vacuum
pump, the temperature can be lowered to around 1.5 K. This step is known as “pumping on
the bath.” Once this temperature is achieved, a Joule-Thomson (JT) expansion valve cools a
gas mixture of 3He and 4He to lower temperatures. The cooled mixture then enters a series of
heat exchangers and stages within the refrigerator, progressively cooling the helium mixture
as it moves through each stage before finally arriving at the mixing chamber stage.

On the other hand, dry DRs, also known as cryogen-free DRs, eliminate the need for a
liquid helium bath by utilizing a closed-cycle refrigeration system. This system eliminates
the need for continuous liquid helium consumption, making dry DRs more sustainable and
cost-effective for long-term operations. The primary cooling mechanism in dry DRs involves
mechanical cryocoolers, such as pulse-tube coolers or Gifford-McMahon coolers, which com-
press and expand helium gas in a closed cycle, cooling the system to temperatures below 4 K.
Once the system reaches these temperatures, a series of mechanical and thermal stages are
employed to achieve further cooling. The pre-cooled 3He/4He mixture is circulated through
a series of heat exchangers, where it progressively cools down through counter-flow heat ex-
change with the returning mixture from the mixing chamber. In these heat exchangers, the
temperature of the 3He decreases with each pass. The mixture is then expanded through a
capillary or orifice, allowing the temperature to drop significantly as the gas undergoes JT
expansion, as is the case in wet cryostats.

In both wet and dry DRs, once the mixture is sufficiently cooled via JT expansion and has
reached the mixing chamber, the enthalpy of mixing drives the phase separation. A dilution
unit is then needed to reach millikelvin temperatures. A typical 3He/4He DR consists of
several key components which comprise the dilution unit:

• Mixing chamber: The coldest part of the DR, where the two phases of the helium
mixture coexist and phase separation occurs. This serves as the site of the primary
cooling effect.
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Figure 3.5: Phase diagram of liquid 3He/4He mixtures. At temperatures below 0.87 Kelvin,
phase separation occurs, creating a 3He-rich phase and a 3He-dilute phase. The Lambda line
is the line below which 4He becomes a superfluid Bose-Einstein condensate, and TF is the
Fermi temperature. Reprinted from [143], then colorized.
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• Still: A component that separates the evaporated 3He from 4He, with 3He preferentially
evaporating due to its higher vapor pressure, facilitating recycling. This is positioned
above the mixing chamber and is slightly warmer.

• Heat exchangers: Crucial components that transfer heat from warmer parts of the
system to colder regions. These enhance the DR’s efficiency by pre-cooling the incoming
3He using the outgoing flow from the mixing chamber.

A schematic of a dilution unit is shown in Fig. 3.6. Outside the dilution unit, 3He is
continuously circulated through the system. It is pumped through the refrigerator and then
re-condensed in a condenser, then it re-enters the mixing chamber allowing the cycle to
continue.

3.2.2 The CUORE cryostat

Much of the information reported in this section is taken from [144], and a more detailed
description of the CUORE cryostat can be found there. The CUORE cryostat is a cryogen-
free dilution refrigerator custom-made by Leiden Cryogenics. It is one of the most powerful
cryostats in the world, providing more than 96 W of cooling power at 45 K and roughly 4
µW of cooling power at 10 mK (though this will be easily surpassed by the Colossus DR
[145] which is currently being built at Fermilab). The CUORE cryostat has a fiducial volume
of more than one cubic meter. When operating at 10-15 mK, this is the coldest cubic meter
in the known universe [146].

The cryostat comprises six coaxial vessels at 300 K, 40 K, 4 K, 600 mK, 50 mK, and
10-15 mK (see Fig. 3.7). The 300 K and 4 K stages each form a vacuum chamber. The outer
vacuum chamber (OVC) has a volume of 5.9 m3 and a minimum pressure of approximately
10−6 mbar. The inner vacuum chamber (IVC) has a volume of 3.4m3 and a minimum pressure
of roughly 10−8 mbar. The five inner vessels are made using oxygen-free copper [147].

Two cold lead shields are placed inside the IVC to suppress background radiation from
naturally occurring contaminants in the cryostat. The innermost shield is composed of Ro-
man lead. This lead was found in a shipwreck off the coast of Sardinia from the days of
the Roman Empire. It is therefore depleted of 210Pb and other radioisotopes with half-lives
shorter than several hundred years.5 This shield is 6 cm thick and has a mass of roughly five
metric tons. It is suspended from the 600 mK stage plate and is thermalized at 4 K. Another
shield of copper and modern, natural lead is also placed inside the IVC, between the 10 mK
plate and the Tower Support Plate. This shield is 30 cm thick and has a mass of roughly
two metric tons. It is thermalized at 50 mK.

5Interestingly, the Roman lead used in CUORE has even less 238U than would be expected in the lead
from Ancient Roman times. Around the dawn of the Common Era, the Roman Empire was beginning to run
out of silver. The Ancient Romans developed a method to extract silver from lead ore, and in the process,
they extracted 238U as well.
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Figure 3.6: Schematic of the dilution unit of a 3He/4He dilution refrigerator. The percentages
refer to the concentration of 3He at each step. Reprinted from [143] and digitally edited for
increased clarity.
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Figure 3.7: The CUORE cryostat structure, including all vessels and lead shieldings.
Reprinted from [144].

Altogether, approximately 4.5 metric tons of material is cooled to 50 mK or below,
and roughly 1.5 metric tons of material – including the mixing chamber plate, the Tower
Support Plate, and the detector with 988 TeO2 crystals – is cooled to the base temperature
of 10-15 mK. To cool down this massive thermal load, the CUORE cryostat relies on three
refrigeration systems, each capable of reaching a different temperature. The first stage is
the “fast cooling system” (FCS) [148], which consists of heat exchangers that use 3 Gifford-
McMahon refrigerators. Several sensors allow one to monitor and control the system during
the cooldown procedure. The FCS cools the cryostat to ∼50 K and is switched off as the
second stage begins. The second stage consists of five two-stage Cryomech PT415-RM pulse
tubes coolers [149], hereafter referred to as simply “pulse tubes,” each with a nominal cooling
power of 1.2 W at 4.2 K and 32 W at 45 K. Many efforts are taken to dampen pulse tube
vibrations and decouple them from the cryostat. These efforts will be further detailed in
chapter 5. Finally, to achieve the base temperature of 10-15 mK, CUORE employs a DRS-
CF3000 continuous-cycle 3He/4He DR, customized by Leiden Cryogenics. This third stage
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Figure 3.8: Diagram of the building housing the CUORE experiment in hall A of LNGS.
Reprinted from [150].

operates simultaneously with the pulse tubes. With the full thermal load of CUORE, the
dilution unit can reach a minimum temperature of roughly 7 mK.

3.3 The CUORE support and suspension systems
CUORE is located in a three-story building in Hall A of LNGS (see Fig. 3.8). The ground
floor hosts the pulse tube compressors, the main cryostat support legs, and some external
shieldings. The second floor (counting with American conventions) has a clean room to
access the detector when the cryostat is open. The third floor contains the plumbing for
the cryogenic infrastructure, the front-end electronics, and several parts of the suspension
system. To electronically isolate the front-end electronics from the outside world, the parts
of the experiment on the third floor of the building are housed inside a Faraday cage made of
a high-permeability metallic glass alloy sandwiched by two aluminum sheets. This provides
an attenuation of a factor of 15 at 50 Hz and a factor of 1000 from ∼1 kHz to ∼100 MHz
[151].

The cryostat support structure was designed to mechanically isolate the detector from
the building and the larger environment. LNGS is located in the heart of the Apennine
mountains and is a quite active seismic area, so seismic safety requirements must also be
met. The cryostat is mechanically connected to the ground via mechanical fuses. In the
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Figure 3.9: Diagram of the CUORE mechanical support structure. All labeled components
are at room temperature. No cryogenic support structures are labeled here. Reprinted from
[150].
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event of a strong earthquake, the fuse breaks, mechanically isolating the cryostat and the
mechanical support structure from the ground.

A diagram of the CUORE support structure is shown in Fig. 3.9. To minimize the impact
of other external vibrations on the detector, the cryostat is suspended from the Main Support
Platform, which is made of steel I-beams. The Main Support Platform supports the weight of
the cryostat via three stainless steel ropes attached to the 300 K plate. A series of steel bars,
Kevlar ropes, and copper bars are used to suspend each cryogenic stage plate from its outer
neighbor. Notably, the Tower Support Plate is designed to be mechanically isolated from the
other cryogenic stages; it is suspended from an external, room-temperature structure called
the Y-beam. The Y-beam comprises three identical metal arms with square cross-sections
joined symmetrically at 120-degree angles forming a Y shape. It is mechanically connected
to the Main Support Platform via three Minus-K Technology mechanical insulators. The
insulators act as low-pass filters which dampen vertical vibrations at frequencies above ∼0.5
Hz. Three segmented detector suspension bars connect the detector to the Y-beam. Each
segment is thermalized to a different cryostat stage, down to the 600 mK stage. Finally, the
Tower Support Plate is suspended from the Still stage.
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Chapter 4

The CUORE Data Processing Chain

The raw CUORE data are stored as continuous digital waveforms for each channel. These
channels include the 988 cryogenic calorimeters, several NTD-Ge thermistors used to monitor
the temperature, and auxiliary devices discussed in greater detail in section 5.2. A significant
amount of signal processing and analysis is needed to convert these waveforms to an energy
spectrum that can be used to search for 0νββ. Here, we describe this process in detail.

4.1 High-level Data Organization
The fundamental unit of CUORE data collection is a run. A run is a period of continuous
data-taking that lasts roughly one day. The relevant types of runs in the context of this
dissertation are calibration runs and physics runs. Calibration runs are those during which
calibration sources are deployed, and the events from these sources dominate the resulting
energy spectrum. Physics runs are those during which the experiment measures only back-
ground radiation and, ideally, 0νββ events from 130Te. The data from these runs are used to
construct the energy spectrum which is later analyzed to search for 0νββ.

To analyze the data, several runs are grouped into datasets. A typical dataset comprises
thirty to fifty physics runs sandwiched by three to six calibration runs on each end of the
physics data-taking. Often, the “final calibration” runs for one dataset are also used as the
“initial calibration” runs for the next dataset. The purpose of having both initial and final
calibration runs is to roughly account for any changes to the cryogenic environment during
the dataset. Precautions are taken to try to ensure that the cryogenic system is stable across
an entire dataset, such as the use of a Proportional–Integral–Derivative (PID) controller
that maintains a consistent temperature of the mixing chamber stage, but changes in the
operating conditions of the cryostat still arise during a dataset. Datasets form the basic unit
for most physics analyses, including the search for 0νββ.

As physics data are collected, the collected TeO2 exposure of the experiment grows at a
rate of 743 kg years per year, and the 130Te exposure grows at a rate of 253 kg years per
year. Of course, the collected exposure will always be less than the analyzed exposure due to
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Figure 4.1: Collected exposure over time. Data-taking began in 2017, though there was
significant down-time between 2017 and 2019. From January 2019 to May 2024, the detector
demonstrated a 90% duty cycle with no cryogenic interventions necessary. During this time,
the average exposure collected was roughly 500 kg years per year.

various efficiencies which are less than one. CUORE began collecting physics data in 2017.
In that year, two datasets were collected, and then data-taking stopped for almost one year
due to problems with the cryogenic infrastructure. Data-taking resumed in mid-2018, and
two more datasets were acquired before another period of cryogenic interventions, and a fifth
dataset was acquired toward the end of 2018. After a third period of cryogenic interventions
lasting until mid-2019, data-taking resumed. Since the start of the sixth dataset, no cryogenic
interventions were required until May 2024, during which time the average rate of TeO2

exposure collection was roughly 500 kg years per year. During this time, the detector had
a 90% duty cycle including the time spent calibrating the detector, which does not count
toward the exposure. A plot showing the collected exposure over time is shown in Fig. 4.1.

4.2 Data Storage and Online Processing
CUORE saves all of the continuous data it takes during a run to disk for later analysis.
With roughly 1000 channels sampled at 1 kHz with an 18-bit ADC, this corresponds to a
data collection rate of roughly 200 GB per day. Given the relatively low sampling rate, no
hardware trigger is needed, and a more flexible software trigger can be used. The APOLLO
data acquisition (DAQ) software [152] performs both the DAQ and the online triggering
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algorithms on the data. While online triggering is not strictly necessary for analysis since the
continuous data are saved, doing so offers the benefit of real-time data quality monitoring.
The online triggering consists of two different triggering algorithms. The first, called the
noise trigger, places a trigger at a pre-selected time. A ten-second long window is placed
around this trigger, creating a “noise event.” After some selection cuts to ensure they are
not contaminated with a pulse, the noise events can be used to build a given calorimeter’s
average noise power spectrum during data-taking. The other type of trigger is called the
derivative trigger (DT), and it is designed to fire when a pulse event occurs in a channel.
The DT thresholds for each calorimeter must be set by hand because the noise levels and
the energy response of each calorimeter channel can vary widely across the entire detector.
When the DT fires, a ten-second window is placed around the trigger with a pre-trigger time
of three seconds. This ensures that the baseline of the pulse, i.e. the first 2.25 seconds of
the event, can be accurately measured in later processing steps. APOLLO then records the
timestamp of the triggers in new files separate from the continuous data. In addition, every
570 seconds, identical square pulses are injected into the calorimeters via the silicon heaters
described in section 3.1. These heater pulses (also called “pulser events” or simply “pulsers”)
are flagged explicitly using digital voltage signals that are synchronized in time with the
pulser electronics. These digital signals are then used to flag all of the pulsers as their own
type of event. The pulsers can then be used to perform a process called stabilization, which
is described in more detail below, and to study the efficiency of the triggering algorithm.

A PostgreSQL database stores information about each channel, the configuration of the
electronics, and the online triggering. It also stores higher-level bookkeeping information,
such as each run’s start and stop time, the run type, the location of the raw data, and the
associated dataset number. As the DAQ process runs on the various underground computers,
backups are automatically created and saved to an above-ground computer at LNGS, from
which more backups are written to other machines in Italy and the United States, ensuring
that the data are not lost.

4.3 Offline Processing
Once an entire dataset has been acquired and the data have been stored, the data can be
processed with a more robust sequence of steps than the online triggering offers using the
DIANA data analysis framework [153]. These steps include the construction of an optimum
filter and retriggering of the data, stabilization, calibration, coincidence analysis, pulse shape
discrimination, and energy reconstruction. This section outlines each of these techniques as
they were employed for the latest CUORE result with two tonne-years of TeO2 exposure.
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4.3.1 Optimum Filter and Triggering

Optimum Filter

Over the course of an entire dataset, a typical channel will acquire several thousand noise
events and anywhere from hundreds to thousands of valid physics events. Using this ensemble,
we create the average pulse (AP) and the average noise power spectrum (ANPS). The AP
s[t] is simply a time-domain average of each pulse, i.e.:

s[t] =

∑Nevents
i=1 si[t]

maxt

[∑Nevents
i=1 si[t]

] (4.1)

where si[t] is the ith pulse from the dataset. The denominator ensures that the amplitude of
the AP is 1. In practice, we use the events from calibration runs to construct the AP because
the calibration runs have much higher statistics, and events triggered during calibration are
likely “real” physics events. Thus, the AP should accurately represent the detector’s true
response to a particle interaction. An example AP is shown in Fig. 4.2.

(a) (b)

Figure 4.2: An example of an average pulse (AP) from a typical CUORE channel. (a) The
time-domain version of the AP. This is built by averaging events triggered by the derivative
trigger with sufficiently large amplitude in the time domain. It is normalized such that the
amplitude of the pulse is 1. (b) The power spectral density of the same average pulse.

The ANPS is more abstract and more difficult to compute than the AP, but it is a useful
tool for analyzing the properties of the detector noise. The ANPS J(f) of a signal v(t) is
defined as the Fourier transform of its autocorrelation function [154, 155]:

J(f) = lim
T→∞

∫ T/2

−T/2

dtR(t)e−i2πft (4.2)
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where R(t) is the autocorrelation function:

R(t) = lim
T→∞

1

T

∫ T/2

−T/2

dt′ v(t′)v(t+ t′) (4.3)

Assuming that v(t) has units of Volts, the ANPS has units of Volts2 / Hz. This may seem
unnatural as it is not a unit with any physical meaning. However, it is convenient because
the variance of the noise in time is given by the integral of the ANPS over all frequencies:〈

(v(t))2
〉
=

∫ ∞

−∞
df [J(f)] (4.4)

When dealing with signals of finite time T digitized at a sampling frequency fs, the ANPS
becomes:

J [fn] =
N−1∑
i=0

∆t R[ti]e
−i2πfn∆t (4.5)

where N = fsT , ∆t = 1/fs, and R[ti] is the discrete autocorrelation function:

R[ti] =
1

N

N−1∑
j=0

v[ti]v[ti+j] (4.6)

This can be re-written in another form [156]:

J [fn] = T
〈
|ṽn|2

〉
(4.7)

where ṽn is the nth element of the discrete Fourier transform of v(t). This form is more in
line with how the ANPS is typically calculated, which is known as Bartlett’s method [157].
One collects a set of noise traces, calculates the mean norm-square of each Fourier amplitude,
and then multiplies by T to ensure that the result has units of V2/Hz. A typical ANPS for a
typical CUORE channel is shown in Fig. 4.3. Unlike the AP, the ANPS is built using physics
runs, since there are not enough noise events in calibration runs due to the higher event rate.
When constructing the ANPS, several analysis cuts are placed on the noise events to ensure
that the ANPS accurately represents the noise of the detector. For example, noise events
with very high RMS and events containing derivative triggers are cut from the data.

The ANPS and AP are the necessary inputs to construct the matched filter, also called
the optimum filter (OF) [158–161]. Applying the OF to the detector signal produces a new
signal for which the signal-to-noise ratio is maximized [162]. Provided that the OF has unity
gain, the maximum values of the filtered pulses are the optimal estimators of the pulse
amplitudes. The least-squares error of a waveform v[f ] given the signal template s[f ] and
the noise power spectrum J is:

χ2
OF =

N−1∑
n=0

∆f
|ṽ[fn]− As̃[fn]|2

J [fn]
(4.8)
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Figure 4.3: An example ANPS of a typical CUORE channel. The continuum from ∼1 Hz to
∼100 Hz is due to thermal fluctuation noise in the detector and Johnson noise in the read-out
circuit, the roll-off above 100 Hz is due to the Bessel filtering of the data, the flattening out
of the ANPS at close to 500 Hz is due to the digitization noise floor, and the peaks in the
spectrum are due to a combination of excess vibrational and electrical noise.

Minimizing this quantity with respect to A gives the following estimator for the amplitude:

∂χ2
OF

∂A

∣∣∣∣
A=Â

= 0 (4.9)

∆f
N−1∑
n=0

(
ṽ∗[fn]− Âs̃∗[fn]

)
(−s̃[fn]) +

(
ṽ[fn]− Âs̃[fn]

)
(−s̃∗[fn])

J [fn]
= 0 (4.10)

2Â
N−1∑
n=0

|s̃[fn]|2
J [fn]

=
N−1∑
n=0

s̃∗[fn]ṽ[fn] + s̃[fn]ṽ
∗[fn]

J [fn]
(4.11)

Â =

[
N−1∑
n=0

|s̃[fn]|2
J [fn]

]−1 N−1∑
n=0

s̃∗[fn]ṽ[fn]

J [fn]
(4.12)
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where in the last line, we have used the fact that x̃[fn] = x̃∗[fN−n] when x[t] is real. The
factor in front ensures that the time-domain maximum of the filtered signal template is 1.
Thus, the amplitude estimator does not re-scale the signal. Treating this as a filtering of the
original waveform v[f ], we can define the OF as:

OF[fn] = h
s̃∗[fn]

J [fn]
(4.13)

where h =
[∑N−1

n=0
|s̃[fn]|2
J [fn]

]−1

ensures that the filter is unity-gain. This can also be extended
to account for a time delay in the signal by minimizing a new χ2:

χ2
OF (t0) =

N−1∑
n=0

∆f

∣∣ṽ[fn]− As[fn]e
−i2πfnt0

∣∣2
J [fn]

(4.14)

A similar derivation as the one above gives:

Â =

[
N−1∑
n=0

|s̃[fn]|2
J [fn]

]−1 N−1∑
n=0

s̃∗[fn]e
i2πfn t̂0 ṽ[fn]

J [fn]
(4.15)

where t̂0 is the time delay of the signal, i.e. the time at which the filtered signal reaches its
maximum amplitude.

From here, it is useful to define the amplitude resolution σA. The resolution is inversely
proportional to the signal-to-noise ratio of the optimally filtered pulse shape, i.e.

σA =

[
T

N−1∑
n=0

|s̃[fn]|2
J [fn]

]− 1
2

(4.16)

where factor of T comes from the fact that J [fn] has units of V2/Hz, and σA has units of
Volts. This is a much more realistic description of the amplitude resolution than Eq. 3.6.

Optimum Triggering

Once the OF is constructed for each channel-dataset pair, the continuous data are filtered
with the OF and stored as a new run. This must be done offline because the OF is an
acausal filter. To reduce both the computation time of the filtering and the amount of data
that must be stored, the continuous data and the OF are decimated by a factor of 8 to 125
Hz. This new sampling frequency is chosen because the signal power is much less than the
noise power at frequencies above 62.5 Hz for virtually all channels. This decimation is only
applied during the application of the OT algorithm; the later processing steps, including
amplitude estimation, are done using the data sampled at 1 kHz.
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Figure 4.4: Examples of the effect of Optimum Filter (OF) on the CUORE data. (a) The
average pulse shown in 4.2 before and after applying the OF. (b) The average noise power
spectrum shown in 4.3 before and after applying the OF.

The OF waveforms are then retriggered using the optimal trigger (OT). The OT is a
simple amplitude threshold trigger; if the amplitude of the OF waveform is greater than four
times the OF resolution, then a trigger is placed at the local maximum of the waveform.
There is a dead time of a few seconds after an OT trigger is set to prevent “double triggering”
on the side pulses that are created as a result of the filtering (see Fig. 4.4). After running
the OT, the time of each event is saved, just like the events triggered by the DT. In addition
to the timestamp, the OF amplitudes are also stored. As the OF amplitude is the best
amplitude estimator, it becomes the best energy estimator once the data are stabilized and
calibrated (again, using the data sampled at 1 kHz).

4.4 Thermal Gain Stabilization
A unique aspect of the cryogenic calorimetric technique is that changes in temperature in
the system have a non-negligible effect on the detector response. As was discussed in section
3.1, the resistivity of the NTD-Ge thermistors decreases as operating temperature increases
(see Eq. 3.10). This implies that changes in temperature over the course of a run can change
the amplitude of pulses at a fixed energy. The pulser events can be used to account for
this effect. The energy of a pulser event in a given channel is the same, with very high
precision. Using the event baseline as a proxy for the operating temperature, one can fit
a function of the OF amplitude of each pulser versus the baseline. This process is called
thermal gain stabilization, or simply stabilization. The baseline of each pulser event is fit to
a first-order polynomial, and the mean value of the fit is taken to be the baseline voltage. If
the magnitude of the slope of this fit is sufficiently large, then the pulser event is excluded
since it must have occurred either in coincidence with another pulse, i.e. as a pileup event, or
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when the detector was unstable, e.g. during an earthquake or when a truck traveling on the
highway near LNGS hits a pothole. To perform the stabilization, the OF amplitudes of all
pulser events are fit to a first-degree polynomial as a function of the baseline. The baseline
dependence on the OF amplitude is rotated away, producing the “stabilized amplitude.” This
procedure is called heater-based thermal gain stabilization (heaterTGS), and it is used in
most CUORE channels.

A similar technique is employed using events from calibration data at known energies.
During calibration, the highest-energy peak from γ rays in the data is the 2.615 MeV peak due
to the decay of 208Tl to 208Pb. These events are sufficiently high in energy that fluctuations
in the baseline do not smear out the peak, allowing one to select the events in the peak before
stabilization. Assuming that the energies of these peaks are all at 2.615 MeV and, therefore,
should have the same amplitude in a given channel, one can perform a routine similar to
the heaterTGS to account for the changes in resistivity due to thermal fluctuations. This
procedure is called calibration thermal gain stabilization (calibrationTGS).

For most CUORE channels, both heaterTGS and calibrationTGS are applied. In general,
heaterTGS tends to perform better than calibrationTGS. The primary reason for this is that
calibration data are only taken at the beginning and end of each dataset. Suppose a channel
experiences a sudden jump in temperature during a physics run but returns to its original
temperature before the final calibration begins. In that case, there will be no calibrationTGS
data at these outlier baseline values, so the fit needs to be extrapolated to these values. In
contrast, heater events occur throughout the data-taking, during physics and calibration
runs, giving a distribution of events covering a broad range of baseline values and allowing
for a more robust fit to the data. The heaterTGS and calibrationTGS methods are compared
in Fig. 4.5. Of the 984 active channels deployed in CUORE, 29 have dysfunctional or broken
silicon heaters, meaning only calibrationTGS can be used for thermal stabilization. For
the other channels, the two stabilization techniques are compared after the detectors are
calibrated, and the best technique is selected thereupon.

4.4.1 Calibration

For the first three datasets of CUORE, the Detector Calibration System (DCS) was used to
deploy calibration sources into the cryostat and remove them without human intervention.
These calibration sources included thoriated tungsten which contained 232Th. For CUORE,
this is a natural choice for calibration because the decay products of 232Th include 208Tl,
which decays to 208Pb and emits a 2.615 MeV γ ray in the process. This γ ray is close to the
Q-value of 130Te, so the detector response at energies close to Qββ can be studied well. Other
γ ray peaks observed in the calibration spectrum include the 338, 911, and 969 keV γ rays
from the de-excitation of 228Ra, the 583 keV γ ray from the decay of 208Tl, and the 239 keV
γ ray from the decay of 212Pb, all of which are decay products from the 232Th chain. These
energies were most commonly used to calibrate the detector for these datasets. The DCS
was designed to irradiate the detector uniformly, and each detector had effectively the same
rate of roughly 100 mHz. This rate provided each detector with sufficiently high statistics
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Figure 4.5: Examples of the thermal gain stabilization (TGS) fit of amplitude versus baseline
for two different channels. (a) An example of heaterTGS in which heater pulses are used to
find the stabilization curve. (b) An example of calibrationTGS in which events from the
2.615 MeV peak are used to find the stabilization curve. In this case, the data cover the
space of different baseline values well, but this is not guaranteed to be the case.

to calibrate the detector while avoiding the problem of too many pile-up events within a
ten-second window.

After the first three datasets, the DCS was retired and replaced with the External Detec-
tor Calibration System (EDCS). The EDCS is a set of strings deployed outside the cryostat’s
lead shield. The EDCS initially used 232Th sources like the DCS, but after one dataset, 60Co
were added to the calibration strings. In addition to those provided by the 232Th decay
products, the 60Co sources also provide γ rays at 1.173 and 1.332 MeV. In practice, for the
datasets utilizing the EDCS, the lines most commonly used to calibrate the detector are
the two 60Co peaks and the 583 keV and 2.615 MeV peaks from 208Tl. Because the EDCS
sources are all outside the lead shield, the channels toward the outer edge of the detector
have a much higher calibration rate than the inner channels. For a typical dataset, the rate
of events with energies close to 2.615 MeV is roughly 40 to 50 mHz for the outer channels but
closer to 10 to 20 mHz for the inner channels. An example energy spectrum from a dataset
calibrated with the EDCS including 60Co and 232Th is shown in Fig. 4.6.

The energies of the aforementioned γ peaks are well-known thanks to various experimental
studies over the decades. These energies are used to fit the distribution OF amplitudes to a
quadratic function of energy that crosses through the origin, i.e.

E(A) = c1AS + c2A
2
S (4.17)

where E is the calibrated energy, AS is the stabilized amplitude, and c1 and c2 are determined
uniquely for each detector. The lack of a constant term asserts that a zero-amplitude event
corresponds to zero energy, which should always be true. The quadratic term accounts for
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Figure 4.6: An energy spectrum built from the calibration events of one dataset. This dataset
used the external detector calibration system (EDCS), and the spectrum is dominated by
events coming from 60Co and the decay products of 232Th.

the fact that the detector response is not truly linear, but in practice, this term has a small
effect on the calibration.

The calibration is run twice for channels with functional silicon heaters: once with the
heaterTGS amplitudes and once with the calibrationTGS amplitudes. A separate analysis
module called the Energy Selector determines which of the two thermal gain stabilization
techniques is used to produce the final energy spectrum. The Energy Selector examines the
calibration spectrum for each channel and selects the stabilization method that delivers the
best energy resolution at 2.615 MeV while ensuring maximal analyzed exposure.

4.5 Coincidence Analysis
As described in Chapter 3, CUORE consists of multiple individual detectors arranged closely
together into towers, and the towers are placed close to each other. The fact that CUORE
is a segmented detector significantly enhances our ability to reduce radioactive backgrounds
by tagging events. By utilizing the proximity of these channels, CUORE can effectively
identify coincidental events occurring in adjacent detectors. When a particle interaction
simultaneously results in signals in nearby channels, the event can be tagged as having a
multiplicity greater than one. Of course, how one defines “simultaneous” and “nearby” is
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relative. For the 0νββ analysis, any events occurring within 5 ms of each other in detectors
separated by at most 30 cm are considered part of the same multiplet. We also place an
energy threshold of 40 keV to avoid false coincidences with noise. As a shorthand, we refer
to multiplets containing N events as a “multiplicity-N,” or simply “M-N,” events.

A classic example of an event that the coincidence analysis can reject is the α decay of
210Po to 206Pb, which has a Q-value of 5.4 MeV. 210Po is a decay product from the 238U chain
with a half-life of roughly 138 days. In the context of CUORE, it is a contaminant typically
found on the surface of the TeO2 crystal. When it decays, the α particle and the daughter
nucleus travel in opposite directions, depositing energy in different detectors; the α particle
carries away 5.3 MeV of kinetic energy, and the daughter nucleus recoils with 0.1 MeV of
kinetic energy. The result is two events in nearby detectors above the 40 keV threshold, which
can be tagged as an M2 event together. Other examples of high-multiplicity events include γ
rays which Compton scatter from one detector into another and muons which pass through
the detector, depositing energies in many detectors simultaneously.

From Monte Carlo simulations, it is expected that roughly 88% of the 0νββ decays in
CUORE are expected to be M1 events [163]. Based on these simulations and measurements
of the relevant backgrounds, it is expected that the experiment’s sensitivity to 0νββ decay
can be enhanced by analyzing only M1 events and cutting the higher multiplicity events with
an anti-coincidence cut.1

4.6 Pulse Shape Discrimination

4.6.1 Principal Component Analysis

The last step in the analysis chain is pulse shape discrimination (PSD). In CUORE, this
is done using principal component analysis (PCA). PCA is a statistical technique used to
reduce the dimensionality of a high-dimensional dataset while retaining information about
the underlying trends and variances in the data. In the context of CUORE, we run PCA
separately for each channel, viewing each 10-second event (sampled at 1 kHz) as a vector x⃗n

with dimension D = 104, where n indexes over the number of events in the dataset-channel.
The goal of PCA is to rotate the data into a new D-dimensional orthonormal basis {ui},
where i indexes over the D dimensions of the vector, then reduce the dimensionality by
projecting the data onto the set of new basis vectors that contains the largest variance in
the data. The variance of the ith is given by [164]:

1

N

N∑
n=1

(u⃗i · x⃗n − u⃗i · ⟨x⃗⟩)2 = u⃗i · S · u⃗i (4.18)

1Though they are cut from the primary 0νββ analysis, M2 events in which one of the two produced
electrons escapes to another detector, or both electrons escape into the same detector while the nuclear
recoil occurs in the original detector of the decay, are expected to account for 6% of the 0νββ decays in
CUORE and a search for 0νββ decay with M2 events is ongoing.
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where S is the covariance matrix of the data:
1

N

∑
(x⃗n − ⟨x⃗⟩)⊗ (x⃗n − ⟨x⃗⟩) (4.19)

The basis vectors u⃗i are found by maximizing u⃗i · S · u⃗i for i = 1, then i = 2, etc. This is
done using D Lagrange multipliers λi while imposing orthonormality and maximizing the
expression with respect to u⃗i, i.e.:

∂

∂u⃗i

[u⃗i · S · u⃗i + λi(1− u⃗i · u⃗i)] = 0 (4.20)

Solving this yields:
S · u⃗i = λiu⃗i (4.21)

thus the vectors u⃗i are simply the eigenvectors of the covariance matrix of the data. Max-
imizing the variance of the projections of the data onto u⃗i is equivalent to projecting onto
the eigenvector with the largest corresponding eigenvalue. We call these eigenvectors the
principal components of the data. The problem of reducing the dimension of the data now
amounts to choosing the first M principal components of the data.

When analyzing the CUORE data, one cannot simply take all events that survive through
to the PSD step of the analysis and dump them into the PCA routine. PCA is highly sensitive
to outliers in the data since the outliers will contribute heavily to the variance of the data.
In the CUORE data, the outliers tend to be what we want to reject, and blindly using PCA
without some event selection would not achieve this goal. To remedy this, we first select
events likely to be “good” physical events, i.e. M1 events with energies within 40 keV of
selected γ peaks from calibration data. These events serve as the training set from which we
derive the principal components. In CUORE, we use only the first principal component of
the data, which is extremely similar to the AP used to construct the OF. We use the AP
as a proxy for the first principal component, which reduces the need to compute the entire
eigenbasis for the dataset.

4.6.2 Event selection with PCA Reconstruction Error

While PCA is able to reduce the dimensionality of the signals in the dataset effectively, the
problem of using it to cut spurious events remains. To build a quantity on which we can
perform a cut, we define the reconstruction error (RE) of a given event as:

RE ≡

√√√√ D∑
i=1

(xi − x⃗ · u⃗1)ui (4.22)

where u⃗1 is the AP, our proxy for the first principal component. Events similar in shape to
the AP will have a small RE, and those that differ from the AP will have a large RE. This
quantity will naturally scale with the amplitude of the pulse, so we must also include an
energy-dependent normalization of the RE. We define the normalized reconstruction error
(NRE) as:



CHAPTER 4. THE CUORE DATA PROCESSING CHAIN 64

NRE =
RE − f(E)

MAD
(4.23)

where E is the energy and MAD is the median average distance of the RE from f(E). f(E) is
a monotonically increasing second-order polynomial found via an iterative fitting procedure
described in [164]. The procedure ensures that the bulk population of the events is well
modeled by f(E), while outliers are free to be arbitrarily far away from f(E). Allowing
this normalization to be nonlinear with respect to energy also helps to account for any
non-linearity in the detector response.

To determine the value of NRE on which to cut, we calculate the value of NRE for each
event in a large window around the 2.615 MeV γ ray peak. We then use the quantity ϵS/

√
ϵB

as the figure of merit for the cut value, where ϵS and ϵB are the signal and background
efficiencies of the cut, respectively.

When analyzing the data, one must choose the order of the cuts applied. One could easily
apply the PSD cut to the individual pulses and then apply the anti-coincidence cut using
only the waveforms that pass PCA, but in CUORE, the coincidence analysis is run first, and
then the PSD cut is applied. The advantage of this choice is that we can select strictly M1
events when building the NRE function. A disadvantage is that the multiplets selected during
the coincidence analysis may contain events rejected by PCA. A separate analysis module
called the Multiplet Validator ensures that each multiple includes only events that pass the
PSD cut. If an event in a multiplet is cut by PSD, then the entire multiplet is rejected from
the analysis. This is a very conservative choice, as one could also decrease the multiplicity
of the event by the number of cut events. This choice was made to maximize the effect of
the anti-coincidence cut, which is appropriate in the context of the 0νββ decay search with
M1 events, though it is not suitable for other analyses such as the M2 0νββ decay search or
analyses of delayed coincidences to measure specific radioactive backgrounds.
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Chapter 5

Measuring and Characterizing Noise in
CUORE

The CUORE detectors are subject to noise from a host of sources including thermal fluctu-
ation noise in the detector, Johnson-Nyquist noise in the readout system, vibrational noise,
and electrical noise. An ANPS of a typical CUORE detector is shown in Fig. 5.1. This chap-
ter is dedicated to understanding the various sources of noise, the steps taken to mitigate
the noise, and the techniques used to monitor the noise that persists.

5.1 Sources of CUORE Noise
Thermal noise

Johnson-Nyquist noise is an intrinsic electronic noise arising from the thermal motion of
charge carriers inside a conductor. This noise is present in all conductors and is independent
of any applied voltage. The RMS voltage of Johnson-Nyquist noise for a given bandwidth
∆f is: √

⟨V 2
J ⟩ =

√
4kTR∆f (5.1)

where k is Boltzmann’s constant, T is the temperature, and R is the resistance. Johnson-
Nyquist noise from the readout circuit contributes significantly to the continuum noise in
CUORE; the largest sources are the bias resistor and the NTD-Ge thermistor. The maximum
possible transfer of noise power within the band is:

Pmax =
⟨V 2

J ⟩
R

= 4kT∆f (5.2)

The thermal system of a CUORE detector is much more complicated than a simple
conductor. Instead, the power transfer is better described by a non-linear energy-dependent
electro-thermal model [165]. This model includes a contribution to the noise power arising
from the random fluctuations in the energy transfer from the electron system to the phonon
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Figure 5.1: A typical ANPS of a CUORE detector using 180-second long noise windows. The
shape of the continuum is predicted by an electro-thermal model described in [165]. The
peaks at the harmonics of 1.4 Hz are due to the pulse tubes, while those at the harmonics
of 50 Hz are due to parasitic electrical noise from the AC power lines. The sub-Hz peaks are
likely due to the mechanical resonances of the support structure, including the Y-beam and
the minus-K mechanical insulators.

system. Using the hot electron model [166], we assign this energy transfer an effective thermal
conductivity C = G0T

β, so the power transfer is [167]:

P =
G0

β + 1

(
T β+1
e − T β+1

n

)
(5.3)

where Te is the electron temperature, Tn is the crystal lattice temperature. The constants
G0 and β can be fit to data measuring the device’s resistance versus the applied bias power
and scanning over base temperatures. For semiconductors including silicon and germanium,
β ∼ 5, rather than the expected value of 4 for metals. While still independent of frequency,
this thermal fluctuation noise has a different temperature dependence than the Johnson
noise.

Pulse Tube noise

The peaks in a typical CUORE ANPS arise from a plethora of sources. The most obvious of
these is the pulse tubes, at least four of which are constantly pumping on the cryostat during
data-taking. Mechanical vibrations from the pulse tube heads are transmitted to the 300 K
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plate, while the vibrations from the two cold pulse tube stages are transmitted to the 40
K and 4 K plates. While the detector suspension system is designed to mechanically isolate
the detector from the rest of the cryostat, this isolation is imperfect, and vibrations often
propagate from the warmer stages to the detector. Vibrations from the pulse tubes can also
cause the signal wires to vibrate, inducing capacitive pickup which is subsequently read out.
The pulse tubes operate at a fundamental frequency of 1.4 Hz, and their main effect on the
CUORE detector ANPS is a series of peaks at the integer multiples of 1.4 Hz.

(a) (b)

Figure 5.2: Passive steps taken to reduce noise from pulse tubes in CUORE. (a) The pulse
tube motor-heads are placed in sand-filled buckets, covered in foam, and suspended from the
ceiling. The two buffer volumes are also suspended from the ceiling, and the compressor lines
are covered in foam. (b) Acoustic foam is placed all around the Faraday room to reduce the
ambient noise from the pulse tubes, compressor lines, and anthropogenic activity.

CUORE employs many passive techniques to reduce the vibrational noise from the pulse
tubes. The pulse tube motor-heads are mechanically decoupled from the DR via flexible steel
lines and are placed in sand-filled buckets covered in foam. Along with the compressor lines
and buffer volumes, the buckets are suspended from the ceiling of the Faraday cage with
elastic bands to further reduce the effect of vibrations on the DR (see Fig. 5.2a). In addition,
acoustic foam has been placed around the walls and ceiling of the Faraday room to reduce the
ambient acoustic noise due to the pulse tubes, compressor lines, and anthropogenic activities
(see Fig. 5.2b). Finally, CUORE uses stepper motors with linear amplifiers to drive the pulse
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tubes. These “linear drives” smooth the rotation of the pulse tube rotary valves by dividing
a full rotation into 25600 steps. The linear drives further reduce vibrations compared to the
typical Cryomech drives usually employed for these pulse tubes.

While these passive techniques help mitigate vibrational noise, the effect of the pulse
tubes on the detector is still significant. To further reduce the noise, CUORE employs an
active noise cancellation technique that controls the relative phases of the pulse tubes [168].
The linear drive software allows one to identify relative phase configurations, move between
phase configurations, and maintain a selected phase configuration via a feedback system.
An optimal phase configuration is found by scanning through the space of possible phase
configurations and measuring the noise at each configuration. Fig. 5.3 shows the median
normalized noise as a function of phase configuration. The noise is defined as a weighted
sum over the first ten harmonics of 1.4 Hz:

Nc(ϕ⃗) =
10∑
n=1

APc(fn)G−1
c PS(fn, ϕ⃗) (5.4)

where APc is the power spectrum of the average pulse of channel c, fn is the nth harmonic
of 1.4 Hz, Gc is the front-end gain of the electronics for channel c, PS is the power spectrum
of the noise sample, and ϕ⃗ is the particular phase configuration. The average pulse serves
as the signal template for the channel, and it is included in the weighting so that noise in
the signal band contributes more to the sum. The normalization is defined such that the
noise over the entire detector is in the range [0, 1] while also allowing for a comparison of
the channels in terms of their relative noise regardless of their absolute noise levels.

In practice, any cryogenic maintenance that requires manual interventions in the Faraday
room causes changes to the mechanical system, thus changing the optimal phase configu-
ration. This means that conducting a pulse tube phase scan between datasets is usually
necessary to find the new minimal-noise phase configuration. After a phase scan is complete,
the best phase configuration is chosen, and the pulse tube software can ensure that this
configuration is maintained to within a few degrees.

Low-frequency noise

Besides pulse tube noise, the other main contribution to the noise in the signal band is a
set of low-frequency peaks below 1 Hz. These peaks are induced by microseismic activity,
including small earthquakes and waves from the Tyrrhenian and Adriatic seas [169]. While
microseismic activity from the sea waves tends to be broad-band noise (0.02 ≲ f ≲ 1 Hz),
the peaks in the CUORE detector ANPS are likely due to the resonances of the support
structure, particularly the Y-beam and minus-K mechanical insulators. This was verified
by conducting vibrational tests and mechanically exciting the Y-beam. A schematic of the
setup for these tests is shown in Fig. 5.4. For these tests, one accelerometer was placed on
each arm of the Y-beam roughly equidistant from the center and oriented vertically. The
Y-beam was then excited by pushing on it (gently so as not to damage the detectors) and
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Figure 5.3: An example of how the CUORE noise changes during a pulse tube phase scan.
The y-axis is the normalized noise in the median channel, and the phase ID is a unique
identifier corresponding to a particular configuration of relative phases between pulse tubes.
The red star identifies the optimal phase ID at which the normalized noise is minimized.

measuring the power spectrum of different accelerometer signal combinations. Adding the
three accelerometer timestreams together approximates the Y-beam’s vertical motion while
canceling any differences between the different accelerometers due to rocking about any one
arm. Subtracting one timestream from another approximates the rocking motion between
the two arms while canceling out the vertical motion that both accelerometers experience
simultaneously. Taking the power spectrum of the resulting signals reveals the resonant
structure of the Y-beam (see Fig. 5.5). The vertical motion of the Y-beam exhibits a peak at
roughly 0.7 Hz, while the rocking motion exhibits a peak at roughly 2.4 Hz. By adjusting the
stiffnesses of the minus-K insulators, these peak frequencies can be changed by approximately
20%.

The low-frequency noise observed in the CUORE detectors is not due to only the Y-
beam resonances. As was seen in Fig 5.1, a host of peaks at frequencies between 0.2 and
0.9 Hz are prominent in the ANPS of the detector. Some of these are likely due to beating
between different mechanical resonances of the structural supports. Beating between pulse
tube harmonics and the Y-beam can produce noise peaks at f = (1.4n − 0.7) Hz and
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(a) (b)

Figure 5.4: Schematic of the setup for the Y-beam vibrational tests. For these tests, one
accelerometer was placed on each arm of the Y-beam and oriented vertically. (a) The time-
domain sum of all three accelerometer signals approximates the vertical motion of the Y-
beam. (b) The time-domain difference of each pair of accelerometers approximates the rock-
ing motion of the Y-beam.

f = |1.4n− 2.4| Hz for n ∈ Z+. For example, a peak at 0.4 Hz is featured prominently in
the ANPS, and this may be due to a beating between the Y-beam rocking mode at 2.4 Hz
and the second harmonic of the pulse tube noise at 2.8 Hz.

After conducting the resonance tests on the Y-beam, we also pushed on the Main Support
Platform to excite its resonances and measured the resulting ANPS of the accelerometers.
These ANPS are shown in Fig. 5.6. The Main Support Platform clearly has a sizeable me-
chanical resonance at ∼2 Hz and another less prominant resonance at ∼8.7 Hz. Excitations
of this resonance can mix with the Y-beam rocking mode to produce beats at f = |1.4n− 2|
Hz, which may explain the prominent 0.6 Hz peak in the ANPS.

While these mechanical excitation tests on the Y-beam help us understand the sources
of the noise peaks, the CUORE suspension and support structures are very complex, and
we do not yet completely understand the mechanical system. Work is ongoing to simulate
the mechanical resonances of the structure using 3D CAD models. Still, even with advanced
computational tools, many simplifications to the structure need to be made for the simula-
tions to be computationally feasible, and these simplifications could eliminate a structural
component that gives rise to a particular noise peak.

High-frequency Peaks

Peaks above 10 Hz are also prominent in the detector ANPS. They are much less relevant than
the lower-frequency peaks since the CUORE calorimeter signals are slow, and the bandwidth
is only ∼50 Hz wide, but it is worth mentioning a few of these peaks and their sources.
Electrical peaks at the harmonics of 50 Hz appear in some detectors more prominently than
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Figure 5.5: Power spectra of different accelerometer combinations during Y-beam tests. For
these tests, one accelerometer was placed on each arm of the Y-beam roughly equidistant
from the center. (a) The power spectrum of each accelerometer. Each accelerometer exhibits
two large peaks at 0.7 Hz and 2.4 Hz. (b) The power spectrum of the time-domain sum of all
three accelerometers exhibits only the 0.7 Hz peak, indicating that this is the resonance of the
vertical motion of the entire Y-beam. (c) The power spectra of the time-domain difference
of each pair of accelerometers. All three pairs exhibit the 2.4 Hz peak, while the 0.7 Hz peak
is largely suppressed, indicating that the 2.4 Hz resonance is due to the rocking motion of
the Y-beam.

in others, depending on the grounding of the detector. In addition, the pulse tube motors spin
at a fixed frequency creating electrical peaks at harmonics of 35 Hz. Finally, the compressor
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Figure 5.6: Power spectra of accelerometers during Main Support Platform tests. The ac-
celerometers were still located on each arm of the Y-beam, but the Y-beam was not directly
excited. Instead, we pushed on the Main Support Platform to excite its mechanical reso-
nances. There is a clear resonance at 2 Hz and another less prominent resonance at ∼8.7 Hz.

lines that feed into each pulse tube also vibrate, giving rise to peaks at harmonics of ∼140
Hz.

5.2 Monitoring Noise with Auxiliary Devices
While many steps are taken to reduce the detector noise, virtually every channel is still
subject to noise from extrinsic sources, including vibrational and electrical noise. Since this
noise cannot be removed with the current noise suppression techniques, the next best thing
to do is monitor it and try to remove it in post-processing. This is done using diagnostic
devices, or auxiliary devices, which are specially designed to measure particular noise sources
of interest.

Deploying auxiliary devices to monitor transient noise in an experiment is a common
practice. For example, the the Laser Interferometer Gravitational-Wave Observatory (LIGO)
[170] and Virgo [171] experiments are subject to anthropogenic microphonic noise and are
sensitive to transient noise during earthquakes, so they use seismometers, accelerometers,
magnetometers, and other devices to monitor non-Gaussian transient noise near their detec-
tors [172, 173]. Analyses of these data are typically conducted over a range of frequencies
above ∼20 Hz [173], though this cutoff could be reduced with the reduction of anthropogenic
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noise below 20 Hz [174]. In the case of charge-collecting detectors used in modern γ ray spec-
troscopy experiments, vibrational disturbances can change the capacitance of the system,
leading to microphonic noise which degrades the detector performance, including its energy
resolution [175].

Compared to the cost of typical detectors used in experiments today, auxiliary devices are
typically affordable while providing sufficiently high fidelities to monitor the relevant noise
sources. When the auxiliary data is correlated with the noise in the detectors of interest,
noise decorrelation algorithms can be applied to the data. The result is a relatively low-
cost way to reduce noise without major hardware interventions that can seriously impact
an ongoing experiment. Noise cancellation algorithms using data from accelerometers have
already been demonstrated [176] for possible use in the GRETINA [177] and GRETA [178]
experiments. Noise cancellation techniques were also developed and applied to data from
the CUORICINO [130] and CUORE-0 [131] experiments by decorrelating the noise from
different detector channels [179, 180]. The use of noise cancellation algorithms in CUORE is
described in detail in Chapters 6 and 7.

5.2.1 Auxiliary Devices in CUORE

The first auxiliary devices in CUORE were installed in 2017 when four Behringer ECM8000
microphones [181] were placed inside the Faraday room. Three microphones were placed close
to the pulse tubes, while another was placed further away from the detector to measure the
ambient noise in the Faraday room. Some examples of the microphone placement are shown
in Fig. 5.7.

These microphones accurately measure the noise in their designed frequency range of 20
Hz to 20 kHz. The upper range is more than enough to measure any high-frequency noise
in the CUORE detectors, but thanks to the slow response of the calorimeters, the relevant
signal band is well below the 20 Hz cutoff. Fig. 5.8 shows the ANPS of one of the microphones
placed near the pulse tubes overlaid on top of the ANPS of a sample CUORE channel. The
roll-off of the microphone response below 20 Hz is clearly visible, and the 1.4 Hz and 2.8 Hz
peaks cannot be seen in the microphone ANPS. At 280 Hz, however, the microphones can
easily measure the noise peak from the compressor lines which feed into the pulse tubes.

In November 2020, a set of three PCB 393B31 accelerometers [182] were mounted triaxi-
ally to MSPs. These accelerometers are specifically designed to measure noise at frequencies
down to ∼1 Hz. In August 2021, these accelerometers were moved to the Y-beam. An ex-
ample ANPS from an accelerometer on the Y-beam is shown in Fig 5.9. The 1.4 Hz peak
and the structural resonance at 2 Hz are clearly visible, as are the other low-frequency pulse
tube harmonics.

In May 2022, four loop antennas were placed around the four active pulse tube motor
heads to measure the electrical noise at harmonics of 35 Hz which emanate from the pulse
tubes, and another two antennas were placed inside the Faraday room to measure noise due
to ground loops at harmonics of 50 Hz. At the same time, an accelerometer set identical
to the aforementioned one was installed on the Main Support Platform. This allowed us to
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(a) (b)

Figure 5.7: Two of the four Behringer ECM8000 microphones in the CUORE Faraday room.
(a) A microphone placed away from the detector, near the wall of the Faraday room. (b)
A microphone (circled and highlighted in yellow for clarity) placed above two pulse tube
motor-heads, each located in a bucket (below).

measure the vibrations on the Main Support Platform and the Y-beam with accelerometers
at the same time.

Finally, in August 2023, a triaxial Sara Electronics SS-10 seismometer [183] was mounted
to the Y-beam, allowing us to measure frequencies below 1 Hz with higher sensitivity than
the accelerometers could. The seismometer is sensitive to microseismic activity below 1 Hz.
This microseismic activity varies considerably over the course of a dataset, as shown in Fig.
5.10. The seismometer also observes some of the peaks due to the resonant structure at 0.6
Hz and 0.8 Hz, and the intensity of these peaks also varies in time with the microseismic
activity. This indicates that the microseismic noise is one of the main drivers of the noise at
these frequencies in the CUORE detectors.
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(a) (b)

Figure 5.8: Comparison of the ANPS of a CUORE detector and a microphone placed near
the pulse tubes. (a) ANPS of frequencies below 90 Hz. The electrical noise at 50 Hz and the
pulse tube noise at the harmonics of 1.4 Hz are clearly visible. (b) ANPS at frequencies near
280 Hz. The microphone exhibits one main peak and a few side peaks at these frequencies,
but the CUORE detector exhibits a “forest” of peaks spanning several Hz.

Figure 5.9: An example ANPS from an accelerometer on the Y-beam. The 1.4 Hz peak and
the structural resonance at 2 Hz are clearly visible, as are the other low-frequency pulse tube
harmonics.
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Figure 5.10: Several ANPS of one seismometer channel in CUORE during a dataset. Each
line corresponds to a single run of physics data. Over the course of the dataset, the 1.4
Hz noise from the pulse tubes is stable, while the structural resonance at 2 Hz shows some
variability across the dataset, and the microseismic activity below 1 Hz is even more variable
across the dataset. The seismometer signal at 0.6 Hz and 0.8 Hz changes according to the
microseismic activity.

5.3 Characteristics of CUORE Noise

5.3.1 Frequency Cross-correlation with Auxiliary Devices

To characterize the noise in CUORE, we first want to ensure that the auxiliary devices
measure vibrations that are also seen in the CUORE detectors. To do this, we calculate
the noise covariance matrix and the noise power spectra of the different devices. The noise
covariance matrix is defined similarly to how the ANPS is defined in equation 4.7, but with
two frequencies and two different devices, i.e.:

Cm,n[fi, fj] = T ⟨ṽ∗m[fi] ṽn[fj]⟩ (5.5)
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where ṽm[fi] is the discrete Fourier transform of the signal from device m evaluated at
frequency fi, and the factor of T again ensures that the quantity has units V2/Hz. The
cross-correlation matrix of the frequency pair (fi, fj) is the magnitude of the noise covariance
matrix divided by the square root of the product of the ANPS of each device:

ρm,n[fi, fj] =
Cm,n[fi, fj]√
Jm[fi] Jn[fj]

=
|⟨ṽ∗m[fi] ṽn[fj]⟩|√

⟨ṽ∗m[fi] ṽm[fi]⟩ ⟨ṽ∗n[fj] ṽn[fj]⟩
(5.6)

This is a unique matrix for each pair of devices, and each entry must lie between 0 and 1
by the Cauchy-Schwarz inequality. An example of one of these matrices for a microphone
and a CUORE detector is shown in Fig. 5.11. The expectation values are calculated using
the noise events from a single physics run. The regions of nonzero correlation occur near the
pulse tube frequencies starting at 4.2 Hz and near 280 Hz, the same regions of frequency
space that are shown in Fig. 5.8. Interestingly, zooming in closely on the low-frequency region
of the calorimeter noise reveals a small correlation (∼6%) in the noise at (fcalorimeter = 0.6
Hz, fmicrophone = 281.7 Hz). The same correlation analysis is repeated with an accelerometer
instead of the microphone, and a similar trend can be observed (see Fig. 5.12. The cross-
correlation of the pulse tube harmonics is stronger in the accelerometer’s case, and the
non-zero correlation is observed at the 1.4 Hz and 2.8 Hz peaks, unlike in the microphone.
This is expected based on the ANPS of the microphone and accelerometer shown above.

5.3.2 Bicoherence

Finally, the fact that there is a slight correlation between the calorimeters at 0.6 Hz and the
microphones at ∼280 Hz, as well as the “forest” of peaks in the calorimeter ANPS, many of
which are spaced apart by 0.6 Hz, motivates us to analyze the bispectrum of the calorimeter
as well. The bispectrum measures the phase coupling at two different frequencies in a single
signal. Note that this is a unary quantity; it is only a measurement of the calorimeter, not
the calorimeter and an auxiliary device.

We define the bispectrum of a signal v[t]:

B[fi, fj] = ⟨ṽ∗[fi]ṽ∗[fj]ṽ[fi + fj]⟩ (5.7)

and we define the bicoherence, b using the following normalization convention:

b[fi, fj] =
|B|√〈

|ṽ[fi]ṽ[fj]|2
〉 〈

|ṽ[fi + fj]|2
〉 (5.8)
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Figure 5.11: Cross-correlation of the noise between a microphone and a CUORE calorimeter
taken from a physics run. (a) Correlated noise in the low-frequency region is mostly on-
diagonal at the harmonics of 1.4 Hz due to the pulse tubes. (b) The strongest correlation in
the noise is at 280 Hz, which is the frequency of the pulse tube compressor line. (c) A small
correlation of ∼6% is observed at (fcalorimeter = 0.6 Hz, fmicrophone = 281.7 Hz), indicating an
interesting relationship between the noise at these frequencies.

The bicoherence is restricted to be between 0 and 1, and it measures the proportion of
the signal power at any frequency pair that is phase-coupled to its sum frequency.1 This is
sometimes interpreted to be a measurement of the nonlinearity present in a system, however

1We could just as easily use the difference frequency f1 − f2, and the results will still measure the phase
coupling of the system. The sum frequency is what is conventionally used when defining the bicoherence.
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(a) (b)

(c)

Figure 5.12: Cross-correlation of the noise between an accelerometer and a CUORE calorime-
ter taken from a physics run. (a) Correlated noise in the low-frequency region is mostly
on-diagonal at the harmonics of 1.4 Hz due to the pulse tubes. The accelerometer cross-
correlation is non-zero even at the fundamental frequency. (b) In the accelerometers, unlike
the microphones, a non-zero cross-correlation is clearly noticeable at frequencies beyond 20
Hz and up to 100 Hz (c) As seen with the microphones, there is a strong correlation between
the accelerometers and the calorimeters at 280 Hz.

there are subtleties related to this. Consider a signal of the form:

xL(t) =
∑
i

Ai cos(2πfit+ ϕi(t)) (5.9)
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(a) (b)

Figure 5.13: Bicoherence of a CUORE channel. (a) Region of non-zero bicoherence in CUORE
data at harmonics of 1.4 Hz induced by the pulse tube phase coupling. (b) Region of non-zero
bicoherence in CUORE data indicating mixing of frequencies up to ∼12 Hz with frequencies
near 280 Hz.

where Ai are all real coefficients. There is no nonlinear mixing in this system. Now consider
three frequencies fi, fj, fk where fi + fj = fk. If there is no phase coupling between fi, fj,
and fk, then b2(fi, fj) approaches 0 after averaging over a sufficiently long period of time. If
the phases are coupled such that over a long time ⟨ϕk − (ϕi + ϕj)⟩ ̸= 0, then b2(fi, fj) > 0.
This phase coupling is expected in systems driven by an external periodic noise source with
multiple harmonics. The pulse tubes in CUORE are an example of such an external source,
so we expect non-zero bicoherence at harmonics of the fundamental pulse tube frequency
(1.4 Hz) even without the presence of a nonlinear mixing term.

Now, we analyze the bicoherence of a system with a quadratic mixing term. Consider a
simple signal of containing two frequencies with a nonlinear mixing term. Using ωi = 2πfi,
we have:

xNL(t) = A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2) + 2A12 cos(ω1t+ ϕ1) cos(ω2t+ ϕ2)

= A1 cos(2πω1t+ ϕ1) + A2 cos(ω2t+ ϕ2)

+ A12 cos((ω1 + ω2)t+ ϕ1 + ϕ2) + A12 cos((ω1 − ω2)t+ ϕ1 − ϕ2)

(5.10)

The bicoherence of this signal at (ω1, ω2) is:

b(f1, f2) =

〈
A1e

iϕ1A2e
iϕ2A12e

−i(ϕ1+ϕ2)
〉

A1A2A12

= 1 (5.11)
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In this system, all of the power at f = f1 + f2 is due to the mixing of the signals at f1 and
f2, so the bicoherence attains the maximum possible value.

Analysis of these two signals shows that while a non-zero bicoherence is a natural con-
sequence of a quadratic nonlinearity in a system, it does not guarantee the existence of
such a nonlinearity. Therefore, the bicoherence is helpful in examining the phase-coupled
components of a signal, but one should be cautious before attributing such phase coupling
to an underlying nonlinearity. We discuss why this quadratic mixing model may still be
appropriate for the CUORE system in Section 6.5.1.

The bicoherence of a single CUORE channel is plotted in Fig. 5.13 for regions of frequency
space where the bicoherence is non-negligible. We see a large amount of bicoherence between
the different pulse tube frequencies, but we expect the harmonics of the pulse tube phases to
be coupled already. An interesting region exists around f1 ≈ 280 Hz, f2 < 10 Hz, the same
region where the forest of peaks is visible in the calorimeter ANPS. There, we see several
points with a significant bicoherence term. The distances between these points are integer
multiples of 0.6 and 1.4 Hz, both appearing independently in the calorimeter ANPS. Here,
no obvious harmonic effect could contribute to the bicoherence, so a nonlinear mixing term
may be at play.
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Chapter 6

A Denoising Algorithm for Cryogenic
Calorimeters

As we have seen, experiments require low threshold detectors with low noise to meet increas-
ingly demanding physical sensitivities. In the case of low-temperature calorimetric detectors,
non-negligible amounts of noise can arise from the vibrations induced by the cryogenic fa-
cility which dissipate power, thereby adding microphonic and thermal noise to the system
[184]. In experiments employing such detectors (e.g. [110, 111, 185–187]), the relevant signal
bandwidths range from tens to hundreds of Hz [188]. In CUORE, despite the excellent energy
resolutions and low thresholds of the detectors, the intrinsic limit of the energy resolution is
far out of reach as extrinsic noise degrades the signal quality, as was shown in the previous
chapter. We now seek to build an algorithm that uses the information from the auxiliary
devices described in Section 5.2 to remove noise from the CUORE detector and improve their
performance, namely their threshold, energy resolution, and timing resolution. We do this by
implementing a noise decorrelation algorithm based on a multi-input, single-output model.
In Section 6.2, we demonstrate the algorithm on simulated data. In Section 6.4, we apply the
algorithm to a cryogenic calorimeter operated as a light detector instrumented with neutron
transmutation doped (NTD) germanium [135, 136] as our detector of interest. We use an
antenna, three accelerometers, and a separate NTD vibration sensor as auxiliary devices and
demonstrate that our algorithm improves both the signal-to-noise ratio (SNR) of the detec-
tor and its energy resolution. Finally, in Section 6.5 we expand this algorithm to include
nonlinear terms and apply this nonlinear version of the algorithm to a CUORE channel.
Using accelerometers and seismometers as auxiliary devices, we again show an improvement
in the timing resolution, energy resolution, and threshold of the detector.

6.1 Denoising Algorithm
The starting point of this algorithm draws heavily from the multiple-input, single-output
model outlined in [189]. We begin with n timestreams xi[t] digitized at a sampling frequency



CHAPTER 6. A DENOISING ALGORITHM FOR CRYOGENIC CALORIMETERS 83

of fs. Here i = 0, .., n − 1 indexes the different inputs, e.g. the auxiliary devices described
in Section 5.2. We also require that the timestream of the detector we seek to denoise, y[t],
be sampled at fs.1 The goal is to find the array of transfer functions Hxiy[t] which describes
the multiple-input, single-output system. In practice, y[t] will contain noise and signals of
interest for the experiment. (Henceforth, we will refer to this signal of interest as a pulse,
while “signal” will be reserved to refer to digital signals such as xi and y.) Thus, one must
subdivide the timestreams xi[t] and y[t] into events of length N = Tfs, where T , the length of
the filter, is a tunable parameter of the algorithm. The subdivision is done by triggering the
raw data stream, after which we can divide the data into two subsets. In the ideal case, one
subset contains only events which are free of pulses, {y(n)[t]}, which we will call noise events.
The other subset, {y(p)[t]}, contains all of the pulses present in the data. We take the set of
noise events in the detector of interest as well as the corresponding set of events {x(n)

i [t]},
which occur at the same times as the elements of {y(n)[t]}. We then take the discrete Fourier
transform of all noise events, giving us the frequency domain sets {ỹ(n)[f ]} and {x̃(n)

i [f ]}.
With these two sets, we construct the following objects:

Gyy[f ] =
2

T

〈
ỹ∗(n)[f ]ỹ(n)[f ]

〉
(6.1)

Gxiy[f ] =
2

T

〈
x̃
∗(n)
i [f ]ỹ(n)[f ]

〉
(6.2)

Gxixj
[f ] =

2

T

〈
x̃
∗(n)
i [f ]x̃

(n)
j [f ]

〉
(6.3)

The expectation values are taken over the sets of noise events from each device that
occur at the same time. For all these objects, f is defined within the range [0, fs) and
discretized into N bins of width ∆f = 1

T
. For convenience, we will drop [f ] hereafter, and it

will be implied that we are operating in the frequency domain unless otherwise noted. It is
worthwhile to describe these objects in terms of familiar quantities. Gyy is the ANPS of the
output signal, which is a real non-negative 1 × N vector. Gxiy is a complex n × N matrix
containing the cross-spectral densities of each input with the output. Gxixj

is a complex
n × n × N 3-dimensional array. For each frequency, it contains a Hermitian matrix of the
cross-spectral densities between the input signals. The on-diagonal terms Gxixi

comprise the
ANPS of the input signals. After averaging over all noise events, the transfer functions from
the inputs to the detector Hxiy can be calculated:

Hxiy = G−1
xixj

Gxjy. (6.4)

Hxiy is the same size as Gxiy and also complex. The denoised signal, ỹ′, is the difference
between the original signal and the sum of the auxiliary signals filtered with the transfer
function:

ỹ′ = ỹ −HT
xiy

x̃i. (6.5)
1Technically, the common sampling frequency requirement is a simplification. Because the transfer func-

tions are calculated in the frequency domain, if the sampling rates differ, they can still be calculated by
truncating the signal with the higher sampling rate in the frequency domain or by downsampling it in the
time domain.



CHAPTER 6. A DENOISING ALGORITHM FOR CRYOGENIC CALORIMETERS 84

This process can then be applied to pulse events to predict the noise that is correlated with
the input devices during the event. Assuming that the noise in the detector of interest has
components which are correlated with the auxiliaries, the result will be a denoised version
of the original set of pulse events. This assumption is usually true given the careful choice
of auxiliary devices used in the experiment. However, in cases where the matrix Gxixj

is
dominated by uncorrelated noise in the auxiliary devices, this denoising technique will not
work.

One can verify the success of the algorithm by comparing the noise power spectra of
the output signal and the denoised signal, Gyy and Gy′y′ . One can then proceed to analyze
the denoised data, leading to more precise measurements. It is important to note that this
algorithm is not a replacement for other filtering techniques such as optimum filtration.
Rather, this algorithm can be used first to improve the SNR, resulting in new coefficients
for the optimum filter which can then be applied to the data. This procedure and applying
many common filters, including the optimum filter, are linear operations, so the two can be
combined into a single step [180].

6.2 Simulation of Calorimeter Data
To measure the efficacy of the multivariate algorithm under known conditions, we simulate
a multi-input, single-output system to generate mock data of a cryogenic calorimeter. This
mock signal of interest contains both noise and pulses. The simulated auxiliary timestreams
represent three accelerometers measuring vibrations and one antenna measuring electromag-
netic interference. We first create two signals representing the original sources of electrical
and vibrational noise. The electrical source signal is a sum of many sinusoids at harmonics
of 60 Hz, each with a randomized phase.2 The vibrational noise is modeled as the sum of
three independent sources. The first source signal is a series of sinusoids at harmonics of 1.4
Hz representing the noise from pulse tubes. The second source signal is another sinusoid at
100 Hz, simulating a pump or fan with a particular operating frequency. The third source
signal is a randomly distributed set of infrequent impulses passed through band-pass filters
at three low-frequency values. The impulses represent sudden disturbances in the system, e.g.
earthquakes, and the narrow-band responses represent mechanical resonances in the system
that are excited by these disturbances. These impulses cause the noise to be non-stationary,
which better represents the dynamic nature of noise in actual experimental environments.
This provides a more authentic test of the algorithm’s performance, as real-world conditions
often involve fluctuating and unpredictable noise sources that must be accurately identified
and mitigated.

To create our mock antenna signal, x0[t], we add 1/f noise and Gaussian white noise
to the electrical source signal. The addition of white noise simulates thermal noise in the
antenna, and the 1/f noise represents the flicker noise often present in electronic amplifiers.

2Here we are simulating electrical noise in data taken in North America, where the standard AC frequency
is 60 Hz. Later, in Section 6.5, we will use data taken in Europe, where the standard AC frequency is 50 Hz.
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(a) (b)

Figure 6.1: [Input auxiliary signals for the denoising simulation. (a) Simulated accelerometer
signals. These signals simulate vibrations in the laboratory from sources such as pulse tubes,
fans, and transient events such as earthquakes. (b) Simulated antenna signal. The signal
simulates electromagnetic pickup in the laboratory with a large 60 Hz component.

We generate three accelerometer timestreams by individually passing the vibration source
signal through unique band-pass filters and adding 1/f noise and white noise to each output.
The band-pass filters represent the response function of each accelerometer, which we slightly
vary for each signal. The resulting signals x1[t], x2[t], x3[t], correspond to accelerometer signals
in the x̂, ŷ, and ẑ directions. An example of each input signal and their power spectra are
shown in figures 6.1 and 6.2.

To create the mock detector signal, we again generate random white noise and 1/f
noise. These terms are similar to some of the noise terms used in [188]. We then take the
vibrational source signal and pass it through a unique band-pass filter. This models the
detector’s response to vibrations, which should be different from that of the auxiliaries.
We add the result and the electrical source signal to the detector signal. Finally, we take
a template pulse shape and generate a train of pulses which are randomly distributed in
time with the caveat that the minimum time between pulses is longer than the length of the
template to prevent pileup events. The pulse amplitude is randomly chosen to be 1 or 2 units
with equal probability. The pulse amplitudes represent physical events with energies E0 and
E1 = 2E0 assuming linearity of the detector response. After generating the set of valid noise
events and pulse events, we apply the noise decorrelation algorithm to the detector signal.
Using the simulated antenna and accelerometer signals as auxiliary inputs, we construct the
transfer functions Hxiy following equations 6.2, 6.3, and 6.4, where the expectation values
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Figure 6.2: Average noise power spectra of simulated auxiliary input signals. The simulated
antenna signal (black) measures electrical noise and contains harmonics of 60 Hz. The simu-
lated accelerometer signals (red, green, and blue) measure vibrational noise. The vibrational
noise is composed of harmonics of 1.4 Hz which represents pulse tube noise, and broader
peaks below 100 Hz which represent the excitation of mechanical resonances in the system
due to sudden disturbances.

are taken over 5-second long noise windows. The results of the noise decorrelation on the
output signal are shown in Fig. 6.3.

6.3 Optimal filtration of Denoised Data
We now seek to show that the amplitude reconstruction and resolution of the simulated data
are improved with the addition of the denoising algorithm. We can empirically measure the
OF noise resolution by choosing an amplitude value from the same random time point within
each noise window. The standard deviation of these values is a good approximation for the
OF noise resolution of the detector.

To analyze the results of the noise decorrelation algorithm, we run two analyses in parallel.
First, we construct the OF using the original simulated signal and use it to reconstruct the
pulse amplitudes and OF noise resolution. Separately, we construct a new OF using the
denoised data and apply it to the denoised data. The results before and after denoising are
shown in Fig. 6.4 and Table 6.1. The amplitude resolution is improved at the noise peak and
both pulse amplitudes. In this particular iteration of the simulation, the amplitude resolution
consistently improves by 22–23%. Both before and after denoising, the amplitude resolutions
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(a) (b)

Figure 6.3: Effects of the denoising algorithm on the simulated data. (a) Simulated pulse
event in the noisy detector signal (black) and denoised signal (red), and the noise predicted
by the algorithm (below). (b) ANPS of the simulated detector signal before denoising (black)
and after denoising (red). The noise that is correlated with the auxiliary devices is removed.

(a) (b) (c)

Figure 6.4: Optimally filtered amplitudes of simulated pulses without denoising (black) and
with denoising (red) applied to the data. Each peak shows an improvement in resolution
when the denoising algorithm is applied. Note that the denoised data better reconstruct the
original signal amplitudes of 1 and 2 units, reducing the bias in the system. (a) OF amplitude
distribution of noise events. (b) OF amplitude distribution of pulse events with amplitude
1. (c) OF amplitude distribution of pulse events with amplitude 2.

across all three values are compatible with each other. This is also expected because no
energy-dependent resolution scaling is built into the simulation.
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Table 6.1: Amplitude resolution and reconstruction error of simulated noise events and
pulse events after denoising. The reconstruction error is the difference between the measured
pulse amplitude and the simulated pulse amplitude. The denoising algorithm reduces the
magnitude of the reconstruction error and improves the resolution at all amplitudes. The
resolutions at all amplitudes are compatible before and after denoising. This is expected
because no energy-dependent resolution scaling is built into the simulation.

Simulated Pulse Amplitude [V] 0 (Noise) 1 2
Original Reconstruction Error [µV ] 9± 5 −210± 10 −460± 10
Denoised Reconstruction Error [µV ] −7± 4 −8± 10 −40± 10
Original Resolution [µV ] 684± 3 680± 10 680± 10
Denoised Resolution [µV ] 527± 3 530± 10 520± 10

One important ramification of this algorithm is that it can change the mean value of
the OF amplitudes. This behavior is not typically expected of linear filters, and it is worth
exploring in some detail. When the denoising is applied to the data, the noise power of the
detector at a particular frequency is reduced only if the auxiliary devices are correlated at
that frequency. In addition, the assumptions typically made about the noise conditions of the
system when applying the OF are not actually valid in this simulation. These assumptions
include a linear, time-invariant system and a signal which is uncorrelated with the noise.
In this analysis, we construct new average pulses after denoising, resulting in cleaner signal
templates. The fact that the signal template is not the same when constructing the different
OFs after denoising demonstrates that the noise in the system is in fact correlated with the
AP templates built during the simulation. A simple way to view this mathematically is as
follows:

A waveform composed of a signal of amplitude A and noise can be written as

y[f ] = As[f ] + n[f ]

where s is the signal template with amplitude 1 and n is the noise. Let J [f ] = T ⟨n∗[f ]n[f ]⟩
be the noise power spectrum of the system. The OF is defined as:

OF [f ] ≡
[∑

f

|s[f ]|2
J [f ]

]−1
s∗[f ]

J [f ]
(6.6)

and optimally filtered waveform is:[∑
f

|s[f ]|2
J [f ]

]−1
s∗[f ] (As[f ] + n[f ])

J [f ]
(6.7)
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The amplitude estimator is the sum of all filtered frequency components:

â =

[∑
f

|s[f ]|2
J [f ]

]−1∑
f

[
A|s[f ]|2
J [f ]

+
s∗[f ]n[f ]

J [f ]

]
(6.8)

Suppose the signal and noise are uncorrelated and the noise is stationary. In that case,
the numerator in the last term,

∑
f [s

∗[f ]n[f ]/J [f ]], has an expectation value of zero and
â = A, i.e. the estimator is unbiased. However, if the signal template s is correlated with
the noise, i.e. ⟨s∗[f ]n[f ]⟩ ≠ 0 for some frequencies, then the last term in the above is not
necessarily 0 for all waveforms, and the estimator can become biased. In practice, since the
signal template has less noise after denoising.

In addition, J [f ] is not a good representation of the noise when non-stationary noise
arises in the detector. Again, this causes the final term in the above equation 6.8 to acquire
a non-zero expectation value, thus biasing the detector. In this simulation, the denoising
algorithm reduces the non-stationary noise; thus the OF amplitudes of the pulses change.
In practice, this serves to unbias the data, and the reconstruction error of the amplitudes is
significantly reduced after the denoising is applied.

6.4 Denoising Experimental Data

6.4.1 Experimental Setup

We performed the measurements to demonstrate the denoising algorithm in an Oxford In-
struments Triton 400 DR cooled with a cryogen-free pulse tube cooler at an operating tem-
perature of ∼10 mK. Inside the refrigerator, we mounted a low-temperature light detector
which serves as our detector of interest in this demonstration. The light detector is com-
posed of a 45×45×0.5 mm3 silicon wafer that absorbs the light increasing its temperature.
This temperature change is measured by a 3×3×1 mm3 NTD germanium thermistor which
is epoxied to the wafer. The silicon wafer was rigidly connected to a square copper frame
that was connected to the experimental stage of the DR. The front-end electronics used in
this setup are identical to those used in CUORE [190]. We ran a fiber-optic cable to near
this detector with the axis of the cable approximately normal to the substrate surface. We
connected the fiber to a commercially available LED with a wavelength of (600±12) nanome-
ters to generate a train of LED light pulses with durations and separation times that can be
easily controlled by a signal generator with pulse width modulation (PWM). This allowed
us to create periodic light signals which we could use to characterize our detectors.

Alongside the light detector, we also mounted another NTD-Ge thermistor which was
adhered to a small shard of a silicon wafer. This “NTD vibration sensor” was not rigidly con-
nected to the copper frame, but instead left free to vibrate during the data-taking. Because
the NTD vibration sensor was adhered to a relatively small wafer, we expected that the rate
of pulses it observed would be negligible compared to that of the light detector. We could
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therefore use it as another auxiliary device while making cuts to the data in the rare case
of a pulse event on the auxiliary device. This was a useful addition to the setup because we
expected that the vibrations it measured would be closely correlated to those measured in
the light detector due to their close proximity. We also expected that the electrical noise on
each of the NTD signals will be similar since they are being read out in identical ways.

(a) (b)

Figure 6.5: ANPS of auxiliary devices used to denoise data from the Oxford DR. (a) ANPS of
accelerometers. Pulse tube noise at harmonics of 1.4 Hz and many other high-frequency peaks
are visible. The noise power from ∼10 Hz to 100 Hz is reduced in the ẑ-oriented accelerometer
because the experimental setup is equipped with dampeners that reduce vertical vibrations.
(b) ANPS of antenna and NTD vibration sensor. The antenna measured a signal dominated
by components at 35 Hz, 60 Hz, and their harmonics. The NTD vibration sensor signal is
dominated by the odd harmonics of 60 Hz, though there is also a source of broadband noise
between 10 and 20 Hz.

To measure the electrical noise present in our system, we attached an antenna to our
DAQ and placed it inside the Faraday cage which houses the experiment. The antenna we
used was a hand-made Helmholtz coil with ∼ 50 turns and a radius of ∼ 30 cm, and we
amplified the antenna signal by a factor of 5,000. To measure the vibrational noise, we used
three PCB 393B31 accelerometers [182] mounted triaxially to the 300 K plate of the DR. The
accelerometer signals were amplified with a PCB 482C15 signal conditioning pre-amplifier
[191] and read out to the same DAQ system as the antenna, NTD vibration sensor, and light
detector. The ANPS of the auxiliary devices are shown in Fig. 6.5.

As a starting ground for testing the algorithm, we collected data while a ground loop per-
sisted in our readout chain. This gave rise to noise peaks at 60 Hz and subsequent harmonics
from the AC power line with sufficient power to dominate the detector signal. In addition
to the electrical noise, we observe noise peaks at 1.4 Hz and subsequent harmonics due to
vibrations from the pulse tube which vibrate the internal cryogenic structure, including the
detector and the cold electronics. To construct an average noise template, we first took a
long run of data without injecting any pulses to ensure a sufficient number of noise events
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(a) (b)

Figure 6.6: Transfer functions from auxiliary devices to light detector in the Oxford DR.
(a) Accelerometer transfer functions. The peaks at the harmonics of 1.4 Hz, particularly in
the ẑ-oriented accelerometer, indicate a correlation between the pulse tube noise observed in
the accelerometers and the microphonic noise in the light detector. (b) Antenna and NTD
vibration sensor transfer functions. Note the wide-band region of high gain near 60 Hz for
both of these devices. The large troughs at 35 Hz and 105 Hz indicate that the antenna
signal is not correlated with the light detector at these frequencies.

free of pulses. The data from these runs were used to construct the transfer functions, Hxiy,
which are shown in Fig. 6.6. After, we acquired two runs of data, each with a set of LED
pulses at a fixed frequency (1.7 Hz). The first set of LED pulses had a duration of 100 µs,
and the second set had a duration of 200 µs and thus twice the energy of the first set. We
split the PWM signal and acquired it with our DAQ to efficiently trigger on the light pulses
with few backgrounds. We denoised these LED runs by applying the previously calculated
transfer functions to the auxiliary data from the LED runs and subtracting the result from
the light detector signal.

6.4.2 Analysis Techniques

Since we could trigger the LED pulses, we could still analyze our signal despite the low SNR
in the system. We used the same analysis procedure described in Section 6.2, but this time
we conducted three separate analyses. We again analyze the original data and denoised data,
but we also analyze the data after applying a notch filter centered at 60 Hz to the signal.
Since the signal is dominated by 60 Hz noise, one might expect that notch filtering the
data will lead to an improvement comparable to that of the noise decorrelation algorithm.
We selected 0.5-second windows between LED pulses and making RMS-based cuts to veto
windows with spurious events (e.g. caused by cosmic rays) either on the detector signal or
NTD vibration sensor. We then construct the average noise power spectrum for each of the
three signals. We use the LED triggers to build an average pulse which is also 0.5 seconds
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long. Together, the noise events and average pulse template allow us to denoise the data and
build the OF. We separately construct the OF using the original data, the band-pass filtered
data, and the denoised data.

To align the gains of the three filters, we perform a pseudo-calibration assuming that
the second set of LED pulses has twice the energy of the first one. We align the LED
pulse amplitudes to arbitrary energy values of E0 and 2E0. We construct histograms of the
amplitudes obtained by each analysis of each LED event, then fit the amplitudes to a normal
distribution using an unbinned fit. We then use a second-order polynomial fixed at the origin
to align the measured amplitude values to a common scale. Following the work of [192], one
can model the energy resolution of the detector as σ(E) =

√
σ2
0 + f(E)σ2

E, where σ0 is the
baseline resolution of the detector, σE is a scale factor that arises due to the stochastic nature
of the LED signals, and f(E) is a monotonically increasing function. We expect this behavior
of the detector response because the magnitude of the Poisson fluctuations in the number
of photons captured by the light detector will increase as the amplitude of the LED pulse
increases. With this model, we expect that the denoising algorithm does not affect f(E) or
σE, but does lower the value of σ0. We thus expect to see the greatest relative improvement in
energy resolution at the noise peak where the energy-dependent effects are small. We define
the ratio of resolutions R(E) = σ̂denoised(E)/σ̂original(E) and calculate it at each energy for
the three signal processing techniques.

6.4.3 Results of Denoising

Figure 6.7: Light detector signal containing an LED pulse before and after denoising. Before
denoising, the pulse is almost completely washed out by the noise which is dominated by a
60 Hz component. After denoising, the pulse is visible by eye.
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(a) (b)

Figure 6.8: (a) Periodogram of the light detector signal before and after denoising. The events
used to build these power spectra include the data from the train of LED pulses which
produces the evenly spaced peaks separated by 1.7 Hz. Noise peaks across the frequency
spectrum, including the 1.4 Hz vibrational peak and the 60 Hz electrical peak, are eliminated
after denoising. (b) The same periodogram zoomed to the 60 Hz noise peak. The peak is
reduced by ∼33 dB, and the FWHM of the peak is reduced by approximately 10%. The
evenly spaced peaks due to the LED pulse train become more apparent after denoising. This
structure is largely unaffected by the denoising, indicating an improved signal-to-noise ratio
near 60 Hz.

After denoising, there was a visible improvement in the signal-to-noise ratio of the detec-
tor as seen in Fig. 6.7. We also observed a reduction in both vibrational and electrical noise in
the light detector periodogram (see Fig. 6.8). The vibrational peak at 1.4 Hz was eliminated,
and many of the electrical peaks ranging from 60 Hz to 5 kHz were significantly reduced.
The 60 Hz noise peak was reduced by 33 dB, and the full width at half-max (FWHM) was
reduced by approximately 10%. This peak was extremely wide due to small modulations of
the ground loop frequency, but these modulations were measured by the antenna and the
NTD vibration sensor so we could successfully remove them from the data. This is reflected
in the wide-band region of high gain near 60 Hz in the transfer functions for both of these
devices as was shown in Fig. 6.6. Outside of this region, the main effect of the denoising is a
reduction in noise peaks. The algorithm does not have an apparent effect on the broadband
detector noise. Before denoising, high frequency noise with a large 60 Hz component con-
taminates the average pulse. Applying the notch filter induces a ringing in all pulses which
coherently add together when constructing the average pulse. When the denoising algorithm
is applied, the noise in the average pulse is reduced without inducing any ringing (see Fig.
6.9).
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Figure 6.9: Average pulses from the light detector constructed with different signal processing
techniques. The notch filter produces a ringing effect which can be seen in the plot of the
residuals. The denoising procedure removes 60 Hz noise as well as other high-frequency noise
from the average pulse, producing a smoother and more accurate pulse template for later
use in the OF.

Next, we examine the effect of the denoising algorithm on the resolution of noise and
LED pulse events. As expected, the resolution worsens monotonically with energy. At all
amplitudes, the denoising improves the measured detector resolution (see Table 6.2). We
see the greatest relative improvement at lower pulse amplitudes, which was also expected.
It should be noted that the improvement in amplitude resolution at the first LED peak
(E = E0) is compatible with the improvement at the noise peak, though it has a greater
uncertainty.

We also observe that the denoising algorithm performs as well as or better than the notch
filtering approach (see Fig. 6.10). This effect is especially visible at the noise peak, where the
improvement in the detector resolution from the denoising (4.1%) is 1.7 times that of from
the notch filtering (2.4%). At the highest-amplitude peak, we do not expect the denoising
to have as much of an effect on the resolution, but we still observe an improvement. At this
amplitude, we see that the denoising and notch filtering have similar effects on the data
These results are summarized in Table 6.3.
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Table 6.2: Best-fit estimators of energy resolution with and without denoising applied. Here
σ̂0 is the best estimator of the energy resolution of the detector noise events. All energies are
scaled to that of the first LED pulse amplitude. All energy resolutions are calculated from
the optimally filtered data.

Signal Type σ̂0(E = 0) σ̂(E = E0) σ̂(E = 2E0)

Original (2.89± .01)× 10−2 (3.15± .04)× 10−2 (3.16± .04)× 10−2

Notch Filtered (2.82± .01)× 10−2 (3.13± .03)× 10−2 (3.10± .03)× 10−2

Denoised (2.77± .01)× 10−2 (3.00± .03)× 10−2 (3.10± .03)× 10−2

Table 6.3: Ratio of denoised and notch filtered energy resolutions to original energy resolu-
tion. The ratio of resolutions is defined as R(E) = σ̂denoised(E)/σ̂original(E). The denoising
algorithm outperforms the notch filter given its capability to remove noise across a large
range of the frequency domain. Note that the main effect of the denoising is in the reduction
in baseline resolution R0. This is expected given that the resolution is dependent on the LED
amplitude due to the Poisson fluctuation of detected photons.

Signal Type R̂0 R̂(E = E0) R̂(E = 2E0)

Notch Filtered 0.976 ± 0.003 0.99 ± 0.01 0.98 ± 0.01
Denoised 0.959 ± 0.003 0.95 ± 0.01 0.98 ± 0.01

It is important to note that the improvement in resolution is ≤ 5% in all cases. This is
also expected since the OF is by definition the filter that results in the highest SNR given a
particular choice of noise and pulse template. The improvements from the denoising are thus
limited by the amount of noise that can be removed from the noise and signal templates,
which can in turn be limited by the “SNR” of the auxiliary devices, i.e. the ratio of the
amount of noise correlated with the detector of interest to the amount of uncorrelated noise.
Having verified the efficacy of the denoising technique in a controlled experiment, we now
turn our attention to decorrelating the noise from CUORE data.

6.5 Denoising CUORE data
To validate the efficacy of the denoising algorithm on CUORE data, we selected six of the
auxiliary devices outlined in section 5.2. We use these devices as the six input signals when
we apply the noise decorrelation algorithm. Here, we will also use a nonlinear version of the
algorithm for thermal detectors. Using the data from one CUORE detector channel during
a physics run, we demonstrate both the linear and nonlinear versions of the denoising algo-
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Figure 6.10: Energy resolution of noise events and LED events before and after denoising or
notch filtering is applied. The fact that the energy resolution increases with energy is expected
due to the Poisson fluctuation of detected photons. At all energies, the denoising algorithm
improves the resolution of the detector. At all but the highest energies, the algorithm out-
performs the 60 Hz notch filtering of the data.

rithms. We then analyze the noise events and the heater events in the detector to evaluate the
algorithm’s performance. The particular channel we choose has two pulser amplitudes dur-
ing this run, the greater of which is used for thermal gain stabilization. The two amplitudes
are comparable to physical pulses with energy depositions of 960 keV and 3500 keV. These
energy values were determined during the online CUORE data analysis. We will calibrate
the detector by using the two pulser event energies and the noise peak, then use the resulting
calibration curve to estimate the improvement in energy resolution in units of energy.

6.5.1 The Nonlinear Algorithm

It is expected that quadratic mixing of acceleration signals should occur in the CUORE
thermal detectors. This is motivated both by the non-zero bicoherence observed in CUORE
(see section 5.3.2) and also by first principles. A simplified explanation for this is that any
power incident on the detector due to vibrations heats a thermal detector regardless of
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the directionality of the vibration. This power is non-trivially related to the square of the
waveform describing this vibration. Consider an object of mass m vibrating in 1-dimension
whose acceleration is described by a discrete signal a[t]. The power supplied by this oscillation
is equal to p[t] = ma[t] v[t] = ma[t]

∑
t′<t a[t

′]dt′. (We will drop the m so that p has units of
t(a[t])2). Taking the Fourier transform of the power, we have:

p̃[f ] = ã[f ]⊛
ã[f ]

f
= i

∑
f ′ ̸=f

ã[f ′]ã[∆f ′]

∆f ′ (6.9)

where ∆f ′ = f−f ′ and ⊛ represents the convolution. One can replace (∆f ′) with (2πfs+∆f ′)
if f ′ > f when working on the non-negative frequency domain. Now consider the square of
the acceleration signal (a[t])2. Its Fourier transform is:

ã2[f ] =
∑
f ′ ̸=f

ã[f ′]ã[∆f ′] (6.10)

The transfer function from this signal to the power signal is:

Ha2p =

〈
(ã2[f ])

∗
p̃[f ]

〉
⟨(ã2[f ])∗ (ã2[f ])⟩ (6.11)

Plugging in, we see the transfer function is averaged over all mixing frequencies, the p̃[f ]
term of which is averaged in a frequency-weighted way:

Ha2p =
i
〈(∑

f ′ ã∗[f ′]ã∗[∆f ′]
)(∑

f ′
ã[f ′]ã[∆f ′]

∆f ′

)〉
〈∣∣∣∑f ′ ã[f ′]ã[∆f ′]

∣∣∣2〉 (6.12)

The bispectrum B2[f ′,∆f ′] of the original acceleration signal is now a useful quantity, since it
tells us which frequency pairs will contribute to the expectation value of the above sum. If the
matrix is sparse, then the number of frequency pairs over which one must sum becomes signif-
icantly smaller, and evaluating the sum for each f becomes significantly less computationally
expensive. Nonetheless, the transfer function Ha2p still provides a “frequency-smeared” ap-
proximation of the expected value of the power signal given the square of the accelerometer
signal. In the limit that a single frequency pair (f0, f − f0) dominates the sums in equations
6.9 and 6.10, we can approximate the signals as:

p̃[f ] = iã[f0]ã[f − f0]

(
1

f0
+

1

f − f0

)
=

if ã[f0]ã[f − f0]

f0(f − f0)

(6.13)

ã2[f ] = 2ã[f0]ã[f − f0] (6.14)
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Plugging this into 6.12, the factors of
〈
|ã[f0]ã[f − f0])|2

〉
cancel assuming there is no uncor-

related noise in the acceleration signal at f . The transfer function is:

Ha2p =
if

2f0(f − f0)
(6.15)

In this case, the transfer function accurately describes the frequency mixing behavior
while accounting for the difference in units between p[t] and (a[t])2. Of course, this approx-
imation of a single perfectly bicoherent frequency pair contributing to the sum in 6.12 is
not valid in the CUORE system since there are multiple frequency pairs exhibiting bico-
herence that sum to the same frequency (see Fig. 5.13). Still, using the frequency-smeared
coefficients from the squares of the auxiliary signals in the denoising algorithm results in an
improvement over the linear version.

Here, we use the square of each auxiliary signal x2
i [t] as a proxy for the thermal response to

vibrational noise. Approaches similar to this, which analyze nonlinear systems by including
higher-order powers of the input signals, are well described in [193, 194]. We still keep the
original auxiliary signals xi[t] since they may be separately correlated with the detector noise,
for example due to capacitive pickup in the detector wiring. We proceed with the denoising
algorithm using the new set of input signals, which is twice as large as the original set.
In practice, the Fourier amplitudes x̃i[f ] and x̃2

i [f ] can be strongly correlated, so one must
ensure that the matrices are well-conditioned before proceeding. While we do not expect this
model to capture the full nonlinear behavior of the thermal response to the input signals,
we do expect to see an improvement in the noise decorrelation over the linear model.

6.5.2 Results of Denoising

The CUORE data have a much higher SNR than the data used to demonstrate the algorithm
in Section 6.4. We are therefore able to trigger on pulse events directly and create a set
of noise events. The only possible contamination of this set is from very low-amplitude
pulses not detected by the CUORE triggering algorithm. This effect is expected to be small
because the pulse rate is small (∼3 mHz) and the small amount of signal power due to these
pulses is negligible. We first run the algorithm with 50-second long noise windows using the
accelerometer and seismometer signals as inputs, then we repeat the algorithm on the original
data using the same signals and their squares as inputs. We conduct an independent analysis
after each of the different denoising methods is applied to the raw data. We show that the
denoising produces a cleaner pulse template as well as a reduced noise power spectrum.
Comparing the noise power spectra, we see that the denoising performs excellently on the
pulse tube noise, but does not substantially impact the noise below 1 Hz and does little
to change the broadband continuum noise below the various peaks (see Fig. 6.11). The
nonlinear method is more effective than the linear one, though this is limited to specific
bands in frequency space. The most noticeable differences between the linear and nonlinear
algorithms are seen at the harmonics of 1.4 Hz and in a region around 280 Hz with many
noise peaks (see Fig. 6.12). These regions of frequency space are exactly the ones where a
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(a) (b)

Figure 6.11: Effects of linear and nonlinear denoising techniques before constructing the
OF. (a) Average pulse created using the original, linearly denoised, and nonlinearly denoised
data. The denoising procedure removes noise containing many harmonics of 1.4 Hz from the
average pulse. (b) ANPS of a CUORE channel before denoising and after the two versions
of the denoising algorithm. The linear version removes noise across the signal band, from
less than 1 Hz to several hundred Hz. At several frequencies including 2.8 Hz, the nonlinear
version of the algorithm further reduces the noise.

significant bicoherence is observed. Together, these observations suggest the presence of a
nonlinearity in the mechanical system which is described by the transfer function from the
auxiliary devices to the CUORE channel.

To evaluate the performance of the different denoising methods, we first examine the
distributions of noise events which are shown in Fig. 6.13. Before the OF is applied, the
denoising algorithm reduces the RMS of a typical noise event by more than a factor of 2.
We build the OF using a 10-second long signal template. To make the calculation of the
OF coefficients as straightforward as possible, we also use 10-second long noise windows to
construct the OF as opposed to the 50-second long noise windows we use to perform the
denoising. The OF naturally further reduces the RMS noise, but combining the OF with the
denoising produces a smaller mean noise event RMS. This value is further reduced when the
OF is combined with the nonlinear algorithm. We confirm this effect by building the ANPS
of the detector after each signal processing technique is applied (see Fig. 6.14). Taking the
square root of the integral of each of the ANPS gives the expected RMS detector noise, the
values of which are tabulated in Table 6.4. The denoising improves the noise RMS of the
OF signal by 1.0 mV (∼8%). The quadratic version of the algorithm again out-performs the
linear one, improving the noise RMS by 1.2 mV (∼10%).
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(a) (b)

Figure 6.12: Regions of the CUORE channel ANPS before and after different denoising tech-
niques are applied. (a) ANPS in the region dominated by pulse tube noise at the harmonics
of 1.4 Hz. The nonlinear version of the algorithm reduces the noise peaks only slightly more
than the linear version. This difference is most noticeable at 2.8, 4.2, and 5.6 Hz. (b) The
same ANPS near 280 Hz. Here, there are many peaks where the noise is reduced noticeably
more by the nonlinear algorithm than by the linear one, indicating that a nonlinearity in the
system is responsible for these peaks.

We now analyze the noise events and pulser events together using the same analysis
techniques as described in Section 6.4.2. Fitting the OF amplitude spectrum and calibrating
using the known pulser energies gives us our final energy spectrum. The obtained resolutions
are reported in Table 6.5, while the ratios of resolutions are reported in Table 6.6. Looking
at the noise peak, where the statistical uncertainty on the resolution is smallest, the relative
improvement in resolution is 9% when the linear denoising is applied and 10% when the non-
linear version is applied. This again shows the better performance of the nonlinear method.
This 10% improvement in energy resolution is similar to the improvement in the noise RMS,
verifying that the calibration method does not qualitatively change the effects of the denois-
ing. The pulser resolutions are comparable to the noise resolution as expected, though the
resolution of the 3500 keV pulser is slightly worse than expected. Even so, the relative im-
provement in energy resolution is compatible at all energies (see Fig. 6.15). Together, these
results support the hypothesis that the resolution of the pulsers is approximately the same
as that of the noise. An energy-dependent contribution to the pulser resolution should not
be removed by the denoising algorithm because the auxiliary device signals are completely
uncorrelated to the pulse energy. If a non-negligible energy-dependent contribution were
present, then the relative change in the resolution of the pulsers after denoising would be
different as a function of energy. We observe that the improvements in pulser resolution are
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Figure 6.13: Distribution of RMS of noise events before any signal processing, after denoising,
and after applying the OF. The lowest noise RMS is achieved when the data are denoised
with the nonlinear version of the denoising algorithm and then optimally filtered.

Table 6.4: Average noise RMS of the CUORE channel after applying different combinations
of processing techniques. As expected, the OF alone outperforms the noise decorrelation, but
the combination of the OF with the denoising gives the best performance. The noise RMS
is minimized when the quadratic denoising algorithm is used along with the OF.

Signal Type Noise RMS [mV]
Raw Signal 7.52
Linearly Denoised Signal 3.16
Quadratically Denoised Signal 3.12
Optimal Filtered (OF) Signal 1.19
OF Linearly Denoised Signal 1.09
OF Quadratically Denoised Signal 1.07

compatible at all measured energies, which suggests that the energy-dependent contribution
to the pulser energy resolution is negligible. In summary, the denoising algorithm consistently
improves the energy resolution of noise events and pulser events by ∼10%. The nonlinear
version of the algorithm adds another ∼1% improvement, though this improvement is within
the uncertainty of the measurement.
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Figure 6.14: Effects of the denoising and the OF on the noise in the CUORE channel. The
original and denoised curves (before the OF) are the same as those in Fig. 6.11, but with
a coarser binning. This is because the denoising algorithm uses 50-second noise windows,
while the OF uses 10-second signal and noise windows. Note the reduction of notches at 1.4
Hz and subsequent harmonics when the data are denoised. Since the OF is normalized to
ensure unity gain, reducing the notches has the effect of lowering the continuum of the noise,
resulting in lower total noise power in the system.

We can also estimate the timing resolution of the detector before and after the denoising
techniques are applied. For a signal of amplitude A, the timing resolution of the digital signal
is given by [156]:

σt0 =
1

A

T N/2−1∑
n=−N/2

(2πfn)
2 |s(fn)|2
N(fn)

− 1
2

(6.16)

where T is the length of the signal in seconds, s(fn) is the Fourier transform of the
average pulse, and N(fn) is the ANPS. The timing resolution is inversely proportional to
the amplitude of the signal, and it is a single number for a given average pulse and ANPS.
We therefore use this proportionality constant Aσt0 as our figure of merit for the different
signal processing techniques. We calculate it using the average pulse with amplitude 1 mV
and multiply by the value of the calibration function at A = 1 mV to report the value in
keV·s (see Table 6.7). We find that the linear denoising improves the timing resolution by
1.4% while the quadratic version improves the timing resolution by 1.9%. We note that the
improvement in timing resolution is significantly less than that of the energy resolution. This
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Figure 6.15: Energy resolution of noise events and pulser events before and after the different
denoising techniques are applied. The energy resolutions of the pulsers are similar to that
of the noise. At all energies, the denoising algorithm improves the resolution of the detector
and the nonlinear version further improves the resolution.

suggests that in this channel, vibrational noise does not contribute significantly to the timing
resolution.

The main limitations of the algorithm are likely related to the auxiliary devices. First,
it is crucial that the auxiliary devices be sensitive to noise in relevant signal bands. The
magnitude of the OF applied to the raw timestream peaks near 1.4 Hz, where the pulse tube
noise is very well measured. At frequencies below ∼1 Hz, the accelerometer responses roll off
significantly. The accelerometers are therefore not sensitive to the sub-Hz noise observed in
the CUORE data. The seismometers used in CUORE are designed to measure sub-Hz noise
with better sensitivity, so the algorithm can reduce the sub-Hz noise peaks in the CUORE
data. These peaks are reduced by 4 to 5 dB and are far from eliminated.

The performance of the denoising is also directly tied to the coherence of the auxiliary
devices with the CUORE channel, i.e. the fraction of the power in the auxiliary signals that
is correlated with the detector at a particular frequency. It is possible that the coherence of
sub-Hz noise between the seismometer signal and detector noise can be increased by moving
the seismometers elsewhere on the cryostat, as their locations have not yet been optimized.
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Table 6.5: Energy resolution of noise events and pulser events after linear and nonlinear
denoising techniques are each applied. The denoising improves the resolution by ∼10%. The
quadratic version of the algorithm adds another ∼1% improvement, though this improvement
is not statistically significant. Pulser energies were determined during online CUORE data
analysis. All energy resolutions are calculated from the optimally filtered and calibrated data.

Signal Type σ̂0 [keV] σ̂(E = 960 keV) [keV] σ̂(E = 3500 keV) [keV]
OF Original 2.09 ± 0.02 2.1 ± 0.4 2.5 ± 0.2
OF Linearly Denoised 1.89 ± 0.02 1.9 ± 0.3 2.2 ± 0.2
OF Quadratically Denoised 1.88 ± 0.02 1.9 ± 0.3 2.2 ± 0.2

Table 6.6: Ratio of denoised energy resolution to original energy resolution using linear and
nonlinear versions of the algorithm. The denoising algorithm reduces the noise resolution
and the pulser energy resolution by compatible amounts. This is expected because the main
contribution to the pulser resolution is the noise. The quadratic version of the algorithm
further reduces the resolution, though this reduction is not statistically significant. The
resulting resolutions are again compatible across all energies.

Signal Type R̂0 R̂(E = 960 keV) R̂(E = 3500 keV)

OF Linearly Denoised 0.91 ± 0.01 0.91 ± 0.14 0.90 ± 0.07
OF Quadratically Denoised 0.90 ± 0.01 0.87 ± 0.13 0.89 ± 0.07

Table 6.7: Estimated timing resolution of the CUORE channel after applying different
combinations of processing techniques. The estimated timing resolution is minimized when
the quadratic denoising algorithm is used along with the OF. The improvement is of order
1% after the denoising.

Signal Type Timing Resolution [keV·ms]
Optimal Filtered (OF) Signal 26.91 ± 0.11
OF Linearly Denoised Signal 26.54 ± 0.11
OF Quadratically Denoised Signal 26.41 ± 0.11
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It is also likely that the algorithm can be improved by introducing auxiliary devices in
close proximity to the CUORE detector. This suggests that introducing cryogenic vibration
sensors into future cryogenic bolometric experiments is to be investigated further. A basic
version of this technique using an NTD vibration sensor was demonstrated in Section 6.4.1.

This algorithm is also limited to removing noise that is correlated on timescales of ∼50
seconds. When calculating the transfer functions using 50-second time windows, noise which
is only correlated on short timescales is effectively washed out and may not add coherently
in the sum. The cross-correlation spectrum of two signals which are correlated on short
timescales must have a broad frequency spectrum. This would explain why the peaks in the
spectrum are well denoised, but the continuum is not.

Finally, it is instructive to compare the effects of this denoising technique with the noise
decorrelation technique used in CUORICINO [179]. In CUORICINO, neighboring calorime-
ter channels were used as auxiliary devices to remove noise that was correlated between
them. The CUORICINO technique effectively removed sharp peaks from the noise power
spectrum much like the technique presented here. However, the CUORICINO technique was
effective at removing continuum noise below 1 Hz, which our technique fails to do. This sug-
gests that the noise measured in the auxiliary devices used in CUORE is not correlated with
the continuum noise in the CUORE detector. In [179], it was found that most CUORICINO
channels do not exhibit more than a 5% improvement in OF noise resolution, though the
largest improvements were more than 50%. It is unclear whether the CUORE channel showed
here is one of the most-improved or least-improved CUORE channels using our noise cor-
relation algorithm, but the 10% improvement in OF resolution we report here out-performs
the vast majority of channels in the CUORICINO analysis. In chapter 7, we demonstrate
the effects of denoising on the entire CUORE detector, and the results are similar to those
seen in CUORICINO.

It should also be noted that the CUORICINO noise decorrelation was done using 11
calorimeter channels as auxiliary channels. In practice, this creates a problem due to “side-
pulses,” i.e. pulses due to physical events which are present on neighboring calorimeter chan-
nels in coincidence with a pulse on the channel of interest. The presence of side-pulses creates
difficulties as one must find a way to remove them, either by fitting the pulses on the aux-
iliary channels and subtracting them or by removing the channel(s) containing side-pulses
and re-computing the transfer functions between the remaining channels. The probability of
encountering side-pulses grows as the number of channels used in the decorrelation increases.
Furthermore, neighboring calorimeters are the most likely to have correlated noise, but they
are also the most likely to have coincident pulses due to multi-site physics events. The de-
noising technique presented here does not incur such problems since there are no side-pulses
on the auxiliary devices used in CUORE. Furthermore, this technique denoises calorime-
ter channels against auxiliary devices, which has not been attempted before in bolometric
experiments, and it introduces nonlinear terms motivated by detector response.
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Chapter 7

Effects of Denoising on CUORE Data

Having demonstrated an improvement in the quality of CUORE data, we implemented the
non-linear multivariate denoising algorithm in the CUORE processing chain described in
chapter 4. Because the denoising affects the continuous waveforms, the denoising happens
at the very beginning of the processing chain. As a first demonstration of denoising at this
scale, we analyze the data from one dataset. Running two parallel analyses – one with the
“raw” waveforms that are not denoised and one with denoised waveforms – allows us to
isolate the effects of the denoising. We run the processing chain for both analyses only up
to the calibration and energy reconstruction step; no coincidence analysis or PSD is applied.
After validating the efficacy of the denoising with a single dataset, we turn our attention to
analyzing the CUORE data totaling two tonne-years of TeO2 exposure.

7.1 Denoising a Single Dataset
For this analysis, we restrict the set of auxiliary devices to three accelerometers placed on the
Y-beam.1 As always, we use the accelerometer timestreams and their squares as the input
signals. The algorithm is run in parallel, treating each channel as a separate output. The
transfer functions from the accelerometers and their squares to a calorimeter channel for a
single physics run are shown in Fig. 7.1.

7.1.1 Preliminary Considerations

Due to the very different natures of the physics and calibration data, there are some consid-
erations one must make before proceeding with denoising an entire dataset. For each physics
run, the denoising is applied using 50-second windows. The set of noise events is built using
the DT triggers and selecting all possible windows in which a trigger is not in the window.

1During this dataset, the microphones were not functioning correctly, and no other auxiliary devices had
been installed yet. This dataset was chosen because I completed the online analysis shift for it, so it was the
one with which I had the greatest familiarity.
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Figure 7.1: Magnitudes of the transfer functions from accelerometers and their squares to a
CUORE calorimeter using data from one physics run. These transfer functions are built with
50-second-long noise windows and are then used to denoise the calorimeter data. Note the
different y-axis values used in each graph. (a) Transfer functions from the three accelerome-
ters to the calorimeter. The third accelerometer points in the vertical direction, and vertical
vibrations are dampened by the minus-K system. Hence, the magnitude of the third transfer
function is smaller than that of the other two. (b) Transfer functions from the squares of the
three accelerometers to the calorimeter. The gain of these transfer functions is much lower
than that of the linear transfer functions because the amplitudes of the square accelerometer
signals are much larger than the linear signals.

We also place a 20-second dead time after each trigger to ensure that the falling edges of any
pulses triggered by the DT are not included in the set of noise windows. The first step of the
denoising algorithm is to estimate the expectation values of the power spectral densities and
cross-spectral densities of the inputs and output. If the expectation values are taken over too
few events, the resulting transfer functions likely do not accurately model the actual transfer
function from the auxiliaries to the calorimeter of interest. We therefore require that at least
50 noise events be selected during the physics run to apply the denoising. The DT algorithm
is sometimes not tuned adequately during online data-taking, resulting in a “hot trigger”
that fires very often, typically on the rising edge of some periodic noise. In the most extreme
cases, this results in the channel only having a few 50-second noise windows in a physics run,
and the channel cannot be denoised. Unfortunately, this means that sometimes the noisiest
channels in CUORE cannot be denoised because of the hot trigger. 983 CUORE channels
were active during this dataset for five initial calibration runs, 48 physics runs, and five final
calibration runs. Of the 47184 channel-run pairs of physics data, only 349 (or 0.7% of the
data) could not be denoised because of a hot trigger. The choice of a 50 noise event cutoff
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was arbitrary, and a more rigorous study can be done to find the optimal balance between
the accuracy of the transfer functions and the amount of data that is not denoised.

For the calibration data, the denoising is slightly more complicated. The higher event
rate in calibration data results in very few noise events being collected, so we cannot denoise
the calibration data as we do the physics data. However, because the AP is built using
signal events from calibration runs, while the ANPS is built using noise events from physics
runs (see Section 4.3.1), it is imperative that the calibration data be denoised in some way.2
To do this, we first denoise the physics data. We then average the transfer functions from
the first several physics runs and apply them to the initial calibration data. Likewise, we
average the transfer functions from the last several physics runs and apply them to the final
calibration data. The number of physics runs averaged together can vary from dataset to
dataset depending on the time between physics and calibration data-taking. In this analysis,
we averaged the transfer functions from the six nearest physics runs for each set of calibration
data. If a channel is not denoised for n of the first six physics runs, then the remaining 6−n
transfer functions are averaged together and applied to the initial calibration data. If n = 6,
then the initial calibration data is not denoised. (The same logic applies to the last six
physics runs and the final calibration.) In this dataset, there was only one channel for which
the initial calibration data were not denoised, and all final calibration data were denoised.

Once the denoising was complete, the denoised continuous waveforms were saved to disk
for later reprocessing. The DT was re-applied to these waveforms using the same triggering
parameters from the online processing. The effects of this step are discussed below.

7.1.2 Results of Denoising

RMS noise

The most natural thing to check immediately after applying the denoising is the ANPS of each
channel. Some examples are shown in Fig. 7.2. For virtually all channels, the accelerometers
do an excellent job of removing the noise induced by the pulse tubes, as seen in the reduction
of the peaks at the harmonics of 1.4 Hz. The low-frequency peaks are not reduced like in
the single-channel test discussed in chapter 6, which also uses the seismometers as auxiliary
devices. Instead, in some rare cases, the uncorrelated noise in the accelerometers increases
the noise below 1 Hz. Taking the square root of the integral of each ANPS to find the RMS
noise, we find that 978 of the 983 active channels show an improvement in the RMS noise.
In rare cases in which the denoising increases the RMS noise, the denoised data is still used
in the analysis. Recall that the RMS noise is defined as the square root of the integral of the
ANPS, i.e.

√∑
f J [f ]∆f where J is the ANPS. Fig. 7.3 shows the RMS noise of each channel

before and after denoising and the fraction of RMS noise removed from each channel. Of all
2A separate study in which only the physics data were denoised showed that the energy resolution of

calibration data was worsened using this method. This is expected since the optimum filter built from the
denoised noise events is no longer optimal when applied to calibration data that has not been denoised.
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(a) (b)

Figure 7.2: Two sample ANPS before denoising (black) and after denoising (red). In both
channels, the main improvement is in the peaks at harmonics of 1.4 Hz due to the pulse tube
noise. (a) A channel that is significantly improved by the denoising. The RMS noise after
denoising is reduced by 61%. (b) A channel which is slightly worsened by the denoising. The
RMS noise after denoising is increased by 1.6%. This occurs because this channel does not
experience much pulse tube noise, and the low-frequency noise increases slightly because the
accelerometer signals are uncorrelated with the calorimeter signals at frequencies below 1
Hz. In rare cases such as these in which the denoising increases the RMS noise, the denoised
data is still used in the analysis.

983 active channels, the best-performing channel exhibits a 74% reduction in RMS noise,
while the worst-performing channel exhibits a 7% increase in RMS noise.

We can quantify the noise reduction across the detector in several ways. The first is the
total fraction of RMS noise reduced in the entire detector, i.e.:∑Nchannels

c=1

√∑
f J

′
c[f ]∆f∑Nchannels

c=1

√∑
f Jc[f ]∆f

=
2.03 mV
3.36 mV

= 0.604 (7.1)

where c indexes over all active channels, J is the original ANPS of the channel before denois-
ing, and J ′ is the denoised ANPS. For this dataset, the total noise in the detector is reduced
by almost 40%. We can also calculate the average reduction in noise by channel, i.e.:

1

Nchannels

Nchannels∑
c=1

√∑
f J

′
c[f ]∆f∑

f Jc[f ]∆f
= 0.713 (7.2)
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(a) (b)

Figure 7.3: Effect of denoising on the RMS noise of each channel. (a) Overlaid histograms
of the RMS noise of each channel before denoising (dark blue) and after denoising (red).
The total RMS noise is reduced by 40%, from 3.36 mV to 2.03 mV. (b) A single histogram
showing the fraction of RMS noise removed by the denoising. The best-performing channel
exhibits a 74% reduction in RMS noise, while the worst-performing channel exhibits a 7%
increase in RMS noise.

For this dataset, the average channel has a roughly 29% reduction in RMS noise. Lastly, we
can take the median value of the noise reduction by channel, i.e.:

med

[√∑
f J

′
c[f ]∆f∑

f Jc[f ]∆f

]
= 0.742 (7.3)

For this dataset, the median channel has a roughly 26% reduction in RMS noise.
The fact that these three quantities are not the same suggests a variation in the amount

of noise removed from each channel. Fig. 7.4 illustrates this variation. Channels at the top of
the detector tend to have more noise removed than those at the bottom. Channels in columns
27 and 28 are also more affected by the denoising than their neighbors. Channels on floor 11
are denoised more effectively than any other floor, as the pulse tube noise dominates their
ANPS the most.3 Of the five channels with a worse RMS noise after the denoising, three of
them are located on the bottom floor of the detector.

3It is well-known that the channels on floors 12 and 13 have the highest amount of noise, both from
pulse tubes and from other sources. The channels on floor 11, however, have less noise from sources besides
the pulse tubes, thus the greatest fraction of their noise comes from the pulse tubes, making their relative
change in noise the greatest.
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Figure 7.4: Fraction of noise reduction in each CUORE detector achieved by applying the
denoising algorithm. Five of the 988 detectors are inactive and marked with a red X in the
plot. 978 out of the 983 active detectors show a reduction in RMS noise after applying the
denoising algorithm. Channels on floor 11 are denoised more effectively than any other floor,
as the pulse tube noise dominates their ANPS the most.

Triggering and Pulse Reconstruction

There are other more subtle effects of the denoising that are also worth mentioning. Because
the DT algorithm was re-applied to the denoised data, there was a significant reduction in
the number of false triggers, reducing the number of coincident triggers for many channels.
This actually aids in retaining channels that can otherwise be lost due to high noise. In
the analysis using the raw waveforms, there was one channel on the top floor for which the
AP could not be constructed because there were no events containing a single trigger in a
10-second window. The OF could therefore not be built, and the channel was cut from the
analysis. After applying the denoising, however, an AP was constructed from 5 events in the
calibration data. This channel happened to lie in a “sweet spot” where the hot trigger effect
prevented the AP from being built but did not prevent the denoising from occurring, and the
channel was “recovered” by the denoising algorithm, leading to a slight increase in exposure
for this dataset. This is admittedly a rare effect, but it is a positive effect that the denoising
has on the analysis.

Another repercussion of mitigating the hot trigger effect is shown in Fig. 7.5. For a
different channel on the top floor, the AP was originally constructed using only seven events.
This channel is known to have a very long decay time compared to a typical channel, and the
AP is usually cut off prematurely. The high noise in this channel also significantly affected
the trigger timing, causing a misalignment of the pulses used to build the AP. The denoising
ameliorates this by again reducing the number of false coincident triggers. After denoising,
257 events were used to build the AP. As expected, the denoised AP still has a longer-
than-typical decay time, but the premature truncating is not nearly as bad as it was before
denoising.
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(a) (b)

Figure 7.5: Effect of denoising on the AP of a poorly behaved channel. (a) AP before applying
the denoising. This AP is built from seven events which are clearly misaligned based on the
bend in the rising edge. The AP is truncated, as the falling edge does not fit within the
10-second window. (b) AP after applying the denoising. This AP is built from 257 events.
The alignment is still not great based on the hiccup in the falling edge at t ≈ 4 seconds, but
the truncation is improved, and the AP better represents a true signal in this channel.

Energy Resolution

While the denoising positively impacts the DT, the construction of the AP, and the RMS
noise, the most crucial aspect of the denoising is its effect on the detector’s energy resolu-
tion. For this analysis, we only considered the channels with active silicon heaters, and we
only applied the heaterTGS version of the thermal gain stabilization. After completing the
processing chain through calibration and energy reconstruction, 940 channels survived all
analysis cuts in both rounds of processing. We can therefore directly compare the energy
resolutions of these channels. The impact of the denoising expected to be most significant
at the baseline energy resolution, i.e. the resolution at the noise peak (E = 0 keV), because
energy-dependent factors contribute to the energy resolution in a meaningful way. This is
discussed in more detail in section 8.1.2.

Fig. 7.6 shows the spatial distribution of the improvement in energy resolution after
applying the denoising algorithm. 825 channels (88%) show an improvement in baseline
energy resolution. Of the remaining channels, only two show a significant worsening of the
energy resolution. Both of these channels show a substantial improvement in baseline RMS
voltage, and their APs are virtually unaffected by the denoising, so in theory, they should also
exhibit an improved energy resolution. This suggests that a later step in the processing chain,
likely stabilization, caused a problem with the energy reconstruction. Even when including
these outliers, the average channel has a 4.5% improvement in baseline energy resolution
after denoising. This increases to 4.6% after excluding these outliers. The best improvement
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Figure 7.6: Improvement in baseline energy resolution in each CUORE detector achieved by
applying the denoising algorithm. 48 of the 988 detectors are not used in the analysis and are
marked with a red X in the plot. 825 of the remaining 940 detectors show an improvement
in baseline energy resolution after applying the denoising algorithm.

in any one channel is 54%, from 30.4 keV FWHM to 14.1 keV FWHM. The baseline energy
resolution (FWHM) of each channel before and after denoising and the percent improvement
are shown in Fig. 7.7.

The results from this analysis are comparable to the improvements in energy resolution
seen in CUORICINO using nearest neighbor calorimeters to remove correlated noise [179];
the best channels exhibit a decrease of more than 50% in OF noise resolution, while the
majority of channels are either unaffected or show a slight improvement of a few percent. It
should be stressed that this method, using auxiliary devices, does not suffer from the same
problems as the method used in CUORICINO, as discussed earlier in section 6.5.2. This
method is not plagued by the issue of side-pulses, and it is highly scalable, as the noise from
the auxiliary devices is decorrelated from each calorimeter channel independently.

7.2 Denoising the Two Tonne-Year Dataset
Having demonstrated an improvement in the energy resolution across the entire detector, we
now focus on analyzing the CUORE data totaling two tonne-years of TeO2 exposure. This
“2TY” dataset encompasses 28 datasets accrued from 2017 to 2023. This section is intended
only to explain the denoising of this dataset. The analysis of the 2TY dataset to search for
0νββ decay is the focus of chapter 8.

23 of the 28 datasets comprising the 2TY dataset were denoised. Two of the five datasets
that were not denoised were acquired before any auxiliary devices were installed. During the
remaining three datasets, the available auxiliary devices suffered from data quality issues,
rendering the denoising ineffective. For each of the denoised datasets, a subset of the available
auxiliary devices was selected based on the data quality in each device, as some auxiliary
devices suffered from high levels of electronic noise during particular datasets. Table 7.1 lists
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(a)

(b)

Figure 7.7: Effect of denoising on the baseline energy resolution of each channel. (a) Scatter
plot of the energy resolution (FWHM) of each CUORE channel before the denoising versus
after the denoising. The red dashed line represents no change in the energy resolution. (b)
Distribution of baseline energy resolution improvements for each CUORE channel when the
denoising algorithm is applied. The average improvement is 4.5%. The two channels that
exhibit a significantly worse baseline resolution after applying the denoising likely recon-
structed poorly due to a problem with the stabilization procedure.
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the auxiliary devices used for each dataset. In all cases, both the auxiliary device signals and
their squares are used to denoise the data. The analysis described in the previous section
was performed using dataset 20. As was mentioned, this dataset was denoised only with
accelerometers. The improvements in RMS noise and energy resolution from this analysis
are expected to be better than those achieved using microphones but not as good as those
obtained using seismometers.

As was mentioned in Section 4.1, calibration data is often shared across datasets. In these
instances, we denoise the data once using the transfer functions from the physics runs closest
in time to the calibration. For example, the final calibration runs for dataset 3 are also the
initial calibration runs for dataset 4. The physics data from dataset 3 concluded six days
before the calibration began, while the physics data from dataset 4 started 33 hours after
the calibration concluded. It was therefore decided to denoise these runs using the first six
physics runs from dataset 4. There are some exceptions to this rule of thumb. If a pulse
tube phase scan occurs between physics data-taking and calibration data-taking, we denoise
the calibration data using the physics data with the same pulse tube configuration. Also, if
calibration data is shared by datasets that are denoised with different auxiliary devices, we
select the physics data based on the quality of the auxiliary device data during the calibration
data-taking.

A table summarizing the denoising of the 2TY dataset is shown in Table 7.2. Of the
datasets that were denoised, 98.6% of the physics data were successfully denoised, and 99.5%
of the calibration data were successfully denoised. Dataset 4 performed the worst, with 93.8%
of physics data and 98.3% of calibration data denoised, while dataset 8 performed the best,
with 99.7% of physics data and 100% of calibration data denoised.

The data comprising the 2TY dataset were denoised before any further processing. All
datasets were then processed following the steps outlined in chapter 4.
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Table 7.1: Auxiliary devices used to denoise the 2TY CUORE dataset. In all cases, both
the auxiliary device signals and their squares are used to denoise the data.

Dataset Auxiliary Devices Used
1 None
2 None
3 3 Microphones
4 4 Microphones
5 4 Microphones
6 None
7 None
8 4 Microphones
9 4 Microphones
10 4 Microphones
11 4 Microphones
12 4 Microphones
13 4 Microphones
14 4 Microphones
15 4 Microphones
16 3 Accelerometers on Main Support Platform
17 3 Accelerometers on Main Support Platform
18 3 Accelerometers on Main Support Platform
19 None
20 3 Accelerometers on Y-beam
21 3 Accelerometers on Y-beam
22 2 Microphones and Accelerometers on Y-beam
23 2 Microphones and Accelerometers on Y-beam
24 2 Microphones and Accelerometers on Main Support Platform
25 1 Seismometer, 2 Microphones, and 1 Accelerometer on Main Support

Platform
26 3 Seismometers and 1 Accelerometer on Main Support Platform
27 3 Seismometers, 1 Accelerometer on Main Support Platform, and 2

Accelerometers on Y-beam
28 3 Seismometers, 2 Accelerometers on Main Support Platform, and 2

Accelerometers on Y-beam
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Table 7.2: Summary of the denoising of the 2TY dataset.

Physics Data Calibration Data

Dataset

#
channel-
run pairs
denoised

#
channel-
run pairs

not
denoised

%
channel-
run pairs
denoised

#
channel-
run pairs
denoised

#
channel-
run pairs

not
denoised

%
channel-
run pairs
denoised

1 Not denoised
2 Not denoised
3 37837 1523 96.13 15638 106 99.33
4 35994 2382 93.79 8709 147 98.34
5 11573 235 98.01 7848 24 99.70
6 Not denoised
7 Not denoised
8 41221 107 99.74 8856 0 100.00
9 40202 142 99.65 9840 0 100.00
10 45612 636 98.62 9825 15 99.85
11 43970 310 99.30 7852 20 99.75
12 44119 161 99.64 8852 4 99.95
13 45987 261 99.44 7856 16 99.80
14 36840 552 98.52 7828 44 99.44
15 47703 513 98.94 7836 36 99.54
16 47740 476 99.01 8856 0 100.00
17 35886 522 98.57 8856 0 100.00
18 44280 984 97.83 13544 232 98.32
19 Not denoised
20 46835 349 99.26 9825 5 99.95
21 37198 156 99.58 9820 10 99.90
22 43979 256 99.42 8829 18 99.80
23 38858 462 98.83 6825 56 99.19
24 37071 283 99.24 7860 4 99.95
25 43194 1041 97.65 7816 48 99.39
26 39681 622 98.46 7792 72 99.08
27 34969 419 98.82 7812 52 99.34
28 36674 680 98.18 6788 93 98.65

Total 917423 13072 98.60 205563 1002 99.51
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Chapter 8

The Search for 0νββ Decay in CUORE
with Two Tonne-Years of Exposure

We now turn our attention to the culmination of everything described so far in this disserta-
tion: the search for 0νββ decay in CUORE with two tonne-years (2TY) of TeO2 exposure.
This chapter details the high-level analysis, including the fitting procedure for the 0νββ de-
cay, and the results thereof. The 2TY dataset has a total TeO2 exposure of 2039.0 kg years,
or 567.0 kg years of 130Te.

8.1 Analysis Procedure

8.1.1 Blinding

Before beginning the 0νββ analysis, we first blind the data to ensure that any choices made
during the analysis procedure are not biased in a way that may produce a false positive
discovery of 0νββ decay (or a more competitive limit on the 0νββ half-life in the event that
no discovery is made.) The blinding is done by “salting” the data with fake 0νββ events to
create a peak at 2.528 MeV. A random fraction of events within ±50 keV of the 2.615 MeV γ
ray peak is selected, and the energies are artificially reduced by 87 keV. We also perform the
reverse process, selecting a random fraction of events within ±50 keV of Qββ and artificially
increasing their energies by 87 keV. If a significant number of real 0νββ events exist in the
data, the salting procedure thoroughly washes them out or moves them to the 2.615 MeV
peak, rendering the analyzers blind to the actual 0νββ decay rate. A comparison of the
blinded and unblinded data in the region of interest near Qββ is shown in Fig. 8.1. The
analysis is first carried out on the blinded data, then all decisions are finalized, and then the
analysis is repeated on the unblinded data.
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Figure 8.1: Effect of blinding on the energy spectrum of physics events in the region of
interest near Qββ. The blinding is done by moving events within ±50 keV of the 2.615 MeV
γ ray peak to the region within ±50 keV of Qββ and vice versa.

8.1.2 Resolution and Bias Scaling

The next step in the analysis is to estimate the expected energy resolution of each detector
at Qββ. The energy resolution exhibits a strong dependence on the energy, but because we
are blind to any peak that exists at Qββ, we are unable to measure the resolution at Qββ

directly.1 Instead, we model the detector response using data from the calibration runs then
apply a process called resolution scaling to estimate the expected resolution in physics data
at Qββ.

The Detector Response Function

To model the response function of each detector, we use only the events near 2.615 MeV in the
calibration data. These events mostly come from the γ ray emitted during the decay of 208Tl,
so they model the detector response to a mono-energetic set of events. Using the calibration

1In practice, even if we were not blind to a peak at Qββ , we know that the rate of 0νββ decay is so slow
that only a few 0νββ events would ever be discovered across the entire detector. Therefore, it would still
be impossible to measure the energy resolution of each of the 984 active detectors at Qββ directly for each
dataset even without blinding.
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data ensures an ample number of events in the peak in each detector, which is not typically
the case in the physics data, allowing the resolution of the detector to be measured with some
precision. The response function of an ideal detector is a Gaussian distribution G(E;µ, σ),
where µ is the mean of the distribution and σ is its standard deviation. In CUORE, we use
a sum of three Gaussians with some constraints:

G3(E;Eγ, σ, δ, a⃗) =

1

1 + AL + AR

[G(E; (Eγ + δ), σ) + ALG(E; aL(Eγ + δ), σ) + ARG(E; aR(Eγ + δ), σ)]
(8.1)

Here, Eγ is the expected energy of the γ ray, and δ is the bias of the detector at Eγ. We
also impose the constraints 0.996 ≤ aL < 1, 1.004 ≥ aR > 1, and 0 ≤ AL, AR ≤ 0.4 to
ensure that there is one main Gaussian centered at Eγ + δ and a smaller side-Gaussian on
each side of the main one. We define the vector of parameters {aL, aR, AL, AR} as a⃗ for later
conciseness. While we still do not fully understand the basis for this shape, we know that this
“3-Gauss” response function more accurately models the response of the CUORE detectors
than a single Gaussian distribution. This may be due to uncertainties from the stabilization
trend line and the calibration fitting procedure propagating to the final energy spectrum
and causing events at 2.615 MeV to deviate from the expected Gaussian behavior [164]. The
response function is one of several components used to fit the calibration data near Eγ. The
other components include:

• A multi-Compton shelf. This accounts for 2.615 MeV γ ray events which Compton
scatter multiple times, depositing almost but not all of the γ ray energy in the detector.
This is modeled as a complementary error function centered at the mean of the main
peak of the response function: cerf

[
(E − (Eγ + δ))/(

√
2σ)

]
.

• An X-ray escape peak. This accounts for 2.615 MeV γ ray events that produce a 30
keV X-ray in the tellurium which subsequently escapes the detector. This is modeled
as G3(E;Eγ − 30 keV, σ, δ, a⃗).

• An X-ray coincidence peak. This accounts for 2.615 MeV γ ray events that occur in
coincidence with the aforementioned X-ray escaping from a nearby detector. This is
modeled as G3(E;Eγ + 30 keV, σ, δ, a⃗).

• A γ escape + coincidence peak.2 This accounts for 2.615 MeV γ ray events that pair
produce creating two 511 keV photons, one of which then escapes the detector, in
coincidence with the 583 keV γ ray that is produced in ∼85% of 208Tl decays. The
result is another peak at 2. This is modeled as G3(E;Eγ + 30 keV, σ, δ, a⃗).

• A flat background. This models any spurious events that might survive the PSD cut
and degraded α events. This is modeled simply as a constant.

2This component is only included in the datasets that used the EDCS calibration system.
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For each dataset, the calibration data from all detectors in a tower fit this model simulta-
neously. The response function parameters σ, δ, and a⃗ are determined separately for each
detector, while the amplitudes of the other fit components are shared for all detectors in the
tower due to insufficient statistics in each detector. Fig. 8.2 shows a simultaneous fit of one
tower-dataset pair.
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Figure 8.2: Fit of the detector response function at 2.615 MeV from calibration data. The
data from all detectors in a tower are fit simultaneously for each dataset. The fit contains
the following components: a) A “3-Gauss” response function models the 2.615 MeV γ ray. b)
A multi-Compton shelf. c) An X-ray escape peak. d) An X-ray coincidence peak. e) A γ ray
escape + coincidence peak. All of these components are described in detail in the text.

The Resolution Scaling Model

Having evaluated the response function of each detector at 2.615 MeV, we now seek to
estimate the expected resolution of each detector in the physics data at Qββ. We do this by
measuring the resolutions of various peaks in the physics data across a wide range of energies.
Unlike in previous CUORE analyses, the 2TY analysis also uses information from the baseline
resolutions of each detector. The energy-dependent contributions to the resolution include
variations in the event size and the cross-sections of pair-production, Bremsstrahlung, and
Compton scattering. These contributions should be independent of the baseline resolution
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which should be determined by the detector noise (See equation 4.16). Therefore, we assume
that these two contributions add to the resolution in quadrature separately in the physics
data and the calibration data. Because the physics data do not have ample statistics to
measure the energy resolution of each channel individually at 2.615 MeV, we must measure
the resolution of the physics data globally, incorporating all events from the entire detector,
and then scale the resolution from the 2.615 MeV peak in calibration data to the resolutions
of the peaks in the physics data. This gives the following model for the energy resolution of
a given detector:

σphysics(E) =
√
σ2
0,physics + S(E)

[
σ2

calibration(2.615 MeV)− σ2
0,calibration

]
(8.2)

where σ0 is the baseline resolution of the detector, σ(2.615 MeV) is the value of σ output by
the fit to the calibration data described in the previous section, and S(E) is the resolution
scaling function. To find a reasonable functional form of S(E), we analyzed the resolutions of
different peaks in the physics data.3 This analysis revealed a turn-on effect at around 1 MeV.
At energies below the turn-on effect, the resolutions of each peak are consistent with the
baseline resolution, while at energies above it, the resolutions increase monotonically with
energy, so we use the following function to describe the resolution scaling phenomenologically:

S(E) =
1

2

[
erf

(
E − E0

Σ

)
+ 1

] (
c1E + c2E

2
)

(8.3)

Here E0 is the central value of the turn-on effect, which is constrained to lie between 1.099
MeV and 1.106 MeV. Σ parameterizes the sharpness of the turn-on effect and is constrained
to lie between 415 and 597 keV. These constraints come from global fits of the resolution
scaling function using all datasets simultaneously. The parameters c1 and c2 are constrained
to be non-negative to ensure that the resolution scaling increases monotonically with energy.
For each dataset, this function is fit to peaks from the physics data, which are pre-selected
based on their goodness of fit to Gaussian distributions, using the Bayesian analysis toolkit
(BAT) software package [195]. Using BAT allows us to quantify the credibility intervals (C.I.)
of the resolution scaling function at any energy which we then use to create a probability
distribution for the resolution scaling function at Qββ. The probability distribution of the
scaling is used as a dataset-dependent informative prior in the final fit. Fig. 8.3 shows an
example of one of these fits for a single dataset and the prior probability distribution on the
resolution scaling at Qββ which is output by the fit.

3While the resolutions of different peaks from γ rays are used to estimate the detector resolution scaling,
it is expected that a 0νββ signal will behave quite differently than a γ ray interaction. It is plausible that a
0νββ event will more closely resemble a double-escape event in the CUORE detector. If this is the case, it
would be more appropriate to use only double-escape peaks when fitting for the energy dependence of the
resolution scaling. Studies are ongoing at UC Berkeley to investigate this possibility.
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Figure 8.3: (a) Fit of the energy resolution scaling function for one dataset. The data points
come from pre-selected peaks from the physics data which are well-modeled by Gaussian
distributions. The regions in color show the 1σ, 2σ, and 3σ C.I. of the scaling. (b) The
probability distribution of the resolution scaling at Qββ.

Some pathological cases must be carefully handled when using this technique. For some
calorimeter-dataset pairs, σ2

0,calibration > σ2
calibration(2.615 MeV).4 In these cases, equation 8.2

can become imaginary, which is obviously problematic when estimating an energy resolution.
To overcome this, we assert that σphysics(E) = σ0,physics∀E for these calorimeter-dataset pairs.
This is equivalent to setting the bracketed term in equation 8.2 to zero instead of letting it
be negative, so it is a conservative estimation of the resolution scaling.

The bias scaling is carried out similarly to the resolution scaling, but the function is
much more straightforward. The same global studies of the peaks in physics data used to
constrain the resolution scaling function parameters also revealed that the bias function is
well described by a quadratic function, δ(E) = δ0+ δ1E+ δ2E

2. Using the same pre-selected
peaks from the physics data that are used in the resolution scaling fit, we fit δ(E) for each
dataset using BAT. The output gives a prior probability distribution on the bias, which is
also used as an informative prior in the final fit. Fig. 8.4 shows the fit of the bias for a single
dataset and its prior probability distribution.

Combining the fit results from all calorimeter-dataset pairs, we use the exposure-weighted
harmonic mean of the resolutions as a figure of merit for the resolution of the full detector.
The harmonic mean is used instead of the arithmetic mean because the sensitivity to the half-
life of 0νββ scales as 1/

√
∆E, where ∆E is the resolution of a detector, and the resolutions

4This behavior is admittedly strange, as we do not expect the resolution of a detector to improve with
increasing energy. In detectors where the baseline resolution dominates the energy-dependent contributions
to resolution at 2.615 MeV, statistical fluctuations can reasonably cause this pathological behavior. However,
this behavior is also seen in channels that do not have particularly large baseline resolutions, and further
studies are underway to explain these cases.
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Figure 8.4: (a) Fit of the bias function for one dataset. Like in the resolution scaling, the
data points come from pre-selected peaks from the physics data which are well-modeled by
Gaussian distributions. The regions in color show the 1σ, 2σ and 3σ C.I. of the bias. (b) The
probability distribution of the bias at Qββ.

of each detector add in quadrature. The distribution of the FWHM resolution of all detectors
for each dataset included in the analysis is shown in Fig. 8.5. Before computing the total
resolution, we cut the calorimeter-dataset pairs with FWHM resolutions greater than 23
keV as events from background radioactive peaks can overlap with the 0νββ signal in these
detectors. This cut value is similar to the one used in CUORE’s 1TY 0νββ decay analysis
(19 keV), which was chosen such that the sensitivity to 0νββ decay is only reduced by 0.5%
[164]. Pairs with a bias of more than one standard deviation, i.e. δ > σ, are cut as well. After
applying these cuts, we find that the FWHM resolution of the full detector is (7.540±0.024)
keV at 2.615 MeV in calibration data and (7.320± 0.024) keV at Qββ in physics data.

8.1.3 Efficiencies

Because several cuts are applied to the data throughout the processing chain, there is a
possibility that a 0νββ decay event is removed from the data, thereby reducing the signal
efficiency of the experiment. The efficiency of each of these steps must be accounted for to
accurately report the rate of an observed 0νββ signal (or the limit on the rate if no such
signal is observed). We account for several efficiencies in the experiment using the heater
pulses from the physics data which are used for stabilization. The energy of these pulses is
∼3 MeV, so we can expect that the efficiencies measured using the heater pulses will be close
to those at Qββ. The efficiencies we measure with the heater events are:
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Figure 8.5: Energy resolution of all calorimeters for each dataset. The colors indicate the
base temperature of the detector during each dataset. The right panel shows the projection
of all calorimeter-dataset pairs onto the energy axis for each base temperature. Calorimeter-
dataset pairs with FWHM resolutions greater than 23 keV, which are shown here, are cut
from the final 0νββ decay analysis and are not shown here.

• Trigger efficiency: the probability of triggering a heater event. This is calculated simply
by dividing the number of triggered heater events by the number of heater events
injected into the detector.

• Energy reconstruction efficiency: the probability that a triggered heater event recon-
structs within 3σ of the mean heater event energy divided by the probability that it
reconstructs within 10σ of the mean energy. Here σ is the standard deviation of a
Gaussian fit of the reconstructed heater event energies.

• Pileup efficiency: the probability that a triggered heater event does not occur in coin-
cidence with another triggered pulse, i.e. the probability of no pileup.

We also calculate two other efficiencies that cannot be estimated using the heater events:

• Heater pile-up efficiency: the probability that a triggered physics event occurs in coin-
cidence with a heater event. This is simply (1 − t/T ), where t is the 10-second event
window and T is the time between heater pulses in a given detector (typically 570
seconds).
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• Heater cross-talk efficiency: the probability that a triggered physics event happens in
coincidence with a pulse due to a heater pulse in a different calorimeter. This cross-
talk is not uniform across the detector; only 10 – 20 detectors experience a notable
amount of heater cross-talk in a single dataset, but those that do can have a significant
reduction in exposure, ranging from 10% to 80%. Overall, the cross-talk efficiency for
the entire detector is ∼99%.

For each calorimeter, these five efficiencies are multiplied together to give the “reconstruction
efficiency” (not to be confused with the energy reconstruction efficiency described above).
The exposure-weighted reconstruction efficiencies of each calorimeter are then put into a
histogram which serves as a probability distribution of the reconstruction efficiency for the
entire dataset.

The anticoincidence cut described in chapter 4 also comes with a dataset-dependent
signal efficiency. This is the probability that a physical M1 event is moved to M2 (or higher)
due to an accidental coincidence. To do this, we select the events from the physics data at
a peak centered at 1.46 MeV. This peak is due to the decay of 40K to 40Ar via electron
capture, which comprises about 11% of 40K decays. It is expected that the vast majority of
these events should be M1 events. The only potential exception is a surface event in which
a 40K nucleus on the surface of a calorimeter decays, the nuclear recoil or an atomic X-ray
deposits energy in the calorimeter, and the γ ray is deposited in a nearby detector. This
effect is negligible, however, as 40K is a bulk contaminant in the CUORE calorimeters. To
estimate the anticoincidence cut efficiency, we count the total number of M1 events in the
peak at 1.46 MeV and the total number of M>1 events in the same peak, accounting for
the background. This is done via a Bayesian counting analysis in BAT, and the result is a
probability distribution for the anticoincidence efficiency.

The next efficiency comes from the PSD cut, which was also described in chapter 4. This
is estimated using the γ ray events from the physics data.5 We again conduct a Bayesian
counting analysis, this time estimating the total number of signal events in each peak that
pass the PSD cut and the number of events that fail the PSD cut. The posterior distributions
of these numbers are combined to produce a probability distribution for the PSD efficiency
at every γ peak. The efficiency values are then plotted versus energy and fit with a straight
line. Similar to the resolution and bias scaling, the PSD efficiency at Qββ is determined by
slicing this fit at E = Qββ to get a probability distribution.

Another option for computing the PSD efficiency is to analyze M2 events. In this case,
the events that pass the cut are multiplets in which both events pass PSD and the energies
sum to one of the energies of the 60Co, 40K, or 208Tl γ ray peaks. Events that fail the cut
are multiplets in which one of the two events fails PCA and the energies also sum to one of
the aforementioned γ ray peaks. Using M2 events produces a slightly higher PSD efficiency
than using M1 events, so we use the M1 approach to be conservative.

5Of course, we exclude the 511 keV “γ ray” peak due to pair production since events in this peak often
occur in coincidence with single- and double-escape events.
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Table 8.1: Exposure-weighted efficiencies across the entire detector from the 2TY analysis

Total analysis efficiency (from data) 93.4(18)%
Reconstruction efficiency 95.624(16)%
Anti-coincidence efficiency 99.80(5)%
PSD efficiency 97.9(18)%

Containment efficiency (from Monte Carlo) 88.35(9)% [163]

To account for the systematic uncertainty on all of the efficiencies mentioned thus far, we
take the probability distributions of the reconstruction, anticoincidence, and PSD efficiencies
and multiply them together. The resulting probability distribution serves as an informative
prior distribution on the efficiency. This is done for each dataset independently.

The last efficiency we need to consider is the containment efficiency, or the probability
that a 0νββ decay event will actually manifest as an M1 event in the CUORE detector.
As was mentioned in section 4.5, this is calculated using Monte Carlo simulations of the
detector. We account for the systematic uncertainty of the containment efficiency by as-
signing it a Gaussian prior with a standard deviation given by the Monte Carlo simulation.
Table 8.1 shows the values of the different efficiencies for the whole 2TY analysis and their
uncertainties.

8.1.4 Fitting the 0νββ signal

With all inputs to the 0νββ fit prepared, we now use a multi-parameter model to fit the
energy spectrum in the region of interest (ROI) of [2.465,2.575] MeV. The ROI is chosen
to completely cover the predicted 0νββ signal given the resolution of the detector. It is not
centered at Qββ because a background peak at 2.506 MeV exists due to the coincidence of
the two γ rays emitted by the decay of 60Co, and the ROI must sufficiently cover this peak
as well. To measure the rate of 0νββ decay observed in the data, we use a fit function that
includes the following parameters:

• Γ0ν , the decay rate of 0νββ decay in inverse years. This is a global parameter that is
shared across all datasets.

• A60Co, the activity of 60Co in the experiment. This is a global parameter, but the
activity in each dataset is given by ACo(tds) = A60Co exp{−ti/τ}, where ti is the time
between dataset 1 and dataset i, and τ is 7.61 years, the mean lifetime of 60Co.6

6Cosmogenic activation of the copper frame of the detector could in principle add a constant term to the
60Co activity, but it was found to be negligible in CUORE.
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• BI, the background index in counts / keV / kg / year (ckky). We model this as a flat
background that accounts for degraded α particles and multi-Compton scattering of
2.615 MeV γ rays. This is a dataset-dependent parameter.7

We fit this function to the energy spectrum in the ROI using BAT, taking the Bayesian
approach. These parameters are all assigned uninformative, uniform priors with high cutoff
values so as not to bias the result. In addition, for each dataset, we include the informative
priors for the analysis efficiency, the resolution scaling, and the energy bias. In total, this
gives 4Nds + 2 parameters in the fit, where Nds is the number of datasets.

We perform an unbinned fit of all energies {Ei} in the ROI to find the best-fit rate
and posterior distribution of Γ0ν . We seek to maximize the extended likelihood function
considering all calorimeter-dataset pairs, i.e.:

L({Ei}) =
Nds∏
ds=1

Ncal∏
c=1

e−λλn

n!

∏
i

1

λ

[
S G3(Ei;Qββ, σc,ds(Qββ), δc,ds, a⃗c,ds)

+ C G3(Ei; 2.506 MeV, σc,ds(2.506 MeV), δc,ds, a⃗c,ds) +B
1

W

] (8.4)

where S is the number of signal events, C is the number of 60Co background events, B is
the number of flat background events, G3 is the 3-Gauss detector response function, and W
is the width of the ROI. λ = S + C + B is the number of events in the ROI for a given
calorimeter-dataset pair. The expected number of each type of event is calculated separately:

S = ϵaϵcΓ0νρ
E
mA

C = ϵaACo(tds) E
B = (BI)WE

(8.5)

where ϵa is the analysis efficiency, ϵc is the containment efficiency, ACo(tds) is the expected
60Co activity for the given dataset, ρ is the fraction of the detector mass that is 130Te, and
E is the exposure of the dataset after analysis cuts (which is less than mt, the actual mass
of the detector times the live-time of the dataset).

8.1.5 Running the fit

When running the fit routine in BAT on the entire 2TY dataset, we experienced significant
convergence issues. After over a day of running the fit on a node of Perlmutter, the supercom-
puter hosted and maintained by the National Energy Research Scientific Computing Center
(NERSC), the fit procedure still had not been completed. We decided to divide the data

7If a global background index is used, then changes in the background index over time, either due to a
change in the activity of the backgrounds or Poisson fluctuations from dataset to dataset, could cause the
posterior distribution on the analysis efficiency to change in kind. We want to avoid this possibility.
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into two equal partitions each comprising 14 datasets. The datasets were randomly chosen
while requiring that each partition contain at least seven of the 15 datasets from the first
tonne-year and six of the 13 datasets from the second tonne-year. We then ran the fit on
each partition independently, treating each partition as a separate pseudo-experiment. Once
the fit is complete, we marginalize over all parameters except Γ0ν to produce a posterior
distribution on the 0νββ decay rate. We then multiply the posteriors from each partition,
giving the final posterior distribution of Γ0ν .

8.2 0νββ Decay Fit Results

8.2.1 Γ0ν and mββ

The main results from the fit using the Bayesian approach are shown in Fig. 8.6. We observe
no statistically significant evidence of 0νββ in 130Te. The best-fit decay rate is Γ̂0ν = 5.5+7.3

−5.5×
10−27 yr−1, and the 90% C.I. limit on the decay rate is Γ0ν < 2.0×10−26 yr−1, corresponding
to a 90% C.I. limit on the half-life of T 0ν

1/2 > 3.5× 1025 yr.
We also use the frequentist approach outlined in [196] to cross-check the Bayesian result.

In the frequentist approach, we calculate the maximum likelihood estimate Γ̂
(F )
0ν using the

likelihood from equation 8.4 and include Lagrange multipliers for the efficiencies, resolution
scaling, and energy bias parameters (the superscript (F ) serves to distinguish this from the
best-fit value from the Bayesian analysis, which can be different). To find the 90% C.L.,
we calculate the likelihood ratio for different values of Γ0ν in a neighborhood around Γ̂0ν .
Assuming Wilks’ theorem [197] holds in this case, the ∆χ2 distribution is given by:

∆χ2(Γ0ν) = −2 ln
[
L(Γ0ν)/L

(
Γ̂
(F )
0ν

)]
(8.6)

This function is shown in Fig. 8.7. The value of Γ0ν at 90% confidence level (C.L.) is the
positive value of the rate at which ∆χ2 = 2.706, identified by the dotted red line. For this
analysis, the 90% C.L. limit on the decay rate is Γ0ν < 2.1× 10−26 yr−1, or a 90% C.L. limit
on the half-life of T 0ν

1/2 > 3.4× 1025 yr, which is consistent with the Bayesian result.
Assuming that light neutrino exchange is the dominant mechanism responsible for 0νββ

decay, we can convert the limit on the half-life to a limit on the Majorana mass of the
neutrino, mββ, using equation 2.30. Using the different matrix elements for 0νββ in 130Te
calculated in [198–206] and assuming gA = 1.27, we place a limit of mββ < 70 − 250 meV.
This is the most stringent limit on mββ obtained using 130Te.

8.2.2 Exclusion and Discovery Sensitivity

Given that the 2TY dataset does not show significant evidence for 0νββ decay, a natural
question is: what is the largest value of Γ0ν in 130Te that we can expect to exclude 50% of the
time given our experimental parameters? We call this value the median exclusion sensitivity.
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Figure 8.6: Results of the 0νββ decay fit. (a) The energy spectrum in the ROI. The solid red
line is the best fit of the 0νββ signal + background model, which is described in detail in
the text. The dashed blue line is the sum of the best fit of the background and the 90% C.I.
limit on the 0νββ rate. (b) The posterior distribution on the 0νββ decay rate. The best-fit
rate is Γ̂0ν = 5.5+7.3

−5.5 × 10−27 yr−1, and the 90% C.I. limit on the rate is Γ0ν < 2.0 × 10−26

yr−1, corresponding to a 90% C.I. limit on the half-life of T 0ν
1/2 > 3.5× 1025 yr.
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Figure 8.7: Log-likelihood function for the rate of 0νββ using the frequentist approach. The
90% C.L. limit on the 0νββ decay rate is Γ0ν < 2.1 × 10−26 yr−1, which corresponds to a
90% C.L. limit on the 0νββ half-life of T 0ν

1/2 > 3.4× 1025 yr.

To answer this question, we generate toy Monte Carlo experiments that use the background
index, resolution and bias parameters, and 60Co activities obtained from the 0νββ fit.8 We
then generate 104 energy spectra with these experimental parameters and fit the 0νββ decay
signal to each. A histogram of the 90% C.I. T 0ν

1/2 rates from the toy experiments is shown
in Fig. 8.8. The median exclusion sensitivity is T 0ν

1/2 > 4.4 × 1025 yr. Using the frequentist
approach, we find a median exclusion sensitivity of T 0ν

1/2 > 4.7 × 1025 yr. Since the best-
fit value of Γ0ν in the original experiment is positive, we expect the chance of obtaining
a stronger limit than the one reported above to be greater than 50%. Using the Bayesian
approach, we find that the probability of obtaining a 90% C.I. limit greater than our actual
limit is 74%. Using the frequentist approach, this probability is 73%.

We can also ask a different but related question: what is the smallest value of Γ0ν in 130Te
for which would we expect to measure the 0νββ signal with 3σ significance 50% of the time
given our experimental parameters? We call this the discovery sensitivity. To answer this,
we generate toy Monte Carlo experiments similar to those used to calculate the exclusion
sensitivity. For this analysis, we scan across different values of Γ0ν and generate 100 toy

8We actually re-fit the data assuming no 0νββ signal to obtain the background index for the toy exper-
iments. We do this because the best-fit 0νββ rate is positive, so some of the background is counted as 0νββ
signal in the original fit, which slightly lowers the background index.
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Figure 8.8: Exclusion sensitivity from toy Monte Carlo experiments. 104 toy Monte Carlo
experiments are generated using the background index, resolution and bias parameters, and
60Co activities obtained from the 0νββ fit assuming a 0νββ decay rate of 0. A best-fit 0νββ
decay rate is obtained for each toy experiment, and the median best-fit value defines the
exclusion sensitivity. (a) The median exclusion sensitivity using the Bayesian approach is
T 0ν
1/2 > 4.4× 1025 yr. (b) The median exclusion sensitivity using the frequentist approach is

T 0ν
1/2 > 4.7× 1025 yr.
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experiments for each one. For each set of toys, we calculate the following quantity:

∆χ2
(0)(Γ̂0ν) = −2 ln

[
L(Γ̂0ν)/L(0)

]
(8.7)

The discovery sensitivity is the smallest value of Γ̂0ν for which half of the experiments have
∆χ2

(0) > 9, i.e. evidence for 0νββ decay with 3σ (frequentist) significance. Fig. 8.9 shows
the results from the toy experiments. Because we only fit 100 toy experiments per 0νββ
decay rate, there is some noise in the data. Thus, we fit the fraction of toy experiments with
∆χ2

(0) > 9 to an error function and quote the discovery sensitivity as the point where the fit
crosses 0.5. We find that the discovery sensitivity is Γ0ν < 2.6×10−26 yr−1, or T 0ν

1/2 > 2.6×1025

yr, which is 1.8 times weaker than the frequentist exclusion sensitivity.
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Figure 8.9: Discovery sensitivity using toy Monte Carlo experiments. (a) The fraction of
toy experiments with ∆χ2

(0) > 9 as a function of the injected 0νββ decay rate (where χ2
(0)

is defined in equation 8.7). There is some noise in the data because we only fit 100 toy
experiments per 0νββ decay rate, so the data are fit to an error function. The fit crosses 0.5
when the injected rate is 2.6× 10−26 yr−1 (b) The median value of ∆χ2

(0) as a function of the
injected 0νββ decay rate. These data fit a second-degree polynomial. The fit crosses 9 when
the injected rate is 2.6× 10−26 yr−1, in agreement with the result from (a).

8.2.3 Background Index

As discussed above, the background index is a dataset-dependent parameter in the 0νββ
fit. Fig. 8.10 shows the background index as a function of time. The background index for
the entire 2TY dataset is (1.53 ± 0.03) × 10−2 ckky, and it shows a statistically significant
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decrease over time from ∼0.018 ckky to ∼0.011 ckky over more than four years.9 A natural
hypothesis is that a radioactive contaminant with a known half-life is present in the data,
and over time, the activity of this contaminant decreases. Thus, we fit the background index
to an exponential function of the form Ae− ln(2)t/T1/2 . Using all datasets, the best-fit value of
T1/2 is 14.4 ± 3.5 years. In addition, we observe that the background index increases to its
maximum measured value after the first three datasets, indicating possible contamination
of the cryogenic environment during the interventions conducted between 2017 and 2018.
Excluding the first three datasets, the best-fit value of T1/2 is 10.2 ± 2.2 years. Neither of
these measured half-lives is consistent with a radioisotope with a significant presence in the
CUORE data. The most likely explanation at this time is that a combination of 228Ra, with a
half-life of 5.75 years, and 210Pb, with a half-life of 22.3 years, is responsible for this decrease
in background index. Given that the background in the ROI is dominated by degraded α
particles, it is reasonable to suspect that the background should also include a constant term
with respect to time. When fitting the background indices to an exponential decay plus a
positive constant, the constant term is consistent with zero, and the reduced χ2 of the fit
is worse than that of the fit without a constant term. In addition, fitting two exponential
functions simultaneously yields no information as the fit parameters become highly correlated
and have such large errors that one or both half-lives are consistent with zero.

9Though the background index is observed to decrease with time, this decrease does not exhibit a
statistically significant energy dependence. Fitting the background of each dataset to a first-degree polynomial
gives background slopes that are consistent with zero.
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Figure 8.10: Measured background index near Qββ over time. The blue line is a fit to a single
exponential using all datasets, and the best-fit value of T1/2 is 14.4 ± 3.5 years. The red line
is a fit excluding the first three datasets, and the best-fit value of T1/2 is 10.2 ± 2.2 years.
Neither of these measured half-lives is consistent with that of a radioisotope which is present
in the CUORE data. The observed drop in background index is likely due to the decay of
two or more isotopes.
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Chapter 9

Looking Forward

As the previous chapters of this dissertation have hopefully shown, CUORE has been an
incredibly successful experiment so far. Not only has CUORE achieved the most stringent
limit on 0νββ in 130Te in the world, but it has also proven that a cryogenic experiment
close to the tonne-scale can be operated stably for years of data-taking. CUORE therefore
represents a significant step forward in the search for 0νββ and in cryogenic technology,
which has major implications in many areas of physics and engineering. The non-linear
denoising algorithm described in chapters 6 and 7 can be applied to many experiments,
not just cryogenic calorimetry experiments, and we hope to see similar techniques used in
searches for dark matter interactions and other rare events. In this final chapter, we turn
our attention to the future of both 0νββ searches using cryogenic calorimeters and denoising
algorithms to improve their data quality.

9.1 The Future of Denoising Algorithms for Cryogenic
Calorimeter Experiments

The current denoising algorithm used in CUORE builds a transfer function from an array
of auxiliary devices to each calorimeter channel. This transfer function is unique to a single
physics run, and it is built using only the information from physics runs. One potential
shortcoming of this technique is that the transfer functions describing the mechanical system
of auxiliary devices and calorimeters may change over the course of a physics run. A static
transfer function applied over an entire physics run can fail to account for these changes. An
intriguing option is to implement a multivariate nonlinear adaptive filter based on the single-
input linear adaptive filter demonstrated in [175]. An adaptive filter could be seeded with
the transfer functions calculated using the current technique, then allowed to evolve over the
course of a physics run. Of course, this becomes much more computationally expensive, as
one must continuously measure the error between the noise in the calorimeter and that which
is predicted by the algorithm. This may be feasible to do for 1000 calorimeter channels with
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modern computing resources such as dedicated GPU farms. Active filters such as these may
then have the potential to be integrated into the online data-taking of future experiments.

Another potential shortcoming of the current denoising technique is that vibrations from
pulse tubes usually dominate the noise measured by the auxiliary devices during a physics
run. Thus, the algorithm can accurately reconstruct the transfer functions at the pulse tube
frequencies, but the uncertainty on the transfer functions is potentially much greater at other
frequencies where there is very little noise power measured by the auxiliary devices. One
possible improvement to this method is to measure the transfer functions while subjecting
the detector to a vibrational impulse, such as a sudden hit from a hammer or the dropping
of a large object close to the detector. This allows us to measure the transfer function across
all frequencies with a high signal-to-noise ratio in the calorimeters and the auxiliary devices,
which is not achievable in the physics data. These transfer functions could then be applied
to physics and calibration data, leading to better performance of the denoising algorithm.

This approach is loosely analogous to dithering in digital signal processing, where a known
noise signal is intentionally added to the input to ensure the sampling process more accurately
represents the signal across the entire frequency spectrum [207]. Dithering techniques have
previously been applied to evaluate the systematics in Møller scattering experiments [208,
209]. Just as dithering smooths out quantization errors and enhances the accuracy of digital
recordings, introducing controlled vibrations to measure transfer functions would reduce the
error of the transfer functions arising from very little signal power in the physics data.

We conducted a preliminary test of this dithering denoising technique by jumping on the
ground floor of the CUORE hut once every ten seconds. Each jump serves as a vibrational
impulse. The resulting transfer functions, shown in Fig. 9.1, are noticeably different from
the typical transfer functions found using only physics runs (see Fig. 7.1). While the transfer
functions from physics runs are typically flat with prominent peaks at specific frequencies,
the transfer functions from the dithering exhibit a significant 1/f component. This suggests
that the excess 1/f noise, which is not well-described by the dynamical thermal model
described in chapter 5, may be due to external vibrations. For these tests, we build the
transfer functions from 10-second-long noise windows instead of the typical 50-second-long
windows to increase the number of noise windows used to construct the transfer functions
and to match the rate of the jumping.

Once the transfer functions were acquired, we denoised the data from the dithering tests
using the accelerometers located on the Main Support Platform. Fig. 9.2 shows the results
of this process for a single channel. Finally, integrating the transfer function over the entire
frequency domain gives a single number which we use as a proxy for the overall suscepti-
bility of a calorimeter to vibrational noise. Fig. 9.3 shows this value for every channel and
a scatter plot of this value versus the energy threshold for each calorimeter. We observe
that channels on the top floors of CUORE, which are known to be more sensitive to vibra-
tions, have the greatest values of the integrated transfer function. The energy threshold is
directly proportional to the baseline energy resolution, σ0. The threshold and the integrated
transfer function are ∼30% correlated, indicating that a higher susceptibility to vibrations
is associated with a worse baseline energy resolution.
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(a) (b)

Figure 9.1: Transfer functions from dithering tests. During the dithering tests, we jumped on
the ground floor of the CUORE hut at regular intervals to produce several impulse responses,
then use the measured impulse responses of the auxiliary devices and the calorimeter chan-
nels. (a) Transfer functions from a vertically-oriented accelerometer on the Main Support
Platform to each calorimeter in one column of the CUORE detector. (b) Transfer functions
from the square of the accelerometer signal to the same calorimeters. While the transfer
functions from physics runs are typically flat with prominent peaks at the pulse tube fre-
quencies, these transfer functions exhibit a significant 1/f component.

The results of denoising CUORE data from chapter 7 show that pulse tube noise, while
a substantial contribution to the noise itself, is not the main contribution to the energy
resolution, even at baseline. Therefore, there must exist a noise source in the signal band
that dominates the energy resolution which is not captured by the denoising algorithm. These
dithering tests potentially give some insight into this noise source. The transfer functions
produced in these tests are well-described by a power law. For f < 10 Hz, the transfer
functions from the accelerometer to the calorimeters roughly scale as A/f with A ∼ 1-100.
The transfer functions from the accelerometer squared to the calometers are also scale as
A/f , with A ∼ 10−5 − 10−3.

The fact that 1/f noise is a significant contribution to the noise, and therefore to the
resolution, is not surprising. The fact that it may arise from vibrational noise is more sur-
prising, and it is something that is clearly missing from our current model of vibrations in
CUORE. Even if this low-frequency continuum noise is the most significant contribution to
the energy resolution, it is not guaranteed that the significant contribution to that noise is
due to vibrations. It is well known that electronics can give rise to some 1/f noise, but the
results from the dithering tests suggest that there is a vibrational component to the 1/f
noise.
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Figure 9.2: Results of denoising the dithering data. (a) Timestream of a single calorimeter
during the dithering tests. (b) The same timestream after denoising. The denoising technique
fails to capture the slow rise in voltage over the 600-second period but manages to remove
many of the impulse responses. (c) A zoomed image of 200 seconds during which 19 impulses
were created. At t ≈ 340 seconds, one impulse was left out from the regular series of impulses
(d) The same 200 seconds after denoising. At t ≈ 340 seconds, there is a noticeable deviation
in the voltage stream which is rather flat otherwise.

In the future, we hope to use this dithering technique with more auxiliary devices, partic-
ularly seismometers, to denoise physics data taken after the first two tonne-years of exposure.
Should this technique prove fruitful, it may open the door to even more significant improve-
ments in CUORE’s energy resolution.
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(a) (b)

Figure 9.3: Integrated transfer functions from dithering tests. (a) The integral of the transfer
function is a proxy for the susceptibility to vibrational noise. The calorimeters with the
highest vibrational susceptibility tend to be located at the top of the detector. (b) Scatter
plot of the energy threshold of each calorimeter versus the vibrational susceptibility proxy.
These quantities are ∼30% correlated, indicating that a higher susceptibility to vibrations
is associated with a worse threshold and a worse baseline energy resolution.

9.2 The Future of CUORE
CUORE’s ultimate goal is to reach an exposure of roughly three tonne-years of TeO2, cor-
responding to over 800 kg years of 130Te exposure. While CUORE has undoubtedly been a
successful experiment so far, there are still many goals that CUORE has not yet reached.

In CUORE-0, the FWHM resolution at Qββ was estimated to be 5.1 ± 0.3 keV us-
ing resolution scaling techniques somewhat similar to those outlined in section 8.1.2 [163].
CUORE’s resolution is worse by a factor of ∼44%. One supposed reason for this was that
CUORE-0 was operated in a wet cryostat, while CUORE is operated in a dry cryostat with
pulse tubes which add noise to the data. The fact that the denoising algorithm successfully
removes pulse tube noise from the data, and yet the resolution at Qββ is mainly unaffected,
calls into question this hypothesis. Another possible explanation is that the resistances of
the NTD-Ge thermistors used in CUORE are very different from those used in CUORE-
0. The CUORE thermistors tend to have larger T0 values than the CUORE-0 thermistors
(see equation 3.10), leading to a stronger temperature dependence of their resistivities. This
may make them more susceptible to vibrational noise and cause them to have worse energy
resolutions.

As discussed in section 8.2.3, the background index in CUORE at Qββ shows a statistically
significant decrease over time. Should this trend continue, we expect that CUORE will meet
its goal of a background index of 0.01 ckky during the third tonne-year of exposure. Couple
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this with the fact that the array of auxiliary devices used to denoise the data is now larger
than ever before, with six fully functional accelerometers and three seismometers taking
high-quality data, and the sensitivity gain from a third tonne-year of exposure will likely be
more than factor of

√
1.5 that one might expect from a factor of 1.5 increase in exposure.

Ultimately, no matter the improvements made to CUORE in its final years of data-taking,
it will always be a background-limited experiment, as α particles and multi-Compton scat-
tering of 2.615 MeV γ rays will inevitably produce background events in the ROI. However,
with some new technologies and a different isotope selection, these problems can be addressed
in a future experiment.

9.3 CUPID
The CUPID (CUORE Upgrade with Particle IDentification) experiment [210] is a proposed
next-generation experiment that will search for 0νββ decay using 100Mo. CUPID is the next
in the long line of cryogenic calorimeter experiments based in Italy that was outlined at
the beginning of chapter 3. CUPID is currently planned to be housed inside the CUORE
cryostat once CUORE is decommissioned. Like CUORE, CUPID will be a segmented detector
comprised of O(1000) cryogenic calorimeters, and many of the analysis techniques outlined
in this dissertation will readily apply to CUPID. Thus, we will be able to build on our
experiences from the years of CUORE data-taking and analysis.

One of the most impactful upgrades from CUORE to CUPID will be the introduction
of scintillating calorimeters made from Li2MoO4 crystals. These crystals produce scintil-
lation light which can be measured with light detectors placed in close proximity to the
calorimeter crystals. When an α particle deposits energy in a calorimeter crystal, the ratio
of scintillation light produced to the heat produced is much smaller than that of a β or γ
particle. By combining the information from the light detectors and thermal detectors, one
can apply a light-yield cut to tag α particles. The α particles can be rejected when conduct-
ing a 0νββ decay search, significantly reducing the backgrounds. This is the “Particle ID”
from which CUPID derives its name. Light detector development for CUPID is an active
area of research, with possible technologies including NTD-Ge thermistors amplified via the
Neganov-Trofimov-Luke effect [211–214] as well as transition edge sensors [192]. The scin-
tillating calorimeter technology has already been realized in two demonstrator experiments,
namely CUPID-0 and CUPID-Mo,1 which placed world-leading limits on the half-lives of
0νββ in 82Se and 100Mo, respectively, at the time of their measurements [186, 215].

In addition, the Q-value of double beta decay in 100Mo is 3.034 MeV, so multi-Compton
scattering of 2.615 MeV γ rays from 208Tl will not contribute to the CUPID background in
the ROI. The isotopic abundance of 100Mo is only 9.7% [216], but the plan for CUPID is
to enrich the molybdenum to > 95% 100Mo before turning into Li2MoO4 (LMO) crystals.
The higher Q-value of 100Mo is also a benefit, as the 0νββ rate scales as Q5. The dominant

1The near overloading of demonstrator experiment names has admittedly caused some confusion in the
community.
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background in CUPID will be the pile-up of 2νββ events, i.e. the occurrence of two 2νββ
events in a single crystal at the same time. It is quite possible that two events in the 2νββ
continuum have energies whose sum is close to the Q-value of 100Mo. If these events happen
simultaneously in a single detector, then this becomes a background in the CUPID ROI that
cannot be cut via particle ID. The half-life of 2νββ in 100Mo is roughly 100 times faster than
that of 130Te [217]. In CUORE, this is a negligible effect since the background is dominated
by α particles and multi-Compton γ ray scattering. In CUPID, tagging pile-up events will
be vital, and studying these events in cryogenic bolometers is a key research focus within
the collaboration [218].

(a) (b)

(c) (d)

Figure 9.4: Results from denoising a thermal detector made with an LMO crystal in an
above-ground DR. (a) The ANPS of the accelerometers and their squares when attached to
the DR. (b) The transfer functions from each of the auxiliary device signals to the LMO
thermal detector. (c) The ANPS of the LMO detector before denoising (black) and after
denoising (red). (d) The same LMO detector ANPS before and after denoising, zoomed to
a region where the continuum noise due to mechanical resonances at ∼ 300 − 350 Hz and
∼ 600− 700 Hz is substantially suppressed by the denoising.
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In the context of noise decorrelation for CUPID, we hope to use data from the ac-
celerometers used in CUORE to predict the vibrational noise in CUPID. In R&D setups
with “CUPID-esque” LMO thermal detectors, we have measured vibrations with accelerom-
eters identical to those utilized in CUORE. With these accelerometers, we have denoised the
LMO detectors which were cooled to ∼16 mK in an above-ground DR. Some results from
this exercise are shown in Fig. 9.4. In the future, we hope to apply this technique to the
light detectors and conduct dithering tests similar to those performed in CUORE to improve
the signal-to-noise ratio of the accelerometers. By taking the transfer functions from the
accelerometers to the CUPID-esque detectors and applying them to the accelerometer noise
measured in CUORE, we plan to estimate the expected vibrational noise in the CUPID
detectors before CUPID even begins to take data.

9.4 Conclusions
The future of the search for 0νββ decay is a bright one. While current experiments, includ-
ing CUORE, report ever-higher limits on the 0νββ half-lives in various isotopes, the next
generation of experiments is currently being designed and crafted. As a full quantitative de-
scription of neutrino oscillations begins to take shape, the nature of the neutrino masses still
eludes us. The search for evidence of Majorana neutrinos is a major focus in current physics
research, and the global scientific community is fully committed to this effort, as emphasized
by the Nuclear Science Advisory Committee Long Range Plan. As was stated at the end of
chapter 2, the rest of the 2020s are an optimistic time for the community.

It is often said that we stand on the shoulders of giants, and I sincerely hope that this
dissertation reinforces this saying. From Pauli to Fermi, from Cowan and Reines to Fiorini
and Avignone, from the giants of old to those who walk among us now, countless individuals
have dedicated their lives to furthering our understanding of the universe. It is humbling to
be a small part of that story now.

In this dissertation, I have tried to convey what I believe are the most important and
intriguing aspects of the search for neutrinoless double beta decay. While theoretical and
experimental physics often end up in their own separate corners, I believe that neutrinoless
double beta decay is a particularly beautiful area of physics in large part due to the interplay
between theory and experiment, which is alive and well. Answering the most fundamental
questions about the nature of the universe requires input from many of us. Trying to do so
alone is not only impractical but also not nearly as fun as doing so with others. Like so many
in the community, I am optimistic that we will answer these questions together and make
many friends and fond memories along the way. Perhaps this is the answer to the question:
“Why are we here?”
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