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Extreme precipitation models are crucial for understanding the characteristics of extreme

weather, ensuring the risk of extreme events, and designing flood protection structures.

Analytical relationships that link the risk of extreme precipitation with a specific duration

at a given location (i.e. intensity-duration-frequency(IDF) relationships) are commonly used

to characterize the extreme events. If homogeneous rainfall data with long records are

available, reliable analytical relationships can be developed. Yet, this is often not the case

and the gauge networks in many parts of the world are either short or sparse. As a result,

uncertainties of the gauge-based analyses tend to be high. To alleviate these uncertainties,

regional frequency analysis methods which pool the precipitation data from multiple sites

with a homogeneous precipitation pattern are used for modeling extreme precipitations. Yet,

defining these homogeneous regions requires making additional assumptions that in many

cases are not met.

In this dissertation, I try to address the limitations of the conventional extreme precipitation

modeling approaches by: 1) Employing remotely-sensed precipitation information, instead

of gauge observations, to capture the spatiotemporal variability of extreme precipitation;

and 2) Applying advanced statistical techniques that do not have the limitations of the
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conventional regional approaches and can accommodate additional information to enhance

model’s performance.

In the first part of this dissertation, suitability of remotely-sensed precipitation information

for extreme precipitation modeling is explored. A bias-correction framework is introduced

to adjust the biases in the satellite-based extreme precipitation estimates. It is shown that

the proposed method can effectively reduce the biases in the remotely-sensed extreme rain-

fall data, especially at high elevation regions where ground-based observations are poor and

satellite-based estimates are highly biased. Also, it is demonstrated that the satellite-based

extreme precipitation estimates that are bias-adjusted with limited ground-based observa-

tions using the proposed method outperform the gauge interpolation estimates even at some

densely-gauged regions. Results also demonstrate that the high quantile estimates from the

bias-adjusted dataset are in agreement with the Frequency Atlas of the United States(NOAA

Atlas 14) estimates across various durations and return periods.

In the next step of this dissertation, advanced statistical techniques are employed to model

spatial and temporal characteristics of extreme precipitation from remotely-sensed infor-

mation. A hierarchical Bayesian approach is used to model extreme precipitation and to

generate spatially consistent quantile estimates with low estimation uncertainties. In addi-

tion to the Bayesian framework, Max-stable processes, as the generalization of the extreme

value theory, are used to capture the marginal properties and tail dependence structure of the

extreme precipitation data. The performances of the applied methods in modeling extreme

precipitations are evaluated using various validation metrics. A comprehensive evaluation of

the models’ performances shows that the applied methods are capable of generating extreme

return levels that are consistent with gauge-based observations.

Results of this dissertation demonstrate that the satellite-based precipitation information can

be used for extreme precipitation modeling, especially at poorly instrumented regions. Also,

this study serves as an introduction to the application of advanced statistical techniques for
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extreme precipitation modeling using remotely-sensed information. The applied methods

resulted in outstanding performances in characterizing extreme precipitation from remotely-

sensed information.
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Chapter 1

Introduction

Extreme precipitation events have large impacts on societies and can take many lives and may

result in considerable financial damages by causing hazards such as floods and landslides.

Therefore, probabilities and return levels associated with such events must be considered

in floodplain management and designing flood control infrastructure such as dams, dikes,

canals, and bridges. Extreme precipitation models are used to model heavy rainfall events

and characteristics of extreme rainfalls are often reflected in intensity-duration-frequency

(IDF) curves or depth-duration-frequency (DDF) curves. IDF and DDF curves demonstrate

probabilities of extreme events with various intensities (or depths) and durations (Mazdiyasni

et al., 2019). Extreme events are often defined by their return periods. For instance, an

extreme precipitation event with 24-hour duration and a probability of 1% is referred to as a

daily 100-year event. Figure 1.1 demonstrates the map of the 100-year extreme precipitation

events with 24 hour duration over the United States (Hershfield, 1961). Statistical modeling

is used to characterize the relationship between intensity (or depth), duration, and frequency

of extreme precipitation events. Typically, certain probability distributions are fitted to the

extreme rainfall data with various durations and the return levels associated with each

return period are extracted by solving the equation for the inverse distribution. Generalized
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Figure 1.1: Map of rainfall depth(inches) with 24 hour duration and 100 year return period
in the United States. Adapted from Hershfield (1961)

Extreme Value (GEV) distribution is commonly used as the limiting distribution for the

annual maximum extremes and the Generalized Pareto (GP) distribution is often used for

the peak-over-threshold (POT) extremes. Information derived from IDF or DDF curves are

used to generate design storms that are further provided as inputs for various engineering

designs. Selection of return period for a specific design depends on the importance of the

structure under study and design standards.

1.1 The conventional RFA approach

Point measurements by rain gauges are often used to derive statistics of extreme rainfalls at

a certain location. Rain gauges provide relatively long, but sparse record of precipitation and

are considered as point observations. Given the interest in the extreme rainfall statistics for
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larger spatial domains, areal reduction factors (ARF) are used to extend point measurements

to larger areas. There is a tendency in environmental applications to analyze all of the data

samples from a number of measuring sites rather than using only one sample. This approach

is known as regional frequency analysis (RFA). RFA tries to minimize the effects of limited

temporal coverage and reduce the uncertainties associated with quantile estimation from

individual sites. In RFA approach, the analyzed data samples are measurements of the same

variable from a group of sites that are located within a suitably defined region (Hosking and

Wallis, 2005). This region is typically referred to as ”homogeneous” region which within this

region, all of the measuring sites demonstrate identical frequency distributions. In practice,

this is not possible and the sites within a region are not exactly identical and the frequency

distributions and event magnitudes are different at various sites (Hosking and Wallis, 2005).

Delineating homogeneous region was traditionally performed by considering geographical,

administrative, and political situation. Nowadays, more advanced techniques such as cluster

analysis (Wiltshire, 1986), discordancy measure (Hosking and Wallis, 2005), and region of

influence (Burn, 1990) are applied to delineate homogeneous regions.

Various RFA approaches such as the Index-Flood(IF), probability index flood (PIF), and

regional shape (RS) methods, have been introduced and applied for numerous hydrological

applications. These methods pool the data from a set of sites within a homogeneous region

and try to estimate the three parameters of the GEV distribution, namely location, scale,

and shape parameters in a regional manner. The main difference between these methods

is in the number of distribution parameters estimated regionally. For instance, in the IF

method, which is one of the most widely used RFA approaches, the three GEV parameters

are estimated regionally (Dalrymple, 1960). Estimating the parameters of the frequency

distribution is usually performed by applying the method of linear moments(L-moments)

(Hosking and Wallis, 2005). L-moments, similar to probability weighted moments (Green-

wood et al., 1979), describe the shape of a probability distribution. Each of the L-moments

describe a specific characteristic of a probability distribution. For instance, the first to fifth
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L-moments are L-location, L-scale, L-CV, L-skewness, and L-kurtosis and explain mean,

scale, coefficient of variation (CV), skewness, and kurtosis of a distribution, respectively.

National Oceanic and Atmospheric Administration (NOAA) Atlas is the source of rainfall

frequency estimates for the United States and its territories. NOAA Atlas 14 provides

intensity-duration frequency (IDF) and depth-duration-frequency (DDF) curves for different

regions based on the regional frequency analysis approach (Bonnin et al., 2006). NOAA

Atlas 14 IDF and DDF curves were developed using the best fit among different probability

distributions, including the 3-parameter Generalized Extreme Value (GEV), the Generalized

Normal, the Generalized Pareto, the Generalized logistic, the Pearson Type III distributions,

the 4-parameter Kappa distribution; and the 5-parameter Wakeby distribution. At 80 % of

gauges and for sub-daily and daily durations, the GEV gave the best statistics among the

3-parameter distributions and its performance was comparable to that of 4 and 5 parameter

distributions. Thus, the GEV was adopted across all gauges and durations (Bonnin et al.,

2006). Figure 1.2 shows DDF curves from NOAA Atlas 14 for a location near the campus

of the University of California, Irvine.

1.2 Limitations of Conventional RFA Approaches

While the conventional RFA approach is currently the most widely used approach for mod-

eling extreme precipitation, there are certain limitations that tend to undermine its perfor-

mance in poorly instrumented regions. Based on the steps taken in RFA approach, these

limitations can be divided into two main parts. The first limitation is regarding the input

precipitation data which is often observations from sparse gauge networks, and the second

limitation is the statistical analysis approaches (RFA techniques) often used to characterize

extreme rainfalls and to construct IDF or DDF relationships. These two limitations are

discussed in the following sections.
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Figure 1.2: Sample Depth-duration-frequency curves for a location in Irvine, California,
based on NOAA Atlas 14. Adapted from https://hdsc.nws.noaa.gov/hdsc/pfds/
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1.2.1 Deficiencies of Gauge-based Analyses

Rain gauges with long records are the primary source of rainfall information for extreme

precipitation modeling. While the United States and parts of Europe have sufficient gauge

networks, many parts of the world including developing countries suffer from short and

sparsely distributed gauge networks. Figure 1.3 shows the coverage of gauge data organized

at Global Precipitation Climatology Centre (GPCC) through Global Precipitation Clima-

tology Project (GPCP, (Adler et al., 2018)) (Kidd et al., 2017). Distance to nearest GPCC

gauge in many parts of the world is more than 50 km and in some areas it exceeds 100 km.

Extreme precipitation events are substantially variable in space and time and sparse gauge

networks cannot represent the spatial and temporal characteristics of these events. There-

fore, gauge-based analysis of extremes using sparsely distributed gauge information is prone

to considerable uncertainties. Also, it is believed that the maximum intensity of extreme

rainfall events will not be captured due to the sparsity of rain gauges and this adds to the

uncertainties of gauge-based analyses (Marra et al., 2019).

1.2.2 Methodological Deficiencies

The conventional RFA approaches commonly make various limiting assumptions. For in-

stance, the IF method has the following assumptions: 1) observations at any site are assumed

to be identically distributed; 2) observations are also assumed to be serially independent; 3)

observations are assumed to be independent at various sites; 4) frequency distributions at

different sites are identical apart from a scaling factor; and 5) the regional growth curve is

assumed to be correctly specified. While the first two assumptions could be made for various

kinds of data, the last three are unlikely for the environmental data (Hosking and Wallis,

2005). Extreme events typically hit areas large enough to affect multiple observation sites

and the observations at those sites are likely to be correlated. Also, the last two assumptions
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Figure 1.3: Map displaying the distance to the nearest GPCP rain gauge. Adapted from
Kidd et al. (2017)

can rarely be fulfilled in environmental applications (Hosking and Wallis, 2005). Further-

more, there are additional limitations in the IF method that tend to limit its application.

For instance, delineating homogeneous regions where the scale invariance assumption holds,

requires in some instances to shrink the size of the region dramatically. Also, the IF in most

cases is defined as the mean or median of the at-site data, which there is no physical expla-

nation for it. These limitations tend to make the uncertainty quantification of IF method

challenging (Renard, 2011).

1.3 Potentials for Using Remotely-Sensed Information

In recent years, several efforts have been made to develop DDF curves by employing re-

motely sensed precipitation information from weather radars and earth observing satellites
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(Overeem et al., 2008; Wright et al., 2013; Eldardiry et al., 2015; Marra and Morin, 2015).

For instance, Overeem et al. (2009) used an 11-year gauge-adjusted radar-rainfall dataset

and performed a regional frequency analysis to extract DDF curves for the Netherlands.

They found that radar data, despite being useful for real-time rainfall analysis, still suffer

from serious limitations, such as significant errors in extreme rainfall estimates and shortness

of data, that limit their usefulness for RFA. Thus, the application of radar data for rainfall

frequency analysis is hampered by: (1) its relatively short length of record which leads to

sampling issues during distribution fitting process and results in larger uncertainties of the

frequency estimates especially for longer durations (Durrans et al., 2002; Eldardiry et al.,

2015; Marra et al., 2017b); and, (2) estimation uncertainties and heterogeneities due to the

continuous development of radar quantitative precipitation estimation (QPE) instruments

and methods (Allen and DeGaetano, 2005; Lombardo et al., 2006). Eldardiry et al. (2015)

quantified the effects of each of these sources of uncertainty and attributed much of the

quantile estimation uncertainty to the length of the dataset. However, the conditional bias

intrinsic to the radar dataset was the main reason for the observed systematic underestima-

tions in the rainfall frequency estimates. As compared to rain gauges and radar network,

satellite QPE is able to provide global coverage and has been employed in a number of stud-

ies for rainfall frequency analysis (Endreny and Imbeah, 2009; Awadallah et al., 2011; Zhou

et al., 2015; Marra et al., 2017b). Yet, similar to radars, the application satellite QPEs for

RFA is undermined by the data length issues and estimation uncertainties associated with

each of the precipitation estimation products.

Given the relative shortness of the remotely-sensed precipitation datasets, estimating high

quantiles which are often needed for engineering design applications is a challenging task.

Therefore, a POT approach would be more appropriate than the AMS approach for the

RS-based rainfall information. Yet, selecting a threshold for each grid box would a challenge

given the need to an automatic threshold selection scheme that could preserve the spatial

consistency (Langousis et al., 2016). Most of the studies conducted so far rely on the AMS
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approach (Endreny and Imbeah, 2009; Faridzad et al., 2018) and the POT approach has

been rarely used (Goudenhoofdt et al., 2017; Demirdjian et al., 2018).

1.3.1 Modeling Extremes Using PERSIANN-CDR

With advances in tools and techniques for precipitation measurement using remotely sensed

information, investigation of rainfall characteristics over remote and mountainous regions

with limited gauge observations has become possible. In an effort to produce long and

consistent climate records based on satellite observations, National Oceanic and Atmospheric

Association (NOAA) under the Climate Data Record (CDR) program, in cooperation with

the University of California, Irvine, developed a satellite precipitation product named the

Precipitation Estimation from Remotely Sensed Information and Artificial Neural Networks-

Climate Data Record (PERSIANN-CDR) (Ashouri et al., 2015). PERSIANN-CDR provides

near-global (60◦N to 60◦S latitude and 0◦ to 360◦ longitude) precipitation information with

0.25◦ spatial and daily temporal resolution from 1983 to the present. Given its relatively high

spatial resolution and long record, PERSIANN-CDR is a unique dataset for studying extreme

precipitations and performing rainfall frequency analysis. The length of the PERSIANN-

CDR dataset (35+ years) is particularly valuable for parts of the world that lack the gauge

information for rainfall frequency analysis.

Among different remotely sensed precipitation datasets, PERSIANN-CDR is a viable can-

didate for extreme precipitation analysis given: (1) its high spatial and temporal resolution:

when compared with the long-term Global Precipitation Climatology Project (GPCP) (Huff-

man et al., 1997) product which is monthly and 2.5◦ by 2.5◦, PERSIANN-CDR has a higher

temporal (daily) and spatial resolution (0.25◦ by 0.25◦). The 2.5◦ spatial and monthly tempo-

ral resolution is not capable of capturing the spatial and temporal variability of the extreme

precipitations especially over regions with complex topographic conditions, and (2) its long
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record: PERSIANN-CDR has relatively longer data record (34+ years and continually ex-

panding) in comparison to TRMM 3b42 V7 (Huffman et al., 2007) with 20+ years of data,

or CMORPH (Joyce et al., 2004) with 16+ years of record. Based on these strengths, Gado

et al. (2017) employed the PERSIANN-CDR dataset to estimate extreme rainfall quantiles at

two homogenous regions in the Western United States. They combined information from the

PERSIANN-CDR pixels and nearby gauges in a homogenous region and used an innovative

regional frequency analysis method to derive quantile estimates at ungauged locations.

1.4 Limitations of Current RS-Based Studies

Currently, there are two main issues that tend to undermine the accuracy of RS-based

approaches for extreme precipitation modeling. The first problem is biases in radar and

satellite estimates of extreme rainfall events and the second problem is the inefficiency of the

applied statistical techniques (Marra et al., 2019). Also, given the continuous development

of radar and satellite sensors, as well as, methodological improvements, the RS-based QPEs

are sometimes heterogeneous sources of information.

1.4.1 Biases in the Extreme Rainfall Estimates

Radar and satellite-based quantitative precipitation estimates (QPE) are indirect sources of

rainfall information and are prone to various sources of uncertainties and estimation biases.

These biases tend to become more significant as the extreme events are concerned (Overeem

et al., 2009; Eldardiry et al., 2015; Faridzad et al., 2018). Estimation biases are mostly in the

form of underestimation of the intensity or depth of extreme events which later translates

to the underestimation of the extreme quantiles (Faridzad et al., 2018). Also, estimation

uncertainties and random errors are other sources of biases in the RS-based QPEs which
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often lead to overestimation of the extreme quantiles (Marra et al., 2018, 2019). Therefore,

prior to using the RS-based QPEs for practical frequency analysis purposes, the quality of

the dataset in terms of agreement with reliable gauge-based estimates and homogeneity of

the records must be assured.

In case of biases in the extreme rainfall estimates by the satellite and radar QPEs, bias-

adjustment techniques must be used to have estimates that are consistent with gauge-based

observations. Various bias-adjustment techniques have been used in the literature for this

purpose (Overeem et al., 2009; Faridzad et al., 2018). The quantile matching method is

a standard method often used to match the cumulative distribution function (cdf) of the

gridded RS-based QPEs with that of gauge-based observations (Gado et al., 2017).Also, in

order to minimize the impact of random errors on the quantile estimation, classical region-

alization techniques have been used to pool data from nearby pixels and increase the sample

size (Eldardiry et al., 2015; Demirdjian et al., 2018).

1.4.2 Inefficiencies of the Applied Statistical Techniques

Give the relative shortness of most of the RS-based QPEs compared to the quantiles often

needed in practice, estimating the high quantiles is a challenging task with large uncertain-

ties. Short precipitation record also gives information on a short part of climatology and

extrapolations based on this short range of data is likely to have large biases in high quan-

tiles. Most of the studies performed so far on frequency analysis using gridded precipitation

information from RS-based QPEs or numerical weather prediction models, used two general

approaches: 1) the at-site method which is using the rainfall time series at each pixel for

making inference on the parameters and rainfall frequencies (Faridzad et al., 2018; Ragno

et al., 2018); and 2) pooling rainfall information from a group of nearby pixels (Eldardiry

et al., 2015) or applying the classic regionalization approaches (Overeem et al., 2009; En-
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dreny and Imbeah, 2009; Gado et al., 2017). While the at-site method has the uncertainty

issues related to the shortness of record, the pooling-based approaches also come with the

limiting assumptions underlying the RFA methods and these assumptions are often hard to

be fulfilled when using extreme precipitation data. Stochastic storm transposition is also

another method used to reduce the biases in the parameter estimation procedure (Wright

et al., 2013, 2017).

1.5 Research Motivations and Approaches

The primary motivation of this research is to address the limitations of the gauge-based

rainfall frequency analyses in poorly instrumented regions. The limited gauge observations

in remote areas and high elevation regions cannot demonstrate the spatial and temporal vari-

ability of extreme events that are highly variable in space and time. Therefore, the extreme

rainfall models based on the limited gauge information are highly uncertain and not reli-

able. Also, the conventional statistical tools applied for extreme precipitation modeling have

certain limitations that tend to undermine their effectiveness, especially in poorly gauged

regions. Additionally, we aim to construct models that can generate spatially consistent

return level maps. Such maps are useful in designing hydraulic and hydrologic infrastruc-

tures, in mapping hazards, and performing risk assessment. Specifically, precipitation return

level maps are provided to the hydrologic and hydraulic models to map the flood hazards

at large catchments. This is of paramount importance for the regions that have complex

topographies where a single IDF curve for a specific location cannot represent the extreme

precipitation characteristics in those regions. Knowledge on the spatial distribution and

magnitude of extreme events is also important in land-use development for identifying the

regions that are most prone to intense hydrological events. Subsequently, the overarching

objective of this research is to introduce frameworks by which remotely-sensed precipitation

12



information could be reliably used for extreme precipitation modeling and developing IDF

or DDF curves for regions with limited gauge observations. A systematic approach is taken

to accomplish this objective in a step-wise manner. The main objectives and approaches of

this dissertation are as follows:

• Objective 1:

The first objective of this dissertation is to investigate the suitability of remotely-

sensed precipitation information for extreme precipitation modeling and generating

DDF curves. To accomplish this objective and to justify the use of remotely-sensed

information, comparisons with gauge-based observations at densely gauged regions are

made. For this purpose, PERSIANN-CDR dataset which is one of the longest satellite-

based precipitation datasets and has high spatial and temporal resolutions is used.

• Approach 1:

My approach to this objective is to perform an extensive evaluation of the extreme

rainfall estimates from remotely-sensed information. As it is the case for the RS-

based QPEs, there are biases in the extreme precipitation estimates that need to be

adjusted prior to using these datasets. A bias-adjustment approach is introduced and

its performance is verified with respect to the gauge-based observations. Also, the

bias-adjusted extreme precipitation estimates are evaluated with respect to the gauge-

based observations. Then, the bias-adjusted extreme precipitation estimates for various

durations are used to construct DDF curves. For this purpose, GEV distribution is

fitted to the pixel-wise information from the satellite-based observations. Finally, the

goal is to show that the bias-adjusted satellite-based dataset is capable of producing

consistent frequency estimates with gauges-based analyses with much longer records

at some well-sampled watersheds in the United States.

• Objective 2:

The second objective of this dissertation, is to construct a model that can capture the
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marginal distribution of extreme precipitation data from satellite pixels and generate

frequency estimates with low uncertainties while accounting for the spatial structure

of the data. As opposed to the previous objective which involved modeling marginal

distribution of the data using pixel-wise information, here we take into account neigh-

borhood information to generate spatially consistent return levels with lower uncertain-

ties. The goal is to apply newly developed statistical techniques that do not have the

limitations of the conventional regional frequency analysis approaches and can make

marginal extrapolations with lower uncertainties.

• Approach 2:

The approach for this objective is apply a hierarchical Bayesian approach. The applied

approach can generate spatially consistent return level estimates, while reducing the es-

timation uncertainties by bringing information from neighboring sites. This approach

has a few advantages compared to the RFA approach. It allows to provide expert

knowledge to the model through the use of priors. Besides, additional physical and ge-

ographical information can be provided to the model to enhance parameter estimation.

Also, unlike the common ad-hoc uncertainty assessment techniques (e.g. bootstrapping

technique), this approach offers an explicit way of accounting for the uncertainties in

the model parameters and quantile estimates. The proposed approach is applied to

model extreme precipitation in Washington state. The precipitation data used in this

part is the bias-adjusted extreme precipitation information from PERSIANN-CDR

dataset using the method proposed for objective 1.

• Objective 3:

The third objective of this dissertation, is to model the spatial dependence in extreme

precipitation data in a consistent way with the extreme value theory. The goal is

to apply methodologies that beside modeling the marginal properties of the extreme

precipitation information from the gridded rainfall data, can model the spatial de-
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pendence structure of extremes by simulating the residual dependence in the data.

Modeling dependence structure of extreme precipitation is important when studying

the joint probabilities of extreme events at multiple locations.

• Approach 3:

The modeling approach that is best suited for this objective is Max-stable process.

Max-stable processes are generalization of the extreme value theory to infinite dimen-

sional scale. Max-stable processes can model the tail dependence structure of the

extreme precipitation data, after capturing the marginal properties. Various types of

max-stable processes are applied and their performances are evaluated in terms of mod-

eling marginal properties and tail dependence structure of the extreme rainfall data.

The precipitation data used in this part is the bias-adjusted extreme precipitation in-

formation from PERSIANN-CDR dataset using the method proposed for objective 1.

Finally, the quantile estimates from the outperforming model fed with the RS-based

data is validated against an extensive number point observations from ground-based

rain gauges. The proposed approach is applied to model extreme precipitation in the

Pacific Northwest United States.

1.6 Scope of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 presents the bias-correction

framework proposed for adjusting the RS-based precipitation estimates from PERSIANN-

CDR dataset. Application of this framework for precipitation frequency analysis across

the United States is also explored in this chapter. Chapter 3 presents the application of

hierarchical Bayesian framework for extreme precipitation modeling using satellite-based

precipitation estimates from PERSIANN-CDR dataset. The latent variable model is used

in this chapter for modeling extreme rainfalls and Washington state is selected as the study
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area. Chapter 4 demonstrates the application of Max-stable processes for modeling extreme

precipitation from remotely-sensed information. Various parametric max-stable models are

applied in this chapter to model extreme precipitation over the Pacific Northwest region of

the United States. Finally, chapter 5 summarizes the findings of this dissertation, limitations,

and the directions for future research in this area.
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Chapter 2

Rainfall Frequency Analysis for

Ungauged Regions Using Remotely

Sensed Precipitation Information

2.1 Introduction

Rainfall Frequency Analysis (RFA) is an important tool in hydrologic engineering (Stedinger,

1993; Hosking and Wallis, 2005; Bonnin et al., 2006). Depth-Duration-Frequency (DDF)

curves, which link extreme rainfall depths to their probability of occurrence, are based on

time series of extreme rainfall with different durations fitted with probability distribution

functions. RFA has been traditionally performed using information from rain gauges. This

approach has proven to be a useful tool in planning and design for regions where observational

data is relatively abundant such as the United States or Europe. However, many parts of the

world, particularly the developing countries, do not have that advantage. In many developing

countries, gauge observation networks over remote and mountainous regions are still sparse
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and limited in terms of duration.

With advances in tools and techniques for precipitation measurement using remotely sensed

information, investigation of rainfall characteristics over remote and mountainous regions

with limited gauge observations has become possible. In an effort to produce long and

consistent climate records based on satellite observations, National Oceanic and Atmospheric

Association (NOAA) under the Climate Data Record (CDR) program, in cooperation with

the University of California, Irvine, developed a satellite precipitation product named the

Precipitation Estimation from Remotely Sensed Information and Artificial Neural Networks-

Climate Data Record (PERSIANN-CDR) (Ashouri et al., 2015). PERSIANN-CDR provides

near-global (60◦N to 60◦S latitude and 0◦ to 360◦ longitude) precipitation information with

0.25◦ spatial and daily temporal resolution from 1983 to the present. Given its relatively high

spatial resolution and long record, PERSIANN-CDR is a unique dataset for studying extreme

precipitations and performing rainfall frequency analysis. The length of the PERSIANN-

CDR dataset (35+ years) is particularly valuable for parts of the world that lack the gauge

information for rainfall frequency analysis.

In recent years, several efforts have been made to develop DDF curves by employing re-

motely sensed precipitation information from weather radars and earth observing satellites

(Overeem et al., 2008; Wright et al., 2013; Eldardiry et al., 2015; Marra and Morin, 2015).

For instance, Overeem et al. (2009) used an 11-year gauge-adjusted radar-rainfall dataset

and performed a regional frequency analysis to extract DDF curves for the Netherlands.

They found that radar data, despite being useful for real-time rainfall analysis, still suffer

from serious limitations, such as significant errors in extreme rainfall estimates and shortness

of data, that limit their usefulness for RFA. Thus, the application of radar data for rainfall

frequency analysis is hampered by: (1) its relatively short length of record which leads to

sampling issues during distribution fitting process and results in larger uncertainties of the

frequency estimates especially for longer durations (Durrans et al., 2002; Eldardiry et al.,
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2015; Marra et al., 2017b); and, (2) estimation uncertainties and heterogeneities due to the

continuous development of radar quantitative precipitation estimation (QPE) instruments

and methods (Allen and DeGaetano, 2005; Lombardo et al., 2006). Eldardiry et al. (2015)

quantified the effects of each of these sources of uncertainty and attributed much of the

quantile estimation uncertainty to the length of the dataset. However, the conditional bias

intrinsic to the radar dataset was the main reason for the observed systematic underestima-

tions in the rainfall frequency estimates. As compared to rain gauges and radar network,

satellite QPE is able to provide global coverage and has been employed in a number of stud-

ies for rainfall frequency analysis (Endreny and Imbeah, 2009; Awadallah et al., 2011; Zhou

et al., 2015; Marra et al., 2017b). Yet, similar to radars, the application satellite QPEs for

RFA is undermined by the data length issues and estimation uncertainties associated with

each of the precipitation estimation products.

Among different remotely sensed precipitation datasets, PERSIANN-CDR is a viable can-

didate for extreme precipitation analysis given: (1) its high spatial and temporal resolution:

when compared with the long-term Global Precipitation Climatology Project (GPCP) (Huff-

man et al., 1997) product which is monthly and 2.5◦ by 2.5◦, PERSIANN-CDR has a higher

temporal (daily) and spatial resolution (0.25◦ by 0.25◦). The 2.5◦ spatial and monthly tempo-

ral resolution is not capable of capturing the spatial and temporal variability of the extreme

precipitations especially over regions with complex topographic conditions, and (2) its long

record: PERSIANN-CDR has relatively longer data record (34+ years and continually ex-

panding) in comparison to TRMM 3b42 V7 (Huffman et al., 2007) with 20+ years of data,

or CMORPH (Joyce et al., 2004) with 16+ years of record. Based on these strengths, Gado

et al. (2017) employed the PERSIANN-CDR dataset to estimate extreme rainfall quantiles at

two homogenous regions in the Western United States. They combined information from the

PERSIANN-CDR pixels and nearby gauges in a homogenous region and used an innovative

regional frequency analysis method to derive quantile estimates at ungauged locations.
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The primary goal of this chapter is to evaluate the feasibility of using the PERSIANN-CDR

dataset for rainfall frequency analysis by constructing the required DDF curves over regions

with limited gauge information or mountainous areas. As a proof of concept, this study

has been conducted over the United States, where longer gauge observations with sufficient

spatial coverage exist. As some studies have reported, there are biases in the PERSIANN-

CDR estimates which necessitate the application of bias-adjustment techniques to improve

the accuracy of the PERSIANN-CDR estimates of extreme precipitations (Miao et al., 2015;

Duan et al., 2016; Shah and Mishra, 2016; Yang et al., 2016; Liu et al., 2017). This study

was designed with the following objectives: (1) to propose an elevation-based bias correction

model applicable to the PERSIANN-CDR dataset and test over a large number of river basins

in the continental United States, and, (2) to demonstrate the usefulness of satellite-based

precipitation data in rainfall frequency analysis and use the derived frequency estimates

to further verify the effectiveness of the proposed bias-correction model. In the proposed

frequency analysis framework, only the PERSIANN-CDR information is used to estimate

extreme precipitation quantiles and no information from nearby gauges is incorporated in

the development of DDF curves (Gado et al., 2017).

The rest of this chapter is organized as follows: in section 2, a detailed description of gauge

and PERSIANN-CDR datasets used in the study is presented, followed by the specifications

of the studied basins. The bias-adjustment approach, cross-validation techniques and the

frequency analysis procedures pursued in the study are introduced in section 3. Section 4

presents the results and discussion. The main findings and conclusions are summarized in

Section 5.
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2.2 Data

2.2.1 Gauge Data

Global Historical Climatology Network (GHCN)-Daily is a quality controlled dataset that

is used in this study. This dataset contains comprehensive information of daily summaries

of more than 40 meteorological variables, including precipitation, temperature, snow depth,

wind information, evaporation, etc. recorded by 100,000 land surface stations operated by

20 agencies around the world.

In this chapter, I select 20 basins located in the Eastern and Western United States (Figure

2.1). The daily rainfall data from rain gauges with 34+ years of observation (1/1/1983-

12/31/2015) were downloaded from National Oceanic and Atmospheric Association-National

Climatic Data Center (NOAA-NCDC) database (https://www.ncdc.noaa.gov/ghcnd-data-

access). A brief description of the selected basins with their hydrologic unit codes (HUC)

and the number of gauges with 34+ years of data selected for this study are presented in

Table 2.1. The selected basins incorporate a wide range of elevations, from 0 to 3700 m

mean sea level, and diverse climatic conditions.

2.2.2 PERSIANN-CDR data

PERSIANN-CDR is a retrospective multi-satellite precipitation dataset that provides near-

global precipitation information, 60◦N-60◦S latitude and 0◦-360◦ longitude, at 0.25◦ spatial

resolution (around 25 km) and daily temporal resolution from 1 January 1983 to near present

(Ashouri et al., 2015). The PERSIANN-CDR dataset was developed by the following steps.

In the first step, the PERSIANN algorithm (Hsu et al., 1997) is implemented on the archive

of Gridded Satellite (GridSat-B1) Infrared Data (Knapp et al., 2011) from Geostationary
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Figure 2.1: The geographic location of the selected basins and gauges
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Earth Orbiting satellites (GEOs). The model is pre-trained using the National Center for

Environmental Prediction (NCEP) Stage IV hourly precipitation data. Then the parameters

of the model are kept fixed, and the model is run on the entire historical records of GridSat-B1

to estimate the historical precipitation at 3-hourly resolution. In the next step, the estimated

rain-rates are resampled to 2.5◦ spatial resolution and bias-adjusted with GPCP product

v2.2 (Adler et al., 2003) to keep it consistent with the GPCP monthly product. Finally,

the PERSIANN-CDR dataset is obtained by accumulating the 3-hourly bias adjusted data.

In this research, daily PERSIANN-CDR data for the selected basins for the time period of

1/1/1983 to 12/31/2015 was used.

23



T
ab

le
2.

1:
S
u
m

m
ar

y
of

th
e

fe
at

u
re

s
of

th
e

se
le

ct
ed

b
as

in
s

an
d

ga
u
ge

s

B
as

in
N

o.
B

as
in

N
am

e
H

U
C

S
ta

te
(s

)
A

re
a

(s
q
.

m
i.

)
N

o.
of

ga
u

ge
s

G
au

ge
el

ev
at

io
n

s
(m

)
K

Ã
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2.3 Methodology

2.3.1 Model Description

In the proposed bias correction model, I first correct the PERSIANN-CDR estimates of

Annual Maxima with gauge data at pixels with available gauge records for the study period.

The time series of annual maximum precipitation from both gauge network and PERSIANN-

CDR for the corresponding pixels are extracted and sorted in an ascending order. For

simplicity, I denote the gauge-based annual maximum series as ”GM”, and the PERSIANN-

CDR annual maximum series as ”PM” hereafter. A zero-intercept regression line is fitted

to the scatterplot of GM and PM time series, with the corresponding PM values in the

Y-axis and GM values in the X-axis (Figure 2.2a). The slope of this regression line (called

”Correction Factor” or CF hereafter) shows the deviation of PM with respect to ground truth

(GM), and it indicates the level of correction required for correcting PM to GM. A CF value

larger than one indicates an overestimation of the extreme precipitation by PERSIANN-

CDR, and a CF smaller than one implies the underestimation. The larger the deviation of

a CF value from the one to one case, the greater the correction required for the PM (Figure

2.2a).

To investigate the orographic characteristics of bias at each basin, the CF values at individual

gauges are plotted against the corresponding gauge elevations (Figure 2.2b). The basin-

scale plots are further merged to provide a more comprehensive view of the CF-elevation

relationship (Figure 2.2c). Following the approach mentioned above, an exponential function

is fitted to the derived CF-elevation relationship at both individual basin and multi-basins

scale as shown in Figure 2.2c. I construct a correction function based on the CF-elevation

relationship derived from 4 Western US basins and test its performance with different cross-

validation and validation methods on other basins. The selected basins are San Joaquin River

Basin (California), the Willamette River Basin (Oregon), the Upper Columbia River Basin
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Figure 2.2: Figure 2. Schematic view of the bias adjustment approach. (a) Estimation of
correction factor at a single gauge with annual maximum series (AMS) of gauge and collo-
cated PERSIANN-CDR pixel (b) Correction factor - elevation relationship at single basin
scale (each point showing the CF for at a gauge) (c) Correction factor-elevation relationship
for multiple basins and the schematic of the fitted exponential function (similar markers
showing gauges from the same basin)

(Washington) and the Colorado Headwaters (Colorado). These basins are selected since they

provided bias-elevation information at different elevations and encompassed different climatic

conditions, which are representative for building a robust and effective bias correction model

applicable to other river bases in the United States. Finally, the correction model based on

these four selected river basins is tested on the other 16 basins with different elevation ranges

and climatic conditions in the Western and Eastern U.S.

2.3.2 Hold-out Cross-Validation

Hold-out cross-validation is implemented to examine how the performance of the correction

model is influenced by the number of basins incorporated in the model calibration, and to

investigate whether incorporating information from fewer basins could improve the CDR

estimates of AMS. The four basins used for training the correction function are divided into

two groups. The basins are grouped in a way that information from different elevations

and climates are included for each case. A correction function based on the gauge and the

PERSIANN-CDR information from the basins in the first group is used to adjust the PM
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for the basins of the other group, and vice versa. In other words, an exponential regression

function is fitted to the CF-elevation relationship from the two basins in the first group and is

then used to adjust the AMS from the PERSIANN-CDR dataset for the basins in the second.

The effectiveness of the bias-correction functions is assessed using the root mean squared

error (RMSE) of the sorted AMS from the adjusted CDR and that of gauge observations, at

each of the gauge locations and basins.

2.3.3 Comparison with Gauge Interpolation

Besides comparing the original and corrected PERSIANN-CDR using the approaches men-

tioned above, I also include a commonly used basin-scale interpolation method for analyzing

extreme precipitation over remote and mountainous areas where the gauge network is insuf-

ficient or even non-existent (Chen et al., 2008; Doumounia et al., 2014).

2.3.4 Leave-One-Out Cross-Validation

Precipitation intensity at an ungauged location is commonly estimated by interpolating ob-

servations from nearby gauges. Performance of the bias-adjusted PERSIANN-CDR dataset

in estimating the annual maximum time series at an ungauged location is compared with

the estimates from the interpolation method and the original PERSIANN-CDR dataset. At

each of the calibration basins, I leave one gauge out of the training phase, and the entire

time series of precipitation at this particular gauge location is constructed with the linear

interpolation of observations from the remaining gauges. Then, the annual maximum series

at the location of the held out gauge is extracted from the interpolated time series. The

CF-elevation relationship for the selected calibration basins is derived, and the CF corre-

sponding to the elevation of the removed gauge is used to correct the PM time series at

the PERSIANN-CDR pixel over the left-out gauge location. Finally, the interpolation-based
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annual maximum time series and the corrected PM are compared with the original GM.

RMSE is used as the measure of the difference between the calculated time series and the

GM. It is worth mentioning that I repeat this procedure for all the gauges at each calibration

basin to investigate the robustness of our proposed correction method.

2.3.5 K-fold Cross-Validation

The leave-one-out cross-validation approach described in section 3.3 evaluates the perfor-

mance of the suggested bias-correction approach at a single gauge level. When there is a

dense gauge network in a basin, interpolation of available gauge observations may result in

better estimates of the AMS at an ungauged site. However, the gauge interpolated estimates

could be less reliable when the region has limited or sparse gauge observations. Therefore,

to find the breaking point where the corrected PERSIAN-CDR dataset starts to outperform

the interpolation-based results, I carry out the k-fold cross-validation. At each of the four

basins used in the calibration process, different percentages (i.e., 10, 20, 30, 40, 50, 60, 70,

and 80%) of gauges are randomly selected and left out. Then, the entire time series of precip-

itation for the locations of the removed gauges are constructed using the linear interpolation

of the daily observations from the remaining gauges. The annual maximum series for the

locations of the removed gauges are then extracted from the interpolated time series. Fi-

nally, I compare the corrected PM and the interpolation-based annual maximum time series

at each gauge location with the GM for that location. Since various combinations of gauges

could be selected as test samples, results depend on the distribution of the remaining gauges

and the distances between the held out and nearby gauges. To reduce the sensitivity of the

results to the selection of gauges, I carry out 30 random selections of the hold-out gauges

and consider each selection an independent test. RMSE of the interpolation-based AMS is

then compared with RMSE of the corrected PM for the selected gauges in each independent

run. The average RMSE of the 30 independent runs is also calculated to have the overall
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error estimate for different hold-out scenarios (i.e. 10, 20, 30, 40, 50, 60, 70, and 80% of

gauges being held out).

2.3.6 Satellite-based Rainfall Frequency Analysis

National Oceanic and Atmospheric Administration (NOAA) Atlas 14 is a source of rainfall

frequency estimates for the United States and its territories. NOAA Atlas 14 provides

intensity-duration-frequency (IDF) and depth-duration-frequency (DDF) curves for different

regions based on the regional frequency analysis approach (Bonnin et al., 2006). NOAA

Atlas 14 IDF and DDF curves were developed using the best fit among different probability

distributions, including the 3-parameter Generalized Extreme Value (GEV), the Generalized

Normal, the Generalized Pareto, the Generalized logistic, the Pearson Type III distributions,

the 4-parameter Kappa distribution; and the 5-parameter Wakeby distribution. At 80% of

gauges and for sub-daily and daily durations, the GEV gave the best statistics among the

3-parameter distributions and its performance was comparable to that of 4 and 5 parameter

distributions. Thus, the GEV was adopted across all gauges and durations (Bonnin et al.,

2006). The GEV distribution was firstly introduced by Jenkinson (1955), and it has been

widely used for frequency analysis of extreme precipitation and was demonstrated superior

over other probability distribution functions in terms of fitting the annual maxima time series

(AMS) (Ben-Zvi, 2009; Bougadis and Adamowski, 2006; Fowler and Kilsby, 2003; Gellens,

2002; Norbiato et al., 2007; Villarini et al., 2011). The GEV distribution is a 3-parameter

probability distribution that combines three extreme value distributions. The type of the

distribution is characterized by the value of the shape parameter ξ. Negative, zero, and

positive values of the shape parameter determines the tail behavior of the distribution as

short-tailed (Weibull), light-tailed (Gumbel) and heavy-tailed (Fréchet), respectively. The
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GEV cumulative distribution function is given by:

F (x) = exp

−exp

[
−x− µ

σ

]−1

ξ

 for ξ 6= 0 (2.1)

F (x) = exp

{
−
[
1 + ξ

x− µ
σ

]}
for ξ = 0 (2.2)

where ξ, µ, and σ are the shape, location, and scale parameters, respectively.

To fit the GEV distribution with the PERSIANN-CDR daily precipitation, I first adjust

the data samples, in which the block maximum series of PERSIANN-CDR for 2-day, 3-day,

4-day, 7-day, 10-day, 20-day, 30-day, 45-day and 60-day durations are corrected with gauge

data using the same approach used for daily precipitation.

The GEV distribution is fitted to the annual maxima series of corrected CDR for different

durations using gevfit function from the Matlab Statistics and Machine Learning Toolbox

(https://www.mathworks.com/help/stats/gevfit.html). Maximum likelihood estimation is

used to estimate the parameters of the GEV distribution and the corresponding confidence

intervals (Kotz and Nadarajah, 2000; Embrechts et al., 2013). The return level for each

return period and duration is estimated using the inverse GEV function as in equations 2.3

and 2.4:

XT = µ− σ

ξ

{
1−

[
−ln

(
1− 1

T

)]}
for ξ 6= 0 (2.3)
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XT = µ− σln
[
−ln

(
1− 1

T

)]
for ξ = 0 (2.4)

where XT is the return level (i.e., the rainfall depth that on average is exceeded once in T

years), and T = 1/(1 − F ) is the return period. Using the return levels at different return

periods and annual exceedance probabilities, the DDF curves are generated. NOAA Atlas

14 (Bonnin et al., 2006) provides DDF curves with sub-daily, daily and multi-day dura-

tions. The DDFs can be downloaded from the NOAA precipitation frequency data server

(https://hdsc.nws.noaa.gov/hdsc/pfds/). Since the PERSIANN-CDR dataset gives precip-

itation estimates at daily time scale, the daily and multi-day durations were considered in

generating the DDF curves. To remain consistent with NOAA frequency estimates, pre-

cipitation durations considered in this study are 1-day, 2-day, 3-day, 4-day, 7-day, 10-day,

20-day, 30-day, 45-day, and 60-day. It should be noted that the durations considered here

do not mean precipitation occurred during the entire period, but the sliding window gives

the highest value of precipitation accumulation over the selected period. Lastly, I compare

the return levels based on the corrected CDR estimates with that of NOAA Atlas 14 at each

duration and return period.

2.3.7 Uncertainty assessment

The confidence intervals of the return levels from the original and the adjusted PERSIANN-

CDR datasets are estimated using a bootstrapping technique. I generate 1000 random

samples with replacements from the original and adjust AMS at the target gauge locations.

Then, the Maximum Likelihood estimation is used to calculate the parameters of the GEV

distributions fitted to each of these random samples. Return levels for different durations

are calculated using the inverse GEV function evaluated at different return periods. Finally,
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the 5th and 95th percentiles of the bootstrapped return levels at each duration and return

period are taken as the 90 percent confidence intervals.

2.4 Results and Discussion

2.4.1 Training Basins

Figure 3 shows the scatterplots of the CDR and gauge AMS and the regression line equation

at a number of gauges in the Willamette River Basin in the state of Oregon. In some of the

gauge locations (Figures 2.3a-d, and g-i), the original PERSIANN-CDR has a certain degree

of underestimation or overestimation, while in some other gauge locations the PERSIANN-

CDR estimates are in good agreement with gauge observations (Figures 2.3e and 2.3f).

An important note here is that a PERSIANN-CDR pixel has an area about 625 km2 which is

much larger than the sampling area of a rain gauge. The value of a PERSIANN-CDR pixel

represents the average precipitation within that pixel’s spatial domain. In fact, even if the

PERSIANN-CDR estimate at a pixel is completely accurate, its value tends to be smaller

than the sub-pixel point measurements. In other words, by comparing a PERSIANN-CDR

pixel with a point measurement, we are carrying out a ”point-area” comparison. Therefore,

by adjusting the PERSIANN-CDR pixels with point measurements, we are down-scaling

PERSIANN-CDR to point resolution. This implies that the adjusted dataset should be

regarded as a point estimate, rather than an area estimate. Furthermore, there would be

time discrepancies between the PERSIANN-CDR’s daily interval, and the gauges’ 24-hour

intervals. Thus, the correction factor accounts for the influence of both ”point-area” and

time discrepancy issues.

At each of the four basins selected to build the correction model (i.e., the San Joaquin River
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Figure 2.3: Scatterplots of gauge and PERSIANN-CDR AMS and the zero intercept regres-
sion lines at sample gauge locations in Willamette River Basin. Station names are written
above the scatterplots
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Basin, the Willamette River Basin, the Upper Columbia River Basin, and the Colorado

Headwaters), the CF at the basin scale is computed by fitting a zero-intercept regression

line to the sorted AMS of all the available gauges and that of collocated CDR pixels(Figure

2.4). In general, the PERSIANN-CDR estimates of AMS tend to be lower than the AMS from

gauge observation, with different levels of underestimation in the different basins. The AMS

estimates from the original PERSIANN-CDR dataset show considerable underestimation at

Colorado Headwaters and Upper Columbia River Basins with CFs equal to 0.46 and 0.57,

respectively.

The scatterplots of CF and gauge elevation for different basins are shown in Figures 2.5(a-d).

In general, an exponential relationship exists between CFs and elevations at each of the four

basins. Furthermore, when merging all the available gauge information from the selected

river basins together, a comprehensive view of this relationship is demonstrated (Figure

2.5e). As shown in Figure 2.5e, the CFs become smaller with increasing elevation of the

gauges. This reduction in the CFs implies the underestimation of AMS at higher elevations.

Both IR-based (such as PERSIANN family) and Passive Microwave based (such as TMPA

(Huffman et al., 2007)) precipitation products have been reported to underestimate precip-

itation in high elevations (Hashemi et al., 2017). This underestimation has been related to

several factors. Satellite-based precipitation products have difficulties in retrieving the solid

form of precipitation (snow), which is the prevailing type of precipitation at high elevation

regions and in the winter season (Hashemi et al., 2017). Moreover, since IR-based precipita-

tion algorithms rely on the cloud top temperatures, they cannot fully detect the orographic

enhancements in the liquid phase of precipitation in regions characterized by complex to-

pographic conditions (Shige et al., 2013). In addition to the technical and methodological

issues inherent to the satellite precipitation estimation methods, the spatial and temporal

inconsistencies between the satellite precipitation estimates and gauge observations at high

elevation regions can be related to the poor sampling of gauges (Gebregiorgis and Hossain,
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Figure 2.4: CF at basin scale for the selected river basins in the Western United States,
including (a) San Joaquin River Basin, (b) Willamette River Basin, (c) Upper Columbia
River Basin, and (d) Colorado Headwaters River Basin.
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2014). For instance, Libertino et al. (2016) observed the lowest agreement in the timing

of extreme events recorded by TRMM and gauge observations in sparsely gauged regions.

Miao et al. (2015) also reported low spatial and temporal agreement in terms of extreme

precipitation statistics between the PERSIANN-CDR estimates and gauge observations in

regions with low density of gauges.

As shown in Figure 2.5, we fit an exponential function to the scatterplots of CF for each

gauge and its corresponding elevation. This function is used to correct the CDR-based AMS

at different basins in the Eastern and Western United States. However, since this correction

model is based on only a few selected basins, it is necessary to be validated using different

cross-validation techniques and then be tested on different basins over the continental United

States.

2.4.2 Hold-out Cross-validation Results

We first carry out hold-out cross-validation on the four selected river basins, in which a

correction function based on CF-elevation relationship is built using the information from

two of the river basins, Willamette and Upper Columbia river basins. The model is tested

on the other two river basins (the San Joaquin and the Colorado Headwater River Basins),

and vice versa. The goal is to examine the effect of limited gauge information and basin

selection on the overall performance of the bias-correction approach.

The effect of bias-correction on the empirical CDF of the PERSIANN-CDR estimates at each

of the calibration basins is shown in Figure 2.6. At basin scale, the correction method shifts

the empirical CDF of the AMS from the original CDR towards the gauge-based empirical

CDF. In the Willamette River Basin and the Colorado headwaters River Basin, the corrected

CDF is close to that of the observation. In the San Joaquin River Basin, the extreme

quantiles from the corrected data are closer to the observation. In the Upper Columbia
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River basin, the corrected PERSIANN-CDR gives better estimates of the largest extreme

values compared to the original PERSIANN-CDR. However, it results in an overestimation

of the lower quantiles. This is consistent with the results shown in Figure reffig:Fig2-4, where

the regression-based estimates gave some overestimation for values lower than 55 mm.

The statistics of the hold-out cross-validation results at gauge scale are presented in Table

2. In most of the gauge locations (111 out of 127 gauges in different basins), the RMSE of

the corrected PERSIANN-CDR is lower than that of the original PERSIANN-CDR. This

implies the effectiveness of the proposed bias-adjustment approach in correcting the PM at

pixel level even in basins with dense gauge networks. At 16 gauges, however, the correction

method tends to deteriorate the original PERSIANN-CDR estimates. Among these gauges,

12 are located in low elevation regions (¡550 meters from mean sea level), and more than half

of them are associated with elevations less than 200 meters from mean sea level. The Upper

Columbia and the Willamette River Basins have a larger portion of these gauges with 7 and 5

unsuccessful corrections, respectively. The poor performance of the corrected CDR at those

gauge locations could be partly attributed to the complex topographic conditions of those

basins, which pose some challenges for the PERSIANN algorithm to estimate precipitation

accurately. However, as compared to the original PERSIANN-CDR, the proposed correction

approach works well for the majority of gauges in the hold-out cross-validation cases as shown

with the lower RMSE values in Table 2.2.

In addition, the lower variability of CF at different elevations (Figure 2.5-e) also implies

that the correction model has a lower uncertainty at gauges with higher elevation. Having

accurate information about extreme precipitation at high elevation regions is very critical

since these regions typically account for a considerable fraction of water resources. However,

these regions are often poorly gauged and the gauge networks are not often capable of

capturing the spatiotemporal variability of extreme precipitations.
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Figure 2.6: Empirical CDF of the AMS from the gauge observations, the original and the
corrected PERSIANN-CDR data at basin scale. (a) San Joaquin River Basin, (b) Willamette
River Basin, (c) Upper Columbia River Basin, and (d) Colorado Headwaters River Basin
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Table 2.2: The RMSE(mm) of the original and corrected PERSIANN-CDR data
during hold-out cross-validation at different gauge locations and basins

San Joaquin Willamette Upper Columbia Colorado Headwaters

Corrected Original Corrected Original Corrected Original Corrected Original

14.76 16.74 27.6 54.73 13.3 19.68 6.16 18.2
19.13 34.44 5.78 5.78 3.76 3.09 4.71 18.73
32.66 47.61 11.26 24.65 4.12 8.66 5.44 18.29
31.41 69.29 15.46 11.15 1.32 8.61 5.25 10.88
12.96 4.26 16.73 19.15 2.93 8.02 7.02 9.76
43.12 71.64 30.79 50.9 7.38 31.3 6.43 19.97
9.42 8.59 6.51 9.53 3.61 1.91 8.98 6.5
10.03 10.1 7.42 20.92 15.25 20.72 6.21 17.25
19.79 25.71 11.85 18.53 1.69 4.71 4.12 12.42
6.11 5.49 10.43 11.36 4.97 8.45 4.8 16.22
19.16 36.62 4.99 4.21 6.2 10.88 5.09 12.83
30.47 59.5 6.65 11.81 0.96 4.25 3.74 18.69
8.86 13.73 20.38 37.86 9.12 21.9 4.74 12.75
23.12 10.42 9.43 7.62 3.17 4.97 4.03 19.37
6.57 6.29 14.5 21.04 11.72 6.27 2.61 18.97
16.38 19.47 9.79 19.52 7.36 15.71 5.66 23.01
30.53 20.49 13.75 8.71 0.92 4.3 1.98 15.97
3.25 9.45 13.34 40.6 5.08 9.13 4.12 13.03
22.05 50.93 45.06 65.65 26.64 34.04 5.98 14.1
8.12 26.77 11.12 11.52 8.59 9.39 4.32 13.81
13.91 18.23 2.94 4.9 3.58 10.14 2.73 15.47
13.69 23.67 2.36 6.02 8.59 4.84 3.01 15.38
10.34 15.72 17.35 7.06 19.52 8.05 6.2 12.17
17.74 36.22 4.41 8.65 7.33 40.04 7.29 23.12
24.67 47.21 24.83 44.44 14.55 53.51 9.89 5.98
19.9 31.57 11.39 4.63 9.88 19.4 - -
12.03 27.9 9.58 27.84 8.47 28.97 - -
16.77 20.93 3.29 3.55 19.66 14.44 - -

- - 6.39 33.06 43.31 77.52 - -
- - 7.81 27.53 13.28 7.61 - -
- - 25.35 54.1 17.14 10.74 - -
- - 8.42 39.02 - - - -
- - 9.66 44.36 - - - -
- - 29.91 66.88 - - - -
- - 11.66 37.27 - - - -
- - 13.56 48.13 - - - -
- - 7.22 24.98 - - - -
- - 6.97 34.96 - - - -
- - 13.64 56.23 - - - -
- - 16.4 24.77 - - - -
- - 4.53 6.53 - - - -
- - 12.97 10.91 - - - -
- - 5.74 7.32 - - - -

* Note: Bold values show the cases where RMSE of the original PERSIANN-CDR
is lower than the corrected PERSIANN-CDR.
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Table 2.3: he RMSE (mm) from leave one out cross validation using gauge interpolation,
original and corrected PERSIANN-CDR data

Method
Basin Name

San Joaquin Willamette Upper Columbia Colorado Headwaters

Interpolation 21.61 16.06 7.87 6.84
Corrected CDR 17.34 12.77 9.79 5.22
Original CDR 26.45 23.95 16.22 15.31

* Note: The bold value shows the case where the corrected PERSIANN-CDR method gave a higher RMSE
value at basin scale than the interpolation method.

2.4.3 Leave-one-out Cross-validation

In each basin, one gauge is left out at a time, and the time series of precipitation at that

gauge location is constructed using linear interpolation. The annual maximum time series

from the gauge interpolation and the corrected PERSIANN-CDR are compared with the

gauge observations at the corresponding location (Table 3). As shown in Table 2.3, the

RMSE values from the corrected PERSIANN-CDR are consistently lower than those of

the original PERSIANN-CDR for all basins. When compared to the interpolation method,

corrected PERSIANN-CDR gives lower RMSE values at the San Joaquin, the Willamette,

and the Colorado Headwaters River Basins. At the Upper Columbia River Basin, however,

the leave-one-out cross-validation results suggest that gauge interpolation performs better

than the corrected PERSIANN-CDR data.

It is inferable from the gauge scale results that the correction model outperforms the inter-

polation method in most cases, even if only one of the gauges at a densely gauged basin

is removed from the sample. The interpolation method also produces substantial errors at

some gauge locations, particularly those locations where the interpolated gauge is relatively

far from its surrounding gauges. It is possible that complex topography leads to differ-

ent precipitation characteristics between nearby gauges and results in uncertainties in the

interpolated precipitation estimates.
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2.4.4 K-fold Cross-validation

The leave-one-out cross-validation results in the previous section demonstrate that the

interpolation-based estimates of AMS achieved by removing one of the gauges may out-

perform the PERSIANN-CDR estimates at some gauges in a densely-gauged region (e.g.,

the Upper Columbia River Basin). In order to find the breakpoint where the corrected

PERSIANN-CDR will outperform interpolation-based estimates at a basin scale, the k-fold

cross validation is implemented. We randomly separate different fractions of all available

gauges (0.1, 0.2, ..., 0.8 of the gauges) in a basin, and remove the selected gauges from

the model training phase. This random selection and removal process is repeated 30 times

for each fraction level. Then, the entire precipitation time series at those locations are

constructed by the linear interpolation of observations from the remaining gauges in that

basin. Then RMSE of AMS estimates from both corrected PERSIANN-CDR and gauge

interpolation are computed at the removed gauges.

Figure 2.7 shows the average RMSE values of AMS estimates from the interpolation method

(blue line) and the corrected PERSIANN-CDR (red line) for different exclusion ratios in each

river basin. The horizontal axis defines the number of the iteration, and the vertical axis

presents the average RMSE value of the AMS estimates on the excluded gauge locations

using the corrected PERSIANN-CDR and gauge interpolation. As the fraction of gauges

being removed from the entire samples increases, the errors associated with the interpolation

method become larger. In contrast, the errors produced with our proposed correction method

remain consistently low for different basins over most of the test scenarios (i.e., different

percentages of the gauge being removed). Moreover, the interpolation-based estimates result

in large errors in some test scenarios and basins. For example, in the San Joaquin River

Basin (Figure 2.7a), substantial errors are observed in different scenarios and over several

independent runs.
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Figure 2.7: Average RMSE of AMS estimates from corrected PERSIANN-CDR (red lines)
and interpolation by k-fold cross-validation (blue lines) for different exclusion ratios at: (a)
the San Joaquin River Basin, (b) the Willamette River Basin, (c) the Upper Columbia River
Basin, and (d) the Colorado Headwaters River Basin
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There are several reasons why errors from the interpolation method have large values in

some of the iterations. Extreme precipitation events vary substantially in space and time.

The annual maximum precipitation at different points of a basin could be results of various

extreme events occurring in different times of the year. When interpolating the daily gauge

observations in a region for constructing precipitation time series at an ungauged site, heavy

precipitation observed at one or more gauge locations could be falsely extended to the lo-

cations that were less impacted by the storm. Similarly, by removing some of the gauges

from the population, the extreme events impacting those locations may not be represented

in the interpolated time series from the remaining sample and as a result the extreme event

at that location would be missed. Both of these cases may result in considerable errors in the

annual maximum series estimated from the interpolation method. Other factors that con-

tribute to the significant interpolation errors include long distance of sample gauges from the

target locations, substantial elevation differences between the target locations and sample

gauges, and the inability of the sample gauges to demonstrate the spatiotemporal variability

of rainfall at target locations.

The overall errors from the corrected PERSIANN-CDR and the interpolation method at

different exclusion ratios and basins are shown in Figure 2.8. As the portion of gauges being

left out increases, the RMSE produced by the interpolation method increases for all the

basins, while the proposed correction method for PERSIANN-CDR shows stable errors over

different ratios and basins with respect to the AMS results. In the San Joaquin River Basin

(Figure 8a), the Willamette River Basin (Figure 2.8b), and the Colorado Headwaters River

Basin (Figure 2.8d), the corrected PERSIANN-CDR yields lower RMSE values than the

gauge interpolation method throughout different ratios, suggesting the effectiveness of the

proposed correction approach. In the Upper Columbia River Basin, the gauge interpolation

method results in better estimates of the AMS at the ratios up to 30%. However, beyond

the 30% threshold, the corrected PERSIANN-CDR produces more accurate estimates of the

AMS. Therefore, 30% of total gauges is the breakpoint for the Upper Columbia River Basin
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in the context of interpolating point gauge information to spatial estimates. By comparing

the statistics of corrected PERSIANN-CDR and the traditional interpolation method, it is

observed that the proposed correction model generates more accurate estimates of the AMS

than does the linear interpolation method. The superiority of the proposed bias-correction

method becomes increasingly evident as the gauges become sparser.

2.4.5 Validation on the Continental U.S.

In previous sections, I demonstrated the effectiveness and robustness of the proposed cor-

rection model on the four representative river basins in the western U.S. In this section, I

extensively validate the correction model on 16 additional river basins with different climates

and topographic conditions across the continental United States (Table 2.1). The selected

basins for validation cover all the climate classes available in the United States based on the

Köppen-Geiger climate classification system. In addition, these basins cover a broad range of

elevations, from low-lying regions in the state of Florida to high elevation regions in the state

of Utah. These basins are also associated with various dominant precipitation mechanisms

(such as convective, orographic, and cyclonic) which could influence the performance of the

satellite-based precipitation products (Hong et al., 2007; Liu and Zipser, 2009).

Table 2.4 presents the errors in AMS estimates from the original and the corrected PERSIANN-

CDR data on the tested river basins. According to Table 4, in 15 out of the 16 basins, the

correction model results in lower RMSE values compared to the original PERSIANN-CDR

data. Significant improvements are observed at high elevation regions such as Dirty Devil,

Rio Grande, and Upper Yellowstone river basins with 78.7 %, 72.3 %, 71.6% reduction in

the RMSE of AMS, respectively. Also, the correction model considerably decreases the er-

rors in the AMS estimates at mid-elevation regions, such as Mississippi headwaters, Upper

Mississippi-Iowa, and Upper Tennessee River basins (Table 2.4). Among the low elevation
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Figure 2.8: Overall RMSE of AMS estimates from corrected PERSIANN-CDR (solid line)
and interpolation (dashed line) at different basins, including (a) the San Joaquin River Basin,
(b) the Willamette River Basin, (c) the Upper Columbia River Basin, and (d) the Colorado
Headwaters River Basin.
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regions, Nueces-Southwestern Texas Coastal and Trinity River basins were quite successful

with respect to the error reduction by the correction model. However, Pascagoula River

Basin is less successful (7.3% decrease in RMSE) and South Florida River Basin fails to im-

prove (29.7% increase in RMSE). Both of these basins are located in the South Atlantic Gulf

region, which is characterized by warm convective precipitation mechanisms. As a result

of these convective systems, satellite precipitation products often fail to provide accurate

estimates at these regions, as we see from the performance of raw data shown in Table 2.4.

Both the Pascagoula and the South Florida river basins have high initial errors compared to

the other river basins. Since the model is trained using the information from four river basins

in the western United States with different hydroclimatic conditions, it is reasonable for it

to not perform as well under temperate and tropical climatic conditions and for extremes

caused by warm convective systems.

Generally, satellite precipitation estimation algorithms perform poorly in estimating precip-

itation from shallow and warm convective clouds (Hong et al., 2007; Kubota et al., 2009;

Liu and Zipser, 2009; Sorooshian et al., 2002). One reason behind this poor performance is

that these algorithms relate heavy precipitations to deep convective clouds and subsequently

underestimate heavy precipitations associated with shallow warm clouds (Hong et al., 2007;

Liu and Zipser, 2009). Moreover, IR-based methods such as PERSIANN are based on cloud

top temperature thresholds that are sometimes too cold for warm orographic clouds (Adler

et al., 2003; Dinku et al., 2008). Finally, due to the contamination by the cold anvil cirrus

clouds, IR-based precipitation estimates typically display 1-3 hr phase shift compared to the

maximum diurnal precipitation. These phase shifts influence the performance of IR-based

methods in regions dominated by warm convective clouds (Sorooshian et al., 2002).
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Table 2.4: Bias-correction results in selected basins over the United States

Basin No. Basin Name
Average RMSE(mm) Change

Original
PERSIANN-CDR

Bias-Corrected
PERSIANN-CDR

(%)

1 Arkansas-Keystone 30.9 12.02 -61.1
2 Central Nevada Desert 14.16 6.91 -51.2
4 Dirty Devil 15.35 3.27 -78.7

5
Kootenai-Pend Oreille-
Spokane

24.23 9.67 -60.1

6 Lower Snake 17.36 4.94 -71.6
7 Mississippi Headwaters 19.12 3.42 -82.1

8
Nueces-Southwestern
Texas Coastal

28.68 17.43 -39.2

9 Pascagoula 39.2 36.32 -7.3
10 Rio Grande - Elephant Butte 15.67 4.34 -72.3
12 Southern Florida 35.4 45.92 29.7
13 Susquehanna 22.61 10.64 -52.9
14 Trinity 35.62 21.87 -38.6
16 Upper Mississippi-Iowa 23.83 7.24 -69.6
17 Upper Tennessee 27.14 10.15 -62.6
18 Upper Yellowstone 18.68 5.31 -71.6
19 Wabash 23.36 11.46 -51

* Note: The underlined value shows the case where the adjustment of PERSIANN-CDR data failed to
improve the errors in the annual maximum series estimates.
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2.4.6 Multi-day Annual Maximum Series

In Figure 2.9, the scatterplots of the CF-elevation for multi-day duration AMS at Colorado

Headwaters (Figures 2.9 a-j) are presented as an illustrative example. Figures 2.9 (a)-(j)

suggest there is a similar CF-elevation behavior in multi-day AMS analysis for different

durations. Figure 2.9(k) presents the exponential regression functions fitted to each of the

N-day maximum scatterplots. According to Figure 2.9 (k), as durations increase from 1 day

to 60 days, the original PERSIANN-CDR estimates of the AMS become more accurate (i.e.,

closer to the CF=1 line). This is because the PERSIANN-CDR dataset is bias-adjusted with

GPCP dataset (Huffman et al., 2007) at a monthly scale and the values from the two datasets

become closer to each other at longer durations. Therefore, at 30-days or 60-days analysis,

the AMS estimates should be close to gauge observation. Although PERSIANN-CDR and

gauge information are adjusted at a monthly scale, the monthly coefficients are applied to

daily estimates (Ashouri et al., 2015). Therefore, the sub-monthly or daily estimates may

not be compatible with gauge observations at the corresponding scale. Furthermore, the

GPCP is a gauge interpolated dataset which its pixel values are essentially the average

values of gauge observations within the large grid boundary. However, here we compare the

PERSIANN-CDR estimates in pixel scale with the collocated gauge values which could differ

substantially from the corresponding GPCP pixel values.

2.4.7 Depth-Duration-Frequency Curves

Figure 2.10 shows the DDF curves derived from the adjusted CDR data, the frequency

estimates from NOAA Atlas 14, and the 90% confidence intervals for a gauge location in

Dirty Devil basin in the state of Utah (USC00420849). We present return levels for daily

and multi-day durations given the daily resolution of the PERSIANN-CDR dataset. As

shown in Figure 10, the frequency estimates from the original PERSIANN-CDR data are
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Figure 2.9: Scatterplots of CF-elevation for different durations(a-f) and the exponential
regression fitted to the CF-elevation data for different durations(k) at Colorado Headwaters
Basin
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outside the 90% confidence intervals of the NOAA Atlas 14 which suggests the necessity

of bias adjustment prior to employing the data for frequency analysis. On the other hand,

DDFs from the adjusted PERSIANN-CDR data are well within the 90% confidence intervals

of the NOAA Atlas 14 DDFs. In most cases, the frequency estimates from the adjusted

PERSIANN-CDR are very close to the NOAA Atlas 14 estimates which are calculated by

incorporating a larger number of gauges and longer records of data for frequency estimation.

Larger deviations from the gauge-based estimates are observed at longer return periods,

and there is no clear trend in terms of overestimation or underestimation with respect to

duration.

As shown in Figure 2.10, the confidence intervals from the gauge-based and satellite-based

DDFs become larger as the return periods increase. This higher uncertainty is because of the

lower sample size at the tails of the distributions. Furthermore, the confidence intervals from

the original and the adjusted PERSIANN-CDR datasets are relatively comparable given the

similar lengths of the two datasets. However, the uncertainty bounds from the satellite-

based DDFs are larger than those from the NOAA Atlas 14. One reason behind these

larger confidence intervals is the shortness of the PERSIANN-CDR dataset when compared

to the gauge information used for the development of NOAA Atlas 14 DDFs. Another

reason is the difference between the frequency analysis method implemented here and the

method employed in the development of NOAA Atlas 14. NOAA uses the regional frequency

analysis based on L-moments to estimate the frequency and intensity of extremes (Hosking

and Wallis, 2005). The regional frequency analysis method is used in Atlas 14 in order to

relieve the uncertainties arising from a low sample size (limited years of observations) during

the GEV parameter estimation process. Although the regional frequency analysis method

gives frequency estimates with lower uncertainties, it comes with the assumption of regional

homogeneity in extreme rainfall characteristics which is not always a valid assumption. Here,

the frequency analysis methods and uncertainties of the frequency estimates are outside of

the scope of this study, and the DDF curves and their error analyses are the proof of concept.
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Figure 2.10: Frequency estimates from corrected PERSIANN-CDR, original PERSIANN-
CDR and NOAA Atlas 14 with 90% Confidence intervals at gauge USC00420849 in Dirty
Devil basin, UT. The red vertical bars, blue vertical bars, and gray shaded area show the
90% Confidence intervals from corrected PERSIANN-CDR, original PERSIANN-CDR and
NOAA Atlas 14, respectively.
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As seen in Figure 2.10, DDFs from the original PERSIANN-CDR suggest underestimation

of the extreme precipitation quantiles for different durations. This is expected given the spa-

tial resolution of this dataset. In fact, when considering the remotely sensed precipitation

information, we should be aware that the pixel value represents a spatial average of precip-

itation within the extent of a pixel. In other words, the pixel value disregards the subpixel

variability and even if the PERSIANN-CDR estimate at a pixel is completely accurate, its

value tends to be smaller than the collocated point measurements. As a result, the extracted

DDFs from a satellite pixel tend to demonstrate lower return intervals (Peleg et al., 2018),

as observed in Figure 2.10.

It is worth noting that the estimated DDF curves are not necessarily based on the liquid-

phase precipitations and the extracted AMS may comprise snowfalls as well. This is because

PERSIANN-CDR and many other satellite-based precipitation estimation algorithms do not

distinguish between precipitation phases. In other words, the annual maximum time series

extracted and used here may contain solid-phase precipitation extremes due to snowfalls.

Although this study does not differentiate between solid and liquid phases of precipitation

in order to obtain purely rain-based DDFs, the current framework can be further modified

to incorporate additional observations on solid precipitations. There are two approaches to

achieve this goal. One approach for this would be to limit the analysis to warm seasons, but

the definitions of warm season vary among various geographic locations. Another approach

would be to distinguish snowfall from rainfall, but this would require snowfall and air tem-

perature data that are not available everywhere. Future independent research may improve

upon the current study by including such additional information.

Figure 2.11 displays the box plots of RMSE of the return level estimates from the original

and corrected CDR for different durations and return periods at collocated PERSIANN-CDR

pixels and gauges for different basins in the continental US. The corrected PERSIANN-CDR

data was used to obtain frequency estimates at different gauge locations in the selected
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basins, and the results were compared with those from NOAA Atlas 14. Note that three out

of the 16 basins (basins 5, 6 and 15) were located in the Pacific Northwest region and two

basins (basins 8 and 14) were located in the state of Texas, all of which were not covered

by or were being updated in the recent volumes of NOAA Atlas 14. Thus, the frequency

estimates were only validated at the remaining 11 basins as shown in Figure 2.11.

According to Figure 2.11, the RMSE values for return level estimates corresponding to longer

return periods are generally higher for both datasets. This is expected as the PERSIANN-

CDR dataset is relatively shorter than the gauge information used for the development of

NOAA Atlas 14. The shorter record will result in smaller samples, higher uncertainties,

and larger deviations at the tails of the distribution. Over the tested basins, the frequency

estimates from the corrected PERSIANN-CDR data have consistently lower median RMSE

values than those from the original PERSIANN-CDR at different return periods. The RMSE

values at the basins with higher elevations (such as Central Nevada, or Dirty Devil basins)

were relatively lower than these at basins with lower elevations (such as Mississippi Head-

waters, or Upper Mississippi-Iowa basins), which implies the suitability of the correction

approach for high elevation regions. Furthermore, in most of the basins and at different

return periods, the corrected dataset shows lower variability in RMSE of the frequency es-

timates. Corrected PERSIANN-CDR data also demonstrate superior performance in terms

of median RMSE and variability of RMSE values at the gauges within the basins. The only

case for which the corrected PERSIANN-CDR results in higher RMSE values at different

return periods and durations is the South Florida basin, where it was previously shown

that the correction model does not improve the AMS estimates due to the climate and the

precipitation mechanism.

The relative errors of the frequency estimates are calculated to show the relative magnitude of

the return level errors compared to the return levels from NOAA Atlas 14. The relative error

here is the difference between the frequency estimates from PERSIANN-CDR (original and
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bias-adjusted) and NOAA Atlas 14, divided by the value from NOAA Atlas 14. Figure 2.12

demonstrates the absolute value of the relative error for the frequency estimates at different

durations and return periods from the corrected and original PERSIANN-CDR data. As

shown, the relative errors from the corrected PERSIANN-CDR data have consistently lower

median values, as well as, lower variability at different return periods in the tested basins.

The median relative errors from the corrected data are less than 20% different from the

return levels estimated by NOAA Atlas 14. Similar performance is observed when the relative

errors of frequency estimates from the two datasets are compared with respect to the extreme

precipitation duration. It is also noted that the corrected PERSIANN-CDR dataset does not

show a systematic increase or decrease in the relative errors of the frequency estimates, with

respect to the duration. The relative errors of the return level estimates from the original

PERSIANN-CDR data tend to decrease with increasing duration. This finding is consistent

with our observations in Figure 2.9 that revealed lower errors of the original PERSIANN-

CDR data for longer duration extreme events. As with Figure 2.11, the only case in which

the corrected data resulted in higher RMSE values was the South Florida basin where the

correction model did not improve the AMS estimates.

2.5 Summary and Conclusions

In this study, the application of the PERSIANN-CDR dataset for rainfall frequency analysis

was investigated. A bias correction model was developed to further correct the PERSIANN-

CDR estimates of annual maximum time series at the pixel scale. The proposed correction

approach was implemented in two steps: (1) Bias correction factors at limited gauge locations

were estimated using linear regression analysis between annual maximum series (AMS) of

gauges and collocated pixels; and (2) The correction factors from the limited gauge locations

were extended to other regions where gauge data were not available. The correction model
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Figure 2.11: RMSE of corrected(red) and original(blue) PERSIANN-CDR frequency esti-
mates for the selected basins in the continental United States.
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Figure 2.11: Continued
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Figure 2.12: Absolute relative error (%) of return level estimates for different durations from
corrected(red) and original(blue) PERSIANN-CDR for the selected basins in the United
States.
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Figure 2.12: Continued
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was validated at 16 basins in the continental United States, covering various climates and

elevations. Finally, depth-duration-frequency (DDF) curves were constructed by fitting the

Generalized Extreme Value distribution to the AMS from the corrected data and estimating

the quantiles of extreme precipitations. Below is a summary of our main findings:

1. The proposed bias correction approach has been demonstrated effective and robust

in improving the accuracy of a remote sensing precipitation estimation product (i.e.,

PERSIANN-CDR), especially in high-elevation river basins where gauge or radar net-

works are either limited or non-existent.

2. The hold-out cross-validation results indicated that the proposed bias correction model

is capable of improving the AMS estimated by the PERSIANN-CDR dataset even in

the case that limited gauge information was provided for the model calibration and

the approach is generalizable to other locations with similar climates and elevations.

3. As shown by the leave-one-out cross-validation, the bias adjusted PERSIANN-CDR

gave better estimates of the AMS for the ungauged sites at a majority of the basins

even though these basins had dense gauge networks.

4. Results from the k-fold cross-validation method suggested the proposed correction ap-

proach performs consistently better than the gauge interpolation method in estimating

the AMS at a majority of regions with limited gauge observations. It was observed that

the gauge interpolation may sometimes result in significant errors in AMS estimates,

especially in regions with complex topography.

5. The validation results over 16 basins across different climates and elevations indicated

that the proposed correction method improves the PERSIANN-CDR estimates of AMS,

especially in high elevation regions.

6. The bias-adjusted PERSIANN-CDR is further applied to derive the return levels for

different return periods and durations. The frequency estimates from the corrected
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PERSIANN-CDR data are compared with those from the original PERSIANN-CDR

and NOAA Atlas 14. Results revealed that the frequency estimates from the corrected

dataset are consistently closer to the estimates from NOAA Atlas 14. They also lie

within the uncertainty bounds of NOAA Atlas 14.

Thus, the PERSIANN-CDR dataset has the potential for being used in rainfall frequency

analysis for the regions with limited ground-based observations. However, despite the promis-

ing results, there are still some limitations in this dataset and the proposed correction method

for the application of frequency analysis. One of these limitations is the temporal resolution

of the PERSIANN-CDR dataset. The daily temporal resolution limits the investigation of

extreme events with shorter durations (e.g. 3-hourly or hourly). Another limitation is that

the frequency analysis here is conducted at the pixel scale using relatively limited samples. A

sample of 33 annual maximum values is relatively limited for fitting a 3-parameter distribu-

tion. This would result in high uncertainties in estimating the parameters of the distribution

and the return levels. One remedy to the sample size problem could be the application of

regional frequency analysis methods to increase the sample size by incorporating information

from the nearby locations with the same climatic conditions.

It is also important to note that given the rising global temperatures, rainfall intensities

especially at shorter durations are expected to increase. Therefore, the increase in the

global temperature could be used as an added factor to adjust historical design rainfall

intensities for the warmer temperatures that lie ahead (Peleg et al., 2018). This work is part

of an ongoing research and the presented approaches and results are intended as a proof

of concept. Future research in this area may involve, bringing non-stationarities into the

bias-adjustment framework (Tao et al., 2018), including covariates into the bias-adjustment

framework which requires advanced optimization techniques (Yang et al., 2017; Naeini et al.,

2018), investigating the hydrological modeling applications of the corrected-PERSIANN-

CDR data, and developing DDF curves for ungauged regions or areas not included in the
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current NOAA Atlas 14.
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Chapter 3

Spatial Modeling of Extreme

Precipitation Using Satellite

Information and a Bayesian

Hierarchical Framework

3.1 Introduction

Extreme precipitation are often the main cause of flooding and associated risks. Given

the societal and economic impacts of floods, extreme precipitation needs to be modeled in

fine spatial and temporal resolutions with high accuracy. Appropriate extreme precipita-

tion models are also useful for infrastructure design and management. Due to the sparsity of

gauge networks in remote regions, and the limited appearance of extreme events as compared

to low or normal intensity precipitations, statistical modeling of hydrological extremes has

been a challenging task. In many developing countries, gauge networks are limited in terms
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of its lengths, and spatial distribution. This results in high uncertainties in the extreme value

models. The model uncertainty will significantly increase as one moves further in the tail

of distributions, and it is hard to make inference on the return levels beyond the length of

observation records. In recent years, remotely-sensed precipitation information from weather

radars and earth-observing satellites have been used for modeling extreme precipitation (El-

dardiry et al., 2015; Gado et al., 2017; Marra et al., 2017a; Faridzad et al., 2018; Ombadi

et al., 2018; Marra et al., 2019). Such approach has been shown to be effective especially

at poorly instrumented regions. However, the remotely sensed precipitation information

often suffers from the shortness of data length, which is not desirable for extreme value

analysis. A long-term satellite-based precipitation dataset, such as the Precipitation Esti-

mation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data

Record(PERSIANN-CDR), is especially of interest for extreme rainfall modeling, given (1)

its relatively long record (from 1983 to present), and (2) the high spatial resolution (around

25 km). Yet, the length of the dataset is still limited compared to the return levels often

needed to be extrapolated for hydrological applications. Therefore, statistical tools are espe-

cially useful to address this issue. However, these statistical tools have to have an adequate

flexibility and mathematical foundation to make the extrapolations more reliable (Davison

et al., 2012)

A simple approach to model hydrological extremes, is to analyze the tail of distribution at

each location independently. That means considering no spatial structure in the model and

allowing the data to reveal any spatial similarity through the marginal distributions. This

approach has been less desirable for spatial analysis because: (1) the goal of many spatial

models is to make inference at ungauged locations, using techniques such as spatial interpo-

lation, which is not easily implemented using an unconnected model; and (2) it is intuitively

expected that the precipitation systems affect a cluster of neighboring sites simultaneously

and therefore, the adjacent sites are likely to have similar probabilities for extreme events

compared to the sites located at far distances from each other. Analyzing individual sites

64



independently leads to substantially different estimates of probability distributions at ad-

jacent sites, especially when the data length is short. Furthermore, while the point-based

analysis could successfully be applied in estimating the mean of the marginal distributions,

large uncertainties remain at the tail quantities. Therefore, incorporating spatial dependence

structures in the extreme value modeling seems to be a natural choice (Sharkey and Winter,

2017).

Drawing spatial structures in the modeling framework is not a new concept in hydrology.

Regional frequency analysis(RFA) is a widely used approach for analyzing spatial extremes

(Cunnane, 1988; Sveinsson et al., 2001; Hailegeorgis et al., 2013). RFA aims at pooling in-

formation from the sites with a homogeneous statistical behaviour, in order to increase the

confidence in parameter estimation (Hosking, 1990; Katz et al., 2002; Hosking and Wallis,

2005). While the RFA approach successfully reduces the uncertainties in the frequency esti-

mates, it adds some restrictive assumptions into the model by defining artificial boundaries

for the so-called homogeneous regions. As a result, different parameters and quantiles might

be estimated at neighboring sites, and a virtual boundary will be created over the study

sites (Sharkey and Winter, 2017). Additionally, RFA does not construct an explicit spatial

model for the marginal parameters and also does not model the residual dependence in the

data after capturing the marginal behaviour (Cooley et al., 2012).

Bayesian hierarchical approaches are developed and applied with a similar aim to RFA

approaches, which are to (1) use information from neighboring sites to generate spatially

consistent return level estimates; and (2) reduce uncertainties in the frequency estimates

according to Banerjee et al. (2004). The Bayesian hierarchical approaches offer several

advantages to the conventional frequency analysis methods. Frequency analyses are often

hampered by data scarcity issue; therefore, parameter estimation methods, such as maxi-

mum likelihood estimation(MLE), often cannot fully capture the tail behavior of the data.

Bayesian methods have the advantage incorporating expert knowledge to enhance the con-
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vergence of the model through the use of prior information. Additionally, these methods

are inclusive to additional spatial and temporal information (i.e., covariates), such as geo-

graphical and meteorological information. Furthermore, unlike the other ad-hoc uncertainty

estimation methods (e.g., bootstrapping technique) (Tao et al., 2018) used in the conven-

tional approaches, the Bayesian paradigm explicitly quantifies the uncertainties in the model

parameters and predictions (Cooley et al., 2007). In recent years, various Bayesian hierar-

chical approaches have been proposed for modeling extreme values and used in hydrological

applications (Cooley et al., 2007; Renard, 2011; Shaby and Reich, 2012; Ribatet et al., 2012;

Sharkey and Winter, 2017). For instance, Reich and Shaby (2012) proposed a random ef-

fect model with a Gaussian extreme value process(GEVP) as a limiting case and used this

model to analyze the annual maximum precipitation from a regional climate model. Cooley

and Sain (2010) used a multivariate intrinsic autoregressive (IAR) model to analyze extreme

precipitation from a regional climate model. Among the hierarchical approaches, the latent

variable model (LVM) proposed by Davison et al. (2012) has been shown to be an effective

method for capturing the marginal behavior of the extreme rainfall data. Sebille et al. (2017)

compared various methods for modeling spatial extremes and observed that the LVM has

the best robustness and reliability in extrapolating the return levels.

In this study, the PERSIANN-CDR dataset has been used in a Bayesian hierarchical mod-

eling framework, to spatially model extreme precipitation in the state of Washington in the

Unites States. The state of Washington was chosen since it is among the few states that

its frequency estimates have not been updated in the recent frequency atlas of the United

States. The LVM approach was chosen among the hierarchical approaches given its robust

performance in extrapolating the return levels. In the first part of this paper, we explore the

necessity of the spatial modeling of extreme precipitations over this region. Then, the ap-

plied hierarchical model and the performance evaluation criteria will be described in details.

Finally, results of the constructed model are presented and evaluated.
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The rest of this chapter is organized as follows: in section 2, the applied dataset and the

studied region are introduced. The employed methodologies are explained in section 3.

Results of the study are presented and discussed in Section 4. Finally, the main findings and

conclusions are given in section 5.

3.2 Data and Study Area

3.2.1 Study Area

The study area of this chapter is a rectangular region which includes the state of Washington.

The corresponding coordinates of this rectangular region are 124◦75’W to 116◦30’W , and

45◦30’N to 49◦30’N (Figure 4.1).

In this chapter, we use the PERSIANN-CDR data to model the spatial extremes over the

study domain. Each PERSIANN-CDR pixel within the study boundary is treated as a rain

gauge located at the centroid of the respective grid-box(Figure 4.1b). Also, the altitude of

each gauge is calculated in a similar fashion using the DEM layer.

3.2.2 Bias-corrected PERSIANN-CDR data

In this chapter, the input data for the spatial extreme value model is the bias-corrected An-

nual Maximum time Series (AMS) of precipitation obtained at each pixel of the PERSIANN-

CDR dataset. In other words, each of the PERSIANN-CDR pixels over the study region are

treated as a rain gauge with 35 years of observation which their estimates are bias-corrected,

separately. The biases in the AMS at each pixel were corrected using the method proposed

by Faridzad et al. (2018). According to this method, the AMS at each pixel is corrected

using a regression function, which gives a correction factor based on the elevation of the lo-
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(a)

(b)

Figure 3.1: (a) Map of the Contiguous United States and the location of Washington state;
and (b) map of the Washington state along with the location of PERSIANN-CDR pixels.
The blue grid lines show the boundaries of PERSIANN-CDR and DEM pixels and the red
asterisks denote the centroid of each grid box
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cation. The applied correction function is C.F. = 2.4855× elevation−0.215 ;where, C.F is the

correction factor for the AMS at each pixel. This method was shown effective in reducing the

biases in the extreme precipitation estimates by the PERSIANN-CDR product and resulted

in the similar frequency estimates to that of the gauge-based frequency Atlas of the United

States (Faridzad et al., 2018). The elevation data used for the bias-correction procedure is

described in the following subsection.

3.2.3 Digital elevation model(DEM)

In this study, the purpose of using elevation information was two fold: (1) it was used in

the bias-correction procedure of the PERSIANN-CDR data; and (2) as an additional spatial

covariate for the spatial extreme value model. In order to keep the consistency with the

precipitation dataset,a digital elevation model(DEM) with spatial resolution of 0.25◦ (∼

25 km) developed by NOAA was obtained and used (Figure 4.2a). This dataset can be

downloaded from: http://research.jisao.washington. edu/data sets/elevation/

3.3 Methodology

3.3.1 Extreme Value Theory

Hydrological extremes are often modeled using the 3-parameter Generalized Extreme Value(GEV)

distribution (Jenkinson, 1955). Let S represent the spatial domain of interest. The random

variable Y (·) = Y (s)s∈S follows a GEV distribution Y (s) ∼ GEV (µ(s), σ(s), ξ(s)) where the

location µ(s) ∈ R, the scale σ(s) > 0, and the shape ξ(s) ∈ R parameters are indexed over

the spatial domain S. The cumulative distribution function(cdf) of a GEV random variable
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(a)

(b)

Figure 3.2: (a) Elevation map of Washington state; and (b) Map of the mean annual pre-
cipitation over Washington state from PERSIANN-CDR data
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is given by equation (4.12)

F (y) =


exp

− [1 + ξ
y − µ
σ

]−1

ξ

 if ξ 6= 0

exp

(
−exp

[
y − µ
σ

])
if ξ = 0

(3.1)

The shape parameter characterizes the tail behavior of the GEV distribution, with ξ < 0

corresponding to the reverse Weibull case with a finite upper bound, ξ = 0 corresponding

to the light-tailed Gumbel distribution, and ξ > 0 corresponding to the heavy-tailed Fréchet

distribution.

3.3.2 Hierarchical Modeling and Latent Variable Model (LVM)

Hierarchical Bayesian models generally assume that the spatial process Y (·) is independent

conditionally on the latent variables. Different types of hierarchical models are thoroughly

discussed by Banerjee et al. (2004). Hierarchical models are typically constructed within the

Bayesian paradigm. Markov Chain Monte Carlo (MCMC) algorithm is often used in such

modeling framework to make inference on the posterior distribution of the parameters given

the data.

Dependence in many statistical applications is considered through integration over under-

lying processes or variables (Davison et al., 2012). The same idea can be used to allow for

spatial variation in the parameters. For instance, we can assume that the response variables

Y (s)s∈S(which are the maxima data), are independent conditionally on an unobserved la-

tent process. The parameters of the response distributions depend on ε(s), and ε(·) follows

a Gaussian process. Dependence in the response variables is then introduced by integration
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over the latent process (Davison et al., 2012). This framework is common in geostatistics

with non-normal random variables (Diggle et al., 1998) and due to the complexity of the

related integrations, it is normally implemented using a Bayesian approach with the Markov

chain Monte Carlo method being applied for inference (Hastings, 1970; Coles and Casson,

1998; Fawcett and Walshaw, 2006; Turkman et al., 2010; Robert and Casella, 2013).

Based on this idea, Davison et al. (2012) proposed a hierarchical modeling framework for the

spatial extremes, called the latent variable model(LVM). In the LVM approach, the random

variables(or the response variables) Y (s)s∈S are assumed to be independent, conditionally

on the unobserved latent processes underlying the GEV parameters. This model can be

formulated as:

Y (s)| {µ, σ, ξ} indep∼ GEV (µ(s), σ(s), ξ(s))



µ(s) = βTµ c(s) + εµ(s)

σ(s) = βTσ c(s) + εσ(s)

ξ(s) = βTξ c(s) + εξ(s)

(3.2)

where ε(·) represents the spatial random processes with independent stationary zero-mean

Gaussian processes with covariance function α exp(−‖h‖/λ) with unknown sill(α) and range(λ)

parameters, h denotes the Euclidean distance between s1 and s2, and c(·) denotes the spatial

covariates associated with the location s ∈ S. In our modeling scheme,we considered spatial

variability for all of the GEV parameters. In other words, the location µ(·), the scale σ(·),

and the shape ξ(·) parameters are assumed to be linear combinations of the covariates with

unknown vector of coefficients βµ, βσ, and βξ, respectively.

Typically, one would prefer covariates that are known at all gauged and ungauged loca-

tions. Often, latitude and longitude are the only available options for such covariates. The
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covariates we considered in this study are latitude, longitude, and altitude. The values of

these covariates were computed for the centroids of the PERSIANN-CDR(resp. DEM) grid

boxes(Figure4.1(b)).

3.3.3 Inference Procedure for The Latent Variable Model

Inference for the hierarchical models is usually implemented in a Bayesian framework. MCMC

algorithm is employed to draw parameters from their posterior distributions using Metropolis-

Hastings steps within a Gibbs sampler.

According to Davison et al. (2012), a joint prior density must be defined for α, λ, and

β parameters. Whenever possible, conjugate priors (i.e. priors that give a close-formed

expression for the posterior distribution; otherwise numerical integration will be required)

were considered to alleviate the computational complexity. Therefore, independent inverse

Gamma and multivariate Gaussian distributions were considered for α and β, respectively.

For λ, an uninformative Gamma distribution was considered as the prior, given the unavail-

ability of a conjugate prior distribution. Prior distributions for all of the GEV parameters

were considered similarly. Then, conditional on the values of the Gaussian processes for each

GEV parameter at each site (s1,...,sd), the maxima are assumed to be independent.

Yi(sd)| {µ(sd), σ(sd), ξ(sd)}∼GEV {µ(s), σ(s), ξ(s)} , i = 1, ..., n; d = 1, ..., D (3.3)

For the LVM model, the full conditional distribution required for the Markov chain Monte

Carlo estimation of the posterior distributions are as follows:
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π(µ|...) ∝ π(µ|αµ, λµ, βµ)π(y|µ, σ, ξ)

π(αµ|...) ∝ π(αµ|κ∗αµ
, θ∗αµ

)π(µ|αµ, λµ, βµ)

π(λµ|...) ∝ π(λµ|κ∗λµ , θ
∗
λµ)π(µ|αµ, λµ, βµ)

π(βµ|...) ∝ π(βµ|ψ∗µ,Σ∗µ)π(µ|αµ, λµ, βµ)

(3.4)

where ∝ implies the proportionality, κ∗, θ∗, ψ∗, and Σ∗ refer to the hyperparameters pf the

prior distributions. The full conditional distributions for the other two parameters of the

GEV distribution (σ and ξ) are calculated in a similar fashion.

In this work, the fitting procedure of the LVM model has been implemented in some parts

using the hkevp (Sebille, 2016) package in R environment (R Core Team, 2013). Metropolis

within Gibbs algorithm was used to to make inference on the posterior distribution of the

GEV parameters as Markov chains. The MCMC algorithm was implemented for 300,000 it-

erations, with the first 5,000 iterations considered as burn-in samples. In order to minimize

the autocorrelation, a thinning interval of 10 was considered. In other words, from each 10

posterior samples generated by the MCMC algorithm, only one sample is retained. Thus,

the resulting Markov chains have the length of 29,500. Furthermore, the mean of the rele-

vant chains were considered whenever point-wise estimates were required. It is worthwhile

mentioning that we applied the discussed methods on the block maxima data because the

available methodologies for the spatial extreme value analysis are mostly developed for the

annual maxima data. Working with the peaks over threshold could provide more flexibility

74



to the Bayesian inference (Coles and Tawn, 1991).

3.4 Results

3.4.1 Exploratory Analysis

An exploratory analysis has been performed to investigate the need for utilizing a spatial

model for extreme value analysis for our study domain. The exploratory tool applied here

are symbol plots. The symbol plots depict the spatial distribution of each of the GEV pa-

rameters in the study region 3.3. The GEV parameter values showed here are point-wise

estimates(without considering any spatial structure) based on maximum-likelihood method.

The circles coincide with the PERSIANN-CDR pixels. The radius of each circle is propor-

tional to the deviation of the parameter value at that location from the areal mean value

computed over the study region. Also, red(blue) color signifies a positive(negative) devia-

tion. As shown in this figure, there is a clear spatial pattern for the location(µ) and the

scale(σ) parameters, with larger values in the Western areas and smaller values in the East-

ern areas of the study region. This pattern is similar to the annual precipitation pattern over

this region(Figure 4.2b) where more intense rainfall events occur over the Western areas as

opposed to the Eastern part.

For the shape parameter of the GEV distribution(Figure3.3c), it is difficult to detect any

spatial pattern. The shape parameter (ξ) which characterizes the tail behaviour of the

GEV distribution, does not usually demonstrate any spatial pattern when dealing with

precipitation data.
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(a) location parameter (µ)

(b) scale parameter (σ)

(c) shape parameter (ξ)

Figure 3.3: Symbol plot displaying the spatial pattern of point-wise estimates of GEV pa-
rameters: a) location (µ) , b) scale (σ), and c) shape (ξ) over the Washington State. The
radius of the circle at each location is proportional to the departure of the parameter value
at that location to the areal mean value.
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3.4.2 Bayesian Model Diagnostics

Before using the simulated Markov chains to obtain Monte Carlo estimates of the GEV

parameters, we need to first assess the convergence of the simulated Markov Chains to

their stationary distributions. In this study, two model diagnostics measures are used to

evaluate the convergence of the Markov Chains. The applied diagnostics are trace plots and

autocorrelation plots.

Traceplots

The first visual tool employed to assess the convergence of the LVM model are the traceplots

which show the history of the parameter values across the iterations of the chains. If the

average value of a chain has become roughly flat, it shows that the parameter value has

converged. Otherwise, if there is a long term trend in the chain values, or the mean value

changes across iterations, the chain has to continue running for more iterations until it

becomes stationary.

Figure 3.4 shows the traceplots of the location, scale, and shape parameters of the GEV

distribution along with the log-likelihood of the LVM model. As shown in this figure, all

the parameter chains have converged to their stationary distributions and their mean values

have become almost constant. A similar pattern is observed for the log-likelihood of the

model. Therefore, based on this diagnostic, the model seems to be converged successfully.

Autocorrelation

Autocorrelation shows how much the current value of a Markov Chain depends linearly on

the previous chain values with various amounts of lag. If by going further along the chain, the

values become much less correlated, then the chain has most likely converged to its stationary
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distribution. But, if after several lags, the chain values are still highly correlated, then the

sampling from the posterior distribution should continue for many more iterations so that

the posterior distribution of the parameters are fully explored. Therefore, autocorrelation is

a measure of the available information in the Markov Chains. An acceptable Markov Chain

is a chain that its autocorrelation values converge to zero after a number of lags.

Figure 3.5 demonstrates the autocorrelation plots for the Markov chains of the three param-

eters of the GEV distribution(µ, σ, ξ) as estimated by the LVM model. According to the

results, the autocorrelation converges to near zero after a few lags. Therefore, the thinning

interval and the step size considered for the model are reasonable values that result in the

suitable simulation of the posterior distribution of the GEV parameters.

3.4.3 GEV Parameters

Spatial distribution of location(µ), scale(σ), and shape(ξ) parameters of GEV distribution

estimated by LVM model are depicted in figure 3.6. The spatial pattern of µ(x) seems

reasonable, with decrease in the values as longitude increases, which corresponds to the

overall altitude reduction away from the Coastal ranges and also decrease in precipitation

(Figure 4.2b). A similar spatial pattern is observed for the scale parameter. This spatial

pattern is largely dictated by the moisture regime and the heavy orographic precipitation

pattern in this state which is also reflected in the spatial pattern of the annual precipitation.

For the shape parameter, a similar East-ward reduction pattern exists. However, this pattern

seems to be mostly influenced by altitude, where higher values are observed near the high-

elevation areas near the Western parts of the state. The small positive shape parameter

values correspond to the heavy-tailed and right-skewed Fréchet distribution with no upper

bound which is often the case for the extreme precipitation data.

In order to further explore the behaviour of the shape parameter with respect to the model
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(c) shape parameter (ξ)

Figure 3.5: Autocorrelation plots of the GEV parameters generated across iterations of the
Markov chains
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(a) location parameter (µ)

(b) scale parameter (σ)

(c) shape parameter (ξ)

Figure 3.6: Spatial distribution of the GEV parameters estimated by the LVM model
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covariates, scatterplots of the shape parameter with respect to the model covariates at the

corresponding pixels are shown (Figure 3.7). According to this figure, there is no clear

relationship between the shape parameter values and latitude over the studied region. With

respect to the longitude covariate, there is a general west-east gradient in the shape parameter

values with larger values over the west and smaller values over eastern parts of the study

domain. This pattern seems to be mostly related to the general precipitation pattern in

the state of Washington, where more intense rainfalls occur near the coastal areas in the

western parts. Scatterplot of shape parameter and altitude covariate also demonstrate a

relative direct relationship between the two variables. In other words, generally larger shape

parameter values are observed in high-elevation regions as opposed to low elevation parts.

Yet, it is observed that the greatest shape parameter values coincide with the low-elevation

regions over the northwest Washington where the mean annual precipitation is the highest

(Figure 4.2b).

Figure 3.7: Scatterplots of the GEV shape parameter estimated over Washington state versus
various model covariates

The observed pattern in the values of the shape parameter with respect to the covariates, are

more justifiable when looking at the same plots for the mean daily precipitation (Figure 3.8).

As shown in Figure 3.8, there is a clear west-east gradient in the mean daily precipitation

values over the study domain. Also, The scatterplot of mean daily precipitation and altitude

seems to have two main clusters. One cluster belongs to the low-elevation regions in the
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Figure 3.8: Scatterplots of mean daily precipitation over Washington state versus latitude,
longitude, and altitude

western areas of Washington with large amounts of precipitation. The second cluster displays

a slight direct relationship between mean daily precipitation and altitude, which is reasonable

given the orographic precipitation mechanism in the mountainous areas of Washington state.

3.4.4 Extreme Quantiles

Spatial return level maps of the 25-year, 50-year, 75-year, and 100-year extreme events are

displayed in Figure 3.9. The presented figures show the predictive point-wise posterior mean

values for the mentioned return levels at each of the PERSIANN-CDR pixels. As seen in this

figure, the spatial pattern of the estimated extreme quantiles agrees well with each other.

There is a clear spatial pattern in the extreme precipitation quantiles with more intense

extremes in the western areas and less intense events in the eastern areas of the state. The

observed spatial pattern, which is similar to the mean annual precipitation pattern and the

topography of the state (figure 4.2) can be largely explained by the moist air regime over

this region.

The moist air travelling inland from over the Pacific Ocean is the primary source of moisture

required for precipitation occurrence for the state of Washington. Two major releases of
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moisture with heavy orographic precipitations occur at the mountain ranges parallel to the

coast. The first release happens at the Western slopes of the Coastal Mountain Range and the

Olympia Mountains, where the orographic lifting mechanism results in heavy precipitations

in the windward side of the coastal mountains. The effect of this phenomenon is clearly

depicted in Figure 9 as larger extremes are computed for the Western and the Northwestern

areas of the state. The second release of moisture takes place after a similar orographic

lifting mechanism along the Western slopes of the Cascade mountain range. Thus, extreme

precipitations take place in the central areas of the state in the windward side of the Cascade

Mountain Range. The Cascade Mountain range, acts as a topographic barrier across the

central areas of the basin and prevents the passage of moist air to the Columbia basin and

the Eastern parts of the state and results in desert conditions in the lowlands of Columbia

Basin.

3.4.5 Satellite-based Depth-Duration-Frequency Curves

One practical application of the extreme precipitation models is the derivation of depth-

duration-frequency (DDF) curves, which are widely used in hydrologic designs. Figure 3.10

displays the DDF curves of daily extremes along with the standard error of the estimates for

four randomly selected locations over the state of Washington. Locations 1 and 2 are located

over the western areas of the state of Washington, where more intense extremes take place.

Less intense extremes are observed over the central and eastern parts of the state (Figure

3.9) , which is also reflected in the DDF curves for locations 3 and 4.

Figure 3.10 also depicts the standard errors of the generated DDF curves. The standard

errors of the return level estimates become larger with increasing return periods. This higher

uncertainty is because of the smaller sample size at the tails of the distribution. Also, it is

worth mentioning that the confidence interval is estimated by calculating the standard error
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(a) Spatial distribution of the selected locations (b) Location No. 1

(c) Location No. 2 (d) Location No. 3

(e) Location No. 4

Figure 3.10: Sample IDF curves for some randomly chosen locations over Washington state
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of the mean value from the Markov chain of return level estimates at each individual pixel.

Therefore, the confidence intervals might be slightly different at various locations based on

the model fit and the magnitude of return level.

3.4.6 Model Verification

Goodness of Fit

To assess the goodness of fit for the applied hierarchical model, return level plots showing the

modeled return levels versus the empirical return level from the bias-corrected PERSIANN-

CDR data are generated for some randomly selected locations over the study area (Figure

3.11). Geographic locations of the selected random points are also shown in this figure. The

random points are selected in a way that the model’s performance is assessed at locations

with various climatic and elevation conditions.

As seen in Figure 3.11, the return level estimates from the constructed LVM model match

well with the empirical estimates from the bias-corrected PERSIANN-CDR data. It is ob-

served that the LVM model provides a good fit to the bias-corrected PERSIANN-CDR data.

Therefore, the constructed model performs well in capturing and simulating the marginal

behavior of the extreme rainfall data at various parts of the study region.

Comparison with Gauge-based Estimates

In order to verify the performance of the fitted model in extrapolating the extreme events, the

satellite-based DDF curves at two random locations are compared with the gauge-based DDF

curves at the corresponding locations. At each gauge location, the annual maximum data are

extracted from the gauge records and the GEV distribution is fitted to the maxima data using

the maximum likelihood method. Various point-wise return levels are then extrapolated from
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(a) Spatial distribution of the selected locations

(b) Location No. 1

(c) Location No. 2 (d) Location No. 3

(e) Location No. 4

Figure 3.11: Return level plots from the LVM model versus the empirical return level esti-
mates from the bias-corrected PERSIANN-CDR data
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the fitted distributions to generate the gauge-based DDF curves. It is worth mentioning

that for the sake of temporal consistency with the satellite data, gauge data for the similar

period (i.e. 1983-2018) was used. The satellite-based DDF curves are also extracted for the

corresponding locations from the fitted LVM model.

According to Figure 3.12, the satellite-based DDF estimates correspond well the gauge-

based estimates at the selected locations. Also, the extracted DDF curves at the eight

gauge locations suggest that there are slight underestimations and overestimations in the

satellite-based DDF curves and the fitted model does not demonstrate a systematic error

behaviour.

To further verify the performance of the satellite-based LVM model, we compared the gener-

ated return level maps with two available references over the study domain. The first one is

the NOAA Atlas 2 volume 9 published in 1973, which is the latest frequency atlas prepared

and published by NOAA for the state of Washington (Miller et al., 1973). Miller et al. (1973)

used simplified relations between the precipitation durations and return periods to generate

various combinations of these variables from multiple key maps. Associations between the

precipitation frequencies and meteorological and topographic factor at the gauge stations

were developed to assist interpolation between the rain gauges. The other reference that we

used to validate the performance of the satellite-based LVM model was the paper by Wallis

et al. (2007) in which the authors focused on regional precipitation frequency analysis over

the state of Washington. Wallis et al. (2007) used the regional frequency analysis method

together with L-moment technique (Hosking and Wallis, 2005), which is commonly used in

the frequency Atlas of the United States (Bonnin et al., 2006).

Comparison of the return level maps generated from the satellite data with the gauge-based

estimates given in Miller et al. (1973) and Wallis et al. (2007) showed that for 24-hr extreme

events associated with various return periods, our estimates are consistent with the gauge-

based estimates in terms of spatial pattern and magnitude.
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Figure 3.12: Satellite-based and gauge-based DDF curves for eight gauge locations within
Washington state
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3.5 Summary and Conclusions

Extreme precipitations are associated with increased flood hazards, and therefore, require a

diligent modeling effort. The conventional approach for modeling extreme precipitations is

based on using the ground-based observations, which in many parts of the world are limited

or even non-existent. In recent years, information from weather radars and earth observing

satellites have been used for modeling intense precipitations. However, such information

often suffers from the shortness of data length and estimation uncertainties for frequency

analysis. The PERSIANN-CDR, a satellite-based precipitation dataset with 35+ years of

high resolution(daily, 0.25◦) precipitation information provides a unique opportunity to an-

alyze the historical extreme rainfalls, especially in poorly instrumented regions.

In this study, the PERSIANN-CDR dataset has been employed to spatially model the ex-

treme precipitations over the state of Washington. This state is among the few states that its

rainfall frequency information has not been updated in the recent versions of the frequency

Atlas of the United States. A hierarchical Bayesian model namely the latent variable model

(LVM) was used to spatially model the satellite-based extreme precipitation estimates over

the study domain. A Markov chain Monte Carlo algorithm was further applied to make

inference on the posterior probabilities of the model parameters. An exploratory analysis

was also performed to investigate the extent of spatial dependence in the data.

Results of the exploratory analysis demonstrated the existence of a spatial dependence struc-

ture in the extreme precipitation data in the state of Washington. The spatial pattern for

the location and the scale parameters of the spatial GEV model were almost similar, with

generally larger values over the Western areas of the study domain. However, the spatial

pattern was not clear for the shape parameter, which is the parameter that characterizes the

tail behavior of the GEV distribution. This observation also corresponded with the previous

knowledge regarding the difficulty of estimating the shape parameter, especially when the
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data length is short.

After constructing and fitting the LVM model, it has to be assessed in terms of convergence,

prior to making any marginal extrapolation. For this purpose, traceplots and autocorrelation

plots were generated. The estimated convergence diagnostics demonstrated that the simu-

lated chains have converged to the stationary distributions. In fact, the traceplots showed

that the chain values are almost steady and there are no long-term trends in the chain val-

ues. Also, the autocorrelation plots revealed that the chain values at successive iterations

are independent from each other.

Spatial maps for the GEV parameters and various extreme rainfall quantiles were also gen-

erated. Our results show that for the location and the scale parameters of the GEV distri-

bution, there is a west-east gradient with larger values over the west and smaller values over

the east. For the shape parameter, the spatial pattern seemed to be largely influenced by

the precipitation pattern and the topography over the study region. The observed spatial

pattern for the extreme quantiles was comparable to that of the annual precipitation over

the study region with the most extreme events taking place near the windward slopes of the

Coastal range and the Cascade mountain range. This pattern corresponds with the moisture

regime over this region, where the two major releases of the moisture take place near the

mountain ranges parallel to the coastal line where intense orographic precipitations always

happen.

Model testing procedures suggested that the LVM model fits well to the empirical quantiles

from the bias-corrected PERSIANN-CDR data at the randomly selected locations. Fur-

thermore, it was shown that the depth-duration-frequency(DDF) curves generated by the

proposed model mimic the gauge-based DDF curves at the tested gauge stations. Compari-

son of the satellite-based return level maps with the gauge-based maps also revealed that the

extreme quantiles from the proposed model are consistent with the gauge-based estimates

in terms of spatial pattern and magnitude.
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Results of this study demonstrate that by employing proper statistical methods, satellite-

based precipitation information could be used for real world engineering designs and hydro-

logical risk assessment studies, especially where the observational networks are poor.
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Chapter 4

Extreme Precipitation Modeling for

the Pacific Northwest United States

Using Satellite Information and

Max-Stable Processes

4.1 Introduction

Extreme rainfall information is crucial for a wide range of engineering applications such

as planning and designing hydraulic and hydrologic structures. This information is given

to the extreme precipitation models for estimating the magnitude of extreme events for a

given return period at the location of interest. Given the sparsity of gauge observations,

especially in remote and high elevation regions, different methods have been proposed to

augment the parameter estimation at ungauged locations. Typically, the regional frequency

analysis (RFA) approach is used to characterize the frequency of extreme events. The RFA
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approach is based on the regionalization concept, which trades space for time to acquire

more information from the gauge networks to enhance the efficiency of parameter inference.

RFA methods also improve the at-site frequency estimates by reducing the uncertainties of

the point-wise estimation.

The RFA approach utilizes the observations from a group of rain gauges recognized to be in a

”homogeneous” region to estimate the characteristics of extreme rainfalls at each location in

the region. It pools the short records from a sparse gauge network in a homogeneous region

to estimate the parameters of the extreme precipitation model. One of the most commonly

applied RFA approaches is the index flood (IF) method (Dalrymple, 1960), which assumes

the marginal parameter distributions are identical apart from a site-specific scaling factor.

Though the RFA approach has been widely used for the hydrologic frequency analysis, there

are a few restrictive assumptions. The defined conditions for the so-called ”homogeneous”

regions in many cases cannot be met unless the size of the region shrinks considerably. The

regionalization introduces discontinuities at the regions’ boundaries, and further results in

contrasting quantile estimates at two sites that are separated by a virtual region boundary.

Furthermore, the L-moment technique (Hosking and Wallis, 1997), which is often used for

parameter estimation in RFA approach is not able to accommodate additional geographical

and meteorological information in the model. The inclusion of additional information (i.e.

covariates) contributes to the model’s abilities in assessing the model parameters (Renard,

2011).

Given the recent advances in the in the area of extreme value modeling in statistics literature,

alternative methods with more solid mathematical foundations have been proposed to model

extreme events; see Davison et al. (2012) for a review of recent methods. Max-stable pro-

cesses, as the extension of multivariate extreme value theory to the infinite dimensional scale

(De Haan et al., 1984), can model the marginal distributions and the dependence structure

of the model parameters simultaneously. These features suggest the max-stable processes
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could be a suitable tool for modeling spatial extremes. De Haan et al. (1984) also proposed

a spectral representation for the max-stable processes based on some previous studies us-

ing various spatial max-stable models, such as Brown and Resnick (1977), Schlather (2002),

Schlather and Tawn (2003), and Opitz (2013). In more recent literature, Gaume et al. (2013)

used the max-stable processes to map the extreme snowfalls over the French Alps and gen-

erated some return level maps for operational risk management. Mujumdar et al. (2018)

modeled the dependence structure of the urban precipitation using the max-stable models

with various geographical and meteorological covariates. Reich and Shaby (2012) modeled

extreme precipitation over the Eastern United States using a spatial max-stable model.

Another limitation of conducing RFA is the availability of data. In recent years, various

satellite-based precipitation products have been developed providing rainfall information in

high spatial and temporal resolution over the globe. This information is extremely valuable

for the parts of the world where the in-situ observational networks are sparse or not avail-

able. Yet, the satellite-based precipitation products are not free from errors and estimations

biases. Careful evaluations of these products before applying them for the practical designs

are necessary. Recently, a few studies have applied and evaluated the remotely-sensed infor-

mation for extreme precipitation modeling and rainfall frequency analysis (Overeem et al.,

2009; Wright et al., 2013; Eldardiry et al., 2015; Marra and Morin, 2015; Gado et al., 2017;

Faridzad et al., 2018; Ombadi et al., 2018). Given the need to the long-term precipitation

records with high spatial and temporal resolutions to, In order to construct reliable extreme

precipitation frequency models, long-term data records with high spatial and temporal reso-

lutions are always needed. Among a few of the available satellite rainfall products providing

long-term precipitation data, , the Precipitation Estimation from Remotely Sensed Infor-

mation and Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) has the

longest data records (from 1983 to present), and the rainfall records are with high temporal

and spatial resolutions (daily and 0.25-degree). Gado et al. (2017) applied the PERSIANN-

CDR product for rainfall frequency analysis in Colorado and California, and verified the
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suitability of PERSIANN-CDR for rainfall frequency analysis. Faridzad et al. (2018) pro-

posed a bias-correction approach to adjust the PERSIANN-CDR extreme rainfall estimates

and applied the bias-corrected data for rainfall frequency analysis and obtained consistent

estimates with the NOAA Atlas 14.

In this chapter, we further applied the PERSIANN-CDR product together with max-stable

processes for constructing spatial extreme precipitation models for the Pacific Northwest

(PNW) region in the United States. The PNW region consists of the 5 states located in the

Northwest United States, including the states of Washington, Oregon, Idaho, Montana, and

Wyoming. This region has been selected since the rainfall frequency Atlas of the United

States, known as Atlas 14, has not been updated for this region since 1973. This designed

study was conducted in three steps: (1) bias-correction of the PERSIANN-CDR extreme

rainfall estimates using gauge information, (2) applying spatial max-stable models with

various dependence structures to the bias-corrected precipitation data, and (3) assessment

of the models’ performances based on various evaluation metrics.

The remainder of this chapter is organized as follows: the utilized data are explained in

Section 2. A review of the univariate extreme value theory and the explanation of the

various parametric max-stable processes are presented in Section 3. Results and discussions

are presented and discussed in Section 4. The main conclusions of the study are summarized

in Section 5.
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4.2 Study Area and Data

4.2.1 Study Area

The study area of this research is a rectangular region over the PNW, and includes the states

of Washington (WA), Oregon (OR), Idaho (ID), Montana (MT), and Wyoming (WY). The

corresponding coordinates of this rectangular region are 125◦30’W to 102◦30’W , and 40◦00’N

to 50◦00’N (Figure 4.1).

To model spatial extreme precipitation, PERSIANN-CDR pixels within the study area are

treated as individual rain gauges located at the centroids of the corresponding pixels. Figure

4.1b demonstrates the PERSIANN-CDR grid boxes and the locations of the virtual rain

gauges.

4.2.2 Satellite-based Data

Bias-adjusted PERSIANN-CDR Data

Extreme precipitation models in this study are fitted to the annual maximum time series

(AMS) from the bias-adjusted PERSIANN-CDR data (rather than the original PERSIANN-

CDR data). The methods of removing the biases are reported in in some recent studies of

applying the PERSIANN-CDR data for extreme precipitation analysis (Faridzad et al., 2018;

Miao et al., 2015). Furthermore, in order to achieve satellite-based return level estimates

comparable to that of the NOAA Atlas 14, the gridded data must be downscaled to the

point resolution (Faridzad et al., 2018).

In details, the approach proposed by Faridzad et al. (2018) was used to in removing some

biases of the PERSIANN-CDR extreme rainfall estimates over the United States. This
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(a)

(b)

Figure 4.1: (a) Map of the Contiguous United States and the location of the study area; and
(b) map of the Pacific Northwest region along with the location of PERSIANN-CDR pixels.
The blue grid lines show the boundaries of PERSIANN-CDR and DEM pixels and the red
asterisks denote the centroid of each grid box
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approach is based on an elevation-based regression function that adjusts the AMS at each

pixel of PERSIANN-CDR based on its altitude. In practice, the following steps were taken to

achieve the bias-adjusted precipitation data for spatial extreme precipitation modeling: the

annual maximum time series (AMS) of precipitation is extracted at each pixel of PERSIANN-

CDR over the study region. Then, the extracted AMS at each pixel is bias-corrected using

a correction function that generates correction factors (C.F.) for each location based on the

elevation of that location. The applied correction function proposed by Faridzad et al. (2018)

for PERSIANN-CDR data over the United States is C.F. = 2.4855× elevation−0.215 ;where,

C.F is the correction factor for the AMS at each pixel. The elevation information for each

gauge location(i.e. PERSIANN-CDR pixel) is extracted from the digital elevation model

(DEM) for the PNW region.

4.2.3 Elevation Data

The elevation information for each gauge location(i.e. PERSIANN-CDR pixel) is extracted

from the digital elevation model (DEM) for the PNW region. In this study, elevation infor-

mation was used for two purposes: 1) for bias-adjusting the AMS at each PERSIANN-CDR

pixel; 2) as an additional spatial covariate for the spatial extreme value models. For the

sake of consistency with the precipitation dataset,a digital elevation model(DEM) with the

spatial resolution of 0.25-degree(∼ 25 km) developed by NOAA was obtained and used.

This dataset can be downloaded from the following url: http://research.jisao.washington.

edu/data sets/elevation/
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(a)

(b)

Figure 4.2: (a) Elevation map of Washington state; and (b) Map of the mean annual pre-
cipitation over Washington state from PERSIANN-CDR data

101



4.3 Methodology

4.3.1 Univariate Extreme Value Analysis

Let X1, ..., Xn be a set of independent and identically distributed random variables. The

univariate extreme value theory defines the statistical behavior of the random variable Yn =

Max{X1, ..., Xn}. If F is the non-degenerate limiting distribution to the linearly rescaled

process Yn, then for all n > 1, F must be a max-stable process with the following formulation:

F n (αny + βn) = F (y) (4.1)

where αn > 0 and βn ∈ R are normalizing constants. The only distribution function that

satisfies equation (4.1) is the generalized extreme value distribution or GEV(µ, σ, ξ), where

µ ∈ R is the location parameter, σ > 0 is the scale parameter, and ξ ∈ R is the shape param-

eter. The shape parameter specifies the characteristics of the tail of the GEV distribution,

with ξ < 0 corresponding to the Weibull case with a finite upper bound, ξ = 0 corresponding

to the light-tailed Gumbel distribution, and ξ > 0 corresponding to the heavy-tailed Fréchet

distribution. The cumulative distribution function (CDF) of the GEV distribution is given

by equation (4.2):

F (y) =


exp

− [1 + ξ
y − µ
σ

]−1

ξ

 if ξ 6= 0

exp

(
−exp

[
y − µ
σ

])
if ξ = 0

(4.2)
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4.3.2 Max-stable Processes

Max-stable processes generalize the univariate extreme value theory to the infinite dimen-

sional scale. The max-stable process Z(·) is the limiting distribution to the independent and

identically distributed maxima random fields Yi(·) ∈ R if there exist continuous normalizing

functions an(·) > 0 and bn(·) ∈ R such that :

Z(·) = lim
n→+∞

maxni=1 Yi(·)− bn(·)
an(·)

(4.3)

Through this representation, the marginal distribution at each point s ∈ S follows a univari-

ate GEV distribution while the marginal distribution for multiple points is modeled through

the continuous spatial functions of the GEV parameters µ(s), σ(s), and ξ(s). In practice, it is

often more convenient to construct a simple max-stable model by transforming the margins

into a standard Fréchet distribution. The margins can subsequently be transformed back to

the GEV form.

Extremal Coefficient

Modeling max-stable processes consists of two parts. The first part is modeling the marginal

behavior of the data which is implemented using the processes that involve the GEV pa-

rameters. This part is often carried out using a linear modeling approach and by taking

advantage from some additional covariates. The second part is modeling the spatial de-

pendence of the extremes using some measures of spatial dependence. A common method

to summarize the spatial dependence structure of data is through the extremal coefficient
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function θ(·) (Schlather and Tawn, 2003).

Pr {Y (s1) ≤ y, Y (s2) ≤ y} = exp

{
−θ
y

}
= Pr {Y (s1) ≤ y}θ , y ≥ 0 (4.4)

The value of θd can be considered as the effective number of the independent random variables

in the d-dimensional variable space. The extremal coefficient takes value in [1, 2] where 1

indicates complete independence, and 2 shows dependence.

F -madogram

From the field of statistics, variogram is a mathematical function that describes the degree of

spatial dependence of a spatial random field, or a stochastic process that occur with spatial

connectivity. Variogram is commonly used for assessing the dependence structure in the

data (Cressie, 1993). However, when dealing with the extreme data, variogram could not

be useful since it may not exist. A comparable tool to variogram in geostatistics is called

madogram (Matheron, 1987). The madogram is defined by equation (4.5):

ν(x1 − x2) =
1

2
E [|Z(x1)− Z(x2)|] (4.5)

where Z(·) is a stationary random field with a finite mean. However, since the choice of the

GEV parameters to compute the madogram is arbitrary, Cooley et al. (2006) proposed a

modified version of madogram, called F -madogram, given in equation (4.6):

νF (x1 − x2) =
1

2
E [|F (Z(x1))− F (Z(x2))|] (4.6)
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where Z(·) is a stationary max-stable random field with marginal distribution F . Since

F (Z(x1)) is being used instead of Z(x1), the F -madogram is well defined. Equation (4.6)

can be estimated using the following simplified equation:

ν̂F (x1 − x2) =
1

2n

n∑
i=1

[|F (Z(x1))− F (Z(x2))|] (4.7)

where zi(x1) and zi(x2) are the i-th observations of the random field at locations x1 and x2

and n is the number of observations. The F -madogram values range from 0 to 1/6 which

correspond to complete dependence and complete independence, respectively.

The F -madogram is closely related to the extremal coefficient using equation (4.8):

θ(x1 − x2) =
1 + 2νF (x1 − x2)
1− 2νF (x1 − x2)

(4.8)

4.3.3 Spectral Representation and Parametric Models

Max-stable processes can be explained by the spectral representation of De Haan et al.

(1984). Let {ζj}j∈N be a Poisson point process and W (s) be a stationary process, then the

process Z(s) in (4.9) for each s ∈ S is a max-stable process with unit Fréchet margins.

Z(s) = max
i≥1

ζiWi(s) (4.9)

Based on the various choices for the spectral processes Wj(·), different max-stable process

models are introduced. Three types of such max-stable models are applied in this study

which are described in the next sections.

105



The Extremal Gaussian Process(Schlather Model)

A first possible option, which is known as Schlather model (Schlather, 2002), is to take

Wi(s) =
√

2πmax {0, ε(s)} where ε(·) is a standard stationary Gaussian process with corre-

lation function ρ(·). The bivariate cumulative distribution function by the Schlather model

for two given sites s1 and s2 is given in equation (4.9).

Pr {Y (s1) ≤ y1, Y (s2) ≤ y2} = exp

[
−1

2

(
1

y1
+

1

y2

)(
1 +

√
1− 2 {1 + ρ(s1 − s2)} s1s2

(s1 + s2)2

)]
(4.10)

One of the limitations of the Schlather model is that it is unable to describe the asymptotic

independence. Because of a positive definite ρ(·), the extremal coefficient does not span over

the [1, 2] interval and instead, takes values in [0, 1.838]. Subsequently, even if the distance

between the two sites converge to infinity, the Schlather model does not show a complete

independence of these two sites.

The powered exponential correlation function was used throughout this study which has

the form ρ(h) = exp[−(h/λ)ν ], where λ ≥ 0 is the range parameter and ν ∈ (0, 2] is the

smoothness parameter. These parameters are estimated when fitting the Schlather model to

the data.

The Brown-Resnick process

A second possible choice, known as Brown-Resnick model (Brown and Resnick, 1977), is to

take Wi(s) = exp {εi(s)− σ2(s)/2} where ε(·) is a centered Gaussian process with stationary

increments and σ2(s) = V ar {W (s)}. The bivariate cumulative distribution function of the
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Brown-Resnick process is given by equation (4.10).

Pr {Y (s1) ≤ y1, Y (s2) ≤ y2} = exp

[
− 1

y1
Φ

(
a

2
+

1

a
log

y2
y1

)
− 1

y2
Φ

(
a

2
+

1

a
log

y1
y2

)]
(4.11)

where a2 = V ar(W (s1 − s2)) and Φ denotes the standard normal cumulative distribution

function.

The Extremal-t Process

Finally, a third possible choice which is a generalization of the Schlather model, is known

as the extremal-t process (Opitz, 2013) and is formulated by defining the spectral process

Wi(·) in the following format:

Wi(s) = cv max {0, εi(s)}v (4.12)

where ε is a standard Gaussian process with correlation function ρ and cv is given as follows:

cv =
√
π2−(v−2)/2Γ

(
v + 1

2

)−1
, v ≥ 1 (4.13)
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where Γ is the Gamma function. The bivariate cumulative distribution function for the

extremal-t process is given by:

Pr {Y (s1) ≤ y1, Y (s2) ≤ y2} = exp

[
− 1

y1
Tv+1

{
−ρ(s1 − s2)

b
+

1

b

(
y2
y1

)1/v
}
−

1

y2
Tv+1

{
−ρ(s1 − s2)

b
+

1

b

(
y1
y2

)1/v
}] (4.14)

where Tv is the cumulative distribution function of a Student random variable with v degrees

of freedom and b2 =
{

1− ρ(s1 − s2)2
}
/(v + 1).

4.3.4 Inference Procedure

Because of computational burden, estimating the full-likelihood of max-stable processes have

been less desirable. Instead, the composite likelihood or more specifically, the pair-wise like-

lihood is always used as an alternative. The composite likelihood is evaluated at all pairs of

locations is maximized when making inference on the parametric max-stable models(Padoan

et al., 2010). The pairwise log-likelihood for a set of n independent copies of a max-stable

process observed at D sites is:

`(φ) =
n∑
k=1

∑
i≤j

logf(yki , y
k
j ;φ), i, j ∈ D (4.15)

where φ = [θ, α], with θ as the marginal parameter, α = [λ, ν] as the dependence parameter,

and f is the probability density function of the bivariate max-stable process.

The estimation procedure for the applied max-stable models was conducted in R environment
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(R Core Team, 2013) and SpatialExtremes package (Ribatet, 2013) was also used in some

parts of the analysis.

4.3.5 Model selection

model selection is conducted by minimizing the composite likelihood information criterion

(CLIC) which has similar properties to the Takeuchi’s information criterion (TIC) (Takeuchi,

1976). TIC is computed as follows:

TIC = −2`
(
φ̂
)

+ 2tr
{
J−1

(
φ̂
)
H
(
φ̂
)}

(4.16)

where Ĵ and Ĥ are the estimated Jacobian and Hessian information matrices, respectively.

TIC value for each model is computed using the SpatialExtremes package (Ribatet,

2013) in R (R Core Team, 2013). The model with the lowest TIC value is considered as the

best model.

4.3.6 Fitting Model to Data

The spatial max-stable models defined earlier are fitted to the precipitation data using a pre-

defined structure for the trend surfaces. Consequently, the following model for the marginal
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parameters of the GEV distribution is considered:



µ(s) = βTµ c(s) + εµ(s)

σ(s) = βTσ c(s) + εσ(s)

ξ(s) = βTξ c(s) + εξ(s)

(4.17)

where the random parts εµ(·), εσ(·), and εξ(·) are assumed to be independent stationary

zero-mean Gaussian processes with covariance function αn exp(−‖h‖/λ) with unknown sill

and range parameters. All of the GEV parameters including the location µ(·), the scale

σ(·), and the shape ξ(·) parameters are assumed to be linear combinations of the covariates

associated with each location s ∈ S with unknown vector of coefficients βµ ,βσ, and βξ.

Covariates that we used in this chapter are latitude(lat), longitude(lon), altitude(alt), and

mean annual precipitation (MAP). MAP value at each pixel was estimated using the entire

record of PERSIANN-CDR dataset. The values of all of the above-mentioned covariates

were computed for the centroids of PERSIANN-CDR (resp. DEM and MAP layers) grid

boxes. In order to minimize the effect of large covariates on the coefficient values, all of the

covariates were normalized prior to fitting the max-stable models.

4.4 Results

4.4.1 Exploratory Analysis

An exploratory analysis is performed to investigate the existence of any spatial structure in

the extreme rainfall data. The exploratory analysis tools applied here are extremal coeffi-
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cient, f-madogram, and symbol plots.

Extremal Coefficient and F-madogram

As mentioned in section 4.3.2, extremal coefficient and f-madogram are two indices that

summarize the spatial dependence structure in the extreme rainfall data. Figure 4.3 displays

the empirical estimates of bivariate f-madogram(left panels) and extremal coefficient(right

panels) as a function of the 2-D distance between the sites(in degrees). The top panels

demonstrate the bivariate estimates for all pairs of sites within the study region and the

bottom panels are their binned estimates with the bin size of 500. As shown in this figure,

the empirical estimates for both of these variables are low at short distances and increase

to their asymptotic values at larger distances. It is also observed that the full independence

(θ = 2) exist only at small number of pairs. The smaller values f-madogram and extremal

coefficient at short distances suggest that there is a strong statistical association in the

daily extreme rainfall at nearby locations. This spatial dependence decreases as the distance

between the locations increase. This is in accordance with our general understanding that

nearby locations are likely to be impacted in a similar fashion by the extreme rainfall events.

Symbol Plots

In order to visually assess the tail dependence structure in the extreme precipitation data,

symbol plots of the pointwise GEV parameter estimates are presented in Figure 4.4. The

three parameters of GEV distribution are estimated separately by maximizing the marginal

likelihood at each pixel. In order to better visualize the spatial structure in GEV parameters,

a circle with a radius proportional to the deviation of parameter value to areal mean value

has been plotted at each pixel. The red circles suggest positive deviation and blue circles

show negative deviation from the areal mean values. As seen in Figure 4.4, there is a clear
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Figure 4.3: Empirical F-madogram (left panels) and the bivariate extremal coefficient (right
panels) values as a function of distance(number of pixels) between locations. Lower panels
are the binned representations of the top panels.
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spatial pattern for location and scale parameters of the GEV distribution. Generally, larger

location and scale values are observed over the western parts of the study area and they

decrease gradually from west to east. This spatial pattern is similar to that of the mean

annual precipitation (Figure 4.2b) over the study area. Therefore, mean annual precipitation

and longitude seem to be good covariates for explaining the location and scale parameters.

For the shape parameter, which characterizes the tail behavior of the GEV distribution, it is

hard to find a clear spatial pattern. Lack of a clear spatial pattern is a common issue when

dealing with precipitation data in large domain. Yet, there seems to be a week association

between the shape parameter values and altitude(Figure 4.2a) where larger shape parameter

values are observed over the Rocky Mountains in the central parts of the study area. Also,

the shape parameter value are slightly larger over the northern parts of the study area.

Therefore, it seems that altitude and latitude could be potential covariates for explaining

the shape parameter.

Nevertheless, selecting the appropriate covariates based on the spatial variations of the GEV

parameters must be implemented with care. The GEV parameter values are correlated

and they can compensate each other. Yet, these preliminary results suggest that there is

a strong spatial variability in extreme precipitation over the study area. Specifically, the

precipitation spatial patterns over the western areas of the PNW seem to behave differently

than the central and eastern areas. This is primarily due to the precipitation mechanism

in this region where atmospheric rivers generate intense rainfalls over the western edges of

the Washington state. The Cascade Mountain range near the western boundaries of the

Washington state acts as a topographic barrier which prevents the passage of moisture to

the east. As a result, while heavy orographic rainfalls are observed over the western slopes

of the Cascade mountain ranges, there is desert conditions over its eastern slopes.

113



(a) location parameter (µ)

(b) scale parameter (σ)

(c) shape parameter (ξ)

Figure 4.4: Symbol plot displaying the spatial pattern of point-wise estimates of GEV pa-
rameters: a) location (µ) , b) scale (σ), and c) shape (ξ) over the Washington State. The
radius of the circle at each location is proportional to the departure of the parameter value
at that location to the areal mean value.
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4.4.2 Max-stable Models Performances

The fitted max-stable models are evaluated based on two criteria. First ,the applied models

are assessed in terms of how they can model the dependence structure of the extreme rainfall

data. The second criteria is TIC which is a means of evaluating the quality of the statistical

models.

Modeling the Tail Dependence Structure

The fitted max-stable processes, including the Schlather, Brown-Resnick, and Extremal-t are

assessed in terms of modeling the empirical bivariate extremal coefficient and f-madogram

(Figure 4.5). The black shaded areas and the red lines show the empirical pairwise estimates

and the models’ estimates, respectively. We notice that the Schlather model provides a poor

fit to the empirical estimates of both metrics. Also, according to asymptotic values of the

Schlather model, this model suggests a rather strong dependence in extreme rainfall even

for locations where are situated at long distances from each other. In other words, this

model suggests there is still a strong association between the extreme rainfall data even at

far distances and this association never disappears. This is physically not possible given

that the climate and rainfall patterns could be completely different at distant locations. The

Brown-Resnick and Extremal-t process models provide similar good performances in mod-

eling the empirical bivariate extremal coefficient and f-madogram estimates. Both models

capture the variability of the dependence metrics and suggest a complete dependence and

an independence at short and long distances, respectively.

The poor performance of the Schlather model is due to having only one parameter (depen-

dence range) which makes this model rather inflexible (θSc(h) = 1 +
√

2/2 for ‖h‖ → ∞)

and leads to a relatively strong dependence structure even for pairs of sites located at long

distances. On the other hand, the Brown-Resnick and Extremal-t models have additional
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Table 4.1: TIC values associated with each of the applied max-stable processes. Lowest TIC
value indicates the best performing model

Max-stable Model Covariates Funcation Evaluations TIC

Schlather Lat, Lon, Alt, MAP 1705 613,249,351
Brown-Resnick Lat, Lon, Alt, MAP 731 610,209,862
Extremal-t Lat, Lon, Alt, MAP 903 610,203,117

* Lat: Latitude; Lon: Longitude; Alt: Altitude; MAP : Mean Annual Precipitation

smoothing parameters that increase their flexibility and lead to a superior fit to the ex-

tremal coefficient and f-madogram estimates. Therefore, they can model the entire range of

tail dependence and suggest more physically possible spatial structures.

Model Selection Based on TIC

TIC is equivalent to AIC and summarizes the information that is lost by a model. The lower

the information loss, the higher the quality of the model. The TIC value for each of the

applied max-stable models was calculated using the SpatialExtremes package in R. The

TIC values associated with each model is reported in Table 4.1. All the applied models had

similar covariates. The presented function evaluations and TIC values were computed after

the convergence was achieved. In terms of TIC, the Schlather model has the largest value

among others, which implies the poorest performance. The Brown-Resnick and Extremal-

t processes show superior performances compared to the Schlather model, with a slight

advantage for the Extremal-t model. Yet, as shown by the number of function evaluations,

this superior performance is achieved at the price of slightly longer convergence time.

Based on the applied performance metrics, the Extremal-t process is chosen as the best

performing max-stable model. Therefore, this model is selected from this point forward for

making inference on the GEV parameters and extreme return levels.
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4.4.3 Spatial Distribution of GEV Parameters

After selecting the superior max-stable model (Extremal-t process), this model is used to

calculate the GEV parameters and the extreme return levels over the study region. Figure

4.6 presents the spatial distribution of the location (µ), scale (σ), and shape (ξ) parameters of

the GEV distribution. The spatial patterns of the location and scale parameters are similar,

with a west-east gradient. This pattern is identical to that of the mean annual precipitation

(Figure 4.2b) which indicates that these two parameters are mostly influenced by the general

precipitation pattern in this region. For the shape parameter, the values are mostly positive

which confirms a heavy-tailed behaviour by the data in the Fréchet domain. In terms of

spatial pattern, the shape parameter values seem to be mostly influenced by the altitude

covariate (Figure 4.2a) with larger parameter values over the mountainous areas such as

Cascade mountain range and Rocky mountains.

4.4.4 Return Level Maps

The fitted Extremal-t model is used to generate return level maps for extreme precipitation

with various return periods over the PNW region. Figure 4.7 displays the spatial patterns of

extreme precipitation with 10-, 25-, 50-, and 100-years return periods over the study area.

The general pattern of extreme precipitation is relatively consistent across the estimated

return periods. More intense extremes are observed over the western boundaries of the study

area and the magnitude of heavy rainfalls decreases as we move toward the eastern parts of

the study region. This spatial pattern is similar to that of the mean annual precipitation

(Figure 4.2). Extreme precipitation pattern over this region seems to be mostly influenced

by the general moisture regime. The moisture traveling from the Pacific Ocean is responsible

for much of the precipitation over the Washington, Oregon states, as well as the Cascade

mountain range acting as a natural barrier against the movement of moisture. As a result,
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(a) location parameter (µ)

(b) scale parameter (σ)

(c) shape parameter (ξ)

Figure 4.6: Spatial distribution of the GEV parameters estimated by the Extremal-t process
model
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heavy orographic rainfalls occur over the west-ward slopes of this mountain, while there is

desert condition over the eastern slopes.

4.4.5 Model Validation

The constructed max-stable model is verified in three steps. In the first step, the ability of

the Extremal-t model in capturing the spatial dependence structure of the extreme rainfall

data is explored. We plot the pairwise and group-wise maxima from the fitted model and the

extreme rainfall data at some randomly selected locations over the study area. In the second

step, the return level estimates from the model are compared with the empirical return level

estimates from the bias-corrected PERSIANN-CDR data. In this way, it ensures the quality

of model fits to the observation data. Finally, the quantile estimates from the Extremal-t

model are compared with the point-wise return level estimates from the ground-based gauges.

QQ plots for Groupwise Maxima

Figure 4.8 demonstrates the QQ plots of pair-wise and block-wise maxima (with a block

size of 4) at some randomly selected locations separated by 65 km, 192 km, and 335 km.

The values are transformed to a unit Gumble scale for a better comparison. As seen in this

figure, the simulations of the annual maxima data from the Extremal-t model are in a good

agreement with the observed maxima data at locations with various distances.

Comparison with Empirical Return Levels

Figure 4.9 shows the return level estimates for various return periods as suggested by the

Extremal-t model versus the point-wise empirical return level estimates from the bias-

adjusted PERSIANN-CDR data at some randomly selected locations. These locations are
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Figure 4.8: Comparison of pairwise maxima simulated from the extremal-t model and ob-
served maxima for pairs of randomly selected stations separated by: (a) 65 km, (b) 192 km,
(c) 335 km, and (d) QQ-plot for the block-wise maxima with a block size of 4. Dotted lines
show the 95 % confidence intervals. For clarity, the values are transformed to unit Gumble
scale
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situated in various parts of the study area, which are associated with various climate and

precipitation patterns. As suggested by this figure, the quantile estimates from the model

agree with the empirical estimates and there is no systematic overestimation or underesti-

mation in the model’s behavior. Therefore, it can be concluded that the model has a good

fit to the annual maximum data and the estimates are neither far from empirical estimates,

nor over-fitted to the data. Overfitting the model to the data may result in losing the

spatial dependence structure of extreme precipitation and causes the extreme estimates to

develop independently at various parts of the study area. As a result, return level estimates

at neighboring sites could be quite different and lacking a reasonable smooth variation in

space.

Comparison with Gauge-based Return Levels

The quantile estimates from the fitted Extremal-t model are compared with the gauge-based

return level estimates at 27 gauge locations distributed across the PNW region. The charac-

teristic of the selected gauges, including their station IDs, climate classes, and geographical

coordinates are presented in Table 4.2. The selected gauges represent various elevation

ranges within the study area from coastal and low elevation regions to mountainous high

elevations areas. Also, the various climates within the study area include dry, temperate,

and Continental. The gauge-based return levels are calculated by extracting the annual

maximum time series and then fitting the GEV distribution to the extreme rainfall data

at each individual location. The maximum likelihood method is used at each location to

estimate the three parameters of the GEV distribution. Finally, return levels associated with

various return periods are computed at each location by plugging the parameter values and

the return periods into the inverse GEV function. The gauge-based return level values are

then compared with the model-based estimates at the collocated PERSIANN-CDR pixels.

Figure 4.10 presents the return level estimates from the Extremal-t model fitted to the bias-
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Figure 4.9: Empirical return levels from the model inputs (bias-corrected PERSIANN-CDR
data) and Extremal-t model at some randomly selected locations over the study area. Each
column belongs to a specific location. Map shows the spatial distribution of the selected
locations
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adjusted PERSIANN-CDR data and the gauge-based quantiles at 27 gauge locations over

the Washington state. According to this figure, there is a good agreement between the return

level estimates by the model and the estimates by rain gauges across various return periods

and gauge locations. The model’s performance is consistent across the various extreme event

magnitudes. The proposed model is able to capture the extreme precipitation properties at

regions characterized by either highly intense or low intense extremes. Also, the model-based

estimates demonstrate slightly larger or smaller return level values than the gauge-based

estimates at various locations. This result implies that there is no systematic overestimation

or underestimation behavior by the model.
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4.5 Summary and Conclusions

The main goal of this study is to model the spatial extreme precipitation over the Pa-

cific Northwest United States using satellite-based rainfall estimates from PERSIANN-CDR

product. To do so, several max-stable models were used, including the Schlather, the Brown-

Resnick, and the Extremal-t models. The inputs to these model are the bias-corrected

PERSIANN-CDR data. Latitude, longitude, altitude, and mean annual precipitation infor-

mation were also used as covariates. In order to identify the most suitable model over the

study region, we evaluated the performances in terms of capturing the spatial dependence

structure of the extreme rainfall data, and models’ capability in estimating the marginal

distributions of the data. Extremal coefficient and f-madogram indices were used to as eval-

uation metrics. The quality of the applied statistical models was also assessed using the TIC

metric. After identifying the superior max-stable model, we found the Extremal-t model

demonstrated the highest skill, and was further applied to estimate the GEV parameters

and develop the extreme return levels. The return level estimates from the Etremal-t model

were verified in terms of pair-wise and group-wise maxima using Q-Q plots. The gener-

ated return level plots from this model were compared with the empirical quantile estimates

from the bias-corrected PERSIANN-CDR data. Finally, the constructed DDF curves were

compared with the gauge-based estimates at multiple gauge locations across the study area.

The results of our exploratory analysis demonstrated that there was an evident spatial pat-

tern in the extreme rainfall data over the PNW region. Specifically, the extremal coefficient

and f-madogram plots showed there was a strong statistical association in the extreme rainfall

observations at nearby locations and this association dissipated as the distances between the

locations increased. Also, the symbol plots suggested that there was an identical east-ward

gradient in the location and scale parameters of the GEV distribution over the study region

with higher values near the coastal areas in the west. This pattern seemed to be mostly in-

fluenced by the general precipitation patterns in this region. For the shape parameter, there
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was no clear spatial pattern observed, and it became one of the challenges in estimating the

corresponding parameter of the GEV distribution.

Comparison of the extremal coefficient and f-madogram estimates from each of the applied

max-stable models with the empirical pairwise estimates suggested that the Brown-Resnick

and Extremal-t processes provide similar good performances in capturing the tail depen-

dence structure of the extreme rainfall data. The Schlather model suggested a rather strong

dependence in the data even at far distances. Also, the model selection procedure based on

the TIC metric suggested that the Extremal-t model is the superior model given its low-

est TIC value among others. Therefore, the Extremal-t process was identified as the best

performing max-stable model and was used to extrapolate the extreme return levels.

The spatial distribution of the location, scale, and shape parameters of the GEV distribution

by the Extremal-t model demonstrated that the first two parameters have a similar spatial

pattern with higher values over the western areas of the PNW region. This pattern was

similar to that of the mean annual precipitation and demonstrated that the longitude and

mean annual precipitation were suitable covariates for that parameter. Also, the spatial

pattern of the shape parameter seemed to be influenced by the elevation according to the

DEM layer. Particularly, higher shape parameter values were observed in both shallow

coastal regions and the high elevation areas. Return level maps for various return periods

based on the Extremal-t model were similar to that of the location and scale parameters in

terms of spatial distribution. Also, the most intense extreme events were observed in the

coastal areas of the Washington state, to the west of the Cascade mountain range and near

the Olympic mountain.

The Extremal-t model was validated in three steps: 1) The model’s performance in capturing

the dependence structure of the data was verified. QQ plots for the pairwise and the group-

wise maxima at some randomly selected locations showed that there was a good agreement

between the model simulations and observations for the sites located at various distances;
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2) The quality of the model fit to the data was assessed by comparing the return level

estimates from the Extremal-t model with the empirical estimates from the bias-corrected

PERSIANN-CDR data. It was shown that there is a good agreement between the two

estimates at various return periods and locations over the study area; and 3) The model’s

overall performance in extrapolating the extreme quantiles was assessed using the ground-

based rainfall observations. Return level plots generated by the gauge data at 27 stations

over the PNW region were compared with the estimates by the Extremal-t model at the

corresponding locations. The comparison showed that the extrapolated quantiles from the

model agreed well with the gauge-based estimates at various locations and for different return

periods.

Results of this study demonstrate the capabilities of the remotely sensed precipitation in-

formation for spatial extreme rainfall modeling over the poorly gauged regions. Specifically,

the PERSIANN-CDR product fits well to this goal given its long record and high spatial

resolution among those available remotely sensed sources of rainfall information. Yet, the

length of the satellite-based information is relatively short compared to the long-term gauge

data and the return periods often considered for the hydrological designs. Therefore, the

applied statistical analysis tools must have sufficient mathematical foundation so that the

extrapolations are logical and have lower uncertainties.
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Figure 4.10: Return level plots by the Extremal-t process model and the gauge-based esti-
mates at multiple gauge locations
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Figure 4.10: Continued
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Chapter 5

Conclusions and Future Directions

Extreme precipitation events can cause major floods and may result in loss of lives and

financial damages. Therefore, they need a careful modeling effort. The common approach

for modeling extreme precipitation is based on using ground-based precipitation information

from sparse gauge networks with short to long precipitation record and applying regional

frequency analysis methods. This approach has been working effectively for the parts of

the world that have sufficient observational networks. Yet, in many parts of the world,

gauge networks are sparse and short. Sparse gauge networks cannot describe the spatial

and temporal variation of extreme precipitation events that are highly variable in space and

time. Also, extrapolated quantiles that are often required for hydrological applications (e.g.

100 year return level) are highly uncertain when they are estimated using short precipitation

records. Limitations associated with the regional frequency analysis approaches together

with the ad-hoc uncertainty assessment techniques commonly used, add to the complexity

and unreliability of conventional approaches in poorly gauged regions. In recent years,

remotely-sensed precipitation information, from weather radars and earth-observing satellites

have been utilized for extreme precipitation modeling. This information could be very useful

for the parts of the world that do not have abundant gauge information. Yet, given the
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relatively short record of remotely-sensed rainfall datasets, extrapolating high quantiles from

these sources is challenging. Therefore, advanced methodologies need to be applied so that

extrapolations from such short records have sufficient mathematical foundation.

In this dissertation, an effort is made to present a framework by which remotely-sensed

precipitation information can be reliably used for extreme precipitation modeling. The

main focus of this dissertation is to minimize the existing gaps in the conventional extreme

precipitation modeling approaches by: (1) investigating the possibility of applying satellite-

based precipitation information for rainfall frequency analysis and evaluating the accuracy

of RS-based quantile estimates with gauge-based observations; and (2) applying advanced

statistical techniques that have sufficient mathematical basis and do not come with the

limiting assumptions underlying conventional extreme precipitation modeling approaches.

Given the necessity of long precipitation record, together with the high spatial and temporal

resolution, PERSIANN-CDR which has one of the longest precipitation records among the

remotely-sensed precipitation datasets, is used in this dissertation. Yet, methods and tools

applied and proposed in this dissertation can be generalized and extended to other remotely-

sensed precipitation datasets, as well.

In chapter 2, PERSIANN-CDR dataset is applied for rainfall frequency analysis in 20 basins

across the United States. A bias-correction approach is proposed to adjust the PERSIANN-

CDR estimates of extreme precipitation. This approach is implemented on the annual max-

imum time series estimates by PERSIANN-CDR dataset. The suggested approach is per-

formed in two steps: (1) estimating correction factors using limited gauge information by

applying a linear regression function that is based on elevation information; and (2) apply-

ing the estimated correction factors to adjust the annual maximum time series estimates by

PERSIANN-CDR at ungauged regions. The proposed bias-correction approach is then used

to adjust the PERSIANN-CDR extreme rainfall estimates and to perform rainfall frequency

analysis and develop depth-duration-frequency curves at 16 basins in the continental United
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States. It is shown that the suggested approach is effective in reducing the biases in the

extreme rainfall estimates by PERSIANN-CDR dataset. Cross-validation results suggest

that the bias-corrected extreme rainfall estimates are consistency more accurate than the

gauge-interpolated estimates at poorly gauged regions. Also, it is demonstrated that the

correction factors estimated using limited gauge information at a few basins can be gen-

eralized to other basins with similar climatic conditions. The bias-corrected estimates are

then utilized for performing rainfall frequency analysis. Point-wise quantile estimates by

the bias-corrected PERSIANN-CDR are compared with estimates from NOAA Atlas 14. It

is shown that the frequency estimates from the bias-corrected PERSIANN-CDR dataset is

consistent with NOAA Atlas 14. Therefore, it is show that the PERSIANN-CDR dataset is

capable of being used for extreme precipitation modeling at ungauged basins.

In chapter 3 of this dissertation, a hierarchical Bayesian approach is applied to model ex-

treme precipitation estimates by the bias-adjusted PERSIANN-CDR dataset. The applied

approach is similar to RFA in that it uses information from nearby locations to generate con-

sistent return level estimates; and to reduce uncertainties in the quantile estimates. However,

it has several advantages to the conventional RFA approaches, such as: the ability to in-

corporate expert knowledge through the use of prior information, possibility of including

additional physical and geographical information, and allowing to explicitly quantify the

model uncertainties. The latent variable model (LVM) is used in this chapter to model ex-

treme precipitation in Washington state. Parameter estimation is also implemented using

MCMC algorithm. Using various model diagnostics measures, it is shown that the generated

Markov chains are converged to their stationary distributions. Model verification showed

that return level estimates from the LVM model fitted to the bias-corrected PERSIANN-

CDR are consistent with the quantile estimates from the point gauge data. Also, comparison

of the return level maps with that of the available literature showed that the satellite-based

return level estimates are similar to the gauge-based estimates in terms of spatial pattern

and magnitude. The constructed model is also capable of reasonably reducing the uncer-
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tainties of the of the parameters and quantile estimates. It is worth mentioning that the

constructed hierarchical model cannot capture the tail dependence structure of the extreme

rainfall data due to the conditional independence assumption. Yet, if the goal of the mod-

eling is to simulate the marginal properties of the data, such as the return level values at

every single location in the study area, the LVM approach would be an effective choice. This

is of interest especially in predicting flood hazards at large catchments where the point-wise

IDF curves or return level maps are provided as inputs to the hydraulic and hydrological

models Schubert et al. (2017). If the goal of modeling involves capturing the tail dependence

structure of the data, a Max-stable process would be a better choice.

In chapter 4, a spatial extreme value modeling approach is taken to model extreme precip-

itation in the Pacific Northwest United States. Max-stable processes were applied in this

chapter due to their abilities in modeling the tail dependence structure of the data, which

was not achieved in the previous chapter because of the conditional independence assumption

underlying the LVM approach. Max-stable processes are used in this chapter to model the

marginal properties and the tail dependence structure of the extreme rainfall data, simulta-

neously. Conventional RFA approaches typically assume independence in the extreme data

at neighboring sites which is not an accurate assumption. Abilities of Max-stable processes

in capturing the asymptotic dependence in the extreme data make these models appealing

for many geophysical applications which involve simulating the joint probabilities of extreme

events. Various max-stable models including Schlather, Brown-Resnick, and Extremal-t are

used in this chapter to model spatial extreme precipitation. Results of this chapter demon-

strate superior performance by the Extremal-t process in modeling dependence structure of

the extreme rainfall data. Also, this model suggest the lowest TIC value which is a measure

of model quality. The best performing model was later used to generate return level maps

and rainfall depth-duration-frequency curves. Constructed DDF curves by the Extremal-t

model are also compared with the quantile estimates at 27 gauge locations. It is shown that

the estimates by the Extremal-t model agree well with the gauge-based estimates at various
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locations and return periods.

It is worth mentioning that we only applied a few covariates (i.e. elevation, latitude, lon-

gitude, and mean daily precipitation) for characterizing extreme precipitation in the con-

structed hierarchical and Max-stable models. Although these covariates were effective in

capturing the spatial and temporal characteristics of extreme events, there might be other

useful covariates that can better explain the extreme rainfall characteristics in different study

regions. These covariates must be identified for each study area based on the factors that

influence the precipitation mechanism in that specific region. For instance, when modeling

extremes in Florida, Texas, and Louisiana, we probably need to take into accounts covariates

that can explain the warm convective precipitation mechanism that impacts these regions.

In general, approaches and methods applied in this dissertation resulted in outstanding per-

formance in modeling extreme precipitation from remotely-sensed information. This study

serves as an introduction to the application of advanced statistical techniques, such as hierar-

chical Bayesian methods and Max-stable processes, for extreme precipitation modeling using

gridded and remotely-sensed information. Yet, there are multiple directions for future in-

vestigation in order to further improve and enhance the extreme value modeling capabilities

from remotely-sensed information.

• Given the short length of remotely-sensed precipitation datasets, extrapolating high

quantiles from these datasets are highly uncertain. One way to remedy this limitation,

is to take advantage from the peak-over-threshold approach (Solari et al., 2017). This

way, the length of the extreme rainfall time series used for extreme value modeling

is increased. As a result of the increased sample size, parameter estimation would

be more accurate and less uncertain. Especially, the shape parameter of the GEV

distribution which characterizes the tail behavior of this distribution could be more

accurately estimated. A challenge here would be the automation of the threshold
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selection procedure, given that a separate threshold must be selected for each pixel

and when the size of the studied area becomes large relative to the resolution of the

dataset, it becomes impossible to manually select the thresholds.

• Hierarchical Bayesian method and Max-stable processes approach applied in this study

showed good performances in capturing the extreme rainfall characteristics from satel-

lite datasets. However, running these models for large areas with too many pixels are

likely to take too long. Specially, the hierarchical models are pretty slow and conver-

gence of hierarchical models fed with a large number of pixels is hard to achieve. The

latent variable model approach applied here is a simple hierarchical which has shown

good performance in capturing the marginal properties of the data. Yet, more ad-

vanced techniques, such as the Hierarchical Kernel Extreme Value Process (HKEVP)

(Reich and Shaby, 2012), or the the hierarchical model proposed by Dyrrdal et al.

(2015) require more computational resources in order to converge in a reasonable time

period. One way to advance the current work, would be to improve the computational

efficiency of these methods using advanced statistical methods and utilizing more pow-

erful processing units.

• The available remotely-sensed precipitation datasets suffer from serious limitations

such as shortness of record(especially for radar data), poor spatial resolution (in the

case of satellite-based estimates), and poor temporal resolution (daily and coarser for

satellite-based datasets). Improvements in rainfall estimation methods (Akbari Asan-

jan et al., 2018; Sadeghi et al., 2019b,a), in terms of estimation accuracy and spatiotem-

poral resolutions, will contribute to the usefulness of remotely-sensed information for

extreme precipitation modeling.

• The bias-correction method used throughout this dissertation could improve the accu-

racy of the extreme rainfall estimates. Yet, more advanced bias-correction techniques

that can further improve the accuracy of the more intense events could result in more
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accurate extreme precipitation models based on remotely-sensed datasets. Especially,

as suggested by (Marra et al., 2019), use of downscaling methods that can preserve the

correlation structure of the the rainfall fields from point-wise gauge information would

be a solution (Foufoula-Georgiou et al., 2013; Zorzetto and Marani, 2019).
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