Title
Low-Fat Dietary Pattern and Risk of Colorectal Cancer: The Women's Health Initiative Randomized Controlled Dietary Modification Trial

Permalink
https://escholarship.org/uc/item/9ch4784s

Journal
JAMA, 295(6)

ISSN
0098-7484

Authors
Beresford, Shirley AA
Johnson, Karen C
Ritenbaugh, Cheryl
et al.

Publication Date
2006-02-08

DOI
10.1001/jama.295.6.643

Peer reviewed
Low-Fat Dietary Pattern and Risk of Colorectal Cancer

The Women’s Health Initiative Randomized Controlled Dietary Modification Trial

Shirley A. A. Beresford, PhD; Karen C. Johnson, MD; Cheryl Ritenbaugh, PhD; Norman L. Lasser, MD; Linda G. Snetselaar, PhD; Henry R. Black, MD; Garnet L. Anderson, PhD; Anmlouise R. Assaf, PhD; Tamara Bassford, MD; Deborah Bowen, PhD; Robert L. Brunner, PhD; Robert G. Brzyski, MD; Bette Caan, DrPH; Rowan T. Chlebowski, MD; Margery Cassidy, MD; Rosanne C. Harrigan, EdD; Jennifer Hays, PhD; David Heber, MD; Gerardlo Heiss, MD; Susan L. Hendrix, DO; Barbara V. Howard, PhD; Judith Hsia, MD; F. Allan Hubbell, MD; Rebecca D. Jackson, MD; Jane Morley Kotchen, MD; Lewis H. Kuller, MD; Andrea Z. LaCroix, PhD; Dorothy S. Lane, MD; Robert D. Langer, MD; Corona Lewis, MD; JoAnne E. Manson, MD; Karen L. Margolis, MD; Yasmin Mossavar-Rahmani, PhD; Judith K. Ockene, PhD; Linda M. Parker, DSc; Michael G. Perri, PhD; Phillipam Lawrence; Margery Phillips, MD; Ross L. Prentice, PhD; John Robbins, MD; Jacques E. Rossouw, MD; Gloria E. Sarto, MD; Marcia L. Stefanick, PhD; Linda Van Horn, PhD; Mara Z. Vitolins, DrPH; JeaneWacławski-Wende, PhD; Robert B. Wallace, MD; Evelyn Whitlock, MD

Context Observational studies and polyp recurrence trials are not conclusive regarding the effects of a low-fat dietary pattern on risk of colorectal cancer, necessitating a primary prevention trial.

Objective To evaluate the effects of a low-fat eating pattern on risk of colorectal cancer in postmenopausal women.

Design, Setting, and Participants The Women’s Health Initiative Dietary Modification Trial, a randomized controlled trial conducted in 48,835 postmenopausal women aged 50 to 79 years recruited between 1993 and 1998 from 40 clinical centers throughout the United States.

Interventions Participants were randomly assigned to the dietary modification intervention (n=19,541; 40%) or the comparison group (n=29,294; 60%). The intensive behavioral modification program aimed to motivate and support reductions in dietary fat, to increase consumption of vegetables and fruits, and to increase grain servings by using group sessions, self-monitoring techniques, and other tailored and targeted strategies. Women in the comparison group continued their usual eating pattern.

Main Outcome Measure Invasive colorectal cancer incidence.

Results A total of 480 incident cases of invasive colorectal cancer occurred during a mean follow-up of 8.1 (SD, 1.7) years. Intervention group participants significantly reduced their percentage of energy from fat by 10.7% more than did the comparison group at 1 year, and this difference between groups was mostly maintained (8.1% at year 6). Statistically significant increases in vegetable, fruit, and grain servings were also made. Despite these dietary changes, there was no evidence that the intervention reduced the risk of invasive colorectal cancer during the follow-up period. There were 201 women with invasive colorectal cancer (0.13% per year) in the intervention group and 279 (0.12% per year) in the comparison group (hazard ratio, 1.08; 95% confidence interval, 0.90-1.29). Secondary analyses suggested potential interactions with baseline aspirin use and combined estrogen-progestin use status (P=0.01 for each). Colorectal examination rates, although not protocol defined, were comparable between the intervention and comparison groups. Similar results were seen in analyses adjusting for adherence to the intervention.

Conclusion In this study, a low-fat dietary pattern intervention did not reduce the risk of colorectal cancer in postmenopausal women during 8.1 years of follow-up.

Clinical Trials Registration ClinicalTrials.gov Identifier NCT00000611

IJA. 2006;295:643-654

See also pp 629 and 655.
national comparisons suggested that countries with 50% lower fat intake than the US population had approximately one third the risk of colorectal cancer.\(^1\)\(^2\) Migration studies supported this hypothesis. Women migrating from countries with low fat consumption to countries with high fat consumption experienced the higher colorectal cancer rates of their new country.\(^3\)\(^4\) Fairly consistent evidence existed for an effect of dietary fat, vegetables and fruits, and grains on colorectal cancer risk from within-country observational studies.\(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\) although the protective effect of lower fat intake was no longer clear after adjusting for energy intake.\(^2\)\(^9\) The WHI Dietary Modification Trial is the first randomized trial to directly address the health effects of a low-fat eating pattern in predominantly healthy postmenopausal women from diverse racial/ethnic, geographic, and socioeconomic backgrounds. This article reports the principal results for colorectal cancer.

METHODS

Study Population

Recruitment of postmenopausal women aged 50 to 79 years who were interested in 1 or more components of the clinical trials was conducted by 40 clinical centers throughout the United States.

Recruitment was typically by direct mail from purchased lists,\(^10\) enhanced by advertising and other community promotion. Details of the study design and recruitment have been published previously.\(^10\)\(^12\) Eligibility criteria for the dietary modification trial included willingness to be randomized to an intervention or comparison group and having a fat intake at baseline of 32% or more of total calories as evaluated by the WHI food frequency questionnaire.\(^13\) Major exclusions made at screening included women with any prior colorectal cancer or breast cancer, other cancers in the last 10 years, type 1 diabetes, medical conditions with predicted survival of less than 3 years, or adherence concerns, including having meals frequently prepared away from home.

Between 1993 and 1998, 48,835 eligible women were randomly assigned to an intervention or a comparison group in the ratio of 2:3 for cost-efficiency (Figure 1). Randomization was based on a permuted-block algorithm with block sizes of 5, 10, or 15 and stratified by clinical center and age group (50-54, 55-59, 60-69, and 70-74 years).\(^14\) All women provided written informed consent at baseline, as approved by institutional review boards. Of the women randomized into this trial, 16% were simultaneously randomized into 1 of the arms of the hormone therapy trial (conjugated equine estrogen trial or estrogen-plus-progestin trial)\(^11\) and 25,210 were subsequently randomized into a trial of calcium and vitamin D supplementation.\(^14\)

Intervention

The intervention was designed to promote dietary change with the goals of reducing total fat to 20% of energy intake, increasing vegetables and fruits to at least 5 servings daily and grains to at least 6 servings daily.\(^15\)\(^16\) We refer to this as a low-fat eating pattern. The intervention did not include total energy reduction or weight loss goals. Although not a separate focus of the intervention, it was anticipated that by reducing fat to 20% of energy intake, saturated fat would also be reduced (7% energy intake). The intervention was an intensive behavioral modification program, using 18 group sessions in the 1st year and quarterly sessions thereafter, led by specially trained and certified nutritionists.\(^15\) Each participant was given her own dietary fat-gram goal according to her height. The intervention emphasized self-monitoring techniques and introduced other tailored and targeted strategies, such as motivational interviewing,\(^17\) to lower fat intake throughout the intervention period. Comparison group participants received a copy of the US Department of Health and Human Services' Di-
Dietary intake was monitored using the WHI food frequency questionnaire at 1 year and in a rotating one-third subsample every year thereafter. Reported values after year 1 are based on the 3-year intervals in which all participants were assessed. At baseline, all women completed a 4-day food record after receiving instruction in keeping food records. Nutrition staff at each clinical center checked each record for completeness. The records of women who developed colorectal cancer were analyzed in a case-case design to contrast intervention and comparison cases according to baseline dietary intake.

Fasting blood specimens were obtained at baseline, at the first annual follow-up, and in a 5.8% subsample (n=2816) at years 3 and 6 and were centrally stored at −70°C. Biomarkers of dietary change (plasma total cholesterol, plasma triglycerides, serum \(\gamma \)-tocopherol and serum total carotenoids [\(\alpha \)- and \(\beta \)-carotene, \(\beta \)-cryptoxanthin, zeaxanthin, and lutein]) were measured in baseline and year 3 specimens from the 5.8% subsample after excluding participants experiencing a trial end point during the previous year.

Women completed a medical update questionnaire every 6 months, and medical records were sought for all women reporting colorectal cancer. Locally trained, blinded physician adjudicators reviewed medical records and pathology reports from the self-reported colorectal cancer cases (available for 97%). Colorectal cancer was confirmed by blinded central adjudicators and coded using the 1992 Surveillance, Epidemiology, and End Results system. In all clinical centers, study personnel involved in delivery of the dietary intervention were not part of outcomes ascertainment or adjudication.

The medical update also monitored the frequencies of bowel examinations and incident intestinal polyps or adenomas. Frequency of bowel exami-
nations was not dictated by the WHI protocol. Decisions regarding screening and diagnostic workups for colorectal cancer were made by the women’s personal physicians.

Definitions of Outcomes and Subgroups

The primary study outcome was invasive colorectal cancer incidence; subclassifications of colorectal cancer were secondary outcomes. These include groupings within the intestinal tract of distinct etiology, namely, invasive cancer of the proximal colon (cecum, ascending colon, hepatic flexure of colon, transverse colon, splenic flexure), of the distal colon (descending colon, sigmoid colon), 21-23 and of the rectum, including rectosigmoid junction. 24 Results are also presented for total cancer incidence, total cancer mortality, total mortality, and a global index to provide a context for the colorectal cancer results. Throughout the trial, a global index end point was monitored. This consisted of the first to occur of invasive breast cancer, colorectal cancer, coronary heart disease, or death from other causes. The intervention effects on breast cancer and cardiovascular disease are reported separately. 25,26

Potential interactions were explored in subgroups of participants identified prior to analysis. These were baseline health characteristics known to influence colorectal cancer risk and baseline dietary patterns. Two post hoc interactions were also examined with composite variables of baseline hormone therapy use and assignment to the active treatment group in the hormone therapy trial.

Statistical Analysis

The protocol-designated analysis to evaluate the efficacy of the low-fat eating pattern intervention was a weighted log-rank test, with weights defined by time since randomization as 0 at randomization rising linearly to 1 at 10 years of follow-up, and constant (at 1) thereafter. First, the Cox proportional hazards model was used to assess baseline characteristics. Adjustment for participation in the calcium and vitamin D trial was based on the randomization date as a time-dependent covariate. Cumulative disease rates over time were estimated using the Kaplan-Meier method. Annualized incidence rates were assessed using time-to-event methods based on the intention-to-treat principle. Women without the diagnosis were censored for that event at the time of their last follow-up contact. Comparisons of rates of colorectal cancer (intervention effects) are presented as hazard ratios (HRs) and nominal 95% confidence intervals (95% CIs) from Cox regression models, stratified by age, prior colorectal cancer, and randomization status in the hormone therapy trial. Although history of colorectal cancer was an exclusion criterion, after randomization, 16 women reported no further diagnoses of colorectal cancer. Adjustment for participation in the WHI Women’s Health Initiative, 95% confidence intervals (95% CIs) from Cox regression models, stratified by age, prior colorectal cancer, and randomization status in the hormone therapy trial.
panded Cox models. Continuous variables were tested on the original linear scale but are described with relevant categories. Subgroups using baseline dietary factors obtained from 4-day food records were analyzed using a case-only approach, essentially equivalent to a "full-cohort" analysis of interaction. Because about 23 interactions were tested, at least 1 significant test would be expected to occur by chance at the .05 level of significance.

We examined the extent to which the intervention was associated with change

![Figure 2. Differences in Mean Dietary Intake Between Intervention and Comparison Groups for Each Year of Follow-up](image)

Differences were calculated by subtracting comparison group data from intervention group data. Error bars indicate 95% confidence intervals.

Table 2. Percentage Changes From Baseline to Year 3 for Dietary Factors and Selected Biomarkers Related to Colorectal Cancer Risk

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Baseline, Mean (SD)</th>
<th>Year 3, Mean (SD)</th>
<th>Change at Year 3, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total energy, kcal/d</td>
<td>1790.2 (710.1)</td>
<td>1789.4 (703.0)</td>
<td>1495.9 (647.5)</td>
</tr>
<tr>
<td>Fiber, g/d</td>
<td>15.4 (6.4)</td>
<td>15.4 (6.4)</td>
<td>17.9 (7.7)</td>
</tr>
<tr>
<td>Daily energy from fat, %</td>
<td>37.8 (5.1)</td>
<td>37.8 (5.0)</td>
<td>26.7 (7.9)</td>
</tr>
<tr>
<td>Daily energy from saturated fat, %</td>
<td>12.7 (2.5)</td>
<td>12.7 (2.5)</td>
<td>8.8 (3.0)</td>
</tr>
<tr>
<td>Servings/d</td>
<td>0.9 (0.6)</td>
<td>0.9 (0.6)</td>
<td>0.6 (0.4)</td>
</tr>
<tr>
<td>Fish</td>
<td>0.3 (0.3)</td>
<td>0.3 (0.2)</td>
<td>0.3 (0.2)</td>
</tr>
<tr>
<td>Poultry</td>
<td>0.4 (0.3)</td>
<td>0.4 (0.3)</td>
<td>0.4 (0.3)</td>
</tr>
<tr>
<td>Vegetables and fruits</td>
<td>3.6 (1.8)</td>
<td>3.6 (1.8)</td>
<td>5.2 (2.5)</td>
</tr>
<tr>
<td>Fruit</td>
<td>1.6 (1.0)</td>
<td>1.6 (1.1)</td>
<td>2.6 (1.5)</td>
</tr>
<tr>
<td>Grains</td>
<td>4.7 (2.5)</td>
<td>4.8 (2.5)</td>
<td>4.6 (2.5)</td>
</tr>
<tr>
<td>Vitamin E, mg/d</td>
<td>9.1 (5.7)</td>
<td>9.1 (5.5)</td>
<td>7.3 (5.4)</td>
</tr>
<tr>
<td>Dietary folate equivalent, µg/d</td>
<td>541.8 (421.1)</td>
<td>541.2 (423.4)</td>
<td>872.4 (480.8)</td>
</tr>
</tbody>
</table>

Biomarkers

Total cholesterol, mg/dL	224.0 (35.6)	224.2 (39.2)	214.1 (35.3)	216.6 (35.9)	−3.6 (14.0)	−2.1 (13.6)
Triglycerides, mg/dL	155.8 (85.7)	158.5 (87.2)	161.2 (106.6)	159.6 (76.3)	8.9 (41.4)	8.3 (40.6)
Total carotenoids, µg/mL	0.7 (0.4)	0.7 (0.4)	0.7 (0.4)	0.6 (0.4)	6.7 (49.5)	1.1 (47.2)
γ-Tocopherol, µg/mL	2.2 (1.4)	2.2 (1.4)	1.4 (1.4)	1.7 (1.3)	−21.7 (52.8)	−5.2 (102.2)
Weight, kg	76.8 (16.8)	76.7 (16.5)	75.7 (17.1)	76.7 (16.8)	−0.7 (11.0)	1.2 (11.5)

SI conversions: To convert total cholesterol to mmol/L, multiply by 0.0259; to convert triglycerides to mmol/L, multiply by 0.00113.

* Dietary data were estimated using a food frequency questionnaire.
† Difference is significant at P<.001 by 2-sample t test using log-transformed values.
‡ Measured in a 5.8% subsample (n = 2816). Means (SDs) are weighted by race/ethnicity using the racial/ethnic distribution of participants randomized to the entire trial. Tests of differences between the randomization groups were performed on the weighted means (SDs).
§ Difference is significant at P<.05 by 2-sample t test using log-transformed values.

©2006 American Medical Association. All rights reserved.
in other hypothesized dietary risk factors for colorectal cancer, including biomarkers. Differential changes at 3 years were expressed as a percentage of initial mean.

Analyses were carried out using SAS statistical software, version 9.1 (SAS Institute Inc, Cary, NC). P < .05 was considered statistically significant for all analyses.

Table 3. Annualized Incidence Rate of Outcomes in Intervention vs Comparison Groups

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Intervention, No. (%)</th>
<th>Comparison, No. (%)</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive colorectal cancer‡</td>
<td>201 (0.13)</td>
<td>279 (0.12)</td>
<td>1.08 (0.90-1.29)</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>153 (0.10)</td>
<td>218 (0.09)</td>
<td>1.05 (0.85-1.30)</td>
</tr>
<tr>
<td>Proximal colon (C18.0, C18.2-C18.5)§</td>
<td>106 (0.07)</td>
<td>127 (0.06)</td>
<td>1.25 (0.96-1.61)</td>
</tr>
<tr>
<td>Distal colon (C18.6, C18.7)§</td>
<td>41 (0.03)</td>
<td>76 (0.03)</td>
<td>0.86 (0.56-1.19)</td>
</tr>
<tr>
<td>Rectal cancer</td>
<td>50 (0.03)</td>
<td>67 (0.03)</td>
<td>1.11 (0.77-1.61)</td>
</tr>
<tr>
<td>Rectosigmoid junction (C19.9)§</td>
<td>17 (0.01)</td>
<td>21 (0.01)</td>
<td>1.18 (0.62-2.23)</td>
</tr>
<tr>
<td>Rectum (C20.9)§</td>
<td>33 (0.02)</td>
<td>47 (0.02)</td>
<td>1.06 (0.68-1.65)</td>
</tr>
<tr>
<td>Other (overlapping lesions/unknown/missing)</td>
<td>8 (0.01)</td>
<td>12 (0.01)</td>
<td>ND</td>
</tr>
<tr>
<td>Colorectal cancer mortality§</td>
<td>47 (0.03)</td>
<td>56 (0.02)</td>
<td>1.26 (0.85-1.85)</td>
</tr>
<tr>
<td>Incidence of polyps/adenomas ¶</td>
<td>3402 (2.16)</td>
<td>5567 (2.35)</td>
<td>0.91 (0.87-0.95)</td>
</tr>
<tr>
<td>Total cancer incidence</td>
<td>1946 (1.24)</td>
<td>3040 (1.28)</td>
<td>0.97 (0.89-1.05)</td>
</tr>
<tr>
<td>Total cancer mortality</td>
<td>436 (0.28)</td>
<td>690 (0.29)</td>
<td>0.96 (0.90-1.01)</td>
</tr>
<tr>
<td>Global index#</td>
<td>2051 (1.30)</td>
<td>3207 (1.35)</td>
<td>0.95 (0.90-1.01)</td>
</tr>
<tr>
<td>Total mortality</td>
<td>950 (0.60)</td>
<td>1454 (0.61)</td>
<td>0.97 (0.89-1.05)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ND, analysis not done because the events were not part of the major subdivisions of invasive colorectal cancer.

†Cox regression models stratified according to age group, prior colorectal cancer, and hormone therapy study participation; calcium and vitamin D study participation was adjusted as a time-dependent variable.

§C18 indicates cecum; C18.2, ascending colon, right colon; C18.3, hepatic flexure of colon; C18.4, transverse colon; C18.5, splenic flexure of colon; C18.6, descending colon, left colon; C18.7, sigmoid colon; C19.9, rectosigmoid junction; C20.9, rectum, not otherwise specified.

†‡All colorectal cancer–related mortality, with or without prior reporting of colorectal cancer.

¶Self-reported outcomes only.

#Global index is defined as the first of invasive breast cancer, any colorectal cancer, coronary heart disease, or death due to other causes.

RESULTS

A total of 19,541 women (40%) were assigned to the intervention group and 29,294 (60%) were assigned to the comparison group. The last intervention session was held in August 2004, and endpoint accrual was complete by March 2005. Mean length of follow-up was 8.1 (SD, 1.7) years (maximum, 11.2 years).

Baseline Characteristics

Colorectal cancer risk characteristics were very similar in the 2 study groups, including age, self-reported race/ethnicity, education, family history of colorectal cancer, prior colorectal cancer screening, alcohol use, and mean intake of energy, fat, fiber, red meat, vegetables and fruits, grains, calcium, and folate (Table 1). There were small imbalances in 3 characteristics: reported use of aspirin at baseline with respect to both frequency (P = .03) and duration (P = .01), proportion of women randomized to the various groups in the hormone therapy trials (P = .05), and proportion of women subsequently joining the randomized trial of calcium and vitamin D supplementation (P < .001).

Dietary Behavior Change

By the end of the first year, the difference in percentage of energy from fat between the comparison group and the intervention groups was 10.7% (Figure 2). During the entire intervention period, the differential reduction in percentage of energy from fat was about 70% of the design goals of the trial. Relatively few women met the dietary target of 20% energy from fat (31.4% at year 1 and 14.4% at year 6). Reductions in saturated fat consumption and increases in fruit and vegetable servings and servings of grain (Figure 2) were statistically significant by 1 year. The intervention was also associated with statistically significant increases in dietary intake of folate and in plasma total carotenoids and reductions in reported red meat consumption, total vitamin E intake, weight, serum cholesterol, and plasma γ-tocopherol (Table 2).
Colorectal Cancer Risk and Other Clinical Outcomes

As of March 31, 2005, there were 201 cases of invasive colorectal cancer (0.13% per year) in the intervention group and 279 (0.12% per year) in the comparison group, similar to national statistics for women in this age range (0.12%). The WHI low-fat eating pattern intervention did not reduce the risk of invasive colorectal cancers (HR, 1.08; 95% CI, 0.90-1.29) (Table 3). Adjustment for the small imbalance in aspirin use did not alter these results (HR, 1.08; 95% CI, 0.90-1.29). The cumulative hazards for colorectal cancer in the 2 groups were very similar over follow-up time (weighted P=.29) (Figure 3). There was no evidence of a time trend for invasive colorectal cancer in secondary analyses (P=.60 for trend), with HRs in the early, middle, and late periods of 1.24 (95% CI, 0.85-1.81), 0.91 (95% CI, 0.68-1.22), and 1.19 (95% CI, 0.89-1.60), respectively.

There was no evidence of reduced risk for any category of colorectal cancer outcome associated with the intervention. The estimated intervention effects in proximal and distal colon cancer were somewhat different (HRs, 1.25 vs 0.86; P=.07 from likelihood ratio test), but there was no other evidence of differential effect by colorectal cancer subsite. None of the HRs for total cancer incidence, total cancer mortality, global index, or total mortality were statistically significant. The annualized incidence rates of colon polyps or adenomas (self-report) were lower in the intervention group than in the comparison group (2.16% vs 2.35%, respectively; HR, 0.91; 95% CI, 0.87-0.95). No differences were seen between groups for tumor characteristics (Table 4).

Colorectal clinical examination rates were similar between the intervention groups (Figure 4). There were small differences in the percentage of women with no colonoscopy or sigmoidoscopy during follow-up (45.7% for intervention vs 44.1% for comparison; P=.04). Overall, 10.6% in the intervention group and 9.9% in the comparison group had neither colon nor rectal screenings during follow-up (P=.30).

Subgroup Analyses

Among the 23 subgroups examined, only the interactions with aspirin use and the composite variable of combined hormone use (personal use at baseline or randomization to active estrogen plus progestin) were significant at the .01 level (Figure 5). Although the risk of colon cancer increased with age, there was no interaction of intervention with age at baseline (P=.18). Intervention HRs were not significantly different among the 4 different racial/ethnic groups with sufficient numbers of events (P=.78). The estimated intervention effect was lower in baseline high-dose aspirin users compared with that in nonusers (P=.01); however, the higher incidence observed (0.19%) in this subgroup of comparison women is an anomaly, suggesting that other factors may be relevant. No interaction was seen with duration of aspirin use, statin use, or nonaspirin nonsteroidal antiinflammatory drug use.
LOW-FAT DIETARY PATTERN AND RISK OF COLORECTAL CANCER

Figure 4. Bowel Examinations by Dietary Intervention vs Comparison Group and Follow-up Year

<table>
<thead>
<tr>
<th>Intervention Group</th>
<th>Comparison Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal Examination</td>
<td>Rectal Examination</td>
</tr>
<tr>
<td>Hemoccult Guaiac</td>
<td>Hemoccult Guaiac</td>
</tr>
<tr>
<td>Sigmoidoscopy/Flexible Sigmoidoscopy/Colonoscopy</td>
<td>Sigmoidoscopy/Flexible Sigmoidoscopy/Colonoscopy</td>
</tr>
<tr>
<td>Barium Enema Radiography</td>
<td>Barium Enema Radiography</td>
</tr>
</tbody>
</table>

Figure 6

Further Analyses

To explore the effect of nonadherence to trial activities, a Cox regression model was fit censoring follow-up for a participant when she first became nonadherent (did not attend the annual clinic visit or, for intervention women, completed 50% or fewer intervention sessions in a given year). Inverse censoring probability weights, derived from Cox regression models of 18 baseline variables (demographic, dietary, psychosocial, family history of colorectal cancer, physical activity, body mass index, alcohol consumption, multivitamin use, and randomization into the hormone therapy trial) for intervention and comparison groups separately, were used to adjust for the imbalance created by the adherence censoring.25

Adherence rates from these models were 85%, 75%, and 66% at years 3, 6, and 9, respectively, among comparison women and 61%, 37%, and 25% among intervention women. The difference between adherent intervention vs adherent comparison women in percentage of energy from fat (from the food frequency questionnaire) was 12.1%, 11.4%, 10.4%, and 9.5% at years 1, 3, 6, and 9. The HR for colorectal cancer from the inverse probability-weighted analysis was 1.09 (95% CI, 0.88-1.36). Exploratory analyses using other adherence measures did not appreciably change the interpretation.

COMMENT

An intervention aimed toward a low-fat eating pattern did not reduce colorectal cancer risk in postmenopausal women. Despite a significant change in fat intake and increases in vegetable, fruit, and grain consumption, the intervention hazard ratio is in the direction of an increased risk. There were no substantial differences in tumor characteristics or in rates of bowel screening between groups. Although self-reported incidence of colorectal polyps or adenomas was lower in the intervention group, no evidence of a trend toward lower colorectal cancer risk with time in the intervention group was observed over the mean 8.1-year study period.

These findings are consistent with the findings from the Polyp Prevention Trial,31 a secondary prevention trial of polyp recurrence, which had a similar goal for fat, fruit, and vegetable intake but also included a goal of 18 g/1000 kcal of dietary fiber.32 The Polyp Prevention Trial observed no effect on polyp recurrence in the 2079 participants followed up for 4 years.32 A small trial in Toronto, Ontario, of high fiber and low fat showed no effect on recurrence of neoplastic polyps, but, within an intensive counseling subgroup, concentrations of fecal bile acids appeared to be reduced.33 A small factorial trial in Australia of a low-fat intervention, β-carotene supplementation, or wheat bran supplementation found no reduction in recurrence rates of adenomas but suggested that the combination of low fat and wheat bran reduced the transition from smaller to larger adenomas.34

Since the WHI Dietary Modification Trial was designed, the hypothesized relationship between dietary fat and risk of colorectal cancer has been questioned.35 More recently, higher red meat consumption has been associated with increased colorectal cancer risk,36-39 particularly in the distal colon.37 The putative mechanism may be related to heme, the iron carrier of red meat, rather than to its fat content.38 In the WHI, the dietary intervention reduced red meat consumption (Table 2), with no apparent overall benefit on colorectal cancer risk but, perhaps, some shift in risk in distal vs proximal colon cancers.

Mixed support exists for an influence of vegetables and fruits on colorectal cancer risk.37,40-42 Some of the antioxidants they contain have not proved efficacious in reducing colorectal adenomas or preventing incident colorectal can-
Regular consumption of alcohol has been associated with elevated risk of colorectal cancer in some prospective studies, particularly among persons with low folate status. This pattern was not found in the comparison group of this study. Observations in East Africa by Burkitt led to the hypothesis that very high fiber reduces colorectal cancer risk. This has mixed support from observational studies and polyp and adenoma recurrence trials. A European trial found an adverse effect of soluble fiber on colorectal adenoma recurrence.

Figure 5. Invasive Colorectal Cancer Hazard Ratios and Annualized Incidence by Baseline Demographic and Medical History Characteristics

<table>
<thead>
<tr>
<th>No. of Cases of Colorectal Cancer (Annualized Percentage)</th>
<th>P Value for Interaction*</th>
<th>Favors</th>
<th>Favors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Enrollment, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>39 (0.06) 66 (0.07)</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>95 (0.13) 143 (0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-79</td>
<td>67 (0.27) 70 (0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>165 (0.13) 229 (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>23 (0.14) 30 (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>5 (0.09) 11 (0.13)</td>
<td>.78</td>
<td></td>
</tr>
<tr>
<td>American Indian</td>
<td>0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>4 (0.12) 3 (0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown/Other</td>
<td>4 (0.15) 6 (0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-Degree Relative With Colorectal Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>151 (0.12) 200 (0.11)</td>
<td>.36</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>26 (0.14) 44 (0.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Mass Index‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>45 (0.11) 67 (0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td>81 (0.14) 94 (0.11)</td>
<td>.84</td>
<td></td>
</tr>
<tr>
<td>30-35</td>
<td>46 (0.13) 74 (0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>35</td>
<td>29 (0.12) 44 (0.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>170 (0.13) 203 (0.11)</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td><325 mg/d</td>
<td>7 (0.11) 11 (0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥325 mg/d</td>
<td>24 (0.11) 65 (0.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Randomized to Calcium and Vitamin D</td>
<td>117 (0.15) 140 (0.13)</td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>Randomized to Calcium and Vitamin D Placebo</td>
<td>39 (0.10) 64 (0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized to Calcium and Vitamin D Placebo</td>
<td>45 (0.12) 75 (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormone Use at Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never User</td>
<td>110 (0.17) 139 (0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past User: Estrogen Alone</td>
<td>30 (0.22) 33 (0.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past User: Estrogen Plus Progestin</td>
<td>11 (0.15) 9 (0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past User: Both</td>
<td>4 (0.29) 3 (0.18)</td>
<td>.11</td>
<td></td>
</tr>
<tr>
<td>Current User: Estrogen Alone</td>
<td>29 (0.07) 54 (0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current User: Estrogen Plus Progestin</td>
<td>17 (0.06) 40 (0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized to Hormone Therapy Trials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not in Either Hormone Therapy Trial</td>
<td>160 (0.12) 219 (0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized to Estrogen Alone Active</td>
<td>15 (0.30) 11 (0.13)</td>
<td>.16</td>
<td></td>
</tr>
<tr>
<td>Randomized to Estrogen Alone Placebo</td>
<td>8 (0.15) 12 (0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized to Estrogen Plus Progestin Active</td>
<td>5 (0.06) 13 (0.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized to Estrogen Plus Progestin Placebo</td>
<td>13 (0.18) 24 (0.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Current Estrogen Alone User or Randomized to Estrogen Alone Trial Active Arm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>44 (0.10) 63 (0.09)</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>157 (0.14) 216 (0.13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Current Estrogen Plus Progestin User or Randomized to Estrogen Plus Progestin Active Treatment Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22 (0.06) 53 (0.08)</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>179 (0.15) 226 (0.13)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error bars indicate 95% confidence intervals.
*Interaction test from likelihood ratio test (factors on the continuous scale were tested as continuous variables when possible.
†Cox regression models stratified according to age group, hormone therapy study participation, and prevalence condition; calcium and vitamin D study participation was adjusted as a time-dependent variable.
‡Body mass index was calculated as weight in kilograms divided by the square of height in meters.
while an Arizona trial found no effect of wheat bran supplement on colorectal adenoma recurrence. Our study is consistent with lack of association in that women in the intervention group modestly increased their fiber (Table 2) with no apparent benefit over 8.1 years of follow-up.

The observed interactions between the intervention and baseline aspirin use, and between intervention and use of combined hormone therapy, are consistent with synergistic effects of a low-fat dietary pattern and these potentially protective agents. However, given the large number of interactions tested, these findings could also have occurred by chance.

While the trial was ongoing, national dietary recommendations moved from recommending less than 30% of energy from fat intake through 1997 to 25% to 35% of energy from fat in 2002. From National Health and Nutrition Examination Survey (NHANES) data, in 1977, women reported consuming 40.5% of their energy from fat, while in 1987, the average was only 35.9%, and in 2000, the average was 33% (NHANES 1999-2000). Organizations including the National Cancer Institute, American Cancer Society, and Institute for Cancer Prevention have recommended both lower fat intake and increased vegetable and fruit use.

One explanation for a lack of intervention effect on colorectal cancer could be that the intervention did not achieve a large enough difference between the intervention and comparison groups. Although the changes achieved were substantial, and likely as large as could be achieved in a trial of free-living individuals, they fell short of the original design assumptions based on the Women’s Health Trial studies.

Figure 6. Invasive Colorectal Cancer Hazard Ratios and Annualized Incidence by Baseline Dietary Factors

<table>
<thead>
<tr>
<th>Dietary Energy, kcal/d‡</th>
<th>No. of Cases of Colorectal Cancer (Annualized Percentage)</th>
<th>P Value for Interaction*</th>
<th>Favors Intervention</th>
<th>Favors Comparison†</th>
</tr>
</thead>
<tbody>
<tr>
<td><1391.8</td>
<td>50 (0.13)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>1391.8–<1663.6</td>
<td>54 (0.14)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>1663.6–<1958.7</td>
<td>53 (0.12)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>≥1958.7</td>
<td>35 (0.11)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietary Fiber, g/d†</th>
<th>No. of Cases of Colorectal Cancer (Annualized Percentage)</th>
<th>P Value for Interaction*</th>
<th>Favors Intervention</th>
<th>Favors Comparison†</th>
</tr>
</thead>
<tbody>
<tr>
<td><13.0</td>
<td>31 (0.12)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>13.0–<16.6</td>
<td>53 (0.12)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>16.6–<20.0</td>
<td>55 (0.13)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>≥20.0</td>
<td>66 (0.14)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combined Vegetables/Fruits, Medium Servings/d§</th>
<th>No. of Cases of Colorectal Cancer (Annualized Percentage)</th>
<th>P Value for Interaction*</th>
<th>Favors Intervention</th>
<th>Favors Comparison†</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.3</td>
<td>53 (0.14)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>2.3–<3.3</td>
<td>51 (0.13)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>3.3–<4.6</td>
<td>47 (0.12)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>≥4.6</td>
<td>48 (0.12)</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alcohol Intake</th>
<th>No. of Cases of Colorectal Cancer (Annualized Percentage)</th>
<th>P Value for Interaction*</th>
<th>Favors Intervention</th>
<th>Favors Comparison†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never Drinker</td>
<td>23 (0.15)</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>Past Drinker</td>
<td>44 (0.16)</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td><1 Drink/d</td>
<td>100 (0.10)</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>≥1 Drink/d</td>
<td>30 (0.20)</td>
<td>.09</td>
<td>.09</td>
<td>.09</td>
</tr>
</tbody>
</table>

Error bars indicate 95% confidence intervals.
*Interaction test from likelihood ratio test (factors on the continuous scale were tested as continuous variables when possible.
†Cox regression models stratified according to age group, hormone therapy study participation, and prevalence condition; calcium and vitamin D study participation was adjusted as a time-dependent variable.
§Case-only analysis using 4-day food record data; no annualized rates available.
¶Data are from food frequency questionnaire.
LOW-FAT DIETARY PATTERN AND RISK OF COLORECTAL CANCER

70% of the designed reduction in fat. If design assumptions are revised to take into account this departure from goal, the predicted HR would have been 0.86, an effect size excluded by these results. The power to detect this effect size under the observed comparison group incidence rate and the achieved adherence is approximately 40%.

Whether greater adherence, intervention of longer duration, or initiation of change at an earlier age would influence colorectal cancer risk remain unanswered questions. The self-reported first occurrence of polyps or adenomas was lower in dietary intervention women, suggesting that longer follow-up (currently planned) may reveal delayed benefit in favor of the intervention. Yet no time trends regarding colorectal cancer risk over 8 years of follow-up have been seen. To the extent that the WHI Dietary Modification Trial intervention addressed the recommendations from national organizations, the current results suggest that changing dietary patterns to meet these recommendations in mid to late life will have limited or no benefit in preventing colorectal cancers in postmenopausal women.

The strengths of this study are its randomized design, long-term follow-up, large numbers of participants, diversity of race/ethnicity and socioeconomic status, and high retention rate. The limitations of this study include not attaining intervention goals as designed for reducing fat intake or achieving large separation from the comparison group in increased fruit, vegetable, or grain intake. Thus the potential intervention effect of the WHI low-fat dietary pattern may be underestimated.

Furthermore, there was no study-specific colonoscopy, nor was there systematic screening for adenomatous polyps; hence, the incidence of both colorectal cancer and polyps or adenomas would be underestimated.

In conclusion, there is no evidence that a low-fat dietary pattern intervention reduces colorectal cancer risk over an average of 8.1 years of follow-up. Evidence from this study, along with that from polyp prevention trials, strongly suggests that lowering dietary fat intake and increasing fruit, vegetable, and fiber intake in mid to late life cannot be expected to reduce the risk of colorectal cancer in this length of time.

Author Affiliations: University of Washington, Seattle (Dr Beresford); University of Tennessee Health Science Center, Memphis (Dr Johnson); University of Arizona, Tucson/Phoenix (Drs Ritenbaugh and Bassford); University of Medicine and Dentistry of New Jersey, Newark (Dr Lasser); University of Iowa, Iowa City/Davenport (Drs Snettelar and Wallace); Rush University Medical Center, Chicago, Ill (Dr Black); Fred Hutchinson Cancer Research Center, Seattle, Wash (Drs Anderson, Bowen, LaCroix, and Prentice); Brown University, Providence, RI (Dr Assaf); University of California, San Diego, Reno (Dr Brunner); University of Texas Health Science Center, San Antonio (Dr Bryzsk; Kaiser Permanente Division of Research, Oakland, Calif (Dr Caan); Harbor-UCLA Research and Education Institute, Torrance, Calif (Dr Chlebowski); University of Cincinnati, Cincinnati, Ohio (Dr Gass); University of Hawaii, Honolulu (Dr Har; Baylor College of Medicine, Houston, Tex (Dr Hayes); University of California at Los Angeles (Dr Heber); University of North Carolina, Chapel Hill (Dr Heiss); Wayne State University School of Medicine/Hutzel Hospital, Detroit, Mich (Dr Hendrix); MedStar Research Institute/Howard University, Washington, DC (Dr Howard); George Washington University, Washington, DC (Dr Hisa); University of California, San Francisco (Dr Hsia); Ohio State University, Columbus (Dr Jackson); Medical College of Wisconsin, Milwaukee (Dr Kotchen); University of Pittsburgh, Pittsburgh, Pa (Dr Kuster); State University of New York at Stony Brook (Dr Lane); University of California at San Diego, La Jolla/Chula Vista (Dr Langer); University of Alabama at Birmingham (Dr Lewis); Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass (Dr Manson); University of Minnesota, Minneapolis (Dr Margolis); Albert Einstein College of Medicine, Bronx, NY (Dr Mossavar-Rahmani); University of Massachusetts/Fallon Clinic, Worcester (Dr Ockene); University of Miami, Miami, Fl (Dr Parker); University of Florida, Gainesville/Jacksonville (Dr Perri); Emory University, Atlanta, Ga (Dr Phillips); University of California at Davis, Sacramento (Dr Robinson); University of Arizona, Tucson, Ariz, and Blood Institute, Bethesda, Md (Dr Rossouw); University of Wisconsin, Madison (Dr Sarto); Stanford Prevention Research Center, Stanford, Calif (Dr Stefanick); Northwestern University, Chicago, Ill (Dr Van Horn); Wake Forest University School of Medicine, Winston-Salem, NC (Dr Vitonis); University at Buffalo, Buffalo, NY (Dr Wactawski-Wende); and Kaiser Permanente Center for Health Research, Portland, Ore (Dr Whitlock).

Author Contributions: Dr Prentice had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Analysis and interpretation of data: Beresford, Johnson, Ritenbaugh, Lasser, Snettelar, Anderson, Bowen, Caan, Chlebowski, Howard, Jackson, Kuller, LaCroix, Lewis, Manson, Mossavar-Rahmani, Perri, Prentice, Rossouw, Stefanick, Van Horn, Vitonis, Wactawski-Wende.

Drafting of the manuscript: Beresford, Ritenbaugh, Howard, Mossavar-Rahmani, Van Horn, Vitonis.

Statistical analysis: Anderson, Prentice.

LOW-FAT DIETARY PATTERN AND RISK OF COLORECTAL CANCER

consistency of the epidemiologic data, and disease pre-
vention that may follow from a practical reduction in
fat consumption. Cancer Causes Control. 1990;1:81-
97.

3. McMichael AJ, Giles GG. Cancer in migrants to Aus-
tralia: extending the descriptive epidemiological data.

4. Thomas DB, Karagas MR. Cancer in first and sec-
ond generation Americans. Cancer Res. 1987;47:5771-
5776.

5. Howe GR, Benito E, Castelloe R, et al. Dietary in-
take of fiber and decreased risk of cancers of the col-
on and rectum: evidence from the combined analy-
84:1887-1896.

6. Steinmetz KA, Potter JD. Food-group consumption
and colon cancer in the Adelaide Case-Control
Study. J vegetables and fruit. Int J Cancer. 1993;53:
711-719.

7. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR,
Potter JD. Vegetables, fruit, and colon cancer in the
Iowa Women’s Health Study. Am J Epidemiol. 1994;

8. Trock B, Lanza E, Greenwald P. Dietary fiber, veg-
etables, and colon cancer: critical review and meta-
analyses of the epidemiologic evidence. J Natl Can-

9. Howe GR, Aronson KJ, Benito E, et al. The rela-
tionship between dietary fat intake and risk of col-
orectal cancer: evidence from the combined analysis
of 13 case-control studies. Cancer Causes Control.
1997;8:215-228.

Health Initiative recruitment methods and results.

11. Women’s Health Initiative Study Group. Design of
the Women’s Health Initiative clinical trial and
observational study. Control Clin Trials. 1998;19:61-
109.

12. Ritenbaugh C, Patterson RE, Chlebowski RT, et al.
The Women’s Health Initiative Dietary Modification
trial: overview and baseline characteristics of par-

13. Patterson RE, Kristal AR, Tinker LF, Carter RA, Bol-
ton MP, Agurs-Collins T. Measurement characteristics
of the Women’s Health Initiative food frequency

tation of the Women’s Health Initiative study design.

15. Tinker LF, Burrows ER, Henry H, Patterson RE,
Rupp RW, Van Horn L. The Women’s Health Initia-
tive: overview of the nutrition components. In:
Krummel DA, Kris-Etherton PM, eds. Nutrition in
Women’s Health. Gathersburg, Md: Aspen; 1996:
510-542.

16. Women’s Health Initiative Study Group. Dietary
adherence in the Women’s Health Initiative Dietary
Modification Trial. J Am Diet Assoc. 2004;104:
654-658.

17. Bowen D, Ehret C, Pedersen M, et al. Results of
an adjunct dietary intervention program in the
Women’s Health Initiative. J Am Diet Assoc. 2002:
102:1631-1637.

18. US Department of Agriculture. Dietary Guide-
lines for Americans. 3rd ed. Washington, DC: Dept
of Health and Human Services; 1990.

19. Ries LA, Kosary CL, Hankey BF, et al. SEER CAN-
tober 10, 2005.

20. Iacopetta B. Are there two sides to colorectal cancer?
Int J Cancer. 2002;101:403-408.

21. Larsson SC, Rafter J, Holmgren L, Bergkvist L, Wolk
A. Red meat consumption and risk of cancers of the
proximal colon, distal colon and rectum: the Swedish
Mammography Cohort. Int J Cancer. 2005;113:829-
834.

22. Kim MK, Sasaki S, Otani T, Tsugane S. Dietary pat-
tterns and subsequent colorectal cancer risk by sub-
790-798.

sumption and risk of colorectal cancer. JAMA. 2005:
293:172-182.

colorectal incidence rates and stage distribu-
tions among Asians and Pacific Islanders in the United
States, 1995 to 1999. Cancer Epidemiol Biomarkers

25. Prentice RL, Caan B, Chlebowski RT, et al. Low-
fat dietary pattern and risk of invasive breast cancer:
the Women’s Health Initiative randomized con-
trolled dietary modification trial. JAMA. 2006;295:
655-666.

dietary pattern and risk of cardiovascular disease: the
Women’s Health Initiative randomized controlled
dietary modification trial. JAMA. 2006;295:629-
642.

27. Insull W, Henderson MM, Prentice RL, et al. Re-
sults of a randomly realized feasibility study of a low-fat

28. Winawer SJ. Natural history of colorectal cancer.

29. Yang Q, Khoury MJ, Flanders WD. Sample size
requirements in case-only designs to detect gene-
environment interaction. Am J Epidemiol. 1997;146:
713-720.

30. Clayton D, McKeigue PM. Epidemiological meth-
ods for studying genetic and environmental factors in

31. Schatzkin A, Lanza E, Corle D, et al; Polyp Pre-
vention Study Trial Group. Lack of effect of a low-
fat, high-fiber diet on the recurrence of colorectal

32. Lanza E, Schatzkin A, Daston C, et al; Polyp Pre-
vention Study Trial Group. A randomized trial of a low-
fat, high-fiber cereal supplement on the recurrence
of colorectal adenomas: Phoenix Colon Cancer
Prevention Research Unit case-control study. Am J

33. Fuchs SN, Hsing AW, Schottenfeld D, et al; Toronto
Polyp Prevention Group. A random-
ized intervention trial. Am J Epidemiol. 2001;153:
1300-1306.

34. MacLeannan K, MacRae F, Bain C, et al. Random-
ized trial of intake of fat, fiber, and beta carotene to
87:1760-1776.

35. Law M. Dietary fat and adult diseases and the im-
portant factors for childhood nutrition: an epidemiologic
89S-106S.

36. Alberts DS, Martinez ME, Roe DJ, et al. Lack of
effect of a high-fiber cereal supplement on the recur-
rence of colorectal adenomas: Phoenix Colon Cancer
342:1156-1162.

37. Gifford KD. Dietary fats, eating guides, and pub-
lric policy: history, critique, and recommendations. Am

38. Hein AF, Weinsier RL. Divergent trends in obe-
sity and fat intake patterns: the American paradox.

AR. An evaluation of the Dietary Guidelines for Ameri-
2002;76:889-896.

40. Dietary Guidelines for Americans 2005. US De-
partment of Health and Human Services and Depart-
ment of Agriculture. Available at: http://www.
healthierus.gov/dietaryguidelines/. Accessed October
18, 2005.