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Abstract

Introduction: Down syndrome (DS), caused by human trisomy 21 (Ts21),

can be considered as a prototypical model for understanding the effects of

chromosomal aneuploidies in other diseases. Human chromosome 21

(Hsa21) is syntenically conserved with three regions in the mouse genome.

Sources of data: A review of recent advances in genetic modeling and ana-

lysis of DS. Using Cre/loxP-mediated chromosome engineering, a substan-

tial number of new mouse models of DS have recently been generated,

which facilitates better understanding of disease mechanisms in DS.

Areas of agreement: Based on evolutionary conservation, Ts21 can be

modeled by engineered triplication of Hsa21 syntenic regions in mice. The

validity of the models is supported by the exhibition of DS-related

phenotypes.

Areas of controversy: Although substantial progress has been made, it

remains a challenge to unravel the relative importance of specific candidate
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genes and molecular mechanisms underlying the various clinical

phenotypes.

Growing points: Further understanding of mechanisms based on data from

mouse models, in parallel with human studies, may lead to novel therapies

for clinical manifestations of Ts21 and insights to the roles of aneuploidies

in other developmental disorders and cancers.

Key words: Down syndrome, human trisomy 21, mouse models, chromosome engineering

Introduction

Human trisomy 21 (Ts21, Down syndrome, DS) is
the most common chromosomal abnormality com-
patible with postnatal survival and occurs in one in
~691 and 1000 newborns in the USA1 and
Europe,2 respectively. It is a leading genetic cause of
congenital heart disease, acute megakaryoblastic
leukemia and developmental cognitive deficits. It
causes early onset Alzheimer-type neurodegenera-
tion in nearly every individual with DS. The preg-
nancy termination rate after prenatal diagnosis of
human Ts21 has not increased and the incidence
rate of DS has not decreased in the last decade in
countries like the USA.3 Among a constellation of
DS phenotypes, some of them, such as developmen-
tal cognitive deficits and Alzheimer’s disease (AD),
impact both the affected individuals and their
families, and are without effective treatments. After
the discovery that individuals with DS carry an
extra copy of human chromosome 21 (Hsa21),4,5 a
subsequent major effort was to try to define subge-
nomic regions associated with various DS pheno-
types by examining human segmental trisomies.
In these experiments, data generated from indivi-
duals with segmental trisomy of Hsa21 were used
to establish genotype–phenotype relationships.6–8

However, interpretation of these studies is not
straightforward because some individuals carrying
segmental Ts21 also have additional genomic
abnormalities, such as unbalanced derivatives asso-
ciated with non-Hsa21 genomic regions stemming
from chromosomal translocations.6–8 Another
inherent problem is that the endpoints of segmental
trisomies are almost always unique among the
cases. Therefore, for almost any segmental trisomy

case, the sample size for a specific genotype is one,
which is a major obstacle in distinguishing the con-
tributions of trisomy, versus unique characteristics
of a given subject, to a phenotype.9 For these rea-
sons, research efforts have turned to well-controlled
model organisms, particularly the mouse, to unravel
the biology associated with DS.

Modeling DS at the early stage

Based on the findings that many Hsa21 gene ortho-
logs mapped to mouse chromosome 16 (Mmu16),
the first trisomic model of DS was mouse trisomy
16.10,11 However, this mutant, with the entire extra
chromosome 16, is embryonic lethal and thus many
important postnatal phenotypes of DS cannot be
studied. Therefore, the discovery of postnatally
viable Ts65Dn mice was considered as a major
development in DS research.12 Ts65Dn mice carry
an unbalanced derivative, Ts(1716)65Dn, of a
balanced translocation, which was randomly
induced by irradiation.12 The Ts(1716)65Dn
chromosome consists of the entire genomic region
distal to Mir155 on Mmu16 and a subcentromeric
region on Mmu17, which is not syntenic to
Hsa2113,14 (Supplementary Table S1). The second
postnatally viable mouse model of DS is Ts1Cje,
which carries an unbalanced derivative, Ts(1216)
1Cje, of a balanced translocation, which was
induced by gene-targeting in mouse ES cells.15 The
Ts(1216)1Cje chromosome carries the entire gen-
omic region distal to Sod1 on Mmu16 with Sod1
inactivated13,15 (Supplementary Table S1). Recent
analyses showed a heterozygous deletion on
Mmu12 in Ts1Cje mice, which is not syntenic to
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Hsa21.13,16 The phenotypes of Ts65Dn and Ts1Cje
mice have been extensively characterized and,
although these mice are not perfect molecular
mimics of human DS, they do show many pheno-
typic features of the human syndrome17–21

(Supplementary Table S2).

Transchromosomal mouse models

of DS

Another strategy to model DS is to generate mice
carrying an actual Hsa21—thus, a ‘transchromoso-
mal model’. Using microcell-mediated chromosome
transfer, Hsa21 segments and an entire Hsa21 were
introduced to mouse ES cells and mouse mutants
were then generated using these cells.22–25 Among
transchromosomal models, Tc1 mice carry more
Hsa21 genetic materials than any other transchro-
mosomal mouse models of DS. Probably because
Hsa21 was irradiated before being transferred to
mouse ES cells, the Hsa21 in Tc1 mice carries gen-
etic alterations, including deletions, duplications
and other rearrangements.26 The Tc1 mice have
been extensively characterized and, like the models
in the previous section, despite the presence of sec-
ondary molecular aberrations, they too show sev-
eral phenotypic features similar to human DS25,27

(Supplementary Table S2).

Genetic modeling and dissection of DS

using mouse mutants generated by

Cre/loxP-mediated chromosome

engineering

Ts65Dn and Ts1Cje mice are important viable tri-
somic mouse models. However, neither is a com-
plete model. The comparison between the human
and mouse genomes revealed that the regions of
Hsa21 are syntenically conserved in three regions in
the mouse genome located on Mmu10, Mmu16
and Mmu17 (Fig. 1) (www.ensembl.org). Only
<65% of Hsa21 gene orthologs are triplicated in
Ts65Dn and Ts1Cje mice. Because these models
were discovered by serendipity, it will be difficult to
generate additional models of DS trisomic for dif-
ferent Hsa21 syntenic regions by the procedures

used for generating Ts65Dn and Ts1Cje mice. This
difficult technical obstacle was finally overcome by
the development of Cre/loxP-mediated chromosome
engineering technology. This technology can be
used to generate chromosomal duplications and
deletions with predetermined endpoints via three
steps.28 First, a loxP site is introduced into the first
endpoint in the ES cell genome with a positive selec-
tion marker (Fig. 2). One of such positive selection
markers is the neomycin resistance gene (neo).
When G418, an antibiotic, is added to the culture
medium, the cells expressing neo survive and are
selected for. Next, a second loxP site is targeted to
a second endpoint with an alternative positive selec-
tion marker such as the puromycin resistance gene.
To induce recombination, a Cre expression vector
is electroporated into double-targeted clones. If two
targeted loxPs are located on the same chromosome
homolog (in cis) and oriented in the same direction

Fig. 1 Shared syntenies between Hsa21 and three regions in

the mouse genome which are located on Mmu10, Mmu16

and Mmu17. The endpoints of the syntenic regions in mice

are indicated.
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with respect to the centromere, recombination will
result in a chromosomal deletion (deficiency, Df)
(Fig. 2A). If two loxPs are located on two homologs
(in trans) and oriented in the same direction, the
recombination will result in a deletion (i.e. Df) and
the reciprocal duplication (i.e. Dp) (Fig. 2B). The
correct orientation of loxP on a chromosome can
be achieved by choosing the desired orientation of
the loxP in a targeting vector based on the genomic
sequence. Clones carrying a desired rearrangement
can be identified by analyzing the sib-selection
result through positive selection drugs, and by ana-
lyzing recombination efficiencies,28 and the rearran-
gements can be verified by Southern analysis and
fluorescence in situ hybridization. Chimeras are
generated by injecting the ES cells confirmed to
have the rearrangements of interest into mouse blas-
tocysts, from which the progeny that carry the rear-
rangements are derived. Precise rearrangements of
Hsa21 syntenic regions in mouse mutants can be
verified by array-based comparative genome hybrid-
ization, and most recently by inferring DNA copy
number data from NextGen sequencing.

The rate-limiting factor in the aforementioned
procedure is the time needed for cloning to con-
struct targeting vectors. To improve efficiency,
genomic libraries with pre-made targeting vectors
were developed.29 The vectors from these lib-
raries contain all the required genetic elements.
Approximately 153 000 λ phage clones from these
libraries were converted into the plasmid form. The
end sequences of their genomic inserts were derived
using sequencing primers located external to the
cloning sites. Based on these sequences, the genome
coordinates of the genomic inserts were determined.
It is estimated that for every ~39 kb of the genome
at least one targeting vector is available for end-
point targeting.30 The libraries have been desig-
nated the Mutagenic Insertion and Chromosome
Engineering Resource (MICER). MICER substan-
tially eliminates the need for constructing new tar-
geting vectors for generating mutant mice carrying
large genomic rearrangements. These vectors, which
are available from ‘Source BioScience’, thus mark-
edly accelerate progress in generating the desired
mice. Besides engineering desired chromosomal
rearrangements in ES cells and using these cells to
generate mouse mutants, alternative strategies
include first generating mouse mutants carrying a
single targeted loxP at either desired endpoint.
Afterwards, appropriate crossings of the mice carry-
ing two targeted loxP sites with a transgenic cre
mice, such as Sycp1-cre or Tg(Pgk1-cre)1Lni
mice,31–33 will result in Cre/loxP-mediated trans-
recombination in the compound mutants and lead
to Dp and Df in the progeny.

Using these procedures, several laboratories have
generated a substantial number of chromosomal
rearrangements in Hsa21 syntenic regions in mice
(Figs 3 and 4). The duplication mutants have been
used to determine if the triplication of the entire
Hsa21 syntenic regions on Mmu10, Mmu16 and/or
Mmu17 as well as a sub-segment within a Hsa21
syntenic region is sufficient to cause a DS-related
phenotype.34–38 To determine if a given relatively
small region is necessary for a phenotype, a sub-
tractive strategy can be used by compounding a
larger duplication with a deletion of the smaller
sub-region.33,39–42 Using different combinations of

Fig. 2 The strategy to generate deletions and duplications in

mouse ES cells using Cre/loxP-mediated chromosome engin-

eering.28 To generate Dp and Df, loxP is inserted into two

endpoints of an orthologous region of Hsa21 in the genome

of mouse ES cells with two different positive selection mar-

kers, such as the neomycin and puromycin resistance genes.

A Cre expression vector is then electroporated into the

double-targeted cells to induce recombination. (A) If two loxP
sites are located in cis and orientated in the same direction in

relationship to the centromere, the recombination will result

in a Df. (B) If two loxP sites are located in trans and orien-

tated in the same direction in relationship to the centromere,

the recombination will result in a Dp and a Df. The genotypes

of engineered ES cells are confirmed by Southern blot ana-

lysis and fluorescence in situ hybridization. Afterwards, these

cells are used to generate chimeras by injecting them into blas-

tocysts. Germline transmission will lead to establishment of

mouse mutants carrying a desired Dp or Df. Arrow head, loxP.
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Fig. 3 Mouse mutants which carry a triplication of a Hsa21 syntenic region. A solid line represents the region triplicated for a

Hsa21 syntenic region in a mouse model listed in the table.

Fig. 4 Mouse mutants which carry a deletion of a Hsa21 syntenic region. An open line represents the region deleted for a

Hsa21 syntenic region in a mouse model listed in the table.
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Dp and Df mutants, the smallest genomic region
can be identified for a specific DS phenotype. If this
region contains 10 or more Hsa21 gene orthologs,
it might be necessary to generate new Dp and/or Df
mutants to further dissect the region. After a min-
imal critical genomic region is identified, a com-
pound mutant could be generated to carry a
duplication of the region and a null allele of the
gene located within the region. The contribution of
the gene to the phenotype could be established
based on elimination or significant alleviation of a
DS-related phenotype observed in a mouse mutant
carrying the duplication alone. This type of ‘sub-
tractive’ or ‘normalization’ strategy has been used
by many labs to ascertain the contribution of indi-
vidual Hsa21 genes orthologs.43–47 For this reason,
mouse mutants carrying null alleles of Hsa21 gene
orthologs are essential reagents for examining the
contributions of these genes to DS phenotypes.
Through the years, null alleles for many of these
genes were generated by individual laboratories
because of their importance as individual genes.
The pace of null allele generation was drastically
expedited after the launches of several systematic
knockout (KO) projects, including ‘NIH Knockout
Mouse Project’ and ‘The European Conditional
Mouse Mutagenesis Program’.48–51 The current sta-
tus of the KO mice for the Hsa21 gene orthologs in
the public domain, including the status of targeting
vector, targeted ES cells and mouse mutants, is pre-
sented in Supplementary Table S1.

Impact of Ts21 on DNA methylation

patterns

Evidence has been continuously accumulating that
the dosage increase of a Hsa21 gene or gene
ortholog can contribute to a mutant phenotype
associated with DS. Recent results suggest the possi-
bility that epigenetic events may also be involved
in such genotype–phenotype relationships. Gene-
specific alterations in CpG methylation were first
detected in blood leukocytes from adults with DS
when compared to the samples from control indivi-
duals.52 The presence of such a DS-specific methyla-
tion profile was further supported by other studies

on the samples isolated from Ts21 placentas, fibro-
blasts53–55 and more recently neural tissues.56

Interestingly, such a phenomenon was recapitulated
in mouse models of DS,56 providing a system for
further exploring the processes and the conse-
quences of DS-associated methylation alterations.
Moreover, the epigenetic responses to the presence
of the extra genetic material are not restricted to
altered CpG methylation patterns; changes in his-
tone modifications have also been described.57

When considered as a well-defined and experimen-
tally accessible model system, results from these stud-
ies of genetic–epigenetic interactions in human Ts21
and in the mouse lines with engineered genomic
rearrangements will likely have important implica-
tions for understanding analogous genetic–epigenetic
interactions in other developmental disorders asso-
ciated with aneuploidies as well as in human cancers
in which aneuploidies are often a hallmark.58

Phenotypic analysis of mouse models

of DS

Developmental cognitive deficits are the most stud-
ied phenotype of DS because human Ts21 is a lead-
ing genetic cause of this phenotype.18,59–63 The
average IQ of individuals with Ts21 is significantly
lower when compared with individuals without
Ts21,60,64 and while there are marked inter-
individual variations, probably due to genetic back-
ground effects, some degree of intellectual disability
is seen in all individuals with DS. Cognitive deficits
include impairment in spatial memory and long-
term memory as well as difficulties in acquiring
new skills.61,65,66 Neuropsychological examina-
tions have revealed that individuals with Ts21
exhibit hippocampal dysfunctions.61,67

Since developmental cognitive deficits of
Ts65Dn, Ts1Cje and Tc1 mice have been exten-
sively reviewed, here we will focus on this pheno-
type analyzed in newly engineered triplication
mouse models. To determine if the triplication of a
specific Hsa21 syntenic region, including an entire
Hsa21 sytenic region on a mouse chromosome, is
necessary and/or sufficient to cause developmental
cognitive deficits, cognitively relevant phenotypes of
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duplication mutants and/or compound mutants
were characterized, which include T-maze test,
Morris water maze tests and fear conditioning tests
as well as analysis of synaptic plasticity using
extracellular recording of hippocampal slices. In
parallel with Ts65Dn mice, abnormal cognitively
relevant phenotypes were observed in Dp(16)
1Yey/+ mice68 and any compound mutants carry-
ing Dp(16)1Yey and a duplication(s) of any
other Hsa21 syntenic regions,69,70 which include
Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mice
carrying duplications of the entireties of all the three
syntenic regions located on Mmu10, Mmu16 and
Mmu17. Although Hsa21 syntenic region on
Mmu10 contains 39 Hsa21 gene orthologs, a dupli-
cation of this syntenic region alone has not been
shown to cause an abnormal cognitively relevant
phenotype.68 Interestingly in view of the small
chromosomal sub-region involved, a duplication of
the Hsa21 syntenic region on Mmu17 was able to
consistently cause abnormal hippocampal long-term
potentiation.36,68 Many deletion mutants have been
used to determine if a Hsa21 syntenic region is neces-
sary for a phenotype. Such an approach has been
used to show that the so-called DS critical region is
necessary for cognitive deficits in young adult
mice.39,41 The extension of such a subtractive strat-
egy has also led to show that the triplications of
some Hsa21 gene orthologs are necessary for cogni-
tively relevant phenotypes, including Dyrk1a.41,71

The data from this type of analysis also suggest
potential interactions between different triplicated
Hsa21 gene orthologs.36,72

Besides developmental cognitive deficits, other
phenotypes of DS that have also been analyzed
in new models include heart defects,33,73–75 cra-
niofacial abnormalities,76 leukemia77 and middle
ear infection.37

Another key phenotype in DS is AD, which is
early onset with AD-type neurodegeneration
detected by age 40 for all the individuals carrying
Ts21.78 The neuropathological findings of AD in
DS are very similar to AD without Ts21 in the pat-
tern of emergence of specific pathological markers,
which include neuritic plaques and neurofibrillary
tangles.79–81 Neuron loss is present in the locus

coeruleus and basal forebrain.82–84 The evidence
from individuals carrying segmental Ts21 suggests
the triplication of the amyloid beta precursor pro-
tein gene (APP) is necessary for Alzheimer-type neu-
rodegeneration.85–89 This is also consistent with a
more recent report, in which a study of 30 people
partially trisomic for Hsa21 provided evidence that
an increased dose of APP is necessary for AD in
DS.8 Interestingly, mosaic Ts21 or segmental Ts21
has recently been detected in sporadic AD cases.90–
94 Detections of mosaic wild-type APP triplication
in brains of patients with sporadic AD suggest the
possible causative relationship between APP dosage
increase and neurodegeneration.95 Therefore, AD
pathogenesis in DS may provide insights into AD
pathogenesis in other populations, including spor-
adic AD.96,97

Mouse models of DS have demonstrated import-
ant parallels with AD in DS. In Ts65Dn mice, age-
related neurodegeneration impacts neurons of the
locus coeruleus and cholinergic neurons in the basal
forebrain medial septum.44,98 Significantly, increased
App dose was shown to be necessary for degener-
ation of both neuronal populations in Ts65Dn
mice.44,98 Interestingly, both the temporal and spatial
patterns of neurodegeneration are also consistent
with those in AD with or without Ts21; degeneration
of locus coeruleus neurons predates basal forebrain
cholinergic neurons.99 Specifically, in Ts65Dn mice,
locus coeruleus showed progressive age-related
changes in volume and cell number at 3–6 months of
age, with changes in basal forebrain cholinergic neu-
rons at 9–12 months.44,100–103 Another important
AD neuropathology is enlargement of early endo-
somes. The implication is associated with the fact
that APP processing occurs in endosomes.104 One of
the consequences of the abnormalities associated with
endosomes is impaired retrograde trafficking of neu-
rotrophins in endosomes of axons, which has been
implicated as the cause for degeneration of basal fore-
brain cholinergic neurons.44 Evidence has shown that
the triplication of the App ortholog is required for
mutant mice to exhibit enlargement of endosomes
and impaired neurotrophin transport.43,44 Together,
these findings suggest that neuronal degeneration rele-
vant to AD in DS is recapitulated in mutant mice.
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Future prospects

Fueled by sequencing the human and mouse gen-
omes and development of chromosome engineering
technology, the mouse has continued to serve as a
rewarding organism for genetic modeling and dis-
section of DS. With the development of new gen-
ome manipulating tools, such as CRISPR/Cas9, the
pace of mouse-based genetic studies of DS is
anticipated to be further accelerated. With null
alleles of Hsa21 gene orthologs in combination
with new mouse mutants carrying a duplication or
deletion of Hsa21 syntenic regions, we expect to
define the contributions of Hsa21 genes to various
DS phenotypes, including at the behavioral,
physiological, cellular and epigenetic levels, which
will lay the groundwork to unravel the true
mechanisms underlying these phenotypes. All
these efforts are a prelude to building a sufficient
knowledge basis for rational designing of thera-
peutic interventions to enhance the quality of life
for individuals with DS.

Supplementary material

Supplementary material is available at BRIMED
online.
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