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Gene regulatory strategies that decode the duration of NFκB 
dynamics contribute to LPS- vs. TNF-specific gene expression

Supriya Sen1,^, Zhang Cheng1,2,#,^, Katherine M Sheu1,2, Yu Hsin Chen1, Alexander 
Hoffmann1,2,+

1Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of 
California, Los Angeles, Los Angeles, CA 90095, USA

2Institute for Quantitative and Computational Biosciences (QCB), University of California, Los 
Angeles, Los Angeles, CA 90095, USA

Abstract

Pathogen-derived lipopolysaccharide (LPS) and cytokine tumor necrosis factor (TNF) activate 

NFκB with distinct duration dynamics, but how immune response genes decode NFκB duration to 

produce stimulus-specific expression remains unclear. Here, detailed transcriptomic profiling of 

combinatorial and temporal control mutants identified 81 genes that depend on stimulus-specific 

NFκB duration for their stimulus-specificity. Combining quantitative experimentation with 

mathematical modeling, we found that for some genes a long mRNA half-life allowed effective 

decoding but for many genes this was insufficient to account for the data; instead, we found that 

chromatin mechanisms, such as a slow transition rate between inactive and RelA-bound enhancer 

states, could also decode NFκB dynamics. Chromatin-mediated decoding is favored by genes 

acting as immune effectors (e.g. tissue remodelers, T-cell recruiters) rather than immune regulators 

(e.g. signaling proteins, monocyte recruiter). Overall, our results delineate two gene regulatory 

strategies that decode stimulus-specific NFκB dynamics and determine distinct biological 

functions.
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eTOC Blurb

Sen et al. used combinatorial and temporal coding mutants of NFκB to identify stimulus-specific 

genes that are dependent on the duration of dynamic NFκB activity. Iterating between quantitative 

experimentation and mathematical modeling revealed that a long mRNA half-life and a slow 

chromatin-control step are involved in decoding stimulus-specific NFκB duration for genes with 

distinct biological functions.

Introduction

The innate immune response is the first line of defense against pathogens. Exposure to a 

pathogen leads to dramatic changes in the transcriptome of myeloid and fibroblastoid cells 

(Nau et al., 2002; Novershtern et al., 2011; Ramirez-Carrozzi et al., 2009; Ramsey et al., 

2008; Ravasi et al., 2010). These cells coordinate multi-tiered immune responses by 

inducing cell-intrinsic defenses, recruitment of professional innate immune cells (e.g., 

neutrophils and macrophages), the initiation of an adaptive immune response (via dendritic 

cells and T cells), and tissue remodeling for pathogen clearance and subsequent wound 

healing. Numerous molecular factors have been identified that regulate these pathogen-

responsive gene expression programs through complex signal regulatory networks (Amit et 

al., 2009; Cheng et al., 2011; Gilchrist et al., 2006; Nau et al., 2002; Novershtern et al., 

2011; Ramsey et al., 2008; Ravasi et al., 2010).

Previous studies (Cheng et al., 2017; Tong et al., 2016) delineated the pathogen-responsive 

transcriptome in terms of the combinatorial control of three major transcription factors 
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(TFs), activating protein 1 (AP1), nuclear factor κB (NFκB), and interferon regulatory 

factors (IRF/ISGF3). Specifically, examining the transcriptomic data quantitatively provided 

evidence for the p38 pathway functioning combinatorially with NFκB to potentiate LPS-

specific expression (Cheng et al. 2017). Further, focusing on highly induced genes and 

analyzing transcriptomic data at single gene resolution helped to identify five genes that 

engage the combinatorial functions of IRF3 and NFκB (Tong et al., 2016).

These studies also suggested that combinatorial TF control is not the only regulatory 

strategy that cells can employ to achieve stimulus-specific gene expression. Several 

signaling pathways have been found to produce stimulus-specific TF temporal patterns 

(a.k.a. “dynamics”), leading to the hypothesis that a temporal code specifies stimulus-

specific gene expression (Behar and Hoffmann, 2010; Hoffmann and Baltimore, 2006; 

Purvis and Lahav, 2013; Hoffmann 2016). Indeed, a number of studies have presented 

evidence that stimulus-specific gene expression depends on the dynamics of transcription 

factor activity (Batchelor et al., 2014; Hao and O’Shea, 2012; Hoffmann et al., 2002; Purvis 

and Lahav, 2013; Werner et al., 2005). However, the number of genes controlled by TF 

dynamics, and the molecular mechanisms they employ to decode such dynamics to achieve 

stimulus-specific expression has remained unclear.

One confounding aspect of TF dynamics is that they are complex and differ in multiple 

aspects, for example, in speed of activation, amplitude, oscillatory components, and 

duration. Thus, focusing on a specific dynamic feature may be key to gain a mechanistic 

understanding of the gene regulatory mechanisms that decode even complex TF dynamics. 

Prior work focusing on peak amplitude or fold change of NFκB activation identified an 

incoherent feedforward loop as a decoding mechanism (Lee et al 2014). In this study, we 

focused on identifying decoding mechanisms for stimulus-specific duration of NFκB 

activity.

Based on the gene expression programs induced by a single stimulus, recent studies in other 

biological systems, showed that mRNA half-life may play a role in decoding the duration of 

p53 dynamics (Hafner et al., 2017; Porter et al., 2016) and ERK signaling (Uhlitz et al., 

2017). This relates to the observation that the temporal ordering of gene expression is 

governed by mRNA half-life, for example, during the response to H2O2-induced stress in 

yeast (Shalem et al., 2008), upon IL-2 signaling in murine T cells (Elkon et al., 2010), or 

upon TNF-induced NFκB signaling in mouse fibroblasts (Hao and Baltimore, 2009). 

However, it is currently not understood whether stimulus-specific expression of immune 

response genes is mediated by differential mRNA half-life control, and which genes actually 

employ this gene regulatory strategy. Indeed, whether this mechanism is sufficient to 

account for observed stimulus-specific gene expression, or whether other mechanisms of 

dynamics decoding might also contribute, is an open and important question.

These considerations suggest that dissecting the regulatory strategies of immune response 

genes requires not only detailed quantitative experimentation, but also quantitative 

interpretation of the data. That in turn requires a mathematical modeling framework that 

recapitulates the dynamic processes underlying gene expression. The systems biology 

approach of combining experimental studies with computational models to achieve a 

Sen et al. Page 3

Cell Syst. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantitative understanding has been particularly useful in the study of NFκB signaling, 

uncovering numerous mechanisms that encode NFκB dynamics (Basak et al 2012). A key 

utility of mathematical modeling has been to determine the sufficiency of a mechanistic 

explanation to account for the observed phenomena or measurements. However, 

quantitatively applying mathematical modeling to mammalian gene expression data has 

proven more challenging. In one study, mathematical models explored the combinatorial 

control of signaling pathways for LPS-responsive gene clusters (Cheng et al., 2017). In 

another study, mathematical models were fit to gene expression data produced by a synthetic 

experimental system for ERK signaling in PC12 cells and MCF7 cells that avoided the 

combinatorial complexities of endogenous signaling (Uhlitz et al., 2017). However, 

quantitative modeling at single gene resolution to understand the mechanisms of stimulus-

specific gene expression in primary cells has not been reported.

Here, we addressed how TNF- vs. LPS-specific NFκB activation dynamics are decoded by 

target genes to produce stimulus-specific gene expression responses. We developed a 

workflow of iterative mathematical modeling and experimentation to evaluate the sufficiency 

of alternate gene regulatory strategies. We found that a mRNA half-life of just >30 min 

could be an effective decoding mechanism, but for the majority of genes, stimulus-specific 

transcription initiation mediated by chromatin-associated control mechanisms contributed 

substantially to decoding stimulus-specific NFκB dynamics. Using a two-step mathematical 

model for gene activation could recapitulate the mRNA dynamics of a majority genes and 

quantify chromatin-associated transcriptional and cytoplasmic post-transcriptional 

mechanisms to achieve stimulus-specific immune responses.

Results

The duration of NFκB activity controls LPS-specific expression of innate immune genes

The early LPS-responsive transcriptome is largely determined by the activation of the 

transcription factors NFκB, AP1 and IRF (Fig. 1A, (Cheng et al., 2017)), while the 

cytokines TNF and IL1 activate only NFκB and AP1. We asked whether LPS-specific 

(compared to TNF and IL1) gene expression can occur in the absence of the primary IRF 

family member ISGF3. In Ifnar−/− mice and cells, ISGF3 activation is abrogated, thereby 

diminishing the encoding of stimulus-specific combinations of transcription factors. 

However, stimulus-specific dynamics of NFκB activity are maintained in Ifnar−/− murine 

embryo fibroblasts (MEFs) (Fig. 1B). Thus using Ifnar−/− MEFs allow us to identify genes 

that may be stimulus-specifically expressed, not by the combinatorial TF code (Cheng et al., 

2017), but a temporal TF code (Hoffmann 2016, Behar and Hoffmann, 2010).

Genome-wide expression measurements by mRNA-seq in replicate at six time-points (0.5, 1, 

2, 3, 5, 8 hr) in response to pulse stimulation with a 80% saturating dose of LPS, TNF or IL1 

identified 177 differentially induced genes with fold change of > 4-fold and False Discovery 

Rate (FDR) <0.01 at any timepoint. Binary comparisons of the maximum expression 

quantified by Reads Per Kilobase per Million (RPKM) revealed that many genes showed 

higher expression in response to LPS than TNF or IL1, but that IL1 and TNF produced 

roughly equivalent levels of expression for any gene (Fig. 1C, Table S1). Pairwise stimulus-

specificity for each gene was determined by calculating the log2 ratio of maximum gene 
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expression (RPKM) in any two stimulation conditions. Using this specificity metric, we 

found that LPS vs. IL1 specificity strongly correlated with LPS vs. TNF specificity (Fig. 1D, 

Table S1), allowing us to focus on the latter as being representative for pathogen vs 
cytokine-responsive gene expression.

To further categorize the 177 inducible genes, we used a threshold value of 0.5 (i.e. 20.5=1.4 

fold difference) for specificity; by this measure, 106 genes were LPS-specific (LPS vs. TNF 

specificity > 0.5), 19 were TNF-specific (LPS vs. TNF specificity < −0.5), and the 

remaining 52 genes fell below the stimulus-specificity threshold (Fig. 1E, Table S1). 

Expression profiles from two biological replicates showed excellent reproducibility in 

mRNA abundance measurements (Fig. S1A, Table S1), in the evolution of their time-

courses, and in specificity metrics (Fig. 1F, Table S1). Our results demonstrate that even in 

the absence of combinatorial TF coding by the IFNAR-ISGF3 axis, there is a high degree of 

LPS-specific gene expression. Two mechanisms may underlie this phenomenon: either 

combinatorial coding via another LPS-specific signaling pathway, such as for example the 

TBK1-IRF3, MAPKp38-TTP pathways (Cheng et al., 2017), or temporal coding by 

stimulus-specific dynamic control of NFκB (Werner et al., 2005).

To address the role of stimulus-specific NFκB dynamics in mediating stimulus-specific gene 

expression programs, we quantitated time-course NFκB activity in these TNF and LPS 

stimulation conditions, and found LPS-specific long-lasting activity (Fig. 2A). To diminish 

the stimulus-specificity in NFκB dynamics, we generated MEFs that are deficient in the key 

NFκB negative feedback regulator IκBα (encoded by Nfkbia) in the genetic background 

(Ifnar−/−) of combinatorial control deficiency (hereafter referred to as “control”, as temporal 

coding is tested), resulting in a temporal control “mutant” (Ifnar−/−Nfkbia−/−). We found that 

in the mutant MEFs, NFκB activity was extended in response to TNF, and largely unaltered 

in response to LPS. Particularly, at 2 hrs, nuclear NFκB activity was still present in mutant 

cells stimulated with TNF whereas in control cells, it had returned to basal levels (Fig. 2A & 

Fig. S2A). Thus, IκBα deficiency extended TNF-induced NFκB activity by about 1 hr 

causing the duration of TNF-induced and LPS-induced NFκB activity to be similar.

To test how diminished stimulus-specificity in NFκB duration affects the stimulus-

specificity of gene expression, we compared the transcriptomes of mutant and control cells 

stimulated with LPS or TNF (Fig. S1B, Table S2). Of the 177 inducible genes, 104 genes 

were found to fall below the threshold of stimulus-specificity in the mutant (compared to 52 

in control), 55 genes were still LPS-specific (compared to 106 in control) and 18 genes 

(compared to 19) were found to be TNF-specific (Fig. 2B, Table S2). Thus, by reducing the 

difference in the duration of NFκB activity in the LPS and TNF stimulation scenarios, we 

diminished the specificity of gene expression responses.

In order to determine in a more quantitative and gene-specific manner which genes showed 

diminished stimulus-specificity in the mutant, we plotted the specificity of LPS vs. TNF for 

each gene for the mutant (y-axis) against that for the control (x-axis) as a scatterplot (Fig. 

2C, left panel). One example of a stimulus-non-specific gene (group I) is Fos, whose 

expression was equivalent for LPS and TNF in both control and mutant cells (Fig. 2C, right 

panel), which is consistent with its transcriptional control being regulated by the 
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MAPK/JNK axis rather than by NFκB. Focusing on the 106 genes that were categorized as 

LPS-specific in control cells, we found that many genes showed diminished specificity in the 

mutant, but others were unaffected. We categorized 18 genes as LPS-specific but 

independent of NFκB duration (group II) as their specificity score was maintained in the 

mutant; a representative gene is Il1a (Fig. 2C, right panel) as its substantial LPS specificity 

was maintained in the mutant, and whose expression is known to be subject to combinatorial 

control by the MAPK p38 axis (Cheng et al., 2017). However, the majority of genes (88 

genes), LPS-specific expression was either fully or partially dependent on the duration of 

NFκB dynamics (group III), as their specificity score was reduced by at least 1/3 (dashed 

blue line in Fig. 2C, left panel). Ccl5 serves as an example of this category as its expression 

is highly LPS-specific in the control but this specificity was almost entirely lost in the 

mutant (Fig. 2C, right panel). In fact, visual inspection of line graphs (Fig. S2B) proved 

useful as a quality control measure for our analysis. We identified 7 genes as being 

incorrectly categorized in group III due to elevated basal levels in the mutant (Fig. S2B). The 

recategorization thus resulted in a total of 25 genes in group II, and 81 genes in group III. In 

subsequent analyses we focused on the 81 genes whose LPS-specific expression was at least 

partially dependent on the duration of NFκB dynamics.

Based on these groupings, we plotted the time-course RNA-seq data (normalized to max) 

from control and mutant cells as a heat-map, ordering genes within each group by the time 

of peak expression (Fig. 2, Table S2). As described, focusing on the 106 genes whose 

expression was LPS-specific in control cells, group II contained 25 genes whose LPS-

specific expression in control was largely maintained in the mutant, and group III contained 

81 genes whose LPS-specific expression in control showed substantially diminished 

specificity in the mutant (Table S2). We examined the relative enrichment for the motifs 

(κB, AP1 and IRE) of relevant transcription factors in the promoter proximal regions 

(−500bp to +200bp) of genes in each group against the remaining LPS-induced genes (Fig. 

2E). These results revealed that whereas non-specific group I genes had a preponderance of 

both κB and AP1 motifs, and LPS-specific group II genes had both κB and IRE motifs, 

LPS-specific, NFκB-dynamics-dependent group III genes showed only a preponderance of 

κB motifs. Further, gene ontology (GO) enrichment analysis revealed that non-specific 

group I genes code for a variety of transcriptional regulators, and group II genes showed an 

enrichment for regulators of interferon signaling, while group III genes were enriched in the 

GO term “innate immune response”, suggesting that NFκB temporal coding is functionally 

important for mounting an effective immune response (Fig. 2F).

Long-mRNA half-lives are correlated with LPS specificity

We next set out to characterize the gene regulatory strategies that allow group III LPS-

specific genes to decode the duration of stimulus-specific NFκB dynamics.

Mathematical modelling of RNA synthesis and degradation suggests (Yang et al., 2003) and 

experimental data confirm (Cheng et al., 2017; Elkon et al., 2010; Hao and Baltimore, 2009; 

Nagashima et al., 2015; Porter et al., 2016; Shalem et al., 2008) that short-lived transcripts 

achieve their half-maximal induction more rapidly than long-lived transcripts. This suggests 

that long-lived transcripts may only be fully induced by persistent TF activities.
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To test this hypothesis, we developed a simple kinetic model (model v1) of TF-dependent 

mRNA production (Bintu et al., 2005) (Fig. 3A), and we asked how NFκB activities in 

response to LPS or TNF may affect the abundances of mRNAs of different half-lives. We 

interpolated the quantitated NFκB activities measured by EMSA for both control and mutant 

cells (Fig. 2A) to use as input to the ODE model (Fig. 3A). The mRNA abundances (color 

scale, z-axis) were then simulated over time (x-axis) in control (Fig. 3A) as a function of 

mRNA half-lives ranging from 1 min to 1000 mins (y-axis). The log2 peak expression ratio 

(P.R., representing LPS vs. TNF specificity for mRNA) was calculated and indicated in a 

yellow color bar on the right side of the heat-map. As expected, we found that LPS-specific 

expression is more pronounced in mRNAs with long half-lives. These model simulations 

suggest that for mRNAs whose half-lives are >30 mins, TNF-induced NFκB activity is too 

transient to produce target gene mRNA of half the maximum response amplitude. The 

simulated mRNA trajectories for 5 min, 1 hr, and 8 hr half-lifes also documented this 

phenomenon (shown on right of panel 3A).

We next asked whether the model would predict that mutant cells produce diminished 

stimulus-specific gene expression. Using the measured NFκB time-courses associated with 

mutant cells for analogous model simulations (Fig. 3B), we found that the specificity metric 

associated with mRNAs with half-lives between 30 and 100 minutes were substantially 

diminished, though mRNAs with half-lives of >100 mins largely retained it. Taken together, 

these simulation results suggested that mRNAs with half-lives of greater than 30 mins might 

decode the duration of stimulus-specific NFκB dynamics and that the IκBα mutant may 

render mRNA of 30 to 100 min half-lives incapable of stimulus-specific gene expression. 

These findings are summarized in a graph of Lvs.T specificity of NFκB target genes as a 

function of their mRNA half-life (Fig. 3C): whereas in control cells, NFκB target genes with 

> 30 min half-life may show LPS-specificity (greater than 0.5 threshold), in mutant cells, 

LPS specific genes must have a half-life of > 100 min.

To address this model prediction experimentally, we measured mRNA half-lives using 

actinomycin D (actD)-mediated transcriptional inhibition in two biological replicates (Fig. 

3D, Table S3). Though this approach is used for mRNA half-life determinations, it is not 

always reliable (Lugowski et al., 2018). To focus on likely reliable data, we developed an 

algorithm and software (Material & Methods, Table S3) for deriving half-life estimates by 

linear regression in log2 scale only when specific conditions were met. We show four 

example genes, for three of which the data allowed for half-life derivations (Fig. 3E). 

Overall, for the genes for which we are able to derive half-lives from both datasets, the 

values were reasonably reproducible (Fig. 3F) and matched with the values that were 

reported by a previous study (Hao and Baltimore, 2009).

Using these measured mRNA half-lives, we plotted the measured Lvs.T specificity of 

control and mutant against the median measured mRNA half-life values, binned into five 

ranges as indicated (Fig. 3G). We found that Lvs.T specificity indeed correlated with mRNA 

half-life up to about a 5 hr of half-life. Furthermore, we found that the genes that had lost 

their Lvs.T specificity in the mutant were in the (30–60) and (60–180) mins bins, though 

very long-lived mRNAs retained some Lvs.T specificity. These results showed a remarkable 

resemblance to the model simulations (Fig. 3C). In sum, these results suggest that an 
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intermediate mRNA half-life of 30–180 minutes is correlated with LPS-specific NFκB target 

gene expression in control cells, but not in IκBα-mutant cells, which show diminished 

stimulus-specific NFκB dynamics.

A long mRNA half-life may be sufficient for decoding stimulus-specific NFκB duration

To extend the correlative finding, we aimed to test whether the LPS specificity of NFκB 

dynamics-dependent genes can indeed be accounted by their mRNA-half-lives. To this end 

we embedded the mathematical model v1 used for hypothesis generation (Fig. 3A) into a 

gene-by-gene parameterization workflow (Fig. 4A). This allowed us to determine whether 

for a given gene a set of value for the model parameters (k0, kf, Kd) could be found that 

satisfy the available data, namely the quantified NFκB activity, mRNA half-life estimates, 

and mRNA-seq time-course data in control and mutant cells stimulated with LPS and TNF. 

Thereby, we aimed to determine whether mRNA half-life was itself a sufficient decoding 

mechanism to explain the stimulus-specific expression of group III duration-dependent 

NFκB target genes. We performed the fitting procedure for all 81 genes in group III and 

plotted both the experimental data and the simulation data as a heat-map (Fig. 4B). We 

found that for 31 genes, the model simulations recapitulated the RNA-seq data well, 

showing a fit with a normalized RMSD (nRMSD) of <0.13 (Table S4). As expected, many 

of these genes were induced rather late indicating a long mRNA half-life. Line graphs of 

mRNA time-courses for some genes deemed to be well-fit or poorly fit clarified that an 

nRMSD≤0.13 provided a stringent cut-off. Whereas Ccl2, Gsap, Rab15 and Mmp3 showed 

a good fit between simulation and data, Rel, Nfkb1 and Ccl1 showed a less good fit (Fig. 

4C) and in most of these cases the TNF simulations in the mutant typically fell short of what 

the data indicated.

To test whether NFκB duration-dependent Lvs.T specificity was indeed dependent on the 

mRNA half-life for the fitted genes, we plotted the Lvs.T specificity of each of the 31 best-

fit models for control cells (black closed circle) and mutant cells (black open circle) (Fig. 

4D). The length of the line connecting Lvs.T specificity of control and mutant indicates the 

dependence of specificity on NFκB duration as probed with IκBα-deficiency. We then 

considered how this Lvs.T specificity metric would be affected if these genes had a short 

mRNA half-life. With mRNA half-life set to 15 mins, we simulated Lvs.T specificity of 

control and mutant in each of the 31 genes, plotted in blue (Fig. 4D). This analysis revealed 

that the Lvs.T specificity was universally dependent on a long mRNA half-life. Plotting the 

simulation time-course data directly for a few genes confirmed these results (Fig. 4E). When 

the estimated mRNA half-lives were used, the four sample genes showed high Lvs.T 

specificity in control conditions, but diminished Lvs.T specificity in the mutant. However, 

when the mRNA half-life was set to 15 min, Lvs.T specificity was either eliminated (Rab15) 

or significantly diminished (Ccl2, Gsap, Mmp3) in control and thus the mutant showed little 

effect.

While our simple modeling approach provides a sufficient explanation for 31of the 81 genes 

that show NFκB-duration-dependent Lvs.T specificity, we wondered whether remaining 50 

genes that did not show an adequate fit to the simple model were in some manner distinct. 

We graphed Lvs.T specificity for control and mutant for the 31 best-fit genes and for the 
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remaining 50 genes (Fig 4F). Remarkably, we found that while the good-fit genes showed 

only partial NFκB-duration-dependence for Lvs.T specificity, the remaining 50 genes 

showed a higher degree of NFκB-duration-dependence (p-value < 0.002). These results 

suggest that mRNA half-life may not be solely responsible for controlling Lvs.T specificity 

of these genes but that there may be additional regulatory layers.

Stimulus-specific NFκB duration may also be decoded by transcriptional mechanisms

In order to examine whether an additional regulatory layer for decoding stimulus-specific 

NFκB-duration may occur at the levl of transcriptional intiiation, we measured nascent 

transcript levels in control and mutant cells by isolating total chromatin-associated RNA 

(caRNA) followed by ribosomal RNA depletion and Next Gen Sequencing at six time-points 

in response to TNF and LPS stimulation (Fig. 5A). Of the 81 LPS-specific dynamics-

dependent genes, 39 were found to be substantially LPS-specific at the level of caRNA in 

control cells (Fig. 5B). Among the 39 LPS-specific nascent transcripts, in the mutant 16 

genes lost specificity to below the threshold. These data suggested that for some genes the 

mechanisms controlling transcriptional initiation may indeed be capable of decoding the 

duration of NFκB activity.

To relate caRNA-seq and mature polyA+ RNA time-courses, we plotted both datasets side 

by side for the 81 genes in a heatmap (Fig. 5C), showing them in the three clusters based on 

specificity. The first cluster contains 42 genes that did not show substantial LPS-specific 

caRNA levels and presumably achieves stimulus-specific polyA+ RNA through post-

transcriptional mechanisms, including mRNA half-life. The second cluster contains 23 genes 

that showed LPS-specific caRNA in control cells and retained that specificity in the mutant; 

indeed, their stimulus-specificity at the polyA+ RNA level was only partially diminished in 

the mutant. These genes might be targets of other LPS-specific transcription factor(s) such 

as IRF3, or they may be sensitive to durations of NFκB longer than 2 hrs. The third cluster 

contains 16 genes that showed LPS-specific caRNA in control cells but lost that specificity 

in the mutant; in other words, their caRNA-seq data mirrored the polyA+ RNA-seq data, 

indicating that NFκB-duration-dependent LPS-specific gene expression for this cluster is 

produced primarily by chromatin-associated mechanisms that control transcriptional 

initiation.

Line graphs of a few example genes (Fig. 5D) confirmed these conclusions. For example, 

Ccl5 is LPS-specific at both the caRNA and polyA+-RNA level in control cells, with the 

Lvs.T specificity score > 0.5 for both data types. In mutant cells, this gene still showed 

some, though diminished LPS-specificity in caRNA but specificity at the polyA+-RNA level 

was almost entirely lost. Cgn is LPS-specific in caRNA as well as in polyA+-RNA in control 

but not in mutant cells indicating a critical role for the transcriptional initiation mechanism 

in decoding NFκB duration. Fpr1 showed LPS-specificity in control at caRNA as well as in 

polyA+ RNA level. This specificity was lost at the caRNA level in the mutant but only 

partially at the level of polyA+ RNA indicating the presence of LPS-specific post-

transcriptional mechanism underlying LPS-specific gene expression.

NFκB-duration-dependent transcriptional initiation may in principle be mediated either by 

molecular mechanisms that control chromatin accessibility to NFκB or by some duration-
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sensitive downstream step in co-activator recruitment, pre-initiation complex assembly or 

activation. For the former, NFκB with longer nuclear residence time may gain better access 

to its binding site. We examined this possibility by performing RelA ChIP-seq analysis in 

both control and mutant cells. Focusing on RelA binding events in the proximity of genes in 

the third cluster, we found that their LPS-specificity was weakly correlated not just with the 

duration of RelA binding but peak ChIP read counts (Fig. 5E) indicating that RelA may not 

achieve equivalent access to its binding motif when it is transiently activated. In contrast, in 

mutant cells peak read-counts were similar in response to LPS and TNF (Fig. 5E, lower 

panel). This result indicates that the duration of NFκB activation determines whether RelA 

is able to gain access to its binding site and suggests that there is a chromatin-associated 

mechanism that decodes the duration of NFκB signaling.

Model-aided quantification of transcriptional and post-transcriptional contributions

In order to more quantitatively relate and interpret the caRNA and polyA+-RNA datasets, 

we constructed a mathematical model v2 in which we considered transcriptional initiation 

by a chromatin-associated mechanism that is sensitive to the duration of NFκB activity. 

Based on the observations from caRNA-seq and RelA-ChIP-seq data, model v2 describes 

three states of chromatin – closed, open, and active – with NFκB not only being able to 

activate the gene, but also acting to transition it from a closed to open state (Fig. 6A). This 

may reflect a conformational or chromatin-state transition that prior studies reported NFκB 

to be capable of either via SWI/SNF recruitment (Ramirez-Carrozzi et al., 2009) or de novo 
enhancer formation (Kaikkonen et al., 2013; Ostuni et al., 2013), and has been used 

previously to describe the control of the IL-4 gene (Mariani et al., 2010). A detailed 

description of the model equations is included in Methods.

To quantitatively interpret the available data, we followed the established parameterization 

workflow. Specifically, we first determined whether there is a set of values for the free 

parameters (k−1, k−2, Kd1, Kd2) that satisfy the available data for a given gene, namely, the 

quantified NFκB activity, measured mRNA half-life, and caRNA-seq and polyA+-RNA-seq 

time-course data in control and mutant cells stimulated with LPS and TNF. When the 

normalized root-mean square difference (nRMSD) between model simulations and data 

time-points was ≤0.13, we deemed the model to provide an appropriate fit to the data (Table 

S6). Line graphs showing the best fit model simulation results for caRNA and mRNA 

dynamics (Fig. 6B) for 3 genes (Ccl5, Cgn and Fpr1) provide a visual confirmation that 

these models recapitulate the data reasonably well. By this measure, we found that model v2 

accounts for 37 additional genes that were not accounted for in model v1, indicative of a role 

of a chromatin-associated mechanism in decoding NFκB duration. Meanwhile, 1 gene 

(Slc6a12) whose mRNA data was accounted for by Model v1 fell outside the fit threshold 

with v2, due to poor concordance of the caRNA simulations and caRNA-seq data. Overall, 

model v2 accounted for 67 of 81 (~83%) stimulus-specific genes that are dependent on 

NFκB dynamics (Fig. 6C, Fig. S3). The remaining 14 genes whose expression dynamics 

could not be explained by v2 suggest more complex regulation, potentially involving other 

stimulus-induced transcription factors or signaling pathways.
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Gene regulatory strategies correlate with gene functions in immune responses

The described studies revealed that a slow chromatin-opening mechanism and slow mRNA 

decay may combine to decode the differential duration of LPS- vs TNF-induced NFκB 

dynamics more effectively (Fig. 7A). Using the mathematical model, we parameterized for 

each of the 67 genes for which a satisfactory fit was produced, we could now quantify the 

relative contribution of these two regulatory strategies for decoding the duration of NFκB 

dynamics. Starting with caRNA data recapitulated by the model (Fig. 6C), we obtained the 

duration-dependent specificity observable at the chromatin level. Taking the difference of 

mutant vs control specificity using the simulated mRNA data further describes the total 

dynamics-dependent specificity, a portion of which was the chromatin-associated specificity. 

Remaining Lvs.T specificity in the mutant is a result of other unknown mechanism(s). In 

this manner, for 67 genes whose expression profiles could be accounted for by model v2, we 

calculated the contribution of each mechanism and plotted the quantification result as a 

stacked bar graph that also indicates the residual as yet unaccounted specificity for each 

gene (Fig. 7B). Using this analysis, we found that the vast majority of genes involve multiple 

mechanisms to decode the duration of NFκB dynamics. Although most genes employ 

multiple mechanisms for decoding, among the 67 genes, 11 genes employed predominantly 

slow mRNA decay and 30 genes slow chromatin transition. In support of this, small 

molecule histone deacetylase (HDAC) inhibitor, Trichostatin A, showed more hyper-

expression effect on chromatin regulated genes (e.g. Lcn2, Fpr1) after TNF stimulation than 

genes that are not predominantly chromatin regulated (e.g. Rab20, Ccl7) (Fig. S4).

We observed that genes that have higher stimulus-specificity tend to rely on chromatin-

mediated mechanisms rather than post-transcriptional mechanisms to decode duration. 

Indeed, genes that use only mRNA half-life as a decoding mechanism have a specificity 

index of below 1.5. In contrast, genes that employ chromatin associated mechanisms to 

decode duration tend to have high specificity indices, with more than half genes having a 

specificity greater than 1.5 (Fig. 7B). This suggests that chromatin-mediated mechanisms 

can in general generate more pronounced stimulus-specificity in gene expression from 

stimulus-specific NFκB duration.

After sorting the genes by their gene regulatory strategy (i.e. predominantly chromatin-

associated, mRNA half-life, or both, Fig. 7B), we examined their cellular and physiological 

functions. We found that several functionally important genes decoded predominantly by 

mRNA half-life were cell-intrinsic regulators of innate immune function, such as 

transcription factors and their regulators (Nfkb2, Nfkbie) and genes involved in cytokine 

signal transduction pathways (Pim1, Il1rl1) (Fig. 7C). In addition, the monocyte 

chemoattractant Ccl2 was in this category, indicating that recruitment of immune 

surveillance cells that can appropriately regulate immune responses was LPS-specific via the 

mRNA decay gene regulatory strategy. Examining the genes whose stimulus-specificity 

employed a chromatin-associated gene regulatory strategy, we identified the phagocytosis 

receptor, Fpr1, and the tissue remodeling protease, Mmp3, that are key effectors of immune 

responses, which may then synergize with the function of Ccl5, a key chemoattractant of 

cytotoxic T-cells (Fig. 7C). Thus, our analysis suggests that the stimulus-specific expression 

of immune effector genes may be more dependent on cell type, microenvironmental context, 
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and history than that of immune regulatory genes due to their employment of a chromatin-

associated rather than mRNA decay-mediated gene regulatory strategy to decode stimulus-

specific NFκB dynamics.

To examine whether molecular correlates of a chromatin-associated mechanism for decoding 

NFκB signaling duration could be identified, we turned to ATAC-seq and grouped genes by 

their predominant duration decoding strategy. We made two observations – that chromatin-

regulated genes are more likely to have closed chromatin at promoter regions (Fig. 7E) at the 

basal state, and that these genes showed increased accessibility compared to the basal state 

after TNF stimulation in the dynamic control mutant, as seen in the gene Il34 (Fig. 7D, 7F). 

This experimental evidence further supports a slow chromatin opening step for a subset of 

genes as a gene regulatory strategy for decoding stimulus-specific signaling duration.

Discussion

In this study, we report progress in addressing the longstanding question of how immune 

response genes decode differential temporal profiles of NFκB. This question was first raised 

by the discovery that NFκB activation showed complex dynamic control (Hoffmann et al., 

2002) that was indeed found to be stimulus-specific (Covert et al., 2005; Werner et al., 

2005). Further, the duration of NFκB activity was found to be correlated with the expression 

of some NFκB target genes (Hoffmann et al., 2002; Werner et al., 2005), even when NFκB 

duration distributed into several discrete pulses (Ashall et al., 2009). However, the 

mechanisms by which genes are able to achieve stimulus-specific expression by 

distinguishing differential durations of NFκB activity remained unknown. The present study 

addressed this question in a quantitative manner by employing mathematical models to 

interpret quantitative experimental data produced at high temporal resolution. Here, we have 

demonstrated that not only mRNA half-life, previously shown to play a critical role in 

duration decoding of p53 and ERK (Hafner et al., 2017; Uhlitz et al., 2017), but also 

chromatin regulated mechanism(s) are important for duration decoding of NFκB target 

genes.

Our analysis revealed that the genes most strongly regulated by duration employ both the 

transcriptional and post-transcriptional decoding mechanisms. Interestingly, immune 

effectors and immune regulators were found predominately regulated by the former and 

latter, respectively. How may the chromatin mechanism work? As no binding sites other than 

NFκB were identified among LPS-specific dynamics-dependent genes (Fig. 2E), we found 

no evidence for coherent feedforward loops as the prevalent regulatory mechanism, but 

instead suggest that slow steps in chromatin opening or PIC assembly are required for 

decoding. A functional consequence of this purely kinetic explanation for why genes may 

employ one mechanism over another may be that chromatin may be a more versatile 

regulatory node; it may receive inputs from diverse micro-environmental contexts or 

exposure histories. For example, for a gene with high LPS specificity based on chromatin 

control, memory of a prior direct pathogen exposure may allow the gene to be expressed 

later with less stimulus-specificity, also in response to cytokines released from pathogen-

infected neighbors. In addition, chromatin-based mechanisms are strongly cell-type-specific, 

thus rendering stimulus-specificity a function of cell type.

Sen et al. Page 12

Cell Syst. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The present study provides a general approach that may be used to elucidate the regulatory 

strategies underlying TF control of gene expression at single gene resolution. Iterative 

mechanistic modeling and experimentation has been successful in elucidating the 

mechanisms that encode dynamic transcription factor activities (Basak et al., 2012), but for 

understanding the regulatory strategies of gene expression, this approach encounters 

particular challenges. While Next Generation Sequencing methods provide highly 

quantitative genome-wide data, errors are associated with low abundance mRNAs, and 

variabilities in library preparation methodologies and data normalization methods. This is 

compounded for caRNA-seq data where the read depth tends to be lower, and the benefits of 

polyA+ selection do not apply. Previous studies that fit transcriptomic data to models either 

did not include TF activities as inputs to elucidate the regulatory logic (Rabani et al., 2011) 

or did not attempt to provide quantitative model fits at single gene resolution (Cheng et al., 

2017). Indeed, the transcriptional control mechanisms are highly complex, involving 

numerous factors and potentially multiple regulatory steps; these must be abstracted without 

losing critical regulatory behavior.

A key principle of mathematical biology holds true here also: when a model fits the data it 

does not mean that the model is correct, but it represents a starting point for further iterative 

testing. This is illustrated in our study: when we iterated with additional data in the form of 

caRNA-seq, our initial conclusions about the key role of mRNA half-life were confirmed for 

only some genes (11 out of 67), while we found substantial contributions by a chromatin 

mechanism for the remaining 56 genes, 30 of which were predominantly controlled by the 

chromatin mechanism. This in turn suggests that further iterations may lead to additional 

insights. For example, other gene regulatory strategies or mechanisms such as pre-mRNA 

processing, splicing or mRNA transport might play regulatory roles in decoding NFκB 

duration.

Theoretical considerations (Behar and Hoffmann, 2010) suggest a diverse set of potential 

decoding mechanisms. First, any slow kinetic process that controls either gene activation 

(e.g. mRNA synthesis, slow chromatin opening, slow pre-initiation complex (PIC) 

assembly) or slow mRNA decay (e.g. long mRNA half-life) can in principle decode the 

duration of TF activity. Second, coherent feedforward logic where two TFs present 

coincidently (AND gate) might also decode duration of TF activity. The inclusion of 

additional transcription factors (e.g. AP1 or IRF) in subsequent model versions may also be 

key to accounting for the remaining specificity not accounted for by model v2, or the 14 of 

81 dynamics-controlled genes not satisfactorily recapitulated.

STAR Methods

The Materials Availability Statement (CONTACT FOR REAGENT AND RESOURCE 
SHARING)

This study did not generate new materials. Further information and requests for resources 

and reagents should be directed to and will be fulfilled by the Lead Contact, Alexander 

Hoffmann (ahoffmann@ucla.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture: Mouse embryonic fibroblasts (MEFs) were prepared from male or female 

E12-E14 embryos from C57BL/6 mice that were Ifnar−/− and Ifnar−/−Nfkbia−/− and cultured 

in DMEM containing 10% BCS for 5–6 passages before being stimulated (Werner et al., 

2005).

Stimulation Conditions: MEFs were stimulated with 100ng/ml LPS (Sigma, B5:055), 1 

ng/ml murine TNF (R&D Systems) or 1 ng/ml IL1 (Pepro Tech, USA) for 30 minutes and 

washed with warm PBS for 3 times. Cells were cultured with conditioned media (without 

stimulus) until harvested at indicated time points for further manipulations. For TSA 

experiment, Ifnar−/− MEFs were treated for 24 hrs. with 50 nM TSA (T1952, Sigma-

Aldrich) and then stimulated with 1 ng/ml murine TNF for 30 minutes and washed with 

warm PBS for 3 times and then cultured until harvested for RNA isolation.

Animal Use: The use of mice and isolation of MEFs have been approved by the Animal 

Care and Use Committee of University of California, Los Angeles.

METHOD DETAILS

In all Figures, the data presented are representative of at least 2 or more independent 

experiments. Data were not divided into training and test datasets for any of the analyses 

performed in this paper. Blinding of the experimenter to the sample genotypes was not 

performed at any stage of the study.

Electrophoretic mobility shift assays (EMSAs): EMSAs were conducted with 

standard methods as described previously for fibroblasts (Basak et al., 2007; Hoffmann et 

al., 2003). Whole cell lysates were made with RIPA buffer; nuclear extracts by hypotonic 

cell lysis and high salt extraction of nuclear proteins.

Cell Fractionation and RNA isolation: After stimulation, cells were harvested at 

desired time points. For PolyA+ RNA, cells were harvested in TRIzol reagent (Life 

Technologies, Carlsbad, CA). Then, DNA-free RNA was extracted from cell using 

DIRECTzol kit (Zymo Research, Irvine, CA) according to manufacturer’s instructions. For 

chromatin RNA, subcellular fractions were prepared as described (Pandya-Jones and Black, 

2009), with minor changes. The cell lysis buffer contained 0.15% NP-40, and the sucrose 

cushion did not contain detergent. For chromatin RNA isolation, chromatin fraction was 

suspended in TRIzol reagent. Followed by chloroform extraction, aqueous phase containing 

RNA was used for purification with Direct-zol RNA Miniprep Kit (Zymo Research). 

Chromatin fraction purity was confirmed by immunoblot analysis with anti-B-Tubulin 

(Sigma, T5201), anti-SNRP70 (Sigma, AV40275) and anti-Histone H3 (abcam, ab1791) 

antibodies.

cDNA synthesis and qPCR:  RNA was reverse transcribed with iScript Reverse 

Transcription Supermix for RT-PCR (Bio-Rad). qPCR was performed using SsoAdvanced 

Universal SYBR Green Supermix (Bio-Rad).
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Library Preparation and RNA sequencing:  After RNA extraction, libraries for polyA+ 

RNA were prepared using KAPA Stranded RNA-Seq Kit for Illumina Platforms (KAPA 

Biosystems, Wilmington, MA) according to the manufacturer’s instructions. caRNA 

sequencing libraries were prepared using the KAPA Stranded RNA-Seq Kit with Ribo Erase 

for Illumina Platforms (KAPA Biosystems). Resulting cDNA libraries were single-end 

sequenced with a length of 50bp on an Illumina HiSeq 2000 (Illumina, San Diego, CA).

RelA ChIP-seq:  After stimulation, cells were harvested at desired time points. ChIP-seq 

libraries were prepared using the NEB Next Ultra DNA Library Prep Kit for Illumina (New 

England Biolabs). ChIP-seq was performed as described (Barish et al., 2010) using anti-

RelA (Santa Cruz Biotechnology, sc-372) antibody.

ATAC-seq:  For ATAC-seq libraries, cells were dissociated with Accutase (Thermo Fisher 

Scientific, Waltham, MA), and 50,000 cells were used to prepare nuclei. Cell membrane was 

lysed using cold lysis buffer (10mM Tris-HCl pH7.5, 3mM MgCl2, 10mM NaCl and 0.1% 

IGEPAL CA-630). Nuclei were pelleted by centrifugation for 10 minutes at 500 x g, and 

suspended in the transposase reaction mixture (25 µl of 2X TD Buffer (Illumina), 2.5 µ l of 

TD Enzyme 1 (Illumina), and 22.5 µ l of nuclease-free water). The transposase reaction was 

performed for 30 minutes at 37C in a thermomixer shaker. Then, fragmented DNA in the 

reaction was purified using MinElute PCR purification kit (QIAGEN, Hilden, Germany). 

The purified DNA fragments were amplified by PCR to obtain ATAC-seq libraries with 

Illumina Nextera sequencing primers. The libraries were purified using MinElute PCR 

purification kit (QIAGEN) and quantified using KAPA Library Quantification Kit (KAPA 

Biosystems). The libraries were single-end sequenced with a length of 50bp on an Illumina 

HiSeq 4000.

STATISTICAL ANALYSIS

Sequence Mapping and Analysis of polyA+ RNA-seq and caRNA-seq: After 

adapter trimming, single-end reads were mapped to reference mouse genome (mm10) using 

STAR (Dobin et al., 2013) with default parameters. Only primary mapped reads with 

alignment score (MAPQ)>30 were selected by ‘samtools view -F 2820 -q 30’. Transcript 

abundance was quantified based on GENECODE M6 (GRCm38.p4) annotation using 

featureCounts (Liao et al., 2014) using option ‘-t exon -g gene_id. The raw counts of PolyA

+ RNA-seq were input to DESeq2 to determine LPS-induced genes by comparing each 

sample of LPS stimulation time points against unstimulated samples with threshold log2Fold 

change >2 and Benjamini-Hochberg False discovery rate (FDR) <0.01. The expression 

levels of genes in each sample were normalized by means of Reads Per Kilobase per Million 

(RPKM) mapped reads in the downstream analysis.

Specificity score calculation: The stimulus-specificity score was calculated for each 

pair of stimuli gene-wise. The stimuli A vs B specificity score for gene g is calculated as 

follow:

SgA . vs . B =  log2 max mean RPKMgA/max mean RPKMgB
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i.e. the log2 ratio of maximum gene expression (mean RPKM of replicates) for all the 

measured timepoints between stimulation condition A and B.

Transcription factor motif and Gene Ontology (GO term) analysis: Known 

transcription factor motif enrichment analysis and GO term enrichment analysis was 

performed using ‘findMotif.pl’ from HOMER (Heinz et al., 2010) on promoter regions 

(−500bp to +200bp TSS) of genes in each category in Fig. 2C and the remaining genes in 

the other two categories as control. Only results for κB, AP-1 and ISRE motifs and the 

GO:0016070, GO:30035458 and GO:0045087 are displayed in Fig.2E, F.

Determination of mRNA half-life: Half-lives of mRNAs (Fig. 3D, E, F) were 

determined from unstimulated Ifnar−/− MEFs treated with 10 mg/ml Actinomycin D 

(A9415, Sigma-Aldrich) for 0.5, 1, 2, 3, 4, and 6 hr in replicate. 2µ L of 1:100 diluted RNA 

Spike-In control mix (Ambion ERCC RNA Spike-In Mix Part no 4456740) were added with 

RNA during library preparation. These libraries were sequenced and processed to get the 

counts of transcripts per gene using the same process pipeline as described earlier. The gene 

counts were normalized by size factor per library using the median counts of all the spike-

ins that have at least 32 counts. Reads counts normalized, then log2 transformed after adding 

pesudocount of 1. Then half-life was derived at the log2 normalized count scale based on the 

procedure below.

Due to confounding drug-induced stress responses, mRNA levels of some genes were 

increased transiently following Actinomycin treatment, and some mRNAs displayed two-

phase reduction: a fast decay followed by a slow decay. Due to these observations, we 

designed the following strategy to derive the mRNA half-life (Table S3): First, select one of 

the first three time points (0, 0.5hr, and 1hr), which has the highest level of expression as the 

starting point. To ensure the reliability of the data, we only considered the mRNAs with ≥32 

count. Second, from the selected time point, select the next two or more consecutive time 

points to perform linear regression at log2 scale (indicated as startID and endID in Table S3). 

Third, select the linear regression with highest adjusted R2 score to derive the slope. Fourth, 

calculate the 95% confidence interval (CI) based on CI of potential slopes.

Mapping of RelA ChIP-seq and analysis: RelA ChIP seq reads were mapped to mm10 

using bowtie2 with option `--non-deterministic – very-sensitivè. Peaks were called using 

macs2 and peaks across all time points and conditions were merged to obtain a consensus 

peak set. Reads were normalized based on the total number of reads mapped per sample. 

HOMER was first used to annotate peaks, resulting in a many-to-one peak to gene mapping. 

Because peaks can be associated with genes from a long distance, to map functional peaks to 

genes, we utilized the caRNA data and calculated Spearman’s correlation of peaks to 

caRNA-seq measurements for peaks within −100000/+50000 of the TSS. The single peak 

with the highest correlation was chosen as representing a functional binding event for that 

gene. Counts were further scaled to the maximum count for each genotype.

ATAC-seq analysis: Raw fastq files were processed by taking the reads and trimming, 

filtering, and aligning to mm10. Peaks were called using MACS2 for each individual 

sample. Reads that mapped to mitochondrial genes or blacklisted regions were removed. 

Sen et al. Page 16

Cell Syst. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peak files were merged using bedtools merge to obtain a consensus set of peaks across 

samples. The number of reads that fell into the peaks was obtained using bedtools multicov, 

with the parameter –q 30 to exclude reads with poor mapping quality. Reads were then 

normalized based on the total number of reads mapped per sample. HOMER was used to 

associate peaks to genes based on the nearest TSS. Because peaks can be associated with 

genes from a long distance, we further utilized the caRNA data and calculated Spearman’s 

correlation of peaks to caRNAseq measurements for all peaks, selecting peaks to the nearest 

gene. Genes were grouped as predominantly chromatin-controlled, half-life controlled, if 

either chromatin of half-life accounted for greater than 30% of the known specificity, 

respectively, and the rest were categorized as ‘mixed’. Normalized counts were then used to 

find the difference in counts for the relevant peaks by subtracting the counts in the basal 

timepoint, and then plotting these values as boxplots.

Mathematical Modeling:

Model v1 (Fig.3 and 4):  For the simulations shown in Fig.3, the activity of transcription 

factor (TF(t)) was interpolated from quantified EMSA measurements (in controls: TNF0:1, 

TNF30: 42.1, TNF60: 25.2, TNF90: 4.6, TNF120: 1, TNF240: 1, TNF360: 1, TNF480:1; 

LPS0: 1, LPS30:22.5, LPS60: 37.8, LPS90, 42.6, LPS120: 40.6, LPS240: 30.8, LPS360: 

20.6, LPS480: 18.6; and in mutant: TNF0:1, TNF30: 36.6, TNF60: 28.9, TNF90: 20.1, 

TNF120: 18.5, TNF240: 1.8, TNF360: 1.2, TNF480:1.3; LPS0: 1, LPS30:13.1, LPS60: 42.2, 

LPS90, 34.0, LPS120: 27.8, LPS240: 24.5, LPS360: 15.4, LPS480: 10.1) by using the 

`pchipfun` from R package `pracmà. These were then inputted into the TF(t) term of the 

ODE, which was numerically solved by òdè from R package `deSolvè with time step 0.1 

min for the sweep of different mRNA half-lives (50 evenly spaced in log10 scale ranging 

from 1 min to 1000 mins). Other parameters in the simulation are: k0 = 0.001, kf = 0.5, 

Kd=0.5, n=6.

To fit the ODE model to each LPS induced gene in Fig.4, we first introduced a delay 

parameter tau in TF(t-tau) to account for the time gap between TF nuclear localization and 

the appearance of polyA+ mRNA in the cytoplasm. The model is numerically solved by ode 

function from `deSolvè package for all input functions to predict this gene’s expression 

dynamics. The parameters are fitted for gene j by minimizing the difference between 

simulation’s result and the experimental RNA-seq data (Table S2) using normalized RMSD 

(by range of data):

kj0, kjf, kjd, kjdeg, n, tau = arg min (nRMSDj)
nRMSDj = sum(residues2)/number of resid ues/(max − min)

using `nlminb` function from R in log10 scale. Except for n, which is discrete from 1 to 6, kj 

0, kj f and Kj d are bound by 10−3 to 103, kj deg is bound by the experimental half-life 

determinations (Table S3), and tau is bound by 1e-5 to 120 mins. The results of the model 

fitting are listed in Table S4.

Model v2 (Fig.6): The version 2 model includes three states of the promoter: closed (C), 

open (O), and activated in transcription (A) and the transitions among these states. Only 
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state A promoter can produce mRNA with rate constant kp. We assume that the sum of the 

fractions of these promoter states is constant, that the transitions from C to O to A are 

regulated by NFκB (modeled by Michaelis-Menten kinetics), and that they are reversible. 

The process and degradation of mature mRNA is modeled by a first-order equation. The 

model equations are shown in Fig. 6A.

Forward reactions, which are regulated by NFκB and parameters Kd1 and Kd2, contain 

parameters k1 and k2. To simplify parameter fitting, we assume k1 = k2 = 1. mRNA 

production, which is regulated by fractional state A, contains parameter kp. To simplify 

parameter fitting, we assume kp = 1. Other parameters are fitted to experimental 

measurements of caRNAseq and polyA+RNAseq data (Table S2 and Table S5) using the 

same algorithm as model v1. The results of the model fitting are listed in Table S6.

Calculation of contribution of different regulatory strategies: To calculate the 

contributions of the chromatin and mRNA half-life associated strategies to the total 

specificity, we used the simulated data from model v2. For each gene, we first calculated the 

difference in specificity for control versus mutant from the caRNA data to assess the amount 

of specificity at the caRNA level that is reduced by the dynamics mutant 

(ΔspecificitycaRNA). These are the dynamics-generated specificities that are controlled at the 

chromatin level, without any influence from mRNA half-life. The chromatin-contribution is 

therefore ΔspecificitycaRNA. We next made the same calculation of difference in specificities 

for control versus mutant from the mRNA data (ΔspecificitymRNA). At the mRNA level, the 

specificity in the control represents the total specificity, and thus the difference in specificity 

between mutant and control at the mRNA level represents the contributions of both 

chromatin and mRNA half-life–associated mechanisms. It follows from this that by 

subtracting the two deltas (Δ specificitymRNA - Δ specificitycaRNA), we can obtain the 

mRNA half-life contribution to the specificity. The ‘remaining’ mechanisms that are not 

accounted for by either chromatin or mRNA half-life associated mechanisms are represented 

by the amount specificity still remaining in the mutant at the mRNA level.

DATA AND CODE AVAILABILITY

All sequencing data were deposited to Sequence Read Archive (SRA, NCBI) under 

BioProject IDs PRJNA453806 (polyA+ RNA-seq), PRJNA454496 (ActD RNA-seq), 

PRJNA454896 (ca-RNA seq), PRJNA517534 (RelA-ChIPseq) and SAMN12325160, 

SAMN12325163, SAMN12325167, SAMN12325170 (ATAC-seq). All the code necessary 

for reproducing the figures, model fitting and simulation is available on the GitHub site 

mentioned in the STAR methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We identify 81 genes whose pathogen-specific expression depends on NFκB 

duration

• Iterative math modeling delineates gene-specific decoding of NFκB duration

• A mRNA half-life of >30 min enables pathogen specificity of many immune 

regulators

• Many immune effectors decode NFκB duration via a slow chromatin 

regulatory step
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Figure 1. Identifying LPS-specific genes that do not depend on interferon signaling.
(A) Schematic of the signaling pathways for TNF, LPS and IL1 that activate downstream 

gene expression through transcriptional factors AP1, NFκB and IRF3/ISGF3. The 

percentage of LPS-induced genes that are targets of each transcription factor, as identified in 

Cheng et al (Cheng et al., 2017), is indicated. (B) EMSA showing NFκB activity in Ifnar−/− 

MEFs following treatment with LPS (100 ng/ml), TNF (1 ng/ml), or IL1 (1 ng/ml). (C) 

Scatter plots of maximum gene expression between LPS and TNF, LPS and IL1, TNF and 

IL1. (D) Scatter plot showing that LPS vs TNF specificity correlates well to LPS vs IL1 

specificity. The pair-wise specificity (L vs. T or L vs. I) for each gene is defined by log2 of 

the fold ratio between maximum expression in LPS treatment vs. TNF or IL1 treatment 

respectively. (E) Pie chart showing TNF-specific, LPS-specific or non-specific genes, using 

a L vs. T specificity threshold value of ≥ 0.5 or ≤−0.5. (F) Heat-map of polyA+ RNA 

expression profiles (normalized to max) of the 177 induced genes in Ifnar−/− MEFs by LPS 

(100 ng/ml), TNF (1 ng/ml) or IL1 (1 ng/ml) at each of the indicated time-points. The three 

groups of genes defined in (E) are shown in distinct expression clusters. Specificity metrics 

(Lvs.T, Lvs.I, T vs.I) are shown on left. Results from two independent biological replicates 

are shown (see also Table S1).
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Figure 2. Determining the NFκB duration dependency of LPS-specific gene expression.
(A) Dynamics of nuclear NFκB activity measured by EMSA in control (Ifnar−/−) and mutant 

(Ifnar−/−Nfκbia−/−) in response to 30 min pulse of 100 ng/ml LPS or 1ng/ml TNF. Error bars 

are standard deviations (SD) from 3–5 independent experiments. p value was calculated by 

multiple t-test using Graph-pad Prizm. P value >0.05 considered significant (B) Pie charts 

showing TNF-specific, LPS-specific, or nonspecific genes using the specificity threshold of 

0.5 in control vs mutant (same definition as in Figure 1D). (C) 177 differentially induced 

genes are categorized into 3 groups based on the loss of specificity in the mutant. Group I. 

not LPS-specific: if Lvs.T in control as well as mutant is less than 0.5; group II. NFκB 

dynamics independent and LPS-specific: if Lvs.T in control is higher than 0.5 and L vs. T in 

mutant is not reduced by 2^0.5 fold (i.e. above line y=0.71x); group III. NFκB dynamics 

dependent and LPS-specific: if Lvs.T in control is higher than 0.5 and Lvs.T in mutant is 

reduced by 2^0.5 fold (i.e. below line y=0.71x). The expression trajectories for example 

genes in each category are shown on the right. (D) Heat-map of polyA+ RNA-seq gene 

expression profiles (normalized to max) for control and mutant cells for indicated time-

points (See also Table S2). (E) Known TF binding motifs (κB, AP1 and IRE) and (F) Gene 

Ontology (GO) terms enrichment level is shown as the p-value in -log10, using genes in each 

category and remaining genes as background. If p-value >0.05, it is shown as ‘–‘.)
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Figure 3. Long-mRNA half-lives are correlated with LPS specificity.
(A-B) Heat-map of simulated gene expression profiles with different mRNA half-lives (from 

1 min to 1000 mins) using a simple ordinary differential equation (ODE) model. NFκB 

activity profiles in response to LPS (left) or TNF (right) are used as input, in control (A) or 

in mutant (B). ODE is shown in the top panel: mRNA abundance is determined by NFκB-

dependent synthesis using a Hill-equation (with a basal synthesis) and a first-order 

degradation term. The yellow color-bar on the right sight of the heat-map shows the peak 

expression ratio (P.R.) between LPS and TNF input given the same mRNA half-life. 

Example trajectories of different half-lives are shown on the right for LPS input (red line) 

and TNF input (green). Grey dashed lines indicate a half-life of 30 mins and 100 mins. (C) 

Line-graph showing that the predicted Lvs.T specificity from simulation results in (A) and 

(B) is correlated with mRNA half-life. (D) Gene expression profiles (log2 ratio with respect 

to unstimulated timepoint) for the 177 inducible genes after Actinomycin D treatment 

(ActD-seq) in control cells at indicated time points for two independent biological replicates 

are shown. The right-side annotation color-bars indicate the derived mRNA half-life using 

an adapted linear regression method on log2 expression of actinomycin-D time-course data 

(See also Table S3). (E) Four example genes are shown on the right. Dots are the values 

from ActD-seq data with two different colors to indicate replicates. The dots with an open 

circle are the data points selected for linear regression. If the initial reads are not enough 

(less than 32), the half-life is not determined (e.g. Mmp1b). (F) Scatter of derived half-life 

between the two replicates with density distribution shown on the top and right. (G) Box-

plots showing that the measured Lvs.T specificity from the RNA-seq in Fig. 2D is correlated 

with the derived mRNA half-life from Act-D-seq.
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Figure 4. Model-aided analysis to determine sufficiency of mRNA half-life as the decoding 
mechanism.
(A) Diagram of model v1 showing NFκB activity and mRNA half-life (range) as inputs to 

output mRNA expression profiles. By comparing the predicted trajectory with the 

experimental measurement from RNA-seq, we can test for each gene in category II in Figure 

2D, whether a parameter set can be found that allows the model to fit the data. (B) 

Comparing gene expression profiles between data and best-fit model simulation in response 

to indicated stimulus. The expression levels are normalized to the maximum in control or 

mutant individually. The yellow and black color bar indicates whether the best fit model is 

acceptable (normalized RMSD <0.13) or not (See also Table S4) (C) Line graphs for seven 

genes are shown to represent how well the best fit model matches the experimental data. (D) 

Testing whether NFκB dynamics-dependent LPS-specificity is dependent on the mRNA 

half-life for the fitted genes. Predicted Lvs.T specificity in best-fit model for control (black 

closed circle) and mutant (black open circle) for the genes with nRMSD < 0.13 in 4B is 

shown. The length of the line connecting control and mutant indicates the degree to which 

specificity is dependent on NFκB dynamics. The blue lines and dots are the in-silico 

perturbation results obtained by only changing the mRNA half-life in the best-fit model to 

15 mins. (E) Expression trajectories for six genes with estimated half-life and fixed short 

half-life (15 mins) are shown. (F) Graph showing the comparison of Lvs.T specificity of 

model fitted (yellow) and non-fitted (black dots) genes in control vs mutant. Lvs.T 

specificity of model fitted (yellow) genes is significantly higher compared to non-fitted 
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(black dots) genes in mutant, but not in control. P-values are generated by one-tailed 

Student’s T-test.
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Figure 5. Stimulus-specific NFκB dynamics may be decoded at the level of transcriptional 
initiation.
(A) Cartoon showing the synthesis of nascent, chromatin-associated RNA (caRNA) in the 

nucleus and transport of mature RNA (mRNA) to cytoplasm after post-transcriptional 

processing. (B) Pie charts showing LPS specific or nonspecific genes using a threshold of 

20.5 in control vs mutant at the caRNA level. (C) Heat-maps comparing gene expression 

(normalized to max) at PolyA+ RNA (mature-mRNA) and caRNA (pre-mRNA) levels for 

control and mutant cells for indicated time-points (See also Table S5) (D) Relative 

expression levels are shown by line graphs. (E) Heatmap of RelA ChIP-seq in control and 

mutant cells for genes in cluster 3 (top panel). Grayed out rows were genes for which no 

peaks were mapped to it. Boxplots show maximum peak intensity for each gene in the 

heatmap (normalized individually for control and mutant cells) (bottom panel) with p values 

indicated (two-sided t-test).
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Figure 6. Model-aided analysis to quantify chromatin-associated decoding of stimulus-specific 
NFκB dynamics.
(A) Model diagram and ODEs of two-step model v2. NFκB (red dimer) serves to both open 

chromatin and activate transcription. Chromatin transitions between closed, open, and active 

states. Transcription can only occur from the active state. Parameters in parentheses 

correspond to the parameters in the model. The details of the model can be found in the 

Method section. (B) Experimental data and model simulation of three example genes with 

nRMSD for each gene shown. (C) Simulation heatmap for caRNA and polyA+ RNA in 

control and mutant MEFs stimulated with LPS or TNF. (nRMSD <0.13 defined as good fit 

for v2, marked with Yellow; For v1, same as Fig. 4B, see also Table S6) (See also Fig.S3 for 

side-by-side comparison of data and simulation.)
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Figure 7. Distinct regulatory strategies that decode NFκB duration-dependent gene expression.
(A) Diagram illustrating two broad regulatory mechanisms that may decode stimulus-

specific duration of NFκB dynamics to contribute to LPS vs.TNF-specific gene expression. 

(B) Stacked bar graphs showing the relative contribution of mRNA half-life (T1/2) and 

chromatin-regulation to the decoding of stimulus-specific gene expression. The grey portion 

of each bar denotes stimulus-specificity that is not mitigated by the NFκB dynamic mutant. 

Genes are ordered by whether they are controlled by a predominantly chromatin-associated 

mechanism, mixed mechanisms, or a predominantly mRNA T1/2 mechanism. (C) Scatterplot 

of chromatin contribution versus half-life contribution for all genes. Four selected genes 

from Fig. 7B that are controlled by either predominantly a chromatin-associated mechanism 

or an mRNA half-life mechanism are indicated. (D) Example ATAC-seq track view of a 

predominantly chromatin-controlled gene. (E) Boxplots of read counts for ATAC-seq data 

indicates that chromatin-regulated genes are more likely to have closed chromatin at 

promoter regions (peaks found within −1000 to 100 basepairs of the TSS). Genes are 

grouped by the categories shown in Fig. 7B. Two-sided Wilcoxon-Mann-Whitney U test p 

values are shown. (F) Boxplots of the difference in read counts of Control and Mutant cells 

after 2hrs treated with TNF pulse, compared to the 0 hr basal counts. Genes are grouped by 

the categories shown in Fig. 7B. Shown are one-sided Wilcoxon-Mann-Whitney U test p 
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values that chromatin-controlled genes shown greater differences from baseline. Lines inside 

boxplots represent the 25th, 50th, and 75th quantiles. Whiskers extend up to 1.5 the 

interquartile range, with genes outside this represented as outlier points.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-RelA Santa Cruz Biotechnology sc-372

anti-Acetyl Histone H4 Millipore-Sigma 06-866

anti-H3K27Ac abcam ab4729

anti-Histone H3 abcam ab1791

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

LPS Sigma B5:055

TNF R&D Systems 410-MT

IL1 Pepro Tech, USA 211-11B

Actinomycin D Sigma-Aldrich A9415

Trichostatin A Sigma-Aldrich T1952

iScript Reverse Transcription Supermix Biorad 1708841

SsoAdvanced Universal SYBR Green Supermix Biorad 172-5270

ERCC RNA Spike-In Mix Ambion Part no 4456740

Critical Commercial Assays

KAPA Stranded RNA-Seq Kit KAPA Biosystems, 
Wilmington, MA

KR0934

KAPA Stranded RNA-Seq Kit with Ribo Erase for 
Illumina Platforms

KAPA Biosystems, 
Wilmington, MA

KR1151

NEB Next Ultra DNA Library Prep Kit for Illumina New England Biolabs E7645

Nextera tagmentation master mix Illumina FC-121-1030

KAPA Library Quantification Kit KAPA Biosystems, 
Wilmington, MA

KR0405

MinElute PCR purification kit Qiagen 28004

DIRECTzol kit Zymo Research, Irvine, CA R2070

Deposited Data

PRJNA453806 (polyA+ RNA-seq) This paper PRJNA453806

PRJNA454496 (ActD RNA-seq) This paper PRJNA454496

PRJNA454896 (ca-RNA seq) This paper PRJNA454896

PRJNA517534 (RelA ChIP-seq) This paper PRJNA517534

SAMN12325160 (Control-0 hr ATAC-seq) This paper SAMN12325160

SAMN12325163 (Control-TNF 2 hr-ATAC-seq) This paper SAMN12325163

SAMN12325167(Mutant-0 hr ATAC-seq) This paper SAMN12325167

SAMN12325170 (Mutant-TNF 2 hr-ATAC-seq) This paper SAMN12325170

Experimental Models: Cell Lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Ifnar−/− C57BL/6 mice This paper NA

Ifnar−/−Nfkbia−/− C57BL/6 mice This paper NA

Oligonucleotides

5’ttctgtgcctgctgctcata3’ Ccl7 F

5’ttgacatagcagcatgtggat3’ Ccl7 R

5’tgttttccctggtccaagtc3’ Fpr1 F

5’atcgtaccctggatttgtgc3’ Fpr1 R

5’atttcccagagtgaactggc3’ Lcn2 F

5’aatgtcacctccatcctggt3’ Lcn2 R

5’tgctctaatcaggacccattg3’ Sod2 F

5’gtagtaagcgtgctcccacac3’ Sod2 R

Software and Algorithms

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

featureCounts (Liao et al., 2014) http://bioinf.wehi.edu.au/featureCounts/

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/release/bioc/
html/DESeq2.html

HOMER (Heinz et al., 2010) http://homer.ucsd.edu/homer/

MACS2 (Zhang et al., 2008) https://github.com/taoliu/MACS/

GenSA https://github.com/cran/GenSA/blob/master/R/
GenSA.R

deSolve https://cran.r-project.org/web/packages/deSolve/
index.html

Pracma https://cran.r-project.org/web/packages/pracma/
index.html

Other

Code for reproducing figures, model fitting and 
simulation

https://github.com/biomystery/
duration_decode_manuscript
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